|
| 1 | +# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +import os |
| 16 | +from collections import OrderedDict |
| 17 | + |
| 18 | +import numpy as np |
| 19 | +import paddle |
| 20 | +import torch |
| 21 | +from transformers import BartForConditionalGeneration as hf_BartForConditionalGeneration |
| 22 | + |
| 23 | +from paddlenlp.transformers import ( |
| 24 | + BartForConditionalGeneration as pp_BartForConditionalGeneration, |
| 25 | +) |
| 26 | +from paddlenlp.utils import load_torch |
| 27 | +from paddlenlp.utils.downloader import get_path_from_url_with_filelock |
| 28 | +from paddlenlp.utils.log import logger |
| 29 | + |
| 30 | +# Download huggingface models |
| 31 | +hf_hub_repo = "fnlp/bart-base-chinese" |
| 32 | +base_url = f"https://huggingface.co/{hf_hub_repo}/resolve/main/" |
| 33 | + |
| 34 | +pp_hf_checkpoint = hf_hub_repo.replace("/", "_") |
| 35 | +os.makedirs(pp_hf_checkpoint, exist_ok=True) |
| 36 | + |
| 37 | +for i in [ |
| 38 | + "config.json", |
| 39 | + "vocab.txt", |
| 40 | + "tokenizer_config.json", |
| 41 | + "special_tokens_map.json", |
| 42 | + "pytorch_model.bin", |
| 43 | + "added_tokens.json", |
| 44 | + "spiece.model", |
| 45 | +]: |
| 46 | + try: |
| 47 | + get_path_from_url_with_filelock(f"{base_url}{i}", pp_hf_checkpoint) |
| 48 | + except RuntimeError: |
| 49 | + logger.warning(f"{base_url}{i} not found.") |
| 50 | + |
| 51 | +use_torch = False |
| 52 | +try: |
| 53 | + hf_model = load_torch(os.path.join(pp_hf_checkpoint, "pytorch_model.bin")) |
| 54 | +except ValueError: |
| 55 | + # Some models coming from pytorch_lighting |
| 56 | + use_torch = True |
| 57 | + hf_model = torch.load(os.path.join(pp_hf_checkpoint, "pytorch_model.bin"), map_location="cpu") |
| 58 | + |
| 59 | +huggingface_to_paddle_encoder = { |
| 60 | + "model.encoder.embed_tokens": "bart.encoder.embed_tokens", |
| 61 | + "model.encoder.embed_positions": "bart.encoder.encoder_embed_positions", |
| 62 | + "model.encoder.layernorm_embedding": "bart.encoder.encoder_layernorm_embedding", |
| 63 | + ".self_attn_layer_norm.": ".norm1.", |
| 64 | + ".fc1.": ".linear1.", |
| 65 | + ".fc2.": ".linear2.", |
| 66 | + ".final_layer_norm.": ".norm2.", |
| 67 | + "model.encoder": "bart.encoder.encoder", |
| 68 | +} |
| 69 | + |
| 70 | +huggingface_to_paddle_decoder = { |
| 71 | + "model.decoder.embed_tokens": "bart.decoder.embed_tokens", |
| 72 | + "model.decoder.embed_positions": "bart.decoder.decoder_embed_positions", |
| 73 | + "model.decoder.layernorm_embedding": "bart.decoder.decoder_layernorm_embedding", |
| 74 | + ".self_attn_layer_norm.": ".norm1.", |
| 75 | + ".encoder_attn.": ".cross_attn.", |
| 76 | + ".encoder_attn_layer_norm.": ".norm2.", |
| 77 | + ".fc1.": ".linear1.", |
| 78 | + ".fc2.": ".linear2.", |
| 79 | + ".final_layer_norm.": ".norm3.", |
| 80 | + "model.decoder": "bart.decoder.decoder", |
| 81 | +} |
| 82 | + |
| 83 | +skip_weights = [] |
| 84 | + |
| 85 | +dont_transpose = [ |
| 86 | + ".embed_positions.weight", |
| 87 | + ".embed_tokens.weight", |
| 88 | + "layernorm_embedding.weight", |
| 89 | + "norm.weight", |
| 90 | + ".shared.weight", |
| 91 | + "lm_head.weight", |
| 92 | +] |
| 93 | + |
| 94 | +paddle_state_dict = OrderedDict() |
| 95 | + |
| 96 | +# Convert parameters |
| 97 | +for k, v in hf_model.items(): |
| 98 | + transpose = False |
| 99 | + if k in skip_weights: |
| 100 | + continue |
| 101 | + if k[-7:] == ".weight": |
| 102 | + if not any([w in k for w in dont_transpose]): |
| 103 | + if v.ndim == 2: |
| 104 | + v = v.transpose(0, 1) if use_torch else v.transpose() |
| 105 | + transpose = True |
| 106 | + oldk = k |
| 107 | + |
| 108 | + if "model.encoder." in k: |
| 109 | + for huggingface_name, paddle_name in huggingface_to_paddle_encoder.items(): |
| 110 | + k = k.replace(huggingface_name, paddle_name) |
| 111 | + elif "model.decoder." in k: |
| 112 | + for huggingface_name, paddle_name in huggingface_to_paddle_decoder.items(): |
| 113 | + k = k.replace(huggingface_name, paddle_name) |
| 114 | + |
| 115 | + if oldk == "model.shared.weight": |
| 116 | + k = "bart.shared.weight" |
| 117 | + |
| 118 | + if oldk == "lm_head.weight": |
| 119 | + k = "lm_head_weight" |
| 120 | + |
| 121 | + logger.info(f"Converting: {oldk} => {k} | is_transpose {transpose}") |
| 122 | + |
| 123 | + paddle_state_dict[k] = v.data.numpy() if use_torch else v |
| 124 | + |
| 125 | +# Save to .pdparams |
| 126 | +paddle.save(paddle_state_dict, os.path.join(pp_hf_checkpoint, "model_state.pdparams")) |
| 127 | + |
| 128 | +# Compare ppnlp with hf |
| 129 | +paddle.set_grad_enabled(False) |
| 130 | +torch.set_grad_enabled(False) |
| 131 | +pp_model = pp_BartForConditionalGeneration.from_pretrained(pp_hf_checkpoint) |
| 132 | +pp_model.eval() |
| 133 | +hf_model = hf_BartForConditionalGeneration.from_pretrained(pp_hf_checkpoint) |
| 134 | +hf_model.eval() |
| 135 | + |
| 136 | +input_ids = np.random.randint(1, 10000, size=(2, 10)) |
| 137 | +pp_inputs = paddle.to_tensor(input_ids) |
| 138 | +hf_inputs = torch.tensor(input_ids) |
| 139 | + |
| 140 | +pp_output = pp_model(pp_inputs) |
| 141 | +hf_output = hf_model(hf_inputs) |
| 142 | + |
| 143 | +diff = abs(hf_output.logits.detach().numpy() - pp_output.numpy()) |
| 144 | +logger.info(f"max diff: {np.max(diff)}, min diff: {np.min(diff)}") |
0 commit comments