Skip to content

Commit ad3a7ec

Browse files
committed
Add big tensor tests for fused kernels
1 parent 80f18ee commit ad3a7ec

File tree

1 file changed

+84
-0
lines changed

1 file changed

+84
-0
lines changed

tests/ops/test_fused_big_tensor.py

Lines changed: 84 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,84 @@
1+
import paddle
2+
import paddle.incubate.nn.functional as F
3+
import FusedQuantOps as FQO
4+
import numpy as np
5+
6+
7+
def test_fused_spaq(height, width):
8+
print(f'test_fused_spaq', (height, width))
9+
10+
x = paddle.randn([height, width], dtype='bfloat16').clip_(min=-50, max=50)
11+
prob = paddle.randn([height, 1]).astype("float32")
12+
13+
out, scale = FQO.fused_spaq(x, prob, using_pow2_scaling=False)
14+
paddle.base.core.eager._for_test_check_cuda_error()
15+
16+
out_golden = F.swiglu(x) * prob
17+
out_dequant = (
18+
out.astype('float32') *
19+
scale.repeat_interleave(128, axis=1)[:, :out.shape[-1]]
20+
)
21+
22+
np.testing.assert_allclose(out_dequant, out_golden, atol=1, rtol=0.01)
23+
24+
25+
def test_fused_act_quant_dequant(height, width):
26+
print(f"test_fused_act_quant_dequant width:{width}, height:{height}")
27+
28+
x = paddle.randn([height, width], dtype="bfloat16").clip_(min=-50, max=50)
29+
30+
x_fp8, scale = FQO.fused_act_quant(
31+
x,
32+
transpose_output=False,
33+
padding_last_dim_to_8x=False,
34+
using_pow2_scaling=False
35+
)
36+
paddle.base.core.eager._for_test_check_cuda_error()
37+
38+
x_dequant = FQO.fused_act_dequant(x_fp8, scale)
39+
paddle.base.core.eager._for_test_check_cuda_error()
40+
41+
x = x.astype('float32')
42+
x_dequant = x_dequant.astype('float32')
43+
np.testing.assert_allclose(x, x_dequant, atol=1, rtol=0.01)
44+
45+
46+
def test_fused_swiglu_probs_bwd(topk, seq_len, moe_intermediate_size):
47+
print(f'test_fused_swiglu_probs_bwd topk:{topk} seq_len:{seq_len} moe_intermediate_size:{moe_intermediate_size}')
48+
49+
o1 = paddle.rand([topk, seq_len, moe_intermediate_size * 2], dtype="bfloat16")
50+
unzipped_probs = paddle.rand([ topk, seq_len, 1], dtype="float32")
51+
do2_s = paddle.rand([topk, seq_len , moe_intermediate_size], dtype="bfloat16")
52+
53+
do1, pg, o2_s = FQO.fused_swiglu_probs_bwd(o1, do2_s, unzipped_probs)
54+
paddle.base.core.eager._for_test_check_cuda_error()
55+
56+
def fn_gold():
57+
o2 = F.swiglu(o1)
58+
o2_s = (o2 * unzipped_probs)
59+
do2 = (do2_s.cast(paddle.float32) * unzipped_probs)
60+
do2 = do2.cast(paddle.bfloat16)
61+
do1, _ = paddle._C_ops.swiglu_grad(o1, None, do2)
62+
probs_grad = (do2_s.cast(paddle.float32) * (o2.cast(paddle.float32))).sum(axis=-1)
63+
return do1, probs_grad, o2_s
64+
65+
do1_gold, pg_gold, o2_s_gold = fn_gold()
66+
67+
np.testing.assert_allclose(do1.astype('float32'), do1_gold.astype('float32'), atol=1e-2, rtol=1e-2)
68+
np.testing.assert_allclose(pg, pg_gold.flatten(), atol=1e-2, rtol=1e-3)
69+
np.testing.assert_allclose(o2_s.astype('float32'), o2_s_gold, atol=1e-2, rtol=1e-2)
70+
71+
72+
if __name__ == '__main__':
73+
for height in [8192, 16384, 32768, 128000, 510336]:
74+
for width in [4096, 7168]:
75+
test_fused_spaq(width, height)
76+
77+
for height in [4096, 16384, 32768, 128000, 510336]:
78+
for width in [4096, 7168]:
79+
test_fused_act_quant_dequant(height, width)
80+
81+
for topk in [8]:
82+
for seq_len in [4096, 7168]:
83+
for moe_intermediate_size in [2048, 20480, 40960]:
84+
test_fused_swiglu_probs_bwd(topk, seq_len, moe_intermediate_size)

0 commit comments

Comments
 (0)