|
| 1 | +# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. |
| 2 | + |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | + |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | + |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | + |
| 16 | +import warnings |
| 17 | +from functools import partial |
| 18 | + |
| 19 | +import hydra |
| 20 | +import paddle |
| 21 | +from omegaconf import DictConfig |
| 22 | + |
| 23 | +import ppsci |
| 24 | + |
| 25 | + |
| 26 | +def train(cfg: DictConfig): |
| 27 | + # set model |
| 28 | + model = ppsci.arch.RegPointNet( |
| 29 | + input_keys=cfg.MODEL.input_keys, |
| 30 | + label_keys=cfg.MODEL.output_keys, |
| 31 | + weight_keys=cfg.MODEL.weight_keys, |
| 32 | + args=cfg.MODEL, |
| 33 | + ) |
| 34 | + |
| 35 | + train_dataloader_cfg = { |
| 36 | + "dataset": { |
| 37 | + "name": "DrivAerNetPlusPlusDataset", |
| 38 | + "root_dir": cfg.dataset_path, |
| 39 | + "input_keys": cfg.MODEL.input_keys, |
| 40 | + "label_keys": cfg.MODEL.output_keys, |
| 41 | + "weight_keys": cfg.MODEL.weight_keys, |
| 42 | + "subset_dir": cfg.subset_dir, |
| 43 | + "ids_file": cfg.TRAIN.train_ids_file, |
| 44 | + "csv_file": cfg.aero_coeff, |
| 45 | + "num_points": cfg.TRAIN.num_points, |
| 46 | + }, |
| 47 | + "batch_size": cfg.TRAIN.batch_size, |
| 48 | + "num_workers": cfg.TRAIN.num_workers, |
| 49 | + } |
| 50 | + |
| 51 | + drivaernetplusplus_constraint = ppsci.constraint.SupervisedConstraint( |
| 52 | + train_dataloader_cfg, |
| 53 | + ppsci.loss.MSELoss("mean"), |
| 54 | + name="DrivAerNetplusplus_constraint", |
| 55 | + ) |
| 56 | + |
| 57 | + constraint = {drivaernetplusplus_constraint.name: drivaernetplusplus_constraint} |
| 58 | + |
| 59 | + valid_dataloader_cfg = { |
| 60 | + "dataset": { |
| 61 | + "name": "DrivAerNetPlusPlusDataset", |
| 62 | + "root_dir": cfg.dataset_path, |
| 63 | + "input_keys": cfg.MODEL.input_keys, |
| 64 | + "label_keys": cfg.MODEL.output_keys, |
| 65 | + "weight_keys": cfg.MODEL.weight_keys, |
| 66 | + "subset_dir": cfg.subset_dir, |
| 67 | + "ids_file": cfg.TRAIN.eval_ids_file, |
| 68 | + "csv_file": cfg.aero_coeff, |
| 69 | + "num_points": cfg.TRAIN.num_points, |
| 70 | + }, |
| 71 | + "batch_size": cfg.TRAIN.batch_size, |
| 72 | + "num_workers": cfg.TRAIN.num_workers, |
| 73 | + } |
| 74 | + |
| 75 | + drivaernetplusplus_valid = ppsci.validate.SupervisedValidator( |
| 76 | + valid_dataloader_cfg, |
| 77 | + loss=ppsci.loss.MSELoss("mean"), |
| 78 | + metric={"MSE": ppsci.metric.MSE()}, |
| 79 | + name="DrivAerNetplusplus_valid", |
| 80 | + ) |
| 81 | + |
| 82 | + validator = {drivaernetplusplus_valid.name: drivaernetplusplus_valid} |
| 83 | + |
| 84 | + # set optimizer |
| 85 | + lr_scheduler = ppsci.optimizer.lr_scheduler.ReduceOnPlateau( |
| 86 | + epochs=cfg.TRAIN.epochs, |
| 87 | + iters_per_epoch=( |
| 88 | + cfg.TRAIN.iters_per_epoch |
| 89 | + // (paddle.distributed.get_world_size() * cfg.TRAIN.batch_size) |
| 90 | + + 1 |
| 91 | + ), |
| 92 | + learning_rate=cfg.optimizer.lr, |
| 93 | + mode=cfg.TRAIN.scheduler.mode, |
| 94 | + patience=cfg.TRAIN.scheduler.patience, |
| 95 | + factor=cfg.TRAIN.scheduler.factor, |
| 96 | + verbose=cfg.TRAIN.scheduler.verbose, |
| 97 | + )() |
| 98 | + |
| 99 | + optimizer = ( |
| 100 | + ppsci.optimizer.Adam(lr_scheduler, weight_decay=cfg.optimizer.weight_decay)( |
| 101 | + model |
| 102 | + ) |
| 103 | + if cfg.optimizer.optimizer == "adam" |
| 104 | + else ppsci.optimizer.SGD(lr_scheduler, weight_decay=cfg.optimizer.weight_decay)( |
| 105 | + model |
| 106 | + ) |
| 107 | + ) |
| 108 | + |
| 109 | + # initialize solver |
| 110 | + solver = ppsci.solver.Solver( |
| 111 | + model=model, |
| 112 | + iters_per_epoch=( |
| 113 | + cfg.TRAIN.iters_per_epoch |
| 114 | + // (paddle.distributed.get_world_size() * cfg.TRAIN.batch_size) |
| 115 | + + 1 |
| 116 | + ), |
| 117 | + constraint=constraint, |
| 118 | + output_dir=cfg.output_dir, |
| 119 | + optimizer=optimizer, |
| 120 | + lr_scheduler=lr_scheduler, |
| 121 | + epochs=cfg.TRAIN.epochs, |
| 122 | + validator=validator, |
| 123 | + eval_during_train=cfg.TRAIN.eval_during_train, |
| 124 | + eval_with_no_grad=cfg.EVAL.eval_with_no_grad, |
| 125 | + ) |
| 126 | + |
| 127 | + lr_scheduler.step = partial(lr_scheduler.step, metrics=solver.cur_metric) |
| 128 | + solver.lr_scheduler = lr_scheduler |
| 129 | + |
| 130 | + # train model |
| 131 | + solver.train() |
| 132 | + |
| 133 | + solver.eval() |
| 134 | + |
| 135 | + |
| 136 | +def evaluate(cfg: DictConfig): |
| 137 | + # set model |
| 138 | + model = ppsci.arch.RegPointNet( |
| 139 | + input_keys=cfg.MODEL.input_keys, |
| 140 | + label_keys=cfg.MODEL.output_keys, |
| 141 | + weight_keys=cfg.MODEL.weight_keys, |
| 142 | + args=cfg.MODEL, |
| 143 | + ) |
| 144 | + |
| 145 | + valid_dataloader_cfg = { |
| 146 | + "dataset": { |
| 147 | + "name": "DrivAerNetPlusPlusDataset", |
| 148 | + "root_dir": cfg.dataset_path, |
| 149 | + "input_keys": cfg.MODEL.input_keys, |
| 150 | + "label_keys": cfg.MODEL.output_keys, |
| 151 | + "weight_keys": cfg.MODEL.weight_keys, |
| 152 | + "subset_dir": cfg.subset_dir, |
| 153 | + "ids_file": cfg.EVAL.ids_file, |
| 154 | + "csv_file": cfg.aero_coeff, |
| 155 | + "num_points": cfg.EVAL.num_points, |
| 156 | + }, |
| 157 | + "batch_size": cfg.EVAL.batch_size, |
| 158 | + "num_workers": cfg.EVAL.num_workers, |
| 159 | + } |
| 160 | + |
| 161 | + drivaernetplusplus_valid = ppsci.validate.SupervisedValidator( |
| 162 | + valid_dataloader_cfg, |
| 163 | + loss=ppsci.loss.MSELoss("mean"), |
| 164 | + metric={ |
| 165 | + "MSE": ppsci.metric.MSE(), |
| 166 | + "MAE": ppsci.metric.MAE(), |
| 167 | + "Max AE": ppsci.metric.MaxAE(), |
| 168 | + "R²": ppsci.metric.R2Score(), |
| 169 | + }, |
| 170 | + name="DrivAerNetPlusPlus_valid", |
| 171 | + ) |
| 172 | + |
| 173 | + validator = {drivaernetplusplus_valid.name: drivaernetplusplus_valid} |
| 174 | + |
| 175 | + solver = ppsci.solver.Solver( |
| 176 | + model=model, |
| 177 | + validator=validator, |
| 178 | + pretrained_model_path=cfg.EVAL.pretrained_model_path, |
| 179 | + eval_with_no_grad=cfg.EVAL.eval_with_no_grad, |
| 180 | + ) |
| 181 | + |
| 182 | + # evaluate model |
| 183 | + solver.eval() |
| 184 | + |
| 185 | + |
| 186 | +@hydra.main( |
| 187 | + version_base=None, config_path="./conf", config_name="drivaernetplusplus.yaml" |
| 188 | +) |
| 189 | +def main(cfg: DictConfig): |
| 190 | + warnings.filterwarnings("ignore") |
| 191 | + if cfg.mode == "train": |
| 192 | + train(cfg) |
| 193 | + elif cfg.mode == "eval": |
| 194 | + evaluate(cfg) |
| 195 | + else: |
| 196 | + raise ValueError(f"cfg.mode should in ['train', 'eval'], but got '{cfg.mode}'") |
| 197 | + |
| 198 | + |
| 199 | +if __name__ == "__main__": |
| 200 | + main() |
0 commit comments