|
| 1 | +# DreamBooth training example |
| 2 | + |
| 3 | +[DreamBooth](https://arxiv.org/abs/2208.12242) is a method to personalize text2image models like stable diffusion given just a few(3~5) images of a subject. |
| 4 | +The `train_dreambooth.py` script shows how to implement the training procedure and adapt it for stable diffusion. |
| 5 | + |
| 6 | + |
| 7 | +## Running locally |
| 8 | +### Installing the dependencies |
| 9 | + |
| 10 | +Before running the scripts, make sure to install the library's training dependencies: |
| 11 | + |
| 12 | +```bash |
| 13 | +pip install diffusers[training] accelerate transformers |
| 14 | +``` |
| 15 | + |
| 16 | +And initialize an [🤗Accelerate](https://github.com/huggingface/accelerate/) environment with: |
| 17 | + |
| 18 | +```bash |
| 19 | +accelerate config |
| 20 | +``` |
| 21 | + |
| 22 | +### Dog toy example |
| 23 | + |
| 24 | +You need to accept the model license before downloading or using the weights. In this example we'll use model version `v1-4`, so you'll need to visit [its card](https://huggingface.co/CompVis/stable-diffusion-v1-4), read the license and tick the checkbox if you agree. |
| 25 | + |
| 26 | +You have to be a registered user in 🤗 Hugging Face Hub, and you'll also need to use an access token for the code to work. For more information on access tokens, please refer to [this section of the documentation](https://huggingface.co/docs/hub/security-tokens). |
| 27 | + |
| 28 | +Run the following command to authenticate your token |
| 29 | + |
| 30 | +```bash |
| 31 | +huggingface-cli login |
| 32 | +``` |
| 33 | + |
| 34 | +If you have already cloned the repo, then you won't need to go through these steps. You can simple remove the `--use_auth_token` arg from the following command. |
| 35 | + |
| 36 | +<br> |
| 37 | + |
| 38 | +Now let's get our dataset. Download images from [here](https://drive.google.com/drive/folders/1BO_dyz-p65qhBRRMRA4TbZ8qW4rB99JZ) and save them in a directory. This will be our training data. |
| 39 | + |
| 40 | +And launch the training using |
| 41 | + |
| 42 | +```bash |
| 43 | +export MODEL_NAME="CompVis/stable-diffusion-v1-4" |
| 44 | +export INSTANCE_DIR="path-to-instance-images" |
| 45 | +export OUTPUT_DIR="path-to-save-model" |
| 46 | + |
| 47 | +accelerate launch train_dreambooth.py \ |
| 48 | + --pretrained_model_name_or_path=$MODEL_NAME --use_auth_token \ |
| 49 | + --instance_data_dir=$INSTANCE_DIR \ |
| 50 | + --output_dir=$OUTPUT_DIR \ |
| 51 | + --instance_prompt="a photo of sks dog" \ |
| 52 | + --resolution=512 \ |
| 53 | + --train_batch_size=1 \ |
| 54 | + --gradient_accumulation_steps=1 \ |
| 55 | + --learning_rate=5e-6 \ |
| 56 | + --lr_scheduler="constant" \ |
| 57 | + --lr_warmup_steps=0 \ |
| 58 | + --max_train_steps=400 |
| 59 | +``` |
| 60 | + |
| 61 | +### Training with prior-preservation loss |
| 62 | + |
| 63 | +Prior-preservation is used to avoid overfitting and language-drift. Refer to the paper to learn more about it. For prior-preservation we first generate images using the model with a class prompt and then use those during training along with our data. |
| 64 | +According to the paper, it's recommened to generate `num_epochs * num_samples` images for prior-preservation. 200-300 works well for most cases. |
| 65 | + |
| 66 | +```bash |
| 67 | +export MODEL_NAME="CompVis/stable-diffusion-v1-4" |
| 68 | +export INSTANCE_DIR="path-to-instance-images" |
| 69 | +export CLASS_DIR="path-to-class-images" |
| 70 | +export OUTPUT_DIR="path-to-save-model" |
| 71 | + |
| 72 | +accelerate launch train_dreambooth.py \ |
| 73 | + --pretrained_model_name_or_path=$MODEL_NAME --use_auth_token \ |
| 74 | + --instance_data_dir=$INSTANCE_DIR \ |
| 75 | + --class_data_dir=$CLASS_DIR \ |
| 76 | + --output_dir=$OUTPUT_DIR \ |
| 77 | + --with_prior_preservation --prior_loss_weight=1.0 \ |
| 78 | + --instance_prompt="a photo of sks dog" \ |
| 79 | + --class_prompt="a photo of dog" \ |
| 80 | + --resolution=512 \ |
| 81 | + --train_batch_size=1 \ |
| 82 | + --gradient_accumulation_steps=1 \ |
| 83 | + --learning_rate=5e-6 \ |
| 84 | + --lr_scheduler="constant" \ |
| 85 | + --lr_warmup_steps=0 \ |
| 86 | + --num_class_images=200 \ |
| 87 | + --max_train_steps=800 |
| 88 | +``` |
| 89 | + |
| 90 | +### Training on a 16GB GPU: |
| 91 | + |
| 92 | +With the help of gradient checkpointing and the 8-bit optimizer from bitsandbytes it's possible to run train dreambooth on a 16GB GPU. |
| 93 | + |
| 94 | +Install `bitsandbytes` with `pip install bitsandbytes` |
| 95 | + |
| 96 | +```bash |
| 97 | +export MODEL_NAME="CompVis/stable-diffusion-v1-4" |
| 98 | +export INSTANCE_DIR="path-to-instance-images" |
| 99 | +export CLASS_DIR="path-to-class-images" |
| 100 | +export OUTPUT_DIR="path-to-save-model" |
| 101 | + |
| 102 | +accelerate launch train_dreambooth.py \ |
| 103 | + --pretrained_model_name_or_path=$MODEL_NAME --use_auth_token \ |
| 104 | + --instance_data_dir=$INSTANCE_DIR \ |
| 105 | + --class_data_dir=$CLASS_DIR \ |
| 106 | + --output_dir=$OUTPUT_DIR \ |
| 107 | + --with_prior_preservation --prior_loss_weight=1.0 \ |
| 108 | + --instance_prompt="a photo of sks dog" \ |
| 109 | + --class_prompt="a photo of dog" \ |
| 110 | + --resolution=512 \ |
| 111 | + --train_batch_size=1 \ |
| 112 | + --gradient_accumulation_steps=2 --gradient_checkpointing \ |
| 113 | + --use_8bit_adam \ |
| 114 | + --learning_rate=5e-6 \ |
| 115 | + --lr_scheduler="constant" \ |
| 116 | + --lr_warmup_steps=0 \ |
| 117 | + --num_class_images=200 \ |
| 118 | + --max_train_steps=800 |
| 119 | +``` |
| 120 | + |
| 121 | + |
| 122 | +## Inference |
| 123 | + |
| 124 | +Once you have trained a model using above command, the inference can be done simply using the `StableDiffusionPipeline`. Make sure to include the `identifier`(e.g. sks in above example) in your prompt. |
| 125 | + |
| 126 | +```python |
| 127 | + |
| 128 | +from torch import autocast |
| 129 | +from diffusers import StableDiffusionPipeline |
| 130 | +import torch |
| 131 | + |
| 132 | +model_id = "path-to-your-trained-model" |
| 133 | +pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda") |
| 134 | + |
| 135 | +prompt = "A photo of sks dog in a bucket" |
| 136 | + |
| 137 | +with autocast("cuda"): |
| 138 | + image = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] |
| 139 | + |
| 140 | +image.save("dog-bucket.png") |
| 141 | +``` |
0 commit comments