Skip to content

Commit 3dc97bd

Browse files
Update CLIPFeatureExtractor to CLIPImageProcessor and DPTFeatureExtractor to DPTImageProcessor (#9002)
* fix: update `CLIPFeatureExtractor` to `CLIPImageProcessor` in codebase * `make style && make quality` * Update `DPTFeatureExtractor` to `DPTImageProcessor` in codebase * `make style` --------- Co-authored-by: Aryan <aryan@huggingface.co>
1 parent 6d32b29 commit 3dc97bd

30 files changed

+73
-77
lines changed

docs/source/en/using-diffusers/custom_pipeline_overview.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -289,9 +289,9 @@ scheduler = DPMSolverMultistepScheduler.from_pretrained(pipe_id, subfolder="sche
289289
3. Load an image processor:
290290

291291
```python
292-
from transformers import CLIPFeatureExtractor
292+
from transformers import CLIPImageProcessor
293293

294-
feature_extractor = CLIPFeatureExtractor.from_pretrained(pipe_id, subfolder="feature_extractor")
294+
feature_extractor = CLIPImageProcessor.from_pretrained(pipe_id, subfolder="feature_extractor")
295295
```
296296

297297
<Tip warning={true}>

docs/source/en/using-diffusers/inference_with_tcd_lora.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -212,14 +212,14 @@ TCD-LoRA is very versatile, and it can be combined with other adapter types like
212212
import torch
213213
import numpy as np
214214
from PIL import Image
215-
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
215+
from transformers import DPTImageProcessor, DPTForDepthEstimation
216216
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline
217217
from diffusers.utils import load_image, make_image_grid
218218
from scheduling_tcd import TCDScheduler
219219

220220
device = "cuda"
221221
depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to(device)
222-
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-hybrid-midas")
222+
feature_extractor = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas")
223223

224224
def get_depth_map(image):
225225
image = feature_extractor(images=image, return_tensors="pt").pixel_values.to(device)

docs/source/ko/using-diffusers/loading.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -307,7 +307,7 @@ print(pipeline)
307307

308308
위의 코드 출력 결과를 확인해보면, `pipeline`[`StableDiffusionPipeline`]의 인스턴스이며, 다음과 같이 총 7개의 컴포넌트로 구성된다는 것을 알 수 있습니다.
309309

310-
- `"feature_extractor"`: [`~transformers.CLIPFeatureExtractor`]의 인스턴스
310+
- `"feature_extractor"`: [`~transformers.CLIPImageProcessor`]의 인스턴스
311311
- `"safety_checker"`: 유해한 컨텐츠를 스크리닝하기 위한 [컴포넌트](https://github.com/huggingface/diffusers/blob/e55687e1e15407f60f32242027b7bb8170e58266/src/diffusers/pipelines/stable_diffusion/safety_checker.py#L32)
312312
- `"scheduler"`: [`PNDMScheduler`]의 인스턴스
313313
- `"text_encoder"`: [`~transformers.CLIPTextModel`]의 인스턴스

docs/source/ko/using-diffusers/textual_inversion_inference.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -24,7 +24,7 @@ import PIL
2424
from PIL import Image
2525

2626
from diffusers import StableDiffusionPipeline
27-
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
27+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
2828

2929

3030
def image_grid(imgs, rows, cols):

examples/community/README.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1435,9 +1435,9 @@ import requests
14351435
import torch
14361436
from diffusers import DiffusionPipeline
14371437
from PIL import Image
1438-
from transformers import CLIPFeatureExtractor, CLIPModel
1438+
from transformers import CLIPImageProcessor, CLIPModel
14391439

1440-
feature_extractor = CLIPFeatureExtractor.from_pretrained(
1440+
feature_extractor = CLIPImageProcessor.from_pretrained(
14411441
"laion/CLIP-ViT-B-32-laion2B-s34B-b79K"
14421442
)
14431443
clip_model = CLIPModel.from_pretrained(
@@ -2122,15 +2122,15 @@ import torch
21222122
import open_clip
21232123
from open_clip import SimpleTokenizer
21242124
from diffusers import DiffusionPipeline
2125-
from transformers import CLIPFeatureExtractor, CLIPModel
2125+
from transformers import CLIPImageProcessor, CLIPModel
21262126

21272127

21282128
def download_image(url):
21292129
response = requests.get(url)
21302130
return PIL.Image.open(BytesIO(response.content)).convert("RGB")
21312131

21322132
# Loading additional models
2133-
feature_extractor = CLIPFeatureExtractor.from_pretrained(
2133+
feature_extractor = CLIPImageProcessor.from_pretrained(
21342134
"laion/CLIP-ViT-B-32-laion2B-s34B-b79K"
21352135
)
21362136
clip_model = CLIPModel.from_pretrained(

examples/community/clip_guided_images_mixing_stable_diffusion.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,7 @@
77
import torch
88
from torch.nn import functional as F
99
from torchvision import transforms
10-
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer
10+
from transformers import CLIPImageProcessor, CLIPModel, CLIPTextModel, CLIPTokenizer
1111

1212
from diffusers import (
1313
AutoencoderKL,
@@ -86,7 +86,7 @@ def __init__(
8686
tokenizer: CLIPTokenizer,
8787
unet: UNet2DConditionModel,
8888
scheduler: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler],
89-
feature_extractor: CLIPFeatureExtractor,
89+
feature_extractor: CLIPImageProcessor,
9090
coca_model=None,
9191
coca_tokenizer=None,
9292
coca_transform=None,

examples/community/clip_guided_stable_diffusion_img2img.py

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,7 @@
77
from torch import nn
88
from torch.nn import functional as F
99
from torchvision import transforms
10-
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer
10+
from transformers import CLIPImageProcessor, CLIPModel, CLIPTextModel, CLIPTokenizer
1111

1212
from diffusers import (
1313
AutoencoderKL,
@@ -32,9 +32,9 @@
3232
import torch
3333
from diffusers import DiffusionPipeline
3434
from PIL import Image
35-
from transformers import CLIPFeatureExtractor, CLIPModel
35+
from transformers import CLIPImageProcessor, CLIPModel
3636
37-
feature_extractor = CLIPFeatureExtractor.from_pretrained(
37+
feature_extractor = CLIPImageProcessor.from_pretrained(
3838
"laion/CLIP-ViT-B-32-laion2B-s34B-b79K"
3939
)
4040
clip_model = CLIPModel.from_pretrained(
@@ -139,7 +139,7 @@ def __init__(
139139
tokenizer: CLIPTokenizer,
140140
unet: UNet2DConditionModel,
141141
scheduler: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler],
142-
feature_extractor: CLIPFeatureExtractor,
142+
feature_extractor: CLIPImageProcessor,
143143
):
144144
super().__init__()
145145
self.register_modules(

examples/community/mixture_canvas.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@
99
from numpy import exp, pi, sqrt
1010
from torchvision.transforms.functional import resize
1111
from tqdm.auto import tqdm
12-
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
12+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
1313

1414
from diffusers.models import AutoencoderKL, UNet2DConditionModel
1515
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
@@ -275,7 +275,7 @@ def __init__(
275275
unet: UNet2DConditionModel,
276276
scheduler: Union[DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler],
277277
safety_checker: StableDiffusionSafetyChecker,
278-
feature_extractor: CLIPFeatureExtractor,
278+
feature_extractor: CLIPImageProcessor,
279279
):
280280
super().__init__()
281281
self.register_modules(

examples/community/mixture_tiling.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -15,7 +15,7 @@
1515

1616
try:
1717
from ligo.segments import segment
18-
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
18+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
1919
except ImportError:
2020
raise ImportError("Please install transformers and ligo-segments to use the mixture pipeline")
2121

@@ -144,7 +144,7 @@ def __init__(
144144
unet: UNet2DConditionModel,
145145
scheduler: Union[DDIMScheduler, PNDMScheduler],
146146
safety_checker: StableDiffusionSafetyChecker,
147-
feature_extractor: CLIPFeatureExtractor,
147+
feature_extractor: CLIPImageProcessor,
148148
):
149149
super().__init__()
150150
self.register_modules(

examples/community/pipeline_stable_diffusion_xl_controlnet_adapter.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -189,7 +189,7 @@ class StableDiffusionXLControlNetAdapterPipeline(
189189
safety_checker ([`StableDiffusionSafetyChecker`]):
190190
Classification module that estimates whether generated images could be considered offensive or harmful.
191191
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
192-
feature_extractor ([`CLIPFeatureExtractor`]):
192+
feature_extractor ([`CLIPImageProcessor`]):
193193
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
194194
"""
195195

examples/community/pipeline_stable_diffusion_xl_controlnet_adapter_inpaint.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -332,7 +332,7 @@ class StableDiffusionXLControlNetAdapterInpaintPipeline(
332332
safety_checker ([`StableDiffusionSafetyChecker`]):
333333
Classification module that estimates whether generated images could be considered offensive or harmful.
334334
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
335-
feature_extractor ([`CLIPFeatureExtractor`]):
335+
feature_extractor ([`CLIPImageProcessor`]):
336336
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
337337
requires_aesthetics_score (`bool`, *optional*, defaults to `"False"`):
338338
Whether the `unet` requires a aesthetic_score condition to be passed during inference. Also see the config

examples/community/pipeline_zero1to3.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@
99
import PIL.Image
1010
import torch
1111
from packaging import version
12-
from transformers import CLIPFeatureExtractor, CLIPVisionModelWithProjection
12+
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
1313

1414
# from ...configuration_utils import FrozenDict
1515
# from ...models import AutoencoderKL, UNet2DConditionModel
@@ -87,7 +87,7 @@ class Zero1to3StableDiffusionPipeline(DiffusionPipeline, StableDiffusionMixin):
8787
safety_checker ([`StableDiffusionSafetyChecker`]):
8888
Classification module that estimates whether generated images could be considered offensive or harmful.
8989
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
90-
feature_extractor ([`CLIPFeatureExtractor`]):
90+
feature_extractor ([`CLIPImageProcessor`]):
9191
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
9292
cc_projection ([`CCProjection`]):
9393
Projection layer to project the concated CLIP features and pose embeddings to the original CLIP feature size.
@@ -102,7 +102,7 @@ def __init__(
102102
unet: UNet2DConditionModel,
103103
scheduler: KarrasDiffusionSchedulers,
104104
safety_checker: StableDiffusionSafetyChecker,
105-
feature_extractor: CLIPFeatureExtractor,
105+
feature_extractor: CLIPImageProcessor,
106106
cc_projection: CCProjection,
107107
requires_safety_checker: bool = True,
108108
):

examples/community/regional_prompting_stable_diffusion.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,7 @@
33

44
import torch
55
import torchvision.transforms.functional as FF
6-
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
6+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
77

88
from diffusers import StableDiffusionPipeline
99
from diffusers.models import AutoencoderKL, UNet2DConditionModel
@@ -69,7 +69,7 @@ def __init__(
6969
unet: UNet2DConditionModel,
7070
scheduler: KarrasDiffusionSchedulers,
7171
safety_checker: StableDiffusionSafetyChecker,
72-
feature_extractor: CLIPFeatureExtractor,
72+
feature_extractor: CLIPImageProcessor,
7373
requires_safety_checker: bool = True,
7474
):
7575
super().__init__(

examples/community/stable_diffusion_ipex.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -18,7 +18,7 @@
1818
import intel_extension_for_pytorch as ipex
1919
import torch
2020
from packaging import version
21-
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
21+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
2222

2323
from diffusers.configuration_utils import FrozenDict
2424
from diffusers.loaders import StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
@@ -86,7 +86,7 @@ class StableDiffusionIPEXPipeline(
8686
safety_checker ([`StableDiffusionSafetyChecker`]):
8787
Classification module that estimates whether generated images could be considered offensive or harmful.
8888
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
89-
feature_extractor ([`CLIPFeatureExtractor`]):
89+
feature_extractor ([`CLIPImageProcessor`]):
9090
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
9191
"""
9292

@@ -100,7 +100,7 @@ def __init__(
100100
unet: UNet2DConditionModel,
101101
scheduler: KarrasDiffusionSchedulers,
102102
safety_checker: StableDiffusionSafetyChecker,
103-
feature_extractor: CLIPFeatureExtractor,
103+
feature_extractor: CLIPImageProcessor,
104104
requires_safety_checker: bool = True,
105105
):
106106
super().__init__()

examples/community/stable_diffusion_tensorrt_img2img.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -42,7 +42,7 @@
4242
network_from_onnx_path,
4343
save_engine,
4444
)
45-
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
45+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
4646

4747
from diffusers import DiffusionPipeline
4848
from diffusers.configuration_utils import FrozenDict, deprecate
@@ -679,7 +679,7 @@ class TensorRTStableDiffusionImg2ImgPipeline(DiffusionPipeline):
679679
safety_checker ([`StableDiffusionSafetyChecker`]):
680680
Classification module that estimates whether generated images could be considered offensive or harmful.
681681
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
682-
feature_extractor ([`CLIPFeatureExtractor`]):
682+
feature_extractor ([`CLIPImageProcessor`]):
683683
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
684684
"""
685685

@@ -693,7 +693,7 @@ def __init__(
693693
unet: UNet2DConditionModel,
694694
scheduler: DDIMScheduler,
695695
safety_checker: StableDiffusionSafetyChecker,
696-
feature_extractor: CLIPFeatureExtractor,
696+
feature_extractor: CLIPImageProcessor,
697697
image_encoder: CLIPVisionModelWithProjection = None,
698698
requires_safety_checker: bool = True,
699699
stages=["clip", "unet", "vae", "vae_encoder"],

examples/community/stable_diffusion_tensorrt_inpaint.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -42,7 +42,7 @@
4242
network_from_onnx_path,
4343
save_engine,
4444
)
45-
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
45+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
4646

4747
from diffusers import DiffusionPipeline
4848
from diffusers.configuration_utils import FrozenDict, deprecate
@@ -683,7 +683,7 @@ class TensorRTStableDiffusionInpaintPipeline(DiffusionPipeline):
683683
safety_checker ([`StableDiffusionSafetyChecker`]):
684684
Classification module that estimates whether generated images could be considered offensive or harmful.
685685
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
686-
feature_extractor ([`CLIPFeatureExtractor`]):
686+
feature_extractor ([`CLIPImageProcessor`]):
687687
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
688688
"""
689689

@@ -697,7 +697,7 @@ def __init__(
697697
unet: UNet2DConditionModel,
698698
scheduler: DDIMScheduler,
699699
safety_checker: StableDiffusionSafetyChecker,
700-
feature_extractor: CLIPFeatureExtractor,
700+
feature_extractor: CLIPImageProcessor,
701701
image_encoder: CLIPVisionModelWithProjection = None,
702702
requires_safety_checker: bool = True,
703703
stages=["clip", "unet", "vae", "vae_encoder"],

examples/community/stable_diffusion_tensorrt_txt2img.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -42,7 +42,7 @@
4242
network_from_onnx_path,
4343
save_engine,
4444
)
45-
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
45+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
4646

4747
from diffusers import DiffusionPipeline
4848
from diffusers.configuration_utils import FrozenDict, deprecate
@@ -595,7 +595,7 @@ class TensorRTStableDiffusionPipeline(DiffusionPipeline):
595595
safety_checker ([`StableDiffusionSafetyChecker`]):
596596
Classification module that estimates whether generated images could be considered offensive or harmful.
597597
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
598-
feature_extractor ([`CLIPFeatureExtractor`]):
598+
feature_extractor ([`CLIPImageProcessor`]):
599599
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
600600
"""
601601

@@ -609,7 +609,7 @@ def __init__(
609609
unet: UNet2DConditionModel,
610610
scheduler: DDIMScheduler,
611611
safety_checker: StableDiffusionSafetyChecker,
612-
feature_extractor: CLIPFeatureExtractor,
612+
feature_extractor: CLIPImageProcessor,
613613
image_encoder: CLIPVisionModelWithProjection = None,
614614
requires_safety_checker: bool = True,
615615
stages=["clip", "unet", "vae"],

examples/research_projects/controlnet/train_controlnet_webdataset.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -43,7 +43,7 @@
4343
from torch.utils.data import default_collate
4444
from torchvision import transforms
4545
from tqdm.auto import tqdm
46-
from transformers import AutoTokenizer, DPTFeatureExtractor, DPTForDepthEstimation, PretrainedConfig
46+
from transformers import AutoTokenizer, DPTForDepthEstimation, DPTImageProcessor, PretrainedConfig
4747
from webdataset.tariterators import (
4848
base_plus_ext,
4949
tar_file_expander,
@@ -205,7 +205,7 @@ def __init__(
205205
pin_memory: bool = False,
206206
persistent_workers: bool = False,
207207
control_type: str = "canny",
208-
feature_extractor: Optional[DPTFeatureExtractor] = None,
208+
feature_extractor: Optional[DPTImageProcessor] = None,
209209
):
210210
if not isinstance(train_shards_path_or_url, str):
211211
train_shards_path_or_url = [list(braceexpand(urls)) for urls in train_shards_path_or_url]
@@ -1011,7 +1011,7 @@ def main(args):
10111011
controlnet = pre_controlnet
10121012

10131013
if args.control_type == "depth":
1014-
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-hybrid-midas")
1014+
feature_extractor = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas")
10151015
depth_model = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas")
10161016
depth_model.requires_grad_(False)
10171017
else:

examples/research_projects/gligen/demo.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -45,7 +45,7 @@
4545
" UniPCMultistepScheduler,\n",
4646
" EulerDiscreteScheduler,\n",
4747
")\n",
48-
"from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer\n",
48+
"from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer\n",
4949
"# pretrained_model_name_or_path = 'masterful/gligen-1-4-generation-text-box'\n",
5050
"\n",
5151
"pretrained_model_name_or_path = '/root/data/zhizhonghuang/checkpoints/models--masterful--gligen-1-4-generation-text-box/snapshots/d2820dc1e9ba6ca082051ce79cfd3eb468ae2c83'\n",

examples/research_projects/rdm/pipeline_rdm.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@
44
import torch
55
from PIL import Image
66
from retriever import Retriever, normalize_images, preprocess_images
7-
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTokenizer
7+
from transformers import CLIPImageProcessor, CLIPModel, CLIPTokenizer
88

99
from diffusers import (
1010
AutoencoderKL,
@@ -47,7 +47,7 @@ class RDMPipeline(DiffusionPipeline, StableDiffusionMixin):
4747
scheduler ([`SchedulerMixin`]):
4848
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
4949
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
50-
feature_extractor ([`CLIPFeatureExtractor`]):
50+
feature_extractor ([`CLIPImageProcessor`]):
5151
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
5252
"""
5353

@@ -65,7 +65,7 @@ def __init__(
6565
EulerAncestralDiscreteScheduler,
6666
DPMSolverMultistepScheduler,
6767
],
68-
feature_extractor: CLIPFeatureExtractor,
68+
feature_extractor: CLIPImageProcessor,
6969
retriever: Optional[Retriever] = None,
7070
):
7171
super().__init__()

0 commit comments

Comments
 (0)