Skip to content

Commit 4987b23

Browse files
committed
fix minor translation
1 parent c3e1916 commit 4987b23

File tree

3 files changed

+2
-3
lines changed

3 files changed

+2
-3
lines changed

docs/source/en/using-diffusers/shap-e.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -52,7 +52,7 @@ images = pipe(
5252
).images
5353
```
5454

55-
Now use the [`~utils.export_to_gif`] function to turn the list of image frames into a gif of the 3D object.
55+
이제 [`~utils.export_to_gif`] 함수를 사용해 이미지 프레임 리스트를 3D 오브젝트의 gif로 변환합니다.
5656

5757
```py
5858
from diffusers.utils import export_to_gif

docs/source/ko/using-diffusers/kandinsky.md

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -522,7 +522,6 @@ images_texts = ["a cat", img_1, img_2]
522522
weights = [0.3, 0.3, 0.4]
523523
```
524524

525-
Call the `interpolate` function to generate the embeddings, and then pass them to the pipeline to generate the image:
526525
`interpolate` 함수를 호출하여 임베딩을 생성한 다음, 파이프라인으로 전달하여 이미지를 생성합니다:
527526

528527
<hfoptions id="interpolate">

docs/source/ko/using-diffusers/sdxl_turbo.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -97,7 +97,7 @@ make_image_grid([init_image, image], rows=1, cols=2)
9797
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/sdxl-turbo-img2img.png" alt="Image-to-image generation sample using SDXL Turbo"/>
9898
</div>
9999

100-
## TODO SDXL Turbo 속도 훨씬 더 빠르게 하기
100+
## SDXL Turbo 속도 훨씬 더 빠르게 하기
101101

102102
- PyTorch 버전 2 이상을 사용하는 경우 UNet을 컴파일합니다. 첫 번째 추론 실행은 매우 느리지만 이후 실행은 훨씬 빨라집니다.
103103

0 commit comments

Comments
 (0)