From 0036376ae922066a359180e930518e1c1aaa3abe Mon Sep 17 00:00:00 2001 From: Shenghai Yuan <140951558+SHYuanBest@users.noreply.github.com> Date: Fri, 6 Dec 2024 16:52:22 +0800 Subject: [PATCH 01/56] Update __init__.py --- src/diffusers/pipelines/__init__.py | 1 + 1 file changed, 1 insertion(+) diff --git a/src/diffusers/pipelines/__init__.py b/src/diffusers/pipelines/__init__.py index 6d3a20511696..ef4a4b568045 100644 --- a/src/diffusers/pipelines/__init__.py +++ b/src/diffusers/pipelines/__init__.py @@ -481,6 +481,7 @@ from .aura_flow import AuraFlowPipeline from .blip_diffusion import BlipDiffusionPipeline from .cogvideo import ( + ConsisIDPipeline CogVideoXFunControlPipeline, CogVideoXImageToVideoPipeline, CogVideoXPipeline, From c78cf01aba60150c9e576d6a127e429f9cbb6df5 Mon Sep 17 00:00:00 2001 From: SHYuanBest Date: Tue, 10 Dec 2024 11:15:51 +0800 Subject: [PATCH 02/56] add consisid --- .../geodiff_molecule_conformation.ipynb | 7230 +++++++++-------- examples/research_projects/gligen/demo.ipynb | 13 +- src/diffusers/__init__.py | 4 + src/diffusers/models/__init__.py | 2 + src/diffusers/models/transformers/__init__.py | 1 + .../transformers/consisid_transformer_3d.py | 899 ++ src/diffusers/pipelines/__init__.py | 3 +- src/diffusers/pipelines/consisid/__init__.py | 48 + .../pipelines/consisid/pipeline_consisid.py | 903 ++ .../pipelines/consisid/pipeline_output.py | 20 + src/diffusers/utils/dummy_pt_objects.py | 15 + .../dummy_torch_and_transformers_objects.py | 15 + 12 files changed, 5535 insertions(+), 3618 deletions(-) create mode 100644 src/diffusers/models/transformers/consisid_transformer_3d.py create mode 100644 src/diffusers/pipelines/consisid/__init__.py create mode 100644 src/diffusers/pipelines/consisid/pipeline_consisid.py create mode 100644 src/diffusers/pipelines/consisid/pipeline_output.py diff --git a/examples/research_projects/geodiff/geodiff_molecule_conformation.ipynb b/examples/research_projects/geodiff/geodiff_molecule_conformation.ipynb index bde093802a5d..03f58f1f2f63 100644 --- a/examples/research_projects/geodiff/geodiff_molecule_conformation.ipynb +++ b/examples/research_projects/geodiff/geodiff_molecule_conformation.ipynb @@ -1,3652 +1,3660 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "id": "F88mignPnalS" - }, - "source": [ - "# Introduction\n", - "\n", - "This colab is design to run the pretrained models from [GeoDiff](https://github.com/MinkaiXu/GeoDiff).\n", - "The visualization code is inspired by this PyMol [colab](https://colab.research.google.com/gist/iwatobipen/2ec7faeafe5974501e69fcc98c122922/pymol.ipynb#scrollTo=Hm4kY7CaZSlw).\n", - "\n", - "The goal is to generate physically accurate molecules. Given the input of a molecule graph (atom and bond structures with their connectivity -- in the form of a 2d graph). What we want to generate is a stable 3d structure of the molecule.\n", - "\n", - "This colab uses GEOM datasets that have multiple 3d targets per configuration, which provide more compelling targets for generative methods.\n", - "\n", - "> Colab made by [natolambert](https://twitter.com/natolambert).\n", - "\n", - "![diffusers_library](https://github.com/huggingface/diffusers/raw/main/docs/source/imgs/diffusers_library.jpg)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "7cnwXMocnuzB" - }, - "source": [ - "## Installations\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "source": [ - "### Install Conda" - ], - "metadata": { - "id": "ff9SxWnaNId9" - } - }, - { - "cell_type": "markdown", - "metadata": { - "id": "1g_6zOabItDk" - }, - "source": [ - "Here we check the `cuda` version of colab. When this was built, the version was always 11.1, which impacts some installation decisions below." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "K0ofXobG5Y-X", - "outputId": "572c3d25-6f19-4c1e-83f5-a1d084a3207f" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "nvcc: NVIDIA (R) Cuda compiler driver\n", - "Copyright (c) 2005-2021 NVIDIA Corporation\n", - "Built on Sun_Feb_14_21:12:58_PST_2021\n", - "Cuda compilation tools, release 11.2, V11.2.152\n", - "Build cuda_11.2.r11.2/compiler.29618528_0\n" - ] - } - ], - "source": [ - "!nvcc --version" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "VfthW90vI0nw" - }, - "source": [ - "Install Conda for some more complex dependencies for geometric networks." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "2WNFzSnbiE0k", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "690d0d4d-9d0a-4ead-c6dc-086f113f532f" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n", - "\u001b[0m" - ] - } - ], - "source": [ - "!pip install -q condacolab" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "NUsbWYCUI7Km" - }, - "source": [ - "Setup Conda" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "FZelreINdmd0", - "outputId": "635f0cb8-0af4-499f-e0a4-b3790cb12e9f" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "✨🍰✨ Everything looks OK!\n" - ] - } - ], - "source": [ - "import condacolab\n", - "condacolab.install()" - ] + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "F88mignPnalS" + }, + "source": [ + "# Introduction\n", + "\n", + "This colab is design to run the pretrained models from [GeoDiff](https://github.com/MinkaiXu/GeoDiff).\n", + "The visualization code is inspired by this PyMol [colab](https://colab.research.google.com/gist/iwatobipen/2ec7faeafe5974501e69fcc98c122922/pymol.ipynb#scrollTo=Hm4kY7CaZSlw).\n", + "\n", + "The goal is to generate physically accurate molecules. Given the input of a molecule graph (atom and bond structures with their connectivity -- in the form of a 2d graph). What we want to generate is a stable 3d structure of the molecule.\n", + "\n", + "This colab uses GEOM datasets that have multiple 3d targets per configuration, which provide more compelling targets for generative methods.\n", + "\n", + "> Colab made by [natolambert](https://twitter.com/natolambert).\n", + "\n", + "![diffusers_library](https://github.com/huggingface/diffusers/raw/main/docs/source/imgs/diffusers_library.jpg)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7cnwXMocnuzB" + }, + "source": [ + "## Installations\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ff9SxWnaNId9" + }, + "source": [ + "### Install Conda" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "1g_6zOabItDk" + }, + "source": [ + "Here we check the `cuda` version of colab. When this was built, the version was always 11.1, which impacts some installation decisions below." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "K0ofXobG5Y-X", + "outputId": "572c3d25-6f19-4c1e-83f5-a1d084a3207f" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "nvcc: NVIDIA (R) Cuda compiler driver\n", + "Copyright (c) 2005-2021 NVIDIA Corporation\n", + "Built on Sun_Feb_14_21:12:58_PST_2021\n", + "Cuda compilation tools, release 11.2, V11.2.152\n", + "Build cuda_11.2.r11.2/compiler.29618528_0\n" + ] + } + ], + "source": [ + "!nvcc --version" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "VfthW90vI0nw" + }, + "source": [ + "Install Conda for some more complex dependencies for geometric networks." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "2WNFzSnbiE0k", + "outputId": "690d0d4d-9d0a-4ead-c6dc-086f113f532f" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n", + "\u001b[0m" + ] + } + ], + "source": [ + "!pip install -q condacolab" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "NUsbWYCUI7Km" + }, + "source": [ + "Setup Conda" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "FZelreINdmd0", + "outputId": "635f0cb8-0af4-499f-e0a4-b3790cb12e9f" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "✨🍰✨ Everything looks OK!\n" + ] + } + ], + "source": [ + "import condacolab\n", + "\n", + "\n", + "condacolab.install()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "JzDHaPU7I9Sn" + }, + "source": [ + "Install pytorch requirements (this takes a few minutes, go grab yourself a coffee 🤗)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "JMxRjHhL7w8V", + "outputId": "6ed511b3-9262-49e8-b340-08e76b05ebd8" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Collecting package metadata (current_repodata.json): - \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\bdone\n", + "Solving environment: \\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\bdone\n", + "\n", + "## Package Plan ##\n", + "\n", + " environment location: /usr/local\n", + "\n", + " added / updated specs:\n", + " - cudatoolkit=11.1\n", + " - pytorch\n", + " - torchaudio\n", + " - torchvision\n", + "\n", + "\n", + "The following packages will be downloaded:\n", + "\n", + " package | build\n", + " ---------------------------|-----------------\n", + " conda-22.9.0 | py37h89c1867_1 960 KB conda-forge\n", + " ------------------------------------------------------------\n", + " Total: 960 KB\n", + "\n", + "The following packages will be UPDATED:\n", + "\n", + " conda 4.14.0-py37h89c1867_0 --> 22.9.0-py37h89c1867_1\n", + "\n", + "\n", + "\n", + "Downloading and Extracting Packages\n", + "conda-22.9.0 | 960 KB | : 100% 1.0/1 [00:00<00:00, 4.15it/s]\n", + "Preparing transaction: / \b\bdone\n", + "Verifying transaction: \\ \b\bdone\n", + "Executing transaction: / \b\bdone\n", + "Retrieving notices: ...working... done\n" + ] + } + ], + "source": [ + "!conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch-lts -c nvidia\n", + "# !conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=11.1 -c pytorch -c conda-forge" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "QDS6FPZ0Tu5b" + }, + "source": [ + "Need to remove a pathspec for colab that specifies the incorrect cuda version." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "dq1lxR10TtrR", + "outputId": "ed9c5a71-b449-418f-abb7-072b74e7f6c8" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "rm: cannot remove '/usr/local/conda-meta/pinned': No such file or directory\n" + ] + } + ], + "source": [ + "!rm /usr/local/conda-meta/pinned" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Z1L3DdZOJB30" + }, + "source": [ + "Install torch geometric (used in the model later)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "D5ukfCOWfjzK", + "outputId": "8437485a-5aa6-4d53-8f7f-23517ac1ace6" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Collecting package metadata (current_repodata.json): - \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\bdone\n", + "Solving environment: | \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\bdone\n", + "\n", + "## Package Plan ##\n", + "\n", + " environment location: /usr/local\n", + "\n", + " added / updated specs:\n", + " - pytorch-geometric=1.7.2\n", + "\n", + "\n", + "The following packages will be downloaded:\n", + "\n", + " package | build\n", + " ---------------------------|-----------------\n", + " decorator-4.4.2 | py_0 11 KB conda-forge\n", + " googledrivedownloader-0.4 | pyhd3deb0d_1 7 KB conda-forge\n", + " jinja2-3.1.2 | pyhd8ed1ab_1 99 KB conda-forge\n", + " joblib-1.2.0 | pyhd8ed1ab_0 205 KB conda-forge\n", + " markupsafe-2.1.1 | py37h540881e_1 22 KB conda-forge\n", + " networkx-2.5.1 | pyhd8ed1ab_0 1.2 MB conda-forge\n", + " pandas-1.2.3 | py37hdc94413_0 11.8 MB conda-forge\n", + " pyparsing-3.0.9 | pyhd8ed1ab_0 79 KB conda-forge\n", + " python-dateutil-2.8.2 | pyhd8ed1ab_0 240 KB conda-forge\n", + " python-louvain-0.15 | pyhd8ed1ab_1 13 KB conda-forge\n", + " pytorch-cluster-1.5.9 |py37_torch_1.8.0_cu111 1.2 MB rusty1s\n", + " pytorch-geometric-1.7.2 |py37_torch_1.8.0_cu111 445 KB rusty1s\n", + " pytorch-scatter-2.0.8 |py37_torch_1.8.0_cu111 6.1 MB rusty1s\n", + " pytorch-sparse-0.6.12 |py37_torch_1.8.0_cu111 2.9 MB rusty1s\n", + " pytorch-spline-conv-1.2.1 |py37_torch_1.8.0_cu111 736 KB rusty1s\n", + " pytz-2022.4 | pyhd8ed1ab_0 232 KB conda-forge\n", + " scikit-learn-1.0.2 | py37hf9e9bfc_0 7.8 MB conda-forge\n", + " scipy-1.7.3 | py37hf2a6cf1_0 21.8 MB conda-forge\n", + " setuptools-59.8.0 | py37h89c1867_1 1.0 MB conda-forge\n", + " threadpoolctl-3.1.0 | pyh8a188c0_0 18 KB conda-forge\n", + " ------------------------------------------------------------\n", + " Total: 55.9 MB\n", + "\n", + "The following NEW packages will be INSTALLED:\n", + "\n", + " decorator conda-forge/noarch::decorator-4.4.2-py_0 None\n", + " googledrivedownlo~ conda-forge/noarch::googledrivedownloader-0.4-pyhd3deb0d_1 None\n", + " jinja2 conda-forge/noarch::jinja2-3.1.2-pyhd8ed1ab_1 None\n", + " joblib conda-forge/noarch::joblib-1.2.0-pyhd8ed1ab_0 None\n", + " markupsafe conda-forge/linux-64::markupsafe-2.1.1-py37h540881e_1 None\n", + " networkx conda-forge/noarch::networkx-2.5.1-pyhd8ed1ab_0 None\n", + " pandas conda-forge/linux-64::pandas-1.2.3-py37hdc94413_0 None\n", + " pyparsing conda-forge/noarch::pyparsing-3.0.9-pyhd8ed1ab_0 None\n", + " python-dateutil conda-forge/noarch::python-dateutil-2.8.2-pyhd8ed1ab_0 None\n", + " python-louvain conda-forge/noarch::python-louvain-0.15-pyhd8ed1ab_1 None\n", + " pytorch-cluster rusty1s/linux-64::pytorch-cluster-1.5.9-py37_torch_1.8.0_cu111 None\n", + " pytorch-geometric rusty1s/linux-64::pytorch-geometric-1.7.2-py37_torch_1.8.0_cu111 None\n", + " pytorch-scatter rusty1s/linux-64::pytorch-scatter-2.0.8-py37_torch_1.8.0_cu111 None\n", + " pytorch-sparse rusty1s/linux-64::pytorch-sparse-0.6.12-py37_torch_1.8.0_cu111 None\n", + " pytorch-spline-co~ rusty1s/linux-64::pytorch-spline-conv-1.2.1-py37_torch_1.8.0_cu111 None\n", + " pytz conda-forge/noarch::pytz-2022.4-pyhd8ed1ab_0 None\n", + " scikit-learn conda-forge/linux-64::scikit-learn-1.0.2-py37hf9e9bfc_0 None\n", + " scipy conda-forge/linux-64::scipy-1.7.3-py37hf2a6cf1_0 None\n", + " threadpoolctl conda-forge/noarch::threadpoolctl-3.1.0-pyh8a188c0_0 None\n", + "\n", + "The following packages will be DOWNGRADED:\n", + "\n", + " setuptools 65.3.0-py37h89c1867_0 --> 59.8.0-py37h89c1867_1 None\n", + "\n", + "\n", + "\n", + "Downloading and Extracting Packages\n", + "scikit-learn-1.0.2 | 7.8 MB | : 100% 1.0/1 [00:01<00:00, 1.37s/it] \n", + "pytorch-scatter-2.0. | 6.1 MB | : 100% 1.0/1 [00:06<00:00, 6.18s/it]\n", + "pytorch-geometric-1. | 445 KB | : 100% 1.0/1 [00:02<00:00, 2.53s/it]\n", + "scipy-1.7.3 | 21.8 MB | : 100% 1.0/1 [00:03<00:00, 3.06s/it]\n", + "python-dateutil-2.8. | 240 KB | : 100% 1.0/1 [00:00<00:00, 21.48it/s]\n", + "pytorch-spline-conv- | 736 KB | : 100% 1.0/1 [00:01<00:00, 1.00s/it]\n", + "pytorch-sparse-0.6.1 | 2.9 MB | : 100% 1.0/1 [00:07<00:00, 7.51s/it]\n", + "pyparsing-3.0.9 | 79 KB | : 100% 1.0/1 [00:00<00:00, 26.32it/s]\n", + "pytorch-cluster-1.5. | 1.2 MB | : 100% 1.0/1 [00:02<00:00, 2.78s/it]\n", + "jinja2-3.1.2 | 99 KB | : 100% 1.0/1 [00:00<00:00, 20.28it/s]\n", + "decorator-4.4.2 | 11 KB | : 100% 1.0/1 [00:00<00:00, 21.57it/s]\n", + "joblib-1.2.0 | 205 KB | : 100% 1.0/1 [00:00<00:00, 15.04it/s]\n", + "pytz-2022.4 | 232 KB | : 100% 1.0/1 [00:00<00:00, 10.21it/s]\n", + "python-louvain-0.15 | 13 KB | : 100% 1.0/1 [00:00<00:00, 3.34it/s]\n", + "googledrivedownloade | 7 KB | : 100% 1.0/1 [00:00<00:00, 3.33it/s]\n", + "threadpoolctl-3.1.0 | 18 KB | : 100% 1.0/1 [00:00<00:00, 29.40it/s]\n", + "markupsafe-2.1.1 | 22 KB | : 100% 1.0/1 [00:00<00:00, 28.62it/s]\n", + "pandas-1.2.3 | 11.8 MB | : 100% 1.0/1 [00:02<00:00, 2.08s/it] \n", + "networkx-2.5.1 | 1.2 MB | : 100% 1.0/1 [00:01<00:00, 1.39s/it]\n", + "setuptools-59.8.0 | 1.0 MB | : 100% 1.0/1 [00:00<00:00, 4.25it/s]\n", + "Preparing transaction: / \b\b- \b\b\\ \b\bdone\n", + "Verifying transaction: / \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\bdone\n", + "Executing transaction: / \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\bdone\n", + "Retrieving notices: ...working... done\n" + ] + } + ], + "source": [ + "!conda install -c rusty1s pytorch-geometric=1.7.2" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ppxv6Mdkalbc" + }, + "source": [ + "### Install Diffusers" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "mgQA_XN-XGY2", + "outputId": "85392615-b6a4-4052-9d2a-79604be62c94" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/content\n", + "Cloning into 'diffusers'...\n", + "remote: Enumerating objects: 9298, done.\u001b[K\n", + "remote: Counting objects: 100% (40/40), done.\u001b[K\n", + "remote: Compressing objects: 100% (23/23), done.\u001b[K\n", + "remote: Total 9298 (delta 17), reused 23 (delta 11), pack-reused 9258\u001b[K\n", + "Receiving objects: 100% (9298/9298), 7.38 MiB | 5.28 MiB/s, done.\n", + "Resolving deltas: 100% (6168/6168), done.\n", + " Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n", + " Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n", + " Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m757.0/757.0 kB\u001b[0m \u001b[31m52.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m163.5/163.5 kB\u001b[0m \u001b[31m21.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m40.8/40.8 kB\u001b[0m \u001b[31m5.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m596.3/596.3 kB\u001b[0m \u001b[31m51.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h Building wheel for diffusers (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", + "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m432.7/432.7 kB\u001b[0m \u001b[31m36.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m5.3/5.3 MB\u001b[0m \u001b[31m90.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m35.3/35.3 MB\u001b[0m \u001b[31m39.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m115.1/115.1 kB\u001b[0m \u001b[31m16.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m948.0/948.0 kB\u001b[0m \u001b[31m63.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m212.2/212.2 kB\u001b[0m \u001b[31m21.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m95.8/95.8 kB\u001b[0m \u001b[31m12.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m140.8/140.8 kB\u001b[0m \u001b[31m18.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.6/7.6 MB\u001b[0m \u001b[31m104.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m148.0/148.0 kB\u001b[0m \u001b[31m20.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m231.3/231.3 kB\u001b[0m \u001b[31m30.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m94.8/94.8 kB\u001b[0m \u001b[31m14.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m58.8/58.8 kB\u001b[0m \u001b[31m8.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n", + "\u001b[0m" + ] + } + ], + "source": [ + "%cd /content\n", + "\n", + "# install latest HF diffusers (will update to the release once added)\n", + "!git clone https://github.com/huggingface/diffusers.git\n", + "!pip install -q /content/diffusers\n", + "\n", + "# dependencies for diffusers\n", + "!pip install -q datasets transformers" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "LZO6AJKuJKO8" + }, + "source": [ + "Check that torch is installed correctly and utilizing the GPU in the colab" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 53 }, + "id": "gZt7BNi1e1PA", + "outputId": "a0e1832c-9c02-49aa-cff8-1339e6cdc889" + }, + "outputs": [ { - "cell_type": "markdown", - "metadata": { - "id": "JzDHaPU7I9Sn" - }, - "source": [ - "Install pytorch requirements (this takes a few minutes, go grab yourself a coffee 🤗)" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "True\n" + ] }, { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "JMxRjHhL7w8V", - "outputId": "6ed511b3-9262-49e8-b340-08e76b05ebd8" + "data": { + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Collecting package metadata (current_repodata.json): - \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\bdone\n", - "Solving environment: \\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\bdone\n", - "\n", - "## Package Plan ##\n", - "\n", - " environment location: /usr/local\n", - "\n", - " added / updated specs:\n", - " - cudatoolkit=11.1\n", - " - pytorch\n", - " - torchaudio\n", - " - torchvision\n", - "\n", - "\n", - "The following packages will be downloaded:\n", - "\n", - " package | build\n", - " ---------------------------|-----------------\n", - " conda-22.9.0 | py37h89c1867_1 960 KB conda-forge\n", - " ------------------------------------------------------------\n", - " Total: 960 KB\n", - "\n", - "The following packages will be UPDATED:\n", - "\n", - " conda 4.14.0-py37h89c1867_0 --> 22.9.0-py37h89c1867_1\n", - "\n", - "\n", - "\n", - "Downloading and Extracting Packages\n", - "conda-22.9.0 | 960 KB | : 100% 1.0/1 [00:00<00:00, 4.15it/s]\n", - "Preparing transaction: / \b\bdone\n", - "Verifying transaction: \\ \b\bdone\n", - "Executing transaction: / \b\bdone\n", - "Retrieving notices: ...working... done\n" - ] - } - ], - "source": [ - "!conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch-lts -c nvidia\n", - "# !conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=11.1 -c pytorch -c conda-forge" + "text/plain": [ + "'1.8.2'" ] - }, - { - "cell_type": "markdown", - "source": [ - "Need to remove a pathspec for colab that specifies the incorrect cuda version." - ], - "metadata": { - "id": "QDS6FPZ0Tu5b" + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import torch\n", + "\n", + "\n", + "print(torch.cuda.is_available())\n", + "torch.__version__" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "KLE7CqlfJNUO" + }, + "source": [ + "### Install Chemistry-specific Dependencies\n", + "\n", + "Install RDKit, a tool for working with and visualizing chemsitry in python (you use this to visualize the generate models later)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "0CPv_NvehRz3", + "outputId": "6ee0ae4e-4511-4816-de29-22b1c21d49bc" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n", + "Collecting rdkit\n", + " Downloading rdkit-2022.3.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.8 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m36.8/36.8 MB\u001b[0m \u001b[31m34.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: Pillow in /usr/local/lib/python3.7/site-packages (from rdkit) (9.2.0)\n", + "Requirement already satisfied: numpy in /usr/local/lib/python3.7/site-packages (from rdkit) (1.21.6)\n", + "Installing collected packages: rdkit\n", + "Successfully installed rdkit-2022.3.5\n", + "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n", + "\u001b[0m" + ] + } + ], + "source": [ + "!pip install rdkit" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "88GaDbDPxJ5I" + }, + "source": [ + "### Get viewer from nglview\n", + "\n", + "The model you will use outputs a position matrix tensor. This pytorch geometric data object will have many features (positions, known features, edge features -- all tensors).\n", + "The data we give to the model will also have a rdmol object (which can extract features to geometric if needed).\n", + "The rdmol in this object is a source of ground truth for the generated molecules.\n", + "\n", + "You will use one rendering function from nglviewer later!\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "jcl8GCS2mz6t", + "outputId": "99b5cc40-67bb-4d8e-faa0-47d7cb33e98f" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n", + "Collecting nglview\n", + " Downloading nglview-3.0.3.tar.gz (5.7 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m5.7/5.7 MB\u001b[0m \u001b[31m91.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n", + " Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n", + " Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", + "Requirement already satisfied: numpy in /usr/local/lib/python3.7/site-packages (from nglview) (1.21.6)\n", + "Collecting jupyterlab-widgets\n", + " Downloading jupyterlab_widgets-3.0.3-py3-none-any.whl (384 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m384.1/384.1 kB\u001b[0m \u001b[31m40.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting ipywidgets>=7\n", + " Downloading ipywidgets-8.0.2-py3-none-any.whl (134 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m134.4/134.4 kB\u001b[0m \u001b[31m21.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting widgetsnbextension~=4.0\n", + " Downloading widgetsnbextension-4.0.3-py3-none-any.whl (2.0 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.0/2.0 MB\u001b[0m \u001b[31m84.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting ipython>=6.1.0\n", + " Downloading ipython-7.34.0-py3-none-any.whl (793 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m793.8/793.8 kB\u001b[0m \u001b[31m60.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting ipykernel>=4.5.1\n", + " Downloading ipykernel-6.16.0-py3-none-any.whl (138 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m138.4/138.4 kB\u001b[0m \u001b[31m20.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting traitlets>=4.3.1\n", + " Downloading traitlets-5.4.0-py3-none-any.whl (107 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m107.1/107.1 kB\u001b[0m \u001b[31m17.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: packaging in /usr/local/lib/python3.7/site-packages (from ipykernel>=4.5.1->ipywidgets>=7->nglview) (21.3)\n", + "Collecting pyzmq>=17\n", + " Downloading pyzmq-24.0.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.1 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.1/1.1 MB\u001b[0m \u001b[31m68.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting matplotlib-inline>=0.1\n", + " Downloading matplotlib_inline-0.1.6-py3-none-any.whl (9.4 kB)\n", + "Collecting tornado>=6.1\n", + " Downloading tornado-6.2-cp37-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (423 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m424.0/424.0 kB\u001b[0m \u001b[31m41.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting nest-asyncio\n", + " Downloading nest_asyncio-1.5.6-py3-none-any.whl (5.2 kB)\n", + "Collecting debugpy>=1.0\n", + " Downloading debugpy-1.6.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.8 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.8/1.8 MB\u001b[0m \u001b[31m83.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting psutil\n", + " Downloading psutil-5.9.2-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (281 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m281.3/281.3 kB\u001b[0m \u001b[31m33.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting jupyter-client>=6.1.12\n", + " Downloading jupyter_client-7.4.2-py3-none-any.whl (132 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m132.2/132.2 kB\u001b[0m \u001b[31m19.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting pickleshare\n", + " Downloading pickleshare-0.7.5-py2.py3-none-any.whl (6.9 kB)\n", + "Requirement already satisfied: setuptools>=18.5 in /usr/local/lib/python3.7/site-packages (from ipython>=6.1.0->ipywidgets>=7->nglview) (59.8.0)\n", + "Collecting backcall\n", + " Downloading backcall-0.2.0-py2.py3-none-any.whl (11 kB)\n", + "Collecting pexpect>4.3\n", + " Downloading pexpect-4.8.0-py2.py3-none-any.whl (59 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m59.0/59.0 kB\u001b[0m \u001b[31m7.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting pygments\n", + " Downloading Pygments-2.13.0-py3-none-any.whl (1.1 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.1/1.1 MB\u001b[0m \u001b[31m70.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting jedi>=0.16\n", + " Downloading jedi-0.18.1-py2.py3-none-any.whl (1.6 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.6/1.6 MB\u001b[0m \u001b[31m83.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0\n", + " Downloading prompt_toolkit-3.0.31-py3-none-any.whl (382 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m382.3/382.3 kB\u001b[0m \u001b[31m40.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: decorator in /usr/local/lib/python3.7/site-packages (from ipython>=6.1.0->ipywidgets>=7->nglview) (4.4.2)\n", + "Collecting parso<0.9.0,>=0.8.0\n", + " Downloading parso-0.8.3-py2.py3-none-any.whl (100 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m100.8/100.8 kB\u001b[0m \u001b[31m14.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.7/site-packages (from jupyter-client>=6.1.12->ipykernel>=4.5.1->ipywidgets>=7->nglview) (2.8.2)\n", + "Collecting entrypoints\n", + " Downloading entrypoints-0.4-py3-none-any.whl (5.3 kB)\n", + "Collecting jupyter-core>=4.9.2\n", + " Downloading jupyter_core-4.11.1-py3-none-any.whl (88 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m88.4/88.4 kB\u001b[0m \u001b[31m14.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting ptyprocess>=0.5\n", + " Downloading ptyprocess-0.7.0-py2.py3-none-any.whl (13 kB)\n", + "Collecting wcwidth\n", + " Downloading wcwidth-0.2.5-py2.py3-none-any.whl (30 kB)\n", + "Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.7/site-packages (from packaging->ipykernel>=4.5.1->ipywidgets>=7->nglview) (3.0.9)\n", + "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/site-packages (from python-dateutil>=2.8.2->jupyter-client>=6.1.12->ipykernel>=4.5.1->ipywidgets>=7->nglview) (1.16.0)\n", + "Building wheels for collected packages: nglview\n", + " Building wheel for nglview (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", + " Created wheel for nglview: filename=nglview-3.0.3-py3-none-any.whl size=8057538 sha256=b7e1071bb91822e48515bf27f4e6b197c6e85e06b90912b3439edc8be1e29514\n", + " Stored in directory: /root/.cache/pip/wheels/01/0c/49/c6f79d8edba8fe89752bf20de2d99040bfa57db0548975c5d5\n", + "Successfully built nglview\n", + "Installing collected packages: wcwidth, ptyprocess, pickleshare, backcall, widgetsnbextension, traitlets, tornado, pyzmq, pygments, psutil, prompt-toolkit, pexpect, parso, nest-asyncio, jupyterlab-widgets, entrypoints, debugpy, matplotlib-inline, jupyter-core, jedi, jupyter-client, ipython, ipykernel, ipywidgets, nglview\n", + "Successfully installed backcall-0.2.0 debugpy-1.6.3 entrypoints-0.4 ipykernel-6.16.0 ipython-7.34.0 ipywidgets-8.0.2 jedi-0.18.1 jupyter-client-7.4.2 jupyter-core-4.11.1 jupyterlab-widgets-3.0.3 matplotlib-inline-0.1.6 nest-asyncio-1.5.6 nglview-3.0.3 parso-0.8.3 pexpect-4.8.0 pickleshare-0.7.5 prompt-toolkit-3.0.31 psutil-5.9.2 ptyprocess-0.7.0 pygments-2.13.0 pyzmq-24.0.1 tornado-6.2 traitlets-5.4.0 wcwidth-0.2.5 widgetsnbextension-4.0.3\n", + "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n", + "\u001b[0m" + ] + }, + { + "data": { + "application/vnd.colab-display-data+json": { + "pip_warning": { + "packages": [ + "pexpect", + "pickleshare", + "wcwidth" + ] + } } - }, - { - "cell_type": "code", - "source": [ - "!rm /usr/local/conda-meta/pinned" - ], - "metadata": { - "id": "dq1lxR10TtrR", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "ed9c5a71-b449-418f-abb7-072b74e7f6c8" - }, - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "rm: cannot remove '/usr/local/conda-meta/pinned': No such file or directory\n" - ] - } - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Z1L3DdZOJB30" - }, - "source": [ - "Install torch geometric (used in the model later)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "D5ukfCOWfjzK", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "8437485a-5aa6-4d53-8f7f-23517ac1ace6" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Collecting package metadata (current_repodata.json): - \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\bdone\n", - "Solving environment: | \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\bdone\n", - "\n", - "## Package Plan ##\n", - "\n", - " environment location: /usr/local\n", - "\n", - " added / updated specs:\n", - " - pytorch-geometric=1.7.2\n", - "\n", - "\n", - "The following packages will be downloaded:\n", - "\n", - " package | build\n", - " ---------------------------|-----------------\n", - " decorator-4.4.2 | py_0 11 KB conda-forge\n", - " googledrivedownloader-0.4 | pyhd3deb0d_1 7 KB conda-forge\n", - " jinja2-3.1.2 | pyhd8ed1ab_1 99 KB conda-forge\n", - " joblib-1.2.0 | pyhd8ed1ab_0 205 KB conda-forge\n", - " markupsafe-2.1.1 | py37h540881e_1 22 KB conda-forge\n", - " networkx-2.5.1 | pyhd8ed1ab_0 1.2 MB conda-forge\n", - " pandas-1.2.3 | py37hdc94413_0 11.8 MB conda-forge\n", - " pyparsing-3.0.9 | pyhd8ed1ab_0 79 KB conda-forge\n", - " python-dateutil-2.8.2 | pyhd8ed1ab_0 240 KB conda-forge\n", - " python-louvain-0.15 | pyhd8ed1ab_1 13 KB conda-forge\n", - " pytorch-cluster-1.5.9 |py37_torch_1.8.0_cu111 1.2 MB rusty1s\n", - " pytorch-geometric-1.7.2 |py37_torch_1.8.0_cu111 445 KB rusty1s\n", - " pytorch-scatter-2.0.8 |py37_torch_1.8.0_cu111 6.1 MB rusty1s\n", - " pytorch-sparse-0.6.12 |py37_torch_1.8.0_cu111 2.9 MB rusty1s\n", - " pytorch-spline-conv-1.2.1 |py37_torch_1.8.0_cu111 736 KB rusty1s\n", - " pytz-2022.4 | pyhd8ed1ab_0 232 KB conda-forge\n", - " scikit-learn-1.0.2 | py37hf9e9bfc_0 7.8 MB conda-forge\n", - " scipy-1.7.3 | py37hf2a6cf1_0 21.8 MB conda-forge\n", - " setuptools-59.8.0 | py37h89c1867_1 1.0 MB conda-forge\n", - " threadpoolctl-3.1.0 | pyh8a188c0_0 18 KB conda-forge\n", - " ------------------------------------------------------------\n", - " Total: 55.9 MB\n", - "\n", - "The following NEW packages will be INSTALLED:\n", - "\n", - " decorator conda-forge/noarch::decorator-4.4.2-py_0 None\n", - " googledrivedownlo~ conda-forge/noarch::googledrivedownloader-0.4-pyhd3deb0d_1 None\n", - " jinja2 conda-forge/noarch::jinja2-3.1.2-pyhd8ed1ab_1 None\n", - " joblib conda-forge/noarch::joblib-1.2.0-pyhd8ed1ab_0 None\n", - " markupsafe conda-forge/linux-64::markupsafe-2.1.1-py37h540881e_1 None\n", - " networkx conda-forge/noarch::networkx-2.5.1-pyhd8ed1ab_0 None\n", - " pandas conda-forge/linux-64::pandas-1.2.3-py37hdc94413_0 None\n", - " pyparsing conda-forge/noarch::pyparsing-3.0.9-pyhd8ed1ab_0 None\n", - " python-dateutil conda-forge/noarch::python-dateutil-2.8.2-pyhd8ed1ab_0 None\n", - " python-louvain conda-forge/noarch::python-louvain-0.15-pyhd8ed1ab_1 None\n", - " pytorch-cluster rusty1s/linux-64::pytorch-cluster-1.5.9-py37_torch_1.8.0_cu111 None\n", - " pytorch-geometric rusty1s/linux-64::pytorch-geometric-1.7.2-py37_torch_1.8.0_cu111 None\n", - " pytorch-scatter rusty1s/linux-64::pytorch-scatter-2.0.8-py37_torch_1.8.0_cu111 None\n", - " pytorch-sparse rusty1s/linux-64::pytorch-sparse-0.6.12-py37_torch_1.8.0_cu111 None\n", - " pytorch-spline-co~ rusty1s/linux-64::pytorch-spline-conv-1.2.1-py37_torch_1.8.0_cu111 None\n", - " pytz conda-forge/noarch::pytz-2022.4-pyhd8ed1ab_0 None\n", - " scikit-learn conda-forge/linux-64::scikit-learn-1.0.2-py37hf9e9bfc_0 None\n", - " scipy conda-forge/linux-64::scipy-1.7.3-py37hf2a6cf1_0 None\n", - " threadpoolctl conda-forge/noarch::threadpoolctl-3.1.0-pyh8a188c0_0 None\n", - "\n", - "The following packages will be DOWNGRADED:\n", - "\n", - " setuptools 65.3.0-py37h89c1867_0 --> 59.8.0-py37h89c1867_1 None\n", - "\n", - "\n", - "\n", - "Downloading and Extracting Packages\n", - "scikit-learn-1.0.2 | 7.8 MB | : 100% 1.0/1 [00:01<00:00, 1.37s/it] \n", - "pytorch-scatter-2.0. | 6.1 MB | : 100% 1.0/1 [00:06<00:00, 6.18s/it]\n", - "pytorch-geometric-1. | 445 KB | : 100% 1.0/1 [00:02<00:00, 2.53s/it]\n", - "scipy-1.7.3 | 21.8 MB | : 100% 1.0/1 [00:03<00:00, 3.06s/it]\n", - "python-dateutil-2.8. | 240 KB | : 100% 1.0/1 [00:00<00:00, 21.48it/s]\n", - "pytorch-spline-conv- | 736 KB | : 100% 1.0/1 [00:01<00:00, 1.00s/it]\n", - "pytorch-sparse-0.6.1 | 2.9 MB | : 100% 1.0/1 [00:07<00:00, 7.51s/it]\n", - "pyparsing-3.0.9 | 79 KB | : 100% 1.0/1 [00:00<00:00, 26.32it/s]\n", - "pytorch-cluster-1.5. | 1.2 MB | : 100% 1.0/1 [00:02<00:00, 2.78s/it]\n", - "jinja2-3.1.2 | 99 KB | : 100% 1.0/1 [00:00<00:00, 20.28it/s]\n", - "decorator-4.4.2 | 11 KB | : 100% 1.0/1 [00:00<00:00, 21.57it/s]\n", - "joblib-1.2.0 | 205 KB | : 100% 1.0/1 [00:00<00:00, 15.04it/s]\n", - "pytz-2022.4 | 232 KB | : 100% 1.0/1 [00:00<00:00, 10.21it/s]\n", - "python-louvain-0.15 | 13 KB | : 100% 1.0/1 [00:00<00:00, 3.34it/s]\n", - "googledrivedownloade | 7 KB | : 100% 1.0/1 [00:00<00:00, 3.33it/s]\n", - "threadpoolctl-3.1.0 | 18 KB | : 100% 1.0/1 [00:00<00:00, 29.40it/s]\n", - "markupsafe-2.1.1 | 22 KB | : 100% 1.0/1 [00:00<00:00, 28.62it/s]\n", - "pandas-1.2.3 | 11.8 MB | : 100% 1.0/1 [00:02<00:00, 2.08s/it] \n", - "networkx-2.5.1 | 1.2 MB | : 100% 1.0/1 [00:01<00:00, 1.39s/it]\n", - "setuptools-59.8.0 | 1.0 MB | : 100% 1.0/1 [00:00<00:00, 4.25it/s]\n", - "Preparing transaction: / \b\b- \b\b\\ \b\bdone\n", - "Verifying transaction: / \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\bdone\n", - "Executing transaction: / \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\bdone\n", - "Retrieving notices: ...working... done\n" - ] - } - ], - "source": [ - "!conda install -c rusty1s pytorch-geometric=1.7.2" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "ppxv6Mdkalbc" - }, - "source": [ - "### Install Diffusers" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "mgQA_XN-XGY2", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "85392615-b6a4-4052-9d2a-79604be62c94" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "!pip install nglview" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8t8_e_uVLdKB" + }, + "source": [ + "## Create a diffusion model" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "G0rMncVtNSqU" + }, + "source": [ + "### Model class(es)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "L5FEXz5oXkzt" + }, + "source": [ + "Imports" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "-3-P4w5sXkRU" + }, + "outputs": [], + "source": [ + "# Model adapted from GeoDiff https://github.com/MinkaiXu/GeoDiff\n", + "# Model inspired by https://github.com/DeepGraphLearning/torchdrug/tree/master/torchdrug/models\n", + "from dataclasses import dataclass\n", + "from typing import Callable, Tuple, Union\n", + "\n", + "import numpy as np\n", + "import torch\n", + "import torch.nn.functional as F\n", + "from torch import Tensor, nn\n", + "from torch.nn import Embedding, Linear, Module, ModuleList, Sequential\n", + "from torch_geometric.nn import MessagePassing, radius, radius_graph\n", + "from torch_geometric.typing import Adj, OptPairTensor, OptTensor, Size\n", + "from torch_geometric.utils import dense_to_sparse, to_dense_adj\n", + "from torch_scatter import scatter_add\n", + "from torch_sparse import SparseTensor, coalesce\n", + "\n", + "from diffusers.configuration_utils import ConfigMixin, register_to_config\n", + "from diffusers.modeling_utils import ModelMixin\n", + "from diffusers.utils import BaseOutput\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "EzJQXPN_XrMX" + }, + "source": [ + "Helper classes" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "oR1Y56QiLY90" + }, + "outputs": [], + "source": [ + "@dataclass\n", + "class MoleculeGNNOutput(BaseOutput):\n", + " \"\"\"\n", + " Args:\n", + " sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)`):\n", + " Hidden states output. Output of last layer of model.\n", + " \"\"\"\n", + "\n", + " sample: torch.Tensor\n", + "\n", + "\n", + "class MultiLayerPerceptron(nn.Module):\n", + " \"\"\"\n", + " Multi-layer Perceptron. Note there is no activation or dropout in the last layer.\n", + " Args:\n", + " input_dim (int): input dimension\n", + " hidden_dim (list of int): hidden dimensions\n", + " activation (str or function, optional): activation function\n", + " dropout (float, optional): dropout rate\n", + " \"\"\"\n", + "\n", + " def __init__(self, input_dim, hidden_dims, activation=\"relu\", dropout=0):\n", + " super(MultiLayerPerceptron, self).__init__()\n", + "\n", + " self.dims = [input_dim] + hidden_dims\n", + " if isinstance(activation, str):\n", + " self.activation = getattr(F, activation)\n", + " else:\n", + " print(f\"Warning, activation passed {activation} is not string and ignored\")\n", + " self.activation = None\n", + " if dropout > 0:\n", + " self.dropout = nn.Dropout(dropout)\n", + " else:\n", + " self.dropout = None\n", + "\n", + " self.layers = nn.ModuleList()\n", + " for i in range(len(self.dims) - 1):\n", + " self.layers.append(nn.Linear(self.dims[i], self.dims[i + 1]))\n", + "\n", + " def forward(self, x):\n", + " \"\"\"\"\"\"\n", + " for i, layer in enumerate(self.layers):\n", + " x = layer(x)\n", + " if i < len(self.layers) - 1:\n", + " if self.activation:\n", + " x = self.activation(x)\n", + " if self.dropout:\n", + " x = self.dropout(x)\n", + " return x\n", + "\n", + "\n", + "class ShiftedSoftplus(torch.nn.Module):\n", + " def __init__(self):\n", + " super(ShiftedSoftplus, self).__init__()\n", + " self.shift = torch.log(torch.tensor(2.0)).item()\n", + "\n", + " def forward(self, x):\n", + " return F.softplus(x) - self.shift\n", + "\n", + "\n", + "class CFConv(MessagePassing):\n", + " def __init__(self, in_channels, out_channels, num_filters, mlp, cutoff, smooth):\n", + " super(CFConv, self).__init__(aggr=\"add\")\n", + " self.lin1 = Linear(in_channels, num_filters, bias=False)\n", + " self.lin2 = Linear(num_filters, out_channels)\n", + " self.nn = mlp\n", + " self.cutoff = cutoff\n", + " self.smooth = smooth\n", + "\n", + " self.reset_parameters()\n", + "\n", + " def reset_parameters(self):\n", + " torch.nn.init.xavier_uniform_(self.lin1.weight)\n", + " torch.nn.init.xavier_uniform_(self.lin2.weight)\n", + " self.lin2.bias.data.fill_(0)\n", + "\n", + " def forward(self, x, edge_index, edge_length, edge_attr):\n", + " if self.smooth:\n", + " C = 0.5 * (torch.cos(edge_length * np.pi / self.cutoff) + 1.0)\n", + " C = C * (edge_length <= self.cutoff) * (edge_length >= 0.0) # Modification: cutoff\n", + " else:\n", + " C = (edge_length <= self.cutoff).float()\n", + " W = self.nn(edge_attr) * C.view(-1, 1)\n", + "\n", + " x = self.lin1(x)\n", + " x = self.propagate(edge_index, x=x, W=W)\n", + " x = self.lin2(x)\n", + " return x\n", + "\n", + " def message(self, x_j: torch.Tensor, W) -> torch.Tensor:\n", + " return x_j * W\n", + "\n", + "\n", + "class InteractionBlock(torch.nn.Module):\n", + " def __init__(self, hidden_channels, num_gaussians, num_filters, cutoff, smooth):\n", + " super(InteractionBlock, self).__init__()\n", + " mlp = Sequential(\n", + " Linear(num_gaussians, num_filters),\n", + " ShiftedSoftplus(),\n", + " Linear(num_filters, num_filters),\n", + " )\n", + " self.conv = CFConv(hidden_channels, hidden_channels, num_filters, mlp, cutoff, smooth)\n", + " self.act = ShiftedSoftplus()\n", + " self.lin = Linear(hidden_channels, hidden_channels)\n", + "\n", + " def forward(self, x, edge_index, edge_length, edge_attr):\n", + " x = self.conv(x, edge_index, edge_length, edge_attr)\n", + " x = self.act(x)\n", + " x = self.lin(x)\n", + " return x\n", + "\n", + "\n", + "class SchNetEncoder(Module):\n", + " def __init__(\n", + " self, hidden_channels=128, num_filters=128, num_interactions=6, edge_channels=100, cutoff=10.0, smooth=False\n", + " ):\n", + " super().__init__()\n", + "\n", + " self.hidden_channels = hidden_channels\n", + " self.num_filters = num_filters\n", + " self.num_interactions = num_interactions\n", + " self.cutoff = cutoff\n", + "\n", + " self.embedding = Embedding(100, hidden_channels, max_norm=10.0)\n", + "\n", + " self.interactions = ModuleList()\n", + " for _ in range(num_interactions):\n", + " block = InteractionBlock(hidden_channels, edge_channels, num_filters, cutoff, smooth)\n", + " self.interactions.append(block)\n", + "\n", + " def forward(self, z, edge_index, edge_length, edge_attr, embed_node=True):\n", + " if embed_node:\n", + " assert z.dim() == 1 and z.dtype == torch.long\n", + " h = self.embedding(z)\n", + " else:\n", + " h = z\n", + " for interaction in self.interactions:\n", + " h = h + interaction(h, edge_index, edge_length, edge_attr)\n", + "\n", + " return h\n", + "\n", + "\n", + "class GINEConv(MessagePassing):\n", + " \"\"\"\n", + " Custom class of the graph isomorphism operator from the \"How Powerful are Graph Neural Networks?\n", + " https://arxiv.org/abs/1810.00826 paper. Note that this implementation has the added option of a custom activation.\n", + " \"\"\"\n", + "\n", + " def __init__(self, mlp: Callable, eps: float = 0.0, train_eps: bool = False, activation=\"softplus\", **kwargs):\n", + " super(GINEConv, self).__init__(aggr=\"add\", **kwargs)\n", + " self.nn = mlp\n", + " self.initial_eps = eps\n", + "\n", + " if isinstance(activation, str):\n", + " self.activation = getattr(F, activation)\n", + " else:\n", + " self.activation = None\n", + "\n", + " if train_eps:\n", + " self.eps = torch.nn.Parameter(torch.Tensor([eps]))\n", + " else:\n", + " self.register_buffer(\"eps\", torch.Tensor([eps]))\n", + "\n", + " def forward(\n", + " self, x: Union[Tensor, OptPairTensor], edge_index: Adj, edge_attr: OptTensor = None, size: Size = None\n", + " ) -> torch.Tensor:\n", + " \"\"\"\"\"\"\n", + " if isinstance(x, torch.Tensor):\n", + " x: OptPairTensor = (x, x)\n", + "\n", + " # Node and edge feature dimensionalites need to match.\n", + " if isinstance(edge_index, torch.Tensor):\n", + " assert edge_attr is not None\n", + " assert x[0].size(-1) == edge_attr.size(-1)\n", + " elif isinstance(edge_index, SparseTensor):\n", + " assert x[0].size(-1) == edge_index.size(-1)\n", + "\n", + " # propagate_type: (x: OptPairTensor, edge_attr: OptTensor)\n", + " out = self.propagate(edge_index, x=x, edge_attr=edge_attr, size=size)\n", + "\n", + " x_r = x[1]\n", + " if x_r is not None:\n", + " out += (1 + self.eps) * x_r\n", + "\n", + " return self.nn(out)\n", + "\n", + " def message(self, x_j: torch.Tensor, edge_attr: torch.Tensor) -> torch.Tensor:\n", + " if self.activation:\n", + " return self.activation(x_j + edge_attr)\n", + " else:\n", + " return x_j + edge_attr\n", + "\n", + " def __repr__(self):\n", + " return \"{}(nn={})\".format(self.__class__.__name__, self.nn)\n", + "\n", + "\n", + "class GINEncoder(torch.nn.Module):\n", + " def __init__(self, hidden_dim, num_convs=3, activation=\"relu\", short_cut=True, concat_hidden=False):\n", + " super().__init__()\n", + "\n", + " self.hidden_dim = hidden_dim\n", + " self.num_convs = num_convs\n", + " self.short_cut = short_cut\n", + " self.concat_hidden = concat_hidden\n", + " self.node_emb = nn.Embedding(100, hidden_dim)\n", + "\n", + " if isinstance(activation, str):\n", + " self.activation = getattr(F, activation)\n", + " else:\n", + " self.activation = None\n", + "\n", + " self.convs = nn.ModuleList()\n", + " for i in range(self.num_convs):\n", + " self.convs.append(\n", + " GINEConv(\n", + " MultiLayerPerceptron(hidden_dim, [hidden_dim, hidden_dim], activation=activation),\n", + " activation=activation,\n", + " )\n", + " )\n", + "\n", + " def forward(self, z, edge_index, edge_attr):\n", + " \"\"\"\n", + " Input:\n", + " data: (torch_geometric.data.Data): batched graph edge_index: bond indices of the original graph (num_node,\n", + " hidden) edge_attr: edge feature tensor with shape (num_edge, hidden)\n", + " Output:\n", + " node_feature: graph feature\n", + " \"\"\"\n", + "\n", + " node_attr = self.node_emb(z) # (num_node, hidden)\n", + "\n", + " hiddens = []\n", + " conv_input = node_attr # (num_node, hidden)\n", + "\n", + " for conv_idx, conv in enumerate(self.convs):\n", + " hidden = conv(conv_input, edge_index, edge_attr)\n", + " if conv_idx < len(self.convs) - 1 and self.activation is not None:\n", + " hidden = self.activation(hidden)\n", + " assert hidden.shape == conv_input.shape\n", + " if self.short_cut and hidden.shape == conv_input.shape:\n", + " hidden += conv_input\n", + "\n", + " hiddens.append(hidden)\n", + " conv_input = hidden\n", + "\n", + " if self.concat_hidden:\n", + " node_feature = torch.cat(hiddens, dim=-1)\n", + " else:\n", + " node_feature = hiddens[-1]\n", + "\n", + " return node_feature\n", + "\n", + "\n", + "class MLPEdgeEncoder(Module):\n", + " def __init__(self, hidden_dim=100, activation=\"relu\"):\n", + " super().__init__()\n", + " self.hidden_dim = hidden_dim\n", + " self.bond_emb = Embedding(100, embedding_dim=self.hidden_dim)\n", + " self.mlp = MultiLayerPerceptron(1, [self.hidden_dim, self.hidden_dim], activation=activation)\n", + "\n", + " @property\n", + " def out_channels(self):\n", + " return self.hidden_dim\n", + "\n", + " def forward(self, edge_length, edge_type):\n", + " \"\"\"\n", + " Input:\n", + " edge_length: The length of edges, shape=(E, 1). edge_type: The type pf edges, shape=(E,)\n", + " Returns:\n", + " edge_attr: The representation of edges. (E, 2 * num_gaussians)\n", + " \"\"\"\n", + " d_emb = self.mlp(edge_length) # (num_edge, hidden_dim)\n", + " edge_attr = self.bond_emb(edge_type) # (num_edge, hidden_dim)\n", + " return d_emb * edge_attr # (num_edge, hidden)\n", + "\n", + "\n", + "def assemble_atom_pair_feature(node_attr, edge_index, edge_attr):\n", + " h_row, h_col = node_attr[edge_index[0]], node_attr[edge_index[1]]\n", + " h_pair = torch.cat([h_row * h_col, edge_attr], dim=-1) # (E, 2H)\n", + " return h_pair\n", + "\n", + "\n", + "def _extend_graph_order(num_nodes, edge_index, edge_type, order=3):\n", + " \"\"\"\n", + " Args:\n", + " num_nodes: Number of atoms.\n", + " edge_index: Bond indices of the original graph.\n", + " edge_type: Bond types of the original graph.\n", + " order: Extension order.\n", + " Returns:\n", + " new_edge_index: Extended edge indices. new_edge_type: Extended edge types.\n", + " \"\"\"\n", + "\n", + " def binarize(x):\n", + " return torch.where(x > 0, torch.ones_like(x), torch.zeros_like(x))\n", + "\n", + " def get_higher_order_adj_matrix(adj, order):\n", + " \"\"\"\n", + " Args:\n", + " adj: (N, N)\n", + " type_mat: (N, N)\n", + " Returns:\n", + " Following attributes will be updated:\n", + " - edge_index\n", + " - edge_type\n", + " Following attributes will be added to the data object:\n", + " - bond_edge_index: Original edge_index.\n", + " \"\"\"\n", + " adj_mats = [\n", + " torch.eye(adj.size(0), dtype=torch.long, device=adj.device),\n", + " binarize(adj + torch.eye(adj.size(0), dtype=torch.long, device=adj.device)),\n", + " ]\n", + "\n", + " for i in range(2, order + 1):\n", + " adj_mats.append(binarize(adj_mats[i - 1] @ adj_mats[1]))\n", + " order_mat = torch.zeros_like(adj)\n", + "\n", + " for i in range(1, order + 1):\n", + " order_mat += (adj_mats[i] - adj_mats[i - 1]) * i\n", + "\n", + " return order_mat\n", + "\n", + " num_types = 22\n", + " # given from len(BOND_TYPES), where BOND_TYPES = {t: i for i, t in enumerate(BT.names.values())}\n", + " # from rdkit.Chem.rdchem import BondType as BT\n", + " N = num_nodes\n", + " adj = to_dense_adj(edge_index).squeeze(0)\n", + " adj_order = get_higher_order_adj_matrix(adj, order) # (N, N)\n", + "\n", + " type_mat = to_dense_adj(edge_index, edge_attr=edge_type).squeeze(0) # (N, N)\n", + " type_highorder = torch.where(adj_order > 1, num_types + adj_order - 1, torch.zeros_like(adj_order))\n", + " assert (type_mat * type_highorder == 0).all()\n", + " type_new = type_mat + type_highorder\n", + "\n", + " new_edge_index, new_edge_type = dense_to_sparse(type_new)\n", + " _, edge_order = dense_to_sparse(adj_order)\n", + "\n", + " # data.bond_edge_index = data.edge_index # Save original edges\n", + " new_edge_index, new_edge_type = coalesce(new_edge_index, new_edge_type.long(), N, N) # modify data\n", + "\n", + " return new_edge_index, new_edge_type\n", + "\n", + "\n", + "def _extend_to_radius_graph(pos, edge_index, edge_type, cutoff, batch, unspecified_type_number=0, is_sidechain=None):\n", + " assert edge_type.dim() == 1\n", + " N = pos.size(0)\n", + "\n", + " bgraph_adj = torch.sparse.LongTensor(edge_index, edge_type, torch.Size([N, N]))\n", + "\n", + " if is_sidechain is None:\n", + " rgraph_edge_index = radius_graph(pos, r=cutoff, batch=batch) # (2, E_r)\n", + " else:\n", + " # fetch sidechain and its batch index\n", + " is_sidechain = is_sidechain.bool()\n", + " dummy_index = torch.arange(pos.size(0), device=pos.device)\n", + " sidechain_pos = pos[is_sidechain]\n", + " sidechain_index = dummy_index[is_sidechain]\n", + " sidechain_batch = batch[is_sidechain]\n", + "\n", + " assign_index = radius(x=pos, y=sidechain_pos, r=cutoff, batch_x=batch, batch_y=sidechain_batch)\n", + " r_edge_index_x = assign_index[1]\n", + " r_edge_index_y = assign_index[0]\n", + " r_edge_index_y = sidechain_index[r_edge_index_y]\n", + "\n", + " rgraph_edge_index1 = torch.stack((r_edge_index_x, r_edge_index_y)) # (2, E)\n", + " rgraph_edge_index2 = torch.stack((r_edge_index_y, r_edge_index_x)) # (2, E)\n", + " rgraph_edge_index = torch.cat((rgraph_edge_index1, rgraph_edge_index2), dim=-1) # (2, 2E)\n", + " # delete self loop\n", + " rgraph_edge_index = rgraph_edge_index[:, (rgraph_edge_index[0] != rgraph_edge_index[1])]\n", + "\n", + " rgraph_adj = torch.sparse.LongTensor(\n", + " rgraph_edge_index,\n", + " torch.ones(rgraph_edge_index.size(1)).long().to(pos.device) * unspecified_type_number,\n", + " torch.Size([N, N]),\n", + " )\n", + "\n", + " composed_adj = (bgraph_adj + rgraph_adj).coalesce() # Sparse (N, N, T)\n", + "\n", + " new_edge_index = composed_adj.indices()\n", + " new_edge_type = composed_adj.values().long()\n", + "\n", + " return new_edge_index, new_edge_type\n", + "\n", + "\n", + "def extend_graph_order_radius(\n", + " num_nodes,\n", + " pos,\n", + " edge_index,\n", + " edge_type,\n", + " batch,\n", + " order=3,\n", + " cutoff=10.0,\n", + " extend_order=True,\n", + " extend_radius=True,\n", + " is_sidechain=None,\n", + "):\n", + " if extend_order:\n", + " edge_index, edge_type = _extend_graph_order(\n", + " num_nodes=num_nodes, edge_index=edge_index, edge_type=edge_type, order=order\n", + " )\n", + "\n", + " if extend_radius:\n", + " edge_index, edge_type = _extend_to_radius_graph(\n", + " pos=pos, edge_index=edge_index, edge_type=edge_type, cutoff=cutoff, batch=batch, is_sidechain=is_sidechain\n", + " )\n", + "\n", + " return edge_index, edge_type\n", + "\n", + "\n", + "def get_distance(pos, edge_index):\n", + " return (pos[edge_index[0]] - pos[edge_index[1]]).norm(dim=-1)\n", + "\n", + "\n", + "def graph_field_network(score_d, pos, edge_index, edge_length):\n", + " \"\"\"\n", + " Transformation to make the epsilon predicted from the diffusion model roto-translational equivariant. See equations\n", + " 5-7 of the GeoDiff Paper https://arxiv.org/pdf/2203.02923.pdf\n", + " \"\"\"\n", + " N = pos.size(0)\n", + " dd_dr = (1.0 / edge_length) * (pos[edge_index[0]] - pos[edge_index[1]]) # (E, 3)\n", + " score_pos = scatter_add(dd_dr * score_d, edge_index[0], dim=0, dim_size=N) + scatter_add(\n", + " -dd_dr * score_d, edge_index[1], dim=0, dim_size=N\n", + " ) # (N, 3)\n", + " return score_pos\n", + "\n", + "\n", + "def clip_norm(vec, limit, p=2):\n", + " norm = torch.norm(vec, dim=-1, p=2, keepdim=True)\n", + " denom = torch.where(norm > limit, limit / norm, torch.ones_like(norm))\n", + " return vec * denom\n", + "\n", + "\n", + "def is_local_edge(edge_type):\n", + " return edge_type > 0\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "QWrHJFcYXyUB" + }, + "source": [ + "Main model class!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "MCeZA1qQXzoK" + }, + "outputs": [], + "source": [ + "class MoleculeGNN(ModelMixin, ConfigMixin):\n", + " @register_to_config\n", + " def __init__(\n", + " self,\n", + " hidden_dim=128,\n", + " num_convs=6,\n", + " num_convs_local=4,\n", + " cutoff=10.0,\n", + " mlp_act=\"relu\",\n", + " edge_order=3,\n", + " edge_encoder=\"mlp\",\n", + " smooth_conv=True,\n", + " ):\n", + " super().__init__()\n", + " self.cutoff = cutoff\n", + " self.edge_encoder = edge_encoder\n", + " self.edge_order = edge_order\n", + "\n", + " \"\"\"\n", + " edge_encoder: Takes both edge type and edge length as input and outputs a vector [Note]: node embedding is done\n", + " in SchNetEncoder\n", + " \"\"\"\n", + " self.edge_encoder_global = MLPEdgeEncoder(hidden_dim, mlp_act) # get_edge_encoder(config)\n", + " self.edge_encoder_local = MLPEdgeEncoder(hidden_dim, mlp_act) # get_edge_encoder(config)\n", + "\n", + " \"\"\"\n", + " The graph neural network that extracts node-wise features.\n", + " \"\"\"\n", + " self.encoder_global = SchNetEncoder(\n", + " hidden_channels=hidden_dim,\n", + " num_filters=hidden_dim,\n", + " num_interactions=num_convs,\n", + " edge_channels=self.edge_encoder_global.out_channels,\n", + " cutoff=cutoff,\n", + " smooth=smooth_conv,\n", + " )\n", + " self.encoder_local = GINEncoder(\n", + " hidden_dim=hidden_dim,\n", + " num_convs=num_convs_local,\n", + " )\n", + "\n", + " \"\"\"\n", + " `output_mlp` takes a mixture of two nodewise features and edge features as input and outputs\n", + " gradients w.r.t. edge_length (out_dim = 1).\n", + " \"\"\"\n", + " self.grad_global_dist_mlp = MultiLayerPerceptron(\n", + " 2 * hidden_dim, [hidden_dim, hidden_dim // 2, 1], activation=mlp_act\n", + " )\n", + "\n", + " self.grad_local_dist_mlp = MultiLayerPerceptron(\n", + " 2 * hidden_dim, [hidden_dim, hidden_dim // 2, 1], activation=mlp_act\n", + " )\n", + "\n", + " \"\"\"\n", + " Incorporate parameters together\n", + " \"\"\"\n", + " self.model_global = nn.ModuleList([self.edge_encoder_global, self.encoder_global, self.grad_global_dist_mlp])\n", + " self.model_local = nn.ModuleList([self.edge_encoder_local, self.encoder_local, self.grad_local_dist_mlp])\n", + "\n", + " def _forward(\n", + " self,\n", + " atom_type,\n", + " pos,\n", + " bond_index,\n", + " bond_type,\n", + " batch,\n", + " time_step, # NOTE, model trained without timestep performed best\n", + " edge_index=None,\n", + " edge_type=None,\n", + " edge_length=None,\n", + " return_edges=False,\n", + " extend_order=True,\n", + " extend_radius=True,\n", + " is_sidechain=None,\n", + " ):\n", + " \"\"\"\n", + " Args:\n", + " atom_type: Types of atoms, (N, ).\n", + " bond_index: Indices of bonds (not extended, not radius-graph), (2, E).\n", + " bond_type: Bond types, (E, ).\n", + " batch: Node index to graph index, (N, ).\n", + " \"\"\"\n", + " N = atom_type.size(0)\n", + " if edge_index is None or edge_type is None or edge_length is None:\n", + " edge_index, edge_type = extend_graph_order_radius(\n", + " num_nodes=N,\n", + " pos=pos,\n", + " edge_index=bond_index,\n", + " edge_type=bond_type,\n", + " batch=batch,\n", + " order=self.edge_order,\n", + " cutoff=self.cutoff,\n", + " extend_order=extend_order,\n", + " extend_radius=extend_radius,\n", + " is_sidechain=is_sidechain,\n", + " )\n", + " edge_length = get_distance(pos, edge_index).unsqueeze(-1) # (E, 1)\n", + " local_edge_mask = is_local_edge(edge_type) # (E, )\n", + "\n", + " # with the parameterization of NCSNv2\n", + " # DDPM loss implicit handle the noise variance scale conditioning\n", + " sigma_edge = torch.ones(size=(edge_index.size(1), 1), device=pos.device) # (E, 1)\n", + "\n", + " # Encoding global\n", + " edge_attr_global = self.edge_encoder_global(edge_length=edge_length, edge_type=edge_type) # Embed edges\n", + "\n", + " # Global\n", + " node_attr_global = self.encoder_global(\n", + " z=atom_type,\n", + " edge_index=edge_index,\n", + " edge_length=edge_length,\n", + " edge_attr=edge_attr_global,\n", + " )\n", + " # Assemble pairwise features\n", + " h_pair_global = assemble_atom_pair_feature(\n", + " node_attr=node_attr_global,\n", + " edge_index=edge_index,\n", + " edge_attr=edge_attr_global,\n", + " ) # (E_global, 2H)\n", + " # Invariant features of edges (radius graph, global)\n", + " edge_inv_global = self.grad_global_dist_mlp(h_pair_global) * (1.0 / sigma_edge) # (E_global, 1)\n", + "\n", + " # Encoding local\n", + " edge_attr_local = self.edge_encoder_global(edge_length=edge_length, edge_type=edge_type) # Embed edges\n", + " # edge_attr += temb_edge\n", + "\n", + " # Local\n", + " node_attr_local = self.encoder_local(\n", + " z=atom_type,\n", + " edge_index=edge_index[:, local_edge_mask],\n", + " edge_attr=edge_attr_local[local_edge_mask],\n", + " )\n", + " # Assemble pairwise features\n", + " h_pair_local = assemble_atom_pair_feature(\n", + " node_attr=node_attr_local,\n", + " edge_index=edge_index[:, local_edge_mask],\n", + " edge_attr=edge_attr_local[local_edge_mask],\n", + " ) # (E_local, 2H)\n", + "\n", + " # Invariant features of edges (bond graph, local)\n", + " if isinstance(sigma_edge, torch.Tensor):\n", + " edge_inv_local = self.grad_local_dist_mlp(h_pair_local) * (\n", + " 1.0 / sigma_edge[local_edge_mask]\n", + " ) # (E_local, 1)\n", + " else:\n", + " edge_inv_local = self.grad_local_dist_mlp(h_pair_local) * (1.0 / sigma_edge) # (E_local, 1)\n", + "\n", + " if return_edges:\n", + " return edge_inv_global, edge_inv_local, edge_index, edge_type, edge_length, local_edge_mask\n", + " else:\n", + " return edge_inv_global, edge_inv_local\n", + "\n", + " def forward(\n", + " self,\n", + " sample,\n", + " timestep: Union[torch.Tensor, float, int],\n", + " return_dict: bool = True,\n", + " sigma=1.0,\n", + " global_start_sigma=0.5,\n", + " w_global=1.0,\n", + " extend_order=False,\n", + " extend_radius=True,\n", + " clip_local=None,\n", + " clip_global=1000.0,\n", + " ) -> Union[MoleculeGNNOutput, Tuple]:\n", + " r\"\"\"\n", + " Args:\n", + " sample: packed torch geometric object\n", + " timestep (`torch.Tensor` or `float` or `int): TODO verify type and shape (batch) timesteps\n", + " return_dict (`bool`, *optional*, defaults to `True`):\n", + " Whether or not to return a [`~models.molecule_gnn.MoleculeGNNOutput`] instead of a plain tuple.\n", + " Returns:\n", + " [`~models.molecule_gnn.MoleculeGNNOutput`] or `tuple`: [`~models.molecule_gnn.MoleculeGNNOutput`] if\n", + " `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.\n", + " \"\"\"\n", + "\n", + " # unpack sample\n", + " atom_type = sample.atom_type\n", + " bond_index = sample.edge_index\n", + " bond_type = sample.edge_type\n", + " num_graphs = sample.num_graphs\n", + " pos = sample.pos\n", + "\n", + " timesteps = torch.full(size=(num_graphs,), fill_value=timestep, dtype=torch.long, device=pos.device)\n", + "\n", + " edge_inv_global, edge_inv_local, edge_index, edge_type, edge_length, local_edge_mask = self._forward(\n", + " atom_type=atom_type,\n", + " pos=sample.pos,\n", + " bond_index=bond_index,\n", + " bond_type=bond_type,\n", + " batch=sample.batch,\n", + " time_step=timesteps,\n", + " return_edges=True,\n", + " extend_order=extend_order,\n", + " extend_radius=extend_radius,\n", + " ) # (E_global, 1), (E_local, 1)\n", + "\n", + " # Important equation in the paper for equivariant features - eqns 5-7 of GeoDiff\n", + " node_eq_local = graph_field_network(\n", + " edge_inv_local, pos, edge_index[:, local_edge_mask], edge_length[local_edge_mask]\n", + " )\n", + " if clip_local is not None:\n", + " node_eq_local = clip_norm(node_eq_local, limit=clip_local)\n", + "\n", + " # Global\n", + " if sigma < global_start_sigma:\n", + " edge_inv_global = edge_inv_global * (1 - local_edge_mask.view(-1, 1).float())\n", + " node_eq_global = graph_field_network(edge_inv_global, pos, edge_index, edge_length)\n", + " node_eq_global = clip_norm(node_eq_global, limit=clip_global)\n", + " else:\n", + " node_eq_global = 0\n", + "\n", + " # Sum\n", + " eps_pos = node_eq_local + node_eq_global * w_global\n", + "\n", + " if not return_dict:\n", + " return (-eps_pos,)\n", + "\n", + " return MoleculeGNNOutput(sample=torch.Tensor(-eps_pos).to(pos.device))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "CCIrPYSJj9wd" + }, + "source": [ + "### Load pretrained model" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "YdrAr6Ch--Ab" + }, + "source": [ + "#### Load a model\n", + "The model used is a design an\n", + "equivariant convolutional layer, named graph field network (GFN).\n", + "\n", + "The warning about `betas` and `alphas` can be ignored, those were moved to the scheduler." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 172, + "referenced_widgets": [ + "d90f304e9560472eacfbdd11e46765eb", + "1c6246f15b654f4daa11c9bcf997b78c", + "c2321b3bff6f490ca12040a20308f555", + "b7feb522161f4cf4b7cc7c1a078ff12d", + "e2d368556e494ae7ae4e2e992af2cd4f", + "bbef741e76ec41b7ab7187b487a383df", + "561f742d418d4721b0670cc8dd62e22c", + "872915dd1bb84f538c44e26badabafdd", + "d022575f1fa2446d891650897f187b4d", + "fdc393f3468c432aa0ada05e238a5436", + "2c9362906e4b40189f16d14aa9a348da", + "6010fc8daa7a44d5aec4b830ec2ebaa1", + "7e0bb1b8d65249d3974200686b193be2", + "ba98aa6d6a884e4ab8bbb5dfb5e4cf7a", + "6526646be5ed415c84d1245b040e629b", + "24d31fc3576e43dd9f8301d2ef3a37ab", + "2918bfaadc8d4b1a9832522c40dfefb8", + "a4bfdca35cc54dae8812720f1b276a08", + "e4901541199b45c6a18824627692fc39", + "f915cf874246446595206221e900b2fe", + "a9e388f22a9742aaaf538e22575c9433", + "42f6c3db29d7484ba6b4f73590abd2f4" + ] + }, + "id": "DyCo0nsqjbml", + "outputId": "d6bce9d5-c51e-43a4-e680-e1e81bdfaf45" + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d90f304e9560472eacfbdd11e46765eb", + "version_major": 2, + "version_minor": 0 }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "/content\n", - "Cloning into 'diffusers'...\n", - "remote: Enumerating objects: 9298, done.\u001b[K\n", - "remote: Counting objects: 100% (40/40), done.\u001b[K\n", - "remote: Compressing objects: 100% (23/23), done.\u001b[K\n", - "remote: Total 9298 (delta 17), reused 23 (delta 11), pack-reused 9258\u001b[K\n", - "Receiving objects: 100% (9298/9298), 7.38 MiB | 5.28 MiB/s, done.\n", - "Resolving deltas: 100% (6168/6168), done.\n", - " Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n", - " Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n", - " Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m757.0/757.0 kB\u001b[0m \u001b[31m52.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m163.5/163.5 kB\u001b[0m \u001b[31m21.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m40.8/40.8 kB\u001b[0m \u001b[31m5.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m596.3/596.3 kB\u001b[0m \u001b[31m51.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25h Building wheel for diffusers (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", - "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m432.7/432.7 kB\u001b[0m \u001b[31m36.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m5.3/5.3 MB\u001b[0m \u001b[31m90.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m35.3/35.3 MB\u001b[0m \u001b[31m39.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m115.1/115.1 kB\u001b[0m \u001b[31m16.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m948.0/948.0 kB\u001b[0m \u001b[31m63.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m212.2/212.2 kB\u001b[0m \u001b[31m21.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m95.8/95.8 kB\u001b[0m \u001b[31m12.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m140.8/140.8 kB\u001b[0m \u001b[31m18.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.6/7.6 MB\u001b[0m \u001b[31m104.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m148.0/148.0 kB\u001b[0m \u001b[31m20.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m231.3/231.3 kB\u001b[0m \u001b[31m30.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m94.8/94.8 kB\u001b[0m \u001b[31m14.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m58.8/58.8 kB\u001b[0m \u001b[31m8.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25h\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n", - "\u001b[0m" - ] - } - ], - "source": [ - "%cd /content\n", - "\n", - "# install latest HF diffusers (will update to the release once added)\n", - "!git clone https://github.com/huggingface/diffusers.git\n", - "!pip install -q /content/diffusers\n", - "\n", - "# dependencies for diffusers\n", - "!pip install -q datasets transformers" + "text/plain": [ + "Downloading: 0%| | 0.00/3.27M [00:00] 124.78K 180KB/s in 0.7s \n", + "\n", + "2022-10-12 18:32:20 (180 KB/s) - ‘molecules.pkl’ saved [127774/127774]\n", + "\n" + ] + } + ], + "source": [ + "import torch\n", + "\n", + "\n", + "!wget https://huggingface.co/datasets/fusing/geodiff-example-data/resolve/main/data/molecules.pkl\n", + "dataset = torch.load('/content/molecules.pkl')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "QZcmy1EvKQRk" + }, + "source": [ + "Print out one entry of the dataset, it contains molecular formulas, atom types, positions, and more." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "JVjz6iH_H6Eh", + "outputId": "898cb0cf-a0b3-411b-fd4c-bea1fbfd17fe" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "gZt7BNi1e1PA", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 53 - }, - "outputId": "a0e1832c-9c02-49aa-cff8-1339e6cdc889" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "True\n" - ] - }, - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "'1.8.2'" - ], - "application/vnd.google.colaboratory.intrinsic+json": { - "type": "string" - } - }, - "metadata": {}, - "execution_count": 8 - } - ], - "source": [ - "import torch\n", - "print(torch.cuda.is_available())\n", - "torch.__version__" + "data": { + "text/plain": [ + "Data(atom_type=[51], bond_edge_index=[2, 108], edge_index=[2, 598], edge_order=[598], edge_type=[598], idx=[1], is_bond=[598], num_nodes_per_graph=[1], num_pos_ref=[1], nx=, pos=[51, 3], pos_ref=[255, 3], rdmol=, smiles=\"CC1CCCN(C(=O)C2CCN(S(=O)(=O)c3cccc4nonc34)CC2)C1\")" ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "KLE7CqlfJNUO" - }, - "source": [ - "### Install Chemistry-specific Dependencies\n", - "\n", - "Install RDKit, a tool for working with and visualizing chemsitry in python (you use this to visualize the generate models later)." + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dataset[0]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "vHNiZAUxNgoy" + }, + "source": [ + "## Run the diffusion process" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "jZ1KZrxKqENg" + }, + "source": [ + "#### Helper Functions" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "s240tYueqKKf" + }, + "outputs": [], + "source": [ + "import copy\n", + "import os\n", + "\n", + "from torch_geometric.data import Batch, Data\n", + "from torch_scatter import scatter_mean\n", + "from tqdm import tqdm\n", + "\n", + "\n", + "def repeat_data(data: Data, num_repeat) -> Batch:\n", + " datas = [copy.deepcopy(data) for i in range(num_repeat)]\n", + " return Batch.from_data_list(datas)\n", + "\n", + "def repeat_batch(batch: Batch, num_repeat) -> Batch:\n", + " datas = batch.to_data_list()\n", + " new_data = []\n", + " for i in range(num_repeat):\n", + " new_data += copy.deepcopy(datas)\n", + " return Batch.from_data_list(new_data)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "AMnQTk0eqT7Z" + }, + "source": [ + "#### Constants" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "WYGkzqgzrHmF" + }, + "outputs": [], + "source": [ + "num_samples = 1 # solutions per molecule\n", + "num_molecules = 3\n", + "\n", + "DEVICE = 'cuda'\n", + "sampling_type = 'ddpm_noisy' #'' # paper also uses \"generalize\" and \"ld\"\n", + "# constants for inference\n", + "w_global = 0.5 #0,.3 for qm9\n", + "global_start_sigma = 0.5\n", + "eta = 1.0\n", + "clip_local = None\n", + "clip_pos = None\n", + "\n", + "# constands for data handling\n", + "save_traj = False\n", + "save_data = False\n", + "output_dir = '/content/'" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-xD5bJ3SqM7t" + }, + "source": [ + "#### Generate samples!\n", + "Note that the 3d representation of a molecule is referred to as the **conformation**" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "x9xuLUNg26z1", + "outputId": "236d2a60-09ed-4c4d-97c1-6e3c0f2d26c4" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:4: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n", + " after removing the cwd from sys.path.\n", + "100%|██████████| 5/5 [00:55<00:00, 11.06s/it]\n" + ] + } + ], + "source": [ + "results = []\n", + "\n", + "# define sigmas\n", + "sigmas = torch.tensor(1.0 - scheduler.alphas_cumprod).sqrt() / torch.tensor(scheduler.alphas_cumprod).sqrt()\n", + "sigmas = sigmas.to(DEVICE)\n", + "\n", + "for count, data in enumerate(tqdm(dataset)):\n", + " num_samples = max(data.pos_ref.size(0) // data.num_nodes, 1)\n", + "\n", + " data_input = data.clone()\n", + " data_input['pos_ref'] = None\n", + " batch = repeat_data(data_input, num_samples).to(DEVICE)\n", + "\n", + " # initial configuration\n", + " pos_init = torch.randn(batch.num_nodes, 3).to(DEVICE)\n", + "\n", + " # for logging animation of denoising\n", + " pos_traj = []\n", + " with torch.no_grad():\n", + "\n", + " # scale initial sample\n", + " pos = pos_init * sigmas[-1]\n", + " for t in scheduler.timesteps:\n", + " batch.pos = pos\n", + "\n", + " # generate geometry with model, then filter it\n", + " epsilon = model.forward(batch, t, sigma=sigmas[t], return_dict=False)[0]\n", + "\n", + " # Update\n", + " reconstructed_pos = scheduler.step(epsilon, t, pos)[\"prev_sample\"].to(DEVICE)\n", + "\n", + " pos = reconstructed_pos\n", + "\n", + " if torch.isnan(pos).any():\n", + " print(\"NaN detected. Please restart.\")\n", + " raise FloatingPointError()\n", + "\n", + " # recenter graph of positions for next iteration\n", + " pos = pos - scatter_mean(pos, batch.batch, dim=0)[batch.batch]\n", + "\n", + " # optional clipping\n", + " if clip_pos is not None:\n", + " pos = torch.clamp(pos, min=-clip_pos, max=clip_pos)\n", + " pos_traj.append(pos.clone().cpu())\n", + "\n", + " pos_gen = pos.cpu()\n", + " if save_traj:\n", + " pos_gen_traj = pos_traj.cpu()\n", + " data.pos_gen = torch.stack(pos_gen_traj)\n", + " else:\n", + " data.pos_gen = pos_gen\n", + " results.append(data)\n", + "\n", + "\n", + "if save_data:\n", + " save_path = os.path.join(output_dir, 'samples_all.pkl')\n", + "\n", + " with open(save_path, 'wb') as f:\n", + " pickle.dump(results, f)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "fSApwSaZNndW" + }, + "source": [ + "## Render the results!" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "d47Zxo2OKdgZ" + }, + "source": [ + "This function allows us to render 3d in colab." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "e9Cd0kCAv9b8" + }, + "outputs": [], + "source": [ + "from google.colab import output\n", + "\n", + "\n", + "output.enable_custom_widget_manager()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "RjaVuR15NqzF" + }, + "source": [ + "### Helper functions" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "28rBYa9NKhlz" + }, + "source": [ + "Here is a helper function for copying the generated tensors into a format used by RDKit & NGLViewer." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "LKdKdwxcyTQ6" + }, + "outputs": [], + "source": [ + "from copy import deepcopy\n", + "\n", + "\n", + "def set_rdmol_positions(rdkit_mol, pos):\n", + " \"\"\"\n", + " Args:\n", + " rdkit_mol: An `rdkit.Chem.rdchem.Mol` object.\n", + " pos: (N_atoms, 3)\n", + " \"\"\"\n", + " mol = deepcopy(rdkit_mol)\n", + " set_rdmol_positions_(mol, pos)\n", + " return mol\n", + "\n", + "def set_rdmol_positions_(mol, pos):\n", + " \"\"\"\n", + " Args:\n", + " rdkit_mol: An `rdkit.Chem.rdchem.Mol` object.\n", + " pos: (N_atoms, 3)\n", + " \"\"\"\n", + " for i in range(pos.shape[0]):\n", + " mol.GetConformer(0).SetAtomPosition(i, pos[i].tolist())\n", + " return mol\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "NuE10hcpKmzK" + }, + "source": [ + "Process the generated data to make it easy to view." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "KieVE1vc0_Vs", + "outputId": "6faa185d-b1bc-47e8-be18-30d1e557e7c8" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "collect 5 generated molecules in `mols`\n" + ] + } + ], + "source": [ + "# the model can generate multiple conformations per 2d geometry\n", + "num_gen = results[0]['pos_gen'].shape[0]\n", + "\n", + "# init storage objects\n", + "mols_gen = []\n", + "mols_orig = []\n", + "for to_process in results:\n", + "\n", + " # store the reference 3d position\n", + " to_process['pos_ref'] = to_process['pos_ref'].reshape(-1, to_process['rdmol'].GetNumAtoms(), 3)\n", + "\n", + " # store the generated 3d position\n", + " to_process['pos_gen'] = to_process['pos_gen'].reshape(-1, to_process['rdmol'].GetNumAtoms(), 3)\n", + "\n", + " # copy data to new object\n", + " new_mol = set_rdmol_positions(to_process.rdmol, to_process['pos_gen'][0])\n", + "\n", + " # append results\n", + " mols_gen.append(new_mol)\n", + " mols_orig.append(to_process.rdmol)\n", + "\n", + "print(f\"collect {len(mols_gen)} generated molecules in `mols`\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "tin89JwMKp4v" + }, + "source": [ + "Import tools to visualize the 2d chemical diagram of the molecule." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "yqV6gllSZn38" + }, + "outputs": [], + "source": [ + "from IPython.display import SVG, display\n", + "from rdkit import Chem\n", + "from rdkit.Chem.Draw import rdMolDraw2D as MD2" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "TFNKmGddVoOk" + }, + "source": [ + "Select molecule to visualize" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "KzuwLlrrVaGc" + }, + "outputs": [], + "source": [ + "idx = 0\n", + "assert idx < len(results), \"selected molecule that was not generated\"" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "hkb8w0_SNtU8" + }, + "source": [ + "### Viewing" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "I3R4QBQeKttN" + }, + "source": [ + "This 2D rendering is the equivalent of the **input to the model**!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 321 + }, + "id": "gkQRWjraaKex", + "outputId": "9c3d1a91-a51d-475d-9e34-2be2459abc47" + }, + "outputs": [ + { + "data": { + "image/svg+xml": "\n\n \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n", + "text/plain": [ + "" ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "0CPv_NvehRz3", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "6ee0ae4e-4511-4816-de29-22b1c21d49bc" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "mc = Chem.MolFromSmiles(dataset[0]['smiles'])\n", + "molSize=(450,300)\n", + "drawer = MD2.MolDraw2DSVG(molSize[0],molSize[1])\n", + "drawer.DrawMolecule(mc)\n", + "drawer.FinishDrawing()\n", + "svg = drawer.GetDrawingText()\n", + "display(SVG(svg.replace('svg:','')))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "z4FDMYMxKw2I" + }, + "source": [ + "Generate the 3d molecule!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 17, + "referenced_widgets": [ + "695ab5bbf30a4ab19df1f9f33469f314", + "eac6a8dcdc9d4335a2e51031793ead29" + ] + }, + "id": "aT1Bkb8YxJfV", + "outputId": "b98870ae-049d-4386-b676-166e9526bda2" + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "695ab5bbf30a4ab19df1f9f33469f314", + "version_major": 2, + "version_minor": 0 }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n", - "Collecting rdkit\n", - " Downloading rdkit-2022.3.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.8 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m36.8/36.8 MB\u001b[0m \u001b[31m34.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: Pillow in /usr/local/lib/python3.7/site-packages (from rdkit) (9.2.0)\n", - "Requirement already satisfied: numpy in /usr/local/lib/python3.7/site-packages (from rdkit) (1.21.6)\n", - "Installing collected packages: rdkit\n", - "Successfully installed rdkit-2022.3.5\n", - "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n", - "\u001b[0m" - ] + "text/plain": [] + }, + "metadata": { + "application/vnd.jupyter.widget-view+json": { + "colab": { + "custom_widget_manager": { + "url": "https://ssl.gstatic.com/colaboratory-static/widgets/colab-cdn-widget-manager/d2e234f7cc04bf79/manager.min.js" } - ], - "source": [ - "!pip install rdkit" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "88GaDbDPxJ5I" + } + } + }, + "output_type": "display_data" + } + ], + "source": [ + "from nglview import show_rdkit as show" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 337, + "referenced_widgets": [ + "be446195da2b4ff2aec21ec5ff963a54", + "c6596896148b4a8a9c57963b67c7782f", + "2489b5e5648541fbbdceadb05632a050", + "01e0ba4e5da04914b4652b8d58565d7b", + "c30e6c2f3e2a44dbbb3d63bd519acaa4", + "f31c6e40e9b2466a9064a2669933ecd5", + "19308ccac642498ab8b58462e3f1b0bb", + "4a081cdc2ec3421ca79dd933b7e2b0c4", + "e5c0d75eb5e1447abd560c8f2c6017e1", + "5146907ef6764654ad7d598baebc8b58", + "144ec959b7604a2cabb5ca46ae5e5379", + "abce2a80e6304df3899109c6d6cac199", + "65195cb7a4134f4887e9dd19f3676462" + ] + }, + "id": "pxtq8I-I18C-", + "outputId": "72ed63ac-d2ec-4f5c-a0b1-4e7c1840a4e7" + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "be446195da2b4ff2aec21ec5ff963a54", + "version_major": 2, + "version_minor": 0 }, - "source": [ - "### Get viewer from nglview\n", - "\n", - "The model you will use outputs a position matrix tensor. This pytorch geometric data object will have many features (positions, known features, edge features -- all tensors).\n", - "The data we give to the model will also have a rdmol object (which can extract features to geometric if needed).\n", - "The rdmol in this object is a source of ground truth for the generated molecules.\n", - "\n", - "You will use one rendering function from nglviewer later!\n", - "\n" + "text/plain": [ + "NGLWidget()" ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "jcl8GCS2mz6t", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 1000 - }, - "outputId": "99b5cc40-67bb-4d8e-faa0-47d7cb33e98f" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n", - "Collecting nglview\n", - " Downloading nglview-3.0.3.tar.gz (5.7 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m5.7/5.7 MB\u001b[0m \u001b[31m91.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25h Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n", - " Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n", - " Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", - "Requirement already satisfied: numpy in /usr/local/lib/python3.7/site-packages (from nglview) (1.21.6)\n", - "Collecting jupyterlab-widgets\n", - " Downloading jupyterlab_widgets-3.0.3-py3-none-any.whl (384 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m384.1/384.1 kB\u001b[0m \u001b[31m40.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting ipywidgets>=7\n", - " Downloading ipywidgets-8.0.2-py3-none-any.whl (134 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m134.4/134.4 kB\u001b[0m \u001b[31m21.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting widgetsnbextension~=4.0\n", - " Downloading widgetsnbextension-4.0.3-py3-none-any.whl (2.0 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.0/2.0 MB\u001b[0m \u001b[31m84.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting ipython>=6.1.0\n", - " Downloading ipython-7.34.0-py3-none-any.whl (793 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m793.8/793.8 kB\u001b[0m \u001b[31m60.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting ipykernel>=4.5.1\n", - " Downloading ipykernel-6.16.0-py3-none-any.whl (138 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m138.4/138.4 kB\u001b[0m \u001b[31m20.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting traitlets>=4.3.1\n", - " Downloading traitlets-5.4.0-py3-none-any.whl (107 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m107.1/107.1 kB\u001b[0m \u001b[31m17.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: packaging in /usr/local/lib/python3.7/site-packages (from ipykernel>=4.5.1->ipywidgets>=7->nglview) (21.3)\n", - "Collecting pyzmq>=17\n", - " Downloading pyzmq-24.0.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.1 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.1/1.1 MB\u001b[0m \u001b[31m68.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting matplotlib-inline>=0.1\n", - " Downloading matplotlib_inline-0.1.6-py3-none-any.whl (9.4 kB)\n", - "Collecting tornado>=6.1\n", - " Downloading tornado-6.2-cp37-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (423 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m424.0/424.0 kB\u001b[0m \u001b[31m41.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting nest-asyncio\n", - " Downloading nest_asyncio-1.5.6-py3-none-any.whl (5.2 kB)\n", - "Collecting debugpy>=1.0\n", - " Downloading debugpy-1.6.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.8 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.8/1.8 MB\u001b[0m \u001b[31m83.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting psutil\n", - " Downloading psutil-5.9.2-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (281 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m281.3/281.3 kB\u001b[0m \u001b[31m33.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting jupyter-client>=6.1.12\n", - " Downloading jupyter_client-7.4.2-py3-none-any.whl (132 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m132.2/132.2 kB\u001b[0m \u001b[31m19.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting pickleshare\n", - " Downloading pickleshare-0.7.5-py2.py3-none-any.whl (6.9 kB)\n", - "Requirement already satisfied: setuptools>=18.5 in /usr/local/lib/python3.7/site-packages (from ipython>=6.1.0->ipywidgets>=7->nglview) (59.8.0)\n", - "Collecting backcall\n", - " Downloading backcall-0.2.0-py2.py3-none-any.whl (11 kB)\n", - "Collecting pexpect>4.3\n", - " Downloading pexpect-4.8.0-py2.py3-none-any.whl (59 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m59.0/59.0 kB\u001b[0m \u001b[31m7.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting pygments\n", - " Downloading Pygments-2.13.0-py3-none-any.whl (1.1 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.1/1.1 MB\u001b[0m \u001b[31m70.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting jedi>=0.16\n", - " Downloading jedi-0.18.1-py2.py3-none-any.whl (1.6 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.6/1.6 MB\u001b[0m \u001b[31m83.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0\n", - " Downloading prompt_toolkit-3.0.31-py3-none-any.whl (382 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m382.3/382.3 kB\u001b[0m \u001b[31m40.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: decorator in /usr/local/lib/python3.7/site-packages (from ipython>=6.1.0->ipywidgets>=7->nglview) (4.4.2)\n", - "Collecting parso<0.9.0,>=0.8.0\n", - " Downloading parso-0.8.3-py2.py3-none-any.whl (100 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m100.8/100.8 kB\u001b[0m \u001b[31m14.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.7/site-packages (from jupyter-client>=6.1.12->ipykernel>=4.5.1->ipywidgets>=7->nglview) (2.8.2)\n", - "Collecting entrypoints\n", - " Downloading entrypoints-0.4-py3-none-any.whl (5.3 kB)\n", - "Collecting jupyter-core>=4.9.2\n", - " Downloading jupyter_core-4.11.1-py3-none-any.whl (88 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m88.4/88.4 kB\u001b[0m \u001b[31m14.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting ptyprocess>=0.5\n", - " Downloading ptyprocess-0.7.0-py2.py3-none-any.whl (13 kB)\n", - "Collecting wcwidth\n", - " Downloading wcwidth-0.2.5-py2.py3-none-any.whl (30 kB)\n", - "Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.7/site-packages (from packaging->ipykernel>=4.5.1->ipywidgets>=7->nglview) (3.0.9)\n", - "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/site-packages (from python-dateutil>=2.8.2->jupyter-client>=6.1.12->ipykernel>=4.5.1->ipywidgets>=7->nglview) (1.16.0)\n", - "Building wheels for collected packages: nglview\n", - " Building wheel for nglview (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", - " Created wheel for nglview: filename=nglview-3.0.3-py3-none-any.whl size=8057538 sha256=b7e1071bb91822e48515bf27f4e6b197c6e85e06b90912b3439edc8be1e29514\n", - " Stored in directory: /root/.cache/pip/wheels/01/0c/49/c6f79d8edba8fe89752bf20de2d99040bfa57db0548975c5d5\n", - "Successfully built nglview\n", - "Installing collected packages: wcwidth, ptyprocess, pickleshare, backcall, widgetsnbextension, traitlets, tornado, pyzmq, pygments, psutil, prompt-toolkit, pexpect, parso, nest-asyncio, jupyterlab-widgets, entrypoints, debugpy, matplotlib-inline, jupyter-core, jedi, jupyter-client, ipython, ipykernel, ipywidgets, nglview\n", - "Successfully installed backcall-0.2.0 debugpy-1.6.3 entrypoints-0.4 ipykernel-6.16.0 ipython-7.34.0 ipywidgets-8.0.2 jedi-0.18.1 jupyter-client-7.4.2 jupyter-core-4.11.1 jupyterlab-widgets-3.0.3 matplotlib-inline-0.1.6 nest-asyncio-1.5.6 nglview-3.0.3 parso-0.8.3 pexpect-4.8.0 pickleshare-0.7.5 prompt-toolkit-3.0.31 psutil-5.9.2 ptyprocess-0.7.0 pygments-2.13.0 pyzmq-24.0.1 tornado-6.2 traitlets-5.4.0 wcwidth-0.2.5 widgetsnbextension-4.0.3\n", - "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n", - "\u001b[0m" - ] - }, - { - "output_type": "display_data", - "data": { - "application/vnd.colab-display-data+json": { - "pip_warning": { - "packages": [ - "pexpect", - "pickleshare", - "wcwidth" - ] - } - } - }, - "metadata": {} + }, + "metadata": { + "application/vnd.jupyter.widget-view+json": { + "colab": { + "custom_widget_manager": { + "url": "https://ssl.gstatic.com/colaboratory-static/widgets/colab-cdn-widget-manager/d2e234f7cc04bf79/manager.min.js" } - ], - "source": [ - "!pip install nglview" - ] - }, - { - "cell_type": "markdown", - "source": [ - "## Create a diffusion model" - ], - "metadata": { - "id": "8t8_e_uVLdKB" + } } - }, - { - "cell_type": "markdown", - "source": [ - "### Model class(es)" - ], - "metadata": { - "id": "G0rMncVtNSqU" - } - }, - { - "cell_type": "markdown", - "source": [ - "Imports" - ], - "metadata": { - "id": "L5FEXz5oXkzt" - } - }, - { - "cell_type": "code", - "source": [ - "# Model adapted from GeoDiff https://github.com/MinkaiXu/GeoDiff\n", - "# Model inspired by https://github.com/DeepGraphLearning/torchdrug/tree/master/torchdrug/models\n", - "from dataclasses import dataclass\n", - "from typing import Callable, Tuple, Union\n", - "\n", - "import numpy as np\n", - "import torch\n", - "import torch.nn.functional as F\n", - "from torch import Tensor, nn\n", - "from torch.nn import Embedding, Linear, Module, ModuleList, Sequential\n", - "\n", - "from torch_geometric.nn import MessagePassing, radius, radius_graph\n", - "from torch_geometric.typing import Adj, OptPairTensor, OptTensor, Size\n", - "from torch_geometric.utils import dense_to_sparse, to_dense_adj\n", - "from torch_scatter import scatter_add\n", - "from torch_sparse import SparseTensor, coalesce\n", - "\n", - "from diffusers.configuration_utils import ConfigMixin, register_to_config\n", - "from diffusers.modeling_utils import ModelMixin\n", - "from diffusers.utils import BaseOutput\n" - ], - "metadata": { - "id": "-3-P4w5sXkRU" - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "source": [ - "Helper classes" - ], - "metadata": { - "id": "EzJQXPN_XrMX" - } - }, - { - "cell_type": "code", - "source": [ - "@dataclass\n", - "class MoleculeGNNOutput(BaseOutput):\n", - " \"\"\"\n", - " Args:\n", - " sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)`):\n", - " Hidden states output. Output of last layer of model.\n", - " \"\"\"\n", - "\n", - " sample: torch.Tensor\n", - "\n", - "\n", - "class MultiLayerPerceptron(nn.Module):\n", - " \"\"\"\n", - " Multi-layer Perceptron. Note there is no activation or dropout in the last layer.\n", - " Args:\n", - " input_dim (int): input dimension\n", - " hidden_dim (list of int): hidden dimensions\n", - " activation (str or function, optional): activation function\n", - " dropout (float, optional): dropout rate\n", - " \"\"\"\n", - "\n", - " def __init__(self, input_dim, hidden_dims, activation=\"relu\", dropout=0):\n", - " super(MultiLayerPerceptron, self).__init__()\n", - "\n", - " self.dims = [input_dim] + hidden_dims\n", - " if isinstance(activation, str):\n", - " self.activation = getattr(F, activation)\n", - " else:\n", - " print(f\"Warning, activation passed {activation} is not string and ignored\")\n", - " self.activation = None\n", - " if dropout > 0:\n", - " self.dropout = nn.Dropout(dropout)\n", - " else:\n", - " self.dropout = None\n", - "\n", - " self.layers = nn.ModuleList()\n", - " for i in range(len(self.dims) - 1):\n", - " self.layers.append(nn.Linear(self.dims[i], self.dims[i + 1]))\n", - "\n", - " def forward(self, x):\n", - " \"\"\"\"\"\"\n", - " for i, layer in enumerate(self.layers):\n", - " x = layer(x)\n", - " if i < len(self.layers) - 1:\n", - " if self.activation:\n", - " x = self.activation(x)\n", - " if self.dropout:\n", - " x = self.dropout(x)\n", - " return x\n", - "\n", - "\n", - "class ShiftedSoftplus(torch.nn.Module):\n", - " def __init__(self):\n", - " super(ShiftedSoftplus, self).__init__()\n", - " self.shift = torch.log(torch.tensor(2.0)).item()\n", - "\n", - " def forward(self, x):\n", - " return F.softplus(x) - self.shift\n", - "\n", - "\n", - "class CFConv(MessagePassing):\n", - " def __init__(self, in_channels, out_channels, num_filters, mlp, cutoff, smooth):\n", - " super(CFConv, self).__init__(aggr=\"add\")\n", - " self.lin1 = Linear(in_channels, num_filters, bias=False)\n", - " self.lin2 = Linear(num_filters, out_channels)\n", - " self.nn = mlp\n", - " self.cutoff = cutoff\n", - " self.smooth = smooth\n", - "\n", - " self.reset_parameters()\n", - "\n", - " def reset_parameters(self):\n", - " torch.nn.init.xavier_uniform_(self.lin1.weight)\n", - " torch.nn.init.xavier_uniform_(self.lin2.weight)\n", - " self.lin2.bias.data.fill_(0)\n", - "\n", - " def forward(self, x, edge_index, edge_length, edge_attr):\n", - " if self.smooth:\n", - " C = 0.5 * (torch.cos(edge_length * np.pi / self.cutoff) + 1.0)\n", - " C = C * (edge_length <= self.cutoff) * (edge_length >= 0.0) # Modification: cutoff\n", - " else:\n", - " C = (edge_length <= self.cutoff).float()\n", - " W = self.nn(edge_attr) * C.view(-1, 1)\n", - "\n", - " x = self.lin1(x)\n", - " x = self.propagate(edge_index, x=x, W=W)\n", - " x = self.lin2(x)\n", - " return x\n", - "\n", - " def message(self, x_j: torch.Tensor, W) -> torch.Tensor:\n", - " return x_j * W\n", - "\n", - "\n", - "class InteractionBlock(torch.nn.Module):\n", - " def __init__(self, hidden_channels, num_gaussians, num_filters, cutoff, smooth):\n", - " super(InteractionBlock, self).__init__()\n", - " mlp = Sequential(\n", - " Linear(num_gaussians, num_filters),\n", - " ShiftedSoftplus(),\n", - " Linear(num_filters, num_filters),\n", - " )\n", - " self.conv = CFConv(hidden_channels, hidden_channels, num_filters, mlp, cutoff, smooth)\n", - " self.act = ShiftedSoftplus()\n", - " self.lin = Linear(hidden_channels, hidden_channels)\n", - "\n", - " def forward(self, x, edge_index, edge_length, edge_attr):\n", - " x = self.conv(x, edge_index, edge_length, edge_attr)\n", - " x = self.act(x)\n", - " x = self.lin(x)\n", - " return x\n", - "\n", - "\n", - "class SchNetEncoder(Module):\n", - " def __init__(\n", - " self, hidden_channels=128, num_filters=128, num_interactions=6, edge_channels=100, cutoff=10.0, smooth=False\n", - " ):\n", - " super().__init__()\n", - "\n", - " self.hidden_channels = hidden_channels\n", - " self.num_filters = num_filters\n", - " self.num_interactions = num_interactions\n", - " self.cutoff = cutoff\n", - "\n", - " self.embedding = Embedding(100, hidden_channels, max_norm=10.0)\n", - "\n", - " self.interactions = ModuleList()\n", - " for _ in range(num_interactions):\n", - " block = InteractionBlock(hidden_channels, edge_channels, num_filters, cutoff, smooth)\n", - " self.interactions.append(block)\n", - "\n", - " def forward(self, z, edge_index, edge_length, edge_attr, embed_node=True):\n", - " if embed_node:\n", - " assert z.dim() == 1 and z.dtype == torch.long\n", - " h = self.embedding(z)\n", - " else:\n", - " h = z\n", - " for interaction in self.interactions:\n", - " h = h + interaction(h, edge_index, edge_length, edge_attr)\n", - "\n", - " return h\n", - "\n", - "\n", - "class GINEConv(MessagePassing):\n", - " \"\"\"\n", - " Custom class of the graph isomorphism operator from the \"How Powerful are Graph Neural Networks?\n", - " https://arxiv.org/abs/1810.00826 paper. Note that this implementation has the added option of a custom activation.\n", - " \"\"\"\n", - "\n", - " def __init__(self, mlp: Callable, eps: float = 0.0, train_eps: bool = False, activation=\"softplus\", **kwargs):\n", - " super(GINEConv, self).__init__(aggr=\"add\", **kwargs)\n", - " self.nn = mlp\n", - " self.initial_eps = eps\n", - "\n", - " if isinstance(activation, str):\n", - " self.activation = getattr(F, activation)\n", - " else:\n", - " self.activation = None\n", - "\n", - " if train_eps:\n", - " self.eps = torch.nn.Parameter(torch.Tensor([eps]))\n", - " else:\n", - " self.register_buffer(\"eps\", torch.Tensor([eps]))\n", - "\n", - " def forward(\n", - " self, x: Union[Tensor, OptPairTensor], edge_index: Adj, edge_attr: OptTensor = None, size: Size = None\n", - " ) -> torch.Tensor:\n", - " \"\"\"\"\"\"\n", - " if isinstance(x, torch.Tensor):\n", - " x: OptPairTensor = (x, x)\n", - "\n", - " # Node and edge feature dimensionalites need to match.\n", - " if isinstance(edge_index, torch.Tensor):\n", - " assert edge_attr is not None\n", - " assert x[0].size(-1) == edge_attr.size(-1)\n", - " elif isinstance(edge_index, SparseTensor):\n", - " assert x[0].size(-1) == edge_index.size(-1)\n", - "\n", - " # propagate_type: (x: OptPairTensor, edge_attr: OptTensor)\n", - " out = self.propagate(edge_index, x=x, edge_attr=edge_attr, size=size)\n", - "\n", - " x_r = x[1]\n", - " if x_r is not None:\n", - " out += (1 + self.eps) * x_r\n", - "\n", - " return self.nn(out)\n", - "\n", - " def message(self, x_j: torch.Tensor, edge_attr: torch.Tensor) -> torch.Tensor:\n", - " if self.activation:\n", - " return self.activation(x_j + edge_attr)\n", - " else:\n", - " return x_j + edge_attr\n", - "\n", - " def __repr__(self):\n", - " return \"{}(nn={})\".format(self.__class__.__name__, self.nn)\n", - "\n", - "\n", - "class GINEncoder(torch.nn.Module):\n", - " def __init__(self, hidden_dim, num_convs=3, activation=\"relu\", short_cut=True, concat_hidden=False):\n", - " super().__init__()\n", - "\n", - " self.hidden_dim = hidden_dim\n", - " self.num_convs = num_convs\n", - " self.short_cut = short_cut\n", - " self.concat_hidden = concat_hidden\n", - " self.node_emb = nn.Embedding(100, hidden_dim)\n", - "\n", - " if isinstance(activation, str):\n", - " self.activation = getattr(F, activation)\n", - " else:\n", - " self.activation = None\n", - "\n", - " self.convs = nn.ModuleList()\n", - " for i in range(self.num_convs):\n", - " self.convs.append(\n", - " GINEConv(\n", - " MultiLayerPerceptron(hidden_dim, [hidden_dim, hidden_dim], activation=activation),\n", - " activation=activation,\n", - " )\n", - " )\n", - "\n", - " def forward(self, z, edge_index, edge_attr):\n", - " \"\"\"\n", - " Input:\n", - " data: (torch_geometric.data.Data): batched graph edge_index: bond indices of the original graph (num_node,\n", - " hidden) edge_attr: edge feature tensor with shape (num_edge, hidden)\n", - " Output:\n", - " node_feature: graph feature\n", - " \"\"\"\n", - "\n", - " node_attr = self.node_emb(z) # (num_node, hidden)\n", - "\n", - " hiddens = []\n", - " conv_input = node_attr # (num_node, hidden)\n", - "\n", - " for conv_idx, conv in enumerate(self.convs):\n", - " hidden = conv(conv_input, edge_index, edge_attr)\n", - " if conv_idx < len(self.convs) - 1 and self.activation is not None:\n", - " hidden = self.activation(hidden)\n", - " assert hidden.shape == conv_input.shape\n", - " if self.short_cut and hidden.shape == conv_input.shape:\n", - " hidden += conv_input\n", - "\n", - " hiddens.append(hidden)\n", - " conv_input = hidden\n", - "\n", - " if self.concat_hidden:\n", - " node_feature = torch.cat(hiddens, dim=-1)\n", - " else:\n", - " node_feature = hiddens[-1]\n", - "\n", - " return node_feature\n", - "\n", - "\n", - "class MLPEdgeEncoder(Module):\n", - " def __init__(self, hidden_dim=100, activation=\"relu\"):\n", - " super().__init__()\n", - " self.hidden_dim = hidden_dim\n", - " self.bond_emb = Embedding(100, embedding_dim=self.hidden_dim)\n", - " self.mlp = MultiLayerPerceptron(1, [self.hidden_dim, self.hidden_dim], activation=activation)\n", - "\n", - " @property\n", - " def out_channels(self):\n", - " return self.hidden_dim\n", - "\n", - " def forward(self, edge_length, edge_type):\n", - " \"\"\"\n", - " Input:\n", - " edge_length: The length of edges, shape=(E, 1). edge_type: The type pf edges, shape=(E,)\n", - " Returns:\n", - " edge_attr: The representation of edges. (E, 2 * num_gaussians)\n", - " \"\"\"\n", - " d_emb = self.mlp(edge_length) # (num_edge, hidden_dim)\n", - " edge_attr = self.bond_emb(edge_type) # (num_edge, hidden_dim)\n", - " return d_emb * edge_attr # (num_edge, hidden)\n", - "\n", - "\n", - "def assemble_atom_pair_feature(node_attr, edge_index, edge_attr):\n", - " h_row, h_col = node_attr[edge_index[0]], node_attr[edge_index[1]]\n", - " h_pair = torch.cat([h_row * h_col, edge_attr], dim=-1) # (E, 2H)\n", - " return h_pair\n", - "\n", - "\n", - "def _extend_graph_order(num_nodes, edge_index, edge_type, order=3):\n", - " \"\"\"\n", - " Args:\n", - " num_nodes: Number of atoms.\n", - " edge_index: Bond indices of the original graph.\n", - " edge_type: Bond types of the original graph.\n", - " order: Extension order.\n", - " Returns:\n", - " new_edge_index: Extended edge indices. new_edge_type: Extended edge types.\n", - " \"\"\"\n", - "\n", - " def binarize(x):\n", - " return torch.where(x > 0, torch.ones_like(x), torch.zeros_like(x))\n", - "\n", - " def get_higher_order_adj_matrix(adj, order):\n", - " \"\"\"\n", - " Args:\n", - " adj: (N, N)\n", - " type_mat: (N, N)\n", - " Returns:\n", - " Following attributes will be updated:\n", - " - edge_index\n", - " - edge_type\n", - " Following attributes will be added to the data object:\n", - " - bond_edge_index: Original edge_index.\n", - " \"\"\"\n", - " adj_mats = [\n", - " torch.eye(adj.size(0), dtype=torch.long, device=adj.device),\n", - " binarize(adj + torch.eye(adj.size(0), dtype=torch.long, device=adj.device)),\n", - " ]\n", - "\n", - " for i in range(2, order + 1):\n", - " adj_mats.append(binarize(adj_mats[i - 1] @ adj_mats[1]))\n", - " order_mat = torch.zeros_like(adj)\n", - "\n", - " for i in range(1, order + 1):\n", - " order_mat += (adj_mats[i] - adj_mats[i - 1]) * i\n", - "\n", - " return order_mat\n", - "\n", - " num_types = 22\n", - " # given from len(BOND_TYPES), where BOND_TYPES = {t: i for i, t in enumerate(BT.names.values())}\n", - " # from rdkit.Chem.rdchem import BondType as BT\n", - " N = num_nodes\n", - " adj = to_dense_adj(edge_index).squeeze(0)\n", - " adj_order = get_higher_order_adj_matrix(adj, order) # (N, N)\n", - "\n", - " type_mat = to_dense_adj(edge_index, edge_attr=edge_type).squeeze(0) # (N, N)\n", - " type_highorder = torch.where(adj_order > 1, num_types + adj_order - 1, torch.zeros_like(adj_order))\n", - " assert (type_mat * type_highorder == 0).all()\n", - " type_new = type_mat + type_highorder\n", - "\n", - " new_edge_index, new_edge_type = dense_to_sparse(type_new)\n", - " _, edge_order = dense_to_sparse(adj_order)\n", - "\n", - " # data.bond_edge_index = data.edge_index # Save original edges\n", - " new_edge_index, new_edge_type = coalesce(new_edge_index, new_edge_type.long(), N, N) # modify data\n", - "\n", - " return new_edge_index, new_edge_type\n", - "\n", - "\n", - "def _extend_to_radius_graph(pos, edge_index, edge_type, cutoff, batch, unspecified_type_number=0, is_sidechain=None):\n", - " assert edge_type.dim() == 1\n", - " N = pos.size(0)\n", - "\n", - " bgraph_adj = torch.sparse.LongTensor(edge_index, edge_type, torch.Size([N, N]))\n", - "\n", - " if is_sidechain is None:\n", - " rgraph_edge_index = radius_graph(pos, r=cutoff, batch=batch) # (2, E_r)\n", - " else:\n", - " # fetch sidechain and its batch index\n", - " is_sidechain = is_sidechain.bool()\n", - " dummy_index = torch.arange(pos.size(0), device=pos.device)\n", - " sidechain_pos = pos[is_sidechain]\n", - " sidechain_index = dummy_index[is_sidechain]\n", - " sidechain_batch = batch[is_sidechain]\n", - "\n", - " assign_index = radius(x=pos, y=sidechain_pos, r=cutoff, batch_x=batch, batch_y=sidechain_batch)\n", - " r_edge_index_x = assign_index[1]\n", - " r_edge_index_y = assign_index[0]\n", - " r_edge_index_y = sidechain_index[r_edge_index_y]\n", - "\n", - " rgraph_edge_index1 = torch.stack((r_edge_index_x, r_edge_index_y)) # (2, E)\n", - " rgraph_edge_index2 = torch.stack((r_edge_index_y, r_edge_index_x)) # (2, E)\n", - " rgraph_edge_index = torch.cat((rgraph_edge_index1, rgraph_edge_index2), dim=-1) # (2, 2E)\n", - " # delete self loop\n", - " rgraph_edge_index = rgraph_edge_index[:, (rgraph_edge_index[0] != rgraph_edge_index[1])]\n", - "\n", - " rgraph_adj = torch.sparse.LongTensor(\n", - " rgraph_edge_index,\n", - " torch.ones(rgraph_edge_index.size(1)).long().to(pos.device) * unspecified_type_number,\n", - " torch.Size([N, N]),\n", - " )\n", - "\n", - " composed_adj = (bgraph_adj + rgraph_adj).coalesce() # Sparse (N, N, T)\n", - "\n", - " new_edge_index = composed_adj.indices()\n", - " new_edge_type = composed_adj.values().long()\n", - "\n", - " return new_edge_index, new_edge_type\n", - "\n", - "\n", - "def extend_graph_order_radius(\n", - " num_nodes,\n", - " pos,\n", - " edge_index,\n", - " edge_type,\n", - " batch,\n", - " order=3,\n", - " cutoff=10.0,\n", - " extend_order=True,\n", - " extend_radius=True,\n", - " is_sidechain=None,\n", - "):\n", - " if extend_order:\n", - " edge_index, edge_type = _extend_graph_order(\n", - " num_nodes=num_nodes, edge_index=edge_index, edge_type=edge_type, order=order\n", - " )\n", - "\n", - " if extend_radius:\n", - " edge_index, edge_type = _extend_to_radius_graph(\n", - " pos=pos, edge_index=edge_index, edge_type=edge_type, cutoff=cutoff, batch=batch, is_sidechain=is_sidechain\n", - " )\n", - "\n", - " return edge_index, edge_type\n", - "\n", - "\n", - "def get_distance(pos, edge_index):\n", - " return (pos[edge_index[0]] - pos[edge_index[1]]).norm(dim=-1)\n", - "\n", - "\n", - "def graph_field_network(score_d, pos, edge_index, edge_length):\n", - " \"\"\"\n", - " Transformation to make the epsilon predicted from the diffusion model roto-translational equivariant. See equations\n", - " 5-7 of the GeoDiff Paper https://arxiv.org/pdf/2203.02923.pdf\n", - " \"\"\"\n", - " N = pos.size(0)\n", - " dd_dr = (1.0 / edge_length) * (pos[edge_index[0]] - pos[edge_index[1]]) # (E, 3)\n", - " score_pos = scatter_add(dd_dr * score_d, edge_index[0], dim=0, dim_size=N) + scatter_add(\n", - " -dd_dr * score_d, edge_index[1], dim=0, dim_size=N\n", - " ) # (N, 3)\n", - " return score_pos\n", - "\n", - "\n", - "def clip_norm(vec, limit, p=2):\n", - " norm = torch.norm(vec, dim=-1, p=2, keepdim=True)\n", - " denom = torch.where(norm > limit, limit / norm, torch.ones_like(norm))\n", - " return vec * denom\n", - "\n", - "\n", - "def is_local_edge(edge_type):\n", - " return edge_type > 0\n" + }, + "output_type": "display_data" + } + ], + "source": [ + "# new molecule\n", + "show(mols_gen[idx])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "KJr4h2mwXeTo" + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "provenance": [] + }, + "gpuClass": "standard", + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "01e0ba4e5da04914b4652b8d58565d7b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e5c0d75eb5e1447abd560c8f2c6017e1", + "IPY_MODEL_5146907ef6764654ad7d598baebc8b58" ], - "metadata": { - "id": "oR1Y56QiLY90" - }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "source": [ - "Main model class!" + "layout": "IPY_MODEL_144ec959b7604a2cabb5ca46ae5e5379" + } + }, + "144ec959b7604a2cabb5ca46ae5e5379": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "19308ccac642498ab8b58462e3f1b0bb": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "1c6246f15b654f4daa11c9bcf997b78c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bbef741e76ec41b7ab7187b487a383df", + "placeholder": "​", + "style": "IPY_MODEL_561f742d418d4721b0670cc8dd62e22c", + "value": "Downloading: 100%" + } + }, + "2489b5e5648541fbbdceadb05632a050": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ButtonModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ButtonModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ButtonView", + "button_style": "", + "description": "", + "disabled": false, + "icon": "compress", + "layout": "IPY_MODEL_abce2a80e6304df3899109c6d6cac199", + "style": "IPY_MODEL_65195cb7a4134f4887e9dd19f3676462", + "tooltip": "" + } + }, + "24d31fc3576e43dd9f8301d2ef3a37ab": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2918bfaadc8d4b1a9832522c40dfefb8": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2c9362906e4b40189f16d14aa9a348da": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "42f6c3db29d7484ba6b4f73590abd2f4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "4a081cdc2ec3421ca79dd933b7e2b0c4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "SliderStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "SliderStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "", + "handle_color": null + } + }, + "5146907ef6764654ad7d598baebc8b58": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "IntSliderModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "IntSliderModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "IntSliderView", + "continuous_update": true, + "description": "", + "description_tooltip": null, + "disabled": false, + "layout": "IPY_MODEL_19308ccac642498ab8b58462e3f1b0bb", + "max": 0, + "min": 0, + "orientation": "horizontal", + "readout": true, + "readout_format": "d", + "step": 1, + "style": "IPY_MODEL_4a081cdc2ec3421ca79dd933b7e2b0c4", + "value": 0 + } + }, + "561f742d418d4721b0670cc8dd62e22c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6010fc8daa7a44d5aec4b830ec2ebaa1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7e0bb1b8d65249d3974200686b193be2", + "IPY_MODEL_ba98aa6d6a884e4ab8bbb5dfb5e4cf7a", + "IPY_MODEL_6526646be5ed415c84d1245b040e629b" ], - "metadata": { - "id": "QWrHJFcYXyUB" - } - }, - { - "cell_type": "code", - "source": [ - "class MoleculeGNN(ModelMixin, ConfigMixin):\n", - " @register_to_config\n", - " def __init__(\n", - " self,\n", - " hidden_dim=128,\n", - " num_convs=6,\n", - " num_convs_local=4,\n", - " cutoff=10.0,\n", - " mlp_act=\"relu\",\n", - " edge_order=3,\n", - " edge_encoder=\"mlp\",\n", - " smooth_conv=True,\n", - " ):\n", - " super().__init__()\n", - " self.cutoff = cutoff\n", - " self.edge_encoder = edge_encoder\n", - " self.edge_order = edge_order\n", - "\n", - " \"\"\"\n", - " edge_encoder: Takes both edge type and edge length as input and outputs a vector [Note]: node embedding is done\n", - " in SchNetEncoder\n", - " \"\"\"\n", - " self.edge_encoder_global = MLPEdgeEncoder(hidden_dim, mlp_act) # get_edge_encoder(config)\n", - " self.edge_encoder_local = MLPEdgeEncoder(hidden_dim, mlp_act) # get_edge_encoder(config)\n", - "\n", - " \"\"\"\n", - " The graph neural network that extracts node-wise features.\n", - " \"\"\"\n", - " self.encoder_global = SchNetEncoder(\n", - " hidden_channels=hidden_dim,\n", - " num_filters=hidden_dim,\n", - " num_interactions=num_convs,\n", - " edge_channels=self.edge_encoder_global.out_channels,\n", - " cutoff=cutoff,\n", - " smooth=smooth_conv,\n", - " )\n", - " self.encoder_local = GINEncoder(\n", - " hidden_dim=hidden_dim,\n", - " num_convs=num_convs_local,\n", - " )\n", - "\n", - " \"\"\"\n", - " `output_mlp` takes a mixture of two nodewise features and edge features as input and outputs\n", - " gradients w.r.t. edge_length (out_dim = 1).\n", - " \"\"\"\n", - " self.grad_global_dist_mlp = MultiLayerPerceptron(\n", - " 2 * hidden_dim, [hidden_dim, hidden_dim // 2, 1], activation=mlp_act\n", - " )\n", - "\n", - " self.grad_local_dist_mlp = MultiLayerPerceptron(\n", - " 2 * hidden_dim, [hidden_dim, hidden_dim // 2, 1], activation=mlp_act\n", - " )\n", - "\n", - " \"\"\"\n", - " Incorporate parameters together\n", - " \"\"\"\n", - " self.model_global = nn.ModuleList([self.edge_encoder_global, self.encoder_global, self.grad_global_dist_mlp])\n", - " self.model_local = nn.ModuleList([self.edge_encoder_local, self.encoder_local, self.grad_local_dist_mlp])\n", - "\n", - " def _forward(\n", - " self,\n", - " atom_type,\n", - " pos,\n", - " bond_index,\n", - " bond_type,\n", - " batch,\n", - " time_step, # NOTE, model trained without timestep performed best\n", - " edge_index=None,\n", - " edge_type=None,\n", - " edge_length=None,\n", - " return_edges=False,\n", - " extend_order=True,\n", - " extend_radius=True,\n", - " is_sidechain=None,\n", - " ):\n", - " \"\"\"\n", - " Args:\n", - " atom_type: Types of atoms, (N, ).\n", - " bond_index: Indices of bonds (not extended, not radius-graph), (2, E).\n", - " bond_type: Bond types, (E, ).\n", - " batch: Node index to graph index, (N, ).\n", - " \"\"\"\n", - " N = atom_type.size(0)\n", - " if edge_index is None or edge_type is None or edge_length is None:\n", - " edge_index, edge_type = extend_graph_order_radius(\n", - " num_nodes=N,\n", - " pos=pos,\n", - " edge_index=bond_index,\n", - " edge_type=bond_type,\n", - " batch=batch,\n", - " order=self.edge_order,\n", - " cutoff=self.cutoff,\n", - " extend_order=extend_order,\n", - " extend_radius=extend_radius,\n", - " is_sidechain=is_sidechain,\n", - " )\n", - " edge_length = get_distance(pos, edge_index).unsqueeze(-1) # (E, 1)\n", - " local_edge_mask = is_local_edge(edge_type) # (E, )\n", - "\n", - " # with the parameterization of NCSNv2\n", - " # DDPM loss implicit handle the noise variance scale conditioning\n", - " sigma_edge = torch.ones(size=(edge_index.size(1), 1), device=pos.device) # (E, 1)\n", - "\n", - " # Encoding global\n", - " edge_attr_global = self.edge_encoder_global(edge_length=edge_length, edge_type=edge_type) # Embed edges\n", - "\n", - " # Global\n", - " node_attr_global = self.encoder_global(\n", - " z=atom_type,\n", - " edge_index=edge_index,\n", - " edge_length=edge_length,\n", - " edge_attr=edge_attr_global,\n", - " )\n", - " # Assemble pairwise features\n", - " h_pair_global = assemble_atom_pair_feature(\n", - " node_attr=node_attr_global,\n", - " edge_index=edge_index,\n", - " edge_attr=edge_attr_global,\n", - " ) # (E_global, 2H)\n", - " # Invariant features of edges (radius graph, global)\n", - " edge_inv_global = self.grad_global_dist_mlp(h_pair_global) * (1.0 / sigma_edge) # (E_global, 1)\n", - "\n", - " # Encoding local\n", - " edge_attr_local = self.edge_encoder_global(edge_length=edge_length, edge_type=edge_type) # Embed edges\n", - " # edge_attr += temb_edge\n", - "\n", - " # Local\n", - " node_attr_local = self.encoder_local(\n", - " z=atom_type,\n", - " edge_index=edge_index[:, local_edge_mask],\n", - " edge_attr=edge_attr_local[local_edge_mask],\n", - " )\n", - " # Assemble pairwise features\n", - " h_pair_local = assemble_atom_pair_feature(\n", - " node_attr=node_attr_local,\n", - " edge_index=edge_index[:, local_edge_mask],\n", - " edge_attr=edge_attr_local[local_edge_mask],\n", - " ) # (E_local, 2H)\n", - "\n", - " # Invariant features of edges (bond graph, local)\n", - " if isinstance(sigma_edge, torch.Tensor):\n", - " edge_inv_local = self.grad_local_dist_mlp(h_pair_local) * (\n", - " 1.0 / sigma_edge[local_edge_mask]\n", - " ) # (E_local, 1)\n", - " else:\n", - " edge_inv_local = self.grad_local_dist_mlp(h_pair_local) * (1.0 / sigma_edge) # (E_local, 1)\n", - "\n", - " if return_edges:\n", - " return edge_inv_global, edge_inv_local, edge_index, edge_type, edge_length, local_edge_mask\n", - " else:\n", - " return edge_inv_global, edge_inv_local\n", - "\n", - " def forward(\n", - " self,\n", - " sample,\n", - " timestep: Union[torch.Tensor, float, int],\n", - " return_dict: bool = True,\n", - " sigma=1.0,\n", - " global_start_sigma=0.5,\n", - " w_global=1.0,\n", - " extend_order=False,\n", - " extend_radius=True,\n", - " clip_local=None,\n", - " clip_global=1000.0,\n", - " ) -> Union[MoleculeGNNOutput, Tuple]:\n", - " r\"\"\"\n", - " Args:\n", - " sample: packed torch geometric object\n", - " timestep (`torch.Tensor` or `float` or `int): TODO verify type and shape (batch) timesteps\n", - " return_dict (`bool`, *optional*, defaults to `True`):\n", - " Whether or not to return a [`~models.molecule_gnn.MoleculeGNNOutput`] instead of a plain tuple.\n", - " Returns:\n", - " [`~models.molecule_gnn.MoleculeGNNOutput`] or `tuple`: [`~models.molecule_gnn.MoleculeGNNOutput`] if\n", - " `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.\n", - " \"\"\"\n", - "\n", - " # unpack sample\n", - " atom_type = sample.atom_type\n", - " bond_index = sample.edge_index\n", - " bond_type = sample.edge_type\n", - " num_graphs = sample.num_graphs\n", - " pos = sample.pos\n", - "\n", - " timesteps = torch.full(size=(num_graphs,), fill_value=timestep, dtype=torch.long, device=pos.device)\n", - "\n", - " edge_inv_global, edge_inv_local, edge_index, edge_type, edge_length, local_edge_mask = self._forward(\n", - " atom_type=atom_type,\n", - " pos=sample.pos,\n", - " bond_index=bond_index,\n", - " bond_type=bond_type,\n", - " batch=sample.batch,\n", - " time_step=timesteps,\n", - " return_edges=True,\n", - " extend_order=extend_order,\n", - " extend_radius=extend_radius,\n", - " ) # (E_global, 1), (E_local, 1)\n", - "\n", - " # Important equation in the paper for equivariant features - eqns 5-7 of GeoDiff\n", - " node_eq_local = graph_field_network(\n", - " edge_inv_local, pos, edge_index[:, local_edge_mask], edge_length[local_edge_mask]\n", - " )\n", - " if clip_local is not None:\n", - " node_eq_local = clip_norm(node_eq_local, limit=clip_local)\n", - "\n", - " # Global\n", - " if sigma < global_start_sigma:\n", - " edge_inv_global = edge_inv_global * (1 - local_edge_mask.view(-1, 1).float())\n", - " node_eq_global = graph_field_network(edge_inv_global, pos, edge_index, edge_length)\n", - " node_eq_global = clip_norm(node_eq_global, limit=clip_global)\n", - " else:\n", - " node_eq_global = 0\n", - "\n", - " # Sum\n", - " eps_pos = node_eq_local + node_eq_global * w_global\n", - "\n", - " if not return_dict:\n", - " return (-eps_pos,)\n", - "\n", - " return MoleculeGNNOutput(sample=torch.Tensor(-eps_pos).to(pos.device))" + "layout": "IPY_MODEL_24d31fc3576e43dd9f8301d2ef3a37ab" + } + }, + "65195cb7a4134f4887e9dd19f3676462": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ButtonStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ButtonStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "button_color": null, + "font_weight": "" + } + }, + "6526646be5ed415c84d1245b040e629b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a9e388f22a9742aaaf538e22575c9433", + "placeholder": "​", + "style": "IPY_MODEL_42f6c3db29d7484ba6b4f73590abd2f4", + "value": " 401/401 [00:00<00:00, 13.5kB/s]" + } + }, + "695ab5bbf30a4ab19df1f9f33469f314": { + "model_module": "nglview-js-widgets", + "model_module_version": "3.0.1", + "model_name": "ColormakerRegistryModel", + "state": { + "_dom_classes": [], + "_model_module": "nglview-js-widgets", + "_model_module_version": "3.0.1", + "_model_name": "ColormakerRegistryModel", + "_msg_ar": [], + "_msg_q": [], + "_ready": false, + "_view_count": null, + "_view_module": "nglview-js-widgets", + "_view_module_version": "3.0.1", + "_view_name": "ColormakerRegistryView", + "layout": "IPY_MODEL_eac6a8dcdc9d4335a2e51031793ead29" + } + }, + "7e0bb1b8d65249d3974200686b193be2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2918bfaadc8d4b1a9832522c40dfefb8", + "placeholder": "​", + "style": "IPY_MODEL_a4bfdca35cc54dae8812720f1b276a08", + "value": "Downloading: 100%" + } + }, + "872915dd1bb84f538c44e26badabafdd": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a4bfdca35cc54dae8812720f1b276a08": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a9e388f22a9742aaaf538e22575c9433": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "abce2a80e6304df3899109c6d6cac199": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": "34px" + } + }, + "b7feb522161f4cf4b7cc7c1a078ff12d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fdc393f3468c432aa0ada05e238a5436", + "placeholder": "​", + "style": "IPY_MODEL_2c9362906e4b40189f16d14aa9a348da", + "value": " 3.27M/3.27M [00:01<00:00, 3.25MB/s]" + } + }, + "ba98aa6d6a884e4ab8bbb5dfb5e4cf7a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e4901541199b45c6a18824627692fc39", + "max": 401, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_f915cf874246446595206221e900b2fe", + "value": 401 + } + }, + "bbef741e76ec41b7ab7187b487a383df": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "be446195da2b4ff2aec21ec5ff963a54": { + "model_module": "nglview-js-widgets", + "model_module_version": "3.0.1", + "model_name": "NGLModel", + "state": { + "_camera_orientation": [ + -15.519693580202304, + -14.065056548036177, + -23.53197484807691, + 0, + -23.357853515109753, + 20.94055073042662, + 2.888695042134944, + 0, + 14.352363398292775, + 18.870825741878015, + -20.744689572909344, + 0, + 0.2724999189376831, + 0.6940000057220459, + -0.3734999895095825, + 1 ], - "metadata": { - "id": "MCeZA1qQXzoK" + "_camera_str": "orthographic", + "_dom_classes": [], + "_gui_theme": null, + "_ibtn_fullscreen": "IPY_MODEL_2489b5e5648541fbbdceadb05632a050", + "_igui": null, + "_iplayer": "IPY_MODEL_01e0ba4e5da04914b4652b8d58565d7b", + "_model_module": "nglview-js-widgets", + "_model_module_version": "3.0.1", + "_model_name": "NGLModel", + "_ngl_color_dict": {}, + "_ngl_coordinate_resource": {}, + "_ngl_full_stage_parameters": { + "ambientColor": 14540253, + "ambientIntensity": 0.2, + "backgroundColor": "white", + "cameraEyeSep": 0.3, + "cameraFov": 40, + "cameraType": "perspective", + "clipDist": 10, + "clipFar": 100, + "clipNear": 0, + "fogFar": 100, + "fogNear": 50, + "hoverTimeout": 0, + "impostor": true, + "lightColor": 14540253, + "lightIntensity": 1, + "mousePreset": "default", + "panSpeed": 1, + "quality": "medium", + "rotateSpeed": 2, + "sampleLevel": 0, + "tooltip": true, + "workerDefault": true, + "zoomSpeed": 1.2 }, - "execution_count": null, - "outputs": [] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "CCIrPYSJj9wd" - }, - "source": [ - "### Load pretrained model" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "YdrAr6Ch--Ab" - }, - "source": [ - "#### Load a model\n", - "The model used is a design an\n", - "equivariant convolutional layer, named graph field network (GFN).\n", - "\n", - "The warning about `betas` and `alphas` can be ignored, those were moved to the scheduler." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "DyCo0nsqjbml", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 172, - "referenced_widgets": [ - "d90f304e9560472eacfbdd11e46765eb", - "1c6246f15b654f4daa11c9bcf997b78c", - "c2321b3bff6f490ca12040a20308f555", - "b7feb522161f4cf4b7cc7c1a078ff12d", - "e2d368556e494ae7ae4e2e992af2cd4f", - "bbef741e76ec41b7ab7187b487a383df", - "561f742d418d4721b0670cc8dd62e22c", - "872915dd1bb84f538c44e26badabafdd", - "d022575f1fa2446d891650897f187b4d", - "fdc393f3468c432aa0ada05e238a5436", - "2c9362906e4b40189f16d14aa9a348da", - "6010fc8daa7a44d5aec4b830ec2ebaa1", - "7e0bb1b8d65249d3974200686b193be2", - "ba98aa6d6a884e4ab8bbb5dfb5e4cf7a", - "6526646be5ed415c84d1245b040e629b", - "24d31fc3576e43dd9f8301d2ef3a37ab", - "2918bfaadc8d4b1a9832522c40dfefb8", - "a4bfdca35cc54dae8812720f1b276a08", - "e4901541199b45c6a18824627692fc39", - "f915cf874246446595206221e900b2fe", - "a9e388f22a9742aaaf538e22575c9433", - "42f6c3db29d7484ba6b4f73590abd2f4" - ] + "_ngl_msg_archive": [ + { + "args": [ + { + "binary": false, + "data": "HETATM 1 C1 UNL 1 -0.025 3.128 2.316 1.00 0.00 C \nHETATM 2 H1 UNL 1 0.183 3.657 2.823 1.00 0.00 H \nHETATM 3 C2 UNL 1 0.590 3.559 0.963 1.00 0.00 C \nHETATM 4 C3 UNL 1 0.056 4.479 0.406 1.00 0.00 C \nHETATM 5 C4 UNL 1 -0.219 4.802 -1.065 1.00 0.00 C \nHETATM 6 H2 UNL 1 0.686 4.431 -1.575 1.00 0.00 H \nHETATM 7 H3 UNL 1 -0.524 5.217 -1.274 1.00 0.00 H \nHETATM 8 C5 UNL 1 -1.284 3.766 -1.342 1.00 0.00 C \nHETATM 9 N1 UNL 1 -1.073 2.494 -0.580 1.00 0.00 N \nHETATM 10 C6 UNL 1 -1.909 1.494 -0.964 1.00 0.00 C \nHETATM 11 O1 UNL 1 -2.487 1.531 -2.092 1.00 0.00 O \nHETATM 12 C7 UNL 1 -2.232 0.242 -0.130 1.00 0.00 C \nHETATM 13 C8 UNL 1 -2.161 -1.057 -1.037 1.00 0.00 C \nHETATM 14 C9 UNL 1 -0.744 -1.111 -1.610 1.00 0.00 C \nHETATM 15 N2 UNL 1 0.290 -0.917 -0.628 1.00 0.00 N \nHETATM 16 S1 UNL 1 1.717 -1.597 -0.914 1.00 0.00 S \nHETATM 17 O2 UNL 1 1.960 -1.671 -2.338 1.00 0.00 O \nHETATM 18 O3 UNL 1 2.713 -0.968 -0.082 1.00 0.00 O \nHETATM 19 C10 UNL 1 1.425 -3.170 -0.345 1.00 0.00 C \nHETATM 20 C11 UNL 1 1.225 -4.400 -1.271 1.00 0.00 C \nHETATM 21 C12 UNL 1 1.314 -5.913 -0.895 1.00 0.00 C \nHETATM 22 C13 UNL 1 1.823 -6.229 0.386 1.00 0.00 C \nHETATM 23 C14 UNL 1 2.031 -5.110 1.365 1.00 0.00 C \nHETATM 24 N3 UNL 1 1.850 -5.267 2.712 1.00 0.00 N \nHETATM 25 O4 UNL 1 1.382 -4.029 3.126 1.00 0.00 O \nHETATM 26 N4 UNL 1 1.300 -3.023 2.154 1.00 0.00 N \nHETATM 27 C15 UNL 1 1.731 -3.672 1.032 1.00 0.00 C \nHETATM 28 H4 UNL 1 2.380 -6.874 0.436 1.00 0.00 H \nHETATM 29 H5 UNL 1 0.704 -6.526 -1.420 1.00 0.00 H \nHETATM 30 H6 UNL 1 1.144 -4.035 -2.291 1.00 0.00 H \nHETATM 31 C16 UNL 1 0.044 -0.371 0.685 1.00 0.00 C \nHETATM 32 C17 UNL 1 -1.352 -0.045 1.077 1.00 0.00 C \nHETATM 33 H7 UNL 1 -1.395 0.770 1.768 1.00 0.00 H \nHETATM 34 H8 UNL 1 -1.792 -0.941 1.582 1.00 0.00 H \nHETATM 35 H9 UNL 1 0.583 -1.035 1.393 1.00 0.00 H \nHETATM 36 H10 UNL 1 0.664 0.613 0.663 1.00 0.00 H \nHETATM 37 H11 UNL 1 -0.631 -0.267 -2.335 1.00 0.00 H \nHETATM 38 H12 UNL 1 -0.571 -2.046 -2.098 1.00 0.00 H \nHETATM 39 H13 UNL 1 -2.872 -0.992 -1.826 1.00 0.00 H \nHETATM 40 H14 UNL 1 -2.370 -1.924 -0.444 1.00 0.00 H \nHETATM 41 H15 UNL 1 -3.258 0.364 0.197 1.00 0.00 H \nHETATM 42 C18 UNL 1 0.276 2.337 -0.078 1.00 0.00 C \nHETATM 43 H16 UNL 1 0.514 1.371 0.252 1.00 0.00 H \nHETATM 44 H17 UNL 1 0.988 2.413 -0.949 1.00 0.00 H \nHETATM 45 H18 UNL 1 -1.349 3.451 -2.379 1.00 0.00 H \nHETATM 46 H19 UNL 1 -2.224 4.055 -0.958 1.00 0.00 H \nHETATM 47 H20 UNL 1 0.793 5.486 0.669 1.00 0.00 H \nHETATM 48 H21 UNL 1 -0.849 4.974 0.937 1.00 0.00 H \nHETATM 49 H22 UNL 1 1.667 3.431 1.070 1.00 0.00 H \nHETATM 50 H23 UNL 1 0.379 2.143 2.689 1.00 0.00 H \nHETATM 51 H24 UNL 1 -1.094 2.983 2.223 1.00 0.00 H \nCONECT 1 2 3 50 51\nCONECT 3 4 42 49\nCONECT 4 5 47 48\nCONECT 5 6 7 8\nCONECT 8 9 45 46\nCONECT 9 10 42\nCONECT 10 11 11 12\nCONECT 12 13 32 41\nCONECT 13 14 39 40\nCONECT 14 15 37 38\nCONECT 15 16 31\nCONECT 16 17 17 18 18\nCONECT 16 19\nCONECT 19 20 20 27\nCONECT 20 21 30\nCONECT 21 22 22 29\nCONECT 22 23 28\nCONECT 23 24 24 27\nCONECT 24 25\nCONECT 25 26\nCONECT 26 27 27\nCONECT 31 32 35 36\nCONECT 32 33 34\nCONECT 42 43 44\nEND\n", + "type": "blob" + } + ], + "kwargs": { + "defaultRepresentation": true, + "ext": "pdb" }, - "outputId": "d6bce9d5-c51e-43a4-e680-e1e81bdfaf45" + "methodName": "loadFile", + "reconstruc_color_scheme": false, + "target": "Stage", + "type": "call_method" + } + ], + "_ngl_original_stage_parameters": { + "ambientColor": 14540253, + "ambientIntensity": 0.2, + "backgroundColor": "white", + "cameraEyeSep": 0.3, + "cameraFov": 40, + "cameraType": "perspective", + "clipDist": 10, + "clipFar": 100, + "clipNear": 0, + "fogFar": 100, + "fogNear": 50, + "hoverTimeout": 0, + "impostor": true, + "lightColor": 14540253, + "lightIntensity": 1, + "mousePreset": "default", + "panSpeed": 1, + "quality": "medium", + "rotateSpeed": 2, + "sampleLevel": 0, + "tooltip": true, + "workerDefault": true, + "zoomSpeed": 1.2 }, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": [ - "Downloading: 0%| | 0.00/3.27M [00:00] 124.78K 180KB/s in 0.7s \n", - "\n", - "2022-10-12 18:32:20 (180 KB/s) - ‘molecules.pkl’ saved [127774/127774]\n", - "\n" - ] + "metalness": 0, + "multipleBond": "off", + "opacity": 1, + "openEnded": true, + "quality": "high", + "radialSegments": 20, + "radiusData": {}, + "radiusScale": 2, + "radiusSize": 0.15, + "radiusType": "size", + "roughness": 0.4, + "sele": "", + "side": "double", + "sphereDetail": 2, + "useInteriorColor": true, + "visible": true, + "wireframe": false + }, + "type": "ball+stick" } - ], - "source": [ - "import torch\n", - "import numpy as np\n", - "\n", - "!wget https://huggingface.co/datasets/fusing/geodiff-example-data/resolve/main/data/molecules.pkl\n", - "dataset = torch.load('/content/molecules.pkl')" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "QZcmy1EvKQRk" - }, - "source": [ - "Print out one entry of the dataset, it contains molecular formulas, atom types, positions, and more." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "JVjz6iH_H6Eh", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "898cb0cf-a0b3-411b-fd4c-bea1fbfd17fe" - }, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "Data(atom_type=[51], bond_edge_index=[2, 108], edge_index=[2, 598], edge_order=[598], edge_type=[598], idx=[1], is_bond=[598], num_nodes_per_graph=[1], num_pos_ref=[1], nx=, pos=[51, 3], pos_ref=[255, 3], rdmol=, smiles=\"CC1CCCN(C(=O)C2CCN(S(=O)(=O)c3cccc4nonc34)CC2)C1\")" - ] + }, + "1": { + "0": { + "params": { + "aspectRatio": 1.5, + "assembly": "default", + "bondScale": 0.3, + "bondSpacing": 0.75, + "clipCenter": { + "x": 0, + "y": 0, + "z": 0 }, - "metadata": {}, - "execution_count": 20 - } - ], - "source": [ - "dataset[0]" - ] - }, - { - "cell_type": "markdown", - "source": [ - "## Run the diffusion process" - ], - "metadata": { - "id": "vHNiZAUxNgoy" - } - }, - { - "cell_type": "markdown", - "metadata": { - "id": "jZ1KZrxKqENg" - }, - "source": [ - "#### Helper Functions" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "s240tYueqKKf" - }, - "outputs": [], - "source": [ - "from torch_geometric.data import Data, Batch\n", - "from torch_scatter import scatter_add, scatter_mean\n", - "from tqdm import tqdm\n", - "import copy\n", - "import os\n", - "\n", - "def repeat_data(data: Data, num_repeat) -> Batch:\n", - " datas = [copy.deepcopy(data) for i in range(num_repeat)]\n", - " return Batch.from_data_list(datas)\n", - "\n", - "def repeat_batch(batch: Batch, num_repeat) -> Batch:\n", - " datas = batch.to_data_list()\n", - " new_data = []\n", - " for i in range(num_repeat):\n", - " new_data += copy.deepcopy(datas)\n", - " return Batch.from_data_list(new_data)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "AMnQTk0eqT7Z" - }, - "source": [ - "#### Constants" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "WYGkzqgzrHmF" - }, - "outputs": [], - "source": [ - "num_samples = 1 # solutions per molecule\n", - "num_molecules = 3\n", - "\n", - "DEVICE = 'cuda'\n", - "sampling_type = 'ddpm_noisy' #'' # paper also uses \"generalize\" and \"ld\"\n", - "# constants for inference\n", - "w_global = 0.5 #0,.3 for qm9\n", - "global_start_sigma = 0.5\n", - "eta = 1.0\n", - "clip_local = None\n", - "clip_pos = None\n", - "\n", - "# constands for data handling\n", - "save_traj = False\n", - "save_data = False\n", - "output_dir = '/content/'" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "-xD5bJ3SqM7t" - }, - "source": [ - "#### Generate samples!\n", - "Note that the 3d representation of a molecule is referred to as the **conformation**" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "x9xuLUNg26z1", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "236d2a60-09ed-4c4d-97c1-6e3c0f2d26c4" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stderr", - "text": [ - "/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:4: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n", - " after removing the cwd from sys.path.\n", - "100%|██████████| 5/5 [00:55<00:00, 11.06s/it]\n" - ] - } - ], - "source": [ - "results = []\n", - "\n", - "# define sigmas\n", - "sigmas = torch.tensor(1.0 - scheduler.alphas_cumprod).sqrt() / torch.tensor(scheduler.alphas_cumprod).sqrt()\n", - "sigmas = sigmas.to(DEVICE)\n", - "\n", - "for count, data in enumerate(tqdm(dataset)):\n", - " num_samples = max(data.pos_ref.size(0) // data.num_nodes, 1)\n", - "\n", - " data_input = data.clone()\n", - " data_input['pos_ref'] = None\n", - " batch = repeat_data(data_input, num_samples).to(DEVICE)\n", - "\n", - " # initial configuration\n", - " pos_init = torch.randn(batch.num_nodes, 3).to(DEVICE)\n", - "\n", - " # for logging animation of denoising\n", - " pos_traj = []\n", - " with torch.no_grad():\n", - "\n", - " # scale initial sample\n", - " pos = pos_init * sigmas[-1]\n", - " for t in scheduler.timesteps:\n", - " batch.pos = pos\n", - "\n", - " # generate geometry with model, then filter it\n", - " epsilon = model.forward(batch, t, sigma=sigmas[t], return_dict=False)[0]\n", - "\n", - " # Update\n", - " reconstructed_pos = scheduler.step(epsilon, t, pos)[\"prev_sample\"].to(DEVICE)\n", - "\n", - " pos = reconstructed_pos\n", - "\n", - " if torch.isnan(pos).any():\n", - " print(\"NaN detected. Please restart.\")\n", - " raise FloatingPointError()\n", - "\n", - " # recenter graph of positions for next iteration\n", - " pos = pos - scatter_mean(pos, batch.batch, dim=0)[batch.batch]\n", - "\n", - " # optional clipping\n", - " if clip_pos is not None:\n", - " pos = torch.clamp(pos, min=-clip_pos, max=clip_pos)\n", - " pos_traj.append(pos.clone().cpu())\n", - "\n", - " pos_gen = pos.cpu()\n", - " if save_traj:\n", - " pos_gen_traj = pos_traj.cpu()\n", - " data.pos_gen = torch.stack(pos_gen_traj)\n", - " else:\n", - " data.pos_gen = pos_gen\n", - " results.append(data)\n", - "\n", - "\n", - "if save_data:\n", - " save_path = os.path.join(output_dir, 'samples_all.pkl')\n", - "\n", - " with open(save_path, 'wb') as f:\n", - " pickle.dump(results, f)" - ] - }, - { - "cell_type": "markdown", - "source": [ - "## Render the results!" - ], - "metadata": { - "id": "fSApwSaZNndW" - } - }, - { - "cell_type": "markdown", - "metadata": { - "id": "d47Zxo2OKdgZ" - }, - "source": [ - "This function allows us to render 3d in colab." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "e9Cd0kCAv9b8" - }, - "outputs": [], - "source": [ - "from google.colab import output\n", - "output.enable_custom_widget_manager()" - ] - }, - { - "cell_type": "markdown", - "source": [ - "### Helper functions" - ], - "metadata": { - "id": "RjaVuR15NqzF" - } - }, - { - "cell_type": "markdown", - "metadata": { - "id": "28rBYa9NKhlz" - }, - "source": [ - "Here is a helper function for copying the generated tensors into a format used by RDKit & NGLViewer." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "LKdKdwxcyTQ6" - }, - "outputs": [], - "source": [ - "from copy import deepcopy\n", - "def set_rdmol_positions(rdkit_mol, pos):\n", - " \"\"\"\n", - " Args:\n", - " rdkit_mol: An `rdkit.Chem.rdchem.Mol` object.\n", - " pos: (N_atoms, 3)\n", - " \"\"\"\n", - " mol = deepcopy(rdkit_mol)\n", - " set_rdmol_positions_(mol, pos)\n", - " return mol\n", - "\n", - "def set_rdmol_positions_(mol, pos):\n", - " \"\"\"\n", - " Args:\n", - " rdkit_mol: An `rdkit.Chem.rdchem.Mol` object.\n", - " pos: (N_atoms, 3)\n", - " \"\"\"\n", - " for i in range(pos.shape[0]):\n", - " mol.GetConformer(0).SetAtomPosition(i, pos[i].tolist())\n", - " return mol\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "NuE10hcpKmzK" - }, - "source": [ - "Process the generated data to make it easy to view." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "KieVE1vc0_Vs", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "outputId": "6faa185d-b1bc-47e8-be18-30d1e557e7c8" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "collect 5 generated molecules in `mols`\n" - ] - } - ], - "source": [ - "# the model can generate multiple conformations per 2d geometry\n", - "num_gen = results[0]['pos_gen'].shape[0]\n", - "\n", - "# init storage objects\n", - "mols_gen = []\n", - "mols_orig = []\n", - "for to_process in results:\n", - "\n", - " # store the reference 3d position\n", - " to_process['pos_ref'] = to_process['pos_ref'].reshape(-1, to_process['rdmol'].GetNumAtoms(), 3)\n", - "\n", - " # store the generated 3d position\n", - " to_process['pos_gen'] = to_process['pos_gen'].reshape(-1, to_process['rdmol'].GetNumAtoms(), 3)\n", - "\n", - " # copy data to new object\n", - " new_mol = set_rdmol_positions(to_process.rdmol, to_process['pos_gen'][0])\n", - "\n", - " # append results\n", - " mols_gen.append(new_mol)\n", - " mols_orig.append(to_process.rdmol)\n", - "\n", - "print(f\"collect {len(mols_gen)} generated molecules in `mols`\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "tin89JwMKp4v" - }, - "source": [ - "Import tools to visualize the 2d chemical diagram of the molecule." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "yqV6gllSZn38" - }, - "outputs": [], - "source": [ - "from rdkit.Chem import AllChem\n", - "from rdkit import Chem\n", - "from rdkit.Chem.Draw import rdMolDraw2D as MD2\n", - "from IPython.display import SVG, display" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "TFNKmGddVoOk" - }, - "source": [ - "Select molecule to visualize" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "KzuwLlrrVaGc" - }, - "outputs": [], - "source": [ - "idx = 0\n", - "assert idx < len(results), \"selected molecule that was not generated\"" - ] - }, - { - "cell_type": "markdown", - "source": [ - "### Viewing" - ], - "metadata": { - "id": "hkb8w0_SNtU8" - } - }, - { - "cell_type": "markdown", - "metadata": { - "id": "I3R4QBQeKttN" - }, - "source": [ - "This 2D rendering is the equivalent of the **input to the model**!" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "gkQRWjraaKex", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 321 - }, - "outputId": "9c3d1a91-a51d-475d-9e34-2be2459abc47" - }, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": [ - "" - ], - "image/svg+xml": "\n\n \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n" + "clipNear": 0, + "clipRadius": 0, + "colorMode": "hcl", + "colorReverse": false, + "colorScale": "", + "colorScheme": "element", + "colorValue": 9474192, + "cylinderOnly": false, + "defaultAssembly": "", + "depthWrite": true, + "diffuse": 16777215, + "diffuseInterior": false, + "disableImpostor": false, + "disablePicking": false, + "flatShaded": false, + "interiorColor": 2236962, + "interiorDarkening": 0, + "lazy": false, + "lineOnly": false, + "linewidth": 2, + "matrix": { + "elements": [ + 1, + 0, + 0, + 0, + 0, + 1, + 0, + 0, + 0, + 0, + 1, + 0, + 0, + 0, + 0, + 1 + ] }, - "metadata": {} + "metalness": 0, + "multipleBond": "off", + "opacity": 1, + "openEnded": true, + "quality": "high", + "radialSegments": 20, + "radiusData": {}, + "radiusScale": 2, + "radiusSize": 0.15, + "radiusType": "size", + "roughness": 0.4, + "sele": "", + "side": "double", + "sphereDetail": 2, + "useInteriorColor": true, + "visible": true, + "wireframe": false + }, + "type": "ball+stick" } - ], - "source": [ - "mc = Chem.MolFromSmiles(dataset[0]['smiles'])\n", - "molSize=(450,300)\n", - "drawer = MD2.MolDraw2DSVG(molSize[0],molSize[1])\n", - "drawer.DrawMolecule(mc)\n", - "drawer.FinishDrawing()\n", - "svg = drawer.GetDrawingText()\n", - "display(SVG(svg.replace('svg:','')))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "z4FDMYMxKw2I" + } }, - "source": [ - "Generate the 3d molecule!" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "aT1Bkb8YxJfV", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 17, - "referenced_widgets": [ - "695ab5bbf30a4ab19df1f9f33469f314", - "eac6a8dcdc9d4335a2e51031793ead29" - ] - }, - "outputId": "b98870ae-049d-4386-b676-166e9526bda2" - }, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": [], - "application/vnd.jupyter.widget-view+json": { - "version_major": 2, - "version_minor": 0, - "model_id": "695ab5bbf30a4ab19df1f9f33469f314" - } - }, - "metadata": { - "application/vnd.jupyter.widget-view+json": { - "colab": { - "custom_widget_manager": { - "url": "https://ssl.gstatic.com/colaboratory-static/widgets/colab-cdn-widget-manager/d2e234f7cc04bf79/manager.min.js" - } - } - } - } - } + "_ngl_serialize": false, + "_ngl_version": "", + "_ngl_view_id": [ + "FB989FD1-5B9C-446B-8914-6B58AF85446D" ], - "source": [ - "from nglview import show_rdkit as show" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "pxtq8I-I18C-", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 337, - "referenced_widgets": [ - "be446195da2b4ff2aec21ec5ff963a54", - "c6596896148b4a8a9c57963b67c7782f", - "2489b5e5648541fbbdceadb05632a050", - "01e0ba4e5da04914b4652b8d58565d7b", - "c30e6c2f3e2a44dbbb3d63bd519acaa4", - "f31c6e40e9b2466a9064a2669933ecd5", - "19308ccac642498ab8b58462e3f1b0bb", - "4a081cdc2ec3421ca79dd933b7e2b0c4", - "e5c0d75eb5e1447abd560c8f2c6017e1", - "5146907ef6764654ad7d598baebc8b58", - "144ec959b7604a2cabb5ca46ae5e5379", - "abce2a80e6304df3899109c6d6cac199", - "65195cb7a4134f4887e9dd19f3676462" - ] - }, - "outputId": "72ed63ac-d2ec-4f5c-a0b1-4e7c1840a4e7" - }, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": [ - "NGLWidget()" - ], - "application/vnd.jupyter.widget-view+json": { - "version_major": 2, - "version_minor": 0, - "model_id": "be446195da2b4ff2aec21ec5ff963a54" - } - }, - "metadata": { - "application/vnd.jupyter.widget-view+json": { - "colab": { - "custom_widget_manager": { - "url": "https://ssl.gstatic.com/colaboratory-static/widgets/colab-cdn-widget-manager/d2e234f7cc04bf79/manager.min.js" - } - } - } - } - } + "_player_dict": {}, + "_scene_position": {}, + "_scene_rotation": {}, + "_synced_model_ids": [], + "_synced_repr_model_ids": [], + "_view_count": null, + "_view_height": "", + "_view_module": "nglview-js-widgets", + "_view_module_version": "3.0.1", + "_view_name": "NGLView", + "_view_width": "", + "background": "white", + "frame": 0, + "gui_style": null, + "layout": "IPY_MODEL_c6596896148b4a8a9c57963b67c7782f", + "max_frame": 0, + "n_components": 2, + "picked": {} + } + }, + "c2321b3bff6f490ca12040a20308f555": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_872915dd1bb84f538c44e26badabafdd", + "max": 3271865, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_d022575f1fa2446d891650897f187b4d", + "value": 3271865 + } + }, + "c30e6c2f3e2a44dbbb3d63bd519acaa4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c6596896148b4a8a9c57963b67c7782f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d022575f1fa2446d891650897f187b4d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d90f304e9560472eacfbdd11e46765eb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1c6246f15b654f4daa11c9bcf997b78c", + "IPY_MODEL_c2321b3bff6f490ca12040a20308f555", + "IPY_MODEL_b7feb522161f4cf4b7cc7c1a078ff12d" ], - "source": [ - "# new molecule\n", - "show(mols_gen[idx])" - ] - }, - { - "cell_type": "code", - "source": [], - "metadata": { - "id": "KJr4h2mwXeTo" - }, - "execution_count": null, - "outputs": [] - } - ], - "metadata": { - "accelerator": "GPU", - "colab": { - "provenance": [] - }, - "gpuClass": "standard", - "kernelspec": { - "display_name": "Python 3", - "name": "python3" - }, - "language_info": { - "name": "python" - }, - "widgets": { - "application/vnd.jupyter.widget-state+json": { - "d90f304e9560472eacfbdd11e46765eb": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1c6246f15b654f4daa11c9bcf997b78c", - "IPY_MODEL_c2321b3bff6f490ca12040a20308f555", - "IPY_MODEL_b7feb522161f4cf4b7cc7c1a078ff12d" - ], - "layout": "IPY_MODEL_e2d368556e494ae7ae4e2e992af2cd4f" - } - }, - "1c6246f15b654f4daa11c9bcf997b78c": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_bbef741e76ec41b7ab7187b487a383df", - "placeholder": "​", - "style": "IPY_MODEL_561f742d418d4721b0670cc8dd62e22c", - "value": "Downloading: 100%" - } - }, - "c2321b3bff6f490ca12040a20308f555": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_872915dd1bb84f538c44e26badabafdd", - "max": 3271865, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_d022575f1fa2446d891650897f187b4d", - "value": 3271865 - } - }, - "b7feb522161f4cf4b7cc7c1a078ff12d": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_fdc393f3468c432aa0ada05e238a5436", - "placeholder": "​", - "style": "IPY_MODEL_2c9362906e4b40189f16d14aa9a348da", - "value": " 3.27M/3.27M [00:01<00:00, 3.25MB/s]" - } - }, - "e2d368556e494ae7ae4e2e992af2cd4f": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "bbef741e76ec41b7ab7187b487a383df": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "561f742d418d4721b0670cc8dd62e22c": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "872915dd1bb84f538c44e26badabafdd": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "d022575f1fa2446d891650897f187b4d": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "fdc393f3468c432aa0ada05e238a5436": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "2c9362906e4b40189f16d14aa9a348da": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "6010fc8daa7a44d5aec4b830ec2ebaa1": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7e0bb1b8d65249d3974200686b193be2", - "IPY_MODEL_ba98aa6d6a884e4ab8bbb5dfb5e4cf7a", - "IPY_MODEL_6526646be5ed415c84d1245b040e629b" - ], - "layout": "IPY_MODEL_24d31fc3576e43dd9f8301d2ef3a37ab" - } - }, - "7e0bb1b8d65249d3974200686b193be2": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2918bfaadc8d4b1a9832522c40dfefb8", - "placeholder": "​", - "style": "IPY_MODEL_a4bfdca35cc54dae8812720f1b276a08", - "value": "Downloading: 100%" - } - }, - "ba98aa6d6a884e4ab8bbb5dfb5e4cf7a": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_e4901541199b45c6a18824627692fc39", - "max": 401, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_f915cf874246446595206221e900b2fe", - "value": 401 - } - }, - "6526646be5ed415c84d1245b040e629b": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a9e388f22a9742aaaf538e22575c9433", - "placeholder": "​", - "style": "IPY_MODEL_42f6c3db29d7484ba6b4f73590abd2f4", - "value": " 401/401 [00:00<00:00, 13.5kB/s]" - } - }, - "24d31fc3576e43dd9f8301d2ef3a37ab": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "2918bfaadc8d4b1a9832522c40dfefb8": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "a4bfdca35cc54dae8812720f1b276a08": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "e4901541199b45c6a18824627692fc39": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "f915cf874246446595206221e900b2fe": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a9e388f22a9742aaaf538e22575c9433": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "42f6c3db29d7484ba6b4f73590abd2f4": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "695ab5bbf30a4ab19df1f9f33469f314": { - "model_module": "nglview-js-widgets", - "model_name": "ColormakerRegistryModel", - "model_module_version": "3.0.1", - "state": { - "_dom_classes": [], - "_model_module": "nglview-js-widgets", - "_model_module_version": "3.0.1", - "_model_name": "ColormakerRegistryModel", - "_msg_ar": [], - "_msg_q": [], - "_ready": false, - "_view_count": null, - "_view_module": "nglview-js-widgets", - "_view_module_version": "3.0.1", - "_view_name": "ColormakerRegistryView", - "layout": "IPY_MODEL_eac6a8dcdc9d4335a2e51031793ead29" - } - }, - "eac6a8dcdc9d4335a2e51031793ead29": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "be446195da2b4ff2aec21ec5ff963a54": { - "model_module": "nglview-js-widgets", - "model_name": "NGLModel", - "model_module_version": "3.0.1", - "state": { - "_camera_orientation": [ - -15.519693580202304, - -14.065056548036177, - -23.53197484807691, - 0, - -23.357853515109753, - 20.94055073042662, - 2.888695042134944, - 0, - 14.352363398292777, - 18.870825741878015, - -20.744689572909344, - 0, - 0.2724999189376831, - 0.6940000057220459, - -0.3734999895095825, - 1 - ], - "_camera_str": "orthographic", - "_dom_classes": [], - "_gui_theme": null, - "_ibtn_fullscreen": "IPY_MODEL_2489b5e5648541fbbdceadb05632a050", - "_igui": null, - "_iplayer": "IPY_MODEL_01e0ba4e5da04914b4652b8d58565d7b", - "_model_module": "nglview-js-widgets", - "_model_module_version": "3.0.1", - "_model_name": "NGLModel", - "_ngl_color_dict": {}, - "_ngl_coordinate_resource": {}, - "_ngl_full_stage_parameters": { - "impostor": true, - "quality": "medium", - "workerDefault": true, - "sampleLevel": 0, - "backgroundColor": "white", - "rotateSpeed": 2, - "zoomSpeed": 1.2, - "panSpeed": 1, - "clipNear": 0, - "clipFar": 100, - "clipDist": 10, - "fogNear": 50, - "fogFar": 100, - "cameraFov": 40, - "cameraEyeSep": 0.3, - "cameraType": "perspective", - "lightColor": 14540253, - "lightIntensity": 1, - "ambientColor": 14540253, - "ambientIntensity": 0.2, - "hoverTimeout": 0, - "tooltip": true, - "mousePreset": "default" - }, - "_ngl_msg_archive": [ - { - "target": "Stage", - "type": "call_method", - "methodName": "loadFile", - "reconstruc_color_scheme": false, - "args": [ - { - "type": "blob", - "data": "HETATM 1 C1 UNL 1 -0.025 3.128 2.316 1.00 0.00 C \nHETATM 2 H1 UNL 1 0.183 3.657 2.823 1.00 0.00 H \nHETATM 3 C2 UNL 1 0.590 3.559 0.963 1.00 0.00 C \nHETATM 4 C3 UNL 1 0.056 4.479 0.406 1.00 0.00 C \nHETATM 5 C4 UNL 1 -0.219 4.802 -1.065 1.00 0.00 C \nHETATM 6 H2 UNL 1 0.686 4.431 -1.575 1.00 0.00 H \nHETATM 7 H3 UNL 1 -0.524 5.217 -1.274 1.00 0.00 H \nHETATM 8 C5 UNL 1 -1.284 3.766 -1.342 1.00 0.00 C \nHETATM 9 N1 UNL 1 -1.073 2.494 -0.580 1.00 0.00 N \nHETATM 10 C6 UNL 1 -1.909 1.494 -0.964 1.00 0.00 C \nHETATM 11 O1 UNL 1 -2.487 1.531 -2.092 1.00 0.00 O \nHETATM 12 C7 UNL 1 -2.232 0.242 -0.130 1.00 0.00 C \nHETATM 13 C8 UNL 1 -2.161 -1.057 -1.037 1.00 0.00 C \nHETATM 14 C9 UNL 1 -0.744 -1.111 -1.610 1.00 0.00 C \nHETATM 15 N2 UNL 1 0.290 -0.917 -0.628 1.00 0.00 N \nHETATM 16 S1 UNL 1 1.717 -1.597 -0.914 1.00 0.00 S \nHETATM 17 O2 UNL 1 1.960 -1.671 -2.338 1.00 0.00 O \nHETATM 18 O3 UNL 1 2.713 -0.968 -0.082 1.00 0.00 O \nHETATM 19 C10 UNL 1 1.425 -3.170 -0.345 1.00 0.00 C \nHETATM 20 C11 UNL 1 1.225 -4.400 -1.271 1.00 0.00 C \nHETATM 21 C12 UNL 1 1.314 -5.913 -0.895 1.00 0.00 C \nHETATM 22 C13 UNL 1 1.823 -6.229 0.386 1.00 0.00 C \nHETATM 23 C14 UNL 1 2.031 -5.110 1.365 1.00 0.00 C \nHETATM 24 N3 UNL 1 1.850 -5.267 2.712 1.00 0.00 N \nHETATM 25 O4 UNL 1 1.382 -4.029 3.126 1.00 0.00 O \nHETATM 26 N4 UNL 1 1.300 -3.023 2.154 1.00 0.00 N \nHETATM 27 C15 UNL 1 1.731 -3.672 1.032 1.00 0.00 C \nHETATM 28 H4 UNL 1 2.380 -6.874 0.436 1.00 0.00 H \nHETATM 29 H5 UNL 1 0.704 -6.526 -1.420 1.00 0.00 H \nHETATM 30 H6 UNL 1 1.144 -4.035 -2.291 1.00 0.00 H \nHETATM 31 C16 UNL 1 0.044 -0.371 0.685 1.00 0.00 C \nHETATM 32 C17 UNL 1 -1.352 -0.045 1.077 1.00 0.00 C \nHETATM 33 H7 UNL 1 -1.395 0.770 1.768 1.00 0.00 H \nHETATM 34 H8 UNL 1 -1.792 -0.941 1.582 1.00 0.00 H \nHETATM 35 H9 UNL 1 0.583 -1.035 1.393 1.00 0.00 H \nHETATM 36 H10 UNL 1 0.664 0.613 0.663 1.00 0.00 H \nHETATM 37 H11 UNL 1 -0.631 -0.267 -2.335 1.00 0.00 H \nHETATM 38 H12 UNL 1 -0.571 -2.046 -2.098 1.00 0.00 H \nHETATM 39 H13 UNL 1 -2.872 -0.992 -1.826 1.00 0.00 H \nHETATM 40 H14 UNL 1 -2.370 -1.924 -0.444 1.00 0.00 H \nHETATM 41 H15 UNL 1 -3.258 0.364 0.197 1.00 0.00 H \nHETATM 42 C18 UNL 1 0.276 2.337 -0.078 1.00 0.00 C \nHETATM 43 H16 UNL 1 0.514 1.371 0.252 1.00 0.00 H \nHETATM 44 H17 UNL 1 0.988 2.413 -0.949 1.00 0.00 H \nHETATM 45 H18 UNL 1 -1.349 3.451 -2.379 1.00 0.00 H \nHETATM 46 H19 UNL 1 -2.224 4.055 -0.958 1.00 0.00 H \nHETATM 47 H20 UNL 1 0.793 5.486 0.669 1.00 0.00 H \nHETATM 48 H21 UNL 1 -0.849 4.974 0.937 1.00 0.00 H \nHETATM 49 H22 UNL 1 1.667 3.431 1.070 1.00 0.00 H \nHETATM 50 H23 UNL 1 0.379 2.143 2.689 1.00 0.00 H \nHETATM 51 H24 UNL 1 -1.094 2.983 2.223 1.00 0.00 H \nCONECT 1 2 3 50 51\nCONECT 3 4 42 49\nCONECT 4 5 47 48\nCONECT 5 6 7 8\nCONECT 8 9 45 46\nCONECT 9 10 42\nCONECT 10 11 11 12\nCONECT 12 13 32 41\nCONECT 13 14 39 40\nCONECT 14 15 37 38\nCONECT 15 16 31\nCONECT 16 17 17 18 18\nCONECT 16 19\nCONECT 19 20 20 27\nCONECT 20 21 30\nCONECT 21 22 22 29\nCONECT 22 23 28\nCONECT 23 24 24 27\nCONECT 24 25\nCONECT 25 26\nCONECT 26 27 27\nCONECT 31 32 35 36\nCONECT 32 33 34\nCONECT 42 43 44\nEND\n", - "binary": false - } - ], - "kwargs": { - "defaultRepresentation": true, - "ext": "pdb" - } - } - ], - "_ngl_original_stage_parameters": { - "impostor": true, - "quality": "medium", - "workerDefault": true, - "sampleLevel": 0, - "backgroundColor": "white", - "rotateSpeed": 2, - "zoomSpeed": 1.2, - "panSpeed": 1, - "clipNear": 0, - "clipFar": 100, - "clipDist": 10, - "fogNear": 50, - "fogFar": 100, - "cameraFov": 40, - "cameraEyeSep": 0.3, - "cameraType": "perspective", - "lightColor": 14540253, - "lightIntensity": 1, - "ambientColor": 14540253, - "ambientIntensity": 0.2, - "hoverTimeout": 0, - "tooltip": true, - "mousePreset": "default" - }, - "_ngl_repr_dict": { - "0": { - "0": { - "type": "ball+stick", - "params": { - "lazy": false, - "visible": true, - "quality": "high", - "sphereDetail": 2, - "radialSegments": 20, - "openEnded": true, - "disableImpostor": false, - "aspectRatio": 1.5, - "lineOnly": false, - "cylinderOnly": false, - "multipleBond": "off", - "bondScale": 0.3, - "bondSpacing": 0.75, - "linewidth": 2, - "radiusType": "size", - "radiusData": {}, - "radiusSize": 0.15, - "radiusScale": 2, - "assembly": "default", - "defaultAssembly": "", - "clipNear": 0, - "clipRadius": 0, - "clipCenter": { - "x": 0, - "y": 0, - "z": 0 - }, - "flatShaded": false, - "opacity": 1, - "depthWrite": true, - "side": "double", - "wireframe": false, - "colorScheme": "element", - "colorScale": "", - "colorReverse": false, - "colorValue": 9474192, - "colorMode": "hcl", - "roughness": 0.4, - "metalness": 0, - "diffuse": 16777215, - "diffuseInterior": false, - "useInteriorColor": true, - "interiorColor": 2236962, - "interiorDarkening": 0, - "matrix": { - "elements": [ - 1, - 0, - 0, - 0, - 0, - 1, - 0, - 0, - 0, - 0, - 1, - 0, - 0, - 0, - 0, - 1 - ] - }, - "disablePicking": false, - "sele": "" - } - } - }, - "1": { - "0": { - "type": "ball+stick", - "params": { - "lazy": false, - "visible": true, - "quality": "high", - "sphereDetail": 2, - "radialSegments": 20, - "openEnded": true, - "disableImpostor": false, - "aspectRatio": 1.5, - "lineOnly": false, - "cylinderOnly": false, - "multipleBond": "off", - "bondScale": 0.3, - "bondSpacing": 0.75, - "linewidth": 2, - "radiusType": "size", - "radiusData": {}, - "radiusSize": 0.15, - "radiusScale": 2, - "assembly": "default", - "defaultAssembly": "", - "clipNear": 0, - "clipRadius": 0, - "clipCenter": { - "x": 0, - "y": 0, - "z": 0 - }, - "flatShaded": false, - "opacity": 1, - "depthWrite": true, - "side": "double", - "wireframe": false, - "colorScheme": "element", - "colorScale": "", - "colorReverse": false, - "colorValue": 9474192, - "colorMode": "hcl", - "roughness": 0.4, - "metalness": 0, - "diffuse": 16777215, - "diffuseInterior": false, - "useInteriorColor": true, - "interiorColor": 2236962, - "interiorDarkening": 0, - "matrix": { - "elements": [ - 1, - 0, - 0, - 0, - 0, - 1, - 0, - 0, - 0, - 0, - 1, - 0, - 0, - 0, - 0, - 1 - ] - }, - "disablePicking": false, - "sele": "" - } - } - } - }, - "_ngl_serialize": false, - "_ngl_version": "", - "_ngl_view_id": [ - "FB989FD1-5B9C-446B-8914-6B58AF85446D" - ], - "_player_dict": {}, - "_scene_position": {}, - "_scene_rotation": {}, - "_synced_model_ids": [], - "_synced_repr_model_ids": [], - "_view_count": null, - "_view_height": "", - "_view_module": "nglview-js-widgets", - "_view_module_version": "3.0.1", - "_view_name": "NGLView", - "_view_width": "", - "background": "white", - "frame": 0, - "gui_style": null, - "layout": "IPY_MODEL_c6596896148b4a8a9c57963b67c7782f", - "max_frame": 0, - "n_components": 2, - "picked": {} - } - }, - "c6596896148b4a8a9c57963b67c7782f": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "2489b5e5648541fbbdceadb05632a050": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ButtonModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ButtonModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ButtonView", - "button_style": "", - "description": "", - "disabled": false, - "icon": "compress", - "layout": "IPY_MODEL_abce2a80e6304df3899109c6d6cac199", - "style": "IPY_MODEL_65195cb7a4134f4887e9dd19f3676462", - "tooltip": "" - } - }, - "01e0ba4e5da04914b4652b8d58565d7b": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e5c0d75eb5e1447abd560c8f2c6017e1", - "IPY_MODEL_5146907ef6764654ad7d598baebc8b58" - ], - "layout": "IPY_MODEL_144ec959b7604a2cabb5ca46ae5e5379" - } - }, - "c30e6c2f3e2a44dbbb3d63bd519acaa4": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "f31c6e40e9b2466a9064a2669933ecd5": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "19308ccac642498ab8b58462e3f1b0bb": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "4a081cdc2ec3421ca79dd933b7e2b0c4": { - "model_module": "@jupyter-widgets/controls", - "model_name": "SliderStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "SliderStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "", - "handle_color": null - } - }, - "e5c0d75eb5e1447abd560c8f2c6017e1": { - "model_module": "@jupyter-widgets/controls", - "model_name": "PlayModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "PlayModel", - "_playing": false, - "_repeat": false, - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "PlayView", - "description": "", - "description_tooltip": null, - "disabled": false, - "interval": 100, - "layout": "IPY_MODEL_c30e6c2f3e2a44dbbb3d63bd519acaa4", - "max": 0, - "min": 0, - "show_repeat": true, - "step": 1, - "style": "IPY_MODEL_f31c6e40e9b2466a9064a2669933ecd5", - "value": 0 - } - }, - "5146907ef6764654ad7d598baebc8b58": { - "model_module": "@jupyter-widgets/controls", - "model_name": "IntSliderModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "IntSliderModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "IntSliderView", - "continuous_update": true, - "description": "", - "description_tooltip": null, - "disabled": false, - "layout": "IPY_MODEL_19308ccac642498ab8b58462e3f1b0bb", - "max": 0, - "min": 0, - "orientation": "horizontal", - "readout": true, - "readout_format": "d", - "step": 1, - "style": "IPY_MODEL_4a081cdc2ec3421ca79dd933b7e2b0c4", - "value": 0 - } - }, - "144ec959b7604a2cabb5ca46ae5e5379": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "abce2a80e6304df3899109c6d6cac199": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": "34px" - } - }, - "65195cb7a4134f4887e9dd19f3676462": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ButtonStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ButtonStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "button_color": null, - "font_weight": "" - } - } - } + "layout": "IPY_MODEL_e2d368556e494ae7ae4e2e992af2cd4f" + } + }, + "e2d368556e494ae7ae4e2e992af2cd4f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e4901541199b45c6a18824627692fc39": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e5c0d75eb5e1447abd560c8f2c6017e1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "PlayModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "PlayModel", + "_playing": false, + "_repeat": false, + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "PlayView", + "description": "", + "description_tooltip": null, + "disabled": false, + "interval": 100, + "layout": "IPY_MODEL_c30e6c2f3e2a44dbbb3d63bd519acaa4", + "max": 0, + "min": 0, + "show_repeat": true, + "step": 1, + "style": "IPY_MODEL_f31c6e40e9b2466a9064a2669933ecd5", + "value": 0 + } + }, + "eac6a8dcdc9d4335a2e51031793ead29": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f31c6e40e9b2466a9064a2669933ecd5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "f915cf874246446595206221e900b2fe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "fdc393f3468c432aa0ada05e238a5436": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } } - }, - "nbformat": 4, - "nbformat_minor": 0 + } + } + }, + "nbformat": 4, + "nbformat_minor": 0 } \ No newline at end of file diff --git a/examples/research_projects/gligen/demo.ipynb b/examples/research_projects/gligen/demo.ipynb index 571f1a0323a2..4930253ff66e 100644 --- a/examples/research_projects/gligen/demo.ipynb +++ b/examples/research_projects/gligen/demo.ipynb @@ -26,8 +26,7 @@ "%load_ext autoreload\n", "%autoreload 2\n", "\n", - "import torch\n", - "from diffusers import StableDiffusionGLIGENTextImagePipeline, StableDiffusionGLIGENPipeline" + "from diffusers import StableDiffusionGLIGENPipeline" ] }, { @@ -36,16 +35,17 @@ "metadata": {}, "outputs": [], "source": [ - "import os\n", + "from transformers import CLIPTextModel, CLIPTokenizer\n", + "\n", "import diffusers\n", "from diffusers import (\n", " AutoencoderKL,\n", " DDPMScheduler,\n", - " UNet2DConditionModel,\n", - " UniPCMultistepScheduler,\n", " EulerDiscreteScheduler,\n", + " UNet2DConditionModel,\n", ")\n", - "from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer\n", + "\n", + "\n", "# pretrained_model_name_or_path = 'masterful/gligen-1-4-generation-text-box'\n", "\n", "pretrained_model_name_or_path = '/root/data/zhizhonghuang/checkpoints/models--masterful--gligen-1-4-generation-text-box/snapshots/d2820dc1e9ba6ca082051ce79cfd3eb468ae2c83'\n", @@ -122,6 +122,7 @@ "\n", "import numpy as np\n", "\n", + "\n", "boxes = np.array([x[1] for x in gen_boxes])\n", "boxes = boxes / 512\n", "boxes[:, 2] = boxes[:, 0] + boxes[:, 2]\n", diff --git a/src/diffusers/__init__.py b/src/diffusers/__init__.py index 913672992a8c..66c9a9b375be 100644 --- a/src/diffusers/__init__.py +++ b/src/diffusers/__init__.py @@ -90,6 +90,7 @@ "AutoencoderTiny", "CogVideoXTransformer3DModel", "CogView3PlusTransformer2DModel", + "ConsisIDTransformer3DModel", "ConsistencyDecoderVAE", "ControlNetModel", "ControlNetXSAdapter", @@ -269,6 +270,7 @@ "CogVideoXPipeline", "CogVideoXVideoToVideoPipeline", "CogView3PlusPipeline", + "ConsisIDPipeline", "CycleDiffusionPipeline", "FluxControlImg2ImgPipeline", "FluxControlNetImg2ImgPipeline", @@ -583,6 +585,7 @@ AutoencoderTiny, CogVideoXTransformer3DModel, CogView3PlusTransformer2DModel, + ConsisIDTransformer3DModel, ConsistencyDecoderVAE, ControlNetModel, ControlNetXSAdapter, @@ -741,6 +744,7 @@ CogVideoXPipeline, CogVideoXVideoToVideoPipeline, CogView3PlusPipeline, + ConsisIDPipeline, CycleDiffusionPipeline, FluxControlImg2ImgPipeline, FluxControlNetImg2ImgPipeline, diff --git a/src/diffusers/models/__init__.py b/src/diffusers/models/__init__.py index 7183d40b6f91..81862f2f5bc5 100644 --- a/src/diffusers/models/__init__.py +++ b/src/diffusers/models/__init__.py @@ -51,6 +51,7 @@ _import_structure["modeling_utils"] = ["ModelMixin"] _import_structure["transformers.auraflow_transformer_2d"] = ["AuraFlowTransformer2DModel"] _import_structure["transformers.cogvideox_transformer_3d"] = ["CogVideoXTransformer3DModel"] + _import_structure["transformers.consisid_transformer_3d"] = ["ConsisIDTransformer3DModel"] _import_structure["transformers.dit_transformer_2d"] = ["DiTTransformer2DModel"] _import_structure["transformers.dual_transformer_2d"] = ["DualTransformer2DModel"] _import_structure["transformers.hunyuan_transformer_2d"] = ["HunyuanDiT2DModel"] @@ -120,6 +121,7 @@ AuraFlowTransformer2DModel, CogVideoXTransformer3DModel, CogView3PlusTransformer2DModel, + ConsisIDTransformer3DModel, DiTTransformer2DModel, DualTransformer2DModel, FluxTransformer2DModel, diff --git a/src/diffusers/models/transformers/__init__.py b/src/diffusers/models/transformers/__init__.py index a2c087d708a4..1cb8ec191d86 100644 --- a/src/diffusers/models/transformers/__init__.py +++ b/src/diffusers/models/transformers/__init__.py @@ -4,6 +4,7 @@ if is_torch_available(): from .auraflow_transformer_2d import AuraFlowTransformer2DModel from .cogvideox_transformer_3d import CogVideoXTransformer3DModel + from .consisid_transformer_3d import ConsisIDTransformer3DModel from .dit_transformer_2d import DiTTransformer2DModel from .dual_transformer_2d import DualTransformer2DModel from .hunyuan_transformer_2d import HunyuanDiT2DModel diff --git a/src/diffusers/models/transformers/consisid_transformer_3d.py b/src/diffusers/models/transformers/consisid_transformer_3d.py new file mode 100644 index 000000000000..8ea19c6a93fe --- /dev/null +++ b/src/diffusers/models/transformers/consisid_transformer_3d.py @@ -0,0 +1,899 @@ +# Copyright 2024 ConsisID Authors and The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import math +from typing import Any, Dict, Optional, Tuple, Union + +import torch +from torch import nn + +from ...configuration_utils import ConfigMixin, register_to_config +from ...loaders import PeftAdapterMixin +from ...utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers +from ...utils.torch_utils import maybe_allow_in_graph +from ..attention import Attention, FeedForward +from ..attention_processor import AttentionProcessor, CogVideoXAttnProcessor2_0, FusedCogVideoXAttnProcessor2_0 +from ..embeddings import CogVideoXPatchEmbed, TimestepEmbedding, Timesteps +from ..modeling_outputs import Transformer2DModelOutput +from ..modeling_utils import ModelMixin +from ..normalization import AdaLayerNorm, CogVideoXLayerNormZero + + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + + +def ConsisIDFeedForward(dim, mult=4): + """ + Creates a consistent ID feedforward block consisting of layer normalization, + two linear layers, and a GELU activation. + + Args: + dim (int): The input dimension of the tensor. + mult (int, optional): Multiplier for the inner dimension. Default is 4. + + Returns: + nn.Sequential: A sequence of layers comprising LayerNorm, Linear layers, and GELU. + """ + inner_dim = int(dim * mult) + return nn.Sequential( + nn.LayerNorm(dim), + nn.Linear(dim, inner_dim, bias=False), + nn.GELU(), + nn.Linear(inner_dim, dim, bias=False), + ) + + +def reshape_tensor(x, heads): + """ + Reshapes the input tensor for multi-head attention. + + Args: + x (torch.Tensor): The input tensor with shape (batch_size, length, width). + heads (int): The number of attention heads. + + Returns: + torch.Tensor: The reshaped tensor, with shape (batch_size, heads, length, width). + """ + bs, length, width = x.shape + x = x.view(bs, length, heads, -1) + x = x.transpose(1, 2) + x = x.reshape(bs, heads, length, -1) + return x + + +class PerceiverAttention(nn.Module): + """ + Implements the Perceiver attention mechanism with multi-head attention. + + This layer takes two inputs: 'x' (image features) and 'latents' (latent features), + applying multi-head attention to both and producing an output tensor with the same + dimension as the input tensor 'x'. + + Args: + dim (int): The input dimension. + dim_head (int, optional): The dimension of each attention head. Default is 64. + heads (int, optional): The number of attention heads. Default is 8. + kv_dim (int, optional): The key-value dimension. If None, `dim` is used for both keys and values. + """ + + def __init__(self, *, dim, dim_head=64, heads=8, kv_dim=None): + super().__init__() + self.scale = dim_head**-0.5 + self.dim_head = dim_head + self.heads = heads + inner_dim = dim_head * heads + + self.norm1 = nn.LayerNorm(dim if kv_dim is None else kv_dim) + self.norm2 = nn.LayerNorm(dim) + + self.to_q = nn.Linear(dim, inner_dim, bias=False) + self.to_kv = nn.Linear(dim if kv_dim is None else kv_dim, inner_dim * 2, bias=False) + self.to_out = nn.Linear(inner_dim, dim, bias=False) + + def forward(self, x, latents): + """ + Forward pass for Perceiver attention. + + Args: + x (torch.Tensor): Image features tensor with shape (batch_size, num_pixels, D). + latents (torch.Tensor): Latent features tensor with shape (batch_size, num_latents, D). + + Returns: + torch.Tensor: Output tensor after applying attention and transformation. + """ + # Apply normalization + x = self.norm1(x) + latents = self.norm2(latents) + + b, seq_len, _ = latents.shape # Get batch size and sequence length + + # Compute query, key, and value matrices + q = self.to_q(latents) + kv_input = torch.cat((x, latents), dim=-2) + k, v = self.to_kv(kv_input).chunk(2, dim=-1) + + # Reshape the tensors for multi-head attention + q = reshape_tensor(q, self.heads) + k = reshape_tensor(k, self.heads) + v = reshape_tensor(v, self.heads) + + # attention + scale = 1 / math.sqrt(math.sqrt(self.dim_head)) + weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards + weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) + out = weight @ v + + # Reshape and return the final output + out = out.permute(0, 2, 1, 3).reshape(b, seq_len, -1) + + return self.to_out(out) + + +class LocalFacialExtractor(nn.Module): + def __init__( + self, + dim=1024, + depth=10, + dim_head=64, + heads=16, + num_id_token=5, + num_queries=32, + output_dim=2048, + ff_mult=4, + ): + """ + Initializes the LocalFacialExtractor class. + + Parameters: + - dim (int): The dimensionality of latent features. + - depth (int): Total number of PerceiverAttention and ConsisIDFeedForward layers. + - dim_head (int): Dimensionality of each attention head. + - heads (int): Number of attention heads. + - num_id_token (int): Number of tokens used for identity features. + - num_queries (int): Number of query tokens for the latent representation. + - output_dim (int): Output dimension after projection. + - ff_mult (int): Multiplier for the feed-forward network hidden dimension. + """ + super().__init__() + + # Storing identity token and query information + self.num_id_token = num_id_token + self.dim = dim + self.num_queries = num_queries + assert depth % 5 == 0 + self.depth = depth // 5 + scale = dim**-0.5 + + # Learnable latent query embeddings + self.latents = nn.Parameter(torch.randn(1, num_queries, dim) * scale) + # Projection layer to map the latent output to the desired dimension + self.proj_out = nn.Parameter(scale * torch.randn(dim, output_dim)) + + # Attention and ConsisIDFeedForward layer stack + self.layers = nn.ModuleList([]) + for _ in range(depth): + self.layers.append( + nn.ModuleList( + [ + PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads), # Perceiver Attention layer + ConsisIDFeedForward(dim=dim, mult=ff_mult), # ConsisIDFeedForward layer + ] + ) + ) + + # Mappings for each of the 5 different ViT features + for i in range(5): + setattr( + self, + f"mapping_{i}", + nn.Sequential( + nn.Linear(1024, 1024), + nn.LayerNorm(1024), + nn.LeakyReLU(), + nn.Linear(1024, 1024), + nn.LayerNorm(1024), + nn.LeakyReLU(), + nn.Linear(1024, dim), + ), + ) + + # Mapping for identity embedding vectors + self.id_embedding_mapping = nn.Sequential( + nn.Linear(1280, 1024), + nn.LayerNorm(1024), + nn.LeakyReLU(), + nn.Linear(1024, 1024), + nn.LayerNorm(1024), + nn.LeakyReLU(), + nn.Linear(1024, dim * num_id_token), + ) + + def forward(self, x, y): + """ + Forward pass for LocalFacialExtractor. + + Parameters: + - x (Tensor): The input identity embedding tensor of shape (batch_size, 1280). + - y (list of Tensor): A list of 5 visual feature tensors each of shape (batch_size, 1024). + + Returns: + - Tensor: The extracted latent features of shape (batch_size, num_queries, output_dim). + """ + + # Repeat latent queries for the batch size + latents = self.latents.repeat(x.size(0), 1, 1) + + # Map the identity embedding to tokens + x = self.id_embedding_mapping(x) + x = x.reshape(-1, self.num_id_token, self.dim) + + # Concatenate identity tokens with the latent queries + latents = torch.cat((latents, x), dim=1) + + # Process each of the 5 visual feature inputs + for i in range(5): + vit_feature = getattr(self, f"mapping_{i}")(y[i]) + ctx_feature = torch.cat((x, vit_feature), dim=1) + + # Pass through the PerceiverAttention and ConsisIDFeedForward layers + for attn, ff in self.layers[i * self.depth : (i + 1) * self.depth]: + latents = attn(ctx_feature, latents) + latents + latents = ff(latents) + latents + + # Retain only the query latents + latents = latents[:, : self.num_queries] + # Project the latents to the output dimension + latents = latents @ self.proj_out + return latents + + +class PerceiverCrossAttention(nn.Module): + """ + + Args: + dim (int): Dimension of the input latent and output. Default is 3072. + dim_head (int): Dimension of each attention head. Default is 128. + heads (int): Number of attention heads. Default is 16. + kv_dim (int): Dimension of the key/value input, allowing flexible cross-attention. Default is 2048. + + Attributes: + scale (float): Scaling factor used in dot-product attention for numerical stability. + norm1 (nn.LayerNorm): Layer normalization applied to the input image features. + norm2 (nn.LayerNorm): Layer normalization applied to the latent features. + to_q (nn.Linear): Linear layer for projecting the latent features into queries. + to_kv (nn.Linear): Linear layer for projecting the input features into keys and values. + to_out (nn.Linear): Linear layer for outputting the final result after attention. + + """ + + def __init__(self, *, dim=3072, dim_head=128, heads=16, kv_dim=2048): + super().__init__() + self.scale = dim_head**-0.5 + self.dim_head = dim_head + self.heads = heads + inner_dim = dim_head * heads + + # Layer normalization to stabilize training + self.norm1 = nn.LayerNorm(dim if kv_dim is None else kv_dim) + self.norm2 = nn.LayerNorm(dim) + + # Linear transformations to produce queries, keys, and values + self.to_q = nn.Linear(dim, inner_dim, bias=False) + self.to_kv = nn.Linear(dim if kv_dim is None else kv_dim, inner_dim * 2, bias=False) + self.to_out = nn.Linear(inner_dim, dim, bias=False) + + def forward(self, x, latents): + """ + + Args: + x (torch.Tensor): Input image features with shape (batch_size, n1, D), where: + - batch_size (b): Number of samples in the batch. + - n1: Sequence length (e.g., number of patches or tokens). + - D: Feature dimension. + + latents (torch.Tensor): Latent feature representations with shape (batch_size, n2, D), where: + - n2: Number of latent elements. + + Returns: + torch.Tensor: Attention-modulated features with shape (batch_size, n2, D). + + """ + # Apply layer normalization to the input image and latent features + x = self.norm1(x) + latents = self.norm2(latents) + + b, seq_len, _ = latents.shape + + # Compute queries, keys, and values + q = self.to_q(latents) + k, v = self.to_kv(x).chunk(2, dim=-1) + + # Reshape tensors to split into attention heads + q = reshape_tensor(q, self.heads) + k = reshape_tensor(k, self.heads) + v = reshape_tensor(v, self.heads) + + # Compute attention weights + scale = 1 / math.sqrt(math.sqrt(self.dim_head)) + weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable scaling than post-division + weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) + + # Compute the output via weighted combination of values + out = weight @ v + + # Reshape and permute to prepare for final linear transformation + out = out.permute(0, 2, 1, 3).reshape(b, seq_len, -1) + + return self.to_out(out) + + +@maybe_allow_in_graph +class ConsisIDBlock(nn.Module): + r""" + Transformer block used in [ConsisID](https://github.com/PKU-YuanGroup/ConsisID) model. + + Parameters: + dim (`int`): + The number of channels in the input and output. + num_attention_heads (`int`): + The number of heads to use for multi-head attention. + attention_head_dim (`int`): + The number of channels in each head. + time_embed_dim (`int`): + The number of channels in timestep embedding. + dropout (`float`, defaults to `0.0`): + The dropout probability to use. + activation_fn (`str`, defaults to `"gelu-approximate"`): + Activation function to be used in feed-forward. + attention_bias (`bool`, defaults to `False`): + Whether or not to use bias in attention projection layers. + qk_norm (`bool`, defaults to `True`): + Whether or not to use normalization after query and key projections in Attention. + norm_elementwise_affine (`bool`, defaults to `True`): + Whether to use learnable elementwise affine parameters for normalization. + norm_eps (`float`, defaults to `1e-5`): + Epsilon value for normalization layers. + final_dropout (`bool` defaults to `False`): + Whether to apply a final dropout after the last feed-forward layer. + ff_inner_dim (`int`, *optional*, defaults to `None`): + Custom hidden dimension of Feed-forward layer. If not provided, `4 * dim` is used. + ff_bias (`bool`, defaults to `True`): + Whether or not to use bias in Feed-forward layer. + attention_out_bias (`bool`, defaults to `True`): + Whether or not to use bias in Attention output projection layer. + """ + + def __init__( + self, + dim: int, + num_attention_heads: int, + attention_head_dim: int, + time_embed_dim: int, + dropout: float = 0.0, + activation_fn: str = "gelu-approximate", + attention_bias: bool = False, + qk_norm: bool = True, + norm_elementwise_affine: bool = True, + norm_eps: float = 1e-5, + final_dropout: bool = True, + ff_inner_dim: Optional[int] = None, + ff_bias: bool = True, + attention_out_bias: bool = True, + ): + super().__init__() + + # 1. Self Attention + self.norm1 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True) + + self.attn1 = Attention( + query_dim=dim, + dim_head=attention_head_dim, + heads=num_attention_heads, + qk_norm="layer_norm" if qk_norm else None, + eps=1e-6, + bias=attention_bias, + out_bias=attention_out_bias, + processor=CogVideoXAttnProcessor2_0(), + ) + + # 2. Feed Forward + self.norm2 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True) + + self.ff = FeedForward( + dim, + dropout=dropout, + activation_fn=activation_fn, + final_dropout=final_dropout, + inner_dim=ff_inner_dim, + bias=ff_bias, + ) + + def forward( + self, + hidden_states: torch.Tensor, + encoder_hidden_states: torch.Tensor, + temb: torch.Tensor, + image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, + ) -> torch.Tensor: + text_seq_length = encoder_hidden_states.size(1) + + # norm & modulate + norm_hidden_states, norm_encoder_hidden_states, gate_msa, enc_gate_msa = self.norm1( + hidden_states, encoder_hidden_states, temb + ) + + # attention + attn_hidden_states, attn_encoder_hidden_states = self.attn1( + hidden_states=norm_hidden_states, + encoder_hidden_states=norm_encoder_hidden_states, + image_rotary_emb=image_rotary_emb, + ) + + hidden_states = hidden_states + gate_msa * attn_hidden_states + encoder_hidden_states = encoder_hidden_states + enc_gate_msa * attn_encoder_hidden_states + + # norm & modulate + norm_hidden_states, norm_encoder_hidden_states, gate_ff, enc_gate_ff = self.norm2( + hidden_states, encoder_hidden_states, temb + ) + + # feed-forward + norm_hidden_states = torch.cat([norm_encoder_hidden_states, norm_hidden_states], dim=1) + ff_output = self.ff(norm_hidden_states) + + hidden_states = hidden_states + gate_ff * ff_output[:, text_seq_length:] + encoder_hidden_states = encoder_hidden_states + enc_gate_ff * ff_output[:, :text_seq_length] + + return hidden_states, encoder_hidden_states + + +class ConsisIDTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin): + """ + A Transformer model for video-like data in [ConsisID](https://github.com/PKU-YuanGroup/ConsisID). + + Parameters: + num_attention_heads (`int`, defaults to `30`): + The number of heads to use for multi-head attention. + attention_head_dim (`int`, defaults to `64`): + The number of channels in each head. + in_channels (`int`, defaults to `16`): + The number of channels in the input. + out_channels (`int`, *optional*, defaults to `16`): + The number of channels in the output. + flip_sin_to_cos (`bool`, defaults to `True`): + Whether to flip the sin to cos in the time embedding. + time_embed_dim (`int`, defaults to `512`): + Output dimension of timestep embeddings. + text_embed_dim (`int`, defaults to `4096`): + Input dimension of text embeddings from the text encoder. + num_layers (`int`, defaults to `30`): + The number of layers of Transformer blocks to use. + dropout (`float`, defaults to `0.0`): + The dropout probability to use. + attention_bias (`bool`, defaults to `True`): + Whether or not to use bias in the attention projection layers. + sample_width (`int`, defaults to `90`): + The width of the input latents. + sample_height (`int`, defaults to `60`): + The height of the input latents. + sample_frames (`int`, defaults to `49`): + The number of frames in the input latents. Note that this parameter was incorrectly initialized to 49 + instead of 13 because ConsisID processed 13 latent frames at once in its default and recommended settings, + but cannot be changed to the correct value to ensure backwards compatibility. To create a transformer with + K latent frames, the correct value to pass here would be: ((K - 1) * temporal_compression_ratio + 1). + patch_size (`int`, defaults to `2`): + The size of the patches to use in the patch embedding layer. + temporal_compression_ratio (`int`, defaults to `4`): + The compression ratio across the temporal dimension. See documentation for `sample_frames`. + max_text_seq_length (`int`, defaults to `226`): + The maximum sequence length of the input text embeddings. + activation_fn (`str`, defaults to `"gelu-approximate"`): + Activation function to use in feed-forward. + timestep_activation_fn (`str`, defaults to `"silu"`): + Activation function to use when generating the timestep embeddings. + norm_elementwise_affine (`bool`, defaults to `True`): + Whether or not to use elementwise affine in normalization layers. + norm_eps (`float`, defaults to `1e-5`): + The epsilon value to use in normalization layers. + spatial_interpolation_scale (`float`, defaults to `1.875`): + Scaling factor to apply in 3D positional embeddings across spatial dimensions. + temporal_interpolation_scale (`float`, defaults to `1.0`): + Scaling factor to apply in 3D positional embeddings across temporal dimensions. + is_train_face (`bool`, defaults to `False`): + Whether to use enable the identity-preserving module during the training process. + When set to `True`, the model will focus on identity-preserving tasks. + is_kps (`bool`, defaults to `False`): + Whether to enable keypoint for global facial extractor. + If `True`, keypoints will be in the model. + cross_attn_interval (`int`, defaults to `1`): + The interval between cross-attention layers in the Transformer architecture. + A larger value may reduce the frequency of cross-attention computations, + which can help reduce computational overhead. + LFE_num_tokens (`int`, defaults to `32`): + The number of tokens to use in the Local Facial Extractor (LFE). + This module is responsible for capturing high frequency representations + of the face. + LFE_output_dim (`int`, defaults to `768`): + The output dimension of the Local Facial Extractor (LFE) module. + This dimension determines the size of the feature vectors produced + by the LFE module. + LFE_heads (`int`, defaults to `12`): + The number of attention heads used in the Local Facial Extractor (LFE) module. + More heads may improve the ability to capture diverse features, but + can also increase computational complexity. + local_face_scale (`float`, defaults to `1.0`): + A scaling factor used to adjust the importance of local facial features + in the model. This can influence how strongly the model focuses on + high frequency face-related content. + """ + + _supports_gradient_checkpointing = True + + @register_to_config + def __init__( + self, + num_attention_heads: int = 30, + attention_head_dim: int = 64, + in_channels: int = 16, + out_channels: Optional[int] = 16, + flip_sin_to_cos: bool = True, + freq_shift: int = 0, + time_embed_dim: int = 512, + text_embed_dim: int = 4096, + num_layers: int = 30, + dropout: float = 0.0, + attention_bias: bool = True, + sample_width: int = 90, + sample_height: int = 60, + sample_frames: int = 49, + patch_size: int = 2, + temporal_compression_ratio: int = 4, + max_text_seq_length: int = 226, + activation_fn: str = "gelu-approximate", + timestep_activation_fn: str = "silu", + norm_elementwise_affine: bool = True, + norm_eps: float = 1e-5, + spatial_interpolation_scale: float = 1.875, + temporal_interpolation_scale: float = 1.0, + use_rotary_positional_embeddings: bool = False, + use_learned_positional_embeddings: bool = False, + is_train_face: bool = False, + is_kps: bool = False, + cross_attn_interval: int = 1, + LFE_num_tokens: int = 32, + LFE_output_dim: int = 768, + LFE_heads: int = 12, + local_face_scale: float = 1.0, + ): + super().__init__() + inner_dim = num_attention_heads * attention_head_dim + + if not use_rotary_positional_embeddings and use_learned_positional_embeddings: + raise ValueError( + "There are no ConsisID checkpoints available with disable rotary embeddings and learned positional " + "embeddings. If you're using a custom model and/or believe this should be supported, please open an " + "issue at https://github.com/huggingface/diffusers/issues." + ) + + # 1. Patch embedding + self.patch_embed = CogVideoXPatchEmbed( + patch_size=patch_size, + in_channels=in_channels, + embed_dim=inner_dim, + text_embed_dim=text_embed_dim, + bias=True, + sample_width=sample_width, + sample_height=sample_height, + sample_frames=sample_frames, + temporal_compression_ratio=temporal_compression_ratio, + max_text_seq_length=max_text_seq_length, + spatial_interpolation_scale=spatial_interpolation_scale, + temporal_interpolation_scale=temporal_interpolation_scale, + use_positional_embeddings=not use_rotary_positional_embeddings, + use_learned_positional_embeddings=use_learned_positional_embeddings, + ) + self.embedding_dropout = nn.Dropout(dropout) + + # 2. Time embeddings + self.time_proj = Timesteps(inner_dim, flip_sin_to_cos, freq_shift) + self.time_embedding = TimestepEmbedding(inner_dim, time_embed_dim, timestep_activation_fn) + + # 3. Define spatio-temporal transformers blocks + self.transformer_blocks = nn.ModuleList( + [ + ConsisIDBlock( + dim=inner_dim, + num_attention_heads=num_attention_heads, + attention_head_dim=attention_head_dim, + time_embed_dim=time_embed_dim, + dropout=dropout, + activation_fn=activation_fn, + attention_bias=attention_bias, + norm_elementwise_affine=norm_elementwise_affine, + norm_eps=norm_eps, + ) + for _ in range(num_layers) + ] + ) + self.norm_final = nn.LayerNorm(inner_dim, norm_eps, norm_elementwise_affine) + + # 4. Output blocks + self.norm_out = AdaLayerNorm( + embedding_dim=time_embed_dim, + output_dim=2 * inner_dim, + norm_elementwise_affine=norm_elementwise_affine, + norm_eps=norm_eps, + chunk_dim=1, + ) + self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * out_channels) + + self.gradient_checkpointing = False + + self.is_train_face = is_train_face + self.is_kps = is_kps + + # 5. Define identity-preserving config + if is_train_face: + self.inner_dim = inner_dim + self.cross_attn_interval = cross_attn_interval + self.num_ca = num_layers // cross_attn_interval + self.LFE_num_tokens = LFE_num_tokens + self.LFE_output_dim = LFE_output_dim + self.LFE_heads = LFE_heads + self.LFE_final_output_dim = int(self.inner_dim / 3 * 2) + self.local_face_scale = local_face_scale + self._init_face_inputs() + + def _set_gradient_checkpointing(self, module, value=False): + self.gradient_checkpointing = value + + def _init_face_inputs(self): + device = self.device + weight_dtype = next(self.transformer_blocks.parameters()).dtype + self.local_facial_extractor = LocalFacialExtractor() + self.local_facial_extractor.to(device, dtype=weight_dtype) + self.perceiver_cross_attention = nn.ModuleList( + [ + PerceiverCrossAttention( + dim=self.inner_dim, dim_head=128, heads=16, kv_dim=self.LFE_final_output_dim + ).to(device, dtype=weight_dtype) + for _ in range(self.num_ca) + ] + ) + + def save_face_modules(self, path: str): + save_dict = { + "local_facial_extractor": self.local_facial_extractor.state_dict(), + "perceiver_cross_attention": [ca.state_dict() for ca in self.perceiver_cross_attention], + } + torch.save(save_dict, path) + + def load_face_modules(self, path: str): + checkpoint = torch.load(path, map_location=self.device) + self.local_facial_extractor.load_state_dict(checkpoint["local_facial_extractor"]) + for ca, state_dict in zip(self.perceiver_cross_attention, checkpoint["perceiver_cross_attention"]): + ca.load_state_dict(state_dict) + + @property + # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors + def attn_processors(self) -> Dict[str, AttentionProcessor]: + r""" + Returns: + `dict` of attention processors: A dictionary containing all attention processors used in the model with + indexed by its weight name. + """ + # set recursively + processors = {} + + def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): + if hasattr(module, "get_processor"): + processors[f"{name}.processor"] = module.get_processor() + + for sub_name, child in module.named_children(): + fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) + + return processors + + for name, module in self.named_children(): + fn_recursive_add_processors(name, module, processors) + + return processors + + # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor + def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): + r""" + Sets the attention processor to use to compute attention. + + Parameters: + processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): + The instantiated processor class or a dictionary of processor classes that will be set as the processor + for **all** `Attention` layers. + + If `processor` is a dict, the key needs to define the path to the corresponding cross attention + processor. This is strongly recommended when setting trainable attention processors. + + """ + count = len(self.attn_processors.keys()) + + if isinstance(processor, dict) and len(processor) != count: + raise ValueError( + f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" + f" number of attention layers: {count}. Please make sure to pass {count} processor classes." + ) + + def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): + if hasattr(module, "set_processor"): + if not isinstance(processor, dict): + module.set_processor(processor) + else: + module.set_processor(processor.pop(f"{name}.processor")) + + for sub_name, child in module.named_children(): + fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) + + for name, module in self.named_children(): + fn_recursive_attn_processor(name, module, processor) + + # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedCogVideoXAttnProcessor2_0 + def fuse_qkv_projections(self): + """ + Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value) + are fused. For cross-attention modules, key and value projection matrices are fused. + + + + This API is 🧪 experimental. + + + """ + self.original_attn_processors = None + + for _, attn_processor in self.attn_processors.items(): + if "Added" in str(attn_processor.__class__.__name__): + raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.") + + self.original_attn_processors = self.attn_processors + + for module in self.modules(): + if isinstance(module, Attention): + module.fuse_projections(fuse=True) + + self.set_attn_processor(FusedCogVideoXAttnProcessor2_0()) + + # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections + def unfuse_qkv_projections(self): + """Disables the fused QKV projection if enabled. + + + + This API is 🧪 experimental. + + + + """ + if self.original_attn_processors is not None: + self.set_attn_processor(self.original_attn_processors) + + def forward( + self, + hidden_states: torch.Tensor, + encoder_hidden_states: torch.Tensor, + timestep: Union[int, float, torch.LongTensor], + timestep_cond: Optional[torch.Tensor] = None, + image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, + attention_kwargs: Optional[Dict[str, Any]] = None, + id_cond: Optional[torch.Tensor] = None, + id_vit_hidden: Optional[torch.Tensor] = None, + return_dict: bool = True, + ): + # fuse clip and insightface + if self.is_train_face: + assert id_cond is not None and id_vit_hidden is not None + valid_face_emb = self.local_facial_extractor( + id_cond, id_vit_hidden + ) # torch.Size([1, 1280]), list[5](torch.Size([1, 577, 1024])) -> torch.Size([1, 32, 2048]) + + if attention_kwargs is not None: + attention_kwargs = attention_kwargs.copy() + lora_scale = attention_kwargs.pop("scale", 1.0) + else: + lora_scale = 1.0 + + if USE_PEFT_BACKEND: + # weight the lora layers by setting `lora_scale` for each PEFT layer + scale_lora_layers(self, lora_scale) + else: + if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None: + logger.warning( + "Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective." + ) + + batch_size, num_frames, channels, height, width = hidden_states.shape + + # 1. Time embedding + timesteps = timestep + t_emb = self.time_proj(timesteps) + + # timesteps does not contain any weights and will always return f32 tensors + # but time_embedding might actually be running in fp16. so we need to cast here. + # there might be better ways to encapsulate this. + t_emb = t_emb.to(dtype=hidden_states.dtype) + emb = self.time_embedding(t_emb, timestep_cond) + + # 2. Patch embedding + # torch.Size([1, 226, 4096]) torch.Size([1, 13, 32, 60, 90]) + hidden_states = self.patch_embed(encoder_hidden_states, hidden_states) # torch.Size([1, 17776, 3072]) + hidden_states = self.embedding_dropout(hidden_states) # torch.Size([1, 17776, 3072]) + + text_seq_length = encoder_hidden_states.shape[1] + encoder_hidden_states = hidden_states[:, :text_seq_length] # torch.Size([1, 226, 3072]) + hidden_states = hidden_states[:, text_seq_length:] # torch.Size([1, 17550, 3072]) + + # 3. Transformer blocks + ca_idx = 0 + for i, block in enumerate(self.transformer_blocks): + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module): + def custom_forward(*inputs): + return module(*inputs) + + return custom_forward + + ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} + hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(block), + hidden_states, + encoder_hidden_states, + emb, + image_rotary_emb, + **ckpt_kwargs, + ) + else: + hidden_states, encoder_hidden_states = block( + hidden_states=hidden_states, + encoder_hidden_states=encoder_hidden_states, + temb=emb, + image_rotary_emb=image_rotary_emb, + ) + + if self.is_train_face: + if i % self.cross_attn_interval == 0 and valid_face_emb is not None: + hidden_states = hidden_states + self.local_face_scale * self.perceiver_cross_attention[ca_idx]( + valid_face_emb, hidden_states + ) # torch.Size([2, 32, 2048]) torch.Size([2, 17550, 3072]) + ca_idx += 1 + + hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) + hidden_states = self.norm_final(hidden_states) + hidden_states = hidden_states[:, text_seq_length:] + + # 4. Final block + hidden_states = self.norm_out(hidden_states, temb=emb) + hidden_states = self.proj_out(hidden_states) + + # 5. Unpatchify + # Note: we use `-1` instead of `channels`: + # - It is okay to `channels` use for ConsisID (number of input channels is equal to output channels) + p = self.config.patch_size + output = hidden_states.reshape(batch_size, num_frames, height // p, width // p, -1, p, p) + output = output.permute(0, 1, 4, 2, 5, 3, 6).flatten(5, 6).flatten(3, 4) + + if USE_PEFT_BACKEND: + # remove `lora_scale` from each PEFT layer + unscale_lora_layers(self, lora_scale) + + if not return_dict: + return (output,) + return Transformer2DModelOutput(sample=output) diff --git a/src/diffusers/pipelines/__init__.py b/src/diffusers/pipelines/__init__.py index ef4a4b568045..855cf6f41f04 100644 --- a/src/diffusers/pipelines/__init__.py +++ b/src/diffusers/pipelines/__init__.py @@ -153,6 +153,7 @@ "CogVideoXFunControlPipeline", ] _import_structure["cogview3"] = ["CogView3PlusPipeline"] + _import_structure["consisid"] = ["ConsisIDPipeline"] _import_structure["controlnet"].extend( [ "BlipDiffusionControlNetPipeline", @@ -481,13 +482,13 @@ from .aura_flow import AuraFlowPipeline from .blip_diffusion import BlipDiffusionPipeline from .cogvideo import ( - ConsisIDPipeline CogVideoXFunControlPipeline, CogVideoXImageToVideoPipeline, CogVideoXPipeline, CogVideoXVideoToVideoPipeline, ) from .cogview3 import CogView3PlusPipeline + from .consisid import ConsisIDPipeline from .controlnet import ( BlipDiffusionControlNetPipeline, StableDiffusionControlNetImg2ImgPipeline, diff --git a/src/diffusers/pipelines/consisid/__init__.py b/src/diffusers/pipelines/consisid/__init__.py new file mode 100644 index 000000000000..5052e146f1df --- /dev/null +++ b/src/diffusers/pipelines/consisid/__init__.py @@ -0,0 +1,48 @@ +from typing import TYPE_CHECKING + +from ...utils import ( + DIFFUSERS_SLOW_IMPORT, + OptionalDependencyNotAvailable, + _LazyModule, + get_objects_from_module, + is_torch_available, + is_transformers_available, +) + + +_dummy_objects = {} +_import_structure = {} + + +try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + from ...utils import dummy_torch_and_transformers_objects # noqa F403 + + _dummy_objects.update(get_objects_from_module(dummy_torch_and_transformers_objects)) +else: + _import_structure["pipeline_consisid"] = ["ConsisIDPipeline"] + +if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: + try: + if not (is_transformers_available() and is_torch_available()): + raise OptionalDependencyNotAvailable() + + except OptionalDependencyNotAvailable: + from ...utils.dummy_torch_and_transformers_objects import * + else: + from .pipeline_consisid import ConsisIDPipeline + +else: + import sys + + sys.modules[__name__] = _LazyModule( + __name__, + globals()["__file__"], + _import_structure, + module_spec=__spec__, + ) + + for name, value in _dummy_objects.items(): + setattr(sys.modules[__name__], name, value) diff --git a/src/diffusers/pipelines/consisid/pipeline_consisid.py b/src/diffusers/pipelines/consisid/pipeline_consisid.py new file mode 100644 index 000000000000..226bd18f8761 --- /dev/null +++ b/src/diffusers/pipelines/consisid/pipeline_consisid.py @@ -0,0 +1,903 @@ +# Copyright 2024 ConsisID Authors and The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import inspect +import math +from typing import Callable, Dict, List, Optional, Tuple, Union + +import cv2 +import numpy as np +import PIL +import torch +from transformers import T5EncoderModel, T5Tokenizer + +from ...callbacks import MultiPipelineCallbacks, PipelineCallback +from ...image_processor import PipelineImageInput +from ...models import AutoencoderKLCogVideoX, ConsisIDTransformer3DModel +from ...models.embeddings import get_3d_rotary_pos_embed +from ...pipelines.pipeline_utils import DiffusionPipeline +from ...schedulers import CogVideoXDDIMScheduler, CogVideoXDPMScheduler +from ...utils import ( + logging, + replace_example_docstring, +) +from ...utils.torch_utils import randn_tensor +from ...video_processor import VideoProcessor +from .pipeline_output import ConsisIDPipelineOutput + + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + + +EXAMPLE_DOC_STRING = """ + Examples: + ```py + >>> import torch + >>> from diffusers import ConsisIDPipeline + >>> from diffusers.utils import export_to_video, load_image + + >>> pipe = ConsisIDPipeline.from_pretrained("https://huggingface.co/BestWishYsh/ConsisID-preview", torch_dtype=torch.bfloat16) + >>> pipe.to("cuda") + + >>> prompt = "A woman adorned with a delicate flower crown, is standing amidst a field of gently swaying wildflowers. Her eyes sparkle with a serene gaze, and a faint smile graces her lips, suggesting a moment of peaceful contentment. The shot is framed from the waist up, highlighting the gentle breeze lightly tousling her hair. The background reveals an expansive meadow under a bright blue sky, capturing the tranquility of a sunny afternoon." + >>> image = load_image( + ... "https://github.com/PKU-YuanGroup/ConsisID/blob/main/asserts/example_images/1.png?raw=true" + ... ) + >>> video = pipe(image, prompt, use_dynamic_cfg=True) + >>> export_to_video(video.frames[0], "output.mp4", fps=8) + ``` +""" + + +def draw_kps(image_pil, kps, color_list=[(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (255, 0, 255)]): + stickwidth = 4 + limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]]) + kps = np.array(kps) + + w, h = image_pil.size + out_img = np.zeros([h, w, 3]) + + for i in range(len(limbSeq)): + index = limbSeq[i] + color = color_list[index[0]] + + x = kps[index][:, 0] + y = kps[index][:, 1] + length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5 + angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1])) + polygon = cv2.ellipse2Poly( + (int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1 + ) + out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color) + out_img = (out_img * 0.6).astype(np.uint8) + + for idx_kp, kp in enumerate(kps): + color = color_list[idx_kp] + x, y = kp + out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1) + + out_img_pil = PIL.Image.fromarray(out_img.astype(np.uint8)) + return out_img_pil + + +def process_image(image, vae): + image_noise_sigma = torch.normal(mean=-3.0, std=0.5, size=(1,), device=image.device) + image_noise_sigma = torch.exp(image_noise_sigma).to(dtype=image.dtype) + noisy_image = torch.randn_like(image) * image_noise_sigma[:, None, None, None, None] + input_image = image + noisy_image + image_latent_dist = vae.encode(input_image).latent_dist + return image_latent_dist + + +# Similar to diffusers.pipelines.hunyuandit.pipeline_hunyuandit.get_resize_crop_region_for_grid +def get_resize_crop_region_for_grid(src, tgt_width, tgt_height): + tw = tgt_width + th = tgt_height + h, w = src + r = h / w + if r > (th / tw): + resize_height = th + resize_width = int(round(th / h * w)) + else: + resize_width = tw + resize_height = int(round(tw / w * h)) + + crop_top = int(round((th - resize_height) / 2.0)) + crop_left = int(round((tw - resize_width) / 2.0)) + + return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width) + + +# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps +def retrieve_timesteps( + scheduler, + num_inference_steps: Optional[int] = None, + device: Optional[Union[str, torch.device]] = None, + timesteps: Optional[List[int]] = None, + sigmas: Optional[List[float]] = None, + **kwargs, +): + """ + Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles + custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. + + Args: + scheduler (`SchedulerMixin`): + The scheduler to get timesteps from. + num_inference_steps (`int`): + The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` + must be `None`. + device (`str` or `torch.device`, *optional*): + The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. + timesteps (`List[int]`, *optional*): + Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, + `num_inference_steps` and `sigmas` must be `None`. + sigmas (`List[float]`, *optional*): + Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, + `num_inference_steps` and `timesteps` must be `None`. + + Returns: + `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the + second element is the number of inference steps. + """ + if timesteps is not None and sigmas is not None: + raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") + if timesteps is not None: + accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError( + f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" + f" timestep schedules. Please check whether you are using the correct scheduler." + ) + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError( + f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" + f" sigmas schedules. Please check whether you are using the correct scheduler." + ) + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return timesteps, num_inference_steps + + +# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents +def retrieve_latents( + encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample" +): + if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": + return encoder_output.latent_dist.sample(generator) + elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": + return encoder_output.latent_dist.mode() + elif hasattr(encoder_output, "latents"): + return encoder_output.latents + else: + raise AttributeError("Could not access latents of provided encoder_output") + + +class ConsisIDPipeline(DiffusionPipeline): + r""" + Pipeline for image-to-video generation using ConsisID. + + This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the + library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) + + Args: + vae ([`AutoencoderKL`]): + Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations. + text_encoder ([`T5EncoderModel`]): + Frozen text-encoder. ConsisID uses + [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel); specifically the + [t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant. + tokenizer (`T5Tokenizer`): + Tokenizer of class + [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer). + transformer ([`ConsisIDTransformer3DModel`]): + A text conditioned `ConsisIDTransformer3DModel` to denoise the encoded video latents. + scheduler ([`SchedulerMixin`]): + A scheduler to be used in combination with `transformer` to denoise the encoded video latents. + """ + + _optional_components = [] + model_cpu_offload_seq = "text_encoder->transformer->vae" + + _callback_tensor_inputs = [ + "latents", + "prompt_embeds", + "negative_prompt_embeds", + ] + + def __init__( + self, + tokenizer: T5Tokenizer, + text_encoder: T5EncoderModel, + vae: AutoencoderKLCogVideoX, + transformer: Union[ConsisIDTransformer3DModel], + scheduler: Union[CogVideoXDDIMScheduler, CogVideoXDPMScheduler], + ): + super().__init__() + + self.register_modules( + tokenizer=tokenizer, + text_encoder=text_encoder, + vae=vae, + transformer=transformer, + scheduler=scheduler, + ) + self.vae_scale_factor_spatial = ( + 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8 + ) + self.vae_scale_factor_temporal = ( + self.vae.config.temporal_compression_ratio if hasattr(self, "vae") and self.vae is not None else 4 + ) + self.vae_scaling_factor_image = ( + self.vae.config.scaling_factor if hasattr(self, "vae") and self.vae is not None else 0.7 + ) + + self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial) + + # Copied from diffusers.pipelines.consisid.pipeline_consisID.ConsisIDPipeline._get_t5_prompt_embeds + def _get_t5_prompt_embeds( + self, + prompt: Union[str, List[str]] = None, + num_videos_per_prompt: int = 1, + max_sequence_length: int = 226, + device: Optional[torch.device] = None, + dtype: Optional[torch.dtype] = None, + ): + device = device or self._execution_device + dtype = dtype or self.text_encoder.dtype + + prompt = [prompt] if isinstance(prompt, str) else prompt + batch_size = len(prompt) + + text_inputs = self.tokenizer( + prompt, + padding="max_length", + max_length=max_sequence_length, + truncation=True, + add_special_tokens=True, + return_tensors="pt", + ) + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids + + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1]) + logger.warning( + "The following part of your input was truncated because `max_sequence_length` is set to " + f" {max_sequence_length} tokens: {removed_text}" + ) + + prompt_embeds = self.text_encoder(text_input_ids.to(device))[0] + prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) + + # duplicate text embeddings for each generation per prompt, using mps friendly method + _, seq_len, _ = prompt_embeds.shape + prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1) + prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1) + + return prompt_embeds + + # Copied from diffusers.pipelines.consisid.pipeline_consisid.ConsisIDPipeline.encode_prompt + def encode_prompt( + self, + prompt: Union[str, List[str]], + negative_prompt: Optional[Union[str, List[str]]] = None, + do_classifier_free_guidance: bool = True, + num_videos_per_prompt: int = 1, + prompt_embeds: Optional[torch.Tensor] = None, + negative_prompt_embeds: Optional[torch.Tensor] = None, + max_sequence_length: int = 226, + device: Optional[torch.device] = None, + dtype: Optional[torch.dtype] = None, + ): + r""" + Encodes the prompt into text encoder hidden states. + + Args: + prompt (`str` or `List[str]`, *optional*): + prompt to be encoded + negative_prompt (`str` or `List[str]`, *optional*): + The prompt or prompts not to guide the image generation. If not defined, one has to pass + `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is + less than `1`). + do_classifier_free_guidance (`bool`, *optional*, defaults to `True`): + Whether to use classifier free guidance or not. + num_videos_per_prompt (`int`, *optional*, defaults to 1): + Number of videos that should be generated per prompt. torch device to place the resulting embeddings on + prompt_embeds (`torch.Tensor`, *optional*): + Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not + provided, text embeddings will be generated from `prompt` input argument. + negative_prompt_embeds (`torch.Tensor`, *optional*): + Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt + weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input + argument. + device: (`torch.device`, *optional*): + torch device + dtype: (`torch.dtype`, *optional*): + torch dtype + """ + device = device or self._execution_device + + prompt = [prompt] if isinstance(prompt, str) else prompt + if prompt is not None: + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + + if prompt_embeds is None: + prompt_embeds = self._get_t5_prompt_embeds( + prompt=prompt, + num_videos_per_prompt=num_videos_per_prompt, + max_sequence_length=max_sequence_length, + device=device, + dtype=dtype, + ) + + if do_classifier_free_guidance and negative_prompt_embeds is None: + negative_prompt = negative_prompt or "" + negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt + + if prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError( + f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" + f" {type(prompt)}." + ) + elif batch_size != len(negative_prompt): + raise ValueError( + f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" + f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" + " the batch size of `prompt`." + ) + + negative_prompt_embeds = self._get_t5_prompt_embeds( + prompt=negative_prompt, + num_videos_per_prompt=num_videos_per_prompt, + max_sequence_length=max_sequence_length, + device=device, + dtype=dtype, + ) + + return prompt_embeds, negative_prompt_embeds + + def prepare_latents( + self, + image: torch.Tensor, + batch_size: int = 1, + num_channels_latents: int = 16, + num_frames: int = 13, + height: int = 60, + width: int = 90, + dtype: Optional[torch.dtype] = None, + device: Optional[torch.device] = None, + generator: Optional[torch.Generator] = None, + latents: Optional[torch.Tensor] = None, + kps_cond: Optional[torch.Tensor] = None, + ): + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError( + f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" + f" size of {batch_size}. Make sure the batch size matches the length of the generators." + ) + + num_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1 + shape = ( + batch_size, + num_frames, + num_channels_latents, + height // self.vae_scale_factor_spatial, + width // self.vae_scale_factor_spatial, + ) + + image = image.unsqueeze(2) # [B, C, F, H, W] + + if isinstance(generator, list): + image_latents = [ + retrieve_latents(self.vae.encode(image[i].unsqueeze(0)), generator[i]) for i in range(batch_size) + ] + if kps_cond is not None: + kps_cond = kps_cond.unsqueeze(2) + kps_cond_latents = [ + retrieve_latents(self.vae.encode(kps_cond[i].unsqueeze(0)), generator[i]) + for i in range(batch_size) + ] + else: + image_latents = [retrieve_latents(self.vae.encode(img.unsqueeze(0)), generator) for img in image] + if kps_cond is not None: + kps_cond = kps_cond.unsqueeze(2) + kps_cond_latents = [retrieve_latents(self.vae.encode(img.unsqueeze(0)), generator) for img in kps_cond] + + image_latents = torch.cat(image_latents, dim=0).to(dtype).permute(0, 2, 1, 3, 4) # [B, F, C, H, W] + image_latents = self.vae_scaling_factor_image * image_latents + + if kps_cond is not None: + kps_cond_latents = torch.cat(kps_cond_latents, dim=0).to(dtype).permute(0, 2, 1, 3, 4) # [B, F, C, H, W] + kps_cond_latents = self.vae_scaling_factor_image * kps_cond_latents + + padding_shape = ( + batch_size, + num_frames - 2, + num_channels_latents, + height // self.vae_scale_factor_spatial, + width // self.vae_scale_factor_spatial, + ) + else: + padding_shape = ( + batch_size, + num_frames - 1, + num_channels_latents, + height // self.vae_scale_factor_spatial, + width // self.vae_scale_factor_spatial, + ) + + latent_padding = torch.zeros(padding_shape, device=device, dtype=dtype) + if kps_cond is not None: + image_latents = torch.cat([image_latents, kps_cond_latents, latent_padding], dim=1) + else: + image_latents = torch.cat([image_latents, latent_padding], dim=1) + + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + + # scale the initial noise by the standard deviation required by the scheduler + latents = latents * self.scheduler.init_noise_sigma + return latents, image_latents + + # Copied from diffusers.pipelines.consisid.pipeline_consisid.ConsisIDPipeline.decode_latents + def decode_latents(self, latents: torch.Tensor) -> torch.Tensor: + latents = latents.permute(0, 2, 1, 3, 4) # [batch_size, num_channels, num_frames, height, width] + latents = 1 / self.vae_scaling_factor_image * latents + + frames = self.vae.decode(latents).sample + return frames + + # Copied from diffusers.pipelines.animatediff.pipeline_animatediff_video2video.AnimateDiffVideoToVideoPipeline.get_timesteps + def get_timesteps(self, num_inference_steps, timesteps, strength, device): + # get the original timestep using init_timestep + init_timestep = min(int(num_inference_steps * strength), num_inference_steps) + + t_start = max(num_inference_steps - init_timestep, 0) + timesteps = timesteps[t_start * self.scheduler.order :] + + return timesteps, num_inference_steps - t_start + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs + def prepare_extra_step_kwargs(self, generator, eta): + # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature + # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. + # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 + # and should be between [0, 1] + + accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs["eta"] = eta + + # check if the scheduler accepts generator + accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs["generator"] = generator + return extra_step_kwargs + + def check_inputs( + self, + image, + prompt, + height, + width, + negative_prompt, + callback_on_step_end_tensor_inputs, + latents=None, + prompt_embeds=None, + negative_prompt_embeds=None, + ): + if ( + not isinstance(image, torch.Tensor) + and not isinstance(image, PIL.Image.Image) + and not isinstance(image, list) + ): + raise ValueError( + "`image` has to be of type `torch.Tensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is" + f" {type(image)}" + ) + + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") + + if callback_on_step_end_tensor_inputs is not None and not all( + k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs + ): + raise ValueError( + f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" + ) + if prompt is not None and prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" + " only forward one of the two." + ) + elif prompt is None and prompt_embeds is None: + raise ValueError( + "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." + ) + elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): + raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") + + if prompt is not None and negative_prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:" + f" {negative_prompt_embeds}. Please make sure to only forward one of the two." + ) + + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" + f" {negative_prompt_embeds}. Please make sure to only forward one of the two." + ) + + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError( + "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" + f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" + f" {negative_prompt_embeds.shape}." + ) + + # Copied from diffusers.pipelines.consisid.pipeline_consisid.ConsisIDPipeline.fuse_qkv_projections + def fuse_qkv_projections(self) -> None: + r"""Enables fused QKV projections.""" + self.fusing_transformer = True + self.transformer.fuse_qkv_projections() + + # Copied from diffusers.pipelines.consisid.pipeline_consisid.ConsisIDPipeline.unfuse_qkv_projections + def unfuse_qkv_projections(self) -> None: + r"""Disable QKV projection fusion if enabled.""" + if not self.fusing_transformer: + logger.warning("The Transformer was not initially fused for QKV projections. Doing nothing.") + else: + self.transformer.unfuse_qkv_projections() + self.fusing_transformer = False + + # Copied from diffusers.pipelines.consisid.pipeline_consisid.ConsisIDPipeline._prepare_rotary_positional_embeddings + def _prepare_rotary_positional_embeddings( + self, + height: int, + width: int, + num_frames: int, + device: torch.device, + ) -> Tuple[torch.Tensor, torch.Tensor]: + grid_height = height // (self.vae_scale_factor_spatial * self.transformer.config.patch_size) + grid_width = width // (self.vae_scale_factor_spatial * self.transformer.config.patch_size) + base_size_width = 720 // (self.vae_scale_factor_spatial * self.transformer.config.patch_size) + base_size_height = 480 // (self.vae_scale_factor_spatial * self.transformer.config.patch_size) + + grid_crops_coords = get_resize_crop_region_for_grid( + (grid_height, grid_width), base_size_width, base_size_height + ) + freqs_cos, freqs_sin = get_3d_rotary_pos_embed( + embed_dim=self.transformer.config.attention_head_dim, + crops_coords=grid_crops_coords, + grid_size=(grid_height, grid_width), + temporal_size=num_frames, + ) + + freqs_cos = freqs_cos.to(device=device) + freqs_sin = freqs_sin.to(device=device) + return freqs_cos, freqs_sin + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def num_timesteps(self): + return self._num_timesteps + + @property + def interrupt(self): + return self._interrupt + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__( + self, + image: PipelineImageInput, + prompt: Optional[Union[str, List[str]]] = None, + negative_prompt: Optional[Union[str, List[str]]] = None, + height: int = 480, + width: int = 720, + num_frames: int = 49, + num_inference_steps: int = 50, + timesteps: Optional[List[int]] = None, + guidance_scale: float = 6, + use_dynamic_cfg: bool = False, + num_videos_per_prompt: int = 1, + eta: float = 0.0, + generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, + latents: Optional[torch.FloatTensor] = None, + prompt_embeds: Optional[torch.FloatTensor] = None, + negative_prompt_embeds: Optional[torch.FloatTensor] = None, + output_type: str = "pil", + return_dict: bool = True, + callback_on_step_end: Optional[ + Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] + ] = None, + callback_on_step_end_tensor_inputs: List[str] = ["latents"], + max_sequence_length: int = 226, + id_vit_hidden: Optional[torch.Tensor] = None, + id_cond: Optional[torch.Tensor] = None, + kps_cond: Optional[torch.Tensor] = None, + ) -> Union[ConsisIDPipelineOutput, Tuple]: + """ + Function invoked when calling the pipeline for generation. + + Args: + image (`PipelineImageInput`): + The input image to condition the generation on. Must be an image, a list of images or a `torch.Tensor`. + prompt (`str` or `List[str]`, *optional*): + The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. + instead. + negative_prompt (`str` or `List[str]`, *optional*): + The prompt or prompts not to guide the image generation. If not defined, one has to pass + `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is + less than `1`). + height (`int`, *optional*, defaults to self.transformer.config.sample_height * self.vae_scale_factor_spatial): + The height in pixels of the generated image. This is set to 480 by default for the best results. + width (`int`, *optional*, defaults to self.transformer.config.sample_height * self.vae_scale_factor_spatial): + The width in pixels of the generated image. This is set to 720 by default for the best results. + num_frames (`int`, defaults to `48`): + Number of frames to generate. Must be divisible by self.vae_scale_factor_temporal. Generated video will + contain 1 extra frame because ConsisID is conditioned with (num_seconds * fps + 1) frames where + num_seconds is 6 and fps is 4. However, since videos can be saved at any fps, the only condition that + needs to be satisfied is that of divisibility mentioned above. + num_inference_steps (`int`, *optional*, defaults to 50): + The number of denoising steps. More denoising steps usually lead to a higher quality image at the + expense of slower inference. + timesteps (`List[int]`, *optional*): + Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument + in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is + passed will be used. Must be in descending order. + guidance_scale (`float`, *optional*, defaults to 7.0): + Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). + `guidance_scale` is defined as `w` of equation 2. of [Imagen + Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > + 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, + usually at the expense of lower image quality. + num_videos_per_prompt (`int`, *optional*, defaults to 1): + The number of videos to generate per prompt. + generator (`torch.Generator` or `List[torch.Generator]`, *optional*): + One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) + to make generation deterministic. + latents (`torch.FloatTensor`, *optional*): + Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image + generation. Can be used to tweak the same generation with different prompts. If not provided, a latents + tensor will ge generated by sampling using the supplied random `generator`. + prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not + provided, text embeddings will be generated from `prompt` input argument. + negative_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt + weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input + argument. + output_type (`str`, *optional*, defaults to `"pil"`): + The output format of the generate image. Choose between + [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. + return_dict (`bool`, *optional*, defaults to `True`): + Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead + of a plain tuple. + callback_on_step_end (`Callable`, *optional*): + A function that calls at the end of each denoising steps during the inference. The function is called + with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, + callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by + `callback_on_step_end_tensor_inputs`. + callback_on_step_end_tensor_inputs (`List`, *optional*): + The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list + will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the + `._callback_tensor_inputs` attribute of your pipeline class. + max_sequence_length (`int`, defaults to `226`): + Maximum sequence length in encoded prompt. Must be consistent with + `self.transformer.config.max_text_seq_length` otherwise may lead to poor results. + + Examples: + + Returns: + [`~pipelines.consisid.pipeline_output.ConsisIDPipelineOutput`] or `tuple`: + [`~pipelines.consisid.pipeline_output.ConsisIDPipelineOutput`] if `return_dict` is True, otherwise a + `tuple`. When returning a tuple, the first element is a list with the generated images. + """ + if num_frames > 49: + raise ValueError( + "The number of frames must be less than 49 for now due to static positional embeddings. This will be updated in the future to remove this limitation." + ) + + if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): + callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs + + num_videos_per_prompt = 1 + + # 1. Check inputs. Raise error if not correct + self.check_inputs( + image=image, + prompt=prompt, + height=height, + width=width, + negative_prompt=negative_prompt, + callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, + latents=latents, + prompt_embeds=prompt_embeds, + negative_prompt_embeds=negative_prompt_embeds, + ) + self._guidance_scale = guidance_scale + self._interrupt = False + + # 2. Default call parameters + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + + device = self._execution_device + + # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) + # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` + # corresponds to doing no classifier free guidance. + do_classifier_free_guidance = guidance_scale > 1.0 + + # 3. Encode input prompt + prompt_embeds, negative_prompt_embeds = self.encode_prompt( + prompt=prompt, + negative_prompt=negative_prompt, + do_classifier_free_guidance=do_classifier_free_guidance, + num_videos_per_prompt=num_videos_per_prompt, + prompt_embeds=prompt_embeds, + negative_prompt_embeds=negative_prompt_embeds, + max_sequence_length=max_sequence_length, + device=device, + ) + if do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) + + # 4. Prepare timesteps + timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) + self._num_timesteps = len(timesteps) + + # 5. Prepare latents + if kps_cond is not None: + kps_cond = draw_kps(image, kps_cond) + kps_cond = self.video_processor.preprocess(kps_cond, height=height, width=width).to( + device, dtype=prompt_embeds.dtype + ) + + image = self.video_processor.preprocess(image, height=height, width=width).to( + device, dtype=prompt_embeds.dtype + ) + + latent_channels = self.transformer.config.in_channels // 2 + latents, image_latents = self.prepare_latents( + image, + batch_size * num_videos_per_prompt, + latent_channels, + num_frames, + height, + width, + prompt_embeds.dtype, + device, + generator, + latents, + kps_cond, + ) + + # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + + # 7. Create rotary embeds if required + image_rotary_emb = ( + self._prepare_rotary_positional_embeddings(height, width, latents.size(1), device) + if self.transformer.config.use_rotary_positional_embeddings + else None + ) + + # 8. Denoising loop + num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) + + with self.progress_bar(total=num_inference_steps) as progress_bar: + # for DPM-solver++ + old_pred_original_sample = None + for i, t in enumerate(timesteps): + if self.interrupt: + continue + + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + + latent_image_input = torch.cat([image_latents] * 2) if do_classifier_free_guidance else image_latents + latent_model_input = torch.cat([latent_model_input, latent_image_input], dim=2) + + # broadcast to batch dimension in a way that's compatible with ONNX/Core ML + timestep = t.expand(latent_model_input.shape[0]) + + # predict noise model_output + noise_pred = self.transformer( + hidden_states=latent_model_input, + encoder_hidden_states=prompt_embeds, + timestep=timestep, + image_rotary_emb=image_rotary_emb, + return_dict=False, + id_vit_hidden=id_vit_hidden, + id_cond=id_cond, + )[0] + noise_pred = noise_pred.float() + + # perform guidance + if use_dynamic_cfg: + self._guidance_scale = 1 + guidance_scale * ( + (1 - math.cos(math.pi * ((num_inference_steps - t.item()) / num_inference_steps) ** 5.0)) / 2 + ) + if do_classifier_free_guidance: + noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) + + # compute the previous noisy sample x_t -> x_t-1 + if not isinstance(self.scheduler, CogVideoXDPMScheduler): + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + else: + latents, old_pred_original_sample = self.scheduler.step( + noise_pred, + old_pred_original_sample, + t, + timesteps[i - 1] if i > 0 else None, + latents, + **extra_step_kwargs, + return_dict=False, + ) + latents = latents.to(prompt_embeds.dtype) + + # call the callback, if provided + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + + latents = callback_outputs.pop("latents", latents) + prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) + negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) + + if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + + if not output_type == "latent": + video = self.decode_latents(latents) + video = self.video_processor.postprocess_video(video=video, output_type=output_type) + else: + video = latents + + # Offload all models + self.maybe_free_model_hooks() + + if not return_dict: + return (video,) + + return ConsisIDPipelineOutput(frames=video) diff --git a/src/diffusers/pipelines/consisid/pipeline_output.py b/src/diffusers/pipelines/consisid/pipeline_output.py new file mode 100644 index 000000000000..dd4a63aa50b9 --- /dev/null +++ b/src/diffusers/pipelines/consisid/pipeline_output.py @@ -0,0 +1,20 @@ +from dataclasses import dataclass + +import torch + +from diffusers.utils import BaseOutput + + +@dataclass +class ConsisIDPipelineOutput(BaseOutput): + r""" + Output class for ConsisID pipelines. + + Args: + frames (`torch.Tensor`, `np.ndarray`, or List[List[PIL.Image.Image]]): + List of video outputs - It can be a nested list of length `batch_size,` with each sub-list containing + denoised PIL image sequences of length `num_frames.` It can also be a NumPy array or Torch tensor of shape + `(batch_size, num_frames, channels, height, width)`. + """ + + frames: torch.Tensor diff --git a/src/diffusers/utils/dummy_pt_objects.py b/src/diffusers/utils/dummy_pt_objects.py index 7b3c366ca8e2..59b6054d97d1 100644 --- a/src/diffusers/utils/dummy_pt_objects.py +++ b/src/diffusers/utils/dummy_pt_objects.py @@ -197,6 +197,21 @@ def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) +class ConsisIDTransformer3DModel(metaclass=DummyObject): + _backends = ["torch"] + + def __init__(self, *args, **kwargs): + requires_backends(self, ["torch"]) + + @classmethod + def from_config(cls, *args, **kwargs): + requires_backends(cls, ["torch"]) + + @classmethod + def from_pretrained(cls, *args, **kwargs): + requires_backends(cls, ["torch"]) + + class ConsistencyDecoderVAE(metaclass=DummyObject): _backends = ["torch"] diff --git a/src/diffusers/utils/dummy_torch_and_transformers_objects.py b/src/diffusers/utils/dummy_torch_and_transformers_objects.py index 4fc7cd6aefff..94cab39b69ba 100644 --- a/src/diffusers/utils/dummy_torch_and_transformers_objects.py +++ b/src/diffusers/utils/dummy_torch_and_transformers_objects.py @@ -287,6 +287,21 @@ def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"]) +class ConsisIDPipeline(metaclass=DummyObject): + _backends = ["torch", "transformers"] + + def __init__(self, *args, **kwargs): + requires_backends(self, ["torch", "transformers"]) + + @classmethod + def from_config(cls, *args, **kwargs): + requires_backends(cls, ["torch", "transformers"]) + + @classmethod + def from_pretrained(cls, *args, **kwargs): + requires_backends(cls, ["torch", "transformers"]) + + class CogVideoXFunControlPipeline(metaclass=DummyObject): _backends = ["torch", "transformers"] From 61c85f79c9fa0eabbb336b600eda8ccd07a67d1c Mon Sep 17 00:00:00 2001 From: SHYuanBest Date: Tue, 10 Dec 2024 12:51:41 +0800 Subject: [PATCH 03/56] update consisid --- .../pipelines/consisid/pipeline_consisid.py | 13 +- .../pipelines/consisid/util_clip/__init__.py | 11 + .../util_clip/bpe_simple_vocab_16e6.txt.gz | Bin 0 -> 1356917 bytes .../pipelines/consisid/util_clip/constants.py | 2 + .../consisid/util_clip/eva_vit_model.py | 548 +++++++++++++ .../pipelines/consisid/util_clip/factory.py | 517 ++++++++++++ .../consisid/util_clip/hf_configs.py | 57 ++ .../pipelines/consisid/util_clip/hf_model.py | 248 ++++++ .../pipelines/consisid/util_clip/loss.py | 138 ++++ .../pipelines/consisid/util_clip/model.py | 439 +++++++++++ .../model_configs/EVA01-CLIP-B-16.json | 19 + .../model_configs/EVA01-CLIP-g-14-plus.json | 24 + .../model_configs/EVA01-CLIP-g-14.json | 24 + .../model_configs/EVA02-CLIP-B-16.json | 29 + .../model_configs/EVA02-CLIP-L-14-336.json | 29 + .../model_configs/EVA02-CLIP-L-14.json | 29 + .../EVA02-CLIP-bigE-14-plus.json | 25 + .../model_configs/EVA02-CLIP-bigE-14.json | 25 + .../consisid/util_clip/modified_resnet.py | 188 +++++ .../pipelines/consisid/util_clip/openai.py | 144 ++++ .../consisid/util_clip/pretrained.py | 332 ++++++++ .../pipelines/consisid/util_clip/rope.py | 137 ++++ .../consisid/util_clip/timm_model.py | 122 +++ .../pipelines/consisid/util_clip/tokenizer.py | 201 +++++ .../pipelines/consisid/util_clip/transform.py | 103 +++ .../consisid/util_clip/transformer.py | 737 ++++++++++++++++++ .../pipelines/consisid/util_clip/utils.py | 326 ++++++++ .../consisid/util_clip/utils_qformer.py | 166 ++++ .../pipelines/consisid/util_consisid.py | 217 ++++++ 29 files changed, 4849 insertions(+), 1 deletion(-) create mode 100644 src/diffusers/pipelines/consisid/util_clip/__init__.py create mode 100644 src/diffusers/pipelines/consisid/util_clip/bpe_simple_vocab_16e6.txt.gz create mode 100644 src/diffusers/pipelines/consisid/util_clip/constants.py create mode 100644 src/diffusers/pipelines/consisid/util_clip/eva_vit_model.py create mode 100644 src/diffusers/pipelines/consisid/util_clip/factory.py create mode 100644 src/diffusers/pipelines/consisid/util_clip/hf_configs.py create mode 100644 src/diffusers/pipelines/consisid/util_clip/hf_model.py create mode 100644 src/diffusers/pipelines/consisid/util_clip/loss.py create mode 100644 src/diffusers/pipelines/consisid/util_clip/model.py create mode 100644 src/diffusers/pipelines/consisid/util_clip/model_configs/EVA01-CLIP-B-16.json create mode 100644 src/diffusers/pipelines/consisid/util_clip/model_configs/EVA01-CLIP-g-14-plus.json create mode 100644 src/diffusers/pipelines/consisid/util_clip/model_configs/EVA01-CLIP-g-14.json create mode 100644 src/diffusers/pipelines/consisid/util_clip/model_configs/EVA02-CLIP-B-16.json create mode 100644 src/diffusers/pipelines/consisid/util_clip/model_configs/EVA02-CLIP-L-14-336.json create mode 100644 src/diffusers/pipelines/consisid/util_clip/model_configs/EVA02-CLIP-L-14.json create mode 100644 src/diffusers/pipelines/consisid/util_clip/model_configs/EVA02-CLIP-bigE-14-plus.json create mode 100644 src/diffusers/pipelines/consisid/util_clip/model_configs/EVA02-CLIP-bigE-14.json create mode 100644 src/diffusers/pipelines/consisid/util_clip/modified_resnet.py create mode 100644 src/diffusers/pipelines/consisid/util_clip/openai.py create mode 100644 src/diffusers/pipelines/consisid/util_clip/pretrained.py create mode 100644 src/diffusers/pipelines/consisid/util_clip/rope.py create mode 100644 src/diffusers/pipelines/consisid/util_clip/timm_model.py create mode 100644 src/diffusers/pipelines/consisid/util_clip/tokenizer.py create mode 100644 src/diffusers/pipelines/consisid/util_clip/transform.py create mode 100644 src/diffusers/pipelines/consisid/util_clip/transformer.py create mode 100644 src/diffusers/pipelines/consisid/util_clip/utils.py create mode 100644 src/diffusers/pipelines/consisid/util_clip/utils_qformer.py create mode 100644 src/diffusers/pipelines/consisid/util_consisid.py diff --git a/src/diffusers/pipelines/consisid/pipeline_consisid.py b/src/diffusers/pipelines/consisid/pipeline_consisid.py index 226bd18f8761..31024826eb75 100644 --- a/src/diffusers/pipelines/consisid/pipeline_consisid.py +++ b/src/diffusers/pipelines/consisid/pipeline_consisid.py @@ -45,8 +45,14 @@ ```py >>> import torch >>> from diffusers import ConsisIDPipeline + >>> from diffusers.pipelines.consisid.util_consisid import prepare_face_models, process_face_embeddings_infer >>> from diffusers.utils import export_to_video, load_image + >>> face_helper_1, face_helper_2, face_clip_model, face_main_model, eva_transform_mean, eva_transform_std = prepare_face_models("https://huggingface.co/BestWishYsh/ConsisID-preview", device="cuda", torch_dtype=torch.bfloat16) + >>> face_helper_1.face_det.to(device) + >>> face_helper_1.face_parse.to(device) + >>> face_clip_model.to(device, dtype=dtype) + >>> pipe = ConsisIDPipeline.from_pretrained("https://huggingface.co/BestWishYsh/ConsisID-preview", torch_dtype=torch.bfloat16) >>> pipe.to("cuda") @@ -54,7 +60,12 @@ >>> image = load_image( ... "https://github.com/PKU-YuanGroup/ConsisID/blob/main/asserts/example_images/1.png?raw=true" ... ) - >>> video = pipe(image, prompt, use_dynamic_cfg=True) + + >>> id_cond, id_vit_hidden, image, face_kps = process_face_embeddings_infer(face_helper_1, face_clip_model, face_helper_2, eva_transform_mean, eva_transform_std, face_main_model, device, dtype, img_file_path, is_align_face=True) + >>> is_kps = getattr(pipe.transformer.config, 'is_kps', False) + >>> kps_cond = face_kps if is_kps else None + + >>> video = pipe(image=image, prompt=prompt, use_dynamic_cfg=False, id_vit_hidden=id_vit_hidden, id_cond=id_cond, kps_cond=kps_cond) >>> export_to_video(video.frames[0], "output.mp4", fps=8) ``` """ diff --git a/src/diffusers/pipelines/consisid/util_clip/__init__.py b/src/diffusers/pipelines/consisid/util_clip/__init__.py new file mode 100644 index 000000000000..fa2d014bbfe6 --- /dev/null +++ b/src/diffusers/pipelines/consisid/util_clip/__init__.py @@ -0,0 +1,11 @@ +from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD +from .factory import create_model, create_model_and_transforms, create_model_from_pretrained, get_tokenizer, create_transforms +from .factory import list_models, add_model_config, get_model_config, load_checkpoint +from .loss import ClipLoss +from .model import CLIP, CustomCLIP, CLIPTextCfg, CLIPVisionCfg,\ + convert_weights_to_lp, convert_weights_to_fp16, trace_model, get_cast_dtype +from .openai import load_openai_model, list_openai_models +from .pretrained import list_pretrained, list_pretrained_models_by_tag, list_pretrained_tags_by_model,\ + get_pretrained_url, download_pretrained_from_url, is_pretrained_cfg, get_pretrained_cfg, download_pretrained +from .tokenizer import SimpleTokenizer, tokenize +from .transform import image_transform \ No newline at end of file diff --git a/src/diffusers/pipelines/consisid/util_clip/bpe_simple_vocab_16e6.txt.gz b/src/diffusers/pipelines/consisid/util_clip/bpe_simple_vocab_16e6.txt.gz new file mode 100644 index 0000000000000000000000000000000000000000..7b5088a527f720063f044eb928eee315f63b2fc0 GIT binary patch literal 1356917 zcmV(nK=QvIiwFQl6I)*Z19ZK~vMkwgB)E^SaG(|_PzuTJUep5J0`N~DK81(h@F{(W zxN)TxRpd|fvY8l2bh9uNNe~1;Qsm*`zuHufsU3f;?gfyU@7){Weg+%V)YQIRE$xrC zeq4t3M~}HKs~`QZ|GE9oU+wSve|WU(*3Z-Ti~r@T|LxKj(`7Gim(u>Z7Onkry|nhf z{Z_R9$DcocaOtO_C?efA9V8_G0Eg*J8Fm z+xYK;eN$i5_?`6oQ_=8WTL0%e=^%gKm6r4`|-ox)!xtl zyS;qJALFq1Z|v_Y`?JA*_sK_{?a#`WKW}=D(f)F>zZm>OZ9y*c5i7M`I{VFM(PPQd z8@>1zn|`&**-T$V;DjxnW z?d1PrKW0ncVr{XY>GiM0idQ}CS!VkQ|NWbGc8z^V-+x_gqjfNRQC57H9mUCiw(>V= z>=U&#Pup_5MfwSQPW!%f=1H)h+x++N^Vmnd#eDIVTjM6+g!oVUD(tN_pjLOqz?A7SNq@B_P>Wd`j5Z*(|;>I|L*c;e>mFzY>V5t82B;!h<@sH zoa~it>+E1$zOw!DuUWCdjbF6`yI!VMe8YJwu2|m7)D}-a1Ec?Qu{X8fwI#NfJ1*1g zKk?$b>s#$e9=;5_FYsjFU-KB1IKz0Y-ahY&S6;bnc1IR}@!8k3$3|`bANVyb=W4$; z*yY;&C3~!Q`pai)k5cg}`a0so-pb6ApJ?`D*kKYuZ zzp+O@Y%|h=4Kt0?c|A~MR`D&J8@oTV9?>kpFz9TT_L$|Q`!m>w9G5+QQ0K0~<6>j_%bTsyuI=%?!=uRb z;HH&0Etg6+^cg1wSNi4mvR|{u||`YjttMNZ749c5Qcw z)0O_qc5hiOlT|Z>ukfP%ro{htqDFAKhUQCglW0lbWJ-umcD&Y>{shgP|-tfJszdMY_oPG znVNrq7n=C?mqCuzE?{~2<1dR(zl9%$wYu5L9k{WbOzPwow1-=jiNYzd7n3cT53N;M zeDE4$WBgzpa-}$nb{&UU)gC4{{YRUR&k#GS&|#2;*kFa%i!QnCC$IhH$KOAzH>-X1 z&%5@ku7{551_KR4VORGm8<9TZJ8mPlZ~^Ji!VlR0)nTG#&*r(2HEVG_UcX2K7HyC=FWfmz-hzb#v1K90d^+JL3e9Fd{x6lua`$(;EI)cX*>E2 zEzSTNZccY&{4@JDPWk0_xGh@|7}~PI|EJe^*?&f~aN(u1Grh?u9yomi?9$;@?tv#N z!%ht_wz$5GrTmQ_FqrUORjU&LOM7{m9Zowkl=_SETI{~&ZEX9JF0~s6Tj$>2=#Srg z{-*f!Grur)5M<+Er4;nF+vzg?J&(m`Z}7xzxw{!kF9!2>mG#~c?A{P=PJV4H+}QCY z7P-LS%((Qn(}%tChCjOcG5=2Ci&Njy{;XUuk6%14R8Tc4(pJd2_)V~@(fO^1fwir) z&v~}3KeKtXZ~0OVM{UE@H&b8#neVm7?z z6{{b{*Y5gmp^Ys5gezztmi_ZXuCtzT-68;=aL4ZcLZyc_b_=w0W_C86FuQzu+%m_V zHJz;;@Qx8lsZe0!so%m4epP(iUui(piJNC1Z?^d!M|tRx2aNbtC6XPknY}z82@xUe zmqO&BJsrN}OvX7!S0(%SJ0^Je%y)OAaBMiu`nqkO*ZkD*0=88iwPIJ97`H9=Jj&)b~(xj&pLn2w0*zABH3>!BiZ5pTy>g64w1D*hrJ+7?gH%SATuVbAR025iw?d%ZtB`n0{O9fGhE z>Hqq`PBvj9WK!<>6I;Ozt}kc&i{Ebr5YIS^D~i;$)l;^G+#8qZ`N9j<7H3(+szivC;i=_fQI7sX_DdE^gu2lCfVzTBef2PD=aZob-k_6i;F)C>Ii&DPMZ6yp5a_qN7w zZ1#8Q30j2@c61|Yp7A6-)`9-oqU}n5S=hp*Ksnv1YXB4W(`Jz$Fus>Y(NsB{{uZk+ zFw|Ctt#?^)q`y-r0!T)!^i6l;jKxW21WwLQnSHgNi`5dZ+eLqWtVK3p_Jxgw_O=8) zqTTYrpskT<0Xz^tZ8oLxL*FSO#AZw>3N9lv1?S7Izb zvN6w5b=}$uSLEW1l^sCVB{4FMTch-f$2 z*rinBiqA=Z*6W=gy}5{4cF`QoB;R9~=H3R1ppdX!)8Aih7xVG7XYI3b><}tcv}!}~ zlt0>wN^yQEIA>%ehc`5D)f_df$5tcyZD7k_fc)fb1jv994es&Iq1Eq^g7|&h`%|L0 zGjY1a0lv;i4(@^4*zrhb^UJue3I@wy$)8HM@JA^pfdJ1v%DJo;DE}PJl);T_}HuJVjERQ9R+8=R&AYCiRt|3 zd0W#Ln9jJiz9z}QweZ`Br5fK?Y zcAcP+^iC}LloN_`4braO-N&_WhnzKD)35jqECX`H6}0Ob2*MZ0(JzqimT-G3ciOj* zFa44W@FnSBG3|an;tbk@Pi?Ht4kO0U$nL2-Ae|&jjCHUFT(=?NKC#+?P21t&dhnEN zOTukfz?s|-Z7Oo6i?s#fVs?&R5w6#5No0(Siz0flyKO(;_1w+f{oq`@*|K+L@_c_B z(Lia_lKxuTal>_4j-ncH!F#`~LxA|o%wPa4Mq~VwHp$L(N>}@^pSQ4-TZWbPSQq9V zVf5F0Y%RDkf9uu?S%Zf_woaZ-mkFI)k)slmL~U@oglAguU-t83<>!P>kWdwiZ_j?m znH&*l%QCwwEgK7B%j_mgRY|u%P)j@Jb{z(lX}99*gT<>YJIH*i{9FtP;Y0}2`Qh6m zd+$f>>c~tEUJUkaCZ>}?gJL~+nSYF5PDYMclOnDX(avP=IgYv^i$%7(p8N^}aZ4%B z+S})irQC!&Ic!7Ph5BaU&0@!(wd~1_xJ3j}G%{Nd$HJGzR>jiWAu{F{&UOP(!49j1 zsTQSfi*0T%D-rSW771Ax|I%V@mS_B~-Vid)tN*1EQ-*j*rq?5#gq*qQ`Zm5zcWuTM zH6a{+w_0UBlN;Qw`+?Cm%!2mF#Wp4z5rv>M0!wC5b2ya>$+U{caM$L04uqZUCR(GxGqB>#HwtSwq5$C{R`<+G9H$MQ|DNM5yINk{!Q_S3{2c=_dsOZil;fJ6YS8!RRmDBSclDfw2y1M;JmgbDlTs zQIH3KVDHxmJ>6A_P_TSOE_1azJrm2ed)?YymJ?Ep$jY&KiCIPalDwJHQZZX})q)hy zlz!j-_1eY`;5- zmkwWWCmOYYLH>s0!*|3fx?#}6Q=g;zP4aw!HVbIIbnUOhz^V7H_}J_1%%N%My^ z{kpp|^!R@7B-A37w>JW={7NAZ9GI5%aksr*J?D2Rn?ApP8us%11 zEp^{v*D)m*J8+di@KDWr$$7#D?|>fcdRvgT!Zwr$66R621|=%9{u5zP9LE9NpAJ8{ z^%0rv3SNM>^lg}lab5|Y^mb|o;hqSpnn(uh3DO0`{X^A4S@;4Zv(=e|Wkk-}XMA}> z$qdi1qE2ZK#2^a(z|TO9f}ke~ak%Yjcy@>FHP>sFw~pmGU=1xVGy_{}5v~@>?2#kg zA_6HFi~8&)$VCS#Nn_$rHY)3mroIDOYJ-_lw+P=5AVf6Y(4CgHa$y?2BkMWGVaHaC zc=&!$qyS1mD|FP(AY5CE0~}uV1$Sac2~@&-dx4$%amguD)3R!jKKb4&g!uZfJ7SLH zR^p`ZC2?XHDWm`%#xj`Ov<^V6@!;-yV8T2rIkbnRir7uq{Sm(?=+AH3tHr~I{Q@%`cnVM^0&Vvf9 zT^RuyJmAW-%2js-{K6F)z5b*K5nY zwST0z=~BnD+0x>EDZ*ZZ4WSzgq#hn>Bo{1V$Xhrk|N69GprK4rv>e@&En-16{RT!@ zE?UKpq7s4h&`;$K#^oOM>?_d6^mWaV>`h>x^awO{4IO!LTn98 zCM)fY&}@b)UeEYV`f;-_w!!-7RUukGng31vB68^V>_E*;Zu=T32U$C~Lgp3f;@&DJ znIDSgnBkj~c(GO$pel;vwdcYEc4Jfm_-Gxk!dv^2pa`x?-HR?@j&f&*LSC&*4;XhB zaVspXO1VRS3bqnZSSP-qGt&+rH()X{1QR>Y8Kd?V7LYW+el}DwZ(;wP+K}tO6$l&-kU`CL>6UNqN3TK;o-E9?`f_c$z3w~zg)W;V z(#xLh+;(FwF)?E6s2m^^Awt=%oh*Ttg3H+ulOEFwmpe*dzb;NtY^;l z=34|e9%fG}iBuU$s(e9P#hnd+B9ck{Y~C#cS`Z+0ww4{f6bHK#f$tidWMAo^{20k% zroaVYupL3!RfURB#gO<8@Ra}2G2UZBjJa-#N=T=0ueQ#Dy*kj5&E2GTdm#Q!Clyx6 zxw690QSlq$-;@oF2%XKD-GZVEb_y1KYy(!}ad!{#!{Ucw6&Z5$K`v>D>w{8kdl7{c zngN^@FsA@iR&XJAye|>c$P4Bn>JiR3Nxt9T0U09e`V)S_eP>aT%bdP`dQ%`?fj!U; zx#+jw0PxF7^wU+uP@OWJxwKpnL+*06V~#Z8Zfa0Y=K(B*R)2Vfj}>5DE}lT&B1LEU zy(8A}2U3Jq1aRRd%81OKf+@{gAyfp){7}5p;_LmA9@^@KDSFE6w#=o#Wuh4&4ETTz z)XF|(=h9ILb|uMuX{SF3xiC5-9i1G`2_NDGg!0h`lU+p@t!G1T3~CC>m9vA5mQn3| z)D5glI|q-xO;1w8vxvu{8}fF@K_DUMQb83!7dbkC{o#c9@g_-=QHMplqC_?2xp0~G z)q;$T?~|S%SZ44U2q1j^Nuhs%O#q>6l?z)5neBEw5t&>vaQKFIJ1kJ&qO$R7voj~N zvpMi%=-jZtbwT{B_NNTRfA|tdM99pXNUGg0nC5UabFk)X{?Hq#0YIr|9MNzvI1Jr! zs(LU1_iq`?PW5lQo;WXG3*}0IQ21b90%DNDR9iXuNZyAiB*oIeOSf(e*CU|8-p!-< zXRLqXO4sm4ulTZ|!KJ>T`e-5ayzYq+r)B6O)&=Ht^1E6-k9m=vJ_D{N5fvF&s(c(O z6BDiUlQPYjx5pA zP2}0{7XK-H14z|?Q&J^ueBewsNf)f0XEEY`rw;Ig~iN0`35+)7HY43aQ@f09Giac z>mwz(Z#e^9(_P1F9^jp)#NTc$81L)sP6;q;H%ELD5UgaMG=uSDip*zB{L z-uD#IGiQHzWh|#smEOxNq35T9Rs3geifck@IkwWtzl-fEz8Lm%ZhDd9PBlm`n3eHQpo43sQdxfQldR*^aCaS z>B%EKb42sd1CRNPU$1R219XZygbVB5pQ`ElYMja%C0UV<5VlS8)pLHUg7WajVA>ps@XDsU_b3h2-{4^dfEp}k&^L2PUpnV@*3EY9KC=2 zp*JOR7)&|YzI_$Hc-vXx^*@JyThT|03=cF`e`IvcrLtLKWXk&v!Pg3aCc{XI68fB1 zngbdaRQ>!!w{hsu?{?XP=Y4E}KU<)Cs#jQkIrG+Rv7U%IV>!j&8iLIH25&I077X-L z)DqLv*b9MhA6&LDj3kgG#LT>`ZGuPns6r!$XO98ehW#+Jox+nkW*Ba>WP&>7&dq5@ zD}vsW-Paz)$li~W97bdWJO!DgJ!IqyEePm`kN#{&nx6C2APPIwG_IzOTg2Ks8?vyk z;b%G^;$+HRszK26HRE3>_z$vj&s>aWZlMe|!vc{oFXfS2k^Mh)*2i^rH zmIo6gPd`tj`d%CBO(;A0+;`<;YK5|I>kh`rmOPYd8L7##in4jH0+yZ4LG&^Z8u*fk zt6+u)+2Ce9wU~fl+T_4fr)S8m8D(w-`=a2x zq6lrTsT*DI2LN0)d^#vSD1s+&C+-jlR(*Z(q8*0%lsEsoHtOxlS>$P})QT!;qrH}zo zd#g1P9uS}7>4FXS<~O89CAM*t;ShMhocOM@`c3iaoAmAqszJhH1GcA>(Vn=rC*I_O zd(+y9-sW^7WRZY0EL=O%AI+a`TW(QXS+Wc30V0y+(G33PSrA+uC+r!mXt>_h(2D=> zk1VvKil%{R*=e$k!o9Y|$c}M5(T&|LE>Q$ZX!Rd#x339g@w^r7hi2BjB);W}Yz??a za7}UK=Z!-TxZDGVKAk<3O4}N=a*veSpb0br38&0A-gH~rh^&In-C-wa=Ml-Q*y+*3 z)h-)n)>{10?1BsGrSA%V0241hPhKMSr+Ly72}uegR1H2(4lC7iQziYP;$*qSw#=+5 zl^$BNbZ-})Ki#jvPE>b=y__$t?fj36Pd{UwB3WG9ZRDSoqI0CSm(C1Kr5pm_g&j|K zAoHc{~pv$zw9YV_Dt=AF<>>;<9eiOB#ZK^h4LLu!XlZYA3;=penOdMwV4UPo>6s z@&hi@k=cvu927Rv$37Ct*)JUUQVZH^-6jg6JtEh`okonl=(?zwfy0n0&bIeag|juT zRNpE>?s;du1t?V2*=WP8xag2)zxC#lw8YxU@d=*IlpF?*FC~uAzN-qMn)R-%GLxV7Po%!vj=M* zP;3=mvU?h7KeA`~RE=i7nS#;`W#gr&+BVZEbFp!cD#uMzJ zm>o=r+8uemnnU2XOQ)Ow26;vH(cE!9m<&0z4&JOB)Z9=%48(sdFxpR#MyT z?K(8hqWHckpr{e!uBoNj-)ubvr9ld0+$=N#m9~b-nTH@^@SWSv8qfuPQ2Ze6M4K67 zn+K3xzEI`KDLHExAX6hqMy6&frF;UE)xA?KIJQs7@I(KNAT3EsU1W}!V}NMmIOd#z z1-2LpO$D|@0g#<^6%f4Vkq-jvHLz*D4_C?E`%Urbr|G~XLOo03xfAuvl1%aW@6x8W zfvmOfD3RIOSLy`gr2r1N3yLk4WqpmqrauSrQbA)&^_+yfZP~G~wC0;_?rt+5UyIvZ z`A%%dDGs(fx=~c)#4U|pOtk0Nn$#IC?cYUD}Z6 zLNjy&Ck1vuI!FIdeEz5Og!kN)ht}nu*yB?6Q$BgaoFVdKB4{$%#hp8`LCOsVP&tn| z!Sb35$#;QrZII`>S@ol3&U zzItaflL(Ri`8a`dqJ|$7$P@U}v6nS28mRLq*&@8JiRNXddMYReHHjR@jZ!50i4Szh zAA>Od6JYrDB~=*MP#Q;s)dECI5vxU|n~nYcNbG{PcOJc|V@3ujnnicy)-L9mp*A8X zRwG6O2avvY4sYzr7fT%JdWh(?3F6O=hkxQtiz8 zDYTy0+m_a=7c#Y;vJ6C*`Q{h5R*WW|W6-kJISGgau2vqYOzjVA=6(jR{GCw~ba7_r zK!AW5jiUt0?w9iDj@-+{#{9lmf(+Dqc1zgsr90EXCxl|#>dG_JU3-$8+0c6R5A@5r z$085QQ{z#rTW368fg2x|_`QL@60XB`Awqnxk2;6S%iz|4o@D{28*?Zo?w0orEb`sa zuHVc@oEb}vp|!JZN3_f`2t%{uypDMThA@!m=<(ER%7p;it`x^Zzn};C55lJ#g*(6n z+}bRkK;;|~ZqTn3kxPfF=O%t&gr@_ch3M&_Gl0*^wBC8mP0T3nFaf**0dtdu;sFch z&EW(dzwaogZV7Qj_GSr~vhgw$@`!zlsdvP7quch~k2?T6S$Ik@kYDc0WqZ6p=jfHa z(-e#)E`?x?^++JFzi3iYLpY2xz!E)`OoGeq4Ly^)A4|{w^k4Dl(c#vwxfENWv~^{T zVMt0Z8RW&&Do923J&EhtSpW*xsh}ai4&d(PNeb2igqoBv`N>ytvRZv^4HU3S5^Ca* zB@G@5O!-+X#a+0;ovZK(sO5)>yk)9;Eq-Y9Nwld%eca7*Vve{4Y0aHp%jn&NrB z_CX?^dM}q<))S(To3w6h-vP74js-xoOP5^nRf2 zBt?L=PqfiJcDYnh*xuChcyv@8xuv4MrOu7?5W`7*%ME{-rGDlAK}c{|c4hBUtvb$I z5$HSVZ62!s&TnHhaoKL!2|)$0y*y^xv1m!@bAfcN*}`12G$Vj=0}|x*Sn{5qZDkkA z-=``Ic~HyLl~%PB`?^xR$Wr|$yW(q|!-M>iw1`8XH{h7C?Kz0HH9Fzs9$e&B1tQu7 zUs7-$RR}o2|E)xO{4(#VYdq$Ni<(uC)uTs;L29CqdqF+Pagb}VlYhdUO%~jXB$S46 zGFepq7P{M#EX}KV(DXuY<#JN=g2vJm#d|Y{PD}uo3q81>f3F11vdBQX*ERy)vO^rU z40F^X!tZtmLiWo2H1(? z`Vu@;W}93c^0c>%c1=3%e_s4K{|R<@Bm@xi(!yGt->Da+=^2Y=N#?AE%sN5ciezFZ zP+A|h8jqebXy*Lg(U&Xh??O?d1K*}JRc3{-%7Xzr)^=>Vw0>r*{w$&J48nq81tD2g)~SQRB$3gCS{-0n(LXpf6@jzXnY8iEdyB^)Ftw&Viw zy;UO?*g6^7-;lu`dinp|%~2gSI&V1mr8*COnYfm_Zh|5v%bWvPe4KjziVU03( z*n5akEHEMUG2}jOil*AO#Np0G!|inG!G{w2+&m|GI&z0lxyJ3Cc)|p3ok1&@iHO!A_lzAT*nM3o(}}IwUrg-T@!v4(>3Jxs=fqZ|N;i9LTcE!Z0@K1NC)o zg_{q$-YXS@OMTnuAF^g${Z_f^9j8h$m!)VMJ4z#r?N(yJw+pM7pa{&lpB$xFD)+n5 zn#ZNxPlW|EtRQ!8_e79Aj20#&Y zQI}zew}K}uS~cB)L;+qVWEXE(RQ5^wl^dC6aZW|j`O(q~$qnF(MIb*NXL8OQ>WX}N z=}bg;zs-_wXKgI;d&`4ZScF};amw6^t{2f2pyMracoeVIPt=w}q}1)ZQ1oju(G zDN|jYK_HHDz?#c_r_Nmqn}Ox)l%WY@NF2u~BK{{w@P1hQ@Q408)TEs$uDjcbLvuys z1JE3@%!E~P-!nwffXpm)otNyhz8KZB$=HB05vdl6Le3+C;tSf7V%gB$Is|M{$urgx zn;#`{-j7QJ?v#?*H1vl0I+Muw#~K1!^wwrDc1#qRai#ZYEV1BhonQGBc*+B1M3in< zDrj;-N9H>VwpwyKbD2gysH)h9E_Qt~)@w*Zc$?gqpq%ux&o<8zpbWH6r%0oQ+@3I8 zzuY5wCbFuVH55w@ilTI~zqAgh0E*LRe&Su1W`5Envwl#bR==GDWFP9fOchbHniIl2 zshI6(wJvj)Uetr2_J?{+YaPeG(p2SB7{#Mm;px7C*cj*;DT4m>mq zoD9hl{f2*nIT`vQNNr2Chz&C(XZ^dnQxKXC8VJdG=9FD+Q8vM3+(i_V4DkbfqtN!8 z+4izi04>p=vdV*OyXBPj9SH>%`ANw$dNEhwOPd?(^+03{L6Atlct(F!eExsZZyn*L z<+ajZ)FJ6a0+k~A6n+Nmg#gIE(?UhKel@I9TA}h|3Zcffi~0nOrofBBvi_7)rgJ*O zs(lN+ril)=pM;MVj;@2!pk(0NGGlt6*CH=gv_0RZ=ufJcBio^PsyIo)YJ17?cg_EX z?l$R&k$@drbj8;Cm#>c~3$7u!k8WEWk7pLHKxF7GGj8JSZ~Y7?!2g5a9m+*gL$gPt z>?n7jirZ9P5^timlUnA!g2WHFglg#$VrFY?*|GfD0JFS*qbqiugiT(k1IOk^& zW!SREndk_qNHHfedt82t_f-PHfF(O zaJ}jiZAdaLUT|h`Mu&-LYReR(2c2tf1A_U+xC+ksijT&jc9Htwu8Hn;pTomex$te?_L59TCKn&0x8kRgkK2UYJ&OK@-*4NQ*A)XG4j_7a-bEs`mnuty$fV&$H-{rcvPsZTi(mpBX;8}|m&`e7afd|x z4`jy!SRx**PpQfF)>kLYr5~u34XChMPv`&p#rM7|dzMtJ5PpPsW~eTBVCf*p9Cd7z zqgfgVHsS7}@jYwtZgU;1IYuzPWgxBg)E0D1iZXZoDBL$u3*PINm--B)Le+O8$0<@e zC~yy#=)F$zdB61OBEg=wA8EhndA_!`d4Vi)?vvYmm6$NZdBixZK=}@+#f`-p)FS(v zD4GH3ve0oRDG8oAKlbl|Yn*sHNC-Ke(oQaEFD;_K(9nQHb#<0R`Q*|k%IgRH=X+=8VH(aA#>{}pkT zozPoI*kwjG8`^11(n*XKZ(t1`_qt|*U`1pnP5%Y|7bN*O%?LY(HqUE<;{vB|2y;|Z z1THnNLMxoz77sgV(c1KF*Q-Xp&?uAI|rvJ*%PDv?X3}>sNpKwcE`a=ZpfRhKM-&c!~{JcWOJX+D$WP0RfN6QWl z#v<}eusYB$u$LTtO7u`(-pcwOSrNEAX-~=|D!!lFAAXPN4fnXR%MA69GU_c6H6~&~ zd*T*RFf;CLBF!W4qrB&Hw zTa5#a84bwj2DfpInDvf9;O-dM_PM#yP32KX`IAnz*>1hs2e`-}fzcmoy_Qrt@0Y}5 z4jMzUD#C{|422Vrnr$|{c-d09+6g|bR0^obV9l&)k5}8GE5*j*lHi$q zishH3|B!0q7%~#i0B)#+)~T+Fes=JcoQKwCQDXRj3Pi_RoAt(%RP%a*$0WUJ%_9anaz>UvJqxxyV%h+ z%Vur?q6}!$tjnxQ1rp$g3W`&Ex%Ow%j5q{6u`e+3=g=4Sda@U;EdBh@US{QnTR&!& zd=qkV35A9g-=q1&*<)bG`u#~-)beTtVg~zUXOg1JG-(NqBWo#sRTO{Ca|%({gJFdz z8AZp@)X{$;W{FZpG-tT=RrpA4k*ukuP^CYs!0!I_90dD}hRiuSeYzOSh&~VLIjpUV z`zPtb7(a@@l1O3ld6MG4)1zdz4IE1700Go0!9RWa1^ZTzGfIIYD+i^ePC^K49XUIo zzMgV;{0AELF584tUqz(~Q29R!&Ca0$^tv2#%1v#w4(1Wr-nc<4gHLV zCd1=2>;&9Dv^1U6dy8Ecz!D#eeXF*M_-bUoKWU{C^L^V`5 zFrpt|$1L{yj;l~02&(+TATW7wjvScND|KR3m;qjLYoq>>G)PY6ybj4|mr2Kdt64)v zN8SlrU?!TPH@R@si(WbtvrLmpY}+2;jeO(Fwt$*;;1IbjoBE&+jIU${x1$C+9O_%j zaJDd@6j*ynUj=cjzwb-8un8d$uu#3N$BVJ#>1!3PYY#ChITX-NydVg8B<2s+b%x9C z2zyR>z~2*s$gr+*%d{m&5(si(tKvH3Uqnx|g`i*iJ;=S!B^&3UI-thKV8hIz>X)X) zr6#aJ<-^2hq)?s1H&)3a@FX+ODiR;x(Ekxm4D_bBh`3q#HSM?Wfl^dtI2 zw1IPcSg zeoR71rg@j!*@05u+Dnw?pe6!`k5CbmFI8vEg=AcLpvqBHlw&$689#ZPStqO0X@GK+ zy!Io<_6ccEmmk*D4}Sn*2)YkGP|_r-i6#zibC0s z=`sNANH&#P<3k`%d(29ruT%PmIVMbV!_K8R;w3n>d=mPKiE}NP2zyrThf*{FCq+fB zgOap$PnaBNWI6*ItplFx5yX37tpw?^rac7YhaED&;O9nHH&9WXf;`7PF>(Y_o`QOm-lQh@y`JW-Az_ z>ETYpM@Dw+CpqINte`O@6=H)T(B`RF_2pQaT=2PO@MX(lUo{U@uzODPYfkKeg@Seh zi0-7EKsoHhOel37Hh+&bZHV&(@2Y6db*8u48f3Q1THnz8naSxXHqjb63e^L&!t8~# zuO$i2o08X3Lj;7RTJCNEvnqGK4*kSZpxa1L^1wpU&X9aLE-AO|L32WjV00Vr=i)Y| zyJ!VvjOsp0zANNAyPhmKx2@&lqJ+PU=N+Z<_RO8SDHTXBQDY7zhNz^5Mz?~%qeEvb z9$-WU&jImg=F#uOJo@7|fBLV*r@uZIYRk;-f`t5lxh}-W*W62%7;Rq2N@w$S5*+MA ztY!P!O@1lcl#_wM&0R3*o;V7F{@|6a0o%LsDOF)|6jX-bdz!D7h|@v6&r?4Kdtyl+ zMK@_vqLEI5YqVwdvmZKP`<{lVlNrEXKGmTdf%4#D4P!RJtoRDqOZm!_R8_p^vdvjj z-%}P3dyg$d*Mag~a+eU9qO1`r5pnAPyFpriwgOq+C@~WekiQ+&WgvSU0)Uevt!9*e z2W}8P8PmCYDl+@^5jFLz;y>uK(ILbWf`-xwq0Gh1!U;P;_oxbfbrKMU7%Lo|ZG@gqst)oU)*w$$Dw@q)kwA>>ZQ&ZoDy>WksAB1`EUJ)k%wQwvXU z2T^~TH43XAzEDd{`GaP`v#3NvuMdbBdd)B}98l}`*`~XqUmFg zC0GFw;fw6&@#PsMV#}vz2d|>mtZa}K!}8XU3yq1Y_U%o1mh=%}JEcRL98w7Feb05z zB*?s6t?qmOCo?9G#%C|fZG6suD zW5>9qXzX6Hde1T^SD>;763jVW=@?AVLqjCZOPDMs!k`|AxFdy-R_J!>Fnz?Z?q}{N zxnbH8Zgf)Er3_053T1eVq}N-UMx!PNknN&)O>c1HgSi{Ok+9abA{A7fyg4sc4Hi4y zYlOuF>C~Ejjm{wMCsf$F&_oW+Z;1G@!P8S=3`18PD2`pjxr_>-MKXA(!tuG95B-Wlpk_ znsa8>0y3CVG0qdaL<=m{@f6b{I9sS!Oa}0>>qw44H{v&+e@_+oF5Z2_{35TRQgtz` z)siFE)Ty5eL{hB7q(%!Pe3vzS?OIkA-6)yAu0eiB{xj>NtJL3>_NOHeRn@sE3)}v% z_@V7*6^Cn{a)B`S2;(+OhTj>3Z#vL$i&G*aZ$TFb-8t#{n-9Z20jhqe)ox*`znItG(O~jppDa>lc3{Brvd`m4uKuLLtemUnHN2Vt zgrDpU`ge7p^kYYuIS?eM3dd1HVH{2gT0-7DHZkW}p4gA|!Syv%tJAeACLjQ6JX^UHLIg2v-6LX{@5ja@r zmr;{qpXbc)p{Uh1_2)VbOY& zvdu$w5*Br4^YDlv#cgm#KrEc%tfwhHjD@4Mr3g6!kNfE3uEl84C3ggM zdh!Rg&xRhQzD1hpwjLuy6V8dNbS6Rv9Fdy4VDSzm>g|!pdZJB`ZY$0gqJghG8eorC zlz?%G`t4kuMhdq@2Y*r@_Xs*lk(57#@b*?>oHK=#Zo*Gd+XDefk@3hmp{X-QZksy% zeF$q+bI#?qqMHdzI434|AR=T=dj(G59`l)7@aZrPEryenc@)UDm-~qycRkP4X$g}Y zBbCr96p?k7(y)*yQti>!(dN1-CmU*;c6A&=GnTGOS`4E7CT$f#sADcZKm(7xYIslq zmce=(@@%j<1Qi#(X;c-S7H|fIrF2F^b?lzPNP8jkqX_(1ESd0(CIBI1H8bKAG^^hL zSf$=UbsZ2TRjD}Ix={>|Cf$ABPfTw>*D9iA+R$kR(-vMGO(h5Q0OMDl;Kd<}%7O`j z%sqP8i#%D(kt8T0@2nPHbhphf_j&A0MZ6i@X6P=gPP>!wc;|rBCMJ5YK21pj^|cqZ zM$uO06|Pa1WHn&lX}> z3%=IJ~FU1?lU-rZ;TmF%(xHFOz*>whAO z-fZ_m>ch;%9Woq4t3uP~Z_ceKSG9IwV@QcEPera@EexE6#6(^>A z+X)#QKYRE5w);yezlge#wHRm7RWwk@}dF)D@8$pq7wGirJ0@v0-Y6GJ#Cf zk$uYko~qo^^pA<;0?3QE>SkCGRCGa>!yqy9e@%o(URP&gu~H{3=zCLYRqzZ}U6UL; z-^Xy&4oSv4z>SpLK9FaO0hvM%t;4lBB&C#8ax-U)W2SnT%_j6w_A@NjOEV^1>A8xS zKIl81y|T$weE{sDV1D4o8|7Sp)??~kO%DiMzT+gb)nXk?h`JXW{jtBFPW(HxIys0h zbyP&3remeE>I~EXPmrn`$mWsiy|YBfquF~q&EiCy>lggX=Cq%G`klJ8e;Xd*FA=P# z$tiswY=GNu5t z8#32tm8|TUr|wEMS`}90nx?8E72Z03KiH0f%XD3M^)smqh;-j-NbOG^75Yrpo1+5A309>6tQT;>qc96l;tG z&0AeVBBK7@_loa*j|%56De`!u%SnoY66_M6fP&eERx8+! zQbz4?=P~97y`xrN1!na`0)TtB8DY4uq9mx(#*ll7h9(LK*EbEdfTBm9n&_TZe ztm@~=jP4=&a#ZrbXtX&5A)jlAVF0-HxiXr@`UNM~o}-c~kv-wNfOK}wDY)qKpb!*f z=mGa|5er2!)3h^@O1?hw)1XXJiX1hi?!9Ee{!)$P2#8O*5K;I8!r&465GC9ivFQix zNKjK+nd%QIoI(*goWPyBLIhnfe&W()FyDRl%Pbrl``DK=>BV9mO8sINMdfD}LAc*r zalOrw#ggoyu#a(*N}z@`yChU1x1&l#?Q3+}x9?b5QB&>KYIwqX%$&`PQB|AE^-M_z z+LTn_o-(=62-JM^R+u>yO)4nTjeW-di=yER?tubbI(@AqtyT5@%1}xtuCm z6P20d4|cEx#0cfoNFDn@=*@PP1;GU&Q6#6iTgqMGCmSfgZpTUgwhr;dK2Y$`2MS1x zf$4ToeeY2Yh%VyUqn++~QW}AI54r0hdwL}5uKVv7|1lZfxww)IGYY3dV^I=6C5I2W z;nVCun>mIwLuu<0S<&NEG?eanD2vGHvm+KK^{UXVJT*Hb%J%?|gjR};dX2YyL|K`9 zuZYx+sthSxjac-FJ_tXeXqBEwEfJ~7osDfmBckNQp0f-1J4Lrf``IIpT3BPa;}D`$ zF(ox7utuTmLY(#OlUiXXa#Ky-<+$)NL`yFFofvu<$1{`(mUP%cyO={M{iUdNVC`Exxs-t3+Ws_N3j|F& ziEY$>-rA>q)_T_F`57*k)O!BU;?v*Qok|C9cCeUbL@{Sz2Q{l|J5GiFEC3sd?PM;bry&W)~* z0KkZq{l?iVd$9QJ$1sMOYX4|CMm#)}_2n&2!5qApYf@9w?SbD6Y%pcNW13~-$KgC- zGMK`9yPTStizR7LyWAAI#AiRxaP@3-%#yC<3jRc{2C(B&T@`G~j%x$~$@I_+QORL$ zsi&S4anw~3a@Kuf^ zTW;Pi6dh`5q;n8l%-AD$oz5eNce2OJW6GJ@rrmKduwD|iZ4T&;Ey}^usr=He{TvvK zr4r=@7uXIhs+D4IhtzX`pXKCLkdHB&78rmy^_tDaS4pvqA=snu~%v zPD@CGX8ny=$Mpkn~yxv#}KBXWPr&zWNpSO6sen(qb4) zln@q#9a~J*N+0is60kv|O)E8EMHhNFgKzT!urib+38~gm<&7y2y*5uF-ln^-uap;+ zcsqnzh|k;7b4^|?<3t3EDE$WTTb((CSjjuVEP6e z?iio*IyA*oldn?+MK=9O`vI_22p2k7v&;+(5XHJ9vQtxA#1{SZ7VIo^0Yf9hPhSHL zaadXCpzTo5!9W;45dYCR=Tiv;c|V|Fu8UjrQ4dKr>J6T*=_!RJTsrzJNt%fMvOKqO z;_M{|m8sBJE+~;o!KzX8pU3*tP!I7l!pau0V8Guw+7Emy%_ask8~S3uFFyTsx=*d8 zRa2TylfD|pUG?ksiiE*$B?faqPU<9W0zVKnv6vktJkGxk0=R0TMc%5KUc4#AFWgup zGKoL;;U51QHAW6K^h51YM+$d7|CYU;N=nQ6M9SqPB5}5pRDcLl?BCgg+n?uHcV>yVYmzZaZka{x%X`5F`O=2FAUq=@Zm{e1e z+4l@zVIH*&@X)UMILFdgwa^k@M5P%~81w*lt1UG8;4n*t8qPl``}=SLpJeeclp-a3%cuY<~Flg`dc z?N;=AVXt1GaR#hkXZ!s~0@G*$IBgOnCWS6GZ2g!L?YCpyntVja z1l(ksXJ6Xw)Z9n`7g^w063D5O$ZcWKE+RJpJXa&WU>oXlSPbGwJ)=D8{9jHj#R&Wt zNHhB)lRn4LQM`GK*}|t?Esz`)f`K=X`Nr)Dnu#e~SE^gTP*jf5Q~0AUP6os(Liy{Z zmvTZ_G8B}LZrRk6hQM6%;9l=Vj-(h$An+<54i7zVBBj9*R+kDW)GSw2M))`%ySZFZ z9@{2cc_e<(h2`fbh$&+fH(VYeTZ-rjq>K-`MhppfuGef~ZeY(Hs4~ifBz%M$n zGG!Z)^QVa{!5>PCL1vztR&k1`6&`mBYQbL)-0_7aGC&HBb9T`gOw=VD&yaYl-~8#X ziqHSUR{rokTx-N-Q>+UWgKz^wJO`>*?!4cVNGmL|o4b4s5`W?s7btH(IRs98zwfDE zhvXQ&itX~deY9}=BhOLHzj;S*95It!&=k@+Hdz9|)buiRe1Kdus7tHGp}wk0T2^8OIV{WXgrq4Er!^*ZFHR5Z*?^tuns zB|F&dRSf)b3OS$9=Uw7sl++xkPZ8LO`Fuu5 znk1?Op2Ij9^Id$HGR;8u!gioA0V6!l#ZzcTXUp zI0oPMNBQ$5kbR0((Yp8h+`Xj12Sjc-#*L~8&uz`sD7(=$N zJ!{fBH%B`8Ox?6HW7~%(zOo9Lt&%v+Ok9qIZBAUgCX}!BK|<*TLGZ zy7+@H^zhy=|BfcjXH1`$0^^xFM(v36ADXnDDCoM~k;Pm}h?B7+f7>IA<3@Kahg$Kg2co18dA)st1>XR`x2&H6Y%F6gE`e)}V9%{7AdMaQ=E94DS8bZ&7Qd zNQ^66wa6YT-VRK%7a$Ym7Boy;?ilM^2898$I9nE2HZ9f563CU(rL!Bxt{lpDDSV>B zr*<=ROH`>7E}w=bKKriSt1*>5X@6_s5fz5?R#~O72NZs{i=0w%aB~{0}3nfh?LzLlnG@m`UFYHmCLZ2M?Q5IQSVD0hg0^VoJ4AblQ z3Z({UN1?O6X&NUHpq5Pqj@xs%h}W%2C1C6c76oQMb}hV4zle6%!2Fy*3|3EHij|g$wPDfh~K=wa>Klk zNjCM-$D1d7ofbLFGUjiTjQ`n5pE zwgQmtOU?RQ8Vg@lt`Aq1MOlKp*#T89{hKKf2Y(lABprrCl!|~;cn^?^{=}kgd|BS2 zE$W8S=_ra2X!0lp?U3p3i2 zRR|<+W<3wp697BTVg7G;M^A2y09{cwwVWG^on5zVvbSDqbnMWCffoA=MBK_sb zF`*;YPU8!HIqSVLRa>IS+2MK*S?&tF!j0M~$vZ4XdZCmofIy!{V7VQl3LYgSynbHn zqPS7w{Eqksjd!k~W%pJA-rA1Yg4gSLs0Zjsk5-5M3yd~L;v8~}tjs?-da)spm7{$R z58gn_awoy@ABnlBewi8`)8d$1T!Z|zzV)iBiMU^XXs19!Lt@%8KT~+gnghbcwtRVI z(~3VhD^x)Ui#=^GY;abfGp7gzyw$d&XT#XZ#apt&>_fg~AF`4!3QV)@j^g$%x4p0m zEBqP9wS5G&j1>4T_kP(oW+5tjw;H0ImcCL4kuo_Q;;vo;RDr{7=n<<>E=Zs8fNIhb zWB@P}e+@Z9(lnA&a9ZLb)_z=-Hc;|qqm2q zES|5`GZ2nwE&JoIiqHRsAF3++Kg#JLsjwzh7XObp>|>r-=!Rd}uZA&`84&=O*#4X| zm33k7{yQwrY|c-v^N8Ej1ekJofYp2Ca`zTVU%%vvVaK*N)W%_6rL9HfR6WLofPcvV zF2Zp4jFI=0eO3vriAtv{CuDD+vj(w&ep`>Ij{p-16-dg@NL@ZO6EX^%y2P05qOUwPupx@f7X1A!& z80wTwTgUXQk|PXRc=p4tCktdEw&r<@PUw_@3!yt@G|`;BQh1l5sF(~oQTUtfW<$bG zXDOARq=0MP@F<@QnGy}DO3wx65M6y`DFX#A!H_YJJR$n4)bE-;C+lwA%QS#4c=~gm zja21H?q~%{oh>ALs9=ly#n+_O#QfQcO#w^;;-fWYl>6(01_d8}QCBnl)^~0Kq&;vOmk0BwrdG97O#doXK06`#xmTM#~d!lCqfQOoj#T z75I#~5});(Qyk2Y0}QgPlJ7k`4D-SUKMijB z?pqk{q!8|g8*#k9Jf+=pX*r5K$S`-EuXR2_MU&GKN7~OshJwKS8V$~Dhz75CJIP!% zEyfxanIMEFr*g`Os|EoV^>BH#)aBNkw37*0%k%WLPe0>9*^*L2)&rQ-S=D)~(kzIa z#lt)<2rL;5`>o1oVq{tXkMR+OFt~Wzh%OH}Cg)|jWF6dxAWF)FJM)OIeByZfT{bK1 z7$5hrolvY&z*=?p_cR8Q|Tf-%%(83VhlTBodN8je@KhXNLnUxT<3{;&k$gYr360Vgx#N+IzFO8|LavqN3k@ z)JqWeH#Camu#W6x9hIaEW*g&o2tu;r@SHSvEscBTro|N;`gj0@Ob>$Zx$grcMA!i* zcX3206sp6<`(0*uVeUJROH6vtevW6A+8g$_knhuSbR^p{+Dn$bAF?R)4G_NB_rNCE zV&HH=@l0k#4^P6}4& z3mX+mOu14iHquDQu3%dni^G8_9Pe@ow|0e zE%bo(j(6+VocUp@f&KmP#f+i^-rLpb>#RtfwQC9Ixm{aMauI9Ugb?Ol1ddAXHSbe| zow<}kDf%3*Doh)Ds-exE$)Vc#o68lgnGQLT3S~#-r4dH;srY~&|7-LwF@U1R>0NcR znSCELB(+3T>a%!b+r1=-TR=915|=8im9VZjd|To) z_?jeP0l{xVKx>S_0U(; zoDh0nRqxWgprBXoWP|zoa@0fGqY&#ragKWJk;Kdj?ks;RYS0MhSCK};q*q|y`vOmN^X8C@8pbZl~kI9^(x^58t082p;%Xo5=|-W6Rok1d4laY7bhW*^T?t`4N|EB zkh*4K#w+5M0{kBbo`!PkB=nCcH(2n<>B`(r0vxslLE#!x>zbr|=XrcM%Z@CQfE9L?Xa~3x$vp5UIKGG-ltC>5pzp1GkzbA2( zq^2nd!xEuEG`Twi7I+0Eq`@v$-K9EK!NL%$QzfExXkBP$n>tHWw3W_cd7?{0-v;|M19fK1$2Pbpq&>tOH$*@l-PB)zMsS`7G zux0*KgJu6_j3F54@Kl;1m~KFKSwnGRu%rdGSGO~Ta(`Th0W}Jo>X74zVF94Fi7S{u zmI%HO-*Df8lyNL;^v&U>P7Yhi*9Q43W$|N8HDD z>e8(-;KHZ1=edTt_fS>bg<`47YX_E|f%6|qFsOpXz&DeH07&f|))CS-s+s4r06`mx z^IOVL#j?CU$Q8;hK6xjB@qk%_BB5!&3w5=ZzQ{ard(vM`p_+KDf+W$`7Wj`jYHn3@_us|q6-1I1mh>BaWHhElt&dE4#R{(r1s4x{%BUrUlyN!FWYePFS3sd z^-QIqd?*8aQ3EidkP=CI7nwdAUQmX2s}mpO7y=A*a{N%F^6+q(+< za0+0$`SaiA>=4t49gpNnSV;GSSOZ|qxaoGiSft4v0h~vY-?Ig!=Or5&vs1?~91YA6 z5Ue@rVwqtY%}k-OVvmV|X;R&ySf0bSbfe7e1kk#HaK)r;UN6%*o0#Ns&H!=K?opi% z5hpJe%s~@XsX4t5^rz;3=TKX* z3?jAP52z6NAxJZ;e0TGy@%cnz#Z|>2wZSy(Ga8wxo_s^>sS!TC+9|g>;*A^U)hcMA zq@FppHxwIRM=(S7+|AmQ!iaMdGCDVv^rt$?Ke;xUm-KB@ZtiFxBv#9!ORFKqHm+=n z%GKFAb*^37;>)o0^DqB@8UUCjWzt1{a|`($!eI!rNy`mGO=j;ADMKK7FFuGx$ckZz zjW**tL;uF1L-!v+8n6u!%LNl1F4P4;W!_xwbmcYR z=Eo(~3i~7*!W7X5U%`2C_-|J0Y(fWdOm(f(05zo7F*CHpO@hC4z=<=l5}t~?{{s8Y z1xqlusX7f*voPmcW{IRo|Dd+0=tAv9@8-S}r}=u-rcW_citmz#5IxJB*FJEZGOUy$IG7<$cbLV=HHpr21OJc?ltsfHZ=A57^$P=m7aI!?dE38Q0sZQd4={&1{7(}0V93<8#<3VVbDxuNok5*6%h3e3g%9MuPZxZx1cOmSou|-dZ z`e5dE5^wz(F4A_}Bgx{JJPbVdTvPKuz3fyjV4;SZdInQ(;;4fG5VfZz&dZJ-obMJs z83mYx&UddlYTm8jKqlvU1-#_`{@Y%-XU{5^oPBUgD z{r;k3^72jKNXuCPvy=*rMN@kc@Q5?%0qJ@c@<-S$Qi|DENUl`OdR(#C&n%L=!y79d z`7PqJZy<=<;XO}UfugmDT?he^ftjF2R!afRiA0>y4XLX$D*zC)?58R$h;ne-?LOLZ zwBW#dP=k1Q>dr@}ps&OmB6D-IW$60sr{(|SH^ryFbJb0#v_`{bRmq!FREIC?5|*Zy zF4P{jSHS}d9_(5W-jXMKLv46Eq2rXL5@SY_P{~zK9%K&HU$p-t3GGOlL5mFqH$P&Q zWldUN$*%IoLV#LZc8}9m?0M9YC?Mj+eN%k?7tUqK={kBDAz+7ugFoXEB1 zG6*^TrMJL=wgc%gqJI ztwmhh`&+8An5kFhuihv+P^l`0P5WZdjTdI^5V3sf7#<2%Zd*E;jF7M_S}6*DzxWQu z9{7m^;~%`^oUu|_-j53q+B78Bp9O})vx`(L5>^B)sJtp7KT0Ug*OiQbU}1XtY75=0 z1lwb_tIusmJu&@e(zA5E0bD}=q9ev6u+K2-zeef9p%iIQD|`Ug$J1g0-A@5DO;+)v zf{l=!y65D(QzQc@Jw(!G>0tI5g%+SgNh>MHKVtR>_}kTSMJZTvN|s+^QkF;Tn356+ z+^xJJd%Kmm8CA5Kg+T=Y-R(IpG8llAW&C1aC~KA;j(2+lkEX>TLZ#}aTkrH@^lJ*% zWLFqv*~I<)S~E;Y5-gF@Vnvpir&xy*1=-i5jeUyIf9q?()Rg%MP`m78ase`|xo8X) z#?nh>8Xle%W!tYlAZ>Fbx7%9Y6ZlDm05!}WtkvRR&w{efHcubsm3Ok6-=9W8ZRHL!#9qJ6!=%= z1^PL>_MGcjk9L?dk$MYg%n2m2f#|OVH}urdfDU>;nnZbCq+IuN#xX)$(Hj_r=OiFL zas~z{=YSGDO#MgFgUETqP`-jOl+}YJ&5`ySQz?9ot^1BG&wm|R=do~WCxEIHdgVx@ zJ(M)ahv+ZJ)suUaEVfzD{WQAi=#Lh*I7wI$u@b(af)ep7rHEd;sBk;N!lspryjR#Lp=b6tOs*+DlqI?6^Boqk9Ey`^Y zE5!r?@)c7Xket$qceA2+V~Gw%6V`bMGTk9aOs-vA?ie4Zcxv}ooN>dv;jzpE!LaNj zcv&2f(sw7@`qft&&|OOizO|Swz~OmnN{|$6gYz%FP6GtcH|>Mq+=gWpBeY$cVd=!k zU&=iG6G7&Q<%}*MC{|JnTzWFL(pALyr_rd6xd1@hmLwk;CD|u{qCYSG!rjz5oY^x} zPEWV@8`5Gh- zr(L6~%V|OAC`pZCQTu80z-|P+{gJDEn?lZ_ycMV(g3C^Gh6gqP=Q<$4(9B;Q!keM@WgW>}o zik1IvJO=~t^FSkH6O4V`SlEl^W7p4W30%dqV28nJgaYJjTQ!~hqV+iUq_^wi%xS$L zBE20MALmr56>|ehj@Re|BnCWjV7i~{{vwSIZJe~#eaPfXG|=zhZ4a%?BrzKEz?O3r z0Mxa`4GF}r*an@!iZx4TFJ`v$aFP?L8PnfULr+1_x83>&{ZmtgevxW5KTl;Q2nIKY zup3NTQ_=+De0tRP;yoeBA0KKuPapMn`Y1*Z;*X*AsR=@`g&JQ{!qV)y=RBQNoHd?T zF!tJVHWUfL#gdumWsYwD_*WQ^2L%&52TaH2GzBB5L2PI`5|v!Eu96xVD(_)XgqK>< z6f25upumhQJB`8=qp+fo?HlqGPW4a})|^Cd*+U~;8_s3qIlBWMIv9)|5f>_2?Snh# z!hV;X?VO12g@3H4?p@c*@#I}n_begITjJlfij{78bO@#%<+)=P;Gr9Q@3YD_nuK** zESXLZ2WHe>f^%1%u&V#r?4&pGU)r%jN?iU353L^lAwqm6?8 zLuQ0UMnq;tWlT4Q%9HgVqktdiN9v8dASMC?Nz4;TvvUvrtM^*I*LE-TL^BB&7w1%E zM!4^B4OCaL2iRILkeR~9(R+_UPoZCLLG_F8e)?YZ@%JZ=S5J3L2|aLi9QVhCS?b;^ zBJ4Pkjxm}J!!gi20-UxSrD!i=2NziS+-i`g=x7EF{n5Xs&o^*ODGY(OnhQq;7&vWR z+V-wpvN&^p!Eaj{iq|`J%sf-ibKwkeYY7g4A3@%wh4!^1#GX%o?miM}n*<~;T?D05 z7WBNP&h12&J_5Gts`CmL($g1z`|$_W7yk=%y6g?sR*%z`Oef^yN}*s3E^GLv$7apG zisOwQ9kpN1xc~wFDRcC#Jy1WHC;U{h&yfTchL&I-S=D2rO*nOa)g{yvRh^5CE!Mgj zMV7f8Sp?xP-2E7Nz8bVmfSW*=qDp9L_CjIkkxew8A;#4LU^pd@B#6ms_a#8Wd5x65 zzWPtVF?#oIjA`aFKvdK!VEf=hL3~@gYh7@r`)QhAixwgWmM&5k&qDecpC8id#2|Pj|$F`t=BA3VqlzCHhV7$ugA16;eSrjB6z|Rh0Jg0Yq&VAJsOXyLE{m!kQ;nU_Q0&TKh=z3-dR&+Ex2%uTkc!F zkEwQ;$JJ|w#Y3bKqAu8lWrz3#TT$g*lk=9!9%}H))pxR*SyWL99S5iuvo{yV3Jg=j zADU|kj!-BOT2SCF34;ImAHN-37j+6?(Cw4_dInhV`uV1r%b?19%ScKL;qAv2w-owJ zMCZdb;SxaOx6=~>NpQmRGB$u~Tj|+(E_`FHT)kKFi_B!7rk{#5cv>OWO{q zNW@v32r#LR1XB}OfNV@bHGl3$ELYf(SN1vNwwF3P`Dq$|JBao_bMzZR<%t#z@8BVp zJm;iA+J*yR(IzyZD2nhf;oJ`an`tw0^hVv>{z@_OIB+O|qy%(S0-Ib1T!~A6JwoaN zSO{-$VM*p;Xd=1ssX&v_o0lYZZmnoYE&^}|A<9{%+m}9mIv3PaGJ&|7MaR@9 zBVYm9tg4V5rJ!H19$K<4=s8rWu;n3vN^&6GUa9=j0!T}bd;lOY5c8fTvVpJQK&pga zi+}%Q`|Y2H&SM@iV>5l}FWMKqhLPx&&3Is=Ralt3sFp$t>NnukufBcx-cM~dl(2uP zv$UqC?4w)MCKfFGiq|D)66^s-dvy=Ml{C|Y08F18IZk~W`_NXqxRGS%Id?U1`2vX| zUP?`sL7mU^Whvf?qBTU1rWmeH)wzkkn4UEPBkp?)4mBr~G8Wa|Q2-;8jte#pS_>z6 zrfh&tV@|Kr{OC#?)ILw=@_29I?w+!*L^~n|bdLL%+AFOj`T&a;rw>>0Hd}6dptn=A zFptH$Bgy;1(LBrw<`2Z3==X(Ol9jpvh`T5#y^}c`=Pi_n8tr{aa>5ky(?8RC<WmT-RAWBhjm)*OR%& zb+6E**h#Z%(-#m}U{#+uAZLV^&BesM@hMxkuD zrdt5SH1-3;hqCj9nCyQ!=pP`w<^}Cl??d2U85vlN=hlvdRzFqT?MyJmQ?z z&uo@u>T`lB2<3RfNpqhgfdH6Or(#=K?wGKV(<~c$ia`m%R$#vcuMA_jEEnCk8d5>4 zd_6UG>!CD|KKi4&$HL)R&+d8p@(6My)ZHjopKVb+`Y3_^I2P<) zy$!4v;Z9(UUI4 zqPg&uhZba;f0@sCbgjnfQj>r%^jX>v0EcrvzTyCN=TOd!dkLMtjnce(O;z!QBDeZ& zqp)Gxj$FV-ZLpyW$AQHIw(ElXFxNVTH-83P2V^5vj5Oo=AIV@8i1|I!jkaT@f_E%v zA=w8fopskh50nY1Pa~;bF?C{d7wVQTK!deOfgYt|W ziyE$_0JhV(z_N0%^q0fyb5PABdI&6eqx)h%{WVHPYYctb-K{LS6EZgj3WecTy@u-W z2;F$_fcvTNikb8iOE(pFZz8chSnFL3jRD8vem}iZjFi(VaMT?0kAG8Mrys_CWCZf( zrpK5*V$uWL_F|vYZ!26p{bN}1v+L`Uqa1Oujkfwbyx)1>VIrCy&s45ZCk(8@g}&IIhuwOU&Cf3q@t?C;@-EN8^BX zu=X$>?XveL4$Ck*F5(DXsy2RAPZPe=m$BMU2jonRy+AtrC|NB@z1d<3p5(Q#tHqyk zqW^9oB}7K)_ol8gYL6)fBQ>CgpB<{}qO7z_Glh8fsN3_`)n9vnN=G}rC5)m{VvGZb z2}}ApY<3|(RTnS$s+Botr3I9V$eGx@p8N+MPq9zxK8bMfd`iiZdaS3P9nyhi{(m)lcHKJNXf zZt_MMFw3b@=jQV#nPdeCtqsEx8XzVx;KMP6c7vSuX;EXpIt(M9Q$ zCa60#lPOm#76PUv3%#{5wGn|zwE8-p6e{=d_1Oz8tj6>7Lk9#Mc`wN>K)ao}%V}3v zNm(FyI0)Z3gwR^OHaV^&3r;J8u0zeG{!#3YCS}^MB9ad>mF8K zB!-=`V*8@H?j`RE@ESR!YgO5SP<#5)m#Qz>|0xPcv1CGUz7BH%DzKAypq6kk)E7XK zDbJWJ!!kVc4WpuPbO36y*b2io%+9jc8psDxT>_$YI5;3Z?$8wwu3(BZyjE5Nam$Kr zw(qNckWL1$4|SvofPkLvp!TZ*6JzHmaFF?SgT%TL>oO&#K8W&Y;PB8|2m&-w@zYS>lXGW!pg0#o zGe!TgC(T&&CueF+f+D)_C(?&gK&aQC!3|1Z0RvOC+ycRE^`_Ke8 z^FGZPfQL8yrYCZ2VT?xQT=j6x9O_M1T$G+8AecH!&YMZw!{->TRaO@}aCdnk}L>}D|l%Q96cax_mCVOZoL%zwMPeVZTrPmHRwzpU%9&2n{25h9m z_Nw83i}r zfPmRvwq54tD4Jc&$HkE=hQ``nQ|gnxj~h__A+O^Q5G3H!VAWT5mxh#pZMe-00y8-e%Gla!RK_N$+jye`)Lg; zsUr|d81L>;WmHpAWP4S)YGFG{D@>BT9fYh0RcTz-C-MP?YZ>*4aWTZS3a$>2q%r9S znXyxZWxDWeHDm?%%TdJw*-Ew7E+1I%s07qZaS(P&J`_sMRVorcb>9 zKpJ1JzUHT7P8dLb9~f+PYqs3IMP+MI7H4xtuEI#&qXg13asijtfMlmk`=2c&EBi4JfB02P`ojX+dfc)`$KGG1v=79Uy=lF?G4*?4RVPV9ztD7K`Z} znH-5S4rhB5Qn9v%o}u7iA5IDF#rj&~AOXx-+To=QbYt@Q55%Yy1YnzXmKN=bxpLT6 z5|#EE#ZZ)$fHyH##CN_<1?|ysSz4kxFk`an#z{-aUX!DALw$3AN|7K&%ls(SsSW^8 zW#ShQmch=@Z5GaOsu+KgA-9r{geXwmjr|yYx!g+HvPMv2=q{2452y*C#Dh~#J$b%hbc0x8M z-ek-!;qKEwcugY!41Ml8Q3y8rcxTPkS#)_v4Hb&GYu8&uIckR>P>06YH3LPUZro?d zyBcb*y}z@jo5!|socKe3{JuUUrxYwlSo})$^+s6LqNR0v}(0_(5NN})PK%; zx6RIH;(^}|Dl=o_d14EOpnl?tCPJJ&t@S+_jPmSPCCQcF?w9m+2A^6YVrNWy_RlZ^$(X zC6pCu(N4A*ngodhdmSf$L^_bid#0B$;pNuvw6z=dNwWxbXQ+DHwFb$(?~;OgfTR!u#_VmQ?26$U9nq&_2rf?yRp9&7U1=Bt}d7K-@ax4 zSK z&wiS9sRAAa+u}Odhvy+nzRvIDlbacdMNFa^F4>^~Tq~bhQ62mAAG&|LqT&_`8vQu- z*HYB2CM3?WBX;z9?mW{^yb3)vN~j3LPS2jvy17dmAE(N8tov1EU9BK&dd#itdV21y z{l~c4PWoFA>aZReZO-$dFkJ4_OXl4LzqMZVV>AMH5_Nh~+met7W#GGk{yUT;9B0^F3Vg#@LC`&_bSyn$GR+d@)^Qgn4%8N{ zviq=q{BEMe$rkkCsloEI`>P_trlb8O=SIyjnqBKKS6Sx5;0@KKx@W#!G}gz&I4vJw zR8erHv`RK$VGvzaw|Xx?{7WnCB43xa%jz3;SOdi4w#gX{P-+GfB71@^ z0$aJ5-)+@&#Ox*mI}0sC$`D84cdqh8E9MO=hNn(M@~Hb#h3b8g>j+v%FL*8{OO3?W z*DR}P@9sa&@YHOSE8~Jh(nD(n_4&o0{rP|qq=w5sW_-_ZgjOhi%N4#RK5xar8Dw`~XFwA$ zLA!beOuNw^p*^yzC)aeB6Oqd`9s`(5u{47ixgro}jVgGo^eq7?zf*;WQm8+lTaN{Zkz!#kwx6*C*X76g4{LYcYsOc%hIHhz@4m z1e!^x4zC~|n7?9k)}?uaGs?I#^5U~EAH-_Kug67L+iJv$rPZ5EYzwm$3CmO9>dUR<^OYb{B_0YsRjXhbrSiS|>WGRr>FaBQX z{yF>efr@zSfk2e$y>OMeHV|Or>0zf4#FZwdBbIJrqI08mLdHkmtE|Vo#&V^vUJixR z2Fs!Ml`AIrW`J8BRt!#uDO{HQJ5kXqHW*b@j*+849!JDm(H zngXcY!u|7B49A*V*xC{aA-uY3#d~O#q0aGaJgf3(-3gBp4!d>0aO{inFA>K!M_b zYOf`t(7i~vaZvV#K-xUG>uBybuh`fp!j=jK2#8`W3m~{AHlN31-JiIbLzkrk%h6|! z31=9WA0aJE+%|nZ{jN8J=4BmquK0=!`sp9^pVgoK3;Pl{m;we6beXbHt4jqGruI}A z26fd{7hRq$5!~7;Xe@!30ypla@BfSH)A!O*2eFbH3W4w{MaA7>jlf~R<$B)LF0BdG zu~jxn3tGZFv$P-khARzKzjNpnwBE-7fprMd1P&Av$bigT58U*x^D_qQKoZMEYQ|gV zDqst^D?&chxBbvPN7Mnm6OUT#6zuLRCDu(U8GV!j{LY^c98*Oz9C;{5tB^^!d3?mN z>xwUXEtHEf1PYY|gi`xy)BNf@WlcM?zB`3Qz@8b;2u9k=7R#42>m9#+e^-6{8BQ}S zbK2qw?RYz$>(UfR|06*?6luR>ty0_`)q$$ZtZeb*QC%ZD=M{H9@)vpJsF$EYUk~e< zUTO$?TbQ}k7?hl|?9HwMaG`&>ua1F-v-qaT_FhEZ@3Ly7$$^*&i z2zjJPd>v`dpB++u5O`0*d#_yr<0;y8p|IJ`$91TKcn~B9;P!t2;3Sa~LzE(8Ok_N4 z0X7~IIQQy7BHKC(NJaf(AC4lxYxH<=mWB++MejLx1yK~WV4$#}hN^)=kIt{NXjq`P zpv6~nh2+^~E_DRH7NS|<&4#C9xvtB!L^yJ6Cxpi5sn0HLZNz9C|APvr2NPBscr1Sa zXnMAwCB2gl1V1lnB%DYm3CQo*Wn-EoW|n?v>ka>s{hRuc{7*|(G4-9JlII0UUlPGR z{gZVCb=>;ckk~gyYKFeb%07**Q5X*PaCf;?D`6`TWptz8Lju>_D%2gq$KkP11&3>! z@_Y`u{8-pfLuSlHTJY%}L6~Uj?3X&g`$uDFJDlFPo-MvhFx6oa?xmMp%l)YXMAUOb zw{)7AE)Y11g)0K1B~u87WZc*iaI+~XuR-9u?UDrBc`g9UV0mRb09d+24e;C30@1G- zwmgAS`kGJL&~D!VsM-rw@J1dZ76RvV0dCK86vrVn}xWxw07+1Ji0EUn1IP! zlQdm1&Du3M|3>wdujous?UJWp)0KWua+z>sKS_le`+T=oahu1mK7cg1RfMk@V@#Z6 zXid_6u#fx$wJjJlSk&^F8PwdOO}Ld4pL5;Ey(gNu1~1~+}P)7tVUXCF%k25M_KP-u0Al*Ep0y;+o zpxcvXUZB>m9T63pIwR&O_+RI}cUAZeMfqGvjg4cUbW?@>#Be|M+;wPk z_gh%A4o9OS3B-olQ1UTAky*kPDO@HBH%m4dSNK1naDU)S%N-1~Sk;dixikS2F0y5SnUdbcy8lMysW+ZaBdL)F*XeJjxJu&9_dS(AF{b=~zg||1{Jea!EUcQ+iq?d6Do6+w?u_oc7Ze zv%*L9aP`2&OSwJhj9Bw|etSR_dI~oW{BtZh=)P8Xud!^O0yLfb0P0`(N3iE!YmMV+ zWUVpb(}<0qUk~pEK<%vSa>=M^3bsO6*k>ij=2atoG56&9wA5G2v6w%2chqrhTyJ^X zxXDkvLDopC2USmOfUWKDkPwpcm+I`}A3$IgmTq!u4u;-1L#Cy9N><#-9sp^QkME!0 zpjx|d*SpHu7X70OPTV3e)sK5tAOd*xlzP3=PvEV7Y77T_v_`Jb<{tBs&F3C5wLKpp zS;C#h0f2$K9iZ$O0(-}K&dF^`(`W5L)(FM%E}7@KNouAttiHDWhJ)2MK%5GFrnkXfOugr6vmX;Rwu&-cyho8SCq`cdR| zrPx%J|HYrlT?Njupq3ZgG4bZTRoaSf8j>1PzbBr!|-eOB;r4j+De)>U& zL78BO4rUkvUCEN*%kH+b?a#b`b|KK;_`(1o$S;$F$l`d>MziGr{CeAwfJzFn8#Dh& z_1tHP!6phiDK#rUzR^e;GsF;QBjJ-D?O&=-|B#N8z0o;9{!@&PZXs?+?O0vg3wq*^ z5NX>)8jCN3Rc1MWzGFiJ@amIb`oKMQf#89?BAC7uW2+!y1bDoYCd0OSQ^%Y@UeG;* zpINQk_!O-K=-TI8mSw=lxAls0qtvYT^H|;?u$tpgs_8o0is01N|@6J;Q0oh$ysV7 z_Kguye7ZP5{=$tXe9rypx4JfI3j>T41p!;n3=kv+ic6aiLR&CvPJDIX{XD1u74Gg# zl;%$V{{N`H_7%MzkP9RN=%}N#cO7X)yUyIsMFpz2Lzg$eXA>*Os!jO0tI!1c;jy1)WNL0OWT$RB4F9%@W9)Pi6TSC&phwH!7wEcJf9A9X66i{IR zG`kNChlfZvBlsob0p*ZUr9pLdIk?MEC>6bSQw&ZUObobvj;qRKbp^iJBFQ~3S);k z{9f7NWWSsg0Q~m8&V^gegVY~lO$Kew*J3b;n({SjXOMa|)U5+9>h4&APi5nWZl>Pd zNY@5{M&>md0jhX~jO;q)*+wec=~9sQV59Yw&GSrFU~|NAgQ6aTCx3Vqlda+ymB%xfIwd0y1^w)*A!H0Mam*BvB z)dhA3YMRC_^q4XZt-l0#Rp4c#A82v5~aW8VpZ4RHP`9cdz_nKdV0e%0Ga#HP$TYD@IcE=6f9L z*I=ThVcU@@mKN>qJ)p-I&gcBugUX)QOFLD;V_y>d+cdUP-hx7*`ZxLyLnA{?%nr?- zqgBec`0d>_)!MfDHLvTM>OsYNi=}|KM*+)$cdH<5&lREBXa4{t-83}_MYLND&2u`! z7RTeK)yGsdT+}TkcI{<`yeO3ri-LEE{C8y2XKoxdgPCJalT?q8U0gm1QON`NQU%rM z+^Y?S!yH9)5j__w(q;^7%xSQvT*ApI%Mky&)gP#W17D;uLAN$txTH^{IdHLscTi}a zqW9*_;j@;tCXB}9mgaQfgV_M?&7HPim=MD{q z@0mca)TJsljek*n`j!9eb0~ba5C&FF=tYe+5i9k7{KI7jmGc1pVW<39NgM5+aEDY0 z)rY(aTK)()8&u%7Btf43d+-2>0=Lp+z`SHgbWRN}`_eMlbr8c-50fPSEoWBE8(L>_ z9rcmBLbG$pdJhBX%gS`HvDdsDuf;Df7Euq)8A0aE)(6(TICtvE07@hQtWqt25Y?3a zWCOF4TC$=^f%i#EsuN9@$aor)+&##| zL&mQI%$WrHPtR~<;5;_8^U$5f{xQb4=dPjJSl|>e4L*e2XdvnG5O5FMKv%meEFL9s zl{63JV5cK>2TOkJrS`s;+ZZkaXJ;psulamonj6y}FZ!A_Nm_;GPR?tzhq$_{Ge zP_kR8SBXjzLlqbB9y1HiZuV6p6D(rFYW5u1!(;Uc?kE+^W5PIvR_iG)wo)bLP_`F< zaMMG-&fsTDw{yxgru~>Q4G#91ClHM?9Q#F4_4n1sA1jP%Q>jqodazvx3iLtcApfK3 zsRpPGZ_#Jho3wQ8)V+i@+NIx^r^SKLP{_}7s^s3H#3D-FC$qnvwHKavffB~x%nb+PNGm!sZ> z_ix1r6L1mxt9L(zJE%jO3KgI)o4MY?1O)5Xxk%r?sy_b0Ujy2@Gp0;f(1+sVC2s-= z+d+vjq`&){>f=B70bB#V2iqR(6cEl{{pQx;OZ0-pIqH&37@!Izb<2LA$RJ&zcQyv>ne}&e zOCIyCccxw3_5|u%tjTf9#(qgjxV)-55CG>BT+$C z>mgZ|MksFwZjtP2E}4^Ye(yPAJ;4vtb4oK$uOU$pYZE$MGSPdf9Wmf(^^3p7Z=|-T zUErr4NkiJJdSU8wD}>_^2HDSTUI(p&r(_ibbcX+^kfx!$rxXMenX-Cj6}(Y|NITd! zN<)blOy%|hoA}h=c1ZUNXF4EL1+u)ULwTA-r00CtzJ>2}m4%Nsd7ve?-lUUw^4dMD zbzh@RhO~&UC}={!MXJ5nqYyr|j^{TXm{au!v#mOLB}PiN!lkYA^lhYR(wyz?A^+DN zxdnsn&U|6XcRi5#CBKhX4)BVHm+VYwDH2CB2)$Y%qM-2kOi zPL|2rBUux8ojni17^R=Z7QO?a9NRuIy$41g zrL-R`kOc;RY_L}B6`SvN@B=c5?vq|i)EUdK!w$R?!mOlbH#k9gyyl=ab{3dkH`LZB zDw!H8lQ=I5H`@(7nkVryS(KT;iXG*G7%cq$5#mg%EM9{T+qkDXdP z$&l7x(E*8B={Z{wh@rBq3k#A&GsD&;{qxtp=IeCJTyTx!Ci67)TVT1e6E^?ri-h)) zq@F$O#OU$o;}wLqTeB)*VDoa99rUbJga199>D`Xw1@cT9Vcke7I9=amaSUkXnj_)5 z@{7_4FYdzrB{Zd85T+dOo0N&2x-qEWlF>SCdMuqF?E1 zpWNirXT(_0P8ecmz_ebiEa=kd{_pad1@ivga)<&mfrzr^-k!r)yM)pO1Sl6S-){4) zf(<-$|7RFp4-f_Sgm+vs6q<10z~}+FC6o~p2!Hy%1<0{+sCw)Wj2(Cz@VUkx;WPrA6lSK_&eZq4N zx>S!ipsx^ZB7+USRL8>V6QyW%vp(rSQmb_(k%!WuOg4Jy=e00jOZP7zXB46h1}$zS zoXtq$oZ#!cK@p%(IP^mKe70}Kv3Yn3_(fhQokr~}7(+K697vG_QaZ#TYU?^(m=P+w zx^xct1wd-Y&J2Z=uJ3bP04fr8XY~(r3rGu0;(K&P=|c|mYSw`Ec8uD9P!0l!nw}hl z5CDNd6_)TZz<>*rU1L(3q`8kNa5_KGrUVK8I>o_Uv@(E{6;-UU?Kt&X`g2;^%dXct z!1aW7JA_*hxjfE2x|S{L2~sk081Ue0zs3`IVB09*dvM_kDFOYwLRYt~r&zMTas{{o zxw82s`>NmGP08v5{e4K%0=SYs*>{A~Y`*HbB%zA%F9MU*_)O$3_y$4V7F?3Rr;glS z1q58#6oBKH0@{~4ACfa2qCpQo91wvQ07~4hW3FDkP(55b+CycOMx*pDT8tY)92GWu z86{NuA+FKEV)fyhEC8Yi50ucu95fst=lTv`!(uG8q%1Xj57Go|kHXOiXHx+eiobqr z<}iw=MOgl<%4_lLRy0II2L8@J+xc!|ak>>0(AZgGp2FBcF(Hyk)H%j+sxcrQfo-)V?z>LFCd_XSrW)CqPxe05uom*oo)NVAywy!;k0bN&&sNSvDd&{~%|paxS%6@eN4ot4 z_%JC7{TpYOmKiv5i}7K7SR|N2<`RCmk3Om~M+4=jc%6CY($D?;(;omf26eR0OsBO2 zY|6T)ca6!<>`(f6yH)f?PHzm;r@UcIfshj(A%;{bX>FJ6NE=v zKA(^OCN+^(_3Ex`#-d<{*pCN|5h@COE?9*#)fG&C9fLbS_bp_A9j%39mLAZWR81oG zoPHiZyeFku^l!3>x7Yw^$6YW(XIiu8KDo+JM%dF}i~+bBoRMNZ`S~fotkDrq9(y6G z81RIi6TuMI#)N9L-{>x|_M*|X3BkBnF+n$NLcKLNvX_%@*AAR_zQF0nj&!6WKjGXB zefNrYq>1c?@d*Z;r(m5fSqf=GdC75Q(wmb zfOrZYb-Eg1K&vEB>TCbjC9NxnG2<8KpUls}w zhw91|ydm1xIyw~9p9?x;9-01rK~tZIt+e_l@|j%&sd7-w76lQ6@>{pn=mD0+mpyl+ zLm_lnHDn1x?Elwa!4*}1}k2DAiw-Qq4`q6SL` z|D*aJyfS)oVc*cE4X>u@h(P;|vO$nY;(s8iW_0Kisw59;vx5ud%HLcv9jg>w%hKV~ zkJF6mUubd|ZoX)lozn#~tc+vYv+osjtTkx`bp%JL%T5Sl5UDJ?0h_YP4RfLt!4uOL z7y=7O#cJVnPeQFPlnBAnZw@}yB|<|j$-^BkCb26(#u5GAO^E~5cu5fAz$R=NAEuOq zQf#4t1u-6Xg;h~8GIFa6k6k;VL%-y~!tXx*P8kPg)Iur}0plN^&O}4kH(g=BkzJWhz41{nxAUq(wnS&x{(9ka2#>i;@370RqKRU`!V52jFe5mFRR)cPK)^NeCM7Usw?w76*WsN;Hiee&=F>F#*)rI4s zCLI(<+p&hEn_hY+_BTgBlEqU=4Ra}Ueo9`!0nxB>?gg276`*`MiqSBb>7gQlGv|TI zqW2K0dsN^XyloGag|)jJ;b{W1Z40;=LHy}QAAh2FnIKI!E+B!r>jDyKmFF2}RURn| z6Gy8o^xDtaqWl#@&SZw2MU9+5yS`H;*sIL7%*fv`Rm2b{DVu6YwMzH4RIiM%bap6# zjDcKooYl7{3IZ1d`USTX#RNp+Lkg5C=k&1@?P1Z3wGU-Gq$o~ABec1%_7=nLHCB}q zHYP#60oG3}c8kBy`NCzqwdRfda<5pyM1-z`W8VwcaU-THtiiSd7t)1RIZE%pFOj14 z)nn@=nLJ>y4=4?6bj4qM-1;qab*a@=%QblK0eWPHMRRKg~id zpCJf=``Uo-9JvLc3v0N@W%jT@k+hiKtyCGe#CW9b)Cpq{!7-*#5Nr#BZ1g2fJ5^Zy zD7y?#)H>A2OW%`Bt#w8R<})rdG=2}(j^<;zQSB+qcFpRKlsN21`^ z58XN28$bcSOZFFjByr}@(a^lOw=+W@18q}_Q=tp;3%`P(+Bh^CV5%iBd*j@4Rgbwb z0PO)ApQpU;v6r)#?7{3=n$6N#+3C{RBRi;%mIqyTSg3>!UP3}VpvjkqqPHxO3r)5+ zbgmTnU3(;QOW?m1!vqGcwTl6cS|GuRR9xoMm#c3oQn^_%GiVAiRMTdHj+I=(o-PRW z&Si*Y{06zun@`NgaN4t{(v+}73@}eICkWGZD~pJ)ihJ*l8hPnhcjvcBcyN*D~K(%2#6KCqBixl?% zypsOf*RY4P|4XyE6Q(eN3l7;zv(-W-Zy5ZN(Ugp|X2o+!Fxg?cTmtM~sS({0^~it6 zoNA1aH-L&h-Ml5-fA$||--s&YU2*(h{eMA*O$%Jt`K2fzOmNz4o#TV!w%2(%cl}ES z4kDrT;#9QSe%U{{sNYP*f~}zUJ*p?EeV0DwqJxssi+{F)A5=q>v$i|E%5@yCU0_k1 zaGx(?Hh7Jp*Dj&gkbV!o^VwkwZ`mQdTj~EE-BKTr9hBO_%e+Co!(+xPq*}Lyp3p(~ ztj7*RNNBCd@kax?Ms&M9S`@^5hoUFk3vel6LqnOCR?d5{Z}&CO6BG+kJXEe_jk^?V z|M;Cs|BwO&;(?_t7q34AHCg&?j*)5;3*SXTc_YQ$*G5G zVztttXs3K+}0{TLzpVpZp4(G+0{--`?fTrO58WYS%b)KKX##p9R*|pMtS_73^0Hz;V z(-F&YZzuE0fwe4AMlOX)p|R|*DqdEDoM?evW<4Ro4j&((iC$4R-6@Jz7xBN7l~&g5 zw;n5z?E{_!R0!tIZPKrUAl<9q@+VsNPDoto3jB#eJAVQOj^wAL@mCME9KbuD`K$oq z0jC@4wzO-}DLKAADx0yUaFBH_XZq1}A8-H#o49nVoub(JbYs!`qeOt?=Q3a}Qo|dM z#B6zTNxAGnACXaCPaU3^J=w0wkEoJfAfz? z`A%RtuLUtA?a@9jdS3cWsOHgKgh+TPn3+WVJQO^`Au51O>__M7QYgGOIpTxd5EJIH zg8=EOn|`g;TAwd@)(GwEQH>JC%Mu)<2}=m!uK>%25biMj6Z|Cu`}ems%m$igmb2 ztpy`%RM`kKz=We40)mJL1|Xw&&RIi)D38+H1eOx*k3=|F zfU;jx=rRisq+sd8b58Ww*6`S2+;7P=3Ln&W*YN<*49X(U9c5^ma0bwRZq{vKHs#f~$rP6cd$^gn8jXA)^l|CTkO zol!=F3n41r&Qp4rr#!iT`qsH_U*}wdreeN3eeu7lPd^Fh^3Q>6dnIB>Dwm+YL4wOV ztZ9zDK&?ChLF@MLKNFw*6I^XlQT@`*>NLIBzGT*gc2AaaFZ5D*INvT{WSNK z!l!4IT@%@gHdM|)+-=hN-LLfbfFs|ru2JM^TDAsemDUsDz9l^ppb@V4zA&FV&GkKR z0jaDAI8{Hv?4mT5t58p#>RYJnVJu|9<%7laXA=79ngsY&^Zhx96~EJ!n6nQ5jzZ=e z)tA$uo!)7FgEbEJZwRooSvi1`w0^0@Fd9VJ7koH>8Q6{g3%6w*MWI%f z_SfiaMxZk_*$<$km|YG{&Bj4{Qd+#O!7Z#a%lo|6Z$KG`()go8L<+C#^Eom%6!KGL zlYTR1b3IUi7O<5q-T_sqgx*89O=E{NP($S!Kju;gQ|61G;1+-sTflKN-u`7$NaS4j zqMW53NiXCDsV}J9A*O(4I=TY@j9L zli0uRusnM|RQg5r$>pel83EMJLW|IE$OP3*L8h;6@!fu!9vtX{C5QmH!zp$|U2FOK z$_cEZOHJYeLSI_Sz$$F@l%FV>&@e_-?yqK=1cc9aWNEUL2^5)0RY?0>`*Yl@^L!L$ z^Pt=nWOz!+F8vTXfM?<&BskC!1s_lYi0MTek1xARSpjemnEE&*z%$uELzf^@?Owb2 zJ+sDe5Aj8qAV~4RKGtVPPutI{T}~+XXuCO5aC%R#;tx27Ymi!#cAKXp%#nLSR;)7h zrP==irz#D zWZ=jeEBVGJ+NW#z<39b5mxAlUar{*<>7=EE2fFN-(-Gld4V+{Jh$3KDy$Q209XVwrn~0*YWB>xFj7zS>dk-qR~V%yp1k*1Ffc zoUDAib25|!ibkU~)ZbzCzoy@ZBV$1c)02pES4 zJVZT7*CxhL9SIZz`0|2nZ7lMlEKz@lW)&EPk3XyM9~rmgCs1;?L$Ui;XTRwINn`y? zXZ!fk=U&cJ(c*CHTd-D@1yJ&IXlA3|wcore8;gmHh!$zIE5HnEX{fl*A2iHP+VQ>( z>zjSfNuCmr_u26#+p{U{Ox9?|0Wp`e1F^wc4MLUBGM?oQW&YMm`&mA?mNL;ON^x|} ztOTM4^tLcQ@C;6qX@6luU+^^xWpPp=8~v#3l^%3B3x3!We7<*k@`$dO#a(v0TI$f( z{;CS|4Xc~_40*0h)7!Ju?o6K5LzV;&pQv5p{9$ghfvw?!!0FHnW|L?{Zhe}ydkSYC zKSi$^{oZ2%L3O$z;q?5Jpjmm*tWQV zxMTrghjrFX#6rRnsV?H#zKhSkq;X=lg;=p)fIS4pzE|v@MMaVcNt7TcZnMTxYW=jl z!}ftB`8`KMAQ~v!|6b@A;>Wm+BDO$yd}ogd7<#_bb}^sHKqVH}A1dfa==1EgW^WpT z9$BQv%N}UF`)mA0^_PE{K6#*#<{fw&T@N*n*4_Jkeu~dR^bm)Fn)rj_a*kq>!eN?u z^@a4Dy^2(5QlEeCh&kwY?qILVm8gDQl-Gi`_E`h$U2_vM6MW}aBTXB!1P*><5|-!S z#n&B&6q_jP+o^|58$MJ8$r@BS--G%0eaRi8MAu}292Sb@`DstsvCNjN?emA}MSWW50_F$Prw#C~HO_iy z&Q{miPkkN6w8=ApJ(4|BpAE+;( z`P_G^PhP4Qi!3)7a>r!Bp75yTWm(zk8k9BFee#xVLg93U{a>*FNOPNCQ3K)P(ZjCZ z<-N7YGb1?IKn7;!gI^Ggo9*a(0y!WEN=mPfa^^f=t*y$u#^8d>1@deyFM$Pnk=)UX zobleR?|&g-mQ5mQ#M(G^?O@O1lG$}tETn#GVa zC23bYBdnPdlu^5Pd&Fl=QDN9D|F=+s`0rLiA;S^)F%(`VvfaYfcW#XF8cN4HT03 zg+dVu234~|sO8jKIFw(tnQy|_WTcMN+NJh-lE>N_0>0{Jf9W}alSpsQ#PNNpyItSML{b|2^DMe@v0EP}4q>iw=a-yH(`5fRtaT(Mw>9 zo@fF_gPEe0%#tILeAr zcEXQMou_sDrT!l+QM_L1gl76i^}l(11H|XX&Zx62Rf1kCO|F zmNTJZrvy(*cZGXvODQys5I`)jp~;&g&n%>SJ75*rL22PO$GwX{vSC!-=*fn# zl6SJtEh+E$4TDmjGnkT}PwuhS=2!#Fnw0ljda9;k_osf5pc+R756jvuDKq-nDq`Nr zF8&^qwIRIb5*I`9WTWrHJzyJ|;+`QW5A?Jdsw zF7K*P!H0+m&z?sfv;-t#%cK5Kx$skO^yFcEQ&RM3zwbpc_pz~Lw-4_hcY`-SCD# zHJz6gQ!x9J`hb`O+-fJmCLdbJ(5Tej?y(NtZ=urO9E*j5%+O5KH}62Afm;zInryqe zZR#uUAS&5aYkC~Ilv=UIj3*!z83q>DQ-7~S->wQ`wWEU6E>_Da)5__JI8n**P1pXJ zzCsjn$+*1?+2=wACpc~(6%h;WUE}+oC&?VJ0FD^USfS5eh3R>9c zQ9H5mn~oNWBF|D70`sd7n_$JFW_cCkW0DSSwxrh?1~4kan|rl6G}iG75>RD8_}w3^ z4j_B!w4Oz{&I1wkfPDk1+zJX3e%4eT7Gdr+c(I_*-nF<9B6E65c7x2l&(-WxMkV8v zERnV?&1I(31H5i~+?OCYiu$eWkwe5N=e{NY9AlSpk@hjh8BFZFlR^3Qo;LY8wF>=o z{wMlJe*C_lTIqnt>~ZVl2?WWlfV4Qn>nEao{e+rpZ$}LN&iDj=swnj1$A0%)9-m5n zv5H;^KF6|YvMbC-l+KcsF0ZQOFpcYrX^$E`vjdZvocgar2+%AP={u(6qgMDA zmTT6w?nTGBW|v)*$iPEI_xm5P*~`Fb%xW3xeohvr=N_FJmk zOo%$bxQ_=%23h<{|0ocyc>nDGtBHWLT~*{$C(gSt=zc5hvwC>Vs%h zpXmcSzrY0hcA^QumhLdEw?Ye>u4g-(lbwvTgI16oT=Xq4;u_~O#|ZY>-dwxQ6&dKE zsUEq`bv~F_AaDZITTfZ81Te7?tu?*Z8h;;F+e21K*#XBpWEwzg)XnL6l0%;RB5=u4 z$V^#vF5#0tg)M(Fm}*m;$U?Z|_IF?&CsO;y?zHEJmG)+8wAO>AR+63GR2ztR(G1iv z1D3u{l$R6BO40(aMR|+B{vYXU-D)VL`~3jMC;g$n{rCf51inw4n3dczrQm;H3(&^w z^T!UqmY_f82nDd@r_~?-#^d1&DxU!plvD{}J2%X}A+kqw3sEfq5D8NF0rq)MNg<(` zi36GjT0i$Q)OVMRa(76Yn$pw^xsw_!IsmUX>eZ`_o0Dq^E<0 zBC3#naKPAS2M~P)EB2hJHX!T0&hc;a9$+nx>y*ZY5_7QAK9886TGcksN=+*;EE>zP zU7nB3c>elE^))ga?Q$iDI1fC19@ehKis@0% z{==IKB85-PVRuXfA9X=*2E@tQfb@H*H|$sLnKh7m3FK}Vp+44LFY$ULnyj7+iZhK? zEa9C4AZY#V81psU5>HFJlz=G*NJrW~u}g3cT8}Tk0?VHaGx4rYUvY3B*5d=Q0`C8&-b^f^MDgfTBWBajDd%I z$RH@qzWjrJh5h^w{`+o!I+YT@yU-I>N<$+WM&Y|Xq%m}S4$X!(%=g-Owm3g2dVb3-`sy% ziPx~2e}TkY);JQa>Hmf2RJ~vjOcG%d0kLEM8m!dYt-5JAbXE*cRL&nql!Bn&nadvS z1fUxgdXx;5oN$F^=UYRPX7mG-CF2f&=TIM?wqaez}7kL>4e{w zo&(L7>~Dme($HbnDt#ntr;=u`=G-EA(J*aF{h6=yfYO#ZQR<{T4AH3%a`MlaYA;FW zNzLoc=LjzCBY@Gs?E}hyy(XJ?K?pl60T8GpSVES3f$c@06=+%NRmNC<$Plr*%>^3X zs8wa534h@4fXfNj+5Xnv|MMDw8&fNI%K4M<)M@;?3=8}U1v z!v^y5iWDevsxSVQ!1WOErN$}3mKY!K^Nz1NAp%$`3hRIV2+IH3Vab zU7m=d3Me!dJ%8y!j`!##0JsxZ^A!*^ITvn8ft>&RCHKApd|TRLD0E%3i=u5^MAd&M z=TKO8V6S$jVE=2E;lM89)l1o@gzfASG(l_ro<~?O!Zt!X@mcRkKil)PpCv1vIzkWf z-7DFH0=<0DoXT!ERIVlF&%*jzga0a#-A63%x3+5BdX>5f!nH`FepBSmbh}p{UqDL_ zVHCji-y*)vKF)?o3=Fm;G&MyjMw45Md-x(Gj_T<)9jdCUc9dAl)P4N4zT7y<~J^oNVNNP{(cj(1b`S+;~~2mDpx?@TSeYznvgd$bEPq8h}v z^lb;iuHeAbdPL)l-_h88I^w!L0!55z;)JIK@Bx7LQ7za-9GPk)%va5WS~r2J^JKLF zE)-WoLuE-fC^mioqiq8JKxWcXxS&f<%-9B4LtHxhh)~2xSda7+FbQ#G8qH{DicWd4 z`n2P`%-Of-n4IzyQFGyZ?@DWX!7~rSYK0rnCI!jfXR{k*H~j2;m_LN9HmWvfPEw~p zEcaQ445G`jw05jr7D= zqv3d{y2aG6i-aUzd44D}ThEf#)QK^FuNGxXUTV#|fuPvqd zf?9`=i?!u@KWrt7Gjtp#yQfi{~jiZ^{RyKO(^b z$k%k4CiRXrFj}!l9g4i_7pF$BVG&rWj9Ij5_S$jGu78syS^Cp91YYNr7KPCE8IrSR zp6q~5pmVmX*xsaLzEy9&OGz#*{i0TZ?tN;Z!)n>8tyemRw?0f*`W>7fA8=r|8ykB2 zP$!E1qoCX8_sY73jG^~G_TKIAY7sNocR5@@|E+{?QLiF4M_9*gNR~;5{SRn0{AuAg z*2-iPLG#6LuRi{;{BNJWn|>lOu&n@n7!hm-VOt)ypjo0qhMVSS|LG=sMp3r2OiYEt zbbwzA;+Fq>0Iw9@ED{MnHy0+vm>A6#>dFC z3!e~>@RH*IPt_j{Y~nEdu7m0G-Rh6uPQjABp$COkcm9k26EeyGch&>Td=Pt8S8kND zK@~#z>NL9mQ$Vc0vFDjoVKmUmV_A z=N9t>ExOf=pr=CDrD|kCc6Iuocu?2_2g$@-}+Ydt@K;$LIML~ZG<tB| z@TREq4hU<-uwfw;StIa0@QW}hB6-K(B839N-v_%()f_h<)Ag>KCYJcyk%j7z7@It> z26O?ot#X0Q&a12e!k)u=t!aJ$YY}s`4@!bzkrMfiq8|gWwZL&`Ymi(!h2zHjM5;an zY`HcT+^+*M2L`Ss?GxGY{@(XKLqfoJ_4|u~z!3l3g(tZ$^n=O?o;#5up`~`F?}O^( zw|)ee?cu*JCULDyO9frvl3CNrv~F+c#T}?s{}NdBKT#urOxCZ_7p#Rf!c7B=iHL^2 ziyu2{2Q}E$TYAD->ur-dEnwPR;Nj}vwI?;jlX}^2RF1*#1u8+e)`y6;rBxUC{AEf( zKe9tUg=Nw=y-j~~!EXZ=d441<4mKW|$4yn-?rj0aQO^ka2lXRxSgdhJG1tMOtFaEA zq6dL)D(2Zk2TO33S2qs;SkOw9Z|}2tChqAvcaiTj0$LOPemRz?^VTeDHP(=gvCsJC zH)##D#sX!K?70hdEU!JXKq;tf&FRJOVV=fa1q6BAi2Y>oeHw_cw$9Z5biK<~FTt<1 ziJ9B#o?ez6U}r;0QUu9s=uaMN&Q z8D{%(f1`biLxppP@c!h3iotpC z4;GImENo_QbPJs-FO2}TyoK}!K_u2Roc_G}Qu-0MC&bHpZa)iK68m7F5pfqZ=U#gm zxDnn3>ZGa)B(?33iNTmS16UZP#`>ILl%yKXmXyyKqHE9XPwd{@jQXKq^%vD&_^sk3 zT4S3!?SUW{jLD6fiDH$x7NTq1cU`N|HMf)Dmu7!p+J(v~{b8c1YzcJ%ynPSvi9Sy8 z#$jtMaj(Uas>V{c>XEGnwyxG<2jivsmH9c^jnEp_K#KCE68K4=Lf<=v2`|fEDTdjZ zs5$2pGKmJSzL1-Dk@{|d6u3f}PmukDg7uD`l;7;tH9HX#z*IDu$-4}Igw<3OfeonHykRkO7XDz9GJr%GY+W&RUkU2o0 zbRMo=4X!Az6qRd*?7K(Zdr11C-g1*;1qQOqxv$;=(Y3($pzy4;Ts+zQ9hy@)Lwqg9Xl)zoxPI6(J5!yr5?R&hHbtY&o&;DzVRD}E$i^xZz z5NV~5uohQlC&s<@l#(v&yhiQ!#dkjb+>^>`u|oPd;Mu)u#{e%Es3)O4_2)|w(Hi^3 zdVnp;<0Lu_$j)K%&U=q@xSgsdFWr(|4xlNb* zIK-jk+4#t*uDR^O81UootMnhIz1j{HzDs01GEg*=x3+%QvT&p+O*bXAM#9FWSuoRx zlJlf1R`ajHm$KB_x@|zFbWm#5(dJz+=+_c&0my=Okai!gV1CVWf`MyfWbNA^-?|B@ zlaoQv+>Y4oV4UHnjKCJ@o4-`+=}qv&uU7xfpD2eTp_$z@9ZE-)k=K1t=T^M4DNp+Q*-K`cXMpN5zRDBUEvF8mCWFZeQ0uTfM?_*GUu_dLa{|Oed6nmmBxm!KGZuD1He>4}jWkPj-M?g9D-}fc_qd!Bvws1YVVTU`k}vHe#VF_Y52ZB~Sx7 zl(y;fe_h38I~apjJQ#81BwAWQhG;U|N7S*jCBXX z3EQszn%-{7!3Bqm0{EVI05q$yId}qcM@^VonK9>sgb}eO)jOE_-jmWDZ0bNMpNFHf zNH%+tBpoum87&u`m`iuW80a91It1|0_3%rX#Ee|iNTKz74(j^%{k7Sh{^0R*iiOgS zqWc=1?3QT8d1?Yh>oxMqJ^wYqp?8o%Lt49=u+NYx6}JglU?tgGVagesme}Tua>_wR z2_Gv6^B`0e+?QX7yC(q4_fBv6Ya7V_j#Xc4+-i-({I0ZYu?AAok-DQZjOSzT5I}xcdXAeSNxmllhPW7n57*D=R;xr ztnzf#)5Jv96%o&v#CSJY7|FM_7=yDKp4Ud$ZT0u%O&s2s=$?MlmKiWc*64X|`ge~(~6-^Qh1pYOh99ZQ6& z9B)kj{yz*&a3<57tPmu=WplCawT}td&|Uj?!jNe=>5H0den1bMT>*#u+w?pRr2MrH zX-v1SR*xuSy81+mPs;9W`eKq0^n!-)U5YXY3Rc@;Okca-vmFybFU2~s zlgX){skxwlbTpzUbr&cHpgD7$R(4SU;4A2tR0FNVV{-J=Tirv`(RFq8qu>15LVIZl zlKhxz7)62tdW%w2Pzshs;U*4@e1CJS+( zW|YT70PO?zhZTJo(-#Up{uv5i3JFM@7a)#FOw;qh4o3rxRITU<&Y%tf{oIoYa4>_o-6xFEZc1;pi)|4Nty3)+)kd_<4K{SZ*RE!`G z0%lAx&{a!}NUcU9AQj8v@IO9>m`M%zkQg2rQijpG#p2Ct(1F&ZV?R70`l)-AeD8m0mHhRgGBZpZ?l0JZEnXaeT{=CNhSc9^?X2oT?#Gk`z zW1|naW_?{&FrdzgC1d=&7|Nb4Hz!zyQ=13_#^ePdD=+Y8UyC&{*#wx|Gg81mQo|iO zWcI8pSNk16DZ{P;vVvD7lZSQ9n*)<9RP=Tgi7$+80*%M?1s=e>I6`>4_u<_&1bgHh z`f$)#e`v-yqD;cmUkek-pH`oKqWiL;2SKo(^KT8n!IoLsG;WK`Bnsu{_M@NNl&Y}+ z$3$kYd)H0j%u|z42U5@~MmRZ+K2^|IApI{f4L^5<&>aODNY3tLWphOOL#-y& z>SqNg>L3xhG%>x!4boz>eF6@oTsIt8-o>EA3VXD>{@-4Yf!eTv(D#-y0jnQ`EI|du z`iVL!j>IX^M2HT_Y_d<^@HX6~((w4~ZJ|sU^28~5KE#x%?Y6r`8Yxjcs_p1y5atOrmnRbG70jxThm84f7=%|dH_#xUdxADsw{hzFj9I_V zS*9`zs_hB@miKNR#^$<35X#CV!5?0p1PHe!p73rT*sA^qMYE$Sd@T??c%lCIdN`*K zV!|t4wVeEcplM&7QY_9NE8KV9Q|GN4X z^$j*Ze8UlvS_CF5&AAE*RptP0AElvhhqoId0xuRymJmbCNH0%n-2W40 z(*&R~aWk#{4~wl^c4mT;eENqvRQ`cfl>4qPZ$x>rq(V*mXT^bpCI)pCOk{`&jmfM@ z&*-eOW-Vpm=|ov?v1@#pZvfsFZEf@l{3btx5aHNSu`zGnY1)y0$eIhrdjzF4|ItYq zW;>!`YkZa=@cHP6_b0lXp~LGPss_?+f%q9t1^FLVFs0vUkJx7qkLv7Byw$aLbvhDO zEy@S$)?Y?fxzT&FBUFKXNY3qA6tWAx{qCQB%Nxb+!ycIbYw%AS3JJw35rX*1J85eG z8qUs1cHE_!ZM_2FPF`{p9g+n2F9Xyilm|Hw9)e{UjpKi=zN%cZM*C7sn5jbQ9-c8i zYUNsDnX7l4s0KSoh*9*sM9bGx!u6>mq>0gm=H!+=V3GJ=Jw|j^O}7$|KZ`O5SU_}m z+|zRQ<1g)MFEBdv5I6*{(cX8c0mCT`^>%sE*7WC9b7I-xgT*d;LcN1)P#IIJi8jj? zfkqafg(coD>A0gs0{gsugZ1QDjUeQnJyLf_XXm5MoEVUq$o3eXTG>q=u110DS(9$> z?EI>asdhvY6oD6QwW}1?S{EL2kp%jmy7r-0afCes)UO#cecd`_^PohLc0uA#zx7N9 zmo%%WX<*)U*l2qFGIccby=Mcp*clFa(|^W-OV1>$J%a9XO5~OccagKS)rNY^qZf56 zcCjzK$p~b})?w*D0H0pUnN$le*e~p4Yb8=}Bt-B-iM4oQp46PSVTDC4MEIo9LmSOw z9qO$Oz{7;kctv)bY2=Al8RxCF3fMBduJ@pDGYU{(-)`!XRCpY-?7bz8ai0XnQ0J?q zjFB5IXqdhSUgs*6YWgty|9t0f@}RNS84jJaYBaQ|{Y&8jNQ#n#=)qlquXHxlPC0qK z`rpM{xC(L=?qNRqBSKCChj7bVA|dyx9Wk%-GMO`~Sn+q9(e1@W^!2Z5Wav@IoxPj$ zorQXPl79=$&?CT91;ARrL4OLm8FpCNCjw8V7^U;_NNQRkv2LjiEyO$jxO;b^i=P9Q z7OY*QSS(Sm7c9wPJw2~2zV8}|htpeM{xy>Nr%j-}crDld?&EJjfyX8Q3U150g;fFw zokI&J%LYM;Fe8a?IDPWTdBMzhe5T!YmPnq*g~FGOP7%c)v!2QiP`lhT^M@eWd8U`S zKG6-j-vI-W0vUqDD&>bMWNXIU1Ea{&1p8($Q*ty8q;%9a{5b3p`lq|X(GrA=#cy0f z2^Ir?z|gI*K&?4x`3Qk%H2|0bkICaJ@bL!)_x(#LX9m-YNb^ZA3E1o;5#moAqoUbT z{|)xQO?_ZEUu^d*I!7#kz+#XL_pCB;gZ?wv172%BLgUKo8@26pejn73r`(Iju~~H( zQR;;t;{S9bs zqmCZ4`|mB&Aa^Z*IjXQ)XO4;jDF^ zeu_uJZ5)Ow=e!PnKyB8)pcMM7*AGbNvf4`(P{+cjM^A{bdW5`|+YQg;2Q!L38Py3r zZWqo@!zr0NazO6E!s@7}-)=Is{injgcJ!aI=XU<$4@mB?$o{h&Sfqlu8O`3x3(I5*dGe zwBUTnquUiftQAK zkSiU1{^<`N|GgZ|JV+iZCE|WxeMwm+P4TdI@_~ zUurhb=0;_sM$PYLu>eC@MjlcBdXOV1Zk!A6DtbndX0Ye(ffxX3+=t(sA z6~k`L#5-y-dnT2$1)dyck!_!T-OsB}KZk}8{pfGGO++QcfeOOC9ih0J+Dlv*$2?`p z4K&Y438_&UKUQqVgCBmcLzTde{4<#pJ71t)(YXgMY0Yf)>Y%ILHKg#aWNA&baz4>y zhmQ{G3>#Ma+kWX}<}DS;zw{RQ1of*hUMIK0=!>Oh-i@ z@6V&JplSEawfzNfySUqP+`Z}L7Ul9~NJ;{vb{fp|qcp$;!on~UmE`8SD+yM6R_e&h>L~_JIcSisB zpdeVMZBInsyA$0ib&B@jC}t3-VEC@c&jc0sAX>LqI4!3O{xIHfuYIO~W0hV|!Y(LI zwpkslKHN&ttKS6V!Oq;leK$*Sz8Yr5V5M6p+4SC`NN~+|D!R4OeSn))=4k91eL-;R z`_|0uK`%!+ca`jl-ONLqadrircd(u;BXVp}G7=|y%OhZqwnShOsE^dz1jQPF+>Mj`a{>WIel@JzUO zw&^VFdJZ%O3*Ptvd!)Pd7S=B=U1@ksK|{-n0TQ9%$)a2&A4$3R{C9tZ5cs!h7Ru&O z)DEUJdjwBOAgEBe!<*c*T`X3##$kdu5liCNS}le zTe14+0X(t;5xyM2dfsng7?2@K$x&JHo(ermgG=k}4iQlsH7keN<}604idG51F@-f*_j>l0oWbA zRkyAmF?<@&=(w&`t-2W|KS@c)4+6<&7vUFM%!e{!!Fw&(e&|4uTky`t{zuivA6Z!e zt*I!8u_5*!1I1W;KI{>_UswaKI71rH3;C~q-36bqT7Tfl<{v1x%Gg9=NbF}tJg&7X zut{i)C?4X-hXxZ}t~2cMX1mM0CVtH{ON8tXel`~P!D$!`<@U-x8v3+t3mni768FdJ zs3A+&PL?~K`76xoj6#E=9uCag4y}V++X2=GlPJ0`n6adPJ>|8q6(8vQt;TRiZKX|W zm0nAl*a)cYv3AVeo#uhhB@n-Rc>5)1U>b-C-f#_~PaUduJ#^r#nYR*n;n~|T_{bbz zt|u@nK#7x%%~vYTuwUkROO%b{+oHu+72zIhMm~Bi#_Pkev^>)bD}KbVq1xE$Ewak5-Y3p zjNf9w(e~GVraA!Y!3EVCv4^&o{F3JK23t}J93A_N>_`$Wm*NoJim_@Bm3`}6N zuAz2(&^YCs2nb{S(q((#uFzeiiASwXw6EXq%w)(d{^YFCt8VopM3aX*P;L?z!@QIc zI{Bunm4~2o+TCBWW$lod@%~-^vii%UN?{`Gc3asj2EU8wnmN^E>Z&@s-sze>~-(QHH>1?e1bGu)5~Dld$Z zF`mALY!x-yhE8dUqoiEwG+i*CuCtn9cq;Xzhhk3RZ~ZOy_;wnzw>Re30g%N+D+%bY ziJGd@Tt9FsL$n?UrmdI`vD+Myi6}}4;&b72P2G$(sMdtnH?bt0LVs|k7fgEbP&*G} zAn4D(D;fR{R^fvfgw%VeV@N|S>mFMJ{~f){*l7GP(EJ+`2^lnk=%l^GBkxhg^%(0X z=A0wEWDX%R#<_{T?3nbrDW@pG4wy`OU6O{$5-l0ShIDMOn8tCPI%>IU=2Bm+CbdtR z@6W9ceIx?;OHO@GQ%zWMZQ#)^y&ZZGHPdv|&o@Po6~f;zy-L}_dKw`SWN;?aqSF=? z4CO2zvHKQj>%VReC^> zWd@m5!>eAQ4DO4d(sKwI*2ilUH{_9=f;D)ldwY)(qU*8%&t1e?Wlv_z( zaEL}=1`cuIC%k^)q+sp{NsI?3Y|3T z8!Q6Cyhl@N(S?dfLw{y`=!UZSe%pp>*6{qcK6Shz||{_3OoO`b0Apnu2RK+utBz=j(xh)X0DY7=C%xeSK^8oK)pFJ7E>4Nhk$0E3 zO8Xnrb`5I)aSbZrwiROj5brAz4$M{lRV`339OlR~9kVfo!#uFv)ss`Mo)!STHx<+6 zgP##F9D4OhHi8TU!Y0v6d$?-bBQtDwkS#;ekZY)3pVi>y5+09gk|S+7Xm?919$gp` zb3y4t4L@mhQ*dCMCy@zxrnEhJk=m#A5%Pe3G^+*w&Lgeh2Z@xH#%Vq9%^{~9J%Xm* zbDtDx?NvAoWJc+E?vfqeF&ELirYS^ZF|Z`&y^&Sv*Rm@8`f#j{s(Jw4A7;OuTeNU9 z#>H}sod{W5GG4yg<<}?;JfdKr7}B|rBb6krEn@A-8|H489-MdpQqr5C=^EgiQF>dPUU{%Sn^ z1HbnbtO>Wwkxoo{Ci+cn*8(B4uJLT7HX_T%7q#Ee26}oa~ z*q)y;mhm?R!OY(H?D;-K1G~)Z84BMcOEFzJ0)+ob2{W0hA$_d^`VnB4ENhWI%AQ4B z;CmSPRR@C!Rtx<4OfYN#s)5%kqOt`)Py$jbV?g8cKlo3K)yZ>n$kSeQ7wAfb_Weop zkETW|9L3a6=x*(i&oY&KR#S?vi8kf`^!G?spuTBGiW2AG3m`ENCDF`77JN%kIJHb7 zK?20C?Yt1BlCi7%ETWs;$OsMRybAJl=niHUNbR!tx68cEDe!3E60^W16wK^A&z_SP z;Wgbm%az4nbfll?UMmJs8W)VWsJv|p&ZAu555P}nz(}$NT>+0w-)r<{c~17OfznmT z946VQ49h_QSaMgvkPI49awW(fk5rddsGTvhe5%1`S#H4cW3QbCil@(LPS_p{%vJK% zkmNX~QBS+NfFU5!)?xpU0s`3n1yT|cmZ5)&hF>QcvK@1SB_J?hbz;)k;ozb47J(p_ zf7cIkOEaE^B;`s;aAQcSsjv|e9Y`68*7Y?UK+bgI>>WHrJppU;(8~#|T2mi>UcLX- z;k)kDNAjrT@#{gpPj8uqzz6E7rXJ-Az~^)o9wu|4hlCA5Tt9~L2*Tb1y51dUV%eX=f7Z^1m6sKg-D}^KA`E0|y zAZ_(xt=arD#d9e9^ikVPwquJh z079Ij1EJr0_~eu7lTWA@x9S}9P`D0RD`DvJPz3Qc@+b7`?89A%MFK$pUgR1&dtQBl zyt$$a{DHJ2#^^E8ga9DdS3o_kMUX}pL@gB9zNKf=)BbC#lVa>hZ)C5H>71M%GOBR3 z`NPybUE8SZ!L6peq2jm&2L{D_&fBoC)zxwl@ zGEKM@PW55GyIqzrFnI~{Gz{0Yf$wx2^fLQe$t3r&_yF=ms)EC=FQ}6d!*cq5p0rK?6z7!Hbrr%iUmsGX4j&TC0<$-8W1@BSK}SC|K(Vy-+DS2RnYK?}hDn z0%V3B8_8Rme~Mw%<{|oqOkuqZ$;eyiwgjj2+pq@;4=nO$(%KNycnW61UF{AOiwm3K zLY=S3CUL`6jU)#HO%1Uo8s? zK?ewgp*3vg(CMlrY^Lhrod_>!szGa!P~KhUcgg-z1!A4F;CD|Wt_jqoVF{(6yl8`N zK3_8G)Tf)b1$KDIgsLaNi3>(K0F$A=t(~cY{|r~K=CxB=5sEaB%ME#a8Ls>c$NW2A zDMaiD|4_4RJ^`lgG-=o!eQB^DQYx_wU4(TqDw zvU4I^7uBm;juSkcAcA+*(%!h_SWWL!fB5j3bSuvM^nM{r9Q@;)ATC-d^iXgUovOa1 zkzV#ZT`pjSxpeA8RE(7ek%?KE1drh3(T)IgnOp_-ymaS)Lq|)n?qHMH=~DZll-%7GCLDLcssT;WmxS{4xokLkK=c4yw8(@eC1c&ONLt6$*r{lC$ zdMQj=vCy8oQNBp@Q9%VI;b6T3Q{`yYd$hUy4owQdo_t!)1|g(1ci66i!fti z7iukSKia@)+dgTLFz2xGmFnW5Tf?AXMmB`XD{hkuYo!H0YOS22zUU%FYD40O#b+?l z;jln&g7aKR{tD}72i1}(VzY!Lf%~#(J^{7^`h>#^)>e0xR$nt35d~tXrS(7?n8GvB zz!qQumTsyBB680>K}Nh8!sx}$*ynsoVxkf~L!x+*REj2(=YU>VY&rKdrrNB^ir%K> zE$@GfEY3d3Af1q^dlFIdB!OH(*<)G<1de6xhnGG~$j}&}Odla_>|l)>H9zzJUO5kH>{qaUvo0OHRp3%!hCAaMMga z+MKSTp2`uV9o@T9P10`#kUueNw2uqLXupb{Ee%P%CJtjqxKE}^f~!T|+vM!EJc-E7 z@w@VH>SLbu>5^hrlstAkHKB7RkDC-x-Jsf%WI&O#kqScoaefSOqRBCO$@;_THWi+? z$waSC9!82VbD&VNK&YNupKtxvg(2YYKw` z@7o-#nDG$ShTqN+AahTT;ipL5@?#Z##rSAjT+g0M&F-D;mwqe^X{OXSEMoZApzOLh zXd2is{)gZe7OgJ%)4g7B$Q-4zV6SEiCjK3io|u115jDAVWk@2R%$|l`pyc4c>NZm8 zWd}5H9JpYcam`l)BTV(I8;boXeM_0n6ls@%?RkpO0)5r~r2U^sfh^g!(oTbM!;&igmJh-qZ)_aU(6MZyyhSnzI zK7bpA)BR`f|4G&Ay9&=KX^{(+{EpK9#n_m14FBc<$8zmfU=iSNb?NT%;G~YP@A3z_ z{sGNz=JQk-@Sf^B#xK#g$F#k*C`0Q+qnh|;| z-F4#7GalfzdjT7`B17;H^ zg)OovpI!YhB%@!Y{0>9UQgm6j(&BrAc4=(VSFy;NOSFM<{e@B0SlX_zOBRr!Zn<_58`crFa+>+Bms+Or z_>k-2zg7RupC<_VY`Z}7;EaR{ZVS&_pa#I>Um=xAHWP}Oc&cFf9&Q!7*0OeBk*8kn zvp^jq)xmtyp;mS(%fGLg10i7R>g1;cymhaRD*&YqZm7cga&YKT?&N8Vox4MS)qE0D zyaQHfTCiC+!>%VIBYL0?K^6G$cj%DR=PIMbEm&zS5Ay%9r`qh2qwuBkm1FDaX69~u z|K5|&mikc;$)&b9(FUKAWIFQkEbFiX3r-l@-UX=uLt#}vAp?Mvvw(%1>?8Kl(EuD2 zI-r8~Zq_q}1a;zRi_Ry+Y6!wQDo%3kR?VibEb=C-* z3J>SE> zJjWG;j9K<%Ek@c&EYLp$tX{%r2gAB(aY5)eh0|-#Y1bKPlUFvZ;?rH)?sg$tNKzyP zM&(AJ2{^m}AyG>z{NU7eq(zZcqr2ANnkl5`EXLbq`$9xX$R_A10^g<6V`2pv$v-3w zJ8BXsduq_GpTn3Ba`d{j8!?KLIDz=p*kNRvH4fx8;~s7-|cYC_RK>eZ$mAWVTXa7;Ge>aE|PweClNUC@4ju!&Ahx5-s1RF55sZHb73-l&}T+Oy1pv!KNpB%eV$ zh@oI(v2TrYxz_dgWR{tTrswP)VUQK`bX%=^iO{ga!2{|BudF~xa0GCk_nW}UtZIxANCleK|@ z-LXLSmS0rwlTFVPanSWN(r#M2CR2$XfWaL*QfDuI=E*f_f|f?Drl}>wXBJ=r1rWId zml>DvqIq7eZVIgL{1VV0P2Fo?*+uN=ahCfv%7_vaHD6G);5;dU18igY^Gqj5=y8)} z1h_r5-3r5dt1IZ@r1hdOG%vlg-n872o7Bl~EH)g0A_SGFyTX8_{Q5@KYUJ=Sr`;)u z9mP7@188vW8KUDK1dr4qQ;3c(Mh?j(kKk+tN~;Wk%_DU;6)bhoHdXL*dcN+j)qYia zR0jm|DrGea`JX9~s62a3<`E-qUszt|u6mYuN)@tij!QMx87F?We`K=RamqCMgB+^6 zcU|`*EYG4DyA_cJo_hjt-{_-?#p$-rj;6}DbQx16fmE|N%pW*^k|CDx#)ZO>=*^bQ=fAjD|v zCtz;S{|Ga0W)nag&T#Gwfbbk=XPebzFA$$T_OC>drw7th%4W7|JVi*K8z=Rcv%L z9m~pX%|dMe6eU)DKymKA{Nyq&ksiTAClYx%eM+wed4?s;n0-YLVY{)$ucV|Ck_}xl ze#CAb`!vsgr|rE)9Q4Z+>+Bc>0OWx@p3XNvfB7AlH9rS#9ENUejtx<|6K8Pf!j=eK z*)@qT_<^62i1cwg+Hd+{aKUs;Reek#X#bP;AQg2Fjmm)f0TuFW=rhn92c1XcZW-$^ zpORGV6K(Z7O?v|?&`mG12&#=GVU3UIa6KD>Q>hO_X7U))i>*V&`S{eM>|q2 zSdQ7mxu5oc)z+Eizo0P~k=+uOrp}hXPYdffa8?i6Cp%n-WAVM}=Tu&CP}Ms8P4%~b zs{^#cp23vNA8NLs0pQAo?N{6+%J(X^W7T=)3LpgtOi*3MjLY$TOBU#8IQnCWc=8)> zYv-nP^rc>NwhsWm&dqyIv8(i?sA=XK;XX$mPQTuHk?|$6XdN0L)~+MP&%9*?U8m5e z6^67A-7q@lUFhg@E1uy`-+!roPr|-gg5H7a7PHL`%E0$7>+eLAff&WW?w${1(e+Ko zOxQM|ONMR$1eKt_QAa6=J-H)>giWB3^D{hUqvB1bz5f{aFrStnl4&Z?MJdPG-d6A| zYWjX8@neVnFV%jta7(IJx;ISfh~Y^e-j)fpdRLmUbXZrN6fdp3FKLzMs!g~0+`SRY zffwer2IMvKM`l<)0F+{}Lv7(sc$_ZKnt?mmLXv2EYrzLN{1WBT5G8yTNP}$<8!VnE z9V-hhG@u#}rvh6(P}yGYQR^jpM5-S*&G!kR*pbiEyT%zJ}PqsUJq-F9QZcnP+t& zk^Xy3O-_2re%T{m$|ulF4UM~tZI6jz-);;XF=zX$MM@G|=9AX9TURdy_cOT?`nj@g zp`~bv+kx_54nu}S9{SekjkUpj9}4^HHmE`X@`fHP+;>MJkYJ?k0Pv2?PEaG%TEk4T z4V`l|#AhjO6S`Rp=g)N(=xd>r_0HnB6h7)BtB%kvS~ccj4M<&x4vksy^rS@gZO1jy zS&9Y{zT|CXQ@0o{v3?+RS`Sc&4osGP$QBKir>);6%ILaH@MNfYp<_Bf3tbsct^U9J z;5e#OqinH7yNv)mFY(4?Jkb=2W(7f-zC&0i%`?qg>g<|)OEw{;Yy)783Xb6aX{rqT zL}t)8nR+;eJ>=Xp5GfTz31N4PX`KDkI-j;jp8Hd8Kk0Nm2|Nq895zY4g$4lr#Mz*b z)4%!nhe}^i+-?GCWbr4wZ#0E;^g(^%twAG7VPRI4l)S7g zcXbsVbPT;OXGd%k1hN+)s;FSY3jj+dHGV(-+{yVZMQ&Dr1tni+J7ze5qpkM(f-bHw zKG4hR2i4OBlm&u$mn6k*VXkm{Tf$-*_zr3{4gMsiITR9sDV3PdhFZn8Ha^SsFh`|O zKp;PS--0q5($p1>(S5ZRlY7x-UhL~f81dnXbLy7T&2>MzBcN9KJgciah87~NS5OMt zmWBVZo#-*gfyIk=yHH$3ceWk^hx%aM<$pa|ohe;zR9YHci^vT1PEMb+=m8!8VnCh0 z0g48x)Hz#R*CKDdMm|b=+>lBm#)S!^)ympTmdQ4KZlTu0v7W*MJHrKH>r|dyi9@T6=dMMiuJ4fPd{aeZMhz-+%5lw z^;w2%M}lh41#&sdp|O-jvdVU=h5=C7tai~Hx*OFcPRIi+N?&HFc-o`HZ}+cVF)U83 zdiw;HIFZ^Ky114I*h`1p$c@fOB8srv{rfj+foTW{wn{hHwPu)i`XLN5fB623WSy7t z8n^`7eMC3rs^|SKDEIeXgC-~RDkK+zZ7WJMj`Rc>W^2qc&3<(=3O~e&iwGex1#3}% zIj?%_OUJAu=lU(NO%^qPhg5Y6a4dqril$2W?dug=G1}s+Fy?HashsY;{F^- z?TLyhdZ@G@z{;u<`A$;A8iS<~5X=9M|H78gV_qc3fC+0Bc!ON(JUvk_S<1HM`Llf* z0;hJhDlz<=;f5JZiVvRw;D9-Z6=NlPkr%7L)TChRFWq^vZfP>`snRDr~ZV>MTi1y+*NNJ1)^d zTLY)H7JCLyZI>R&k>8~| zA-YLWqj_leZGbJi0%SgWM%{-K0*YWaG7Lf6_th%IsN#tU!8-BDKF;gmkk`n!JcBzY zg=pM^@TNz}v88(IIwK=VSG%h@Uff|A)p;MXp*$`d}ht~5?RXBuJYTu%xx*CEFGRKZijs>_O! zNn!%XoFxY>`IBK-W=B>PjU?K=?SZXf_TijASY}8-`=txk^4L;l&0rCA0!?_K@Iu2yrfKEH+bgJHm$o;(rykvD6KEvNt?|*Qh0h#)F z^P&ll?;YHcuJ#7k)lQe^p`~N6W^*?gbJ-=ek<_N+;RbqK`pv#T94B5w54~Ymszn@? z717c?3MJdw4;?+D1_06|U9L=cy>>+p%z+})yfBm?0%%BWpS^Ey@WJR z*%O<9+QbpwqW!S2!aIoVAJ&h$ifr%pRv74387wmw25{PNi|K- zr-U{3c~9XkH%pnl$z|(yfxfJN-D{xp;fs$y1o-u6o3pVzbq;ju*tAJd)K3)7l4*bAFhq)dGfTSnKMzpj7cDqxQL>h|%${_-mAK+i<0AC5ir{g2W z8SiXu%8r247jNg1iBbE~?+S^q(}2$@oeq?`F1}m0+_KS{kadj}yuBZQxHoYp0p+N| zU4ddvrQL=7#Lxv5lM@RXYn`RYq7Kl8N(^-}ZD3hnNK>lK=P6+WU6u&?{NumaiR!Sn z^8i1(Y?cQcMT`?^Rp!Ek5oh|VN6XFfsNMfjg>Oq=M2Mz(+OXIU=`1Ib%C_Z0GESJ$ z|I8l6YOCQ~>xZVd+{v-hd~Hm<|FHeZ;<^bQt$`q>S%PqGkkbR?IYQ9qA3y*2&*}fG z@*5&XAu47CQtk}(f{5{~iblI^*ln{y@Kp$esd^`khgrj6*QT@O#wVFp#wE+&5$Wnj z1x|rhqYR8|o5K>@+-}niB}53mCm%KetPv)L&?>fT`hy42u5zq?$T$H{b~Q{uHAXu(VF(FW`{{2fJ;6b*PUF)yeoh6@n6*Y{ue8a zLAwnX##c20fg^;{6j_&G@d1;H9)O>{9biA6R{xbNY1N^6iqv@Rrxcp#nGy=4EI(|S zuRIn*MHS6AKkNz7dvbw($?{u1AZ>^4OB}`ECRqWIc_guLA&uB=@OA0J4jUM^6S?hQ zv9k;=&Sozqr!AoH6XUONM@|wK_28KEe6z&iyA?6sn4cD&1D|yvR~CP zTUVrlFvY5H8>v2;m1s#EC_yK(CgWBE^3bRNnG5kn- zy|rbz+zcUPmL?sGa1pxL7vY$QJ9d zdjAuToQuCN0L0fkE6T3v!5+HB@MD5q#W)w{;3ohQRj5$?*T3l~vL++~FerzNKHTcS ziJ{kSInD;x1gOLKU<3jGrY?d7thJ#SS$a9!M$L>Hw5|yN`siZMm$PX7oyP}^Pfc?&<$5jHZ5>-lu=oWm<7mL}l*_Nne4q7=}%@B#X)djB;zB!y=u9fZPW zGCL0YEm@N=K_TvYi_-$I0Vu|e%GK9!M4TTG?w{J+<%XLJVD9WJQ(!h{A^&Ev)qjk< z1FQgC%&LQ6+BX8aV$^jjO2t;3#?;oIL))b&Hy|b5E88DqI-Y$bv_{@lw;F1i?h5NX zD_g}dYt#su;?-UsE#J_{qV7VAmo*ojW>8NfJSxFKk^LEa&N z#vM`Nh|1~^4>=~&PjeCx-J%!x5XhRcat=gNYgT|Nu7Rk~PptJli5?MdBJvEF%T1TO zY6^0OudF#cVX`UXtk6s;4$|uWtL-YMIW!HWdGao6{K5q zn6}&)s3k6mH?oyL35LwJ>_b5p9OKNMcxUDBJK4#Gkbt-b6b-S+R2qve8InOAt8*Vs zSM(eP@_F}Q%G#bq0ST^{TRON7-FganmSzsNPR8iiq8(71s`KW2#zvUL&Em+rco-D1 zc91vd(v}wuF&eT$R1Xmwpdp1Q5b^}{dh7;+Coc60GbMIY>j43w?noy~Duu?@fm+sq^Dk*KEh|<)X4$dJ$OtV1KEaN z*XKGt+86b#tzy}{bMfM-2}0c-={Kp9{`f%$n*rp@!fl)rKI$zj8g57*U6*XobZJ^V zVMx5GPC_yxwSk8r_uZ~gW@3BZ9s*}$nlivw=N_47>V~3s)3B@UC=?i-3MeKmY5?z^ z^KzxREN-kFH@J~XNI8e_%wj)#d0qp}a|uMly4k7p#KedVr7NgXfcvI%+3kW-t zij}6?>k|XuVLnHHu-+}t35TEtLl(>I8yymWa@0GS0vmU?oo_=@DxpDZ$Y78n`H~EG zn>j@N8j`}&DMNqSbW5m1PePJj03tQ)V};KSHmVRFL}iGVe64!v;*a$Tifj~;$02fU zBw3WGsy5bA^PH5x#=`qk& zS^8Vj*GPA8p`&IPU5&Zx0&u)oAYDt^t2)DHMIX49pE?3rK=4Zg8MTz5{u^ExglXH= zhD*RIB$pSiduarn&YyIeFT&j~HHjtkYr}{&bV(pVi-tLDT5Y?Ye6hx2Ox8i(AqE3C zdbMkCxl-VBk(Ot56Hj?91#R1ys{n&E)Q3#1X(h~Y>O&86A>NRUiRwD2;Pdgri+yI! zS#QA|Kk4cd`+O884$zJCuJh9eJ`12cx|@CY1p%<2C$!0(eW&_PYSBF|@WWc`ki2^4(i3^&lL(jaVWHqzxS`w>fGE&`3>ulcK)<=y zR`8UaXjQ!k>^JPV@BnZ<)|CU8JtsO6|!r5oM2s(u{!ZdZ-Q)_o(h#n+qNhM!BwYs5R zgd?`gK9}cQ9N7|IdXF!#GcFjncIbp^bx)pI;GvVum`C{3Tvsf+c8O#?5Qk0_mdX## zI|W`L?j^)A;OXf{Gf;hjT%l~??!KXkHV~>G$Q;mv^HZ;<{!Zw;*wbwxVn$#RhuoG* zV{yAE`X19BJOB3Jfud}NHx>S9KnSUu;O(*N%UK0D?tS%&%%UwiM8~jFTcT|T%6Lt| z5t8=p!$1i0%Gfd<{<`|>zy51|UMp$n#_`Dg1qUzqVM;ei?`Pc5zwLzH!_ADt7w?3I z^AjT!27JkRadHTyngawXaI*H8YUCo`lwP@+Q@ZK>kNwxIt%AnS4oz|k*$h;5OXcG z1lUytiyQ4wkFz^SXFw&fCfy#hPc{od_;C5u5eE9}iOt z&n(!Z5QSvY?AA?-YSfC3j>M?BI_1{-1T9C~z(-9&fu!xXJvFy*FeiDf=(QvJa)}WO zWmBqO5VC3rbhQ{W0R`gFI_TMH#U+JC+iVp6RdleW@00IeR3HBp61QT2?@O+d=mM;| z^-U*i!gvwop{lk%mCGKYhULtLA{Q7dW=V|d=qFzotMyxg6{J$yN1sC z>0Y-1mr7o8I*_4^P9=fTrt9}o2m;~@F6H(IDKNF85@4F@)-)82sNPWYz7!!D5P2Fzuz=xLKu#2@Q#<~L(8P#|q^jpvb|0GVFe%wpsd0RiKLWM+h&rcPX z!%Qc&;H&S(W_47IJ-1K8x~+aCfwYxNk>!ho-R;O3CwlH!WOL#$=!UnFce{lN;yc+E zPMJ`_iYU_YGfft*lU28%vo%3p&xh-S0k>Vymeb!MhWd8XF>}RyE1*t2Lk)qQcFBMI z?BlP4^pn2{C6{0N!N%U*v5+X;m#h>^uV5ZtyQxj&Azmzds`Ctlx0%_ z_GYZuE}gIO873G<(1;P4Qy7>R%wYpGQ0j*J67yAfP}pG=BnB!oNZ6P16)}z5k}9@Rn8&k%B!g^|@k~?zSb4LKblZ98 zgl^mFq8#xVZC606eU1X#&o%CAnA}P!D+E)UD_Bt5Lxax*$>|d3uU4(zt@vK8h^If| zfqIb3`GN|rjX}^5O}(o!T9Bs~%mTBLroD7-QcX3FZdznR5#x}7S7&JnbkzkfxLqu@ z+mg_8x+Gc!gaZ;-c(*6!9sbmhA*{&eZuK1Pt{H1li!^LN!Z|AMMG-QiC?O3;DPei?IyDBFMQ_jj@) z;{rv6!?^ig0HS@!77zhX1j5P#XXJ#Il%P`|9opox(L_$u$P5@Km8m@62d zYW8Uf=&P4rNtz(y>CEvi`q;iqakGe$nRbdgSmGL1DX{7El=eH$bxXyms1Rtf_#zIAZ77c6(Y0#OE~$MQ$p2eN%i;Xq2_VUQjg35W z*wr>mKNk99Cx;qKKd%z*r|Fl*A{WR)5^p%M2O1NGt(=EH0N152XK}V<+2$5*-oQ~! z{ozEj-YfY3YM1$p$`2eNPc!?^a5(bCZv%uAGMmjs)pdwK+_e0;rB3lS(EfZ z@Lw|t=Kxl3I=brYl5r1ilEop^#XAniwPRbd3GfqidDC05WNr2JgfsG-Eg-H~FtLfC zxkT{^K(Brexv1IhS)JX-Af~NlDt*8cxcjr-pwH}C%0){^f)I37p7Rd8pwJnm z#PJ4E?dm1*u%y2oUfpO_23`oe!nb-BI~m~9mayc%1fah9__?RVVDYVb`qvH!fH2j9 zt>-c8?x8e#<4uF6MSsgd%EikAoNq;9p9PFjph*Y>J_9lA>0!xWIf<+(B&+t4djVW4 zpYHTC@7E;W;XsE8vYzMq=y3&#B|YH((7lKd=QYElx?^QFR}s)=jZ3yV>aN=@bSeIS z9T`$k$`*y}l*g|^;zWnOjGib167Wf|$77%jT;2e8zzxwPOGG>}EpV%!c$Dj-KfSTE z`uJ6P^-n8xoT2;=j#q!{^Zq(($^fb`T8WV4Lu*TfN~#B>8ujB(Dt(cJX#Md}aGD&R zAkIz_Dw;2_zWb&rK{Cy=TqkIAXlbEEG||Kksd6NHS#9oU4=b@xJ@4Tmkv;|Z4#^$L zn>f0xHSCkEI6oe3A&|~nK>5FdQ=6?^SmQm_h9{v(C=A*Iqzl{6Fq8EFqH+yI(MVt6 zqrJ<$11tC`EEAM?k{*#K4oOfl(DKoIrsUSWJDg~1N>isU9F8E;IuxV9B_^1w)+Xy2 zyN^yh^TB>&`5OJySN+fu=M9wLR+qS;;0#MHHO3xr9BmS@l`;im2|@Tui~lQM^bcAm zqBGwO^}8z1Gr}}w;%M$FaL6L6#|yJpVG-XVcO9Fk#{8NLN$h9@EypW7ugedmNzSCa zALV}a@z?1l6DI_@FzHNUuk9Iciz8LUsX7B9U5-0j8m^FVw!6}Xz7r|3k{Qn(pnFd7 zKuRcFE+8_x2A!o3o)RDjv=Q?D+si!FDLp;E8SM2u2Ive02?AR&kl%=Yg7EohStNP5Zzzf4_SFo20k3LRuw#7$DulnaH!y+H$U4b|0D*6ON3tP6-!zOq|5sa#Sr#MXYKH9>#ClxfA-A&~fx!LnofHE5+))lBFN-+&PEz9q_XF&XG8 z7_1a556Z@4=_3yzaJLhY76X@@4=rlCa%SYo4U$dfYqM4(I^(nUFcYLMq9CThj%jKs zO&PKk+g|4LR3A+n5O_Z;cW&&XUNVH=LMix`Z=pdZZs-z!G}exv(QUFUKZJywY8{K`qAmbqZVtz)&4!U~I_?j&~RD*wT?uYJ81a zkptAJ&QKn7uB`k?uE@N}(-Zl0$9Pw2f1ndjl#}H5(1ktae}=Q8_uLQrY5`&tj$lU@ z2?F;G$zlt6UvFfa8FhW-@7XpG{LZu>W?>2+NmwvyDFQ7r*FWde8o*d=^WY4{5=Fyv z?g=(QR!OFwfYUfC_Lo|XFZuzQNH}&L;DH|PVee61tNH+%(FAIz^7+CFBILWnZLe~4 zX9I|veAMM%e@)8T;J%-+2lA_DBb-rBwftitM(f%9vBl~)WDT4BR%ab7Y+ zc&0kBuXdn$)(aW}({%W@GXamt)6h7GL7db*oJ1;aGJ}z=S#kgl5yi2wg zuIFRQU%bU?(Lcs=DYgGXx&9Zi!Fr`7D7`|Usy@|HJE1xZ-MVb`taxKJE4n94paage z2sEuQ_oYas80Od^uofL1NOi-XN`x5rCuN0z9S%vg{Cs-(t;OQsT{7sw$C_RsBS>#E z-HF2wGxRIx8wD%-H_fI(ha8PS%k<#=1}ui2(Xn8a9}99Vw*08M^+eAl`xIwi%#UOv zdM58BgOM9LdaYMheQ(wHe^veQf5#}ORx=J02Nj-~K^xQJQAsJdTe?>7K3`PYyLW|> z99zh8#Y0$_6}}qH`)Qb<=(?o&(+VT^=89P`R8aitL7utbDDwW+FwgnJIf{19;xYhV z$=EG19!YR`_hYdz~D& z!`)3zDdz#MxS1{jSFTGBh*iWk$&hA=akQI*>jR7=O_V$=tFKXkw&(FQv&-Qa7}Cvw z2CLUKM5KIQ{y=|L-~0>xnQoxncE7RE69C{&ZRB>gUrIj07cp1P z$W7}|=5bx~m<1yDwhCfDyzDH1wUPm`(K%=9!cyTwZ5JZfU{d~+O5+QpD?ZTvta|?i z7TXjVnq?>8DRseg-X4``%~3`lL&CqIH_|ilXQJ|YVhT>>!^w9#2noadj3hNQU}yzo zH&5Ms7PQ40%L=`g_qf^{CV%rnD?!h)>SgPlh(^xbhM~zd@tge2!7$c~W{MHv1N^pn z|7#t{h;eyGo%UGk@{dYSw9dgM73gYxra}_%=6qJQU56G1QH0(S3kUkC4!O#L31R2f ztHKUPYo+ShmIyMq6o0ir;8);2wU?j=xxO7zqccDzr4D^Nzp5-G_{6Vt?_g0Wsf>Sk z|3l@I=+1n)&xgyUx?C*Sw{#{~AQ&`aLF;Mlv9H~5)K;?N!%Exty?PC2BdIM8UG}>; zM}r&aE|z*hEHntK!u%NBiUuaWLy3pbTH)NSmMy3gtmY=ng@ITS$8 z!gkhIO*@~zsrcLn&m2=qUmzRw>9WY}L+aiKO0;>sha8_uq5%AD-3Yz3RfbXa;a+tt zSfNS9#Et zHQ)zoo4vjuRKA1*kK8M_sH~VBXw57$OfxjySf8tKkSB!4-zdTW+H6arAkbV}s>fCw zW9YckP^@c7sdq{cW}Z{;I^Rp~TNR=LV-HovV-Hf-426lgn6l2){8MiH`Nw~)-hbcc zDMLRN_&Zx|a4O3P3S?QKIDVXW^dCeOBS$h7KJ>%6Xm~pG$F9Tzp4k6PHBIk*#8D+| z4|2jH_4nI1B(B$u?j*6SlPV#+0b06TPx-J!IR{2qhrVE^VjnFnmskPs10Q;7U|93b|`IA zNHAli02v}tRxs-fMZQ|?9@ISopdb-zT_C=X3$=Z7OYN%!Uyv(3F*f%B z0Dl0_KY?-b8L;Ehzz2~@#?W{7jG~1Z(yqjzTVrR~0;&to!5~CfVG9v(aC6aRzxUl% z**Q;&RHLdE#;Q86scErD&FFVhGx{Bya{vLv`s{O76NCSmod=;)tZKJox7EW3;9CRZ zF|g?PeZkT>#nD-Fi2>h=wp_4K2)58K_fUVC?mc)Zd9^}1Opo$qZwnUxgD2*iQSRUf z2$o99Pkt3v{vqGwsBPa45IYR*z3K@2&Zn<;lz4ek0orYU=qs16ygbk7-ze)%LuE-B zTT%cZ*ed>@MWS0xIk?bH=_gpkOCxz*;Vg^l?Rdm2Cc#-BV4DgHS8X1C`ysM;mRWl? zbdYo!|44Uyg3`GcBQxCBvu6WmR7i-U^H8cpjOo#B0T#H4*F zptj)zs7A9Npi$b)XM5q-cyJbb0FI4O&Lyw$?ww^Mxp4}gA12V$ct4G~S*Y^?#Bd4RMi-w%i5Gh9p$(%@V z8)jQBQIvkC`rowFs@u-V%wC{RVk)a4`=@poh~0*4JcMxJT5|wy@#j_?cVW8tLZ6<`)V^|8Jveo?iOyU1sct5Z) zG&k3Ib*wJ4t0`o*ezM;}Z*D1jk&3B8C~fSH0j>&x+4;d7RAcZ)sJI9H(~m*aB+lb?R3E)yDAWcF`=@A5|9LI6<~1>*|!kdtXZa zg!o=RMlhJy*y0(~7$$)Ioh382?z0M*$Z3GcEw*;rfpQ20`!!!iKQQ3MLNxGlLfBZ~;R^R*!yFlQ8 zJG@CF5!KgyJJ1v{n|c`?n@SQ+=G`3Pv5~CHcCY+C8C&vUM%Om)Xylu zo0*wZ?m!-`77=qNg|wiSYBKtG z%%Lwk!d7%cTU1uyU7_#5nY>p+5ifSt|ut9kb*1Fxicf zdaS+Qj3!ZQ*>#AdD2cGUe0pdZ_DcZp)Z{|WRwml z2psfEE>yxBA;zA-wl5w5u)V(oBfBa*i%0D-8anuzg!0hrX~L}M*$l~SOpZ7=I+%ag z{;TkR-}PI&T*J&1{NLS`MmqO}$TR+^q9@1&`u^_hV8JBgETyU>7yvMY2kns>(d;7z z4gVcIAV zUyBO(=Tz$aw3z83H4$$Zh>4Xpsd$=};~u&v2HW!^5NJ2(XGdcxNuCup0f`wtI=2Xz z%WkvHV&w&3pEn7%kbfk;1N}iSpdnLn%g*Apql7Kpc(eRJE$2GzaR>qo^C4*umgW#J zf^%lU5$w3?xaSgmnX#Vr3}8>v_3mfyE1zz0NT)hWy!@W6VHC76XMbD{M9?t zCzx5@F0`0|2Z6)1?MM%~>RLVx$=AnnIZaVu!BB^9^{`SKoyA(ugr&29Uo+K%IAJ zDl}+QCB>OW=sVqG*nNf2o>Gw6l!~Hy8K;SukIP!~p5kT|ThW z8_3CaQ$EOKCiMICkg8Ap$vUQo=M88$i!=#RMc9+Y62`oxChA2)hsOm?;!|~$?h8GtWd`lYvhehQ-hs}S#Ds$iCA1WsdH^PFppT*=Jrt(UydpE# z9}14e<=+vY(}Ee;x`|x~HLij-pbwn*Cmzt9ua@8^MkWN|r&xEDxUx4B{Zs|= z*Bjrq=xIY!^HD$HChEy^E5S+H4wVO`82gwzDM+ieqi zwG#y0A<8geGYV+N=2PqO=!;;0N2Id72k}biy&S2Iv&AVp!WmxGkR1ZWM9eEmMA`fl zep!7?jrpm*_vNRiTM%~F%N+dS&(mG$Pqxd69fk`a(z&o{ywOua*s};pRJJ^C#tEh zyKB0P3p@htIZj2S87ThoQeD|%mnR}Eif%KH7NC1ij;DNhi*B5w5^ekF+xa|?w?q~M zNEXx69&2dgWctR<(TNL41LzNu27{|a^7PU@!txcYCR_G3hpH-yqdI<5B_k7z91b)` z2xxxzF{Y@PnslQDLMzXrRA;|+cmvCSp}Lz(h@|=bnMO`Yy0@BDzKoy(xb7?PUi|8^ zj{yujA!U2@olm82HG3$xRVayXS-AFuts zV(whG5Z8)*hRdf9s4tH{ss83~)2~)jy0lH)0;|?;Ou2P;hda>g;FM^_S*J!l2T zabstHT&LB-v|5fMK;zlzW#y5bjBrns^M%rowE~Ii%){Q&;b$}C>Do!^ z#~*(2@fU!6V&?rIRwJsWE(J2pVa(1_8leddbyXC=SebESHw*M;GT@#{wxS`u^ zN1%^{YJ!1%$z%o?n*N1)(P~Hct!NHjXrE5SswUbW>j?F6l%$u0p@mh}NM@PUc`6kE zsRpKO){5&Vcst8Q76aOwI%qV*a}4=4>y3G>?uP-~lL+RekYW0n#U4Q=EI91ccor+$ zv4RLK7lE|e+#|oGJP3vFjvU4k$}75^2LRT*bEX=g8-k*Fk$B%R2=g#s@}4C=Eo>6e zcAR#30MF2^&q9a9_oZNogxpWaE>8M}IF`C;@VM1*q(@QJsJ(H*RriC{W?`R(xv@8b zj#ZL^6p@_v5%!vtzKKyrgL6oSHPVh2CFls)tV`>hr<~g{Wtui`NJl1e#zM1YzG|jP z#|#N+cW29xN&*1ypZ{a>KgWnW3Z7u#SteXd#m5ICfVJL|&`gu{Ye}*wBykkf4OGp=x+Ec@vsTqw6D*24v8_OKRw6NZ9QcSkS44*t27~-Lzz; zp}M`kM>h+gS9>>m*8W-0@KLvK>+f&$?EwjmLi^hh#E$za1Z>^D?8qv@?tZCWc9nGa zhpX*?v2@S8C5MR|R;%duJj?UVV|M$5gN!ei1xGG`Bdx+b?0+pagW^>omwH4mHpS36 z4?(Y;D1obz48VxWBN~8iHY%Rvp=DFSTtc6EP>=dN5Cs#Q#VIi}8uEDe)h!+$Ai1GV z&2YO16L z>GNTWrsC2SV;70K=A59y`qi6o$YcTip4IA(uo-|+g9L-bKc7JaOcxAkvyKBWfxDVQ zDCuIGy7eXeN^7PhNi98{U;Crv$U{zw-};uKYkChtHS2ytLptP%f0me=i0ofS!J8tYC75OH86OW zJ|Lifog#N1mXZAc>Ct5JsHrF5z}>B2;Q%cwAjC*J_9_{79MGvQkhzl}%M|ce()jRC zN1oPtOC|C(^}?Ti#(@tTJ?UhJb#dNmy|U^FKauB3)O&Pbw^zvDs_cLl8WfoA#i1y= zs=!#t!GM%i9ez}H#^y`j5qqm+x-a%bpO#n8-PBj_k~H(uvBC*yq~jako<8h^CxWi#y(G&5D&+Qvb7(pvj0GK}sc)Fv7jPrn4!=z)q+4G2zO+n#12k@n_A_mZ z0DT;z(nr6-g8b8$R5Qewh=QVUS~=7^8DSDabJ2K$vV6$(vSZN(DdG~W6oE{Bll_cW zooLQfo@e5;l!H8|M4eIEqLKgTP`}b-v$sGD)y3)TlghPBp4c^^t4KMBv27aG+ni!n zkFL|$hjI!x%cyahBrkxD$l?JS0!jpXO01n}jG|?Qu6^34Nb2D=qfn&l{wF<(c?%&?=A(1-v|Yle?S> z4TX#g+Es0g3{(F-jMvA)+;EF}oz%SS)-K(UD-dB=8ExFQPj@7R6IQWi20J@DxC=Ka zmOui1=rJ^7u5uF9*y%jJ%d3}!k#Z(@!*c_~2nV+%6$zz9_i%+Lhoz7w_B(SUoV?+< zn6|~h@a>WP*Rub7r;0&ly(s z^*s^S{r8SNjE%%KIkKyY2F8YCT6*GE(t4nFabrqGJrgY~);m2|9^%Vo!-o(505546 z0-S=nPxnBN92c+|ZfLWgB`=?Av?jo*oXD14&Anh|0_xwU9PvUa8+F*AwI^MbBy7`V za#;$uaA|%cS_UpYG!1cWz7vq5Z&W~=n~wcNFJnNc42b8MMQ4z@SLnPQ>RX|`k>-lN z;*VU6*p{~*-E|7@`hJ)JXzCMn*B;4JPSYfaRYdgoBYiVCwY7HB;oO3}sC&iH1TuoX;1T#_4<)c@y@Wry~I>o^Pc)ypg~fjSoFi9;uagrXRU&2rge$ z(Xa#V%s#vjupWAFpNXo&LXWU260Riyg(v-I-w4F^F&=?WK0;|Xf# zm1X!mwe!G|!Vj%=fe1@s=$qIxbUyOCH2`tx1F~OeV)hGvy=5s~;gE1m7z%lEwPdU| zbWPEHzhtH;QuY51#Yv0Ck89=Vr#!N2cBpWvdSnSeou>53?f6sK`qM~kTM8I<*@|u##oRl=zMe${2_b1exEx^`c0}5&wHdv zmM+ly8p_zN%k8@xKNCAB&FDd`gS+agu?#F2fy1I|flHb!aHPak0AwV`yW7F%9|i6w ze>hyHK5S@_U`^1?kY3yoko!c{O|MAQoB#UXSFSZgwTqn51u*&?GoY+d56Dv8u)xwL zmP9jsoz_!zwk$0qv@CBrs+EDM;KNJIB+ZBqbWa|49-%PIxn^D)Y);CF5K}y_xjEF; zzQ8#LVgHDjyZ=5(wHg0ox40oyPu$4JeQc9$a{Psy*sT(_f!H$mvUsqXGRNFCnF!bn zEEJ=8GXBWy_!n*1^Py$h{*bXFa_Ezn{FqBP42pGD)+;7Pis4}bUm57mdiJG|I3 zInl{kfoyg9fUT(00*4Q3-oizCs{5d0CV=2B7K%6&I=w0-f}9ofxdnzf;J610c*QgK z!&dzvjMUMk%EP>B-+a!4XfjF3BuIipsj{oI2*Yd3^%5AHp~O(N5(ERw%@R(Gtu&21 z#{t|v5k#!MCU-?y0CiD_5GzcaqFYW0Z4gB-b7Y<;znf5+#`G#5@pU_9<^kM6FTHOp zwDN^FYbu6yn>a8SN}AI`-6#9}ks$J2DuupygpZCW!MZprbM18Y!d$ zCEz2)7_*yPp}D(s7iccPpK2=_>6THfdZZQ;w#!Z(Imf0!f*Fky^gQIXk&xyp$ClY{ z@KJ#QLc{G7R@m5xVJ>JJ&MkFn2;X=fkvz`(7=h=$Hw9oVqWMw^E3+}!0X#m}?1-|) zxY`am9UB9T+c9w_5ge7NoD{a9V{%fu~X)r>-S@B zm#m^4HYjAH>(@{^K(B(~;}dSVc|xaq{D9$KKi;qpeO15}FLgpiiB0%R&Xn9K^}`n* ze+={nS`uwf=&Kdy>>3D{8HxipC}9j@*EE&5wqIK|>Z=_6*%lByG_TG9q>^ZFDCwmS zxZ`ZeWZR}|_e^PhTJ0C3c6=?JV3=~vNqP$N+)e^BS-U+fCtM!@qmtLI4#@}(Afj3T zMndzlp}K~HEM%dz20#1^6GprM62n_}`0jVBzwux}D;z&@KK`zH|Ifa?;MD2CzmCIs z+l!7H5mA!@=#Es)bKE*7Z89_R$APjPbTcaigE3||=N70OLel&`+|=5wccuIvK70Q~ z75%dSgM%^|a{zdMU!1LQ!x+c4&NI@?PAB@C)DQw`yP0-wf}Uw`GrV59OicDBrWF8S zK%c)Zwfve>`4LVbYeKnZ1G4iJDr|+`>;I!c}{7Q7$`zQ5*uWjr8_qKVAVp zqX8jIMB<#T=_Vsl|1ae&|E2G*pJ4=uabJrvIrGtuWOU=Sw3BNNfvD7auNR{IFb+lf z&5}T(iPZ%SsO^48K*Yl?WuqeqG)o8Fl&A|Z80pejpwD)$ZOkZA8KI@JsV+D|2BX6( zUTP^mu+Q(&za}yaMZq=BvwM%SE@e1jcxNGVnC%H!W_GUqn4xzKzxrp~elPt9nx>)0pWta8Z>T8M=t4L?6alGl2*@-@HQ@niBv>kQ(6QQ-ceAxx zG}Cb$MPF$c>SJ+BYZ5n!Qt*#)yV%L_`dT6N0ueNahTm2nf9z+CKWWx+ zF7*n&@MYaxi`h)#(1ldAMcO(39@DuH=P4O_uY{9__QDuy5;>d=&#ZlF$LS@^idN9q zWrzZFIqjyq&0=+;s4Y4YA)oAFGGhDM1nGRKU-j_dIK@VgMx+oW2di)Dp~&Dy5WvI# z3h5muN*SkWS(8J1I84K_*l(JVUIVY5I_&m5(?*O1)y5t=S6Gwac>z;=o$u?tO z`>4L_V+*{$^L9|OiO3B|!Ls``FF>`x?IWP3u)o^gmR?P%nr!L4AD)8)ZT{@fsz3X) zd#KIb{lE(*1V9V@Q|uG0>dx5ar3rhQHcX`k%^5DP%$bygN2b#Q4Y zsayzH{dx80_GTFugnxeZ>)tBj`(ZZD>QW!>RdX!r%pVVcGrBbZJX9wnRNg`r1D&FQ z@o-TzoRPEdz_040KZ6HfxA)SMeyEx}(K|~IxIYn#C{DvbTMEs@@q{>2QH9;5p*yUo z{5~f3CK3QG>n((gOOQ`ac3EhtxB1B@)hC~PqIKxGvS35~;kH(R;{vi){qHSS-}cNY zHE!69xRx|CkGd6_@nfaIkSnwU(2H@g2*Q7($hR!=`%>N6A#AdPOk4MU^k@4+@Aq8z zz2`zV+@~z_4tNyMQ5MbYtbmM}lvsw0Ely(S-kcG-cgtRZAZYadP2YyW;)+pipo!Dq zbtocF7ZDn1m9$q!g>F0h=6mXA3O0)o2yhG)eU;STy%uQFQx5_sQt^$LXz3o%)#OOP z=cF0nIeZ;5iy2nyqMjXh4WoyyW}!i~(z7VOKu$In+JO~nb0ZYJEU)p2>=t$cRv*?G zC_@T^-`;`*MWVai6Al^n8w*+(aOaT}2=3oX`xsy0~ni&WilnPTw`l0wQv2va-;zh2l~C{-wGKYj?{7rv--> z_KMgP7bHg^xjx(Kxkr@^^uyLvBTJi$7nSgOTRTEAW*OSDjb??&+DMEWV*DO$6daqP z$(=zE+pK}~#H=~Na#mtj+MofkMX!p^o)r`<24NASp0z{X;eqoUcH@9wrmW7N4U7RA z85}|j_t4#XaMlFw*t56f2ocVwLf1G-o&`g;zo`B!T|uh22HFFqe^0K?Z6{aTpUTZP z&0%53^{V3!Y9@*^81+ojel7tDXVy#brO@G)bX-th%sEIDmT>JEWC$Gc_%bQg)@XO=dtdt)#d4Mbfn{vZGp-xle{m$TmSM&mq0Y$fM2pnWH@%)ONfP}yLk%|3a;m?cXX2)R_`YCJZ3cK`B9EFzL^#lxV+WzRn z&)VhPfTBUJ!_K94y{jf(bd%rVF?i=^+W9O+Tx|j%L_I(+!$9LA`g#GhL=Ph!qz4!> zN`566NUrF!7S=OetE7HIEzwgW?-^~F5ny6vchX0$r!Y0P#gmw#%YJj+^jLU{_rpMM zA5rw3s+T?T>7kRZ6~?cD*!t3c1xDoh^uTv{6&z8>3Xe5`tRO0v{_b1$Uxokk8+!C1 zECgqf2+a|2ap8-`u9oi!+y&I1i?F}RwJrPfB`iQ7HHkH>L%vrS(yCoqhbZ$C^pI>? z+GR7RjvVTBU$D#lx%?L&M>J^Tsn>}V^6VRfZ~`^LXEI%ZE;&$xFZ$t?ot+q@QBR=W zhw!0A(*koCb&hZolPZ&kGzm6ZZh^U63Bj=?{0Dz7v;0XeaE9$dmm5sg#}iL2-33bp zpgEuz7o&Vyh2@xmsa|RsA!K4cABH(C*rp2;idvAz0+8TtJv zr;(3Pu1plWj^m9dVxWJneXYjEqgS1wR1#qGy+eESz>QKoWdv@`ZteQ%jx0~(Kgo?U zH`ySZw5go~8948vOoiCo&<5~VNV*ksrfV`APS~`cB3oGMo4*jEg!0ZhBc1CBg8~dV zs-(qfIV5;T{!H(%T>)KN$7gqftcduLc(Az|f(n=Ni3!%nyLTQSso?4=^>!Je_ecWD z!BQejvLL|VIa9mydH9{2=0|lBrlwO)jyCkuk}yRs48ahws503HG`O*Cv1{c$ZTGtO z#T_}uD$``({`Oc--rR=-vJ&rssKUY<>I@N>wm+RHEWh=K!qf5G&4rE+%KgA^a*8Xc z^Z`t=0>fa z=%DmK6`%K>sv|2+L^&Q0FlQ zsv4TqB>BzuBj=f-Ln3m3(kAh+>{$|^W3^&xX7Q{Ng}WJVrFdGmLaQ`5N`1DAfwl2? zBw1l|ltS=cdEpuS zTg;Ois=CFoML37WBTGpA&ddt>7)a+9HOW~rgs8Jy_Nlh>omw>>nDTUPtwS6fls37< zKcjL@`t}Ll2vov2x=dH`zLGNfeW=NGvFg+3g-e(>Y>`p;6Bx40Jc|a+7?)D<`3WJE zl1{ZxTh^hWIoX1+yM{#KX^6(`*cXE-5V~~TAP%HRSGBZ9#{TfY3$eP34un2mt;Q$- ze}s+v?4%>IO{!^^JC|n+4a?)s@9Qhtk1ZxVmM*kV?e&lIm*1(rlgt@$5W)fYs{SUW z6$Gc9i909HNF*k{O2Lly5P2(@yDP*lp){cF+NV%%2e@%+7} z(H#ZuC;};0AFFev!HZ^i)ml`8c=N&~E_);dv5=bwK!}hD&sc03%SPLqP5$DGmWACC z6de2-qO`vFsCqQ06P<)P>sJeRT*d^JXIV$L=K*3vX?Sib3B&m;< z0kBknHPyxM9l*Qj@p&W#9@myc!FaysX1GNy*p&;gQV4jrbfxqAa8k`Ut>o<|0gv={ zFVzv7L?frvdLp@|Ag#G7yCk&&S$Cs!yK5X+@ed0$&^o?xbPgK zM$-+1@bGoT;eYJT{gfR(KrBeD_Iu^tP%v~z;i8QOZ+#~Vt)*MhmIz&2!Q<_-Fu+CU z{H1Hp;9~@2&~j38lj1~Ppg|khHTzgm*YLzDJE{~t{`}*=z5hXabb4EG->Y|4S2KA` z;inH%3`*wuRPs0%I`s<>;x&3Hdm}4`LZQcQ#8Hrr-EUxb17b_X>i6vgpsRRPF)rPPeS5)7&9k#n1ZntT z^|~b<+)tQv*pl3XAx&Al@!z$i{@|aJaekp@QZMLr!khjZ%d#NKSCeDo(fj5f{1?jQ z-_UT|vi7LG?5iqrG?wDAP#)WMrEQpHmJKEPL#KFj7@a4(F_rf-5tFqxN7aK@qk|fJ zKFW{6Ufmy)k_k%>_3UXrT!MjqBSFA(9cGTWPle|edZ3cH4tweJ43;sYB#(5;k*YLa z9K)pB3zYrzF&1SGoh^fjT^Z4+;Gp~P!!DdhQ#U0>zBlcoO?*S(l3g9u(P!=8Qb%kUjVw5U|HcY(;u8g2G`ZYM%^K`qCtMlY2byz#BU4fR7cXIeK#Na;rz@y3CJgFOvFI`SFqdCdKU{JES~k#93lO zGc9C7114cq{ICKE)z2F0=N1B-U%&TlXqZi>Ua7!UnvHk`IlcA4*DO7d>c@~p=SRq=n zMLuLq?byUWC&@>>3{{$>I8aFA$XmjH>|3D#<51f7ze}GY)2Zo)ocSEnrkxNU5IwEs1J6IcKkGfRg=vdvA!9u`ss}CRku6qAl z4d;Fqex&Js<00w;BE)jkL+!#*2?2W0xWW!?bmN$3(&BQH?>1M<Te`#-yRlowR@6fYRm0R+qdG3`}@_}b@gV?Uj`swtH*k{;}55-w<Q^0ZU4tKhF!y^826V?|v&?C@$XcQtF;FQNoMt)xdBL z;VEq0d)}_>v~QGeKw+F#*#+2IQnWKBo0@`ppwMsdV)39Z6AJAef&KKXU`SLYxm3s%4?{@^^a)6oJG})Qb$n( z|6ju1ZAX&qx)OZ%uP|zamZ%xF-qk{@f22W}o0+>=xZTPw?&0wupvnFK=}kRPQjtYc zB1KZXv`AKo1TvHVHG8eI*FF|C7>oq4va&KG!p+Xv*L87OVNXmL>o)tM__=|}DK&|1 z_?kc`_H+Oz!DkB|!s(`A*X4w{vWC%*PKkYJ>;*=w8TcwdH}b}>nW?S z48V1JKg!y}i#fW{575iw!Y0rHYuLA2<8|(I)RNbWo*(2(?4Akk(pwF__T@p?5X$ga ztVtTg{b-WQ*r;#z@M;i!vcrAg?hvL{t8W#e-lUk4~Wq+cijuWP-Rzz8Odhw>J^B?ZY zmbC0=XkaxW8IQ33>B%RhxZ|v9u@}iwfgya|h?!gC)>A93ebMCg(GCVk(p&+rt4w6fKnYQq6w^jOPM>3ZMoc5~Jr)Ni+80 z|75jbjbgazyEmTE7RY5!cY^;4H;JZp%*3k7Sf7NoRP(s}QZ{&Gg2VgvwnEg+Kxw79Ed-2e#D7PX5pgf(3H zOi52$Y6sd@TV=e?pwnqFQ(G6(c>{JoXny@%*_!NlX`BQmRpGMOHcLsgQxPxg(X1G# z9zdK2FQt2IwrPjl1hOz3=&}IPi>L_5WblH@CYe>U5Gbv1T3BkZ+Ub#p=y!Yb>jQWL zbSR2X#S1E*VSu<{%#^#NV=&KIl)i_D!5L`8CQ~oA$lZB#rZxvQK&$H(Z!ftnK#*F;3>uuQZwHgPcMW2H8S@ z+mRkoqnFr2ooa`0nTRLJ7Jli*6)6p9zrzK*PSEehTmaXYd|_O{Q_b$O(o9& zy8s;paxhzL8WBuSRiMDJu7N-D5b z-(fr%yBv!K-cMVdCrMN!+7Uh}eW>L_W8&-TQ%RWcbRPV}cO&O(dYh93Py4O`L~YcM z1jEH}Rl?I459IhTq`m?21@`TKfMyBIQOG(3odmjvN2-C9h^QZ9NbuGKs&Z+P(4#LZ z;`yALJcvs=)jp8HWX;`# zrTXsVp(|651~Rxaid?-v`fPWOxS`d7uTz0C?vgz5;u-=pRK}QX)f;ZIBIh)|v*3mg z?@gnVgB}3HuZ}P_7q?xtxOa`Lm%z4zjGDefs-yivHdi~R8D)F7kAOlnFA6?Qz)Kuxt^!lyUXqY27qJzGiALaBpNs>s;{4Mz^tcfa%VDe$|lt@nQnCJoMke%maOg=Kw7$^t&&y%_A8VNlC55X zRIujQVEOM-K0|x|Ws@#QR3f6-K zDWK*sI1D+70gXX^C?&M+{Z;GlV^)IgyG&*79AlzGP$)lJRkom9C1Uim)cr4uzx>PeOs~w5p=J(-39yl;=M<_QgreXSctg318Nd|;)!uUJr*Z+PXxpC)5qB3 z(&tTpeR#*Ak6k!nJ(}!L4_WD~Q*r@M!#*1tI!V8jV$LPq%@fJ6mYn?nh40&{kj-Q% z+!I}j(~E(zWme6A>UREkUlpHz8&}&();2I6AV($vYb#Yk+NkU6;-ZZh`eiJiR^3PR zlcCYS&-I};5H;Y-q#M=ky4}}e_nzS<_$(N^rOuG`acGC&-@F&KQ({`Eub-!9M2}e` zACMq6Pg5u}Z*GJnI}~IDg?#9Jf4v~LL*o;4JGGzfomY8F9wAl-^34^17a!~GOC%(2 z$+0hKln3h$HE2~tbA>(2>GidEJ;*8jPAoS2#fcVjDS+}d3(*D)67(BG7T%h=4pnc0 zW?nnH4HuVJB7=t79J}NI4h@y_Ie>BY755W8SPwF_qu31KzD~ih zBhT;JU~l2oa$uxdhE1#l$HNrrXBf&sJc6K3X{KG4GG>ujfk?5%rw&nh7Uz)v0|y7V zn48`LN0iYyWQR5jT-)hW0$<4&UTf)gy^=Xy;=cywlJfhK@E&c(@Pp;JlTD-a<&y}<&4m) z5$q1WeFqeRJrsHezZ7zNw<0ITGqo3qGupANw?*Sw=m$|XaFaikMc|P%TnSHR(J#Z;idX!A#lICVzZ0&5ubfMI0$-v$I;dh z2>PwXIRpkkP3)bvAA*G$jqO(@q0&|Bci80J560xF2!~-z^54y4qZP2X^}?>s`&JG! zEL8n@@#jbnR=rq)Na&al`@h2|m+n!U+6KEOJ9s_Htv4a_FJgUMaAp)G$sN$D6hfTa z?#)R}8w};aLDPP#nwrphNd9}lq~a<+{pIN~S^_9T3+|mRRWOU|Vs`XZ^l@|Xa1Es$ zmQldtDQ?)Ax&gV{$3Q+U#$pB1OaRP<>o)bPYKvVjOZNx^ns#imwg5I1Q*a!5csq)0 zxN*)CUz!6T%!=k2BjxoSf8!St}M;~er8#M8y`ruuCB z+W_e`s2+!oQ3)SVB3zyXN_LDfA*>w}E1ECKh6-JHa2@0=LY+mSIR;(#sK81YQSV4J9 zT?r-MhiRRaF-Zr^+6&i!E63ZiTf7IW8>~S8931a>Fh*bw_z?=rrg(;g7(MJ#1qx6Hm>{=Yr&sI_&$*nv6auOiF zr8=NpOGx{rXMmP-JbMBME8?e0y~XR)^hk;laba=IysRum41{LVna@OXe4yp&vdw=heO{eUPs-`xJzh! zID88d+;D`Dtg!{aM)uQ}$*JvI{(psjfvW-xoKFF694Rji>C@3&miB)I{>SQzR72Xc zSTd@7ZMdg{+|*Sy#ztFAITwu~I60#|DX+p&|4%!i5DMrg2jNJmlapS=$szE)S&39* zU!Wwyhj|7)PHMZcYI(Sy^ze>Zh0aEQ_DXqKqBARaKiZc$z0>1v;5pTB@fI!iIyVh| z>>wp_EFvE>>a7P<=Kx+FyIXN1yq*R7g~Di3$GTwusogR#aen5BwaR*fD4ugEn^r$T z=g4l^_6R(Za|#I8-{Q|avUa__C?6}nTkCmo@C9^&XSAH5Rf94q)BSfuvtLD#VPDo4e6J|BEle9Nsb?Z`^ z7BsAxOYZZ~W)Z=xv7V!Rlv(PaFO-SC?MCk}=uoY9vpX50QSKL9AO0nbi(k9k!q>18 zyNYB9s6!q0 zn_>qM)+8V-dO8YG^iYNU_^%kF;Q*vG;oO4s5%26BEPY9GW_Nf+ z*-8e~ZtI6_uCOlscIYeGn3@8nC2~_keQ77Z zJ|?QHWRe6;M>QgbcEk*deV2{Sp*7rN59yoE5-JgEDS1PP+urQ%ju$A@Dw_I{PBmMqYj6yS&Q=QEl06#?IZkB zD*@;*>yZRT7L;2V(g)sUSdxyG;iGE((vKNNR&UvvJ{esyxwNDe*zrn&@Qu$$>`ltX zU@qU`Iye&c`gDELjkM|gJW(*6zuLtnF8eF0&aL%W(H+=(^c7~(0%Ssj4w>@9E_wq&s(oerB(m&|iy$iNAXw3!Zl8i*nWGxHYXl;N=@J||8L#T0phh(uk!_C@# zMCqz{_7<*2&*E;E%>r{uf-kJ&o2N#_U3RgxOW?KDL-^UTc&y1izQ7zYD_&D=&yJq< z)gAacUqi)EQpLCJA%Tr=FX?Vqbb%_yDM?GGQ!%n5Aq6Nl(cEBd5Tjm0Vv$=1DmtNz z=!PUsyFhJjIS8LF4QikIkYQTOpbvPeEeD_z`*J%^Ghnx{ztMkc%k0csmlAsVwH&qT zKpQ}LIZyqd#L`jx&l_Z7N77PTYGVDtDzGo43^a5hhIyT8yOJ6%Ama9i+SWpQ;l3>E zl-$`Iw1I9h5Hb+r@T)a3r-Qr9n6U3v*JMUD(YFar zjT#O(B&vKsI@ERkVc1Dq#vik3gI0H zDVYUZD)N68U;hnkUQ_$*hhxSY2eot>^KKQ>{DornBD{3xf)*bZPSCoCco;5wj8)gr z%B=RRzCgMVAR!xd6jhKswNxLJtmtR5B1m2_m6SGtFQA0rXmi8XK#*xI&nnE3|DXIla|;(Y#txT{5)7X<(Al*R!XD3%urpj6;< ztx{aI4jJy*<#6sI^I;e&`_1eq4C#5t7gp{B(c(*;r&xltO?U`a3?d%SmTa5_#g=Z% zrg^k9_r1AAm`4&Z5tIx_%Z1geSVaSZDSv z1>-TjbMj-Z5Tp!4V1=t6`K>!2ww{P6OXt^Pz#s$zdr$6GvR*eV*^kOYl*8F9fDRop zXt)Bwh7C5viCTV`Zv9dQhEmXgy;NqYzL5?`nc zUm&;kZjbwO^lj%*E(CDO%56V|bsXsp?*>kToSjR+@!%$fU{g1TUwRB`8Qah0VmY(g zb#%hK403^q{=acQ zDS3C&*n*}s=i!GPUA2Pt)h|mId!%azs8oUOTN&{jLZsbzkAQ}#k>WWKN*YUZxe&_F zQ||L=h8kLOG<@R9Q#x!G&nW=o@Axl@Z@I8-Rtww_D`Y+U=xWVZR%%|QAz}8v>!@># zu3r+3(==zr${mX^AJ>B;;uVDTwTW{rP7ogq!2^S%@V;AK5 z&iQYc!XXb1bX7|+ooSD7D(c<+ z;3U~Qfnqff>r0ph`Is6@irMSM2d)Dc>don!J}V>es#W7Z<|KMZo(`V(?^y@C0`*eg zWNz%xONs`)DR%echOLmOL<@F9nw+&is-~-hr;6K9#C$lg zt@A;`vMWM!8lBUmEeLjy(?WwMsNRar(oXjCa1mr*Zm{Yr2h5~Pp&2Rq=UZl@VRCK% zCUajeV^t6hcCape32klk?jQdigK)?ds0DIywe-b84Ft_YlPxdS0}dgT>e(-9qt5M2 z#p2c9`R4QcCFoEC%#{SK+CW*J8^z1z)?{D+0Rg@d$Ivj*XCIUta9jkmz%MT4l1eum z6FP|}6mmpStGJ=JB5yzmvU84zfo zVou<|Pnjl~H=Rn-KRIQKNO(JycR0Se5;5keJg|CLHCGOffI)w0=}-ijP{M~&4!J9S z42#*jQ>eWC8&c!~+RC`)U8&^&De#Z*Y&wU|SW*L6n<2!Uhv&h61VfOdgro8NQ<8NZ}NTRl9>4qfQ-k_e@Z1o+6y!H}!FB1c~JoUuNs4#r9L z7XV)>vf4YC))F(t;JDExfmtSGqKJE4_v@8I4tYbAg|z#v{I^h0Lv7mYPb-~91mDB9 z51whlnFHgXxlKiif&k>LBmleYGJM^$c6jjKTWc)OQe*@8WxeDPK4-M=5UL-(iuYTT zbFxsjM#8>G2dl?xzPq01exf}0!vu-xsuMhn!_^hIaj ze13Y;^P?Nzk?1uE$fvvXNU$ffh?TwljQ8S=&3AfUfs=?jd zPeaD?m-JflAIl1pjWYoIh$Im^f^^2G2?ABJJV{NUg?;DT0*U3Hw-r+&u_K##!=&|8{i4wguAYKJmc3-2PFP1%pF~pb9cCMz}yRZJA z6+I=|hx!*gDT%FNHD-DKIW32Q5mBaK*!kxiItWt=`n*;YEA}Y6X1`5FM5UohWS}SZ z%4>Y(^bsuO{!KpjG%xPt4`gTN5*^4alb6&)TC%lv<9o#)zvB?B1M3YBdTox_ff%s) zBP4CD+PEiCX-3aCl!cy-%eQ7ZTif%Z1O3`|M|2mppS@`%09Q+u8|?LPIQpja83U^cvooWB$tZmUPTiH(@kfitcZf;LVe?jNmp}#&&`IN&0l;3IH)2mL!1! zEG6o&hkNOkr%_uPC{mImdkAWzak^&#D3DM{V4GXOO@3>&Ea4_EAru5Dt|p?*O$G!6 ziTP=<79g$#x20A7p5U%yH~5p{)4xJ6Yg9AvlDxO2HOOsjM+?YA@(Ut5(BmQg)}h;# zF%bq;P@}U`e<>c4j26-qq>@CQ>SFLY2L%B8gA9naBGmH(2Yf%`xMCz9vTB#a@E+jA z^dlC|xZf2Yu@br`6ikD)Xj)&N}r||FjP*Nen+|4VvQaPFF?8!dsHXV+Rg1Fo2cS%9_nfyhnJ6%ShWWIEqjTxmIz zTSrCY{HJ*o&mENR({mg0AF7w^l6K7xGpFkZ^R=e>n|flGUcB-X9y7s{6@H|mlu z5@5>eL}cSeP`o!sQUtsE+0!g`tR6l3G~Dja1o-*G1&aCo++uX_u3%xgwXI4_1oT19 zOBtrVR*v5CC;HW=-wK-fTmOmFJ0=pK9~kcKM#)l7+{|w<9tEQ`#Cz?bRvD*h57LXU z;?fZ`wUw2XKGngm@7m-*Hi|DWG+a>WH9Cv03j6PWQe3S?RLO#yGf1!25?jno%+H9q|bt&ovjsz0)3vhvK4AR^G zUznspr42UQ<2t6&XL7)W-ez1DX)wYk}0gC^<-mR9rblS|4C`gj6K#rrfY&;3Vx!<>Ps z4BRJ6HYdgw)HiM8wbjd%i}ImtviZt*baiZSC;ACuFtS&V!*-co!!{K<9HP?mbm(dK z(>ofR1+Y~F)-o1C_QS22EZq7y3IK$Mrfj9;1c#(;uFVqmgnqVE|2|@db~{KA!)s~s z0UrjHcS4)YTJPR3BTz zM@+aag~^+OSJSgrJjnU%#azdcYk?VBlUCH$C1p<~*_*EF^`W7zC3ru&_Eewb@P!`x zOr-!~W`Y5Nj;9OhhogZ5A{MIpGhTVEmCd0Lz+hu zD%lBNh!dO8B9fu)7L2jgsZ#3%^oaFDa_ndk5WM`nWZ94U^{~74fJgUb6vWoWKqN~B zEv}`4&^E#bk4j~Nmq72{n-lxegn`GEO#op1j0=?1yUGnfJvY|$*}HU2pBY%)0Tu9b znXr``MmsQq603k;DCB}^R4h9SG{8~4Pa&6^M(~;K2fR?D@|Es2r|>a37{dH%@u!xo z78;4BA3JGWfb-*V2ZvqYu0trU6U8N4!gdtul|&iFGiQ&1)Fz=y` zrDf@G&=3Fa7ui3;3jAB7#tprMZ=6C%ZJ;>VnjJ+S(GguRdeN)I+{LdN@jltRtfNe{ z3u*5`T%5u4R2d(0|7|(w3ap`@4s=%)q6kTn=CTl{Y2~zMxdHB2C1#z<>zg-KaElRO zm&w8tWKADeep)ZnH)N`EkO@YPu=ZLiOViGP#NXIrDhlPYRu1bVk*-rf9qeEMp#e;t z{~p|xRGokr549GIi(($!c4A|P8(|rSXNS=pnJfW=w#S?#{UuX;4|+@$=p$^xmMmSh zD3Am_l!M^9IR@}YckmS?Gfs0f`&iC->TX4drUU`qzf1oNW1q7ezU=BxF~Z9u%jDsC zwTgGw$Ecus5yf07a0CpR-`TW+qp^8pup+`?XwaVsYXV@lNPYE_U32bAA)w|RmF{8< ztmVNnKoi?@ey3_V9p}9rjN{;36(ajRcg@i?^+nqCigU45P?KC@yiEzTI=?A@x{!kq zO{4)-a18WK7k|oW|NeFkt*9GMb-9b6)ftWG1fBrQx0Se;Ci?JUYL+l(E_YHg6GJC6 z$B;6kFaTnraWLg8cVOZCaxUuA(l%5|SX^i?q;K2IXCW>QbPXUXLo=Z(xL9B*x4V^sx?xu>C3FCRGXF&YV$ z&)JBu2o0AD-2&2gwZg*%y{*_;0uq71wKU1#(D8OtfFeiq5<#JY!)Yu9&Q?^^h{!Ku z0@S4n3J8y`(KJ9SR;grVB>sCx-3=3T2M?lW@YE%>b}}+WZ-u}`AYdKb%qL9AMRX4n zS3-(L>b%ESyaumGB02w#NagTAYd9xYWdq44*Jp`@vnIBb7M_@WQRa;bcUCFa8K(`q z4WH{^^&c+mvZYducoG9Q9g72;E;+(jyg7%UCWT)R zj8p@zE$jC)OR%W==fq_4)jkmOLCL1`AX@XMzQ?P-1bamT*h#>$Y=Vvy0{%9ysA**J zYM~`#EsPV6;TBzw>1|dhM zZ7=3sZ#13@t^cu^QqRAF5?ZQn1gtM*1beb;y0ahu1zjpQvQMQZw^ZTkOmlz<*1?(3 z0>jlpMC^)72|KT~rLDc|51M5tjl&(+Cwxz=P84it66-%JQX0-`VoryfBj&PIrze0N za5k~F7bNwjPV(wjnxyS@K48Cts_Y{BL9|@YgMY7o1yaSl7Me)wlm0_Ym@Zvx!S)OX zJvXJKqW}k7br|kb1oM*l@qJ}Ib8A7<9mb(V;)Ahjdl7#?WLra z1qzX(A%GB07cZdGEg&H8jxlmS0J1;)Q1jKRC5}r53Rvm7?T7K6y%m~y2CyZ`!lv^~ zF|m_tKxhEdHU5J^&jEL++RvxIF8&${$MQ8^w+qkq;86*_%YZuxt3N>*JLasn&|=z( z*LU(1;!>7t%exsybHyrqUr23fn?iZ0TBCdXeA&V5H*g}~x=0OBw@S|xKj}dGXt#mD z7wt|^L%_k&{(Rk9(e3Qdf`WGGcqcZsM_Q`KTO9UL~e~8d5^jfxEoXrK>w$RhQ`wLt%ynWHSeQu z=uGFS3wP26#2KVqXxzY&VovCB3kWoZ@8KaPGX(o-oY&VMc259xa(HBANK>@W{oN#m zZa{uukg953lVFE6L2sG+ov?RJo~*Q2o`FlvkB=rO3sw`NjUe8hmkt)}oyg`6A+5pn#ei99Cmn?K{@Yfb8e1G@eNfQ3>EHzfXwC;^n z5a}mACB0t+=(OrSJ*jfJ?g#uEboqL_i5hdD&y*B{eLX8rxQ=lYgvAvV#p@$zpZ0go zZ1^!tYLj#`5Z8z0119oG9b>Xvq)qjQcOE=&y0W%()eGGh%Ioy9cvmg9MfJTjFBz@m zdc&b~?MHA4$4jsh)K$Q>ei1DVd~pa_^PE#fmEwGY@PmhXIMUmspMzl&E(0R>L{R7f zf8+)GeVC0wdI2V7+JfYL zy0jv7%~n?Zgt?-78164!7E-TDLP)%gSR>dI;SdAcvWji}wuItH4^p|n-$BpU2QL=+ zh$lM6S(FNdiYm*aPl0u9q~_@?p8OQAK$)yq!3l(CrNMEcSH8*H01zZer=r@-&fp>V z#UC;@S)au=nnGe)?!CH(n7>86;{k!8(c;9uNO~AIh9}ER;DiLkMA})fLnI@GM%O~y z!ko-gS2iK-;$=`@p?HL1Mtx-8ZDsM2e)r%w=j}kT-IMo_w#Or+Q!NbSN`enE{nu%~ zV<+Q`MyqR}YEVd;ZYXY=^J-ee0dGd`wlXAjKRPe+MxD}L%Y%R&ujskT5F1Vkoyl%A{nv?ePsj0v>-tKI zy12A2kWO*bkCdWh88UYTq3oY@jw6_-EmFlTu%$jygBr?aonGfOved@UADXS@&*d@0v ztuZ~FU@M+EyR|ViQsJiUmycBW zn#n>O(t%uK^|NrcP~Y%|ankily(gr|Q(vOYvolpHhSI@w^P}BPQ)qf($>0#M!9Lfc zsUeIW>RO+{V7m@b$+wC>^)pJHCo%u_B1m&q@sNZT)QO-z!T8JXMV2;!N<#Xtc81+A z9;4JW(#&_|(e!yA0rW;w$^>)>HcUqG$6cK#Hn-d#|6(R}C@BpPF{y2t*>*nYOT)LI(&-94wgc( zN>9L2-`eztbtUIdp31D8uVH4KzHEZBq1w*~5gig0kDxv0&A?;9zTZMq=bx($e|E2K zu5Iz$g`lL#Nx7uMRn}B}O_#o5(Dv^LeXbnI@a^-nnfob*y}PBui~l|yGJ`m}dzHVH z2ZHk>R{g+Hi;0?AYAAP->V3Kha6%@w2LIx0z7*8O5Cm#`6p`k*EgG6udZFB!U=@u2 zLJ^?`pS2K>1|y7$zEgVA79-}^)+5I?-Y>pUH#RSa${rNea?4B$NG=B-)t14!JO zO3xdW<3J!kYJWaGiMF$vZlj5h4|P#bkg@ZGm`~^`|J+Y{8}-~vS;RO#cGaI1on~f3 z>_pbX9)inqoxf7!_~7eNjN3mpO>%YDKNna2jYaAu2Dq&h#?L?*C@Y`)B8wQ@fSh_F zlnXQir5CABB6)3ZN6FAex9tEuloatt67td3A%Qcv; zI?5Y@T}(=?k;(%~iWj9H``LvS4r@P|;VjmAhHmw`VfCoOqo>bD9|D6JgXc=)u^al5 zFkPP-VcOgc=;51;+lILL92oO6G*#0Jw&LZPH7tQLTj@epeEQdPj4TJ9u467bFU#%? zmBiyXSVWnBha^qkR0+8~ojiNxdX;1LH3C`{ex;Q4T+r~hXawgnjoOgGH{1m)x3*=< zv{Dz@Js27`&n8C2)q6c;yQpg1Es)ul{rHa`z9>HZbNU%@dwi_rlrNt~_w_q{U-iM~ zrcILswXY}*Q#}5wZ@F1C2--QWatDNS@!6h@g|QO8(IL`0krD*(5Zt$S0Fa&3x{@8% z)mpPzVpAnIn`*?l5s_ z9WEw`qMyT9sw`eR>_%!#$ns`?Tk>#WjXf&mG($oFaPeAEiGfya^IsHy@fUyL@6dz) zP!-qZ^yvr1#~*{t)yM$vFgeOfzka=*C_NEGHS+;Do%~8o;+f%#7~0 zg!OoGxK1^)bq5-{$WANaHy}qBgBttOtlmAgZBs5YVSV6(Ey|}ajp*DzaEFHvze}$V zg@#zKc(i$5|2tsTEgszAfjwpqm_Z#p#I&GK_;@IE_zT(j&;?XX#G^j(wPm z1D?fcFS=#)hi=~5Jd$q$hyKBHSAx{M9O0tE>2gy$bU-4@?gzK?vcDdD=yu>nr?cj_ zm~cCeu%C{NjO1|q6y3`z<}w}U4tVaDq?3Rlp)aPut;ovVl9A>VM$5ggPV5;&U9Rph z6%PzZgSG~mTG6U4lLgb=g94{H#Lo^Qe8PeJ8WcUc`at#4p1^K> zST#vjpf9Y{BBwp|{JQ|En9Y3-KPlwK5UVVY4z5=G?Opm5N2;<(O zbOQ_p*u{!f>?t^?3D@dphweYrSrm@@XT^tKr9)Rq^~OGCvfcK0j2W$HkuFw)R&+KMHKXL<|MQF46y+r_uPty_JN-UMY6tCY~eM#1*FQ6k@J2(TUO4@ywyA(nEDC9l~?YK5Ppb=QR4?Q4hjAt#f^S%NEzT$GVv;(=7 zUYb|IlbwPSL+#Vp_60=r+#GOz>wwiLHWyY%L9n*c+frhHBCjg7xsM`%SxYr>uby@q zo2+yIaz@w%)MfEm`u68S3SB);6af}C8xPKZ27Ugw~P;}Nf1l|3@M-zCR$0uC970jx`O~l4ZSWxq-delkY($4AFi@i zs6As$K-905u|bVYn8NsY4^+U)+)wWAwX%<%T2lj1>Mr}3roe~M^york%5BxO%+qqL zm+7zV6W3nWY1AgjfXkRL9fa$^-c}0*lM+mPM~fO75Z$CBWv#ntH$wKUhbO$ciyygrDpu(>#KX)s-r z>uMRvCWr2}31_|JV+;`}W%e=~2|?lugkVAS|D^bnKS|k78*$)fp-7q59Pn#!2QobW zOo}}Fap4U2JRL=Q&?BcH-)&K!uR=^vA5jbp2U1b56O`6u5fOrwSOZcjvQKWcdY}yv znm{uynbWs&D{mKr-dBs2D+`78fxe$;oy`5$BwQ3d7wrS!SWJDc0;bd`DqOiN0xCPlHgOcB5C6+>PWJP(Hi+E@q53+rnjqj9?^##n<$`@eiY7T2M zd+LUn6-rnY8DNm=?&7qSOpp`UN*0eOy&d_$V~iCLka`s)z)E_%YS{G&mD2%N*@SW* zRZaSGCzZ3&nZmXhTVoxIOsXdslHr-M9??kd7KS8VH6}rP!AnCU(P4rRdrzlqAqK{4 z1_*_gl4RHDmrBK42wnjIKPb*l6W36({Hu?%T~J^9CX*=8NI#Rva0e`Jakm1lo!o;E zTLE_mnta(xLmsbrNVg9W8bEb4=z?#b$QBL+Ql?sNQT>69mLp${b!OtMxY7x`qYpL$G({?P|0}14THtZu0}DE@KKdqu_!QB9 z>;^~IZgJM~lofb5JhBt*x?@~cX>w>un(CT<4eZBx8rd3ta>SMWClFB4fwnm0v{;j^@j|*yN4#>m;GS^Sh-_Qgi66@q!?2L8Ra>ITKAF!K!ZLJ zE3>4BbugtofO_BOAz?1se zPKptG*^4)aZCY=x$pWU7H~W-#zhsg%z0e^pqy`8hcpMa}9@^HDGIa2y>OpS4r=$Pz zC!c=w>8Brm4D`bfxNnBQq4$FKA~b&kDcIWsfbprNN$>SA)V9FCX~fs>@8pcLTnU*a zfQ7jX3f%y-6W^h34_NAiw!rQV%#O)K5LP>ZLnEpw-=B9P(4M-H4gDe~7{C<)R>flC zU3~v#@!@AD{@8JI`&6E(A60b*+jFpW>>rT5>Vp=pk-*wecJeAuOYD$6US?EKv$6CF zkk0^94@F}d##HpA(LviaBIgNppW3$RA@87t2Q;qU^a^fMnv8%1R2~$U&`()|)?w7% z1oxq%e=!hrE;m$L*@*=VHeL18E^9I?Iwr(VKR>+z?7dPpv8SI4iBm{f$4ni8NdyKPU#Tb;g0BBH!8qPzik+l56ZCrZ;&d z&g<^6g~I-A`Q}@oq7OO;^m<_O+-mYBCu_vCY=l>gE=;lm8|0%^D7h;*j(C!ReK@0= zb$Ej&+c#@14;fppPE-OrD)zK@4PWiskZ$8)RR?ouRusaWW$yOqnN+nM(0@xwfsfVR zRKr)J6LRDLTD{*Nxlt(EXH*!%jbT>{&{!6ceTp zz6QTQjlb$Z)@=9F*#W$_LBUS&WO`?Gozy47Ft9H1b5r;AT$U z-$`vn08Lt2fBYYXet{v*cq8F$DPB;R*t64dy5grUF>Rs#Y1aeAS-n$WKfM)uXZG<3 zC6CqM%hZl3yMbL@ZOxJ#;k9r=*7eXCrmm``Ni+20v5iUf0`|rU&FK;Oa!_aA!pPQ| ze6VE~;oQSobcM5(PrAbn?S|F$1)O2anYRm(uJVOWm-`UT$U~z z$uJ3;g~x^o=z|#g@FvUB&KSHm9>?ry&3bv|Ou=QDQg-77Sj^|Mcs_kU@Q)yaq&@E& zrhz%URb^iRaUT{clSC#aIsAdOEk}Tbnz_>OBji|IG)i(;U*{s|-gBkq&0Sf%*h>V$ zBmKY^yt%i8^>#5x%qn0gUNMyi@%qyrU~mZGnL}Xsg;gbfnexWv35RosS9jr_P~L*Y z1>C{;#1&|YrL-#`c79V%tdbMM71Z`#iaQwQgOiULmsI)eObF6EyEEp3N#2N$ej`K` zD~PAclwkk|4*x|o&!j=55Bl8?Ulkawfr|`T2rMn002SO0Z&+0lH5WeolO0WbuR2aA zz$Y3Klve0AI>6avGS^(aKvz^MNdNMmi-fUUCh#I;%XZC9vf?#}E!*`_m=Aq0^v-u+ zcj(oee(%qUZ|R(!E9hsIM+p||(#pUXC%DN*>2hp=b6B?YY)$T_GWbR(6n`?+fkR&d zK)tUmCC|&$xW#}S`;l_COoZ)#mmRSENyqtKtSVwaWsL(eP*5qr9NCxVkzrizwa_)fl(t zx6mS)8rZ5@khb%@8pN!524cCB{+aib-|LRQ5U*8mE>(AgaXDS^;m$PMpv zi=vkbYFV2Y{<0k5>GRbth~kaN6mMyE2y(!BqOjEM z@Cciljv%*aeU@tgXc`19D@ULS8N}bCC-jnh+dZ3#w7n5!0U__90p85pwiY7m>F*6q zk~8-^Gu6eV44pV4K&3MbaMS4<#W&N^l``_W*-6V^)xbb^JY~jP@suR_my#s^56=jQ zn0|PdtX-Lm3$e+%adfk27BTBNK6gFZwg@lJH}*_0{a#51krGL7rIX!oL60yJJ7w$X z4RY0%8Uv2CYV;zL z=wWF7sIfnD0jrCU9@)Y%m(R5<+OK7 zob}_)IVHgBaK&{_)0Ch@zEIh%naw>RfRxYV2o$KY8>;33Yd?*-Li1kMPoc{h&Li^_ zrnKWk^9GDo{2GA+Uvaa_MJWVjV~e*8P& zAUdLOoL2VFqLp#}hJ8G!(q0l+5id7K@P*MeG&rH2&yjl(AC_VXM_dD7Xmq-bTAyQ`q=u<7^4hYPUHX zw{^uZVVBj#D8thK6$0W1H^UY9t!I_=p0C-prBZi4@6AGOFQ0B>5ZYiQvE;{?p(c=7 zl%^JlLNi2)uxa3ux1TnIGBCEM>`pX@^A4Z(jxO1hGV+4phsB34xZVs>HcT+{J_AnT z9+dn2RS+!8r9-2t@gHD22{`d)eV-)te2p1I@?K&YyI@w0Ya=o(XTuD@L4pN%DTAaE z8jn^KU>a3sLacqN5$J1GSPb>JI|24g9)6b)fI+uWxjdopb{AUIVGt>#&Yu6XL+l)!6(!Trw^UqFeIDH~R{-`op@myaG#PURmpzL#69I^Mpl%UX zA2*O1wx$y?6)32cdIu9HsFKobE?ZtL+fA*7>7*`-YN4_s4_A>btv+FRQ}}~j-{nU=WjPtE;?uXj#&jeV zV@q~Tv*<}VvF-5LJHV!f{3;dfOE9hk@wb?h_l{`<3IQjeku9>U=%}J0pe*CTj^;~C zL%tFGy?=$GyfDL|-HfN0v}>^E#Wl6~x5SnN!$=>K{qcV&J`Ir`L4&PMAOG*-!#~r~ zJr>QsJ%JK(4{r1fIA*wSTN6sz?={}orVtM8ehf(L+enipPpqw=Ksm74H7(Qs7x*84 z_;xV-3+^DGJx`Rx&6|BKC9vFcpuj=e>arj{SE22H=6YMndSWKSOwjkTGem18-b8aK z;mb9TfrGj|@CZ|L1J&$Jxf1}t^bj8p-`>pq9@616HX=_e&>q zS#SlTHg-}2?9uE=b@E`iA|MBS0yGhvKAJ&=)*nKGnvXJTxIoYoG=$kxGd$ku4<*j% zi%I~DwRMTk#S82pM$3(37agPX6MrUL>aY2`AXI=woc_pBO%Q&vvpR_~gjFxNKkAuQ z(SFKH>a3!4Q5}i#-6KRo>=X3e!FUD*+#+5AOxaXSfBc_z@Ew02`%Y8}xryX)BhBq) ziWcv2FmeF;Shh3|OQgh`r6>YgUBH4VrWXqj^pJIQ>FX}_nX2E}LVf+-}e zufi2x``mcDH3ln4|9Ic~^nHve5*;+bL#X=Tb2}QH2$~#^6_t1$85QX3&XNhRV9%_s z4Z%ylJ(uFOb5<67xoCZr^9hBb^T|N;@EeVIHhSczPpzM8U@`ihzgVH92ws`L86k!m zOwqBP)3z9ciL8y7j80Am`o`BI=2sMjvFrDoM1QhQ7kb58Q8_LF3;9r@7!km)!QUXs zqpH*QI3HB)0nvD}dm0>Qwfgh6&sOeyKGyDXSYK1+1`#MjH#R!Jh(Wz(H zNGw!0r-Vccl{u@LN5kC~mlHQLhn)`XxcM(YHrNR{r3N@HLdU(;zv?DCi6&$8T&q~e^gr90XYoT^!hX)NIp zYmd$i8~(~|{Opc@u1PAMqJeylf`n*;A@MF!$DpHSF3~=nv0*aOT-H=0U=KuBW<5B6qbBIl7x-W zZ=EE}h7RhePk@}#CEQ_ZaE@nAx3!v(W*?_mtzPE|SP=F~2nZ{-&-U%H5wx-f!$5gm zQ3(rGpw>aDx}f|gkCxNtI}YQ0L;z7zY?}}6$z0(9xS9X{;jgbDW-@>WP{}Ob0s*(Z zl1&Kuml0I1bTvI=q{=jEsF0(Y2~Znq$|P>epNnjRy^@%ao^5&5p_s5qpGN0q7g>N)F(#L*{~Pv=>_R zq1{FGuB`^BDxiavw>C3^(gy4g{$pUDXWwq=^s*tq(suS1HsFTR(+5=|aNos2CO3{5 zFc5hruuT$aycC1OE;7he!T&^E?`;xsV;&}Vg&{;dWhy>s%UR`x5qu@alhSM z-w&Qyj(U!-y;!ph-jhWs_RqDbDxI>*;$&IvSt^L6a0rD0u0Bd%+-^-D(-(}(7r_zs zAjYFBZ*?QriSeF%@)(@@;`qD8hhK54F!g(mNOoOA&v+$0W?|%P)6OcKJ1wD01krw( z`sy?^$v=j!K8EEeVXY%xMTVk6|H!&wh6sm5Y_^9F#@%<__^wH2c}}seEJYJxPViI(SeshBJCB zAzQFB5nmmN%BK=gQ*cd?ZrOIBC|acObQ}HSP(Z!0;8G#9LLef_*>~n$82QO6^y7E1 zbH4*aHi^iAdef1a<2xMS?;sI2cX1|2*h>HTd!N3Ls2a9?4}DvYsy$twb!qIoUHroB z%Q;vSSInt_H;p7!M0zPEaYAOz-3b%|!v2zJ(j3rT4nNHhUC_1e&2xdXCL7CMqr5Cu*fJmb}ZnB?H-7tXb$3uRy81qom z@qZQnDgA(~_5nc%u#KzlFHCFKF)zwP7Np0qFYNbocEgBz&yeO4 zYS&$%^a%`%T+rBm!_;$d=5TC4@3cf^=dJ`DlWbcuoUJ*2GmK|&tl1E&8cGV zg=G(JtP6#q62Fv~kjqxkULb}A{;=xUEAMOG^4r<}T(0L_cAOXOAqQt}K|$H>0+F?_ zx1c;udRgczn!_7v<%dQ^m77%wENWENl+Q?3rF5+3;x2Q^@qk?GFhd=!6CT}q{T!BFhXw!P=)k^uG=D`!W~8)(>1Fa&%ZtQKukIWr-Kt&4+S`R&?MTTh0VcI^2__ z242B4tjF^GfIqU2igmI2+XP4Yp*``z(vH^zP@67mA4!$tp=?f=Y7c6!unCK;aO3ME z&TWA}QnmE)^H0Amd?va*3n+@ul#_MQ0z4iEwF1@ap8`M5sa4W>VxP*TBiftZvy>+= z93a1-lh;KrFiP^Hv|!k*`JuHUX9224ovgB|lB(iCGijk2rvF*~+8#)w)WKrVb2(rb zS7@qe+D-3m&+O$z(sm$gdfKy~DmVb_1u^-EN_u;6p|+Igb8yr!Seqz+B(ap5kmV|5 zmRBM~N7Zx<9C7?=j(N?WKvYT5Pnqi;TP8@#Wc-B1gM)U#(g8jOplrHWc0YZyfhW|XnlFtWBBQ#@*a8dky)h9)~2sv(`b>(#n04LuMi z6rK*UJ>a|yF&VvMvpAeNOBtqnCs1t~8l+ILgki{=rAGgoc0AJJk_0rUrs#nz?Gvc{ zIe_#~udDL|Yk_h*V$!o#gEbl`2;Z#Y1MqZ%Tf2sf3EEqQBZl(cP_EJ30ws|G??^PG zl$x*|?I0E?cu6u|l5O(<&AargokHVhyEj!txNb?>%wphoM2Bb-H_Y#pqf=Mt6{HXv zPukt2?;tZ#ly{KS8*-cjx7@$#2+B{c%op%cs&-%ew0<2T^`*bIH|riknq;1$_JoTN z##T$S(QNuaa7%-`20Pd;Y`$oR-A*~qqqOY~O41dFI5QB-neOceIIEWwca3Q3FvBeb#4>RaqOvG7Hu})m#KE?BM0c44jCc znzHYwiXX9Wcr-_YYx{&!u9(Q|@(%$ZnLm3pVRF938WtV{N@0M+B20>Z?ZIwA zXPlBfgr_V&#X+%CzxSsRTK9Fhl-udK<|na%o;(4W55dMnPO2GmO?Ic4B>4elCL4945HXH)GaN8&+ z{2R!v8l5|-Yg%%M_TRk2g;{D58+Z^lZR0f7L)Hz-Eq-<%)8aqi9Q~9veD*}?r`&4q zWf=pi$lQF)d~N9&J~djvb5K$$(Vy$8931ba_vU)K>$bL3FBij=ZYqxsQkCETTx@s4-RCG6m)3pf8-n{@`2V&v0pa>;eLxwl!8CO5KBc^+cQ^>1`#Mqy| zGlau#{79N43p2;zFL~OxJ%nh%1=fO>$a|$}bl|6N72p1reIp#4F|>Aq}v`5k0tEq_ScF3^w2y<<1_>^ zq>42UZl?FL_h9i=^jpi}jQ7p=J`F99v~I=v4eo=VzJE%nhfw9v?0n6Pz^5ve;QiRn07}p8QEXSEc!-4_~3#oBgwQWUPqKSO@w=g&^ga;Tq6>vL77n zf*-g7obmMK|DpKsYpZ#NB%tE8wOxlB*b@tWTZ$G?c0jzN(8hxz;!>!}x~DDiouI~O zD^M2)HwK?sTsQULRWm}fAsW|G___4~xQ;ZMo>4e~wI_jN`!;qO1;QjRT%(&i*X{g9 z2Qr!UF+CKeEmM5m-}(2bW3Py2aWN*<_TXe&C{HhowCXt1jT)5nV6Dg*!dMGamkbg+ zmuRXvB(}Gk;dmZKF&hkX_^GH)fJb>|EG`d)pkl4M0Q>=>>zf7a{{r(L3N5`PfX0dN z06E#==$;Rb57ueG$?h#bk$;n8>Ne@p;^Sy!aTT*k0totN@%7*Ept@37*0OyqLi2dH zfackL=yWm$kSR{2%Zp(GDuRLw2^_>Aq#}$ zZ8*mV>`NEW+d1DBj-DR(crPMg)CU#aBx(`*sAq09BWP@GXpuZ)S9PUtAiuZT8tqyB z`E)qQnz=`RI%VGgtEwpb#wqm#?8itcKi|kyswg1v*l`J6>Ui0M0J6@HwEg@~Kv^_2 zrFY-I(C)|~ZvaGT9k|5UvZNO!a3%J?Q|Qpt%^ZSaPlz8Y?HtsMU>ke@eEh2T^a~3j zsnqk=Uigyv1v)zOl2$^5tHvPHnl?;G&$J?g_*_T4Zp>|N#S2&GR{ay~)+#%XI_vgS znx|ZKXx7-lo%DLv@%~4I#|PTy6Xt2k zjg68xixwv@0OLq&U@u;AJZdsq@@wlGU1*_mt*NvMRNU_$!7d&B$>9RLo~PG ztnlI#rF%DpoI$q8!)nfT&NedRi1$e9%UQ&)4aJ^*ddREwfiTsmCS^tF7j@3k07RU> zNISZUr}ma4LNS?iHa*cM8|PfjdMe3Yes^PjNJ>@u*pF-(W;Lpvs=j=R2QoeFg+7`( z3Wp{OU^W&d=59+{7>Se-#qKjnOf;pdjb-~qSEvh7Ih@s=)sgoX6*TLqy5MhDtQSZ> zw00G*G3C8b`u(*lL80$YSCva+(ctb)tO7GG(8@fGPZR?iO& zTeGaz*!HJ#>&Z8m6l_2L@Ok>*;`lFCLv4WMkGk&n$*x~W7o>HdRUK9SDEdgoduaiWC)Wwk_=87zQ1_j3fXT$M{`nJs&K{S7@G#C~Vcs7;=DV)(!V= z2R^dCk2PksFOq8dalj1I^C*)ZI~s7BC4_TGEd>N?{gvk*+`KI@NZomF&VkB)T91o+ z&}|1&Y;TXqzQCik&JIch+e91dr=RaE1Y_rQ;@Bjgu%Aj87h01ed<|KH&^~*x%IVph znl~xASF_~fxs;v+P}2c^LA#}GTv2K!6+$2@XZ3Jl3ahv4QI1eV8K6`_H6UW#cNQxE za@Xhsw-(uLPyTmpzB6~z5}%S!P4bQRURvx! zJ9AV79RqXO@U!6U_f+tmtUS)n6lf&bP; zu}JX2>FJA+2P^~Us6?I$!iaI$nx}iHOReGW$(p^V1Z2178MP*G zl(D){aV$X{m=|*H;(ANpnebnkTdoQl1gpu4MFN- zO)@4PW$0D!uMN5f-sI8^g5{TWrwO_oi&J7qL3i1G8;q%UVLwFPVyX9?gZEkHW&tDr zQDcpH$^ttxJJuM^ub5lGP)tK+3}WLyCd5L2ZzI;i>qi8Q}y_W%g9= z-Cxo-gIK9bzqE`G2v@CiwVrv^+%tzu*=uc!^Q6KTOas5}eL&%W#kOuJMoz_WS}DU* zlE;JXl5iutHPRE4+)go1Ez{i25#bn;Emoa9x~yGO z_R-~H>FFR4{D3hZg_A=^)fvR$(A>(N#j((h5S3=zkVY;({pj>)&e$GrlQyF@zGwJ` z($oo$EgC2Ydwar-bt{G-{u0Ya5fwBirZIFW_CY6F zyd+95{o3NoG)I{I1CHI9LI~WvT9%))!KYSGg2^2x~VSE6mx2ev~D3Iu#BkC?vKD725%r2dd zd!o0)Ujb7csiI@mRCgp?Bt3NwFk=^SKFjeu*?Tkm`ENWFY#-LE4T%R3hjDn?@$^Gt zMZqk0+X}lEbVdHjT8j=?%g#WnqR?5BxFyEyhl)(r4H{<3#e4Puw6*V0=Mv|@cdBAw zIShwQ)aReR2Xi?7BN1k=Qw~y7_P;3?v@cgO;BHxPa$LKk$==J<2CQzw5@YiN_n#bn z1$PAM8~9y)&E0$tnkt+QJi?GlCu9NT2vq3iDb*DUx3TGR-jsx&dqgwqS$SbRV0J6m zRDw{fNVxHFFGZE8S6NrtjsOxM(ZlH^Xnx)t0V(HfPcfBQB=HQYH87h;VkMwAnhp-Y zg+uM8?Cl44X(Ky}FUc~@vm9Elwbqu1ATdwq@MQIQ^NlA%a@H#XRcui?eGLmF+=g8z zXe-YYL>P2^tA3CAWIi(Kx1$K=%Jt95d)$$zJ79$}au5~|I-Kg|K@h*wbBO9o z?hbInRJX&XTQoYX9(}O(GX%ty?oo^uyTzF?UiDnY00Louaa_tm%sL`s58U42onl3r zj`I{YEvN~~dEz4&1;5>wG5e-vTg2qYD=R^qQ84uUhM;^A!4dgCfB*y^^d~SKU;JjS zBcX37_q19?dUB^V+^eqXWP&{dc#T5ACFm?C%xG#*q2PrwY zw7NlL$3b#n5p0Ar`^*L!Lel&u?CPe+qJaZ$fz#a4vNbVzqiih+)cBYyPmFybb4x<^?65naLb`MZF{l~5QbjlLR|dBRKdBw75thtiev%uTA|fv`|NNx^8QaK?NBF&YfF$<-30 z`SD@6He;W@fVhdn(??mc+#ri<1sN>Ju379UD=zLC3;m666yNw0zm#)S)WGotsmaeb zMqUSjIID4=;mZJxzfLyB-ji9{I1BT5Bj+NWZ)*=gAxR$2$m@3%FOb#HxEb5_^#Bao zEc0yPrAOz>Q(M&0(+`wP>+T`GGTn>V=|4I^=_amFp?oBSDhy@_$-@@Znp;={q~i;B zyDnyD&cFF0;+6Y*F~C0riJQz1i|V6txxD_a*%1|G=9*_|ymI`->M`C_FEx8teIEoexE3U5K zb5PmdQ44u*u0M3K^p4fbQA)X9EAZmKzM3FX!E*X%yR>yO;0`I~Ks;Or0JKpf*VO7z zT*dZJ-{=aR`zjHeM05Dvqna)>E7w`f)H*P%ONh-vSm^S49;UmFj1^IE=#&SQ;hcI(YXvWYX?-Oec;M8U!4VZu6P^|ek7*O8lSh24rof0dhL=QMPMlkl3cPdd0Gttfq5 zT%um{IW0!&R*FSBZj$-6Mgrl-o;@uG3mL%n`zft=t={J{tNY!$Vp0zNy>f68pmO^; zsC8Q-Bzu>IYa*=+>;8ruF(-S zZS&Ml9s2anCkT~vvdR26%cHJh66)4g7GQ*s0zz}IGS87K15|+(+Q^+{!Z~wOV+rOnxub8z5I(>z;6YRoLkur9u9=xr; zrFo#llJ-@7c<&`5v~4Z_Y82Xb+^Sd}B~924<~tP{AB>jU6Wgf}uPv^vosqT!vn?hq z>)`Fu+J^QB--nlErGOCYMCEOCM|iu^;8ul1p99zj0uB@gg>W&CWdaUkkFFk=P5#c6 zc+NabVA~tTZX#fY#AEVB9V8C#A_Y(cSi zS;9g&(kl5Smgi}zVXqHPx9GsWnd0j|e)w(i>8E~mFvmORVQbZdiZh(J)}e&*dEbm< zry}8j*9(~`U=_0j*&37UnRdh>H)2XNA;$cqdmRStTb} z)51fup)|DUqCE!Iqm|mBG<+@Jio6*sUL4127g?+nU@vQRc`c><*I)*%O>ljzTXT+* zb8^&SUoJ;cho(vl*Ggx_#~u3?>8O9v^&A@e?;=rkV8|B2YpVEWRmJ5-cIzvmN@(#lantFBf>jc=iuT zi)!hrTN9%bOREn(sO!{Uierkkni^9}uw#T)C_3L0K`V5S#@S#$)ZA@Z=p9QQC?-l5H{Bi)ju7v2%)=0LAYs{Hli|&-ot+lCqEY%E zwX=o_DZnw9S!$Si^b#cX-6~IwSsGfIUdRqQPt!pvE#!-}WQu{zTGDr_+oGlz?b}-* z^OqdLnAEVcJ_1{j$q|wVH0y`&+o#bl6oLDrG}%OKjYlf(ZIl+fEXj49Y9J?lK5o(f z%||~qsbF%S}G8pX>PN`-cXd}{=4t&NC2#^8b&3Gq1HYz5ctM7FulhAr9a+^ zy1IKpw<#uM($zAW=(WQZNkD)1Q`FxZ|oNk5N`fEJN*I zh@welD+)1+TaCQJzZGs^-N}(< z4Co=#Qs?-ce)U$m0PSbZdh0~7sspMIi$DslhBKlwW;AWrEa_!@`l(queO4USW= zPlho0^j#%ybzs*~ozlch*T=Oj6yv*~VQyQx_5LUCbms6C_|#9Ze2q6USdT>U$}~Cy zQY?%GBXrM!E@=Zz0^?07Sw%+cu`&&72@MN}Cq>9gPKOm#{`HIBM* zS{+62_PYL@P;d0Yv}kgd3wPUGeGHk(81(QyxQFle{G#W&5qxIXpvyRj!j? z>?5fwg*3@1qo_%AklL#oi0+IH*A3}G_7sJ-d)6K{)@y_-=L2QR2f)mBhoK&R4i?%x zKMNK`4_&6p(v?!^z^TjCS5%6VKIS5BP+2p?z*opM`DtFVP;zy}zeIU$?HXW?ea44R zxk)@btmIl{T_B_s@^m%_{B$b}P1uCEXaMOh(fL|QJN2?&T;vY|xq)9Lsy@YnlAix@ zX#ZQi&Rgqg=>fRbjmUEUe2=eiifS9Go5TlD zYEu6(CXIQxdqjAK-{6;wjI=SCTAUB)$8MV!sQ?lr0TQ5ig8))8%S!xL@3qce`*>0k z+gd0TsxmX&&)L^?0Sj@GBloox^5HpZ6>R3x1DOIe9~57}R|KZ9@&nZXnw&hV>54N% z{rwX{#U_kb>1u0L+T=k>%hiSweHd1v%oyCled_>F-3xNiUwsZ3Ti_ey(3(hKGjQk~ zwNN^`UlI|zI$OaC6u@%CY#!~nyOOGWOc>PHVDb1)!g&=-_JpF1NKH!&du1njThGn` z?YfO5rhtJ-xGnM9meC1A7@Ep9OOB;hkYcgsAl}DJIju`Ti~?{pw__Ry4M}BFel`?Q zL4k8AB?;G&9+-9q$INF>d|5Y6Y2R2_pT|dupY-E16zN(mM)5=dA*zMq0m!56sr==e z&Q)e~F_qYl5%bb-Ts+0BD_EOMisMi9NmgAr3=f=}1Z1f&BZrR|l zx@mV<&V1$jkLExo2-MAwZ`8YMIJm${ScI`TT#vBHECu(TV_>$<8|xmSF6{6t$V`D( zbyl_19UAVfN-J9-{kVg^R;?ZOVXyLz{h5}ScIkS5AN?IfgrLkr^OF0J%P1X`$6Ol? zd%4wWWcdY36+*OCsZK5hJgb8Wf`C1@nIg&$R4i1LLOIyO>z8{nTnd~c;lbrJCV_3N zWV|a*0;|*Ta8||3@FZh_{#_>mool5RW7o`0CA0B8!W|di&XB0PyI7X@NdsE9f zfi5IZa3|dI1ymH43_H(i8Q%U5lI~vNG%c9=ZELQHgRcG=FCrHlXUzMjgyMBK0lU zK!r8VGuw8_9JE&ZCI!ss?l%fgOH}r@8%6)2m&t9pM9YYS3<4*vU{%H?RO0s_p+&IMg&+6zj#lZ7)q_X3ewoPGOW?ck_$b{!fwq_gv`{qO;DBTThhp(v{0 z>A^qG8o*c!u6cfI4c{#zx)6^tEYZ5Ud-3RZ9$6bp&`h|$q#_N=;)XT@&k}=Rw5Qc= zC2^X*?SNSl1O?-g+V19z5e#r_K!PryK8ky`ciK+%gtfbM{te3?zQzyf-L8F8bOUXn zKcbEEoFEfEOnLYEZ^dhJ^IDf8mjr3NQCs3wYsfZ7QT8KET|Ux3b(BVO9D&^&qb8)# z(k-jJqGk{0wQ^X}WX#i~-I1#{Rs+ppy6l^C1n-;6CYjVz=->#DyB#HDxEwvZMotd1 zZgqbw1X^RL2dpU8#&p7Ih*uoyLr6VeW+%N`&GQj-Ptw%SuMxEyLBW%f3tYs6&;&hK zpxZHQ&$|d7s7dVgW37Stg0|f)z}(h^i#3kTa2CHTqZo`q1lT{T!wQm*o~C719$78f z>%D!B3;u7e83>@G7pRYg^!Gc=ue`e4?}AWw4F{fmQu3!nLK{Lh?sx~Cv4@%kJNX5Cvv*1h0;l0sZIb=`6Aem2E&M^;GKIiu+frwa*Rp_WgB5VtS;9)x15BE% zBJ9BMQ}nL{r1e?GtQl6qT;v?|YfTq__42j9iLH)e3CiczOg5gRfjO)s#NN(*$RrKP zLPH@B`Ro+73!X%9@&YMj5AznVJ^JUBI<^;-ynauLWfPL6)HVk#kN?3lvYnSZkFnM& zJ7`Qu`UrlP)(OE2|+WR}F90A{^Q8R{HyX0FC$%7%NOm)myd0 zBf8`BE)f@e`F_@|c(`f;1C*g0n|VrFMcT&^VBIIy#MppX4`#QW2B7{oXU?|sYTr(N zok;|@Q9Z=moJlVv!||kgP}2#lzPyN{h2(*?4Vs8t9USd<{EF0+R)K0)IY>Q}J(=F6 zJ(mel_K#t-y2ha35|v&+cOX?+u2qJ7I*&I4_vJjXn3FZ1Y9bxbTDqBmeKpqUVmZ%^!=xf97hckE3dLfHb5MtqeOm# zKXm8`rO~aEyMvV?I?^bWmQl+BFt1%G12tlMpz`*iwoJNNX0&4XL0swaE$asT4nVG# zi0XAqk6n*lp-VKqJv`vaD};2rcfQ{k2(cn)0n7}3jDcC*!u@rrHpyUFYCZ>A z%PQ!N@8|GA@x%0=?NVQwEbeV}QF{FJ5Y5(rK6<9^1l&8*zjCQiZl1xc#x)>;*ME?wuzq#{EW5t62`;D!!YZ5dgtR z_1GdE)nXw1s9*S-;{W!iL$!nSvq01#X7n4SoToO~_t-Dbq`0Y#ZMt^q{xj z+mKf;Q{Jtmd#SnA23*g%3GK`aL4)xm-7E`b@7f-oMTo2$>utw`L-8R2-`mck98-H* zIB7p`tMsKg~b;5HD6-@uy+>0Rb3c&5%Mu|mT|$;O`gR@hs5I2f7| zsx0?-9G3dYR-LImE3L^h?qEZsfq(UEIg^FOj}l|o>N294#o`dv6q&$v8DE>yBN1nJ zkV?u;42MnfR9J~w_j6YDMMD|DsaNnpX;uOOiF?*)1=I?=dta5zZIitS9?Q(A#=6*t z!HeQ^d0~rT8KT1~br>Z_ZFP^Qr8c78FSUfGAvAzIb1 zN%p@;Gz3%ag_ND5JrCG`rdgg{`I3ONP+zjtL@5NJ-Y@}vBlP{N;`Jk14*GKM1WnKb zTQ3K7XYY6TjgA;ogI*}n>XFu-7E{OMcD2rJeQw@-0~Z-6F58@hwX&$rR?%@md`)52 z?AH7QQucjWJU_z4w*mR51dmDSu)Hz+C}uWWCq=UyP{cTtp>s8<&uWl1kKFe8|A&eOR2@$2ZfmU4z6 zr~?E%4!4Kz7k@^hF)Ooj-2!H-9<{Z-C+oWbE%GDu{(ruFS-k(B)&!q24#;kYD^dTh zcujsab`GCZF`VW0_3Vxw&#CZInj3<^&E2&S_*3UjXCAmmEo7Gl4-ZTljD;*iYQP6^ zkCwg?5plw?$PzMiV;d2k#qENko-#U$%-tFR2xBlS^Lh^RKq$I>iX347wHC;+gfvqY zddXOVXD?-@EWcC<@hYU}uMSYHouJmX?kr<7j%OG{4-l=e-8vs8T|(ex!6;guL|bv) zlF!hc0-7r#&A&o98gO(i(zXdp^|%sN&~&hw)M+AicI0BfiX?OjSEsvo8+GO~aGW9N zC;qK1g-E!ilNd?A6O-Ik4YZEebiD~}Sj;52mRPb|FX#fn*Tiz%TYo??)Yq{Gq0FY! zIeS=<3Q|jx0?x;FRSJ;Zz)vtZh4IFhGC^4S9slrNUJHAy6_B4ky2daXblc^I61Qvm z2%u-m-b)QMte&fKYO}P`waq5jD{-C~s;fC8;%Mrs{Zd{Fd3d0WXH?fo4$mV z8b%GLVCD4FrHru(RFroTHxokc7)`btE(O>Qh&6&Z<-rRz^LDwwg>21mCscB6LU~(| z1bzPbumlCz8ca+U5EWc386(n4rT~4pP?6lqs(^*u8mOp(M-#Tk0Kht(u9;JhV~$bDLo-6J!2eza@@+bVk3EVd6;yN#3UG`Sz7zWBNj_cW5|ok!P~b3t z$zw1N9@`H5aBTV9Howu2W!LPq<$#79=N_8x)Ki3u3I03Eh{;0)G%1K>Rg2V%k;9=?ECX)@JUIftlyU&( zY6yawcQfepi?0soJBMJfC1tWaIP80v$8`E|qs)J*u2_@PTIi~1rJsIS`wW=om--x5 zFKMTOkX%ZugGfe>RWMb-Y#P|UJ4VVUx1`LGr#qaolu_zJLVe?bj6{Sp^kaEYR5M*z zyLa)|!$Fd73LeKheiWZ@p}s1^d^ibbgS36)Nv%<{kD9S9)JZ$fEznRJ9LDJEjBh$b zT4z-PeSv!e02&UBU*?fDGazMKx9IX=rV(rq5Tc&5gA#1GV4Zs*FYCV-|NRHb?OG?V zF-y1Lb{|-R_JQ2-rN1>OSP>3YOYIn?yt>}?Z8ODxRElwk@7I3-!Y=|J)VwXv$iE8{ zK(G2}K~;yY!edxUbnNi6mqUQp z8jRseJ)VT#c=@VG=nY!0rtkJdJ1ybNx^{&Vf%V4eUqf0qX|k5mO9KDTiWU#Tpk8SV zaz!_ko{!)a=wa==Y4C`JY`6f{i5IGfDmKQ+4$4|)bPjUph|@10>1oHt9$++k(|wqS z!Xc()863CJASNHx1N(TyrlRtXcY>*vUEd61@V{fnec%jw(FHwcrOYEbR__omK&zoa zmBa(TycL}2yWu(2f`ZFNrpammSLpCvgKKXuqdY@>^IOFa6D4R1H{7!n*qW>k0r3O#Z7Vmk#1>rWH+HRR18x~N zjPB2o@SWuUITrW3h||=|$Hj-9U9$#Y>I3_q&#BW&Istu`%^t)qOL87CX%#kWws|TZ z0o56$z?nFUff8-rq^>nf`=9d~*^X&-h4xTb6-;diA%|_CQA)i(u7!+%=a?n!>>US7ghISO{``(@T5&GvQN*qDbalVzdr_9Hu;G>HkknZ z-6GlUjjQ)9eTzDMM(O7!SLeha?V&8LzH*e0Utd_CbB^7Hq)E9v%?qXbBH57V+Vf`IB!JJnU2c>jY=;YZp~8$ zRa(}*7EA59!tZWAXAkoWZ8B#yMof#-v%BKAwd!AToio z^(RjK7OccGc&bzI!PqZUIDqfOM&9~UI^g)JyOfYGxt13Eg2gzISmDcdt0lL&*>(P! z#e3fe;Z`6{(l;+2{hAVI-#K*|Q{8M%dv-et3drkgHZ)|MNc8Mwn}`*!FtyMm#*+VZ z(muZrFJSxmhUSb$ddM?)M210_mop(T0b;BXW$MGa3oH%rCDQ2y$60lxUG%q3PpY`E zS@G;V5;i8SMyv;>04rhbsR{3tJZk)V*!30D1oZGM>Iv^ry1V#s?AV~BUo*wo_w$2y z1!PC;Xt*7=xywOKXn%p!n#xmDNs3)R{iz*b7F1<@8V*BCkLDfM>Tc!ZoW*8o9kI1k zmGHtdpF<%;jSEN8~j}}7L8OJ-c$$=_^8)-|rDoMD2uyaVD zDRxFZXHn-a=k6d3O=EWtpD@fQR*i1CH^bTlQ19=GON~lhqC^SF6FM z2IUun8oJit(T6Jd(5&H9xMXPBgt70!DnGy`37R9R=t8Xw+FfpmCJ@B3KCQ*^Z2Hv~ zk{y^DXbV|fL**t-9xAa^cm#J`R^Zg8!edoC=LN52ud1N{n8?gE%&=pakg7h7=q;3h z2ri1u3Aho=q31T|U{EMl7?)y}pI0jAjYEd*Xx~AE(Q*djL1Uw{y1VZs6S$xFE6MWa z%iam>Ye+-Ox%P_`Y%Z$Yu4rVXnytl~I&gvvIdFZ-xZ^0ylD|*bWZ()wVDzp8YK3Ih z=Zis2xhy+zKoW-ov0`UOvV9zyRVZN7)p*`eoneBkO)|b4nfR@mnJh_jEfeDOkucJy zc(@qWA8_HO%OQ)FWKl`en*STdB(siM z;R?Scm)Ic-`+*&)Z~o!+o&S9}Dfr)>2g%O^p`&|X*U8l@MjEM6`XU{spaVc)r`Z`H z0ifGp3h3h%Vg2kXTw`E`nM+_Nv0c^40v1JSuf$r~o1WzkVay5Bd22+V^pLN>4z~FR zzbqSkZWG>0xpU8#R=V(knfJ z;!&b~sSc0rV~};{nC4--@1#CE#pok9s$gH612yc&li)WeEDWO2;JCC3B(dO40I_P= zvC?84;{4%Z+Qc+x=^|jBq37Y)s&D&r2)iG9y}`I#4B%t3`BG3@FI^LR#uA3H{#T$qokhJcQY~&xmNG1B=zd38hIm3Q zpkEYJEZFFI%e3AKIW)snBK_v~zE^xNHO|c)0*a+fwC2chkQ9j#ED{LjjZtbYYqmy} zIMAHu{rJdW9wU9kgQ920A*%_=j^J~DQ1d#5MGi6#;24n_Ru!56 z!1@X=tqZ_8bWB?6ygbO&HJMd;D4McN$g%|y%1TW5|If{F)7OP)8SA1XlxlukA% z_7&eCLd%dF97CQ5*g<$huF173{%D^!A~SGh<$UyGg)%TUZPw41VGMSMml;At=o$i4 zr|Av{RQ~(*O+W5~m5t?&t^fswQq0z~938+u2%y$_pJQ>h+(KSwB)ZLiWCY_``KCNJ zAtPu3R0T5>2p|u$UsGvd=I+&>%f|Y1mZQxDYGQFbre33m$epS4Bz5B?D=;3Yh9UF z`h3#Eh+6rsC=@i4YG-=6#8qIZo42Xh!EVYsG0$4tl$3(KvlAA8`Ta+)?+QOos0luL z{V3V&W?^)P0;$hORQEdOxL5ecOhu`7ARW~G?UMe6C#mBKK`2*0vy z7BMU;_f}novnrBZnZ<6-FgczY{C$ArLPFk$UQxkQRl(kzcpr5{zcF)Fg$K` z%yAUQP-84KZkh?*b#NsHI%R;2KTXfNAjlhUNh|w`rDKyQQ^$z4SDaGM4Oe7f(IxBy zNyGsR<>KXMR0p2pM@ZYDpf%*S5C4HYuP_O~t1AbK$GyaSuiPG42+z_d{U}^!a3mGb zpqdqG6F|bCRJ+{CHxCdoA8@{ZZjH;L{8=C44=;brqt*DA1Lc^~jhn3Oz`HtXi~vRU zFi2mTc*W3638Vxh{^%Rg=<|lp8}4w`gkZ1BcHWD5w`lxX@y(B*p<@Y|<238*cRHCI zmnLH+tD*zDlExoPTaW=3kBYi*7lLDZc&b3nd=_*DtDp1()79kAMbQW`V5>m=mP}Tp zP9)h%cZIil4)=v=oN{^9K#ijb+R3o3)EW_1?;JSoy4fI^bKxcylGI5Y!FvyT?LcLq zY|lm-Xq?owh5J(jfwjCvpx|)Vpix*#JgK;z@F<`qr9{3!OCDlN*8^bVm%T$c^%srt zOha(9u)%#%r%HyZcrJWU!2nIt$3sx{Q9_R^L)b9{ykY4GJV9QvNkcTLb`iXk&bQs9 ztAE!LmI?xh^pa3dHT|;Hr8qfZ{7W8XCk{2xYGmc#p{=RCQL9zr6%w~TY=ZQxZw0OT zF6~ja8g6BiS`6K`!mU=ne*I;kUw9g5Y3z>Ymu_5ni7lN}kJmEYUX;F}q!)nLsoXMz zsvA)=k5OHn^U?yuCW&h<380#um|iFB&(}4V)GiK(b}5gdZS|UH5s?Ko9`LHo?G89Vm4~Jn%{=SD zq!56!Dfdw<&3!}G?yVo1V56?>3FrJy!21}Im6(#-ExB4fy{7FPuwg(}qd=UCkPtt2 zqL4E+ik1rum0hPGAGcZff3}Zj@m@XT9TRovQIyh&!-9Y!s|!rb2dlH4gFxEBt%+b+ z0gzm#Z~p*W-x3pB4C}8LgGpBW2G}dydzw1t1gFdftzxQ>cH}?tr+6-;msZ?0W+?|C z*V_?e4ovNIQPNodFqAHgNETE0)E%K+HH!@BIt;HV`(iKbi~Zj$p)e4aS&5QqS@=}=uu^+dFs*-tAf z*_Hw+>*=hq@G?ODYJ%Vf=D(?>_|jjJH@fH1-ra&SUs6lEo=EFK!sPw!Hf2T62fvFC zRAE|WAPy*}WcExXe zg9XmV9Zhd(;~n+coT86W1PXlg1;{H$FO{hrc6k38RF~c!hCg^*@vK*uH~T>Js`V8z zhWCZ+bF4}9*h!Q&rii7@!o55S?` z{EUIBbtG(8I7NuqKw`p=pu8%qL?r4n7Pxz+4hHBhYBOeCm3mi|SCnm5u;|He@0)JT zKzzYa{}hh;IgmQf5(n6+_F^0Fz1c*4F9jnF>;8=dd+&*SKfYrGko75-N#8P&dkzB= zL5daxhdRw{1K1CDJarq7BZS5=Xp?&iuV(s>90l$ul5AA`YHslD3kFy6l=g#6pqMJF zBc7;-Jmkn{K{^FNqP&R&be!cs#KVA$a-|DG`cp%3B}dv-@EP25I#`)Dih6)PTuTeg zbxscx@U5k4qZ>-OKrV2(lfLpay^$zu@Hsr>jqq;o)C`QpLzdvMph;yRFT=0J#XGTS zT#_J--r#mtTMP1z^_gN3UJD&XtPIniU5Z|4=1H558mn3ucnZT_?Oq+n#vqt0%Kwq} zr+1-tE{v-z-gE=Y;;98+r?}=zQap~;j>UyttWxR%mJpr172h^+Q4jOB$mMsTdUgu7 z#d74zS{*0OvfYTCdr2|M3#)l+@_r=N)G52zkXc83-&LGzaZ{^BC--dHg2`+2KDROp z?0{*Hz3q;dtuFSs$GL3SO7A!Z9>c!YKNZxz_ViQ`%F4~Qbu~#vA*w7YHFXXx z#Pj?CL%79fc(gP=HyOSh#Bzcb6{5@NYtCe&y&cAQ9+0du2s+@L>Spu2#> zhQqi_#!$Hls$MrqI#n+oaPWJ;iN-9GWM5^hL*jhJh71z#4`Yd+QPiiZlKL$1`0OV4 z7Q#CzvwtpLzCKJ8#o1LzLCiqLyB?Cww+cXOgekPG9@>iq)QpyhfWpF>eU;n|+^Ny$ z-)^_!*q+~v%}zn6QPfd{F~q96&{gnJm!bH7hztt&E7J`!!&B18c^P6Avq zXC(a87WXZg+TTH825Lcw*_`6f%-L96U!cVTVVGv;GkLUw=1T}<&DtMHn&Z8GDqwYz zcjy|o)=A%ATJ0!@Nq=5S3`NBW1M9Z~0rjNG7$RVkcYe+$yhfwGF+vDq6#`;dsg0pI zh&m}#Owrx?OI++ziFANM&+m5+BIB_O_l8UM+-uToMP(+6hCOdc&SP7mzyHUAX5N*g(N?r0cI|6dzftW|%-;@*p-g(xyDdFst*= z50gdA1S(t*RnCeIeqfpzYxNz|jJ>50kh8rzN(t01M8K>7#`Qg zDo*O_$55s#(mxWN@HMGe0a@tH04QBq9B}E0K9iVafCnqACr_S9N18+VQ?=*OwGg(N zXP|3+p-K0diJ2!_W3cL#dZ|$v6f7v@om~Ru$oUfphX~zrQF;FOn^%eC+$21F6WzTu)y$$V2W|-z(U#z%V!qrJeWr! zMH*0u%W_hfI0nG=xV2sU;E7cF&z^RN)-l%}{6YKO1@hm#zEchG?qCUts5rMo^C2^A zt|mbu*kXOYUr6?pox7A&WxeiXP+mTM{pxLFzDbx3X}YZ}W!UdXU1AJ#M!Qf)b(rjD z8mDpi{- zN-$%dcbS{plI>bCq{whVuuOkpNpAXc zl%Z}H;zy9C)LeuK3dP*Yo4RU>gklQ~EoMSqRc_7nLhkH6(5`#gCaAf?2C)M`)z7Ql z+Y5D|d`EVNb;$@pa#n|X(Td*`FYbFmmqL%zly<>V4DqAa4Yaybj{`=`ie!?2dWM>6 z`mbFFAZE;f{;QXi$87ysX*@ZVRDAZ*!m@KeZF&ys{ce!;?NV1L5628!xI6L%?h^>7 z7H-#c1JoS|61|MvCHd=!QlED6ejqZPf z-|)BDy|u%1yRB9eHmnjFjHa!W>||S)oKduGVC4Fwc=@NpOozT!neC=DQCu&jMMY+9 z&fpXn-xaS3SqfJyM3@LLS4~l6D*Ye3OizFU>Ea?F5{6SR7%6&hnF8y}M}>ajDFDFS zXf9@w6s6;c+kcR0JIAJMNhjP5DNdQ_{wvLhKlhX zQ;h3aNbx^8-616S8?r^`*{X`OrijNm#J^yT7I|-WPGr}>UF!fhyzxLtxVj%$ z+BiSAiG%$9Gx%ftnsi=|XI95hr9Yf6yN-)TM^7HE_P+xEheNZiKOP=7z`*4A%F%=% z;0PF5u#)6?H56R>z-crnAwurs+ogoMoI&OzRlt( zw*a&EnFtK{&BEE}$C#O6@ii2hz|S<@Y7T!^{9oyJvWE|jf~KNa+})LK^6Giss34vh zPf67)@OzjbG+L2^4(I_Rb74>I$zHL&j6UW9@PeSpT948@Z%NC}$|0Z>1X4K96v+~v z`zutt*L;6pf2}n$TsVM6z>?h`_(PoAb7A+*JqKGWVMbiykBXO%pw;pPv|1KAxRQ^k z7>8N=e1ORToTBW1n$MQ{Gv$&eeiz-A2^AixATZNi>1)%(3he^5YwGFwhoR267}IW7`1%D{P%HIK{bZl4 zmcHx=W=pxClMUgTgdWjkR8865B<4BcXG z0z58wV{kq~3Kj&GEdg$D038|5>FZh2I3l!pz0?|4( zYera7bJ&ZA;Qw}IQVBeh6rrNwxX=fv(6@mO73xNaUj^&p4EVmf{4StjH5sXXT_Iv$ z+y$UNmJs%IMius#)cyb?!Yi$Zk@PqI`tOQF89%mau>N1i;7wiT0kQv~!rW0gJwx{X z+K&x%Z|MhkZUdrl1X9GyVp`l5$8o%d_+bM-cl$Acv4qEnj%yEnxmum%88K)}-x-VX zXRb0(9{M+7Fi?|$i@LP*az#2A<)L?T!@HOtWd)?6K{)}>G8M%3tgH|h6AuRF0#3B+ zWf^mq3!q|orgemPl}8kkOS(tFtwUvfd85Rn4o#$G#q6|3OOw(_^43c0Xaao*WhLl+ zYrG@utH7WnYFV?;?Gq|u_Cz@9sN|y&7ib2~-IK>`1%=1DRZk5pMF)H19sMzBJA->L zWee9%bq5-ZdC!7wk_FToNk@;loSpl*R&!v_{K@lS@$5*NMABNewAV!wOTB@^hjvNo zXhxD1Vl`G)UyZ(SEwf-y)nyJ0=&SlPn@$RZG#|C@6{PT!^wWRy_vuqUdKrh~j5F=0 z?>=rsun~r_XjFPC9-#4Ol~PLQ?xCV^Rs;7yZAYv4hG%=w;y+~~&y>Jj7i^}r3%C5% z+*sU_Ye_Y8h&{3pE9bzn!zAinC_D_6CazdcI_I#2)qN}^q|z{1yg6$D10?A^p~Iy_ zGAi67^Vr>@#zL>>d?vK4#3HJmh3Z$95`){%;iZK}8Z z>I@sZ6Te3n5@=yGFB0CePy`7|9$FX++xqgy{h*A@?{uIl+~}BcUU<=44XGd^1#<(m zIUI~QRL^>4Pu!56mTtn9bQfd%@xO~#_cn_%cg}0zN+a$wjCTsJYXjmU`XDMKs2J|g2WmH zzL&nJ4qfcp0FS~*$N%l!pJ*1wv+V6I((B_VJ}(Ag6mX+=#1Ki+b@bn2k4Kj_FV0bK!-n%oXd zNc=-UcuU_68Y`*-`@1}s(fR5_)Hvz#G;kr*HHbHMq#T#m77yi7uivZmtJYnW(v)l= zIpFF7hYTG${nCD@BUcS}duE8BLHN&u!T;kL*k_Jt1wz<}6c4BJrFdvH`?ctY>7&1Z zBFrMJ^tC2(iWYYXX3GRjlV7A0pRykL9XJ*ZbRg2>!~J%)=P`9sH&`l~yn7XeiUvt= zY9C=T=8pHc;|N=ILpL1HY-91%_LLW^VnmZwRgY{9(VEtQe5Nf3C8`hP33VHHb&#b| z$*2wQR~`#GwU@g$Pq7MGtK`-U1J)*>Ho&g=B&0ZY^bDi=$yeA4>wfBGkdjP{0qV`C64BM7tcu)Z|26FO&iY2nrr8YwEX$+wbx~&~##yUx~ zN{{FFp>-Ypzoh4ir8y`0EA}CvS~(Wfx6b&7<&CJtF*J9ad=kSOqc9Z0>Y6!{coO4b zCos`N=iulvG(C#*PVG1LTqAft5N6Uimp+dH0zEps9l4{Vo{JB4DyfQ}!5dP;_U+<> z4^kO$9YxW`7K9$Uf!9Re?o2*AC5d4>*(LQ&E~ZUtQ7)=w;HVY*H>)AiM@Uu{60vy{ zLYThy{xa!Exj+{~L1zVy%7skYbFy?z?>J%*#}>yn@!g&2FeM8Kdpj?`E$kov;-C|- zZjjb3i{^Et1z4w;1Fj-1K)bkHhAz~Z+(ddJpQ;QxNxfwk=BXIm^RDF{>==|WYVHd? ziaE!?$--`U{7W&nYT{lREe;@EvU&2cMA&&F$tmQe^cR!H-WWwKcPl#KEPe8iJ7hPx zYoJGwQYi{LWX$>^QaQj;P+@Mk!%yd6>oxoVyMK%T@+goAr{-rtzA=hDVR7r8Y9n^^ z5el|`!idXDl8cYOILE=yyBz+u_y7xR+G&smC-wmD=y_ij*|FU{kEMOq#>etbgSCKb z&V)Hd-m*D&-q)nRc2xi47B-d|Oz)f&n1^n}I~t6fD{dW12Rq>V%k1%wH~Q@aQ%$FD+)t+U=e!E*+i=aZii# z#x&@2YfRCT=sd=6r(`MMulSysU3R_f>}q2H#tF2h^uWS~Pm%|C$8aV%+!_jvHeIqo zK*oL?D=KY|D-w75u>cXQ>BNTmdgq!AW7>fW0UyL+n*SxhZvCO9yrIR9%Lv#Db!spX zj=_XAUx)GpF@VgbS*8&yXT{ftF<`+ce?dLQupl>zU%&jU;6Fa~Kw}@I^#119G&ly1 zo3SqXq12Qg-Z*0&xD$*zzeWXQ(WFD+z-4TYpZusagVM#iDlcn`HN8I!VEuIfk7rS5 z+{t(qov!?cz!9%xp`P0O{Fa70^VqLCBp~n_{7YoPFH6`>okay3(7l9dNV67s3HJuK zb*Q(!B@Rz~?m8g_-+7*ddxEF43+SW(GmigmSpRhb-q&-P^2E1_@Bf8ABfEr}EkK1} z?BTeVOe;OLs&iSJ$XU{-t>R2}{QJ|DXDKtAsVyXrf=kGk zz%g*gr0MB3;U^O|NNAlM_5AW#@%~fGW94~+fq*5n0JZ{y6m0{Yj?>Ywa>nk>sAIG& zhf64_lvEx(X5M<#)vlfgB6+X_lJN z6p#=B^kxicG}Bx+_6|Mqxl}Zt9bqQQU#`oL+~}rD&{j(R8)v zvFYX8ud>Pwkco*5h#xXzT{GsCU{AQ8vNla+Cm`5;k@Z+Q+_(v-2WR;eJATSGltbI^ zWZ=(5pDM_c<5FUJ2he*NPK6mvjyn$YR{Y#o;AMp>eiW(He!z5tSEZt%%T5WLHH7L0PdAiaX+UyNBVJL2>=D^HkipA?ykDu5*PBW{+P{~ z8(qhQ>c_&x_XNdrnY7j2tsc0$oqP}lK0M|KugJZsC5M6j!1hUxJ9p!yES_RBpY3tG zy`SKp7k~ce>8ZT?=I@J_e{z+Bwx?!ynDi0vlJ@&|;7Ks>M5xm0gbZpteZt_Y23#QR zMEa2fYJVO=A^f~}`7PN>5NGsa9ZjF#rAre0i-((M(0CuAbrwr?Smlc3kI_T8wx9wN z5Cr~9UnfGK-7lDzx&zHxgecsYweE2!b^wFlf|6#(t>39wC53gJ`JbuDODXpmXLo4M zY^}8XCyp~~xNRZeYTs?q2h^x~xk1!F&7VC3MU3>J~$8A^1EvRSUt5sHG;MQ2s9hy5}7W5c_h`^=_Bw&+K zC$>VFi9`woJUbJkA3ktYybz#P^O+)x{6X9t4(e4OA4qytjt+)5hBt5U@YU8IK|dI^ z)LrgSeUiz^7JgStQkP90>M#ycHPT~LmY?O^Ffe5o3aU1if)H4J74%oZ*=T)*_T*QQTb5+NO`YZ5o3TK+gm$XkEmUR*ui&`^#VGEj__x}L3{Zg zV!d61n&&5|6GcaBmM?VE?+~1pR3+?I%afpJp>>!9m0tc?esF*Eb3N^aR&kjC!i&a` zvOW^bWt+A4qx_F3@PGQxbX}=#t|qO+fo&s8-9SbaaFFM*1g=!aimr_KcR4v?TS|1oS8vx-FEx-h! z+#uWM)6w%r9TcI9+;InFF1zMX(`n@MTFD9atZmOdINLc zBhLj2o*`XT?xp(IeX<8Ouc4xqHN7zp|8ep1bC);}HD(F%Xx45cI6WghEEbJc8hg| zv~cIRY+C0mRc;mfc5k!TJaMc98;EnZ3+qQlc%FNjfvs{$fDceDOcjW4!jwZM<$9py zA3z_=n3iIMvArV{C7OB!>efNiD+hH=CwV6LS*K6+fZ%lmupvaF7jXF^mJb<6_<$aH zuzJrbv2KAVXLuz{yNV~|KzlbHgj`ktR-hx|6Rw>Ac01INKpwi*9-QiTE8b9m4eG^8 zj5=yN9Zx$Oic5oWvmG(NHu2?fWE6^QbZ=-Z^V^bwBbJzLh)<5}S0dEDDF(B`$0$I%slXKQ!w+5Fm1 zJ}7?KCGFDq((p?bgl;c8lWBdh?*-CIItsuyR($+wG^~Zfh8nRWICfnFVu>Om=+^pa zFQBe-llCy)BN1Ur03Hp{$G~-Aq}WSZp^Nqu8*MB4=tywHpYat?iEmYmj?g)e;{wL3 z46pi~G2cCSie*6C>|u|j4>`u6Aqij-i?9zJ0!&My3;?z2KjvC3u`HgOhi1olna6cc z&ugj0(#nMZI!Xf(!j1vL%7ShCp-EMDgDEUcBp&>Ok$!N|)EdgS?SgGJkpO#UUvhRWP^xJHebEAP*xL78&Off_;Cs(2P6BUR*@rViB z_Avm~4(3Qc^_GeQG1(@?5_=IRt*7A3QNbr96)|U2L{}i+pbNWT_3SUAxcQ|(5vw^= zfaupZz;(nrm6G;=?@C*zIdO#dMDSmtrvMk=tbP&etKfG*W@*4IJ(;-AWfEpSJR(f0 z9O{Z}za+#oAk8pM$x1Sm9Ki_!d`0o0S69r2vIB`4+ZD`jTS$nVOHN497{(Q|KXHDe zUXICoQ$y;p8Qe@P*$}5co-BtWSk%Y}wP-ZpjXP)&KA!1s&j9>iDjmj~B(AZEvWFAVl2}+2{=-aVT**%yNWhTtOJj$V>lr(IT2mXnrh(1I^ z6=`uG8$9w6(k+_EU2s{OOn4{3&!10#zqX|~9SH7df#})TZFYx?(hy(gIdRjuHKQ|Czy8|%K5zw!3R!WtV&*&KhA3)%IY|sFS_T}Vr zookIc5TWl7o3u7?+T|w-Q29jO?gWYx4KW)ONPZS)(F4)uRMaWDSrBSNdNRqqPh;OC z5|sveyq{x2B5LR}0-g$#rIgx}#Kx}U{mtti#Y6rh3x$_|fhhQolL>_5UkW=9xzm?s zEtL-Jx*oAb@hHGLf2P-|aHD+unAg`V0Q8ZiZAXa@#SWy%>LOC5ecRRBCOs;+eRjCy zxly=c2>!d&Dh6uU`X-GlSyFi#oI_u|q5WuD)@Ekw+84nLc5c81j0P7|#}Tx2d=UG{ zZPXaJfq)uZ+93>ZAQiI^V|x*9oto0b=Pg`JYV2n1bdv{6+?h$&)3QL}dbblGWP9bH zUkM6G%$U6eEBiv}^qc_EL_F$>OiTzvqq=Mr#RPgZg&yh2;b` zKzsPRzbpRE-)<i$V4>Gx8FdQ+X9H-|B0?LP#Bu9e zF4r;>7?6bhRA|0{b!Z2|6Rh>r+Ap50!#U7wrQT_!RH7sdcNbZ)V|<52pliA4yw%M_ z_LLkIvZTagnd3E0lLRHe@Jf>>hyhhH>;j~0O|`N|rOr;p3PQP^XDb2xY|^Y2Y`z(A zHAsYJ4?9OA()-hrhT~a+K&=2(1!)}KYl5ELv$prQiht)SY6WT;z$yHc8KLAmCvfon z1;7?X$qGGi$Fe22rdVWZRiq7l8s>Ir1+|^*Hzy4!#DIUe zW(R4qPy8?{iOor*3gPYnJ1zaNv(UGlebG_*o>+;y&h3gB!TAE3BY1G?BrLCt%Lo@d zfjuX?)0-Rti^Vh0V?R{Ep!Z^kck(Bopx>;dRR#gNzK9| z0U9B4Jsk=mc?min`vU_G&`DC@bsSjDLNy~|6Ga)q=g5vuD{R00jWI@>OSX2YL8_s&stN`feI?ol3}@k4#b%0g1Ud{`~Saij|e->er*8G-VS93Sgku@lX5#VAqXp6 z6^}=cufrQvm){aYUh2}x=ndfcspMG1`Mzkw(`%4@A&D#8uGji(Iwk! zx=0yudxTJkfPkD$Cuyx)8?!*dQUd8d&W*FbBSjX;iKE@^+O1VdUk5eRxzsLi0qQ<4 zw5AqonMxy_a8f{4 zw^`%B0_823Y+z!gUqMtLghlO>cxbdg{oyt;MOn?5`r)FHXYSR$6k0(^sIG{|V)qW} zei6>BY5v5ODY3p5loN9qKLEwcXNLiO;JK)Guk+V<{{2W4fF5>FK3XfK%UNIJ-OFdM zKixAvrxw#7zYx!jYLU|zGDdjWo_blY&4&-+@Hr=6q^Qi$HM?j|MoDx+$Ut~?P~-;@ zI<`bp=_T=0?lp}A{wKLgWbH*?*Tq=r`=q_ciThWrp>bQj`B8cWrA&NN`6mC~V(WY{ z94w=C*@dbtlTo5AYZad2@A z%@=4}4XXEs!c;~!0h+q*2#XiMI2cHL^cr;-R7(9`Ldqna7z@|(3f^FR69|J1#8dw> z#W)2`ngZE=Ql=%FX;AVm{RHx)^GEAs68_7B(730fcV5K)Ki5{HIRtQ!A_3Ks4s{W< zXiEpWfn^;dX+RhhFJbha#vdmkqaGTpZkv13XI1et(`sZ zOKwc5b%()P4^LjIm#Tz**y(5azDI2+s^F5yE^)0$vh+udKN}GVW&Gyt@=cOC)`iIa zxH-9rz$*1u@GE_d1ucWX8e31-2qSXID!Kp{p7V}qE+5(fs$|2u6Jq-6<((SRchH(m zj#o)iB>fl`zMe2+n=r=5!s^sY(E)AT9R2UI-VsCmPEaOmhxUWfO}SeFT`0Wj1<3Vo zDXUWjj1Cm#A;y;!rcK`gr9vR-IZsYvLjL5j@1N}Uxfr_qI$(8iQ+&N4<%*p$bdUr* zT<0xViq}AtcFhA;D*_}jh(*{ZCN}t{QyEmhG3+7|aoX#CL;_ej#D-=a>yqExI;|!` z;KL|%&Y5oHa^g)Ms^}{_g(vtrIe@!ds{QmTfuTM-EWl&?#+Eh~G1Qy@zjt}<<~*)# zULVZN44N@RL?gYRAN-*B!4H0reze>npY0DMGi2`P^TPBQIwS$Q5X=^9JxPr86R}uv z+xkIDEm_68nlV2S8XGg=HkuwH-0z1q^n5V(^hogl;Tz{op3x|&BpD$9;h*Rv61yd8 z08SS2M?%5av1?qxF%%1i-W9XvnPFolTrpOb*t_LgA25%LGz08C!a6aY(lv~9k19h5 z3YTz7nKekPC^&E~xTbYWJW&fS9IJS0fn9OGYnXnm`HcPI0GI9PUr$yhAIDC|bJ2;g z>jPwQHQqvmX1T;>9t&=PcAx_dkKD61Ocm?O;!6x?GlwGsdq(?bxXM8e2LLXuGi z{B4SArU%;HFZ>ybJhk$DRTd9kdSsHErI@PO>BJCGE8h4Vwsnivpj4exFHD$t7j=yv zv2l`TmD>iq{)=U(Gsfv6_+n7qs#>e>`?ZRWOTrdS!UwA{`wX7EnmmR~mv?`kqE*Li zeid-gdRGC{Hg@2rhIAkQ&y_@h&u=>JUly-vJa*Z7I4Ib)6h2pOb>L<+X-sIP{PmUd3KsA&I z%eX{`gAu1ny)oQ<@eUxO05#>C^u|HNWmfer@)}mZ0??%cwyOUl|2inKbf2z$=m#I! zXML-*+YIFrc%a(D}R5}0`?zWZRd!h_hNAG1cDZR&74w)Z z-nD$0E^s!WAFov_5u1|Xf*(Z;?>v?4+@&rfCq2vF1?F0!Exr$j`En26a!{7rC2QG1 zA5?Utj#{#)F)S+J(KhNr-oLY(`;z+U8_C8OumwvnM*Jxt))x;k6h3wBbj{Ruq#@dt zc#JB}8|_VnVA#C50sLs*r4)P7zexwVqlv24iHQo6iDnhbH9gleENnH9COpzkp*ZN#1|u;0`7_-t1HFN?dkA^MdymBDH7xwMv7xTR zpXN$lm3$O|7b}uNqTe1cSGjBn02#RQ#FtlCTdJA6v=mxRA0J~0=zETK=R%Y9 zdZTEWdro{u`6puu#a{x}pwh=4O(ougk6;;(F7lRw&nD;6|Ml_-1Ok8R z0g^V)emtPR51xLUiKPFY9s|(tS$Ku*$2gpKiUw_9$w7L?BTly*%LB~$05IB(I&ZW% z5+b`Bk1TQo1{%h-0H|3kH}ChM>X^PCb~kw_0Q~KCfPvo z%QIqd7t=bv!G8e+7(vggjE5%6&C}HT922BVK---urMEW)c zx?q6@jf^A%@1~y-n$9f+M4eAyaZZn`ZmMp#HQcPjlC9~G+ZKR27vg97m=jPQ`~VBP zhMKrSJYxnzKdA;VyCI7EBen0q%XHU*;oN0+5s+xE{sQqe58o-i^Bupm$76_DTuK%< zhdm_j6l!Ab%AS7LKJasSNUbueE2-+uQbs?!^}GNynqpWlDJu|SN-r8`(I?H5_obHd zAp#l15A)Ig>h%{w(WbEte+ci9PVJcj3Mx2zW2txI{V<=*vUSTYgg;zLJP$aZ%fo^)Wfp6O0cm&{9gz+_b*G^RzDi&mIdxI zWf^r3EX=0HBNs&eNubi@@umZcqjoCEX>LQ@oXe7RRas z{hpRk6Lz4^t{xD6Lhv6qMYz2b|Lr*9vw@mq%?-GXxWNFJ$^7Z$CW?GGE1>$+uH0mUmw{r}V-+%J@yW*Sw zA^z;YH8R-)adtoZ)354^>+(0+S2Sy*#J3re_`*}yQW%WH-Xi+p7j_L z1tN7OEm%EPJ?A_3dEtU)37b0XaKZd-i0cWNb}2%2X+LT^%j^#O`W*PE>9{z$%@0$J z^NL05Tyl*EA+3#493J{U{?Gnd{OND_Q61>!0*v%h?OYi^dJH*qd-M`yt7+vLy8lhx z3~M$##dVsQBVF-_5RiMCF$aY~5RKt-(;&~WC zO7hTN_o>sMzArDV;ZI4-u|a2h1+IC7t56fpqeqLMfrhN5uXWm>mT*e5aLpBN09!XBe|6ul2rS)Mfgkgia9TYuTh5dK2OG zh()$NJ_!pQTe)NcPgBYzCF#%LyLt_FWmyI3I>z(3PuDWAI?pT(FD>;RDbps=5CY+; z(iDT4q#UaQixKz`a7P$^LP*V-kk|&P_8aLh>$+L*UO)QgAByyk^q6RiEzsefVX7;4LL#Mr73eGY z6Y@+=fD3tF=N94l|?IT3AC(A+0wTPC*!Wg;o7G4}$ zM>#6>FtrEH9&iwS1`3!$$+qE!H(JQOdQIR2%BqPw-e)!gEGmw{+<}_wAN_I(4pCMW zBz^OY2Y1`*95lFrD;f4|J@7BQL$-iZFC=$h`U^z?xhnqXn;)tAYR;h7rE)jR~?t}>^cyKwf_UK``A-8^X{X%C(Tx z%bgP3IrTZQYCNRufUeaI1s{kCUfyiSgWu(V; z3CC;5e*0G*=PUuDNm`S12tze6dxv5axnLU>Fl_NYPYF}70PhNr888e$u@U)%prO5j z9hGoF8RBH2C(fgst?2u7CdaIl)^-`-Z{Jv=c;gdiAlT*m;+d$**M1xAc(n5kE-m>c@_w4`fe+K+=er{d|z-A zwRgBj`mP(gJ;X3}fVuFzpS>dDJeK`rZ}vusuA{Da6Ah5K z)3TtHU7Mv0v6363TVMGpso7*E(6@>h>i{Adzy7N5S`zTAG?g1OTd69K+%;PrqKq@ZP*ffJ@^O<-YR6V^^iXX)ZcgZs#u(HM_o^>z=s`Z{KU!gso1BS%@# zys(P>N+d=tLC*^aZxw1Mc-#3K1zdr$7xvPC!%2ZR+3@bi`6S+ehckeBQ>`u-pk)+6ACw6^<8Xu03E*vzFcucM&KIygh zbZx|LTbm@Ol77NFO+nOX&B99{K-63b6s^Lj#Y_te+@)2Qyo6SlFcred4OaFSF_D~t zm`pxLizcFKB+E>KoZUWPX1OJP*dSeR?PV!+3A*%78{K*@@eK35Li6L}yeIvnx!(iA zt5RXvs?-9tbnpZK0ImvJ`>=K#c_S#JVwi$Cc0Hf|h z+AR+|5CcY&mLTn@+IK^?0dA(eh5t)KRGXj2amRoAjR4Ycx^LG57Dpi_j0+J=8vE`i zGI;wCRvy--pY{&uO;=*nt=1ibpECwfxj=`~s`bHXmfTyPAp)!oc?+CHOwjTY_$Vm6#mtjEL%hHUTc|pg7{_F;@C1d9bo*F|_|B5`0) z?+f%BUqCg2G^Jg3%4M|?4>?f5WYJDKz1l3@YuE}X`b7PDxAMiuX4yy;R7V?8^u{i(y&yE+WT zlu{UXb^dhTB*+`3Lp2?o9~(+50w(+$9e1)qWn)SV}9;$ z@JUmHd$IXM2T9Q(su3d_SYSfxMX?84Kzpo*mGTa=OjXL{OCj_Y8+5#BRF!%iP_2_c z?b4o$fr^jKV;+;RvL2$Nl)F(4yy6?%mg%y^V6jg!ZC2;jI@wlkIV+3@5r!?4&b9aa z;A!0|cT5MPU9}vT@p#}6boM?hI&@f1HK0KTqYK!H_dk01nNBlKM%T#Pc#CI+t79Kn z*)3r;w6)*h3Mr~0Hn(8}AF%*#K)w`28SXn-?0oo(r@~Q_fv{a+%9?`aNUt@ZX#6~o z#=@uTk8~-L!R4y3)#$V?TFxgCLx=sKcL*4$eId_N(1?aeR!AD1%RG(|5N3e9b{rCg ztD5$87g8NkXMs&6q_o3bbqpifLL?WV`ur-x-|LQvOFiDS396e0J5b@v`s5zukNZv& zY`Ioz%-}mn5g}9vA4wg~!vIP{A=F7YDo< z9nyCW=PJBIst`zcBtF{XDG(6kfy*qnVjvR0Jh93~%(@_4vBb{^(#K`9d`)}l05kUc zxBs)3UrO29^Tn-=k;76#RF%K{!2VZ!U`^FAX&-3HYVY!pxY+C-z-*ZtPSvcZX&tTt z)LGzd%4G+_10L8)&|BLj7(90pdo5-F%l#H@XfdLwsiG>!V9DFlGBMe?UQfOu_C#Xu z+T5}}(-oE&Rz|l?4M>hGG~I*vm^69(TXhUQLe+lrBYPJ@j1Gu=(}51;o|1@}wexJbtqr9MD~ytYEHc6{(vfi9ln{>hW#7A1WyqhR4YMlI@tS@{Q=%f6*M!44e6!Ql=}hc(WM`A{SSYP$=(@)=qWn~$_8 zbqmg6Bs+l0*0tkP3s()*>5%(g<%dfNEK5#JsKFKw4rj_3 z*b$AHbXhF(d(%76$fP4qEl3txGp?BWivDUj2)2yb9|orKtrvZ6@BlD~H*)sNGIHeY zR@`of#v-Y`x-^s-cG~>*kkUcAHPG1-6( z&53zI&VEgI$}7b|YLX2)B##<*?19slz86paAzHHeT`XlMa#haP8s~96s&KIvrqUi}l;>e5+u$P* z&wW-p9WgnFZ6!W?`ZnKYeeQx7Sc5~l?bMBMcql2I*b20IgAkK6wc$MZPsxDtpOj@9 zNFDpvMdfRshpJG(w)<8*>ya7bJf`U!Q`E@J_-@w3G5Q*V=>>7VA`e?1VUNFFL! z;}@kGFhGY4M-NSVN^qxNK2V!F-8Cq`6oH*b7CMs^6u7cmb3_UWnyqy!TV_oQW@lgI z8q@2ZMfn)QYmZRII<$53X1Y*Tu#c>hG!fhZoPaiOz;#H%4pyU&+BPA=2WYyJa3W_; z*e~QkI5{kWX2W#6Od7WfHeU8{w3xfHAMh(pE}eenzj8Ae?xci+FQFAx+h@U*gV~)1 z`n#4F>&E-x{f}V?2D?wtvJQYoIVOI>PCG_pH?WZXr^!IENtGj@)smM%!f#jL+EvYY zR{p87@=p$w6!WS74O1hu4j$jngwP;6nh=?#N;`jbak}^PZWXI z-=@lAjm09wUF$9OORxhKw)(@sN};Bkcifz0)EHA!_8v^w9<42QN0&Q?V!BqIIWJ$tE@U>!+-Qt{Sq5{5}=7I&-A zO0$Q)q7H#-P7p|zQQY*UZ?k@)w0Tc-*qg)A#^d5FJCa+Pw`jVxP4w=G6^!Lv7fU&U zIT`{>bWqr-i2oP?#xi(JS%}J<#QRF?`KhzvglRFv}yFLEM;GJJ+>Cwv;Q zMh$!mXej0IhIPYy8eGQ`rV%qmV>@R3{h|wCgR5o@GmY*CY(V^tl!8t$a!b)*raOS= zK-`NA>_bn~3lCH{6vh*WpOcSXKLMtX|464UEL5J8bbbk>ql{!}vKx~Fh_SBeNA$k~ z`{g1mrkh?3JxUdPi|9^}B>^~efxPJt-Ui(fE5n`CrN0nY- zCo&~lI$xv$1r;v!0KV6E-u#Ol!#&tQzD(~wefhkAcM>&`#LBYJHpf}PbZ;%Rs~IJv zU6pIO(60QV!_E1fC418Qqz-Yk)9)e*|A>p5=qQteN%${+Tl_8c7_Q`UVu>$7ZTCpg z5S9|y%DV`jF1LaozIF#PuQQ+`|EZ-VY%;UW3^RBNW+-m>t8Y2Db8g(2Y*GptBW$61 zW5)A$0Q`(SGR+Y!;4n+l1; zD*IH?<^>cOwalRxL6|of86C?aAbspd(aJW$m_6iDK?_J#kc?sd24S7l7zc!3LMomE zEhS+ZI_8blLu^Mfv;vShFMKTswCQ7Y*n@WWL}&1h2iX(EPY6vqX7t#U*|4!MrL|`T zjK`OFN2rZ{g{1Y!S$aR|HFix&cy7=hdg)?Rl09tFSa$$g-zV^`l`~P;kJ!1KGxJIB z6%Mbh%X6b}2Eea*OlYBW=x_v&3FD@ZfN=x*ox5jUfR;l5=Nf9S0B)%&ZI{5(91$x{j9@3Px=eHFy#`XlC5BP8SO>_x6hv*TQ|xtgrcU}(34#h7qGBy@PpP54qO zZ=s3tLkI_~Jm<2nyQLwt$fHo6JdAGpVHE<%Kxc>#j2ZGFl~Xhd()NdlR)F5H?Ynx* zGspA{Sno%Hg}@wxB94EhIY{Uzd=|MJ)TtlJ1tWG1eG^E>J?Ob=86M>j37ITMI$$LA z{rvcTBWI+92+_ilt5zKJz&2aB0MZ0c(%CgGf|p(;si6Vkw7AgjiO1A1IDo`2{q$bz zYCJf%vhWU!!*=cY=YF%_^g_Ojdxwyoj5hrT{^1XcAKL%?KUybr9`R0|t!#g`!|qpE+yZ;PDf_ejH`4{6{z~d z(pV|yF58z8e_$FtRgCxIC|ddz&<*?hAfHNZFDVc6*WXF;?6)t!|Gqz8s%`A#H7qD= z9c3?Y#NNA2llcmA?H_Ij7D9vK#L2INDDO3DHGMfcvr&Xv=o~u&5~V@F$N1E9Ei#kJ z%s*h#;0*P zbbwVTzz^30*-|`?%DoQ|JpfDUZUI=;FeFPPr#h9n3$@#40Ww_~j|BC&9cdF@#_IQ8 zAtdT*CZuGdn!Nlp+0}jX54(N8U6R|IqZ{p8J7=H(AQvbE0GD_SnUv(I2C%j!6Kz1c zFr(~BR&VxxtYefwMrb0o*khJ+9(CDa_=6NL?=&NvcUWGlhhDx&n?E1wCpuG*QKfKH z(m*g9*1iACI@H(SIChJD{-|Hs*G})I38Dfdwz4hqv2!k)GVD`sLaMzr;@xM_ zl4TmD2$=$$E`rAR9aj6Dt9k(%)GCctT;`64BPv!_dx1W&5{&CH;7I`|Eo7^Cg1@p| zug_lpE$C+8*u`e=JQqY)>KK!8LRIF?!q16XUqpa+o{K<3^RNs>cNK9D;WDs3 z6_>^J1VJJ1DFkdswmEQLyweFFqyerxO^--7V_u>?*#uplE#qG8h7kfM1SJx+mV+3B zhj+;wZ6@J-N_3j_T+lqiob5mxWvg75t)lFWfBI``PugcuzFxlAqmeKPg6m5c>rnfQ zK9Mc8*+bRh%CpE(F}snyF&XJDeGUprFbn1JD-o&^fK-vRS;g*y68%!OncrtW zI+k(>i^A~%Rqr>$>XJ1El&7*v+?s6KdMh&~x%7POi7VS7Ibq5JG@N`B72ll`p}um4+-_I{6Y%>x?^V$psm z%0+-0ds0`R@MNJ}f*#XGQC&C3ZO5xYJWj_aRgLQAgIvS8$8wRKe89EB+^Dp^ApsDu z(n#OrFN?nn;^*fWFh4&dN@XXNt)pjTQg=}W4qu*41>p%`I!K`pVZw?Lr-*}#gx$}f z-vFG}qCb1$)IP>JvYxQ2I!UCZA49n15^l?jmZHlxXHVAUMolX?ABZqt&c}A$OA?f~ zLIxiLJeOj8W(ORg$Kr&!EtH$c5Of4N0k5R3h?4sbg@HSg0^*8iuK;`tiFM!0Tl|R~ z!2(?eNjtduZs#$c1_cW#eNd$E_?$|%J4sV#b-1JbFvHQKnq}}ywspF`VUDIy14kW1 z%sl*Jm*@}9;^M_SBHr7%tL7ndW@n$?DmGKZ5K*KdlbRK$cOL%}S{%kYvjpbs0+PumixzV`Eae z${NYrgnJX$YHp=(Q7%g&f<%$?F{l<8V4Nf`*aj7B4cajb#Z)U`8B~W5UY+UaH?f2s z*@}8t$o@P>OJoqGb&n=;_=Z^ge9o3&^tBy(xt@+XSgAfBTz9xOkVrVUJ0+oVCcDyO z`z&1dLZot(ILW>C-!MhPaZ8WrDPFMkbiEGpo5_XBY{G#~f{9(Jyno*<*S^4H*^cM2 zeX}s3b?h6_&^*1zDpiCb>sc+5b|Hmq^(MdUPpwu=ALjxUBT2HI3XQaASV`#@;;}k= zKUNg0OiVZzRl*B&aMI)5p5T*v7m|sLR9(}Bc{ub?Zn0lFXUAtN!yrpt00nly{z_yt zP!Q2~pZuo-ex}?~CUwK=660j_)a7FTu#hcteoe!>Cj=u^w+H4jn*&bNr|ub0!X1B#SvB>=A(W*anO{ zRfYr_nagluEIZ2Bx~$m@D3YJXhAzc|wOK4*AN_)C6iGnIzg4anG-zr9SE=hxwXlyE zP3!b~Gi&&`(HlclIP%co=yB>ck_##Y-;INqk1&heq_3wQAxleo~L>ui;;jK@U-0$g}J z{8jN+f8{q|3&0_UFs_=P8E>3@!Su?1#)_vvXQ1DPygakCQfvMBZ66$7N~^20@Yjm! zQ>ZDf4 zxUK}>^DCU}88c~QqTaiw#r_XjH_ao$Gb1YFhPY%_*4UV-CF|#r-qhAFBY+SE0>Xs= zC=sMUvvZ37HG6H}YkL%=fzfzwRau!H?%VfeT@KVY048faq-n8gE^Zq~ca3JhQ*5k? zJ+%)iStyLa-LtBNM9~Kdn(Y6nec>v~W_Uv-f<>+bK_H*TEJbKb$b9IGMyZ|Wdl9&! zzEOj=SOl708zhHo;)O%_3AcG6PT%CsO(in}Wil2iy2T!JB|HBtBpej)& zK|zbk1U*Yhl6A(on7Efs5sny)89&_mGuSs)d2WQwUz27^XKg+dx=J`qryzr}(K>OQ zboB4meqZy3V;>y7fo6vVYYd zy~@i=nP{=2OgQXwo6Z%zVG;T6A4C4-G&Md(0SbsH4tOOQ)czn02^oa*F#VJB=W z1jQXn9~0#y0I7BPGmUSd2y!jz(MdNkB<61hEB1Alv~A(BdbW_01>{ezswl@5DYi!o zIZTk+*;u=Wb6&}v*k%ptVLG3nh!C2L_4w%6aH^$tu(mKt5vuvJo9N>bRq$?H*X07_ z(@h>3zaUGs@k+*3d-Kj`7B!Y^CN_PivLY_Cv}#e!M?pe{I2ew0fFN;xt~MijSdS#JAhS*}yqsOXq_f>~m^c zS;32fR+2+#=E(OxIA7e}OhYeWGh?uwc2iIx7WM$6dQL;F21w8PM2ggmvqO+f2MBI0JwgC*=d+l6Kg$&qyb zdb6K!1r+SmElW~mi;g{QM9hQM-`B5S(Ml`)@Go$w-T6Uf|DM!jhef~S=nrm#yT$n4 zlpC|lt8=E~ZPGynN_lGuw5U|bpi(y4DI%D~i-Si%{!y0kbV{%?C#fAy%ISs{QdK#V zVFO>^1}MMb6`Qx)oj0?ZLv0RISIK^d+>U6%HKxl)gmv#y{vE7#4V?$zm+RLw65ZJh zXy7e-QJ$Q2wm^Ecp8O^$Qbg}asSZj|8ym}QRuzXa%LvoEgz)y}+%`4jIRKk6F3geJ z%&=^7`!?zAemEIFSYAu2>F^(Nmmk{@zSPCCbS=Ne&7@ z33r`Xvy9@CQj1c~PmRYZlpL3n!#}G44yAMqsSR+f*mES2TlklZTG@zjuBHn-(iz}G zS`9%WRs%!IX?C9?MeODmzzyOIXY@2E=>9o`4|PDkD`^V!@a;h1ye8lKnTu@vQHbSt zXKrFr;f|2qS}X181aGR*CjwvUT__79N9meq6k{{*i&u_=S|t~09i>@<6LO`(GxXaF zYP?6;E}LkGIOF!3>Z#ZfmOW8>%#2ah^^<9WEZilz-twwjYB>b%LOgH6rI6e=?f916 zfk_M7cvn|ng{QPP%BzlU_g6_Uu5oFA$+FePn99aT4=5aym$!#v(enX@xw-Elv7>r~ z7f2nUP{{Y4dQu=eR=~ZrQWrX_O7y()x<=2_$+pc@?+0Vs8S}t%=aQjlSS>C(1|!p< z5TIH|b13%~>{UYo)LK}n6>K-iX|@SNjX2=`2N9WK;}SY?mTd@rOwPgWYdEf1RlS1n zNm1nCaNMycP%GK89Ut^3fE1VNCx zH>#uVwxc_`MFzY?6Oe9D zXXM`Fe`gqv&-2TpYxVFah1~lfx;eLUsjPDtPo-@SxrK!^c?5RLFe*xvQ@6L8SP_DW z+?;+CtRIOB($Vw+!HkGHz$6<0{CmGf zZ$6~4*0}PcvmL8Nvl*@NxYlNUnt!(J)Fy65J%fjcEL`QY-X7|_Sp>_a)}A8O6fV00 zv{u@PR>;gcf}|mt-xYDfY}4n>fI3__%s{umF1%E?XlHaqSZ8|!^NuK7WV2o@Z1NOD zrE18c!Eja$1CGR_?_NLSui=M(ftaS=_FWz_7CE5dD6R;7@h6kDLEV)XPZIg7$GgV4 zJYdY*^;oH35&gy%sH@~-X@1pco~lV_qg~HJ_n$!5AE3g;7!B&1x|{aAYHIh%fF~$P z)pr&C#ax*^u{-QDl2hw|KFk729gvmscwr1(06crRTLX70EX;b^qZ ztSbU^0&hUq3d5xN%-E@7l@4uy#_Vb^sGF+5y#FQC7`CZTMG$L2vlqUBF8=YP-Qp4L z7DAKsXq;r%!d~i>I!MU3Zg{khU6zV>yfg6qVeHU@X5~~(%_CfPM^{PO`bCcY!6%Ix z;7+PnaX@ksj<1sKov-nXZD^6|nI)*~ON^dqZpFPOneEdPL+XpI_Tr)dKa&5#kMzI1 zT0CL{Br-NU`@Gt8n#rOgsdjl@^mGb%yPf8PqPkR%rt$;e2jiDqv$?f`tz4>8#@<`VT_? zC-3=*^D(5DojS_f=B(_tLmgQJR+g0Y&+UL?3M4NA`7>_Hv+ifQHHOxhVoR3Y*@^Z- z)(Oj?gRA)xU+mL5AW7=k4ba8^5#Ig1>_VmPVz}pEcc0Qdh~RH4UlbwXg2)2vkq_sQ;sqV3xM1Ewn5i3w0`GGjLKi|pTeJNV>r^~^g5|; zTPsPTCa0L8-dG`e!&(VTo%;I}`?(C3rBK|h&Mg`k>_ zDPogSn9G0@o^^|oXAQM|vjP*En#@BQPp9AiHK1NQ)V|0tlLtoSwe0|-u0lMYb#!kZ z0gkq#YP#MF(E_qDWL4K)AVqS4eIjFnTLd&NycUP516dpt_u$pV9O{L?p}5ar;X|s( zGlU(XOs3+H(O|_aSHH@$WJDKR8NXo&XCJq?KIBTBwu)US&|a5G_V_{FU4ABU>S$m| z$!ObY&{4*W^s3(di8@}Q)%luaWd!D6Yt<(h2zZC8TUY^Ma4@?3qkYP_gC2pXm z05d?$zh@T@rJ-i=06OhSzIxN(7S#~AzIrU&!P?#q6EGB*6Xv>mRRF)a|Cs4VYCH(Q zRAB)Rl}`8EGOOK?j^rZ;HD>!rFE2X%u7RbED>uJd>sUpoR7$Q#H+8$CiXpHfETwokUHo>?GA7Xh7x01IKu}%f7zMC z(F15{biya-~aZL@ZW5|Vc(uy zr|t~A5WUHvj%kHvHi2XoeH0i`h-=9m)=oB}H&NG!+G{7LXwzw7#rU$M^S-EBx+gV_ z8|%uMk@cn(Km`VaH3CtTpklH+pWCNW<(3GHf>@r7Ewn@}hTp>pUXYVg45~1k& zNkz&1_ace&Xb{p_X;hfmv5J({l=GQgNb{{^LnVSirlKzgE()i_>h}ey&dgd-Mny*xd}*_HCcAAiY}I#Z$}gI3lteu65q2czyo%B&cM=8QTTjV8047; z?Vl$0sB>r~LAK!+xp0fu5;0o35VkG=Psfrf`Oq;&Vskn<*>ANRerYeou1Q}y$W*5S zXwQ+)^WrdL6k$ohAUsD2UWkOM%O9@nLTNH{>WZN^eqdkjIUk&^ZZWAzDiq3~r=DNZ z+tYW_njr>vkt;zy)pVNRAw%EK%un?Bbf-RxE(nq@iidprrPwDb*bmKcHe#UgFzfZB z9G*WhIl){$uP{QCHwY!P=*`}j;{LJo1i%`G8;H1?T5}qjeC!S_j!Z&TdIA{jWn;Q% zGb_N}ssFRlejpoTy5cq5PwcdZC!VAp6leBW!swRYZ-(ZNNpZvrpTPJn)as`nw0)3XFugZeau!W)G9E*Vl zDsTibiGdiCZEF0;x*%Z$QXUSNwmuSynxHX7{$Nii(fjET=MIcs@Ezrn`&?qyk&LId z&pd5NH5Z8r15ne+Qgx;;S_|3tkgKoIZ(PI^ zy=Z`6MK%+6aEiL@t=%(ym!i}}&K6FC?qRA_PI=uVn*7P1D%+iY2k6oC9nDjTZT_{r3{s67k6VZ225v2q z`1(9vYC0=op?Prv+>uxnNjN(~tFdQbz314BZZx1+r|q3*$E@yfno{@fh$?#@aWSE6 zCZAevtVqm?B(V>E=M!3flw|1^2f(WkwYjOG?aiHLW+^nhfci;k;7Q0Fb_`ICKGaCe zCc3Vx(T#1Jn$xqb5JURztVppH3nK~e)|M=ANqtdAMr_|YH<*|o;E-PmrWf^_)u2m| z>{7k*>^;HT3jAYV1W4|}IYUbxFwgQLCpFEnlS~CHi9whcv!?MXvD%l>Gb*iD3I#)F z&-ou36U4I?`+}*axW822?KfYhaULLndy| ztpPpmm_B@qzDv6=>fkwM6%h-|pol-LtspgrwFMMcV)u+P33TbH^E0Veu-uVPUf@U( znX?dCFxFj{F%&p@9qk40;W0YkW=416mJZF>EY88s%uXm8s9l48va!n=`h0RgxQ?f> z&7&&@{o;3RzmX&R1KhSme(T=fRq}vLcqyO|plM5KFbX1G(H&+q$8|E~J=+Sdy$`OQf+Y&xb6kn6B4GeNGgYMt2Iz*jC%ZU>5p6gZl-q7T;b{rXnMRw$=k9CN@zz%m-#K+2e9~F!j2I)!vR&kT3e8 zQ1^-qd1_kX2N@mhyp)Rk@t%H@&IgCOTS(8SgXHVS&H=lY5`e-2=t5ULN-F z*BaQ-ZBj(0IU20VF$jNdqCDD!tEmIdPN-VL+H3-Qd$$)Qjp?_LUfSB_)OLflqDiF4+qxDRva+!~!$-oFg*zJ?;R zMTyscf_~sfy42cy06BJ5$!bc#su9gGH2#{XWt4j^RD$q5gUHy!*0}0cG`RdO%PP0F z16mvc&-+IV1sIc6oahm6U}A%MWuA=EYlFfL^{5-@VkI;` zhh;MWSQ;P2SSZWO%Nd1?>z|qL8@ONY=dBVF;XtCZ+h#_Nrve^us|C~ByU5vawxLE225S%YyaxjUMSSR{$&_m-^( zaP=1UhrpSruiCbe)9bvCoJX%rL#ZAH9DTtvs#2i!-Bq5Tg|L%-gdGirA*__-0}hmk zD>(c0EVbU4MH|NJ{ipD08HO+n>IJnwD<`#caZHdt?2hecZ-P{imgZnJc0eoHP1}XL zlj)NAnNkjb2U$zLdZy=Po2U^A?7d^*Et-77Xd=ftC)p5#wAmsi z%*s!7L{ZhnGph#ZX*i*=8$uQ=I_ecQ$Oj0@qPZtKU9dyv#Fk_-WXVYzKy~yhhlCu+ zTwvI}`Uk^IDHU;GZ5ICn=J~3e=jL%&DNh+EE3|$&Jw$=mpD=AMbCE1yl>5yQBo(Lmt(vg zEHY+X!5~g+f@JZqr)H{lU?rVEZB;!~1@6l3VH?`EbnzaPOH!%v{9Ev4Sa`UgHku<3 z(wFbW@?l}u0SKvdQ_$xOIUX3dr_|iEOAp!blDk9`Ei6f z^{DoyAZmbaj{}Fkb9+eJu8+{=Q*+1a-CYG-TQ!t(MS+l1c9U~*Njq_N7CsF;5IhJ8 zI}b?0+pDPJZO?@>n4UVh-6Q3as&J)?TIY?4YdZ8RSG-U14uy=~i-1)Q>nfQTK#vEV4CE?>O(a?Cj)4?n1-}9Se!6P) zbX@gX{o*db>*%&OamU`LK>E zxe|B1l{@&1#C6lTNAIOhh=!R*-87vg&n%YGo!m&c*^BB({sdb#cBdTp!+4SeDst+3 zn8L}~$*slh7$j$ip?E7)B{)-|ebjzxF8d-GW&mHc&{b6t!q^odc|8=f-VU-Cs7emZ zc&^Js!KDllCi|+|Ncr<;g=D3L?Y_506^pgoYCGH|QXR?eR!0oe6u=mkCZAV`)BvV& zC!7_yt9sK3PBB@Knuudc36mqHHg@0Ux_6k0wlGkDz+EawMGeJxdtcT02nLp_;eHT> zM8D%g6`4n+uQ--{51KH6ETqJKtA^Q}0znW9&~5Z+Rh-L8>YI)-Rgl=UWF-iUurAa; zOv~JQdAV(@dsiqs(3@y&KY+KFL0aXr0r4#B??FNiDcVK`JJxYFMUFFRx@AG{p9%pa=`A=jGin7M&`|%AXlZT zX%u510Li?)*kF4%alNNVtwFWUpQHqZWGBH+1vb= zJk{Y)$l_v5AY54Q8&=iR11QLS%ZZgzzz)Fr>s+9*2(S2ch=n4TFx_F&O^|G!u_P?Ven=<^yYqhfFnV)0zp)<37t-p z*=AeN?I;utQ1$E?$6R0ce8NO3scJS?=hmqy=_4~RZ@gHcfQe*7at)W8?&u$&BC!yI z0XKxcO{-oX1tK#CA8`&9GLeR&!v(Jdi}#!6e-3bo=O5@1KE;=p;tEo+^9qn1-J&_@ z>tO;&JvCw>S;2uoS5GKln=RlUzrKh4B)ku2yUIRu z6GC^5qz%=BXl$*J(cU|%h{=kmbuos}wo|XW1TuDtu5g|{X?klLL%r?FbS^>YtVo+6 zNjI9dzNr0npnxeVi!yFSg`MBki{#@3mCD93Bx5ERp=ZXM>khMk#kInLZUHuq;&XsD z15QZgzbVY{>*_n5+s_A0X1Ns2XJ_YFG;>Vk6wc6V8x@}*N9(ksHMN{j684@H`b6`R zO{oeau<8^T@TS4@H8sY+;#JTvvqM$k=mI%dagpS4wZnmP;Ks_K+T}bN$8iX5LOf-! zY&`ynT0X3Sc1+$a?kIL5w|rf@bDoaKcA^J=uWju!^2vrBF{r7oWE94^;7er#+<_I4 zJ-}|!RP2W@@!^dxDZK$xm>FRu*Y|Yd3T+TI|MR}-1ql!Uw?!UV*}$XDKkYT-hEq7n zEjc>6Tc)gQ#KyL>Xy-K)Y9A1dpW4cpa;1I4W0#nOCLUE+itJC(Ie5qBQjiR0W+J#&i`PqqJJuU4^pZu~D+;GP&(w^ocR<18N z6#$Z(1R)DMgAa*)F0Id%3S|GqFJl=AF|aW#OSZS}c|%Ww%m6 zvIuV^O2u}N=mmJMJI#`DnbL?4GJ&#A&op?3?&%JT$&14+(ATr!dEeBtaNO-pdFf@|G;lpJ3o}a(_F1-5=!UO$)o*Q5$qkY|`eoEECdE|gr z%-`$2Uf`{(H=!XNUcayrrvi)FF^1E6$swBuA)x!4?%~chr;_siWTSS>VJM z9|eb}-8!i%2)+=GzJ}(^LuP2IO#V4RgxfF8-Hy~T_`Lf_O?kON7O=*x&}bejY_19k zrUs4A4FeQ^O;CCnXs^42L7L(!sFJ9M`WA;-lV$nYe5`E(kdOiqmBQP4x(4COlbZrq zI~ub#Y2Q%#J5?JVPI6W%U@CeGS07NpXjuU*xtDknYh_ELvDK;QXw$h^fV$PVmcjt7 z3bls01Xe{G?wk&T!xc7vG?{daQia2Locw-$45{pk+crJ1RyPbr7cnp7OyO5OB~3$Yhe9B1%4((-+=yt;)(=vK^(P z*qGwBbZ;Qz5L`a0*PzE7m(L!8>^GRN}tJgMFox$rGoQB;(IuTq}!T2Q`& zFN56C;vvA4MWD$7@?GLe;zz)gy_EgG+K_Bf7Yz>MZj#?yQp8gKU@Wavp_d`;VgshtekAS{N$ZfqkNG=+D9*<)0}@BHbI{Bhpd5LsoxQSkfJ!NQXE+O{zbX zznAP60Jp3UCp(^~XNX#N-u+QL?*c5){h%SHLXd8Vz87H<_(rjTyig4a!Zvw+?0P%r zJX+5GthU@2Ig9 zaXK+8{v0$oK6&?hn=6_~>6L8nST%c=8MZeY96bn8him8UO)C6yPLys(hxTt?f5U<5 zZ}@9I_;$k#q)*^pOQGMNY#w_7B`5Z~#1Tohn2JDp95DqR)$Ao|PX*B8q}ISqGT!Ji zU6xn`^em#oR9#>8dQ<7;&Sl$xtqDH50N+Kr` zctkN9n;k}HXp6EmEsx0E(Jb897eKBMNvPrOoIl#5y(J+g`zCU7b1kVeE<~khS9VnQ zazjGZCMrTP(DWl>uYsQC86SjCCHS7fv0kW)Q!DD0mEI0LSvxu!XXCRSvmLTa`Gr-` znmvhZkNE|9T(2J<2Y}PWBE404h7}p4L0~SWWG@0g;_MX1Cdw?wU$SVVb|FgLc5%1xCwFYDGz0G z*c@`NuVlXz)?yDYj=b|EJ$+~_rX_@SKS}PHoV+(69LY*Zv3frytMUjU^f7PvKgjtuvcEbk0=hgK<$SQ$-RM#WG4^gBl*2)<-n+P${Q~+Y z3J}FYSR<_{w5|j&TpL+N4A*Q-=x#DwPY!f{( zN=R9aY-3Y&hM`Di>MY8cQJ^uy`=a`oDAvoLws*J|$6CsrYvpV&_Kz;uYa(!B6 zs{AWMpCtHZl~mAxjhhS{+K z&Sf*K>Yi$=sqDr`R!*l_OZke6`%K^|JC;MTVb_6FF$Hb?q|-Bpqf=mkv}EX$W`mMO zXdgXZRNre-W&RBZ(-Idn`!qrlv3lSgUt#c|MJ#l=0NnKf)jIb|f?{T?mc4R??H34? zAdw=Q=8?HsWE=s#DJjY(Np?$)Nz=ij@}QzvKxn&ut9o#O|8y;F#OJ`qtCAiTv8Sh?>K3j^ZT!lJ+u$=u!DkNnI+Cq1uE^KWY21} z*WB2#hk&XhwR;^H_9{R#6-iX6VC+3y9cl|}&cThmUq#Y#%Wps4(DK_8O4N^o= zygmVvRptrs*O{5q!q-d&;WQMAeCsJPE103Dm5t= z*6zF30e5#`%e^fr?@Jf;Qj}3P$2BN7y5`o?WMn~n!{J~enO2ZaA7 znRnKw^6C|FH3^DzcDpZGR~%`5aZZRZ7N>B=UWofIl9B@d+jr@fpgPa18m#{$m#4fb zGyv3mcq5mlZc)9(_UB!P zW<+k`QaQ8@yk+c2M(CHwuCwFtGxLJ%eatV91S&ct++ZvfJIzjzS2v43@S0N_2usmX zB7!(VXp^KkdtEy|ZeE;ydIpM^YE+UuRV=q=oiy>7YA^*V9mTLbPUxD;Dv`5>2jjSQ z6uw)CrDwvn9QZ>9Y#$H8Ugn zVI{!Vfn{9*iQROla^ZugW7`)#bc5YhjUBzXt@wlG)04&qyCoFX?2?uZ;2#C!sp4@^t>Remrt~H&ie&#mH zVYXnmaoag|`t{SJM8~GRaElA0a=Gk5g=h1%Sh7$Oou2!C&sJi*tS?^8sz7x_wX1`*1I9C& zpcuN{FDK=Ytq6-4@w4z;(1YInhM)H^sP44Xov7M~qgg^_6<#@>W3Xm`+^%P*5WUsA zl#I;wI=$6~dOYd?nhs{^d+d0(gas}|ob|#P4a`GIoyKd?Mg*9o4UZZl3Ch!|s{u8pG-1%ILVt?JFORmbdBZaxzb=L=(vxMX zL-7{wAQJ-j7hY>qe}GOR_txN5E$YZ>N*2merTt>1j^EUstk`{$ZQ15!=<<`W?KDmL z7CXYT7P8fbq%GCNbD)aK)PeymRT9?iNGJrG^aS$-4)zA%~WdUU4{J7);t;RG3FzgrELMGX9_Dw+g33ykVvx zpUGwM`YUXVtWw}jU8%`ku~Kej+I&`}t%trNp8zbXZHr?DaF@pefYuN6EURfc)@%z6 zz(M*fhBuXBa@e<4lOEX;FY@+!5;WynjAecm;u(2?GqQoaU({r=NJC7_hj^k*!pIW1 z4C~Jy)>Tk{7XIwiKL)8mCpw;&lCb}x|%^-FOQFyxq;r9CC7ebl)k^)a779FFVsR(cBQkX^aRF=PV(*E>6O#nyJv!tV>8^e%FdQV4B)wSIN);r^ z50%S%VENt1);YUyLGgG-$>Uy!Fk>fLr&_zh8qXSnwkDH$t&+hxBX!>-byfY^R$Y>) zxRHe?@+%}o8`DM+HAT;iLX~$N_D2BHzvLcGQp9Ke(bq16JS{@P{FmxbSyWr0m#{zK zMPT$j0C((n{iG#c6_-lkLz9)%5Uk7Z?!{ZPWAc%eiaB&E2HYbA9YCn`gY~qdMGVRy zNKnTXIS_qFO?iOk&}5S8St=MtyS0`FF8S=?9@K719Tdy~IP3zMyLcJ3RY9ak*t4S5(YqIh7Lo=YhFffzO-f3E=gBF1%)KNzr;R!* zlY8rmL#uV01N>~=O_LW@Zk zIIk9%pz3<)=Kgbd{Vf0KuW6qJDt$V|n+uIum*`spEx+Uqq39BDlGw190+?5#@&Jb9YX zCuA9dZGeY&>u^8a-(;;Pxkkf)%wsno*_0nx}KedxeA7HNc zaPc5W_=W?@HIfMApY9yx3}0PFV|0s>Icm6ldCBn$G(x$ckt z)vGrQ5JBL@i0qHTl$@f<6qZ7Y&#h!YywVl<(I%mGIILjf|8euD9mD{#bB@R@OuI|{_ zI)hBtuyzWyR}<(K-Lp3M3eS=$6z^ak;9yELN%d8ARK2Ko-B^5;7qmSOnlVzrSd7cW zc2u`(+D=#e${W&spG<@PbUQSkV2TtU=(gB z)mh|Z=7)(NL7AVHE??Oajg8%Es$kxiR~u4+&FMvLz~28)rkOTb`-mg9kFvg9)A1(w zXW|6EvmdaGD*r22s-5Ny9BuXY$nW9B=Z>|`IqdvOyizm4HmUYLI7OP4TTZfhg4FLy zm9R+A!5i&Lx2j+!oFFyx@j_~SUD-m{{}0DMU{H756ITk^`Okcg{)*sY62ECW_t3xlbfV(pfNt*|&r$%8urJO8m4g!->7`+i4CXnQ z>(ab$lAvg3T~npMfkwvz%?O~)whSD*>{1leEP;PW)cqdB(UjY=(RH5GeUUU&fJNxs z0tsYDflKv0GP-+P`e>;59YvzPvx-w|2Q4BjO_|CDZsg`IbX=SHlTYS&Gn+f1uXnx(_;CmC$w4 zbfY8|NdiuxhQ=MZEn_%8$z7oW{PuP+lC0f)`zlLKH_50~@@?u-B~IRn1#GCJ3BhEu ziE6LqtA4QQzs6ALXaQkcSI*$W^RpTzHl{e;?ng$-%L^N5@Bbgt3-!ZiJ{-rD;1sy{ zxKF9%Q027*1OXtjU6FPc1JI#|UN<>>x)WL58VnQQf=J*%C~Q~6e=7#j&Y2CKx5HOJ z%7#bj`hc4!g|%s{ULXbGs0X+Fxk^R%Li2_cymMTW%QK^2tD;h}scdQ(TG!|a3VGnf zV9Q>~CuNcPp#|W1I_H9`kJd+4A3c(PZ`y~c3wZ~Cpl3(rp`BN$dXtSHHo0(IFa~*? zz37-Z$+R|*D?+JWmr~sK9r^39dk5YtsFVF`js+m?`rN3MjCippIQ!Av~A`k zvmopkPJ|8Br3c2$fG3(&czY&vtd>ok4 zk&2*_a7>>ap_WImkJ!RU1lMaMVu4AKM6%H(U#4Adjxl$)V62B}`whH{?9So+VMyDo z+=I8I#(W@pF=BKk%4g8AO#JV;kY{|?IfsffmY69EMjivO3vf&xZw&HSk^y^VbD#?# zBFxCuSsm|9O>?9``nnLOWeL7}i`L7AfVktXTz&(UJMDEl2r)1s{Zi+njQEoMZpwEe z>{rz{EFg|by@cLGuc!-@a*xvo%=qEpg1g5r7Z!z3y5p#irMIR~AV=SU-oP>OsmC0z z@G9F0T3WY)cYQ<0z(ZXeYbkNysA~%&+@$WTgQv?ZWG-^d6fe$$JyABQf!e^6*_9;6 z@PG_~-ZIK~rG-&slp?{XqK%)ati7d36R5C*?HBp>^@L$E-8Hs*1OGs3C%}K9f=NtH z^FU{V+EMg6-tx@PhEkT8W{M=eqKyP|;z8bjCR~jVJJ<_IwglzWIO|pVp!@v5$BH zXQjw)e1KB988j=!v(qai17gUkWk;uQX75d{<&BG@F7rCo#i1A}HQP^PPK68)G%Bzb zimpYPsiGdrGCeB-$<$6_cm~WHu~+NuxpSeeM$<~GlvJI-NR2g4#1hqrflO}6yD85F zcR=6+?1dU-nslRDH$iRwf6@i4$~Mr}5sr%gq2}+t!56$pHxaUo`jEFG2I~e~pQc8$ z_OojoZt3iyLJkd_3aMoy=gUEO2Z!Oo3)1~~yD!@NcF2%H96*VZW`unyxT za0?z4p!c8bp5w6gGf%c; z0cF#3OUZ7a=~=k+-g;C~iP^x%%m&D^_mBXZZ-mi~ox|pa4txQI?+TAP$=kF+$yP{7o2kvmplw+&I$No?sqbrkIe2G5-Y{Pk zNkdPZySbL7L{F5Mv*_8TUUOxSizjT%lTmF zhpsD+CQ=TA0v87ZiS&AY^9l}Ns=Bfe`t$NLvC@55wq49!#nTQYT92JdO1jG^)Vx?$Z3w8=UqOXT%la1cHL}=Y@ZOuLmXupG z6iI_BYG^|kQ)&Rml|T(J=obC zeJU2R5Po5NuRE`J`p&od5TAW9frBPNF@^^SGID=YJfvddvknvQm67(Xi1Kl_(b2E$ z>Hu`lmHYGwSld_KDN%Uf!kE{tMrshsyaFf2x(i$6P`*hfhgB3!a{8)z4=0-_b58FAoWzv)Y$7{;r6E5yZOVasHXc~pmltJM8`SLagr#g*cS5`Ycq zo0Ndgw4%Ot`fIkmE`9Je>0lGsj z%CRdd#m9`9Jrs!ms2=C29c&l(t5cs2Qe*SfKMs6J6=k>4Dv6vyi9ZsqVO z1uXn%+`K7?!*O5}w9{k}F3ELT;W(Z){UsJjbGb3gE;M)namWkN7`r<~qTyN}dQP%k zI-$C`(w9d6PIpTf6S;p$$_7SuUN&C)hGiK!2#94)hoFx^)tR;n%~w^Sm_b zHf@UM%TXNwPi8Vyfu!c8u#>$!9_n>T!jSdso$Lhl3stvcYJI95fqOUJUA74fU^4tv z$eH0m;+!?4C&Ue-AcJ}-Z?h{vbs&(?>$DlECbeJ|U>z^uCt;9O#$ax-Wl>lwUbd!i zQ|RS~jD2yNrC*(f<_JcDk{rTx#DBem9$R{J^?-S46s~DmURZsKo(F! zqtzcOu8?1$3)iblLS}XR2ElgX=8+B1sDh^@vGQt5k;MHT!-0#=JUGV8YM&rfPvc`S zZ`u56iS7JKZDaXtA6fvR;mF2rtp_mwRw|{gE>r0kZWB&(dY)yQGskE!JgHHP)>c}8 zTMaEa0wFPFJi~9nn)s6PbsiJL=Ay9&LKIqpvT6!}xgW<--!SR_>RqO=o!z}^ka%~{ ze9wFHX@~ful8If+LvC%kv?U7o0lOxYoATus42Rb!Cre81Hfnz_W9ICK9V5EBR}<#= z=H1J?emb>oxwhufZ}txeuJ~;23>D3(4Ev=f2))NkXnXM3p)X&uDA`_5>dt*yCkUUX z47hn?qY9tiyn!g2*G>eMxk2~j*XbacG;%R1>blb-`ut)fGHZx*zN!*{8W(TTjW|U^fe7tQLP!eMZ4{jGZNTY zfB=!CjWmdw=5&}UR1yqe9pfEtRs7Dk5oq{SE3@6AvkR2sQs-Ox_5QEIyD!vQ9%4`K zq#_$jr{FwW(?&@*2%S4vq3M1wW`$M(j;dQ?0tF+N=gHeuCT~GpScgU%?BF^4>lG>H z8WESac$MEKm;w1llz`lO8jlg5<=POj;9yPi#@~e3Tz=-3kl)uSST_f>`;BVkErz&~ zBEfcTwrzXhu1HeyyG+!Fs5pJzI`kH9-D(->H9I}ULQ!9+R!}lw%qKBS2fhkZnHS$0 z%Rvac8#Jz<>kA>B;6hrq-jUFbP1SlbWzO59tplf*aMhHU>kKv{6wA(%t2k()XJuXK zo*zw2!zTeKmKx6?Fy9P!=Neg^`uZIs{)VPnQtU6(zGPF?K1)KSd587`L}r$!o^U-^ySL%BAyx9rxrA=Hd|8q>7(OHtNd@dQvwnm{=V&H3V3l z$Wn(3{rr$M>LsUo{rN9f#-bXHO%_}4KMwDH1E`a`8;?-AmlW3cUtjNMr>q2hw|md$U{`v3w=z|K^Ra5*Tl zh1RV-E+orPTD7>-Dfya3!e9p?Ka-Wa`j&R5pUHpWXBJ=zAE_HT*MK5e?Y#?dkk8nZ=!kAGogUD5tf9hS_(FZPxa|e#Dfj4P?t{Hg z&(7UB1{JriO{)NHh;0ACJ?Q>-2_RX?W08Zg-KSounZG?eymnATat}!wuXHkcfKjf7 z3g8)Yl&R86QoJLBp4|y$Itpoi5FmF)^o+DIfyN;INpykdG&MbnTm;?a(q7uMR zYgG)HT15mS4zH9ZGU6Y%KA>H_?vW8sDm9y*+h-CC2p@l5uANF~Iv^Xj$!0ZTqs#=yah>%ZvtyRE&?NKCU5+&~pyZqTDH6XNk8U<& zyh)|*{V`=-v8ZYat1Lr|-LEe~eBM^Cc}Vo1i(AN@x6D`=ntBFXOWjT;Ts6kIc;W%nN3j)& zLM+Nw%r18AGqxT4C09r~mIZ$xy+^lfRx&_W#Q5w4s9;2Z+J9cM$+0R>o;VX-g}s6I zeC2ppg0w7&oqC8183-uqI1piPP1Jt0UfewvGBLnGXx{y2`7hxAP8W#9RC4CmP05dj z0aGP`1Vf8C9F4-ipy3SINj=Pz+VGe(EJJFZ$j(`HCIBU|>TW-(E5g{8id?WK&f=9P zb(?1~1g#XZ)X@8GX&e|sm!rb#$EZl%hXetmuo+dl)_qj7Uns{7)G5rxbUI0vZmr@5 z8M|9W{O#*M=s@FdVX7#!)0-@b*teAt}Y|&U)CKYd4*gJ=e&9bdW z&k8p;%(LLU2y)B;a9&g#(}(^4SNOjz97El>Vsrxk@L!?J&bfqU*hTkYNSj80Y)d2| zb{NY*J|(N+R9|Lx;?x;3R?3J?&uOWDppd;n+;5SXuqD;$NEx8XG;<*QqH|xN$wO^t zds^Pbot5r-#9Az*xb(QdEmn3ItYgL*sg&#}CCzp+qNls(i!(M`j1*k;h=~qCX;ztqoMV!A>g8mOrc;*&<};d&})o{_t0?ABOx(z6&AM$VyW(%tW%O@{+Pp9wUy6 zwZm%JV!BG=+<9B0szaRG0q}H>yxhoKsQiv9(;6PBXt2OPeN3e6OZbrDpRu$B0>f&x zPg%76^Qo6BuN$#TTu|fXK?rLXVcO~uO#vqbiM&H{rbOhCvVQCKU@D?GO-^d1ewfY_ zmPI~)eS>L(*)n<&haR&XRMm#F$1>m|?>ks!j&}lCwQ)`{6=r!5UHBg0K)3a?1 z$#ERk8uHjx?}hC5<3lzmYO_+lSs7Mo+FkW~nI^CZnh1E^z**l^w%;JY^3%Cdv>sXs!le>?ExT&GD-CauIeD9t`B1sgUKaU2hO-PZkR79b%XV`}0I>G$0Lf z(?V%i?ff7FQv&EC6(`Zz1=IFfb?GhU!ecpGq?@IbQZTvq(Ux{MpVWFDA}@BchX{Z( z$Vm&s{pDZ;*q(e8BVqo5{oL?I2a}?VyoW}88EOybE_iX(JE5REtjBO%M+bRV==e6B4`ZcRQg|BP4m&u}(>vAh;_aq_cs{(+ zAr16#Hc#frA-~b+gfi00Y-oLzUQ%a~nHaAYP!cPW0 z2CgT$^cX!ARNH_WlEAYvk9!U|mCiRMMx+l7r#L>Gzo`*vUX&g8EOC_pdyl7=?m`uk z7wc)9yOIz>09`<$zlX{Iq$&}uzUr#-jE?11?yX4yVx@T>ob2Pu2oFh)N6*IecI)B^ zl^s1*)Cs@|rSiNW@?2n9XC)GZ;@~;L4*;N&=)NMdnTDB8WZ66-e@vCzhg#cJ?H24g zqGfuKeSby9&H^*DC^)3s!tgjPkYP#Kte%;V;84jGNubY+?7z6}LLCO;Fh|Q_(DS?t z-ed$_OzvV%9@_$AU^vupLz>daq4?Mh;mYf8?&KYIOz+>ZMH;rIvHbn?|He4sjN z4|r9hU-+~WNv<5Jep-FTp#`l%7BvO8yCfXu>tCV=V7~$CU!fg6zNoWJWN>*-jJ$dG zG!_35h+;2O|HkP-0`1BLhtxrL;pWAr8BRT+cM0$dNj*|RSfG@Oo_qHY_9jaJD& z!yd&?Gs14}v|yM;JvQ3fWal_Z7py(FtC%V}qsQ4^BWJktC-C}D`TxW552w<^xJ6t6 z(W=X&GhVK{GS&PmDa`Dc-EZx9N$7w7;k(Z`dsR#2&Ccrb2ET`dW$R4vArn!$0v&~S z43m$ed?%V&|ce$o|T(`1oCyEQGi;o=%bvtEl}BZ}jU z9jU3gj=>_u;I@O^H@dzSwNTvJ5!CMB0V*IjgY^pGfQ#}n9SKkVqV5Il{e_!I z;@9Fa__7p-FIly`95?N^ooY8rh4)I~!prenH&j?~ZZ3!cHPhp*B30Ge4yw<7=j+x{{>o+an4q@6Dn!R#NF`&UP11t32_Cq9La16kJ>I7 z$#bnap@wN4IHV&u@Rz+)YN9pw>TanaroSWz5Zbarr`hXJc(ThmV)7_aq6o#L5Q}ak)Og?oX^7;hux0JuswaSR$nI&R@T` z8;jGrEQ4~ITe$H?GU{DOQX-1M@^(3CQuEvVPXhTUM`L)S4lvAaFo}NdLG1-{$1ir{ zj9Dn!dg|)Xx19dSWEdfMu_~>@WB?#2>{uB&Bs=D)z|$zi&~~jm`Kjy%KjNqwmn#fE zvm46FS7FNul`827k@$@N9RB!^EszW_%3kTP)pzxgPn_Yq)?PMz5=Iv}FHL1Fg5~rO zz@X6HS;vT@vz5#6*}%E)rhT)APH2JpcM~^l!~9kiAIf=NAx7@wPo#&vGq&`gwXtDZlQgRws9_6Xw;1@YYPh;v%;~X-)MQsy)JL!AMndb ziBN1DM{PtFKs@vVB<4>&5u+FgW4_dx+qD9)EDxxmAh?3%y8+^`IV=?eNs92|B=wyS z$K^Uxi_W}XEoIK)adlhd+g`l-S^KPPl6Mh?_bcmmiTHU~O5o(y<=3!_>S)jq>kszs zO=U5ui1e^;Zy5JD>R7Ii!)xAy^VFyi2Q)j-5K?Ws3*>~|CK-3z%8?#QoB0iS?^{{> z|B~N66j*WFDP2rOn|OAl#KhI2#R}d0R=<+qVVoT4g+bT@c(b@ns=-3@wq$wL1s8pv zNRE9n5&nrB=!QhDaRNA`O(jcOLp=S*@aOrtFf#OEoOxHeahN2x)=P<3v@)!?=;q9# zvrD-N?vb}p{v3-eb$Ax$wlKKio!nhW03(MhgxGJD$9_zbk??$|Z_I=p^~rWhJeC-~uxhVq(G zx>Lp54$JyLB@mhBREz2nT9kE~2w+K$w%R5HEub*4&9$#)wMNzu)-I6?N#=(OB-$x6 z$B86Fy=bZ6J#2;ujU&+DMGX1bp4Q?R`ZT~#fHI%JJ(~0&d%G~e+bkNZY>J0$ARcE)$q)CXdVedbbd$$>Do(k5n0^f$*58X2c=3yB)A#aL*jr* zq(T#y>=|r<8Tt;0>{r@EX_*RH<0Fx)!=3y_&*f{s`F85iWI%cmxCxV7Q?hlS_sch) zy(xKy;Rd;1TKj+qEFC$PRhH8OLjG*ma@S9+AS;6WAwuR45B8JSGI>8fGcW&#vD!c615AdL5B0lOX&xf%O1CLW!$eY~<%26F%&0-7{Zq!PY%#Y@de3Bh)RhJ8Gm zd4C?PBcrq1OX~)ikxX{IfwJa&UvOCJOvSq*_mX<-!&P<*I=B<2meTr=J!<|j^aJ1l{pIYplwYK^n*rf^fT>j>u>;=CY6$0 zG_*B1>WYYC_*FSGR_Rc{V(&q6;rdNaxPqCO8zxwFhfHKGA}a$nmoIXDFb=zcs0||p zP+vvPwYWJ9Wt4I5cR(&pasno=&vYV!bDm4QB%%Y3sf#ijrZad3(G$=E^9OTtN^eTK zl4Iu}H9ce31R)TkE+2eK;Ds*NEvV zwZ~}c5^+;45tU$??s9Z`@IB@6O5K+8yobZAR;3aj3bi?!#XYNf)v&ifqOe0|n|mu}pyRh=Uaas!UG)V!3F>D|c)Do}3)^g|xaBlGWLeOeoXv#hZ3I{oyg z;iqJ!_G}=fS<333l#$NI?RQyqdwPnTaqZHT`ggc7B_TCs9*MfVRTxWA(;a_krM}@JqJAW zQ7+MHx8$S?H=WiP4~|@~O4Yb5bnKE9j0gT^8l<{qr{$WC9&pOveh_}Vp--`LY__IU z=#du%&iZIY9s(Rq^FKk8O48$70ro3M9xi7ezWz?Gf|3h?sDiP(-QyD`NX(HTx@aF^ zbK%{ZlM1A0WHV|%-tMdz=7~MQ%77T&`}^?SKZN{?9eS8cPyN}Bv($&Dtn*kpIV+}i zgR1!2yd@n(&RZ2&G6l7Xy8Y+iOeRVk`lB7;!e^gLxpf4moq;plU`rXybmbgs97v=? zBT?=#5Lm40)hajeP)WjB+fb`Zhp%ru3=y5=m2MT=%5=YJP&WIhM@awhjH4Fy#8I|I z!oBKTK@`ef$-Tm_BP6%kqrXxKp@T6MGbEq@Wj8!cmNdW+f;Lq^n3e8D++rT{Q~m;j z3!=V5Dc<%hIrMj+;Qrmauk>;|74e&X2R@`u75VY-VjK+vrFXgwTF^SQQa=GL9uHe6=5ZO&d2AGqH; zU~+{ZcO!mWLx5e`a+ftOaIvq&ZsJ*P6T77;__yLn@0``r`@oSo~$E=I+Tb8W72v5t5L?ZZ-cy8e-R* zQVaLq!+XR4_fZu9QVYiCgHT15=R|;AETry`Few7*<`hx^WA7P$eCh}UMmCsNphfGV zI1Q!nj1j8*Xa5X{{>ISQJEj;O5~PvO#ZM~nY6q{C^CCbg$_+Y#_X`CgB83X9e&5jA zby0~`g@tW8Fu~_*plab0Ss9Y`Uy1+PZIYlg`Si@;eEuNVZ?tSG9qt3lPxax{vP`qT zd`hEw&?50~^3Ma@1;UjV_w-uWBufvqtB;^GNQkQ-K)iSuS1m%@c-!r>KG>ex#=K{Kq&@~YiFfa6FHB*0aVSrn?%{C_~Zl9#2n+H7=`4(8YOP_ z@#HpDS1mU9U10SB6k(cCcez`P`USNYWYs;tt#bj%EQ=*O#ya8HR4Sw)Tb;rSP%F3e zT~R(1@_|3`juCR(Vf=)XzfJC$wyShBbPpKMQR!}R)?SFMy*2{;bTlfq3|*xw@033K z!Vuvj_ud?jx?y<|`OoMh-HQxd+#86Ij&{ukb%c@~bcKAir3Q_67BNbaodoSqHlhbK zA5~{hetwyhIC^954(NQ@ldURV5$YX2P~}3Yjod5n6Wi(r!-)N*+z>69`$>#X+hhr3$hDFp8y2J*^J{ zn&ARqamZUvO&7tHW6O3`$zhj@x(5RN!7`w8XG3x-nCePcXMB^Sd+s4jGh1HLP-Rzk zpHzZW{sP>$SA5NINIG;ljn1kbPTMlmr6|#64ktvi7B_Zyd06W+UqYu2Wm?-Q8fr)< zbYhEzs5k47UuM85SWwLJFi`~-yx4;f5rwQm{`R192C7oX+JSb*NwVcw{R6iKzL{Dy zTY#wYBtPR}_1ma+F%Zy%cATScHBH4lc=z}iuShou?U$vi zAB8`)BU`)4EH;_r<-=8nGImy^$jgK>9d781K^{?w5ppvDawx%UZI{?IEdaD$7Ro;7 z6b9wN02o_jZ%SQrdW!XRnj_=$ua+7$g~BL#3Gdz z+6^(CnK*s;hrfLNm;C?X_y@&;!BV#jG-Y$!eD)sXiR;w;34KnfwV+LEOuD4T)s$$! z=&N|hN_weo>l-9Ubi9<`q%t{3Df=&f7do%V#2n}axy|e8rq{7#Flz5?iKDhb`<~-!I7__2 z*l<1wNQy)wHP1PXoXo(+cF%7BU0#l%rKB4|!P;6;^M}98h;f|#w|d{d(s&^IgL#aU z#fMxHHVa1CzFYNqKxzYMju;$bzs%KwhSw6k{pcIK+s*B4iuMN+D*97(b8CVOhJ zOHMDzrEMth@pE*w#%j_#CO_Liu;I*X-iS7zl6LsZOig_K3_3}tC&ElQ!4~^CQ1oNDIM`eOB3IY2V87s_5i^Ot+@rOIQmyeVM z#PVN`h-)2zy_AK76|`BAC8+qby4At=2uKRJ1~7O;rNfxkEr%Rnl~Z!D_o^)tLw7yY z?1nDIP?_E+0obdj=b@aCyuIlznhtP;P#msYvq}*cXoeJ^yPO}1f%yk&&Fu`3)F&-} z{En#rc*luC+3uEBng%*5B=co{ZOP*F&|DrkMY%B>Nt%$pNU_Q;Ww_Zrr-MX!^{CJ! zrm8Ch2km!~+LTSN+8UK%N-of0vuZ$73`y%Hw`N0%v~JLVNC!V?0;gG0$@VnXIH=rx znN!huT_<@d-epl}!jeObj!7U%Oj~W45V+z`-+Bn8iPRvp(-a=c8%OdF}_1C1#P(!gYyvZ@5 zJLCtTHQIT{C%rtNlh!GDo%m0=VRhg1eI$emVR|h<{y9`erGcx|T4;4QxQGI(?dV;V zb5vjS>v{n;iaNDkQ=k#=XbkY;rBv^9DxprL9n76_Qz*Y6C|suZgX=Dt#Sq$hY!?FY z!q~rR>sfkX!!0+|+YGgM*d6<3olRV(&RD2!k9c{WS{&Hj6X~i8WHw*8& zd~2Z_LIL+$8E3u|0VLT^H|2c3*ynHPHMt^9&T>=>)S+FbJj9icc!^IAE00<@$fpBP zin?WskLk44+{O&jSwu9_^@oz~AQVV5_RLZ`L?Q-XCyWk1Iw zaYDKOjC|^dNH@8zhMd?r!>(o@fNJhR#fDbL_7%~mk!EfSaB^%9WV@r1HsAPupwY57 zn$|!tGTG6PawPd1?ilFT(d}F$Kk|>Rt~K+aK_9!djGDk@FY~S*_BhtL!4)+);%sv@ zCs|o|K*p1niJU&OR}H~D13yf zfLvo@C8%@qix;8Y*!9q#nHU!!^C{&pO^(khDF)4$2r-kw0>GTL29(E6Y(#ooJhxQU z)^@wZ4|&)YC$&MJJVsyn&K5|Wq1n~j?&}$c`ub>2lG7UUAtf}=H2aY)zXNPN3@RE4 zai-w4sLnL6=|C!1-2%jFf@{aHGntd59D5w%;anGF&2$0E7Vks{L11Pp-hIe-v=`w> z$PvuLUM;usQAkQivR(e8AK3s{s-Hjn_xuCaK;nNLTxdp*oqOAi;Vc33P{%9R*`7@g zzPiHVCE0NhisGiA(dAmet4gdRuDaI2L|2p9`@j+4^W-(&91aq$Pp0ux;I7sZ#)V5)BMBQEU zF2jSx89>qxW6&#ZU;45v&B0V~EiEND7&)5gGl=X=pttT^k7KW@jedzq4gS}!zhb+h z{5~B2V24rSk2_MR^o|KvZYe^A)GkGsq7jM@ExP&C>-}!U*Tapbq=c@oCEMsS{k9Hg z!^DB?Y;21zj=b?{fjf}vHk(c0nJ2|=LgEL3^WE@oGGwIkmWv%0WE`Q4=D z@;^OI?WhmpSZBYZQ|LQemdX1B5Atgk$+>CmG*4PL6|IK`RuU_4yhQ_alo*q@*hqtL zmTGx(Xc1zdTC}o$t#!B|E>s5sMKphiB-!vWlW53BGU^sWLs0)+)jG(8`O%M+>kL(j z!S|HCaq7qikN|SYO>C;~!d_@{JCP=x6)4OS4aSK9H7z7 zR2N_v+*-|P`9qLzKJkz~PO?78(E$>$Qx{}IOLlqW>n~GP`M6GAYi2ceWQt#}!O8x6 ze<_nSG`e61%o)>=uP90}s2?A&Dzfcd1^?=bHA6zhJh6IKja^$lps-x%14ixYu)VVf z=nY-@;n4rbEs_QnQ|JyWe(Hcm`kcJirA67o@*S-eo_9F`7zRL{wmWvgzNXi`{D!|C z{x!U2rz?fQil}i)KqK)LF`8+u5o?j0n3vgi#8Kj1CmuyuNSS!eWjAQ@>wOr*faUgmRnX6%B_;P z6Hc)=AVv}uBcumJpG0ad*A^6RST)~g~8j{U`VU;Xelt z$s)LUMTW;@k|Gs>fLQ2GnFO=*fsdFV`(DiX(lxY?Q+20M04!CY&`PhltOKK!fBDe| z;YrmgXp>p3r-K?9+@%6~`T6T$U2ely$f-`ftZn5P_)|O_>{|OBO;R;F$Sq|8O6L(= zMa-e!TuBgi(?H09>0I}O_N5UD9DD<+P8_Ukebr0GXRdX zPSjPYZTCcJ-?mu0$o6Ogl&i8WxTDZ&OvCTCsRo2cuie)NxpWY-h7gZk@=%!v1g2H3 z`9;d&to-jG8I)+dt|Y6G+)(>oP!@ScLV!{qykhkh`4|%<1V9OO=#;la&iWVnq!m(g z)-cnxm@r?ymg}bXk_$ekZnF#o&c#|F5jgMspxl~PHA`TmI?e4=SphNL52O+wb+j&K zuE&@Yse2bX%V6c`VuY9f{s|oiyFy9U|AmEhkZZl~&^q}JaKu#^RD%wjcL%TFa{d-6Vbv#jmPIi-ReH&z$1S%;$8D%>k^Fwvu<$w< zDhG!iqL}riY%lG)^A)BTEQH{iP5oHRtDQyDII>a&Ze1ah&C!bz;GUsM zj}hynrW*%)t84I%iW^DWP4X1M(mWK^!@y0J_PJH*(ERpbD#ME^LLf;B*sEw z$$-cWo(6pe&p8#;yrC#gHU;Db9gUma-Iqn>S!xK`_vW&-W}e<+xtt1yIO42I_ik$+ z({ArsGLrr=yID^*m6c$$>2j9NM-6dAxePhif50MZ&)sx(;*c4yDf37uJo`%=^KVVX zJF&r$yt;^s>QLmj=fl|*5Fr;omW&O7?n<2Bxd|hyPfgpP>FiB4Hv?U53+&-KTE%vg zTZ*c?#5Ai|*bJfg48J`hvi`fGMB47uLC!sa7W#2`{ZL1L+5|Y*(!Lx%=!itlM(>5|8=I#i%V8{5)22e^ z?3tR3fLjNz_CXn&T;Xe&ISK1E;MjRNWL5z3NSeWx9RialoXB|h%21?Nm~V8=r1X~? zpC_SUa8nV~@Qu1fWT2duPiPJ}O&s_^3 z)?ZSmny5`Nwn8?_YvqFJH__F|IOS7JN0)9T>_}<>S)ArTjXEzjMa=JU0vpMm(ZLV} zTICP!`F+eD6;thDrbpYRK0*Bdgc1{#i(ISetj=_~3{pp;tRE(2MqxkJeI{?YFcoPS zo4PH_F7cLn>bwfIt`JKt>!;S!`FuphegFE|TZz3!aqK3tNExO@5<(ycVVA6g**hxu z)fc&;|B@uO#xSCW0VT<&WETk=O63!6*AHAqMUXRp5vC|1tJv zOR^+Ymgu{Gg;LUTfs!hCr$vhXk6V3HY)~7*Z8|o%hljM3+@kses@`tDH6+QDKtclv zl|UjAC-T2~udRD+wL^D{TuLfW#5ob}=4Pr}_pk=XISyb4up_X5d7IV-q%GyB^F`6W z$nCbN$#Nk9Z{v{RW>6`DJZwaMYEO0h zU;^P*VBa;tONq)&w5hT4-)eB3PTJdYiji*TU?X4+OV7*30!t2dAI!+n#kxT5lSEY= z>FPw#);l;Q-nyJoulr_9QrzRAs6Sh*uEn9?ug~P5z@V_GJbc*_EW^7CXr(q;glaz) zAk_vA1_1f1n|dW$3r<)83w629^%@UEszCj!y}%OX|%?J4>jVU&@_-56%Gfe6({YnK1y^=GK7 z4i&(_`>e3^7&6$U1snl=NwAx)rxyF?R5-$z8Y|kBq){cM_sL)3dCECatK2YDFC=Es zaH&uYeY3IxXV(#DvMDV1Cjs5m=I5!_dcv!@6ahaySY{TCq8hl7*hM& zD|BGEF9Cjq;LcfRaDf_tscvJ$R-A^EbLPw-!6DfSw&0q(Wzfui*d~KeD+g_HEa5G* zZD&<{J?7C}u>~^erXwW#5ypwJdr?i64bo20k4I?bf@+)di_V4nz_5!3f4UV&AvA+X z&L>+XfoySnm84{zLV(ypqHe8;C+mdDj*VGPOViYxcz$SKZa5S3fP!73FJdWejq`Yf zXCJipY74@cT&ruC>EIcVSB1e8KAZRB3aL*{NRk(1nV-`Zz4>wjKw7cqd7HORdTDvF(13ChB@r@lSb zEOD$d_4H%gAK8^TjtJNcTGym%e&r3&*+{8yuXzWqO;$JnP_1N9_Uw{byS2FUoFNT6 zPSl6)2(EiOflbf#D*p?SsxY2xZHnZ{*x+UDabC~Up4(zl8GZ5B`u+YFwnyXmp=-uc zfE}yMCQF;&|NQMouYY*|DJs5{_wGf1*QDxnRWmv(n`SIhV@#Eq5`3*~s zbSsqiob4&>!#?k-nZ)AhF{;vkrSRA35?>+`LZ1dt=aXo2(uXQAr0^c0#5j07zsK+x zVHf1*11BluxhPZG@;<1~_Nnk#D62F}g{|sjB{eSEEO+q|w(gxDB5fZNxv8i)E#( z+>ckiLO7B@w(Qbc*FxP+y+y0a+n!hy;YH=-Nj8*&4eeJx`vwTV500b(Vk4Ymeaa^3 zr?wCz-`~36eU2&IA|*xR2OhUiQXch{{H_1nYN-8Oo`q^jdFL3C-Xjx!mKYK=ZDF9sO784 zAL1C7%X(xL<=V-M6Be9yArOZKLbsaL8$f{{9nNc9<^$Z_v3>@-D{8ky?p3??<3@b* zq>dxWDdseX{L`yxE&s_HG=DN(a}X}cUU=r*KlMpi6V}B;l3YE_5Gj1pwYflj1@N3f zUT5MD8-rkUE^8)b+5l6@CzK{|b+->agPqZ?#Yto9Z^GZWFXeC1;`$Lq(+Z4@P|ZjH z0XvELDsZq_J_}qI6;4G8X3w_*0qrcV2Q-;_1s6UnmApgeCv)h|m zEXk9zU$fk#{N1V&nLHD?jL@s}vW!}p;5_l@gM#KnNvfH2o3(%8v~aE+ZBgOPtIXv7 zR``07jF-s%;%LKDFB-y;EHVJsNk6QUMQVe=9A|Y8vAVd0tbes2H8_#$x)}sui@(Wa zmz(FuZ(oM5{uzC%gVWemYF+^4_oE_fOovuVH`!f126Mue$Gurt;}ADHsTY#`S4dTo zzvg~wCk5N>s!0*e(0J1tkgV6lM@hd74|ll*7XTl!Yk(G9ql*UsvPno+i5rG0xOaE# zh{j9S4QaTC@$NR}TYS*qZ5r4%0*Gkjkvj)qMM#>I^x%RA8lD?4TXFS|X z#~CU3LGHpSPNMVABdHsnGDZmz86e zhse@9HvwHWYb?NN?d?Y=3pRcuK^;wUgUx+6{9TTfKZSaWc?za2GA0x}C51=i{d;rJ zGV(z)3Fw5%y}uM^O%Z4=dR5*IxpgPUwB+$>41JZa!JkS zG`V^lk&B%ZSadLNJ3;lhYiEd+&UBYD%BBIcN-0}yeUhHrRLkQb`=SNj&35_qtYJ97 zB9zc0O%!`6&@4wRQTW*Km8Kqr`hD71i#B|C>WVRrmjtB%kt%u@ZrdFd4x!09i$Vh1 z(hM%uUF#SvK8GaGrE$yYCqqCWu_Or5zq@ro9`yyj!s7s!WBp=?bx8W|Gd4WTW5NV+-C$4asCUT;=abrQF1M2Y^let;_xeV%UbYS82!!!agOcd?hX3iox3+JCisL66|%1M6@=aN zn|eT43e>CWVFiyw76&4=qp4;?-ha zfe{2lvx^>E5is^`Hmik;gg&fQso#Fc$rfjHZIH9C+gXtS$EZu*PEj34f#jIx)V1KQ zLLQE07j`Yh>LhF*Ne24LhtkE8P^0#6ag};*1FXHu_2hd$4Jmaz3k#hb!0d0n8NT%` zi|l=S=HkjaFVx#4#e-TE40MK)lc7;fah2YA5H(A)c@Fp{m=$z|n@5p&q;qN_gyG^_ zuCBF#x#!}UF)E)axiiv+N7G(f#Uuo@9k=ReEjJGC!E#psQnF93z3hj5=#vm0Fe|q> z+*k}K&r{*rX_PG)<(Bog)?RJgK?hKj0Iht(0@S ziam1=R|Mv|a8a6_VDLq%21u<|2N0UUpy4SYfdA!oDFCxZ9nJf$1+}dd6y}}FX~{Y? zPl+Z$mB6e7C))6IHg2_n=+ePc#4UvX*7EUDEmHeQN1CYo=^F-xI~!rDF^-}%Z7KZM zV5r?XlIm9zV@o4I(!xro`rI;1WY@+b{LLYGZ30!^DpnA#`;t_u86lB+dlwpRso>C? zVoV>oUu&-cu=P)_&NeV7IBCa}O!fHOScum(L$DRHmmHPI5f7IyP|v73pq;g4!MM@h zZ6l2m)9%eSWy)xuB=Gl&WiOb0>ul**lhUy)U`7&^HMhw6yt})s8l58q0CE4!t!$m6 zBxSetHQ|A^p?3h2K#P-{=iye+906dPns*AbR6;k#(9tf_9T3%@%0Bu($o~TVBl!rc zAz8G_M)ssgO3FbBQ(LlNOx7FbzidC;k$nMTYRev86wrXgbhK0tfIe%SL56`QIFeou zvmQFOw=;`TY8>m@YF?^Ma63xwlhU`-bMM?Tp`t*u^5|?BfF?GWZV#7Kogj{uRhDSq zE~^o&IM+AP8FC`kQ+JLnd9=^yEV#8tRz-PO9dMg_sp7NgBJ5F(Cb)#NrbBrBQYX%t zTAa2CvmO;9wtsmF?ZwEB324Kf3IsI)qO;qO?9bSfc*%&~YwE|svcfju14#HD(Wlka zX@$lswAN?JxfIKySz}8W`|85ImZtphLnyDR(^!Vyx@d%Ach)S|A@QJkFaP)5rU2t1?0L!B*Skn3t79K&2d_yrvC(?APDv8x%iFgu?LY?l5wfl^i{J zPOEK$V_JG~_(KgWC_f3We?YQ^0l#a0rYLc^yH)E}mM}7}uJm_SGckLvwM%`Y2Q(lu zx@->>%$qEvlB{8e^9@A&%+KMcufH?^p`7P)hA1@su%D&#p{zwo+fgzyV&c(qf(qKE zc87Ye+rtmo@B}LYpfD9>rioViH)Y8CkaR3+@0PYJ=ERl6!p%N^cUYj6I$?$J$OhGsi>+wiWyeS&EDnm^1p;BWz%g~CQXl5MJ2e(a?^*NN&wbLs8cuP$XI#ZP@n!i|PmQ0YcmOJVX!%FINY;Hwk|7MA5R$PLX{-FL^# zn7VjEcvnJ|d{!G|(1x&^Q%4=2OTmoj8sD7alUj&l)nKSX7Y!H`Vs=;XBed`fYP`ig z53aA4`nr3O5gXixRJ%V+hI;0a72U;SwzXR=m ziy+MZ3iU>Z4V)TlegM1Gk5mp|iL!k(^;egI1BzE}Et{+FY~_thD~n>W7eS71>m78y z7r2D018{o$_$(!+3QX8gveJIQAt|=CvdWe#jh|%M;QIT3$Z9D`YO?Qf@t93TP_mOJ z3WjWesRJes)gddg`^8_Q`gts{Mc5q$x=Pq^*(O*DQs43#_DKblm<2E3uFXl%AF`?K zWtj{Lgy@tM#l3y44WnaIktNremDm!^-!gsQ&DL!`kySqC1(PEPJh?JJy4t4%7BaIi0pHe5~Wiu#XO zsFOukQ{4frD}U!CJ@pqATA~o7543@kYGff#a?nPVY_ZicjG-wUb}q*li#+gIgj%cxJqFWBAB7GF_GQdC~%3cF!DttVr&8@;IHH>!Oc+>6l&WfsB?Mh zjO|VkfG`#1LqPxYY2&qkD9WhQC0l+o4ZEtdduCZ^Hy+2oEk-cR(x)jTQfFPH@z{C@ z@##0Q*wnrL@}Ogm3hKBAhHHsy^ad;{wL?~ zNiiM)BxhG09oTt>!5BwG!%!&u&t>n9HhcCyd^(~d4O_|wQ1g>q%1qjgZSN#iy7E-% zGeETW*=W2ecGG(;IJ9|s#!wCBTfb)wQ3p|^rd&8Vc!HZsXb|QFKC6H}LSm6z;{y^O z)|@!pcnZnwoxL02B$OY)Ga%emsWuC4f-WAi@(eaJhm@r~&*>4C8Ym4px@@k9yf8j4 z?}pmt(kkdSWYLi()Ev2IU=`4~;q5mTIIPlKR2Lf(R4&<5L$99vqjmwqr-LEaP8V9%mS}N5VX1B^ zqKAB&5Dn$z;jJnD&)vudF+-b%@t z;9D^{Ctz|lZ|F2UAdGsm1p~>4)(L% zl{8ATLy)x<+$bdmbUAtF+4|{5<6evPl zD{l*LW%)~@%~r>f99!(T(y zQ|Seso2^fXT&L^CD9!xBRa4p8V0WTEYoIaQFF0{6|47p1mln1sXx2z5dd%EiH(@GzP=O#@Pu~MNYW}nwxIjk67P^GU)b=0QLcNeYd#1)V79H* zmCeo+l?;?K^XyEy zsA{0hz(bf5o&g+GsqzVrVhb)k2ejIFVz>fR4lN*d0w7)N)l?bR)(^e+|NZrc;qBio zGW3{%drM5tcsbfs^jD%M3mBN5V3MALdE@~g*(}Sb{ZOdUG0bTquyuG4lEPn9)?w0) zkYi?7#WPP)5iPv5dn~}mRlb5nb&th^oG`?LfR<}By#~!H)w*(I3Y$as^zS5J1S|@Q7DN;|J6UA)oC8Z^`H~S3pLyO z+;U9*C0@cNgt8COF?-}ly|_9grUE3VrTPN}I3&&5C@{Q3coJE}15O$#qgj- z-Za+2bB>Y+juiip9!DtMsm}356-F<0Wq~h&UTx^T2Z}jvdmfm7EBsSh?xpqRN1$=7 zC88G5D99wB!7`>e!Sv+`j*mRJL6Ke}(0`>jWcB_8uGjwiA5k@54tQsZK*$BJ%rCda`Ci z{e)S-DgnydMd}B|Vfad%CP#hWvolVr=!@I{QeE3DoRGTVkIT@Ow3%*U`sB=o6%_h{ zpdr29VZQ2j=dbsma(=0wcSCYIUI{NoSeumIhkBv~B7Y&_Jl!7=TJEc6$4XsmCt zMb?6&0X1R1yP0b;;yRMw?4`de80WoK>mX1zY%QuD%PH*o^3gt@Xl85PO2E^RD12yzyiMc^r&Sxet41NFKg1n>T z3Izm1m=bJ3H91$jZ_fHJ96|_ro#zfjeA&j1_z3lGV_ZRNk;$860p*+f2Ez~liP(-e-3e)NW z=(yz0QYy>2B;Bq7042(EV<5}vi-yCzhA@HX9G``Wc8PRC7MF_bpHL<*!Iiv|v~EWR z#UUrDVvOuGug}_k65CXuo}zPw>Xh25qJa1`Kj+rR)6CkaR|N$7HDhwfx~fks@3=c= zDv2_Ue6aTpehlC~c&kaXkn7Cc57odBwRn9=uy?@ANgcMFfkGXUE?@Jwd5n9UjW%It z_haAy4!{KnukC1cCH?&@!G#W{!3Aal)wGvv`G*wXGo^K@h^Gc~k4V8NNzvsp*WBoO zc$ehX&wA3PiyR$5hVo&!tmn)qWp@n5y~8e)J0XV=P;xlSY|`tQiFfF&oN!<*+Qm|c z+XCH@Z!`_47k1zjA*zuSG)Y?Jc4M3_+l#G7%Q7%`qq0;|UU~go$K~){r)F5`0y~lp zou+S<7VP@vbI@n|%$72kHuTz>kKB6 zEE%>%;++G=BsFN1TxkmqMTc4nCeH=eR+e>GTxu3>6^6fd>)qdEnc{)Jrgl{O- z9d3P-J~M!`VJjY|`B{cQVX_K!;b4bZuLY?jh?vd~D*3!V79!jsHB7_x?-zjnPi_PXsNE9Qoi6ao1VCW!PK

Rp5@H-63rPkl?5M!`%e$q5M^(XmdeOwiW zW|vmGE5kKAE-6r%tM7^P*A;VW?H%bOf752qV_m&Nekhx1rnkn;8dzEqK*B_d-#M6ZDSLGYoS|B_wYx z;8qDgjM$9w=+*E(m<;?*#~}F*HokA6GJ8#P8hQJbp5HLNQa82*-V-YJ31gLJ9|0%h zRiOII(ra?Kp_vLeiR#UI!YdU&>FNQaLbj(RL|l@xzfarcd)=DcitVn^s?da)fpv9D z-kT*9%k-#H(Dv>L3yRd5v$kw7>_9~)zV|gDP0ltw5sG5kHk8G767T3$bJ&jBjYjhOVX_haPixS{t7!8AbP@HJL;7 zHp~Zm_Z;ZTn{25kI=$3X%^VjXT8-z7IcegUdyxVmi-~GyK2PeD1`xu zANiQ=scEboc{_|N(-Q{a8U20T)~(f&*M;PXT2=}bnNdP)seRanvOg#sK}TH5+5oma zV}p2h2=0t6&`qN1gGzI1XnyDv32g-H#iM^)XUZ}rAh7cV2OrK9NTex}1o_U;pxTv~ zX(8oN!&8{yIEjfMJi~qmU5FN78#~D)GkTJfcVsIjoh@Klp>+JY=>mQIiTugyzepYn zs<_;hEUia!wufxF1Pop*xcCiItw+o-b+Diucv{aFop7yiP9muS*#3sAv+}tUrWRLK zAAk{dy2wvKhx{>Uybybd3I$l92n!*_v)aQ5j)LZ%pd)o0NOTnIs7u;1NYaBBmOJdK z`Vm#pdZ6@X(@6o;#>#3U3=pkKg8+k^P>^)42!%xE3t5e{=DJfYIvgR7C*=k8a=fzL zcgq6RkFh>DO_S5evFG@jXM1Q>hh=MV>$=(bg8^F7wL|fDl3syShE8~4EP(1~h)*{nIa?-oZ!oLHcn;dteez#>mamw2iVcu7F zjYA^L{wD@`Ta@pRO?yBLXJJWK=I01jLRr5TZu^{2pVJ?t!8%7@h$cRT{U zam{L;$u823CJ}1q*%hLHB0J*`;pOFcq8pZ5Q3zc7oC*Y2A0r%tDk{WrrxRi z&)MkK>H3(B$FGt*Dg46TK0GyV(D9AsvRgk^UhLcgIR}F{Lk3FG`MY2`&kxm}O8>H3 zJIpkfhs)GKf~70v_^Ruyt-4Hy8Urj)F|lEYJa2jC5K*_95M4H3CP-hGthQt{juU?X z(!2chu1bA+xL~47%9E&A}X7G(Zc`0J100`ih;joyJdE%as0)*NPP5(T>q z_>iQ>M(S{?@%lu{Gk`qR7S@VeNbz#{R}R63Pg(n*ke9xhP3gIOc7q8RZnJ(V0H$}z4Zph8FW zUu$-B8{~YkC%9OSnHQq-z=RQq%lTvD5rOU7Yx z#CK3))3?_+c_2jwqb(@1cMhu?>g14`-MVj>&C9{63f_fp89i{(X;+;j7H=uZMSV*2 ziR759OctG4pouip8BeQGNzUgHlfcs{qq>xBB*HrJ-hD4`yA(Bb_C8m)^Qp>;p=xhv zOf|{!$@E9zzh36vp7NxMI+JVcHBiXXkvu1+$lk7v4Z=GgLTs+5D$6Sno_zrAcMFUR zHy5p|4_QKe%(9M?`}jfpVSs2MtswMma<<*6?UauFj~bH&y{&FcM%|=2sUDLzGmLqnMtVw3Dq0=gsb&`o>=(y=xewJ;4od-D85QjI-U$sgp;F!WO7vF_0is9k_CfWyU{x{UW?r(Kx6l(&`Fu13Va5S?!}g6-j8YeAAsE znskD(i32vmENDX~_Zmr^84-<2WS8fPy^?GBP@GnfG; zfeSjNQqGiRo}Rzg_(N~|bWxAd=)gn*qBuxlf5Y^eRgm#DY_jZjGwf{CYR3|=k( zg7yqSxr>8txlLn}VYRoQ!5ah4GyMiWne-x&*Kl&Vgw{J@Sn`@HfXdZDuEhM@35~^m zy-Ga|J!wd8+e;jw-$yO*4er|Ypt#9hO-|&9QgJH2JrLk_!v{@yovOf=}!c8j=$zU`%fffS9ijzJq+BEVX zc?uU5gEtl_`*9cv&n>D|P^|2vNC+P@ppg`DyugdhAv#hAu=_FVnB5p#hlNpjJ&J@> zmWG{i)56hm_8=?(@4{)cp{8sfDly%u2 z5&ByaK#j5YJR^=%2+GxX?{H2~uvL0vtt*t&r%?}jfp@$0J4jHM*){Kay*FEmm=h+m zLh>sii(~c8*Pp(ALeT+G*Knqsz%v-p*CZb{nCfhkoU@Y0VSu(#_7!3qKCj&5^}kp& z9FNpd4nw>6YqHZ5GO2ODAh#?tH4_Ita_&~5lD{2^{E#MG7Gj9M{w0*d)?@UMha9S? zN(%xDRcq7$Eq@>WJ_(T?5*IAtLN~i+?-b!@cOoZ-c$V8^0*2ABlT9G64U&sM^=|bf-TUj~5;%M`(7aB12 zaiP*=!WOjQzNkGP(0mU!6zY1&Z37HSAld3B4X{pKTW}%zTG2W3iqXw7@eAZZ5+48h zPbyi7dRCTJc~dcQd2gn04-Ewt*C>&L>JQkOkgDb-Z=2r&`3&&*ZooAqwF3W|K59}D zQ>D31)!n=F1I-)SINrdcxK6A`w7Y{B!)vHjjTn{!>KExU zU%D(_y(PbhHECN>gqi*p=+ zBWZa)vzJOv!J9=%@3O|_#GcYN#*Q)z{TI&(WO=S>QUV!5Z$JPYrA*JzWRK=uMFEzT zPYd3xa@`9hJ$Dwx)9JNxoWy3iUmj%;Dfv+Vf~`wKwB5xDT0 zr!;^K2x93QkOo2z6!!=}NqZVYClN+R377~ZwRroQ=A9@FG6ue& zx>7aC`l1B{9Kwm{kEXE>cI;%EzP_G{CqmNTi<-9ahi`v*``FQV{&P70CheouD%W8_ zNK{ceB}K%Si)6ke3~brOsM5S^@+g3E4Pk*g6kl3v80gF@#Z9ZJD1eVepEPWkD*D6X_+3 z48$&UDk7&-2J1C5al9#b%sWCYTwaZ91QW|reM<@eDhld&M@WSy$4r~|)>^!U+&A0O zDn+zZ4eb#X5l0?*^w7pf?35A*Z@zRQV3b?rv*EMw_6brSuynxX9}X4UaO*(;hdBPm z-XjqiJ;d~Rs~We%zIrSntWkTrRY^}XnF&xz!9xDMoJZ-G#E|wu{i>rpMRKXMtYeEB z@V<<$1TFi!WNV6oQ39Qlll$6pFnKo6(5M{`ti#T*^H5tAJNO`909~J^hScFqw6ZEV zxVhn?oMC$=*cYHIqz9y496GQ}TtJ%4>okVI(BHiNYr3v*wV@Zx(D>yKIr%X{!Z4su zYv4(C-#EHF6YN-&fGTBK6BuD-UB>iM8^|(KiSx<^eBn(hZC}$Ca_Ew4Af}@W+b1<1 z$1_(@2UZu4S+pPUcyPwmrv^bW$kwti>dN+VvY3JoJ&Y%|_$)Olb0UbnFoD%}`|04m zcC`_*Z$w3_T#>a|A(BM*i<-6sYQvH)0B+^5#8hf{U=0l^5^p^wNm4|Gr!ZJ6d;wzB zvM55zsSEat^yJ5o3BAgQBP{{;W(gSTxKLQezO>9TTU^SM>;VUT!WMO_Idp_Hi8H*_ zm&953Hb4I;B$7a~n1GImwczfk*v1{}iO=?m9Ks^E*UvY(UL#Bb;W$9$bm-Uzme1Ui zfVtMFdwA&>ysAqN-R{Mls=GCha z8D)(pjZcA59&FufObTx~!_uCuAIXk~*JQ4CDqQo4I_4 z)~)D!GzMW(h=d{}0>H)@YYZMlx_VIRqO)^xz7BMx==VyiX~RC;{JlH{Lx90wES8Rv zSAFpUlaI7>&Kx46rT)}hDqerb2&)t;BUT|UOoPQ2Xzc)x#gxvd;^0Sis&fQEfC$vCPpq2y1Ym?Mhy4W1m}S5fmD&@r zq|$~fzi5jmAU?z(d!mb1r;5mFZvHY2>UD6VE$>w&)LI9FH;Rs+>m=`nSlGw`^{Nz8 zj=ar5IU~uNZjp**?@rag&gM$0DBu1P_(LiPz6gI~H*xe?&}==+P|R>IOzTCv{r9dm zlefe2UHH+t4d!Zjhr)voP{?bz3P5hylYKCwYMnMvkYZ6!05%AKt@lQ26Sl&BU_a}M z@N~Hn=wGS{@`Eo(cB53(wo+R4;6|9{viykyMDnt%}^P~aN?k{UY3(urAA$jbM7-z0VrnEW0TZ>M9w<9 z2KgVt>o4qCht}{2Kuq44K1n!Mc|VITA*P?CJWoHgz?M<_NSAi)GQoYKi{b)gqG6JBt0iIlF@-1G|I zu!X=nngU6@qcABNXot0FVQ0OB@9Dy0nN^mnLnxYjI;R6*7;NT9Q6BIYc;7Xi?2&ECSG|6AMizlYZ^;3wUoUz!G`DO z%6=%B%NiY(F1Pb4Bsq2syZn!CaoeKfTg#lG`bpyXBUdYB;kXGuOUtCrAR-Xvg3R#fvI4SOw0OQGehVUDte0xa8Z6xubVbqzU zsl;dbiyfu!uCYTEgl$DTefXA-Vn{v6@`ifhsH_Z02VPfS2hwoTaA!*016J^cN84KML|I>fLR1p3=t`1D$zBcspg>NH(m05FK{iz%1knL1Yf~ z_whiAlx4Fk)$v`3H-;Sci#$7Ugt8s2>96! z8Y>h(MmXQMh>m~>u*w%1e$mXEU87h^adsnByA-f;jD+643a_6ggJ#$(+JOQPDxXR( z1+BeA2@wOK4BOnV@cR28X|2Fx6%bJ)k$7_ncMNT;i5u0Z zgndecCi%Xrll~^?i(^PkD|=}DvYjQNe^yDL%Q4y6*+{X6y?m#5ZW-1K2E!C`?p&PP zCHT+p?azEaHesui)8&}SFFKdu+a9~{0n4ay@`?$eLF>*M6SbmFY3;5l;z|@oe}yCi zh&5UH*dWUFGXy$Lur)Xo03wN&{{?E-k_^jw{6YBozZxy}013q&nsPXEz5*KA%CJ?C zU?NpdpNL^$RNN^^&v7(ei}OPZga~Y~_w| z4ViJ42mJdg?`$CpT)FdZ(MRBk-=WRVo7E##H)!J;7WM9@0bgObpP!Sw_+%;QmbABA zcs>t-mM$MSDs)HYz)khbE+87wR}SUN@{ax%Uem_d$6BREY~@y2y=8%E4t4mX=2YOt zEX#Rgtpo~%=LNXSiH|*GRUR-QFrO(cC4H!&!l(qVX-11ZV?U=`31>}*>_34-n?5Cm z)k-dTFBIS_7Ufp6KPsii8FZmH`ukumYS<(3#%PPq$g($1THPOxfgfQa~DlSZz3+S@P<=fe;_($@u7Ud9*6$NmYc&pinO$g&Gdo_lqU2?~5mGw#T$P-bT zm~F+2>Mt$w1Owj-$e9G2>$}+;v=q70)Hi^c)Ltlx=PhmJN&a^n+bV) z1w-=w@SUt}BcDoX7H$F+=?l@EmvadD!XqKz0a~*gMdC7Y)>J{?Zt<+KoF<2KMl6N2 z;Im5!TB;cO^B=TmS#e|{2~>9{x}VVe2XZC0K%}OWEMkTOV&O&zgT$!TDMjc8F32=w zrQP#1W{!J8NLgevozx_O*SqiP%^^&XzuY`;1FQkHGDZ%!OT>UHcWQru_4Nf5-hLY1 zet7|MdcUlDj|A8~$Q9psg>J2T9*qE!Ow>jKMwHhJGbhZIdvl&nCyv2vXR>p$ZPVt7F13JS>$x2$2YugA#t>M@rpu+5y z^GhPd!c%;PiamrAFmtl(aYW8w+-gcpEPyG6LVMy=m*{%bEunF3#!_A1YUHJV2(QVf zebI>n!B@8al71%uA|qZ15;A)qVRo+~DWO*YA%TcQB3An&ze^;r-$)>^*}X!AFLN6g zG_)D8l|m1UHiD=`Ad4(R_b}Yb1DIGF14i)NX=0%cZ5A>iKcRB zba6mkPfKM9iTl0Qw!Ac(wI3ywunCq@#%+FHgF#%n&~>4O`+3^)6`KF{1Ak3VcJHt2 zrY_srBoPdGr!)fT!K%;|Y~WNB)Mb&1Ts4t7Lm_`_K*QRl7}PSldeT#$+Sf>AkjF@B zv=JqQe(;%0f&&t7eNX_1R~I!T5&^hHy3=LxK&bqu59*K9y?a;mM>T(v^W$`U$W>DI z8Ki@ zB&u2McB}G$tiMn@!w;1QCO?+j$6W{TQXRvJ zg&P7iYC>$}-9ryas#}y+X}j6022$AP>V2*1wG(x!*hfvCWSVa@uIC*64M-jI9P}j+ zvjQbW?RxvPtxXtr0-3ZOXh|h@wQw zl-6Wol~Arip=E~4Pyv`SGbba3`@V_9`K1MF*wtDNh5||tzu~B9pfgX7(CedGKhtY< zIkjC-ILr=$>3WCWs8P-ql7xvVn0&Ci$p}0>0F_zFaM3ral zx2$pew8fr>rl4wy^ewAxpcqs@L=K!W^e;?w%-chHa&4nV!9s0 zWyvZjIUnw_bR|KN6ne+YLBq-0ITFJRiMA0CgjW4V)+1y$a{K$v)|UEsuu&sH=Gjx@ z3Od4z+Kh9O^!2B2e+jRtp`3hH4tb^bx?%V9(6*2L1~eRdV@JqBKoA@T62qWVYpMDr zG<0=?HtT9hmP_U;qPSJLFh1k*AESd`(WN!XJ4ssY86bgI-o^rm=Z4Yt;076chb$X1 z(@2;yYH|YR&%Xi+`hlqv;75c)YcJ_gY|gDd6zgZPa2nkx5hnL3zrnfzmIX(xQfZQfhf^o(} z)+w>0w?%5x?H~vYO$ABmFgUlBgsG?ekyh$2@G=GNzS$wWlHQ_kxejPEYm>r&oBo{` z7pHIj7$xc>!Vc7>b$5wLz#3Lz9ov)ms|g8#jUut>t^!U=GrsN zjwMnfK`+Km?S9G?Tp>@0TIL5aWD?;KUgVgr*n3)1!?6YueYX$`w4!$|f$@rtNhl{Y zhfnI@TC*~CDQslHWc6ukWgV6!fgn{RFMdb9XdJL=YPbSxH3DJ#;09$5V@=`&vf-)9 zjBhnNv`>l#f`YI-*R%=;uuV5hi3x4oZTtsw6*h|~qQ}PHa*{ZmRq6v~K*es&ABi(B z>LhGCXu=+6>aj+=?#``VR@egI=!;gUK6RuNq`IE>`FG(T{}H{q#$iROk#8S6!KRV) z1z8umKiu#G+RB#splU7mt0^g6udd8h@2aK^62|PEroRiRSNoXYoI^7lB)Fbku61;e z=mkI#v)bNKDH{Bc(z<<(tXX~6Y^ZDG!mT^W%If?LlaXgt7eHCN*wT1`D58R9Ot9!0 zT!~&n85JK;JEqrj4O80hk2XxV%M3R(UylQEflr~d(;b<|%%DG_b$ThoVEyl^ItzG2 z6`#h?vW0uNIwz+O@os7nC@5mOtk&s~Y$K!2)&X7(bY2=Etuuf_m&ED}!kx?nP!3FY zxI52|-Ovz~Gch=21R|TkakC+LjUbav>m&#rq(f6}W+TL-z~IGivrzb!Yu)Hr9;!!a zm$g1rgx-O?{(VvU9y7d+Cdf+oO6_~N7di&@rrdDOle!GVXr>8|rIduiC27)Dtu^(m61FJc*QP- zeZpKLy-%vjiYB)@Lf+K%M9+GVYq8+*V62GhAECA300K?ZjqY24q7#zYDRUfx{yFkX zaVbmLr%kfNZ2< z=sea`1Odadr-FE8jbU&-nP~6T3Hp^pXR=_n9Q*x_ho-t?cIzrx;)&{?;f@pDK7RYT zjv{cPc76|#f0vUn?I0}sXIm4fj!>mrIRbdOZ`yLgN?@T?Xa~%Nd!v3y4o>gdjS1Pv zQwwH^EMjlSzb%=Bkz-t}^^XpiO@gp6(*sB$OCC}~RG-%09AcKTQx*y^6bfTVpFA3{ z8?GUfq?l-XZ$Y-byw|$dM$u13OLZ7Q3SjcDr$GL@x8J)XNxCbLwomM&rEWa_%twf% z4%RL83AJB3oNX~w+qZv}eg`mq&Pzi2oQ70>sY3huU8M|#F3JcbKjvAMO zy}TtJH%mJk9mK;MqD!Z!SE)Kw4M!(T-WI;rYCCD?XH=b{sbk>;55rZCEWlW6T4bnU z)aaWtWH{MCzPJLWYiIyxyc*nH-n;-OLgclUVifoK904OVWV;KB{MSM4+|4#b>crREJxKl(%?Rg>gI=E`-5`Oji zm)Ads^h;v6y!{qKu%Cq2KPC$cHZoL1lV|O`FYsr+z!aIwVXl)lig&hqm};i4`CqS} zhqr|GdO@0(+zcJyk!NcswMGE#n8WLl-e0~QzWr@;8phoJnAAKnJeHh(ly$E&AX8DC zRhERVxOdDEsCbiXleN~CB0yF=rOV~;n&ExJp5GNc469A|9$_Olnu>UUpTAjhb=Z3u zCT-&b8}?)@X<{@$n=(P`yM}(~Bn>lTv;5wpW?F{|CdG)rZQd6m$Y$hqR;?(ho5J3FQ8)=B1+) zRnPIq)4&w?mYy}<;x(r>x|iq(aVTHjatr!73r>Qal`9-!QOcZH+GZg$HA2OA%x2TKKY9e{`^b*MZu^!g7t_D@RLri&MwAN}Kym-}G z)P1*eT;!^V3Uk0JW(|8_*x}A&X{o46icbv6sgNA7AgIY*-3sl=ZnnFgk?z<#1Gf>h zRKpKI6{xS#pM#_*22?(u!YrBOHI+oRl`kvX+7P3a@K8)1In-QXzY$hdWN)qI(1xT=IT1FH~bN9H;Tb@BfU%H~Aqwnr6xJjVi4p&z-tYK$y1}%Mcl@OUbF|iyrM~ zW1N!0B07R;G5>p@1xwGN$e}G}xzmu2NksMiS>6n4r}W7&r=fDjL&31MGZjMD$dOcZ zXD$6!SD)(`s15aB5p(8I1gL^IJ$PQC%cI>PNcFN+VF%@XpinVhQ-$EYx4U4i!3?;Tq2>~w8N(Y;wq`zX~`Um>zs<>_$~X5vC2DeLxz zDk*F7HM=Wj!0fxM^RThal(Q>lqUq8xjX!EYft#~n^$I(N(YuN@-I^*);*fA^Eqh9O z|0PID@d)IIZMABLxjusPryGZQHVfP{vuf~53{W#qd#`<`C9YWeyFb#Zg>=Yi?|^AP zEtq#3=)e%=$t3}-1ld6Be4pp{S4fxCK$YH|Xafwt_s}qTlT&mbW|}xiW`wu^<6%zc zT>u`2n0~62%Q3&7g)57RsRTN#J|-<{RQ@BIK9A1okole86O21H2bbXj!s;rtlDfL` zcQU(7KbAyW0UINwIK{U21OO)$g$M$&z2Iq;t8$;HN+oHv-=P?6FrB2jFW+j=pMzYK0cSz@g^TeZ)Yg9Ow8c&Zho@v4+#a5VtDqjE98u=Jg}d~3Vm$k@>C#*u3@e>nvAW=X(1V6 zd)et-xoYo?K9df`I#+a{OKXMH~|2dq0!;`Pv2RlHi&YD%XVW_&xSwovCZRGP@PDX}l z*`+*51-P3FjvEYP?a&@E=VSE`yr#3pfYnuTYX8FhMv_8y=3VlfVvaZ)ON!!U-GFI^ z&=PI4Zgs5=n-bEyxy=S-7}r}!aObLZOI@2?ZA&1)?=otQ(#&Qq!ag@`>RbU0R&qicIH3v|_6RFXT`_*q=x%7JU`o*lKkpL)#Bxiuh+Y_mxU z=!GpfJ>``FUU~c$_rCrpynTjzE#A0bJ5tM_u65%Ce^WI^&j}vcKnAgB!7By8jCK&qYoB7>&UrfN5a2z*S)m0B$a|st9|}H22!?lZlrR*$MS8 zS=(!LjqP0xZ@p4$Iw-f|@=8^$u;gaLK;U7Ic&}x}U>r@h;F_y2W&M;pQPzYUsDVsJ z77R)R>M|T?k8INu%qsZjcF1Kfy+}~$f$(C{`*xf<{t&ROB9j=(@6A3XN0B?=q_L`? z2B}RlD7Fk+%*@=K0`$OfwG$vZf;mQ3U#1h?(}7gwyf~U!PKpy!qiiQnUNB5U!MelQ20M zct)NQ28RG%o!MqUrLfS8pjn;Z+n>?s9Znj*O*`TaR&@;&JjDQ{sx+*wqvoYT@AXkq zvgJj^R;{c}3e)J|@!CUt&}3DX?@LYdnHC8Uvpz(+E{AOVdmZw0ZU#QukfPM`Cn`J| z3>x5f*a|~7X#5L+&mHR{)o_)?oPqIl{BEuxL9YWEF=0#R2{SCYKZ z&he}SWd0k>sjSnYJ@l0+(&C`9>y*{Qp65DY2^^PRKQorWaZwhSf<`1}K#5^gN7#(z z{4;o4cY6hWn38A{!|5pT$%c9uZ+!`^N}NngFS5JA;cAf}J=t18-^`K^xsqkJe>Bfh z&pqeiQ4MZWx_6kJ+20!usGEMU6Bk;lrlsRGD*%%0#D%>&n~4A6KLiuF-=(s-JlErd z9*WHyVKcU#zzlnyteO{1sp>mtif2V(N0{1=4e=^3!Ar01gz*_TwgMB>Q#Z&hWO+1Y z9I$&BmtEFNAt6e>pmnnu~QTkji+LLExOOd;89d2D?` z=-!U?UZUoiNGfmY+Nt>%`d~m~aXngPNaHvBBUS#3?l%TpXQvV+XcMqEDQnjjQN59p zga(UUe!c87Wt)^ZH6~anKT|^fQ9ANTmJc3+jvijHVdh$mcjZ3ySR%t5!-otofA8-5 zxw-pNc|QSawg=#Vu(~9aSV~-|6j>_zXb<^FKxgLUc+zn=)KPgGz8Y1IeLh!~A~c^J zY(O_IjJLn&3LQ%1r6pUKaK0`>yL4JB*+^wp3oig5pbOvkI+JMQMVmG#?w~KkfoBu$ z)KF9<5(5X)5LuPw)BmsI9o17DJJ3nB#oF)ic{m_wH9-=8Jb9U-<%O*JAmgc28D9&G z(-Xo>p8?fB3qG!e)OOauLbTGn%-C?ZV6ux4{EFanPm3JH)(Vj2s21)UbT>ItEH&o& z)cEU9Uw`7}9gwZE(28FgSTjIL~-t1LIs6CRpxu52)_>ExCZOlFsj9|bhSq(sRFc78p%C3NRAnZ@}&JZ zOl~={S31(Y!X`6NitHf)J#C&FJc!K2R2%#`*+PcHsY$&l7;K&7IBb9{8nfQZt`666 zb%rD)>?941+L}_yN20EQw8etuO1oa!g`VBkLEe(m@7*6vw$3_3y4D4dFmsA)yiqW+ z>S~x0ZI8~;D&~u7h#!NY041)b);>+%(6LYBqPsB!7QmWyM;jKe>HhCAgSK%-TAywK|k_*vFH+3DD>_@I@qK zOQenR{|6WwMuiUEa`Oef_FWEw8(iVi`bG+8cL9(UA%sfphi!(fS)BA7A=Q~-w{NO5 zq`LOqDUZ^wkgFya{VsXztqUFfP#5QYVf)=rE39wi z7?7cpnYBV`jtcx6n+Xx0+6}Sie8w;Gd*R>z@U)P^+y773yERFYTxVkM`70cx*@~b< z@Ex)h^*`2Dw77UiMrGVOE}0c66OACaZ!#J8ZMkol3kJXp1~a&0FaXS|YW|nbcl>ega1rAV!BU+Dknr`hD- ze^wg~Yn(oZ=Vx;?n+`TPLzt-kj~Bw(hEU=`+x3T)yE~+X9HMURn>KT7Xn7C7+v7K_BJ=Wl;f@ zS8Q|iel7w`wvWU7GdA)v5atV}Ezm9*J#uOL-OgwQ4;F0k*SJcI|1hYoAZuZ3et>k7 z)Kyk9-r5+R*b1MotT&Pk@~PlV=1~JdVE3=$EEzl7WRDtmHo#b({KAV|i zfI-Kp*OT&FveTy`rOt;T_C>8oEHrOb9$&z~%V5E>4|E6HLARmOKsV-aQd@5Izx$FQ%EJSt#P$y}tZLNR$r|?hzWcNcy zLpwwvo{H%-e%pXcB@sD!nRaI>7jWv8+xBFKY`Dm;bVaglI@41J0l!C|n~JdArcQ@u zxE1O-{js)FKz>gM{#p%u(%3JTlAnfeet>xi8taZtD=AfcNuQf14^z`Da)A1Jq$6HQ zGtPP5{mv#Xx}BdLe6Z5D6>u60^QK3Z{<{OOYh8!?ICq#&oHy8eqGMMkL}Zz5xlHqq zJ>VH*MDT#Dfq)!>WUkJASc)qBM|=^;Ee>I)ln9nf2ELE!eqL~NA*Hx0^)cANYM;8* z%-be#mq7IyatNcZqu!bFv>i|bi(J&X z^?kRPghwCdO*YaPQidpjMmytn(f}SW|7FLTQu9BUuNAh@v=i9#U<2KW;k_6eaANKD z){E@{OfVr^!APO@HsAt=_YH-ABd2xBuwZ#E=l)PwK*1(G@4g2l)tu-ku=L4l8rT_l z4xP@JCoonxH_YUuGQdT4dFx_qSBD0nP?T)tJw+rm1-rN+Jr1UXd?m~d$mc>5<`xDK zXO-n!**{fiHdKh&IaXC%>qz75Gm8`Go6iS-mEVVChZR*qqtTAJH~WnE9+FdcTAy-I z%r-OvFnVP|hcp(&)|vf$B*rZjLKD1gF{bDuc?S@{1Jp2dWRO-i=6+X5XhokzToF3c zt$|Ihq6Hvu&hh*P7_{}a81H z3@vEObLu$`$#knAIiwgj>YkKbAkzeMew{*5a0X4!|7^EsV zA-9TXEL5y9D_OM}{e~TqHBu}1Zc17^;Gg7}FrJ#d2QGKb&vb|sf~hEEqJlV!_dS8@ zv!kM6QZ;U&K0zn++Ol_%)m3_^!JQ$)&6Y$d3m|>>pRFlxg}|Q)xcW1{rdJ!G7%4#z zBX~n>?#K}B)%NU6Bf0uOGhQTHFJEWOh5vB;-cE^m%{kp_{4XRKSNZs`4;WTRMPC(= zDd`s`<=G%G-*?CqkewD?P75697LqwWAA`et9|)9?*IF)FSk++Ebuj7v%H^6~KYsZF z*0B4=!#?S+bECur+JaCbWl)hb%2rU#C+bbe8l_pFWI}|5_{{p{Pr*n?tCZga$biP` zXBK-0>N_NLD1lE1n3r$a?fjbUSKORk;_o7L8%FrBAU|CJ12U#&#mEDl|44xwS>;FE zLK#)x1Cnb}7%BnS?u3f(QTB1`&>6FJ-SuG@TNY3%n3I)GqV~6HyfBA)@~s_eum6sj z*uTI13`A*Q4{TF|)osOq*Dq*DM$6$Ai52@Pd7)y8H|JBpdfhdSl==w?Wp)xZ-?*^@ zaLX2Biv-Oo{tc<)x@9F<2?;wyCDVn1htR^N5+l3YiCh6BAjD16BHRxTPsE0W=2eh(LDwU7wgG-*NerEPa zP+^Cxlvm4M13u5%Dhs9xPOrp?VQcpZ)4yCm0jQQ$v?DshwkLHx{zO8##RsHn5Q|5} zk8WnK3Zb)9n|)T-k?_?jE|7zCQ`kio)-#VUvHC7h5v=D?)nrY+2;I(lA0(-^BOJ}Z zq-`Ug68Hl4{`x z@BvpzAXkdiOhOWgu-xyFLEMV!;u7pRKW*>(LIb7VI$BhUU#WfNAd$WNWVJ7pPf^1o zaj^UV0(@?JcXM>U6di+&%?_{JXQX}iPBZcohrT9 zjoN)VZ`ON}`zt|ubeUYZ5!ojH&*ryeVe*Uj$Bif4?h%QXGDv=g7ijg!Sn zuc={bC-;x=#j>nGxoshmBX#P`3pW&gPOf zqjM}tl_y#dAs-d3#k^7;ck5HgpSgwdNKc*%_o37vupKI zCL*M!)AyI~E3e$oBJcnJH**7?w$q;Usz8&) zJ#>{QWM_vYM^-dXXfQZZLCyQn-%N{EeN?<91Fe0nV3Lu-OInWjh7V@h7PLWf(tDSR zUYjP&OS&3Kz`!!UEa`EC&}*k|xXcCe(w3_$viUr)s{kOoBwi&(FqC&MarKJiv#Qo-NOBQcCH=p(jjAtbSImNyDx1&l{5i>8sU7S& zjcatm2HH!29Y(h;icDRvI+15})hianPR}{Hsl!M3Ozev!G4eS|9vx~P&dsna){?D9 zcNmf*?Uoy4H<-c248sSd2$SLRiSQ(#KMBPF`JzI(wytFuIl^oRqCJCSnkD^|F{kha zpF7vV-hi)Pjnze!Au1RpF{<|%aXfexub;ep0z(u){M79od*8P z3|&YcFt?g8LNw5^LwZ;2{3 zl!Y2W7-qei1HC5IyX}1)&0m}0hxJvpt?Gkq1Q7-DLZx}(nnn-LGK>pbCd>5*M*>6= z)HiA^-5i?Vt2T-grnEL-4_sF9c*_k~&;!YIZhRJg-hkd~Jz?A4ZD`pMh`)~KP8+1u zAG%?52a7~V=v!Kt&2;6a^RVf4L0C5)gciDnNtwu(JC7YyXo1-|OP*z05->EI4XAmd z2>>9TSwSz=?Twh`Y9vB$SG_2k+^H&xgI~3eJ*9dK4hLhFig&0Am z?`k>tvVpSG{Ujt~(p|X);Th*X4A219?OITMSKV+)dy2tB%cCr^bVIv1eTzmPkrjUk z{DxoC?TrO4hpCP#47o?QRBptkL1Vi~I(^#F@;X%gney2H$zmtUFP@S^6@KT`zEIV> zb8$lx4Z2)q=c}$%dCHS^=}ICnAWs%~8sWs5BQ!*4=L9b>+qysx6(D!2->H)WpIT~X z#A_(Zk@}Z%qK_*8Y@l95y9pOcpfuVN|5Xc7G*D)ti07z{;=d(Es^s4@j zq0m*1(a~FLRYG0NsT#M={ma)lhRRXG(%LSrl8rN;3E$>x34Q?>c}o>VxCXjhb)Hhp zz>3*9wjQjsNsxm!LF6>3+)3WJfiz6nW`OpZwm7=^Wd`miu_{rko>6s`Wi@siCNpJv@)y32+{+OWb|dwJl6G*m#vA zhxHP$yrhSyF@Pnl5NQUpD@DW=2E=w?Z6wbbROjUvI#SXxO15$zo}jm$evs@yj_{i; zs!?r)llCzH;^{0>@d!UJA&cVr18u`gk}W3zKyKkNd6&y6qXWx{ANnPC#s}f;ixZM; zt9gbUa!*vuf_AT@3k{WUlD>rdAgE!f(=g9)`8mY`U3d=Zq34A<9+U)nYF%6~sgy_8 z`^1RaHUDII8d*}#V=RX28NuNq^&^9`;(Crd{Tv=?KT(_>a!OQ_km8}jD7rb;ie5(7`+%*5#F3c* z6ZGP$%cfNJ!PxF-@!4ByZ;t5gZ+@8G_`lH-;Q z_>lSQ6%*UWCRQ*>(34O})KV^k2r>xXY2hPRJ& za>TTGJ3~D|b$Byl`??zmI6M^;;);^#anqIXGh>bpOmwR*L`G)+>B}$ES4b{AWHoh# zJBnd0$0Oh>XZ?-GDSC=X-ff<8r`oRa+i3Z_Y<;hkPEvU*HKm}o72M0x3qDCqE#+gb zHqHm@po4sN>zrM5e?5B)RnLg&q~Zgp>;7b~v$}{BTDT7`A>PeTRISvSe;_*b6E*OYJAPOq{+K{=+e1ee(mZUg$wNxOu_V z?7FusH-JZ=l%}KFhEfbqlIfXxKE-6Kg705|2Y(YFt&l8Re9gOI7IGip?b@yE9`Kq8770(J)x7$e$ z3cVygv|xl+m&C)4DBDprRkTWWr%8mg&RU~&l(Q2#KLvHh#6(OB`O~+bLwn=1w?Eh% za+0fM!;bKOZE7BU!#lZrqLXg$T8?xgM3?>(luvsCTCz=jnBVlM;GFY?WtOFK5V+-h z$O140SuPT@Riu(>;imrYQIbK76_G)kQ_%{0Wx`J7F`fyr2xt4p+TxcFP}D#eo2Egv zhvsAl=8^dxaYbJmH_j6^2u90eEQ72Z>to9f$5_X1%cw?Ddmvc`L#vEr`vn}E@0)Wh zaj0YKLAFX8RW8&h7rbS-1^}z2PdNJxO7aJ{8}z`o{&b~)rz+B0c|Sgf@p)tvpQyAe zkxJFIxd~(8?4erWFHN#)PUiqR%O`61*g&ud@uFInXlUNi9k!UR0RRe#vI9CdplgP0 z@o}+4@=2{niDjE49qEY))l>8fIkWAXPZ@0`&%GUFNP*6Q;K-Z=y;is|P@OD-qK2f* zegt{K2tPn>w%*Z@sKCXgo_B{cTkg5lOPc<43iJ2l?97RA?A19^i-TGvg1N6@T{L12 z@+GTtWNB#6Fo}>-0P+BY_y;$#P*qGXnKv1e78p4Skx*F0A}o7Q zMZp7}@R#B3rwljpG{%mSU0b(8Dd2!@Nd`B|MrD@4y%3H$SJ^%j5v~eZlIQiOmtTjY z+zNEs7SCnb1aBq%WSp5s2$wnuP?gzza5Qt+P=OE&s$`MS)U4KkA2Ladk=@?~`GYkT zW*s+KDp6G!@Y@`bhj6^H?;;vuTgJK}I2mjmABgSWqMOr218e;^#s+I-=W zW|wuVRcY4rlp2rA^n_P)&4KaEs1FZ)g=$cu=r~5=Z4^ZH&5jfJ1u5 zn+RcdvEQEJ=uisMO-|XpYfCWaHKIc0=0_=1N&!}dTUty1NBHjF=e_VHPZ_!S9{AA; zJLpS7&CGgcs75)%d}3O9;b`1${9pK>e{4{(cJY!3W`fU2yvl37S>COoB%@iU*j08} z!u$e%Xs>TEw1uWObHpOs#9G9D`TFEQ%8y?@4BxW{bx;Kc)CcMOwI5jLswMI`!t#?MiibX5;#YH;am& z;<5brbo0&|_|X%TV50*FVDG4^xaqRm9CIZ}1U3M4%k9cMKr*}`wZkZ7uOe%z=HQMA z6SnYQg}?uMTcEi&uHl$D_kse4;}OgUW+G`c89+C6w&Utr$PpmrCwhao%;t_D+t(7h z9?tZo$aHVn;#m9RI4BciD0D9Q&1=<>U)!WYr>Qy-^K@%oAolnNnRe?dJqhY zasjGaibpfG<}b%{$J!=xu-4l6tl9M3;K81w&Ju0w6dQ~lQ+oEd1{+efcWU%*y&GHh zk~9_)W3NQcT_rEIgX%0f4K#L0x+p7)@mOdUE)e~kLVuWRrA#nZjWJ)3~4{dft+*&o$bz$o#1j z(%7Q9K-em}X5hBN!QFNSSfZ4g?OQwqcL9T^y$-Q^KLE=(MDJgfPBT0tk6)2q`IYVO ztyjE)fwcPIN^9GUDU9MO0PL1`Q|%0E4uO0xD-%p9hzqh0RUFleCD#4;<%9RqNGW<9 znz^h=OYNXOrz0{Ii;@R+55;3cZ3%&{nc#p@wn8JfS?XDEmg4CSBNFGdyl0CfNxCPb zK&#g5z@l5+0X%X$I%9!mW&IH4QX-AF&{)pdrmuilk7RNPLlycs2izEt{~SBmZT=PS z_pg#T>_Vbdf+nNfqns4#zkDOEi6k?-OGyU~>0rt6Wv>C}fb$V1q`Op`Qis}eI20O% z=R`VQ9Q~sK@bX7=H)}uT=?N4r#y=a%0KGpT|IJ!Yt!`6AY2_`DLOTVfJ*cuWT^vn=fcj@0TW8q8ASiI z@`Ie=Q6lM%_7R|TuDS;efj*vA%F@!8Six}Fn$H)A=u1Fjb?ic0nHJ)D&k-UHV;K2NUxJVj_pxN1+NUm@l< zL!cJcRqYAbmArd4i5uiZ7u5{6Hv#8^8mv-Zf-dA*e-Q*so@e4W#VMYIE%Y)_!sa%&rMEl++It0wP_U}0&7Dmp{N)=OAX3&OafT6bHoW>XxX>lF0NAHasS7z%tu zd%DUhwxHZX8nPfoJtQw~1;tZ-DL4xfX2*igach41E*k0|K!cY=TWUkw5TRQq5 z7C-$d_JRI=vkQ=I3dB2jio@imYkl}j6duT=c6v#UHte$FpU|?nbB2bd<$g+DS`hNK z9v&fozB&q?bt;T!Z*;ApzHfnU36-*mFtvr(UFR54wUtqiFx&5RiY^t6ZfBcv`DQD0 z3hOjU5nx^KSzVQ$@?ZsB5reToBG_QkpRtt)~_*3eFB&dlqP0}6-|Ibd#C zo}x|%K|8M(JO-Cz2hD}8`Qn;&#!BmRy#CwEpI-m#+s|MBExe>g>;ucmt;;2=xN~Pd zQC4Xg8-xyM!eo7~*iVVI2N#z36cd>;z1xb`t8I|`MeSh>7boR!1#zd|vB}e7u%kf^ zkUo?%wY10uL#q%kmvYAVES1VuL0=snv$E zpCMwNK7(pBVki0xYJr!~j9it1*2EhD?%O-%0p!`FWw%U)9Z`)7WSs$ewSEiXMzWZ! zPWVUp1?ykLK*LWcD|Fz949()PR;30~9^pZ4uxC&j2RL%5;CezvPDZ%F#VMN|I-ItPs$`RQ?;RGi#UK*-{F z%q!1Wp21m_ktqVINW^ioFtx}sNrD-*{99_UoHw|LsosFQP@w6aF1&_~Ii%O@;Xh#Q zfR=`VEnwSyxf=#1^nH<^6$@K;(~;$Y#T;vxbugCJ5CvY3JWWhFaZp$hF@$5aeIatH za6E@ZXTWPDhxATw3yTjGI&=gxaBV|^^GPAK)4dEOl^v{q^MC$d#Axe4z>Iv;+;VNJ+5C=S8 z>eJrQZSn$Ow;q%P9_#P}2;QQV6VBvBqLe%Ww`X~V=s!4CsGua6dVx9QS!*oI<(Do- zdAG~x!}0~yVo56|$Q@cz*mNU6Qzea_26j5psh>v;8W@31lT*9qJTO6<$2y1?Z9TGw ziB?tNfR$QRCS8UTdId1lS;0B-4c4m59u<4nTwN7|mgesf*Pwjsp8{{Df?rm96}K!4 zr~;Smz|uqI2JBocoP~|{aElc;b{Wy6q$8?Ll(77vAYh@us{#}PYyNI-OT4kglXT?0 zI~E#SegllDz*UJ5V{nhRR)>6ObW)^Hkxx#I8P)BzBC-dfW8_cNPpNU`jljRWe3X6< z#~%*U*E?4tBx+1(cFa=iaF~M%Wq&(GN8i>@8Q!*q>!_o+iKt3U)=a`w?zlBFk|GkM z5dhWz&_dnZSa23)%51D>h>w!CP`ERhK&gC`voA+g^9Lum*7l3-vN|+IvYr@nu5O;- zaPu0cFUdXka0h^;l=^X@V-f^=EV0w=WYOc@rp|cGr749WCk_)jFiEck z3Tzo>L^WjPKa~RCiPF=&2e07$j-X(-9AZq2fjaPrmAqqY&j0@N7EotloVceN+9NC&5pM(Ty$eEy_drQ6DUm|Uu8 zNt+OMD?P?~a2Z>i>Xk~0GRn0hp={KN&M^Z}@v*;J=Mvk-uPtyh(M zMnmARx;|m0aAMd;z&5LLIhgeD?>NpV_TR~~OEZo1Owo%eBn{_{-Q4p4P8E0eJx6Dc z3FaC+Oti?(=56xYN{;9lvwgMF!f?tZ5H=aw5};3Ae8z0V#(*2lPpr3CD-r?ITKc2_ z@6%I47CN}MD6cA8sB@UZ2yPNFFQvR%LA>#h2ek;*MP&*@06cg>lZ=17(+OD&Cvyd2 z`+AKj>1b*1j7+ zBA91(E;p7WS3FR`?y;dy>^W37@FfPmSm*BG+6JC^LC}t{)l9w7s1v1h>)8D)=JmEf z>XB*JO`GTG?!balwvq26H{^&u2YhdWD(T?pWh0pWh4=d5s#bJ%G-*`HMMqNCfHbt+ zCc7$hG_t(}Dj2qPwY;<2t{^5h)Bsk8LcRTrzB5%;7{-w{HrcgV#fE@rwXzKe!WpJk zo2@UY6z$dAsg+{797CFB%H~MZjsOu@C@HxM3GpINSY43mX@;|0P#9xm!~*j zzBEHsrzJpR9F)9xwEP5~kx7*Lj^1o@%OeIOC_}H2I!rp4&T5*mJ7dD^Ik-vZ7a$zX zMDAW;W2M^=QjP618#0>VG{wv%FSmPktp}C1{jI6iz5dtm_EU7*AgUpCjuhF*70WyTKAJ`N?4c3g(p=me|}HBtSTB{B<;aLvSvI1+F~uZSl2p|n)CB^ zJuXDKneBM!&1ku9;(iF>s)aAd#p=LHVE4+6;bskU78i%bN@R(If&drIDYaw?)K^fj zBeej+#Sgys6=s}$xZE=kAUEo#RzahZPCVqyQ{t6@qQG6X^0QL?YFX+8Pm{3cmN*q*pTBy3$6G;elU23ojqMeS$(adjp~U#1J^3 zdYB42{DJhy)1w1JhKa=<8aHuKr9h-tAV%CB0e&m`DZt=5duywaQIT+YGkkzk^=GH` z+4NM3l_%SM2~W_Jdq3doq>rLAP&Y{m+O8++{@BQWqp6aW+fhYOA9pQrLk>}#ax0bW z2{asCY=3~YA9R=@rftojCls-JR`^uGbG!zI1!BBKSU>@jBFbZc{KykXHc8E-3j;Q0*AK0&dE4^s zf5(qKKmy~`vl(=S{)g?;>!5Jt&1q^QRiXpsHj+Ul62JwH*hWUW=&iL)h390!vz5XD zjhJz0{4A1GC1#xM>&H-L{0R^6g7c8xV$swBgkU0S5DFW}z(rcA4~w%s$sKkuob`vD z^@>R;o2NUZz`Xe1Y1C3ul-?pg9rW?bb+Kd>wjp>l$kl9%L& zq^x~qA5)Sgsmlr9gU>;>pu9N{MH1AM6&2+&s;LTe*77_6B4`~nNABK*9U^*1bt_Q^ z<7{wCF%27S30xuhC8-ND?od;|r75=DlR9(G4u|N$TjP<}aSxd$6o-~3*wv+l{1b7` z9c9qure9*3yxGSbE95dZErAV~O7>d@6=B^qvmO29+%kn)qvwMnPE zz;H9*MOjqJ3UJ2$fWGbB6VNV#{$Pa}2#c#6ydarn)x=VLv}0#ID2b}L!j@U1JZ^ZC znqo22=qiv*S-GpO`bt}a@y>r<46+rj#WY%rvrfdgP~KhEvr5jsp7rzv*L0didGIGFl03ehp_%}?JyFAslkdi{UG%ddf#ydfcx z=fIBB!0CpfhP&fE?7if@M%V8<0}DilX&mg<<*F&8(bCorZbPO0b!v^LWq`xS2Obv? z`I!6FaZ`Q$isI1)m{}{OjF3F6c6XvYQdP#F|0rCn&}N~m?isPi;^KHvh>^Y43}bGz zV3Ieq3jvOxXxW{0U2sJ2*-o29RvVbhtJNxCEl{`^0KINJ;Lkpl!1nURDPdO?MMBJ? zMB7TTaJdtNLJtza+8P@6{I4KNT-mn8;93rj2`Qj`juHd*BnD}rx^UCAr*pWfAGC3% zp&tZ34Am$TgE)OiSr}hIzrswPBrR=KUwLp+zq(>tg0tSTD`6kI#KD(z`WgK6m9@Y^VBR^Qk{x0G zv9ilEJV1y_SGiz<2z_bqfrhel#vrJdPPo}%%t89*JtARq^n$yXsa8P?hcV`-1k=h+ z^!<$#Ph}NY+PJa0B%2EauBl9zDi2?jh>ID$vLj`(RR^Og%Gum81#$Yg?D^HH9vO8B z&6$n@Aq|Og*ki?zH6h>>AWM|XssJ7%qt0v~J|(aA6jjibKh+oZ*d_d!Gb8p|RQ=p} zw2ZdsRNd4PcjR0q0|A|s2E*s{`P4^-P2(i(p^$THNg~C_O2ET#Sd?Fcm!IiR&$}r3$1#QSvBEkiFO)>Szg5=SjWI^t0;wF>oU&maf_LNFJuF}2qnjD7}nFGSHs(N zlMC_d&XSaP_vR+Am>%xPKFxVk?_FC`GY9t%7-!hU066KFrUs`OIL%&UD6Z@fR2N_1 zWq1OHT+vLr(6hbjj-*`WHEFr7`ooq*tFUQ$X;c_%q23#khX5P*dmsycnfjy_O9odk zT8d5Y4;r1LkD~@i61&Yd4rCO{>4-~x94M&RxdQ2uFwkEXlQs1pwF$3^AaCy@S*$3# z>XJ|2U*-eW&NMTmd_dgj&}v?N21ysia>jy45(Pz4W2_i>iyktUr3-Z`U<2e%d$$ek z56cnZYRxXZiq~$oEw8)%=Z(q|rJaB&3EGKLEf=eTLV3hsTrniOg^Wznf}!dxxGcz1 z4I?l}V)*PkQnf(R?Hy+{aI@N0XHWdBIsbrY4RDAzy5+(pAfY$$z(me&XMvU8dqoYc zZKkIVNN;CKDN6Qn+d3(lo$o65YFl)mJrkS1u97SS{I_)Mo&{Bx|8XxHt6fv+ae@o3=#$b@{!PZ z;^V3k;v>?v?N)fSL(1hD;jXI2K*|(knSh(y!OrdmWfPikNuFp*SE@m2yQMq;@?W6` z@b+8Pe%vjcTYOBj$gy=h0YKfO_H?E1B-D6PaYzira-f&Ot)-s)5|26X^{i5Fr8gi zw?UuG(0Hh*A&|-Y1O-};LnQ*m%LAm{_@3y4nRkXoE0IvOCNB| zh7yWz1(QkAx-RC^utdvD$}g#X!6A_2ZkANn&fJ@nJIS-V=Ip9-kQ`|G6hB`JCH`fb z$#HhOOI23&47IvS8rmt))J1TxO2^!7?p4+8a=M4Rd3moRfCc<}iRlKWQZb>8D-b)C zzTBBu){J>8HEepDwurNpS@lfy}Y$+Zi0aA;9d zVYSU!r@YN(1=`L}kM@JN-@kkn(wFp(BXXGZnxV)Ay&MjY!uev>ta?g_W@U6>q)?)j zhjV-7ZGhw5nH{e!$s^d}NZoDzpc4%@-lH)GDB^+BjC(=K#NB+u(?7<90jUs*e0k`= z&Q5?*IoRk~PL^F33$tQ5>tUh-h^Q(rH0T?|#k()hq0$#^Hn6;>5&rHDP2K!-pTbh9 zBtq#-sM=`T9T@Cp{Z)lRM9+oQumOX&fjP&(5jc>Z^;mf-Z6#&J9bN#oeO<5X!$P{h~9+eYV0q?%?6@eTMFQ1=u37tFc69}e* zzL*p_A-F%sXO7XJZDZ%Ry0DS<>DeZF_&1=hM|hdqwo!#ZK$i@ec9YBJS)@v;>5bLe zc%TKMq{eaxNxcuLn8(AyhKm)b^!&@$&|yF)#&Mc=N(16VA~>kJ;1Sq$OQ5CaBsxjG z90?YeI~BwPc3-16o*ap>uNSFJR1r1?lm^swwyTaZYl>=O?NhVimGw#=^3mLW~m|`;o$_%P#jJ+>>4EGC zj#E4s8Wqij07XE$zlL)q*!#Wfu)O}e#2&kWqcf0`lWw{L%Z`y=1x)s4$5WkZQjV=) zuGMC5gTNlyHYgRxMT#W3(4I;QM!tp9fs)Hwv=WEjsb&(Pl;bv3Enu?!VU9NJgf6Wv zl7ajOoIkJH;1`I}IZuYVvC6{{Is{y{<*NB;7j`%z%>YVy&8UJ@PHs}6PA4Q{R@IUp zJXX~<9f^g5+?t0Xu%SEw^IJkPs zw1BJBHuAcqnu9q=tU`Za7!6iZZjT4sXFBb;jb7G# z*-9;|E-*2$?G(Wwb&VaEl5n!)53?^5SS$btrBf#AcKmL`v!fA{Mcjo2yaaYzVA;c4 z1!~>f)^F{17Dl;Ht+S0A-&q}&8w zBpa4VghTIoQ}Ah_v9-^(L&*lLqXGpmjZwBJohf3kvIp%Wj}m1ouBX?ZORn^m#4>fW z6Hc$V#e-^FUt9omD2sBl<*syZOPZgY{vpv?B_IZJ%7BI^t3wh{<3^+PCZQ7Q$&sOV zaw!y;dLzxWR2B$IyUI|`C$zDPyJLbd``YDj22#j2ajni>1>|CH#7rD08Y)h6WiPJH zTvEVT=Tp5M=^PJ#ujEZ8Ssy?GHrm6O?I5nPM3ROiI8GKWkSkeJOucIe+&Jq`wstQd z>mL{c)=3_)LT%?oG|to0zyO)MsfUy>B`J0?zTyfB6*bx5iszynQAw*=2(>#*$~(op zV8HQIY@yjs%~+$sx4_{P{p}RDfC!(ojbqt81O!H$E1w|w__6JPIoNJ9 z0P2I4!5Z!tD1A9#rY!->TZtHpP`Ozgp>uI6|9uHJYV4o|m#I9k&78+FnVQTXyG!b0 z;$Q055#{5;<+2JF=(U*kC3;9`hfBKM$lVwzZGifpdMFU8BQ2{x$WmXy_P)B5^|hU^ z=g$S_8=S}TXcdJ{o?fro z{_e|&iAd2JCS^jP>Iw0z4I-{QC1@m3b4^E1IQmKq1n`7W5ZJgwy|AqDt(p_7&)hNI z4bEi2)@3X5s!N%~2MBpo?Md^C+FgNJacZ6UZYya0S)f0#DCY8n)~6gS@DW%~s>z*J zWdZ&HF2Tr=*nvuD+zBh%mP~sqb>?$=`@QKHQYQMR?lhI&8A^1ll91ouICn!cU$2ka zxN;>{Cyj8tPj@k(Cm(elBE{yqxs?8_Xl8XBw0#L6!XsM%QHEu7*Hesyfz&{oZ5Y|Y z?J}Q30wz9?4FV;kfYN#A9ZY@`D!CF=6T#1}B}ura%j#WNtXG*#?!5CThw^gL9lxut zOj#J0V}Wqha41R9Qkl}YP!4;zrPKIBM?GngLJ+1h8q>=c{2KU;9Z9mQ41|0c;k%If zWcR^z{1=_J^#g3bf=cn$|z zxI9UTE-dX8HB=6FQ^PW+e#U5?521H zkxkdW137L~S72H~sSE}hwC!l%%!(c^Nl4=o-Nh{VH7aIRku(QUK3J2c$qY(d80E?q zadkad&Ba00w_PvtPj8>Ue){&~WRdbGb0|}ycTaa}V18>!$mpqqBuNS)#i*@3lqJhq zS^`}AHZ(($2`eYF#n}6xt>NhBqFT=?Rj0s$ zlpM?s9K`8aOf77<+FmE!cD9AH6N=G%UP1dAH6cXOH+s*!KRCNyK*7Gins^H?Sp~ZG z&+OohVSDxihG6h_TRS*{b!ekviQq$T=|S!%cfelRaRW=)bNik)wgk}szpvrje_$6$ z%?s6VtfWvRJmHK>Np}eRIc>qhz>hsyc}nWwM=?7EC~p&F;$0bO-46O#%cPx2-7I#< z0>g853_Q+5husa~Ol%cY6fN+|6RMa(!aLTVaiS8}6y_?`GjoU;tPY32-y`$>8GN>o z#+R_i=}j=y-T*(9jrzm4xXDZP|>j49$tQ%q-mV!xN6&7;+CD)5^2s+ z;=F3#5u@@^RX58_v6}CiDYy4N|z0^bnYHHf2j(vt{fS7fXD%MTfEsBmNj# zGL&-!d)Ct})GRTAz}UMAJdl{gL~5$%#vlt6DkMNy$+2}R1LT^ogAu<=NR_nS zIF-W08c*Q%Uvk~NYwrk(n(RZ&x@m15K5a*?#su8Z!i39aI}Hvxb<&+Va)G`4Zd3^4 zDdz*VZIBpMs5tgP#iG({qf)k>dMPV3slFM1CsK8`Zr{_st!Da}Rs{+PHI;8kPk;UJ z?c-qJsb{7@cc3Zn$oOT^MsypGKvAv0=h!xuj$M_)NhxTF3jHyFNeo~Gao1bQDJsA$ zml%l^koCFgm%&nTz&EYbqWYD>lg4g4DLp&A(D&$Jl6nQb>JmMXZv~eq%&6)OBNm+A zu2U^X8BWq}x)dd42#ZQ`$)n>a=m4kG9V!@z0d>V51#^Zk(^S@ zv%*d+BFlBbd6#k_aKKcSf41_)sJcflYU9~G4(e2tRy5R%io2Pls?b>a7O@e^ltdz; z(v`>5$69W`{NTo>-wA((0HqCKrul1#&jqVMn3-|8!&632dqygkG%o4cr$aRx9y|xo z1_mjkZRac5*J==y5|9o_d;j&*mp_EJPe5W?7ft;L>ezZDzQNgRO;eQj zYmoUKbR;}aoWua2ajGm>>aLO>;Es2DP8I}0Uu&q7-^{&9C zE~%HejtA2aIgKE!%8|n!3PS88NK9CWk{TiBK@%oDh}tHX15B}23xiK+l{4de8k33! z-vg|Rd5|! zrHwGVx-XhL%VyJ8d9a9Xsn2j$0!7hLx3H5ne@tZL*ik)-Uw}UFo}Ly^ssn;fq)UXn zojuGY+t2l*gA1Bb>4${QK|zX+8e@p^<~c|%koA#!w6YDi4BA=r3|v0-6rF?9wT;SA z(O&@kfAE@t7tKYyBn}WOx^Qx%RjZxm>SQ)2jB|!sGeejlEK>yvDG!px!-ozR-w;;T z5?k2}-tJd$qlLt?wRC!$b=6~P%rS>zv0Om>reM(gQrTM(HGj?9Jhk3qsd^(a?M015 z?kZ7&s%CfZ8?Ur&1Z|15f-Kc5$9V&RewWWhBuEQ6%R9pR%0l!E^zt;e#2?+*!z$Je zJsTW|_E}+J+>_ zN+29hDh`T%gB!Wj0Ppd9lJ!-R#ElQmYN}{FN1EXVxfB)%@H}zOO}jdMXT^e%3|}5k zNFCDseg~Btj;Ze9PKJ-7c>ti`6R*%YvQ}+}nSJ!!C@Sj54>r}wQ~o^b)452Zr_hTZ z(Qc}&2D{5illo^s#d@icpsp@~*e}*k1#GL%&DV^B01e9`+kc|zw*{qhxAkR9h9MEo^C&yL^dYT+DQ$hGX0}b9BGt9qPNB~UPB_7ojViSH zcqogkBqdpL?9{2u^U+{}#OVlG=R^!)>vc~=N<}sG+}f?r?Yo1EyGjQ#ub3&!RU}sc z4A45sm0cj8a=2T1UbGHclhd=7L$~dx+|JI^}SOj{t4zh=)Qy`_{^W#t6C@(Y~n;NTRD688JJhM0^3#+4+=gGWNJA zMIaWmmSNqz$W2oZINPWa_$c;z<0M#~wcCPdGPh@oUP_**xBbhXRSqa}IFHu-jxZqK z*du&KOSEh49>D<2UK${$krX<0NWOD85+PY2>%tM#vh~lH_%ISGSSY>YKsAY5zI%#y zUv$_4>4VkN)ge3x*YkOuK9ZjVbFf5Kp9E(xVUH953yYz#m>5vh17ghoHbdN_wbW1zvrHi3!-|GiraLYVK1l~*@!MJ1)JHpYLdR#oN|C&Q3jG(=}=^7F}e?BVMy%?QA0yKI7#YsZ;KYGVuokx_FOZ> zaL9s$DCq{t!Jfu4KrPkPBhr(F@>jZj@wti-&KJ~l!w$~5MR}AsK)c@#!NU7m$kNv6 zM{(!M!+I1Op5rWu4{Tly5UNJ(I#d2{lK-7{H~(1BY~Q-mGFwMTwld&dC-wUVwhtzn zQbr(!fk=!*DY?`&ad_GN=mVRq)y3`J3KRrbPPAH@aM0Y)Kmvxo#|rvLF`csnmU?V* zZP^3+;ikD!-4HE%QYgYACk*ln9DI5>^aZFpY})@VJ8qHiIVZt(~@=cE<&S;$vwlc-v3a+i!;v-J{n`traZlqyiJI;|Pz98*fq<%*5H~!#Z6Spp?%bJi}OSDv#aeO%rb6TZZU-b@Ey4EbiXQ3 zd?DOkk1zzSy%`S@(({4XO{ExAb`S>zqy)1OS4soqO*X(p0WXO4733P8Gh1-E${u&^ zk;{naMl_y0AIn;XuRWVTk~z*N@~t`~B-D5V)|x$_H8f0==p`aYi@ZO_Bn;eB1o&ENkm*0i&8v-;mKEnWs zM$uB+I;v&_PW75}1vNwndFWpRFFiN}OF$#!7&ICOKh+u5hysx0%2*dmrix2AsDgYU zOUS-S36Ek1W+OK(kZn$MQP+3|=+VN5vIdF%?fNV#SV~O};y$WN2`s8Dxy_O+E%_7$ z1T9wbFR};$+Flh?>E-U7Y0~QE*!HE8&Yj$d4>*iuJu`2pc5PQlny>~nh^EPSMGWn8 z>xDTm&F$POfFIGJ+f3gKp01db&>LXvG7=`xwx?kO3!NBCJ!S88rxl(!bu9tJ(SH~8 z`-;W?C6qp_o!BzKWZ3%I3|?3&~NlUuI^sa*2l@8HCx z7^4*Uq2VX`oA4ja_(M_#3*gGFt@v&zJtC3Dz(}0>DUb&0k|D^dPle^8MB-yr{X$9` zbXc$U`~a(pIuLFb$GCyb;FPJ0lFX5~$x>jo3EhhRlo$(7YS%kG@yu1;qh*4$|o*{RN=h=J_{7a#+MmK_nlRz^@8z&t^8joJ!s@{p_xTg@dl9N`u6%|oSvm1NNcD!wec zvJfmg-m*!P)Q&ELAAA_NQv@I-y)fdjR~(cF2fgt^B}*uSAD_X*mDm z{-s2pL%SHXV(nM7gC{u4x+Cn5cGN=5<6G9_Qq(mj14?#&)wDd6P~X;E=`E4=a++~p zRyMuek=J!pC4|a>^=PKVyFei@p_wh$LV%3Et9=V!M0UBa5)|80187O)B<%($h#I+| zxrE7d%zgmr$fP9WFHE{PVJ5}{y$*5+DA@_nadjoOzPVg5d2@Oyszx?+V=Z}ALWvY~ z2-V0NNGYE+3mkFS18;HTxiGgkj73Pyet@xfCYAKT)s9g1eR=2-$;Yu^HE6)>>bl|(#Tg5rtlqFE%EMKni3X)T!lzL*~r4N+G9um?%3406!{*^*CS9 z_J{kmPO?s?+W%6|H1Cildo#W?z-yd#zx^>BO`BAJ$YRv0OeZj}yF>O!G=qHOFAwcK zN9y;IF&#dL)P6N49qFyJttC=_pjA~4>tHgW92&PQTGYqJU@q z!XnY}s4BQOkIb1{`4#XRFxluNv4K^Ms&Z*CR7kNKh}i7H3Y!W{Qq@_kH1l>T%T&zk z^aSLHyaWg)7i}&$Ua?X?T3daRW@MWq&Da9Gk6;EAyuzzc;7JU6&KLfX)av}kPCcon zB}27KPy?lbr{?0PCWfO+LG`q2@DQ#I%wo;>d;re$cYO^SX1h7icn)~!^iY@y9=#He|a zJYd%avIg*mL%cA@JIwz_z?Q7tBZ&{Z(w8-L`Bi}jRyQ;wPJ%I^*qY5i5ddvGL$;O~ zkdMn#lu|EhYQ-8p5+!d9lXvfz*%3BR!HJ901bjfl3RdyD^jOASpH&s-skq43Sb-KL z#ml9wTrW!U*o(ST2AcOSQn1F;4xztv)T0?jSCi$AF6HGkkj|ou}DzR3o6|sR16DmmBf3OsCmbc_8qf>u=R?B_tbqqJif+Jcq@f?``2J33HnZf>>ff<>1ogE|Yf zULz|uaOZGk<~2s;HRvA0e}0Ip=SN%X)|171&QmW!ze+*t_>kP>xj z$qMS*Zp>ZNI-*B^A%H@;2Ji^6<`QQ9vs{%OZp}f-=KJBh-?5Of9ds_HEhzxjP$J&- z8w;&FTf^&?3KSkTuRn#z+s2!`j-|Sxqt8_sRZ9h1tS5?vnv?y<*rV*jJ>2vB0ZC-m zptjZj{qKhF$}jyM?E}j|RBqt6{9f{rAKB*hsnXbX2Rc!m3k2hS*@NmF!8#Wcl#Oj` z^$P{ht{qB&*0PrGh5s#u%gYWCOFNOE8pD29sT4vVFts|$lrn-`Mb+?j!q-S#iySX# zr>5^^g9B&kx>M%K^mi86r2Yf^J^gfn6ucs(R<{+?^Oo=N6d`z^G-GuDUhmG`>?hT) zYTYnQ*WC^)^wHe_H@u5$`bInGtO*L=?m)@(} zendN;dr9JEln6+qZ9hWet8#8ZS2*aTR6-#YFdl0p2m!M`YjV$>t8+{})@L z=z`9pp_LZ*5}1pppuzFI*r=M#W>zn$%Ok2XvXmjP^=g4Hh7zTFXv*`VT4u`0*LGru z4;;Lu*p4Z|ACn!cBQLn4{t(`NchY_{Cc+gzYL`v2r-Z6K0S;f#Xe@mi`+w_a@|9AP~J{(sPi`G>km2QQ9UQw?FzT1;8-B@9}?0Nrl}aFO3ZI;blafq z*J0|A-n9U*NtI3P&fuuxwEfvtksoXlpxBn|Z_YXTyRAjNbC(d>mp+7pSIw1`_JFN5 zLA}$2NGe4qrRS!C5e`CnLY-_GRNA>H-Q!pm%j7Nc>M=#XKj?{|FMjw}1g)aC=?! zBDGJPZbwpU=L{M1->Hq%2tgcGw>Ec0gv_F3AWEbMwyFq9*hp(&u_PJiXS5O3nhe_= zpf~vOh^a!y-C~=fgCB>l8j>F@&kUN-`2-M3vsiYo} z4G5JTi<5d9-iqAhi|S}debS!3V-RS{pG)eXVT5nE+-UxZ{2kk{#RX3arYsLTjHTx7 zxtg>g(7LtrIAyOLC_k8OMrcMFzXY37F0#m0%4$up{w-RAP%9uNC1oW-hkcGZXKxF- z_@Ll)?Ttfx&&mL;y|i=)UHk*l4f5NF2PE~ADJRW_6<3}t`$LTfQzY_(N*6KnLS_@3 zpQrCO;yjIcZ}e(Tp=1E8Y--xj02F+bKGRn;^Ggf#)3={Xj*c&HKYRV`?GM&10o~Qa zVb*{qa(!B6G@*fp?ICqCZL)p3Bzh^IXSXiBWCU;r-{hD6^L_Nt2-dXhbWB2SEhp1* zSN4Ns@_Tl?XiDG><&0hr&X-V&$ed3CofP$Jl}+|^T5;Kii@Xu?t+J0iox3chR)CV} zp>W^Bj$i5JFKDu?n5nDw#B%3E4oHaR^aPDbY8o^;Osa~mz|!ED5GaPoPRNJvD{j61 z>o-4;(CTk>cVx{1aI%4rfK3k<>HS3r$QVj5y5}vk{hN-wpra7%qSP_QxC$zXEm0 zzL5vFxQpeC$6`TIjxQLtT}@`BoHtd=Ho&c_KiHsT1xUYAbEEX}Hw@3VIR^F;r-Jgu?M*6jm@p4L z>Ufn@Apjhk%Ys(HlV%VM5O`OXSCjg}Z-xRJ z9w1mV!wgcaDigxuyOi9Yy!|}=9*#foZ$EzdI*lR|zI0pBBYaR_7A`rE$#O(v%aEY9 zb&Kk)vkFpvAu{mR2U?qZWYqDjez^Hg%^5m$Z@U^fH;_JD!H~mF4{8l(OIx>O70SXt zYWKID4+FyFH1LrqH1ST={xT%N7 zX_b`V9-~7imIidyaA=~Hyxjm7I<9qliq2j^-_athq$p$ZJwx0{f3}V1;7(3(I!~*t)0s@o196Zo zO@omqAC{X1_Hvy3|3y6xs>JDLn32^Rr>v5jI!5}#yJAI5ZD%=ftSnN5fYgfivL!|r z+@33DkQJWi1fI#Ref$OrJ5v()N)IBGBN-<_y`yA1H7rC`D;zinIW3`v<$PqtZ$XXQ zxls_GY7qu4a$n-JMp`0|N=O(r^L|DTydK@MLDUxGxs_PxILy!DcmS;D2NWJy3ZHj+>7i~x`T_90zZ{4Pg?dnB5icn&vZ z3^>KWZLsg?5Yb+{2&_J$6O(%7J328K{Xkn@uq@m05r8XNTZ#)ykiXl@p`*bfT&;rA z%^D6mV*Pq6=j$Zpe95^&(IL5X`c9NJc{xxvrBeOoU)1^4;Is)R+o+Qqn59m{fCC!u z0O~M5DCJJ4kNDT&uT#|jWqA3eZH^`^(3(MCi%eAYCnVt5ABJd%I}ZlC4%@3y?P1~7G4z^H`1 zXOj?ep$AsG*Y7Q4SK*E72226~;5{PP$Ms>Q}`z0yN-AZYVS)x#;vh zm1W)KQF;%o@H1-*?`8jp<9!xu=6&z z6?yms6<50)*?tlvD5ILF@9Ta-u989#^f=q>z>N(GSiW5#435CEk*w{ajdrwbveO)7 z)NN@=jA(0!$1Uq-tD#n#0^9AgFSG*KZE`jvhRfDg3M+YPXV>tLXzbXAsN|+RS(HMn z8vIn?sOOd{f-5-$3GI&x$Q>j$5f3XB`01G>%P@s?%daL+6#pi#Na)5z;Av>EQtzIMZ^EJOp(+TKDH{9@v>o%?dkkmph8 zm}riv{kLFT^a+aTfQ5i$I+0Z&iHS+5x3Xr&nNor1%qmu!Kg#xS zbSX3wFM$gFX}0t!l;h+kZk)?6S4f0s&Gr!{oQ;m$R3C2D-`jj0zk2(W6Om8()t+jk zb*Hi~T%vTsa5nNfnAKvrwhh#rCCdmZoa8Qk1kK5_lpU^CK9uVp@WSH+tgP3fWif)t zoz{n3lgAi zENaKTLA7#LSTyGlNCaU=2w5zO5L=7>V}_ouHIbS|Hh9-9nz6I_Q!5Tu83D}P$-uEl z3$qSBwAE)VUC%gOy!Dkl^+=~$imM)qcFy*wQV4@V^pBF! zpt&I@hojpI3^TAn-BJUWou#99xV|7d1v1^9}i&{0sR;0T9LIgfy;p=df#Xah{=x;Wx7`HaPN; ztyFXv2U&=KssOt|7+~~R@QRU=Giq?Xa9A>HZs8wILdligAPCq17?Us}aNvQIK&eyF zRjHoPoJntf#WeH;H&0m?cQ*Le0$0uf(yTER?_U>P5{`ZS;Wt0@0dW9jS2Bcjt;_*5 z*GcTWnV<+sO7_f_>SEDs%s-my)KqGBk3t=^t5dZG3I`0!=Kk8ZmeMnl?o2SZcT7~z z%3?X^)CHY!m03JpL9n!>w<$to1f<6ztQoHk$1LW4N8h6=*vim{{X1X=4nfNliBc(= zAbOY)d<3Y{83I}n(|_b7^9WO>jAWxCikjLxBBs+0i=@d;Iv6`b*C7d??yuUCr`x15 z36A+Z1Fp-QH15bDsmOX$jSirChML>6ra*ywP}zMGZ>{W{rfFE%Hl$G5Rz-Gi9TR{G zV$uU5*L4QRvi26>c!lYT99{3-#$Ubtg85ST_8-^>f&-5|3*emya|BxM%0ZjT5^@a5 zj;0O@BvZFUeRae6YnJdvUo=dU?k;>dqv9TB5uvP33K~aDx&Xz5=2uLOM_5^Lwo#Nd zIH!;H!8IVq*jG{>Ey}vN6*!l(a2rrAi?;3PiKs9H)gah139G>5-;%qJFcnC1roWs_ z0F)W--3vfuq~3^~H)MyF$nQEXuphu_8kJa_RzQnGtpc}RiL@1QfNIWtYdcTFX4&R| z^0iH6-6!M+1lUS~r8WzJE93R2__Twzf=nRZpV0Mcsn2;EuBdcPN%2N;xLA?cq5aa1 z2=fQtFWqNJ|97~MS?q+GWCM@G3jDt|Yx4%s*PQue`Z_>|uL}>0ICN_E>z#fbOg8>g z7^%gk3EeCKb0i~hO=?>NZI`rzUQqX}-0Vj``I*9zlPc|zKN`**bePdLd@9g&fr@P5 zs?|y(!u((X>t!1xjUO{6TBo5*85>|$WgVS%DV!{3=DwbuE1+>Yk`w}e8FY`3(mo!L zaZsprv7D}uj+r^)Z?^8Bf{3ec2R+7A-J{hvI1`gR%1cl}6m_b>Q-?4NOi95Tn_=)c zT$NTGhdj(Mh4%M611rz3@3BEPZfqNa@G#6s$_e@$R(pSvgbgDDN!dxcgfCJ0u3!%c zP1EjFu3&!H1Bd)}ry^sNI!^8Mg;bJvp_HBbPDiUwGQxQ*ADCm`X2UejI-KZ1>s(Sv z!09TtL)wKVKq@s)Z=cht5>7CL3fwDaxlArdCP79Cc}=7&IE%b^wFNctr4h z3TzCc$wmJwPHm7oT8&ykE&_$vK}@KU8!KDW6;112>#7K`14<`o3D36-0j1b*(khR5j7 z0+Sq)X}Uc66pL?K>U>kN2keI`2Lmq1@H}iY+z=B?%he_56>5xP$@>{<$wuuzN5|uz zLtmM2MAEp3#0b@LzPM2&8jx+_&049ND1~rWG#h>RW~dRC>E_KKWl^T1f`%y0WMbq@ zgT0!!NRaidPFdPZ9Briy?Vv$0YH)l&NlsqujJ#XJrZo7qy$0QCs}`0+wBzp;{pfN+l?Su`Hp{Xt=JLo=Qw z&njyf{gz+#Zy!Klu#{i5xFZ@8xu#pNFTmK_5myK1RTqjC zP6%{EN|$=H97?zP?6PmkcfJ$;;UCgJ?I^>s#6e{{EG-z_8S@g`><-_64 z?mU?8{G{x5^kB0Y5@C}-NrJ(aNDm}`kz@`%nH`<=Si^Zj(`R1&R6oC`l|)IRb~$=a zfji+!1`_t5Ky*&fnSwVl^;MS<3K4CQsbWiX2<8-5u-n&F-o(~A+B#?S2lgJ9jq$qM zcYw!pD->p#>FB9hfJ_oFE_Q7p*0u1H^z>L>)bg@$5#9>Z1k`Nhc+Xfv01s{8w_#pU zNDz4fFw}}`fEDa8mMuX)La<3>9S*T}pGpYW29y~@+>8uBmsY*E;b&M8Wzw(}4Tl&z zoiO1iX1SE0wfmEo?7K^9-)u-rG$JK%b6-?w2XPaQC4?AGI{-mMCit1y6`1-UVSjS{ z7)*U3yCu7t*~l5{^@-bVuOH$?bxekuTAor>8?MUGaX{6!vkI7ur|aFy(gtDEO;6Of z5fh_}R1`2>0IlbKQgxtJEmtba)tHeqkC8Q*oTs?e#(NUwv!xR$LRBtt3TCLQ)pf{G0IlFE1Z{H?R1gzI~`~QzRv|kyQz+_v_#d2w#+BrD9bS|zJ@0-rW zQ?V##LC&N~Rj-t@qJP;^s#oflG@VRsCC*sEOjx2Ud3;t2vn5AOS}9peVF9<&Nro=g z#h39R?p8TI9?!!(`WQAGsInaaqKYWf<11*M_;2W784*OCq9JMz%m)4_t$lHNWlrvGEcCYlc>aj*f4;A&z^XH zvkwV=x}?b#hviDqHr2Vu4*6Nhda_)n6zAZ4o>XK%MKDJGgUcPwyT}ZTt|AF-&QRd^9KcV^d_6z*} z^0V;z(aTpaU+E7&dHv+&589Ob@a=PSXWl-;_uu?L|K!KExbA71C>WGbu*PLt4_jggqT7%e>-T=e(~}X^1(iP`+0c#^XsQTIe+~2 z)9{anhjn9LKqAzWO}{3NSW%CgY;~)}ekM-bR7KTVQE>_MT!|Aw7i*9#jIr_mrR&Xl zWJ#_w!T0zTMt0A%rdy)k386LrV;T^AvGDK=cQ?PjL}cU)8Ui^_^Dt1qNpE7Y7Lrxs zE*4p&ia_41|25}3cD`eNOFaeD&E?+A@NhRfc9w7XN&d*}XSBSsO#u%4(l_ zOgl^#IzF&spWJK$NvB;IP6il9Sw~0voTsQBpnhVsrk#!KHGc+~qbE72wZo#EI^v$P zU8F68XQt$vBzM-JHpGamd5JV=QX2+?*bOEfl6=p-u z43KQLu3FP5Kv!9PLjM%p=4+JaOCw;3krvxVmTy*Stq^tn=$jwD{W|{{@`t>S6z=(f z+QHTo36EdJYgx3Pu}bFAb%>g)g(s|I5nNVS$wd zPFQ`mwX1j|gRezF2UZi68`QYHMb$@*4GhNom@5gorV{|R+Lv6^-LR`IFgxFH9MUU{ zD#^2q2ep{L{LAo{f0_B$%Fql)Y8aSH>nu@0GL9UFo*+FS_ic8ejPMw&QB?2TfYZLB zMp`eC`Uwa-hW&-7vCHTHR;*h3swJM;o!4E>)1-RYSzK%3K0(3F&ckz3)z`{Tu~uy# ztf7j(D{?rHjD);+zBa6}iqDLE775u;k}A4j5*+gE*o;0dfnAdA0uW*ESP2jAg|nSq z1DkGbuP|^(*{rP&`wZQQgV0}SUvB+PAMGB$Kob0I%q&c6fCgw2>Usp1-8$$(*bwZw&E5&Vu>O9LLyvE|HI}7Wou~*m( zHFadetpy^u(y|7I2T;Uz3{MUGhlM4n*H(DEt6g^0eIV!lTX=MT^!BwGJ<0VDq#>D} zran^}Dc;7 zyKhi>x5^GA5Gw!SM;bEf(FpH#=1NHisFv(xysfTR1Zcq&X z>Y`d6$c}mO^2gzac}^N$fNk0EV-oiDap+h4MXt#L5NC*xbQgu4ya zMo=fqU{X;})u43IO!mT!lL%y;aKPQz_JB^IWLwR_O1lBY)CK8K0+HgVehEyJ&4&J` zS+PP+Bhz_-%u6t@3p{2C=PrSaAZ#qnIoz#zg&w_+0$?~??b%=1mT7}FzC;#J6xGUhEgCyH2g?iUUa3wLwI_O&-?7o~ zh;;@D#>zI?-Pa^Y3{2?)1+3cb>?srZ+3RPZqocz8`RPU!04z^)8J?lT{e~cD6Ii)xmIOb+(Iq$JQ8eI` zHOlL`=3rQrE?n!Yb1EljcrYGe^9G8!`6p0CKOg~dVP9rMZC3eQUA6(~XQ6*0Zo?^U z6Tn~Ao(Dl~9cWn>n%OopbO~5h#M~xe+wgx0|0O?ADAE;?okf`sh{I~CJOZQ#P91u> zE(aGX=o4(o1mpi(_-}dV{~=gzZ*kyLHW7bj?@)>uQ{o0Z2Wr_%)mOd!f)R%Za-BRngtZnd0aMvskLY0@N7k zYZ7W5Y{?9vh?Z}B7#oGv8`SHT9vH+)&d?r?^zo{eGd`dmpr^>$B3804WLcs)LzWF3 zC#2nW7M@*jey46`C^|=K^d<><*HHH5?ceh4t0D$JslltM-;_lJImYBBJjrbXY9`+Z zh?=?5w`#l>ALCt}Fb|SVn`???;b8aal0(*EK}iAxB?J0(hQ`y9EhDJ06VV5C##yVy z@`Oo4#htl&{SISN8YhO)Uq-_T0ckdf)$|oII5Lyoz zvMAL+{tYmX!((^zGdWoa%ov@}DW!WBHXIUcGHVNhmj|N8a`gQBO?dr-b$af}FJ$Q< zhki;2Bgl++0M_iJ_R8|vKsrOu%onf{)ibKm(Oq_xrSQZaU}f8Os(|lUkBsd4i9Dq( z99?|oRSG8T{5iErbNc)MN6XeH%+1;d!kff#<5lax-znj$@anc}^@8cl{vqc5H>dai z6bz035?%UcFWC*$&gKa2kIynOQ@pUh%hdfmJkV#6oeSp$%4eWmH04_Y6Hs`F+H%10 zGfSeO|3bYGK^I3Gg;Hg~z@&)80>uBAoTMv+@Y9e9w;I%>ZY<<-`6$zy- zR!wPA&Rn=xvICp^LbJET36&EzE>;3bMfRTAYVp~way=WwH!QA7@@5_EvCt$@)$cx( zsq4@TvG5}@_F{t_sl&g=aP!e6-#Q9vLx#A0WYI*9|iXpxIST{*6vE|NH`ULY>%9GC8) zdL3?4FvugEv_r=piIiLYc-X3ceET`!=;7Pn$nURmsfYkzK%c*R)t4j}0PtQBnUHR= zy(PEl5tSR|;;ah$#YJ-1R1k(~$+93%`>Kij>4`)^vJAY3WEmO|ofHypv$XP;Op^$g8@P^4vaE5sHmV~R+0K6yl3&P#mDDrk~jFA=< zf&#G9f~Z4f+B2q7&7Wnm2R!bY7GU+BChP zdGb8buIr`O?qS~lGg8^fwLMoy_peYzPaBQ6-(`zytAoR4m0u6=o=xa0XTQo(jh=T$ z0?Pu6*fuq&>ws0K(M7XE6^ZOkw4JSh03Kh?*=>gc$rb$4H7*V!Um*Krqg{C8R(zgx zM3lRVjtGf$yO&0Qxg%`=iDRK-G2~NaTi8>t`*p+(a<3-jv0xrp{s7R7MKEt{J)u8l zqs<;IAsCzn04r@FZR95_7sUCqRuQTot?j#>`14f@R^ms`1R6tN)Fzns@Sqfd5*+OF z>H{Pv@)|XsVBd6cgs3r1KIg~q?Qa;?KCAhG20d~m!uP;~H&hS$HjC9l^$g(6sh8wm z{8VSFKHg}(oN!1NIUP8N-|T|m2@HNg#;3KN$Q8}LpC7ubhFlj9Rrb!4lCtDO*c zo$AZ8>cLx#CG>9ID(v>fK?ohvSVI3{c6yM;s^n}rRjOUGaVV#Wk5ufEUEU?~O<P;X6RgGV zX;*LW_y7Vt+faJSFkJWq;584HSj)Y{00T1eH=hCS95c2GGyu=T(6ew|b{laa0L+re z)9LCGfnXtP+T8H zHdJekxfKS!@r4?m4`2b{tYb68aR#D`V2pDGS&YFYof}|%r;-k*bk&@dvIuHYCz}sm zJAEMg)Z(+`BU&jaMHUQox?fx>^h@is6#oah!75a4mkb*%m4ABs^!-1+{zgtQWE0?y zlc&qk2|R5br2Z5q$RS9~OzuL~!Z;a62$!#;9MK2jEUUppopfwPR^GDU4^YfFY75s0w$*Zu@+)BFD?y#DfZCvsw6K`*P5O?fhy zzadIR-d|dZT)G6DMwj{nM%XUrGX*-9j18XfkQy@0pu6Slt2{JQKf*8+(=KhdE=5cs zS9I^c_~r)yxcuz(U%&Zb{?7lvTKpexAD?99o7xMgFx2lkROG5Gkq-LwQ(@?ilBI#k zA?1~`BnS9GuyN6cXUX(${gTv0OWo0p_cEa`G^6`035hWue}PK;UQ<^45(>^cBXxu(rYtG8F91=AKChOgwdZ+37b!G_?YwfZfq~_EAx#bmCY#ov z3unlItU*W=Xvsap=&Hvv&~A=hGFc z30I@K%0-$-F*?NezPU(dHBBl8>K!ClQ|Mfw)l|5ZLUE9|F{C3r_$$a9+9%56LFS}k zUEQU@nuA%kSN&_%ppPitpH^MKmh7yQN zYW?~3_aX0P+sgOq-~k17Ckzu2upn?ETi}Kl04;b>-*m|AUZW%jnf3@x0!aoeHEUoT zbhfjpN9G=SX5O7;VQs=alX?#ZX=nqX0-0{PF->fnRv#;E@01x?bw18}3~ z35Y2rcr`A=nlRI>+yZom8kr^Wdt=qBvY{l8DCV^oKp7#XKXk}?7-T^3INT{)>Yf7) zu&d7JtaaXN3tpa1OFdfCS1_mJb(T|QL7`=PZq<;&lR{OeWlzIgXSLV4R#Ns!LB?bO z!ZRuveN>F@2@^qdkfnR;3&CrtUf}sBxwy8=7jH6+Ak=Y;t)!7?>lnl?g}27zJ;}F( z;FF4o1@&ZW$x5he8c|Ccz$_rhA79Ev4Q%0T==IU%h35~3Mmz=LRC0p|D9~eME@c?} zZ+?((AU3Y;k?xKP-p&eQ2hpcgB@I#`UDZo%o$cg}Q&E?LKzmIMAXy^dp33Gm`hRjS z>L<9N!FJD*H8e%$nF6$EnSH&;_QVX)lW{6{sa&;1%pZZ~d&f)o{nt==TCWc@ zVlPt4p|t@XhzS-t&ndXy6N=uK-X&1LJWV^h4n90mE0z(BL|1*qjM4!h8)^%QW7H*Y zIN^|^ECM+o#mYI{4Zgq5oWB%~11ei*oB_33kvVjS4+8O7QXVGR*rO~AV>g1Ha0dH= z8O08I)&b0jb(>Cw81()Nh}C=zCgW_m5)>~Wcp=ZHA_ltjn%Z~<`Y^hWFFa&kcxSvZ zv+5-Bq#!S=H&yrL9!>Z`6#-qa${?!1Dbt1etJfd#BfTSkR5tFf-ag{Tz)vhpQL_=+ zan%d*ZZ}1c_Q9FdUU&x<-eEaxA&9!_I?N?1FdWS(M)*-*yDGA1 zTc-j($CAZ=1gb*J-{ih4tDYG`BODRme_+AS|jb9Aonw%4hLI^ zy5E|F^PkAB_n$y=Q2P{eCT(a{=6&AP+dIy=23)IUgV#hoSK0atnKwXyQ5)pkJJ=D5 zo-04agPqg^OG>21rQ$#L1pk9Xe^bFD3xE1N0UZNvZtMvhnW_=3z1at~@j>0QZbuXD zflEs_j}DFEAqrs>=p0B7vgWJfK^s(}3hdp3&4qv%pf8@BH!2e{#pEEdhZ9jRe8!Mn z=MWxM9U37Jwwhvhfb{%2yndDiLDesH>j6wB-w2!~DS0u7y)cYuTNS9xRdIn!sb@fl zfE?U2s-8(c#_^~R3|f_i3hcANygKThyuUh(M6iHXL#jx0=)hXrdY7NJ9g!gTH11N= zg0qm@G-{FJt-AyYl||z#&{yaMKLH)SxCUbb2Phin){3;~c3fH7v}Puj_<=FUoc$8) z#$!UWo|K0=%Xa7p?p;s~48&|lu=7m05}m28GqF|498ggaK*U)xW;Y+EBX57?$MEfM z=)bx_DStVsL$=%>ygwDlZ&|kED|;j=+H0-7c+_`!RdFraP`b zJPbZ8?+F?ir0ChLg8(t{=F~4s?DjlA;A4Rt@(btKfM?jbU91GEGnP@uF~f`X4c95g zVhcOTk;4HAQWqbz^wYT?wxvjkWZg^pz(O~eww;*1R#IreIMy=nibw}3ZN3bzzeVqL zWIZud4rP)J5=S4$Jk|r?O^!DRgys`X9hPNBWTol64BEgMXi?E!8IXU1fc(Yj#=+Pw z&#ua+&31T^ONHt--%ya`dQj)xHy&ESwy|p0I^%CNfXvTHEy=j`dpZ|rT?Vk_H@c51 zF+}ZHWR0OhYenv)Bo($B!n3)TV+veAxK>OS@q~@cR-gx^$i%lQPEOG!$}bY<>{@ML z?hzerc`F2>p*Tyck3oUYlfa&ReNU(}x2hvowTFH>G~Le@$FxiBZ}qIs4m5$eWJW{p z2r(SaO`!0=yvad*lqs8~x=S9V98F=g)M6yH* zMgsoaXE|(k%LxQSkJs6^XoNs{6NiR9993FI-$&;{6#GCvVee5LGu#hOp{!JHm}Sp- zClgRE-t)~281r-?1`%hkf1xt-bvOe>D2zM4(aM+g8^F}9GNSpwi994^y8(G4) z3gJVmsn;2w9p)G+$e?k7& zFCIRnx~r%OJo%*Luxf9GhUYjdM{-l;e_7DmWv~Y?F+gqa(6LF26xSA$`pInIdcLOm z0;ngO1&tS{Ap%&TbE^eVFe(ZH9EF;(2-V(EY3-gDNOjifK{}H9?zN)oWLd%ks_W>W z#@+??BnY8x2r05^g*)%8-2*l(hH$efZ3TZF0_EiiS@gjTw}((6w#j<&QEhy;N3{|M zeDw-3LfbhoI6Q2dyUl@aS#z%H&Gl%Dv|ezB^4zaE)84XY-9$bJM_MC9a^s91j;%D+ zY5w%6M7CZ5elhq}?;_&>B(WhiIp}t*AXWiD4)oV0pM?1ld#{KtD*o>`b>uX(-WC31 zM}KyEDMA0&RFwGj>(}|a(5!m>4lSf|rD^x>zB$PrX)oT<_Xh?W86* zx4wNr1e@K(IYC&Xr%^dQ0r7UWLzjegJERxvq`ERj?jZWkmh7){JeUediE_Pgt!x{? z1G9p%^GmAZxb~ZBzottq&wO>vK?|Y6pfC|u`>I{tT#yUmG?7Ynwb;F-XN6g?PD616 z72W4DPNwMxG9E*>cBz$k z#zcH6rs0UJcdn`@Hj?@!z1tHHl&&~^V6F=-rbzunA9(yyzkHDu_foN$i#A+@CR-gd zby$wYSX5XmPXrW0Mp+SCC~WT(e{?0GVu0kk!trZEZ`LN6V(Prbk#xsVSz`^i-}G|0+X(iRZ5a+^53X1 z#^M#x`nA`}+OvoDg3wClg9J;5K=kXnd!Kdz=sLe7{IR)78Bj7g%?^D@epX0T!fT`M zse@v`yI&cI?BBw-zX4tvit1BNoz&`H4i!v~&{VB-P-Frz3V=STVTdG$jZQc%g8lII zt3X&1mUy!Dt=`T;U)+QY63T@Y6Z%Z9OY1M37bT}T$52I$eT*9*F~T*cXQ*k$$G zp(5szoivpi7TT5lG`xK!hxMa0N|p!^lB^Y-a&TV{n0bx+8uwAziOb}Q8nBgp;H-r9 z7|+d)_7Yb&bngHPVQ7eor1oaE(s`u*Wl2>9;z<-4`}VoSXegOkYiB|LLo#eDuCtdI zhr0A&E=wi8MM-%R-R0yYutteI%4~5j8)`b}mLnyqYCvknhnzhR zRkgKlSsFZ_-Ih4QFVPMal?)jn{%FDMx;#P=L6&ciiD)y7K+9^-DwN}9L}+UmVIp37 zN8lcS=CWeEYL8#VDq6S%CZ3eVZV#@0vV5C9u!WHj2p+2H`Bvx z{nhw9YeMc5tkAZn?|taKDzMN$CGWZ_g}!gCF`t#+S$Sd;i0w|9w`$f$4|;ZldVog*C8GpHlA?cvM~*y zP;4c-P!#0s{1T|W*0NWuAq2#~LmMPHnN=Uo5{>nthB%84hO>3g>yP;{eEShuI@U6SJB%7)^YR0P3K{ zWOP1-DHITx95zGMJCS+aAu}3=JZI#u;5+|S3N`2)Oo88 z8qky425-*dY!=TiGahP?w_+_^_}mi(sFE`7iv-lF$_!bq`A@+_Ss;i?*HWqQ_oV?j z)iV3q>vD&ruM!VR&%OX;8h9p(k$$?OqNZ2S`Z+(*fH6&sDRQ`7afpMseIW?a@5^e&4+ba0}fIS2@%PZDPxuNjGG?v>r`)j?s)VY|0e^i`lp^OH~a z&Tz79hQrw}MX2?7&h{j#=As6Sa!OpxN<~&R>s)~J5E>JsMreC>4xt5*pJ7C~*I}!m z7j(y#qeYJb8DX+3n{a{8%Yo7L0psBXa`5>@A1Xq&ST8~nS<3{Z3|MP|fIw{;R0E_Z zV?b$v)p)Qm`Niv(fuEexGq6HzPs@8s!8HoR5{||h74)dl`vc>qS0}pFv8%# z3oJWpS%S@g$4%@HbpNbcw}>>S3?^N(X=2Y|UyZg$QEh?JtM}*{+-%@5l-Ubp4XOK> zYF1tVuSk3_v~WJ*UduC2v**34b#j#ii`~u{^MrlQGO`%u_%axG7#$XG2M7-^OBhq_ zfDs8jn5Y)}K#(Xp)p}AA$pQ!kXcxT-N4DH)sy4FuFcAhSqe2rFBF3(m@^`7gLDepa zR0y0lgs>99nujZ)2#c!u!&#mQ0;m&CR%Pmd*GpbidH@2n=$5i*#A>3G18}xBL5Nm* zzAz3*>T_MKsdnp;QrIC65qX|ez!Lh}Qrl@8W^_l)an~=fJ&?fF6M4jGHz6F7;JrwG zXpJ9<)M)h{M$^9zCi*xp@OM*Tx4cI|Cc=7J{hVCUNEzJ~Lmd{q8#|-qzMiJbfDukn zRges9I$hzaKy0}V|0Fy|mAQ-tqpDfFR!}kzqR!mdI#O2Ob0F0_OvQMQ`ZI~ zJZ^ObOyD(mSZ;v0{<;vGkHezO&N`z$4S4KWYG6K@u}}vxg4g&K6EWH!0;hsO|| z)hL_k!Hj5eP@}w{gNr zqx$D$^2?LDa~E9g-E(f8)D>b~WhZ}D`*{0V;3t5>W$hfT5ZDddIm(BP%t9QBO z*dm=8#nh#c9K4vFt6)JK7CG0`7%us~NRc3M3KXkyzFyEe=|-gX0kpd?_!dV=DqAvbBxoEZk61%qA5ifeh`W!E7Qj|B^7yTb&9Fk_ybB z&`x60bZl*l;4CX)wQp3d2_MBa{u#ZoDn?JAc9Qe-Kk0;ju8oYGb?F}f4z z0QC%V>=eY@t^hK{3X@H&z_S0OQs(C2hI=h>9NFMgW zPO)U^BULff!?{tPKDASJ{gfVbG6R*W9r9yB7-Xr2n_zX!C$Are*Pr4|{yx0@?zBUx zp!YT}#P^*jDY>Y7gQ9~&03e#4?r`5z9%6uUqDyljhl+q3*tNHn4t#Fx+JMFEHkgWK zw-%{3y7Nnh=|JQfsv;VjylFC}Ipb|C!6pilrH_ z>2lw*0~J}o_N1Ts3)&?dYHp6?&G3FUEs!KQ99$FPEW@b=Q9!kTySv80+W$LJ6WeYi zZO>iETfp8r5WSLzL44*&ooT>+4;-U1O{tMifLy|DG4`ko)kfzB2 z-QXzns>FaID6t8L_uvSTa+ryIDyJe0(U~l7OmMj@W z7-e6oJ2h6)aQ?uwqCbzZ& zCAO{YX2D@RpwOkJIlEHRMbXmGZ-hj&NWtp-xK8kV~x~S_lp5%Q2-hkkxOPG{`5X7XT>Pcz$GB zZhkWwK#!T=iF=*4FZ`*e+4DC-_^l?)sbpCyj~%O~yDmR+LidKGKpuNZMJKeGaap)pnL8HUP;f zL%H{sqD0?)T2qaVE47=eokT{}VyD4Vra!DIwq^?)ayfA-L&4g*_~&r3rFoG@OIM{A z*9?E`JV+j^5uqfXmlMic-YR1A*GvI_Ogu&GIW7};fbF2;&X{ocO;gd@%a*+zy^vi@r7T!eF{1%9{T%#2r%=O zBx*iP1a)KJu#n_midPL3`E{P_^sKSm`XZA0x2JtJ6<2ly%o0|Xq4B0K=?<7*{v34! zn=$=)Q}1dHo!TVXCVZ&Cua#4x_qf=PI&pjeA`_J-w)=2N2XY%vinY%%_$fltZCP~A zrn35H_b_gE7&bk?fzUAx#r^8O>uONDH*|*bOCPJp2ddZ89a-p5nP{O-9I05g>_r?4 zSOA;QLxYc|HYp$B7UF>5?HSP|p9T=tTS-#rq{jXsh*&yVK=(KXt8rFW>?=Mb#$4n-JHL?Eust-Ok4F`temcW# zVl)6(uPI@Pv)7T4va+@Q(L*_}FJ86I$~?1aKdo-&*uc^0yxiQcpG zntP`m0?ijvsJ{Of`SAOEZL+lpm7B}t4>_?x!qp9)pb)J1fs0y!!kvncNkZX5g#)SM zvR5n{(R+arS8_)2Iw~|Xf8GQaOO_=0L8-n89v%s*Q&$f=z~n7tdQu6S1;7{F&=QH2 zcqdO+o*WQYZWOwCX$@?;#co*x*33?tC604{XaW?dR97u3suh5G*me5VcZk5eW5&|*;-1+nO#uSOM0gB3Bgldd2W5l~;8E;k_w88A zeXZ4oM&gQAFIOgf14f>LYIaD!FJo4h6m?c|>!OTn6F^64umJd+O=dgi-egidHJN zjW}Oaw{_@j=S4g$m*3J!K|ZmNybSF^>0gXXa7Qi-X6SXs19Bv(;G6+yWD!THhWi&r zKAyB^^i^x?mrIDLm&d8l2a4#zN7ivyb8FoCjltjbex`@J3MqXXTqz}lj;x5Vz1MB5 z)}Y6Cej})YapLm8E#^7^4j12`8emayN+nYR*jnur=<=|t>njf|Ditq~XW>RpDA!50 zz>La1T>`89!L=}PdB^19Ea84{8vlE!^XU;03f3Orm?5`t2&-x$NQKY3lqDsbEnI5L zu&+)4GJ$#mZ_U*rE$GV|R@K<67W6EyUAxCnqgb;XC5O}Zz8C(&4nj*dkss`X=Uh4{ zrbv2?p0xLu-v8fkKMs_<9A(eK7bL5K;66QbS}nJa-DCg&B{Zs1v}7KcDC$svN>Vlo zI()&8;oINH%Ud}RHYwdQkE1(`itKT#NIs0}?C@1^_MOl)9H!N(#s3Rj!8j6P{9Q|I00EB<{?f<*j?)Y=SPmn z0Bxn)aW+2`DGcxRfhls47X`AG@&|N&TvZ>`j=ih^GM_MhMG(8f^~!)iI@qxw4+miC(T(Bav2kr<;{Wf8K0z%hHs4pqqLGmD3Bfn1q2r2kX+-@a!dT~gvxQK*uLzRsZ}_1AEfG$s;bba!G@c%)Mo zHz23yekq5l?8_F~AldB04|<6tJMm*RJTwZ4k&{n*I3O~ONyCt-M9Q9!6y5bmkUckv zpG)cj6+OG$!L4l3k`Kdf9C4Th9lgmUP441JwJ7W-TNG?u=ub%=gX|Z!Ch+5mezvb9 z2Kwfy+FNSMm(9-&5B0^pFXFW;klW{Np#udBIq8}SkVwQ7XP;yX zDbZ!&?|)WVvFcReZ5(zn_0E3v`p2BAfQI%5LIqwTwYX4i?XV$kc!x*AzF_r<@hpWd ziL8sBH?&zqEgc;48gTn2GG)NUYd=seYc!QeXd@EV2HBeY1Ap^3;cx!NLhrT`y{SOQ ze3P^@Tj1)m_UodFf6C__r7RraqkU;O&i7G?r=3?Ja*(9uv`Uz{JPg&EfeH+<3ok3} zKHIFMs;Z@=qX<{uska9ia!U)98wlvTf~my9@lNZ?6~}JbL=r(0)bvelO64k#YL&+- zFEeC+Do6k?jG zL_(*yESk}%scNOdf_BqaSgcVrX^EHuyW8PXIrDAY2UP%9m9v5EnM~!ac!RDAx3u#T zXQYj!FUZIq(cm_hOzq683P?Fg@~D8(03QxAgktLKn^|NMBnwL%VYf>lfjX63s#CUm z0e5IS)ihc4qXQiP_#bf3?WjQ-;3$YCt!pPy?GHtQ=Y2bCPao}iIs5LpouK9Bnk9kx z8=92kj3OI3^}`g(O1B>7jj)&JeQz{eb!63G9?BysyK`BB3#>ZjV`sDupO^ zj2iVIVQ(vD1w7Y{hv%1fkUp0h?|1J%58wR#>6Q>Og4V9f{)Z9#MBm;o22TFmD!t1{s#W`TF;gf?gswX{F=3=$Wo$9^e9kX4uoP{_F z{iI4`Y#*vf?TRpRyxM%Q-XFz5rbY+0J$>gp-wEIQp5$j+xCWXffD3+1<7#t0mb) zQKx-3Qvm+x?a$#ggS`M`eCA1R4QkVCkpOa4+I4T}%sAUi%Q?wuDD)Iyl+lFU{Ysni zu2CMMp^AZ+oH1}G^Xdspm^VAByC5-({bjEJ&0|^oQXSeHzkK_Y_=F#$#nA>W=}w?K z_G`;Nh3Yt!WjiYPtmvC}8jU8XId>O#6iz-mSY0T0-d|okO_dC+>C19OjW+fqqo~_i ze4bUAosHWluZg`V%V+~qk?@yU6}BdTtK{v8wvIgCa?TFPtXqBBx%t$_~>^4o36 zg1fG=S|Lj#RrL-sjD&|Gaj-&c23Qp5slkYi)7vgF(6muG&WBEU^S~^g+(>%ny#En2 z3N&C>wQTU{$W(1{LDpw#RP3z?jMdl$9H3!jtri|OTfu@b0a{xk5KjP_)sd~eI+xS< zp0tQrm26TAM1kcrZRw>{HM9j<3F~MoNOEn!pRk>k zjdtzY@OQl`AXJ@tk#cKA6xPud8*2JgRcbi*{v$xTvhuX-A8mML$%O}_C>1In+XYnq1Q)^OT^)`@=A#_3cjM#Vw_E@z&Lg9d5tLFj)x?^Wn&(GnR`t2EkDu*yJWCLy6 zqiWX`J`{3ocO^TjyWRSwWVQRIRyg@@wiM#oO~EljB6fRLF$_!eC)q(Y>ke6X_p8)Y z5*$ZOt?XsX}Sv`!@6&~s5~xiSyB4;l_s^%FT<+=Jo-7h;_)qa;u{}g zG$$m}rLufs427dD4jnl21RelQ0_)YaOs4gY<`Y817mCW5qMVOVXV^J!-eqrlHiZpr zv)pXtb*Ub_sQ?mkG%3~obxIy9Z=k(Z76$fkVfqC=I2%QPhj8CsqZ&1%nYu+QkuDJm zm!SOZoEw}|rHX}4`;Yc3nv1;U)n|8g`T$MyJN7bvXFbdf9z#+L98H>5xe9q4L?!h) zY~s;+)s9GYXPzVnV%zc@YBBkVgFNIjF9v8Ol$_jVO+F4(uZ|7>3n+;=pVv+29fV>k z3hwk2HI=rb4gMsHWJ()nur+v;tQ9y!$Ywg-1D&ZB3;{OA^vR{+G0xN^kmDB8v>78s z&@_xxUC&QBUiV~hTi7737haEoIS=oKq0-<;OtWP=gJ!TEq z9ZUdi?;55AstCZ90C*|y1uU}S9NE8st#2pC`=7!h>t7)>v9T4`uPXUM)A!OM0X@r4 zR;lDDX_C@4wy<^^DpxE|g+i_FKz5r)_1@grjr>LUph5lu^v1)&Xk+dRurx6vYs?kV z6j)+K_N|;@u`g1Odjlc1%~8oXzp4-PGS5p?TD%Ddp~7|j%k!WdoMwRf$Spl2A3Tau z(`Ph~rPgw>vLbg39jSa0^30xh#A1cI61J`vbn3DdcIkKOuBdbq4kL_1$|ee`XuB<1o{S>MQ9<(-3K1{ zUT9bV0MYSIf}Kjx4jb#OhG|YMQFC<1Xa6p`6{eynpA+PHBl=jLDHt^<)SsR zsHU?d^J!eQvor)7sB5%ImFmc<70kwCoQ7I}!%=O=Gvw;TIXaIR~0 z2UOV-^#y!(`;Gfh&Kg;McLn{sWLCR`Cscp6&;4tS2lh;EN-^3)V^wa1qS6}Or5+%% zyyRd{aZ1R}7XCD#Q_m7+SGtNI!1pc&@Pb3v5T}464D6#q&2VwIT|_K)@KrzS_4im6 z8Rwc`CplJr09PH}H1Owg5mfc5x};80Mb-RqU!t~RpYItxyB=}XSt_#%T-)0Nm-{3K z7J>Dl9!|>U!~hLJGo7{PbuH5Fn0iFzqR9F~4+?h4Npd)lP)LT803czVxZ9=9uFOur zkQY_6nu8C#F{7~U(##cm&cdE6=tJuXrea_PTlj!Y)x$Fi*T?!UN_s2m(ekaPC)zjK z;nLwGnNk6%b;w|c;>T#=8d?c^wic8F%f}FsD^(SR(_i-RlB4GIK=Cb!?aH zkb%p1g)NWj5dcB3-O+R;t_35$Nre{c#H0C0UKv4bsfH%YHrtt{^JDgWC1E4yvgHm1E1w0RfxF*VMW#HyK*dF&sMblb=N%3Vct+0Zy`?5c zCIwSUly2(KQrh!RuX#jq>(?FImGf3myU|-&Rcz5xp*GwNis?GG9UEFoF0|!DL z*a?%~NJc5ZwV+X>Q?C+9F4tnbvpoZ+^_j{CT;vT9OTuW^W*KhKqom7cAH z?|g^jHmFv!1H6J?{UZt9+p5YQ9jt0>$vhV2h)RYvW#{KdsUq)TeB}AW3N-YGY%)JuOUsS@NI5OXXV#umB3GXtJJf<0G_m{JQk+Ib2Cf3^PP)fgs=Z?J7He@3eKZ z0<4Zy8aK7ummQBVGH>hBI(wYKxW5SAwZ&A>lsdkqWXIR1XGr+Gt4Z(=So8pQJ8370sq!G})u}*0k`a&lLv35ee=(*;g`nma$g0lp@ z#H49~X5#V`KU2SD%8SVDy#+4>*Fc@822wVsIu|_~)d^{V1J{|;mIpf$_b`Yxb$r>! z+G@Gj?|hQYbnS^oU6B}g$Md3gr0iX*C_D`uXufk#p#CXS=z_a*#vGN7_iFT{&b=-h z1;w9>A_s5YB|vNXaZ*pXe2w5)!OU!u+M{|RbO0#Fm4?b7aL~M`(=?h^)jg^skf`7a zjkA|Y4~k|kZYWGeGCWjO%(|bSzWo_2>W^Q)lKrCIb(VypqLqw63SO$~sc##4chM46 zNmFc8sIpqjud&NX&}@T48BkNhw7sZ~Qg|azL*(fJe(i_YH6lVziRim@)jE=y8^E?DvQtMI?u;k>cs30n}jOFyvaeTp2Y^{wsI|x-k9kQz3d;U4OI=kk^%H1L z;MDhCrZr2C{NKrD5^)+$gczCLfA;#>+mB(L{rYn(h2OvZ{{3ff zUmA7tPKoq&40KLklt){{DP>7F+M*%`dqm6U0lAS~V(g;g56p$1AW0cP@9r^L$vzMU z>(M2@sFvWUCflAt*PG72Ol9)Z{|R7I|Je(edKQ51kd|CQ3fhwPH`Y6P^RdEyOn_;j zny@#d)C?f>JBOZ7_8U^~EW%|&sftN386K%)k zQ)o@u7?iH1r@a2O?nMLyB>ViRo&iAv-1L^zG8hReoFd$^RHfDWs9`rJ7jaj)ETRb; zYfNkUWt>cH_g;NaG=*J-po{H&hw&2ovmIiIqy(q-8cYPinr20dS)%j=@CCNSPN?dw zY5<9o00a>|*cy0aM4r^s4yrX9B|Us);EC5rG7qv=Ua4~CV=&Gpd{x+wa@K;*Nbbr4 z$^aN&oOZzf$4b=hL38`6s8pSo9tyFWBc(3#s@iVEK-DUmx^fAz4T4npfupx3zklIu z3x*$VmM%$N{_eXyLQw83>7}(^c2#%=;OqqhdnN9Mn9am{J9pAu)uRc181}L#BiG$hc`G?N4iGOE}# zgj<*!wg40Yq$NSy>jHW<8mb%W|8pYh-wJfg=c1Z1_)!d~J5i@OrKBhA2=224J5+Em zwyXvmh~y_MMRX-Xw#NGs(4DUR-ggxY8Y*}3c$Q*l@XDcu(Rj=fLb3b6eFIeITK3nY z4wG4$59kuvT9|euuokT`1j=j-yMi53yK+2Q&sL7%eM9T^f*foi!m@{KKA$*qr+VR` zD#!X1drhFEWP=M_Lqk}VmsiK)LgI%l+&+8@{43u)S4h1aX{vdIOGL&23{(qIkOpCL zhOSWYPEl?%7bhOrS@P?d#vRxy=pb>yZnA`6%W7Xt4#yw8=kaxiVo^n_uU>i4pnjID@009>uH^^;gfg_bVqKijO0~>-JNsm(PkP2{dewg+-ByKf~7)Wt- zB31FrKo`yT|MK=n>O?;8rJ&<#lFRML6D( z>NcuHV}7ZqkFIHasta0-Etw~@1Sd4Wdv86}ioq_u0_+#4Rm__Yv{A*HK%5`8nEvKM zE|c=zed9?D3-S$KG>1iZ8ptOpbQ`7SH-cww#_htF7npsZA+bDyI-~)`+6VD-6{%7qjgEzm!#ge zf|O_q8UgZ>k|Us1cd9ii`CtlKlj#*$biOHiN@@KJWc zCF#nWw@pCvS@DBbq~gpuzFsQ1?cN2$pw#Y#I#ii@8)!D}a0Spp z?MA-IQA88OilBU)Ej76tkWD!k2kpW!r4tHrrRdtzlw1kI5er6LigYJk8kOwn!M4Dv zLozr#V5c)()M8#$n-3?%Z^CP?!{2}M`iJoP+Z^?FXD^$qmF+pKCRV1sg14;}hIvQ+ zB&s9wGN~yONN41>4}mi%2G?uvw34fw4GM|o`uV`m189S_M)cd#S&sU1QDy^n@Urks zX)gPf3Qw8#CUqBEI@OTXYBp{Rpm~s2rtx%_Fl^#eS7!Tn!hT@^Kor-8O}g>?I0&go z_yLN9Z#ONyy!C3(@~Ucl014%16Eus%tP%hydJY7mP#u7PoyX{^QCYh7fS;HFJb;3| z+X`Ybi7hopP##f9wP>n1zv66>(Uy~%&S>`#6KW~QfXG%bKa#Fq{n%9oepNr6EZoDA z@QRrxaxI(F;yCx;3^7jG$d}%A-XN=K1%BTFJ9D4ZsN5O7XB2%d`Nig4M&n7TO!ygM ztfOg|8p>mxUNWKLAeOIV#$qXk)(s87|lwiTwLI(O3yI2W!}jv@D!Ir3%_=QLMS=je1+pA)`~ z%IjIk4VprO0WvXJM8lF5sy5dbEfW&7;#);Af$!4oakI{ZJcFG9)W%r9|4{vCb2U8l z8oa?#@2a(we+m4+Fjra7}!f>W|IBOf=1;%6mjgfy1Oz-U592m{huL|^YM3b+QFzlsc%R2Y7Qvb(Fof7+^* zE$&s7t$5}R7%p9-Vgi9mfmGbsyPDurrPP!injEB2>-FH zx?hCXKcmK%e}0Z1ge)w2qkVu9aml1+m)(GH>&)X3>Y`Db z9EL+0YZ#TuB3|g2^+#)U@2*LDRrZJkdpS?Fzvlh#&eP8TNkF#06*XhAGt)F~jD7Za z0oy9=1BBv9=zv@ak0oV!LEy_OP{;>Szz+IR&`EIgC9o4V{2mTM<#jHR^G`|Y=7w-n zU+Ho`yIY(@pa-yG>*)isx%?X%{YG$TEeK&q1KY+;NupSj*GUl=j9D1ZBw(RhG9J<9 zkVM8=RU`A;C9wEkytRb(&PvrQIF1b`748ixK5a*17>!r31_!)=Zl#nX!%%g*l3?w! z7aLl|=W`m4pi37KzGpAo{M&YDyVTS!hZglBkFU9c*blsCUI$TK2IB3?3Uj#(EPjFlP#YcAO?Gel@S2MY8-4FfQ1a=#i3fWtwfuB>6| zd;j6|5-jIK4c0o8LJBp9SVP;vbnmb~rZQ3oDi|l!1D+@ykZy9cn|LYKOuqkDv>nj= zMOpzoo3_voJ#aLFjRDj~Y#%k3v)k9p@;1=kIS||+l`j#|I(Z>xW-ShgY79gRzk2Y+ zKVZ~C0*KV(hIfNN4C4m2qz$-v3Y>k$EBojyn@KA2z~&YP27MW;SL(dr#AQfC{r2?! zA74Lv|Bt~iNb5EbV6=|v^qB_lZc2eChg2aNp(~PyoV$Z@&u$GjK$h5Tz6o#az`2nd z$#K=cynP7~x%=#zCJKX9+>Bx zRb>>G#CLZngNmt6AMs8H_YSGpRDs;PoS(9En5`muaT#ZgrPEVrW}U{yBQ*?jwUXe~ zvP8~)=dwy~l^6T(!`sgtH=kd1MkjWwntiBBU-@c9@U;*fE=do{iU`brbKVy2gu@v| zB$Alf0&XfW6${`}?qe-)eTG7+JK$jmcHt0P;UX3Q;4BPS^w5t5JbZ^-MmFb>oTYcX zlY)tDReQc6VHa+mAbXX3j=@8IToNUUo^4LHQfJ~gHLgJ*8^i8ty2Me-JC(@Q@4bZT z8IVUkO1VZ9ALMGEU?;=n*YQ*mTBoA}9#c+dS2;|m{z65m#fpYLF>0mo+y{8Ruz&*G>8M=$vd##Kn25hz#kf(2rvv;o8~ zbpKox1oS?7GAN2UTpsP>Ax=&xPlPp=Y^N1?={R{6w4ej%i)M?Z`G*mVqbscQ7iZ1v z{Ny&X>rNLDcs%u@hm!=zlGA|`d{Dmm&D+n(D)~5n_a9z=2ffzc%m2Ryw%)`-E>Q8k zR173{wIw&%wO-z&#G#8*j)H;rvuuVPLq0TVm^E^a^ULzpufp4J^81$piFJLx`x?>R zEDJ62EmDXJEEynZ9Sx71&&Ggg?2VG#YNQ$uCHFNm*)AF5mM<6>)j6JYj%*_i^`UO* zcam1lCuLo1==2P#^5_U?Xi3Yxf5HnI&u7-?zGGzu+c>i!xJnyYnnq45#U zZ=_2gkg7)gDHE62gUZ7QgxRg4&L%KO?xnF#IGa~u?WK^yz`>w1i^@R4Rqw$IoM4vP zln!W`GEaaBA?%;qbW*QXr~pna6!#=i-0CPb1rHPi@cV$%1t;xMSdOLvUJsMvUkcEU&|84n3S_MjD`0a7Z=vb zO&TyQM{0}7I|O=u88Ud-hJkXrl&-+0IemVMP_5On)k)$uShwhgcwc*^mJ$xwYo9=!Atux?t@&Q{e0^$W=mICwK zrfDzD*hcXncEBwVcPuW7N}{3R$B*AWdHWKgbgw@O`r%^)LBayJeN<%=Vyd=7nsKS# z?ZKguig`>vO2IMW#~h5pvA4~aBzLCbsX5osb$Yl?7~UpNjS2#xb2^ksKYjgIN{Iea z(vh>QhFHofiA83EnQlQ1`0`hMcp4*6;di9V7y)wjtB3O%vv!fB*c-b8WAL(Sf=AM} z(}xe{@CLVATXb@DCIlD42E4K^aYHQLSpn^RgmL()O@=tE1Xf_w;fYX%!2^IKeb^yn zfg2`U&g{5WKJL~4dTNXkv0d87x09&1&+^i8IP505P_4Y_k*FXf9(LNs`M|ca!|IzK zD9gedyLY;Rf)&bdqN(jND3$VP?AJq~p+}I-cK~1wmcm!IkRa0z@|4R}Xez)C11z+* z3UIsAEkW&~GdlMw*Gl6cNs<8u^nfw$KoHumpF(n_S64%=G-{QkQTgdbfw3?-|hw-8dov4$kG-EE}YzF3ItA z^I~1)ta~LE^I5`9?R55**tyEisPS1ANJF_JQ%bi|f%4i?iHApJ3m({IiViO|3X7LA z_fZ5hn{J9>3{aUa;_wwRE_ml9Op%!_4V43#E2_AkD>r(4vYlq!dRtj(dW_!7lLSx; zn@fKKOwZaHn2lPEJ;NvFc9i*RZBp>mkE4|F@+TUA#eC%q*F9Ak@wX=#oHJpeN{Jbc zu@N8*JfckRIp=Sez|pa!!f1Q4IF!VFKdB4XU^!`>kq-HH{ng+7UHH4dD*O0f>0qh2 zr5ypRSa+^jRGZBW@IvKQE_7?}-K0$}OJ@r?%HDK1lI}i>KSy;waCJ}EvoD+pLmxt3 zT<&ZBdcW5DsxYoV>*>9g>~||5*7dS)1*tHjPaZc%GYx*lX+Yj*k3|Ys$eZ^hxn_|b zv_A5$c~tk{=>B`JE&Y6fFnyAT56fN~?J1IoJr6~a=m-FujZMyG^T|tU7paaw+Yzt~n zE!+ImyqR@^I1{1XQVVGHnhsj{%4~l7Jr_JMAX%{*(=tgzoWZT;jBNvBZZrmc6Cu7? zJA8K`1So+4Q`lC(;b;x8&K1z{73&fynl|g!d9V^v~Fm8C48HnvEJuuRgnB%#l zL@t+G0WXt9xi)W-h6CjwpI0F@s|4zu&6+h+2-Pm^#R zj!Z;);T-f7nuF0e_Jj}K3gj1M+^J{N%z4L>kSWc$4|+n zbl{1zLX*vZz>uLvSan>V%k+0rvtW8;;PVJd?l6Fl%Ny?psA}X7{GV@WL*WW|JkjbG z0iFjELO#t(=a``Af(LkyDog!nVYJcsZOdUKSjDz$lKlR zIZg5;ugD1O@C=WK9axgqLfWr2pPd#Mn>;SaU3FM7^|Iw*_f1_jw3PGc(?UEzrX3e3 zq~Zo5NF{{8m5#vkbzf)nyICM(RoN=-TUjM!%BekhUKE1^=ptVq7$lAm8659@@UHP1 zv-1-BE%PAx-){AfF`ZlzP1mR5gAd+-5=Iir;Dxv-fM_CkKvBbntK2l612-2KR!SV@ z2vC;5k`6K>t6-_~60R$PZ9|pHiHdJJ@{@ndfb^2`e6R7Y zB3|xJ=sw`e&MikS1Q8$WLBLD0SyyPLbS|yd(qpm0$Sm9sG5ZeYic|hD56`_1HTz9H z2ZjnA^f9nnoTz#xY>#>eB!M?2K}G9_Ts|CZA5hK_Lf@tx-QT*hv2t!D$aZC`QqBU+ z&8>$Z|G9PT?!Y5Sif|&l*nt7YBa?}>I>+sCsG#9wdm1ELmOQ{ts9v6#!3DLSwb-Bp z$ghPCndpe;2M;{g>nFkFM60WvM7I0{d_Sxag@tBENSHTi6a~sl8n0(TDFTOuwIHN&Sg4XAv9-e z{wi6dwume}e}bfdAE0eK@T$;LhEkC>842FXRhI=WkcQ>RL#w%A9;)i07_8UHB(i=U z-fS)wy$`e3QkJrlyT;+BDPndMP3}At8FJ3yZg3PA^ZkDKi*K8qu+R4A9D06w`oHuq zUagAMQ3n}LnUAx07K4uYIqrdj#&ZSVY?~@I4~!)21}x~^E3+y+j_8vDsiO_oQ&?T2 z!K@l9CssFf^ICV+pmpzFc+K;Hj8My|Q%ifnE3$=vkA5+d1nhh^N{@!T6f27VZoT5% z)ra5~7{miwbgOdyCDj?#8JTPh9FR$t%%FGQyc1wqK<>|kJSeKjptr*JvFLS3#d|%y z|5c z_cU0|_nq&A|CG-TZUfi_66*Mgh}#QYtkedt~5G^#o?6$ zu;fgOi6Uj(zf$O~Z0z;LIB;=&<|TRS9jHlz)$RwU9dvxm;{$y=c2Q(?8W|3ND@jnu zafKJA6?$O0Y|j22Wlbx3w`Z@is#ln3u&y-hFev>fktR57h(F~7jZ%-6bEzY4REL&Zc0b;@2 z4`|+yw+q-?OZb%B+MDcnWRf<9kiR}c$BQ@2*I?uZC!i&K)k|jV-qpj=01AlJr9xqV zRCC^Kq?6X{AG^C@ab5B4NIn;?Wm(%3lkg?Y|D7)B z;5U825n}bjJ#1>%rej)Kx>S$s$|qNjJ#6Pj4c9|tqT0)2#ND7sV6DCN9Ojk}H{$|< zd%YjK|M7;9S>iiJbX&RC_1=W0$AGzU$vRC*3^6tAY=faEwHE&OC}q|O9v&=8)V3Hx zQg(6$;D1l|%^o$Rwc@6|Oy?v`EeQJ9oK&`HF@5=2IbZqn zA^5EGA?XXq$#xVzIA&I@QJi|6jXtmE@JMuy$%uK)PXYO3uHE`s2s z0jbv0P3Drk2ybw{8u>*c!i!3ma}Ft4e6&j8?s9!NWz50DzpgJPMW?MzYmcGP=vqG$ z&?JP6kNjP|HUO3~iKJ^qs|95KopOU+F?y9>!$Wsbv|#JcHrp22rrkr5^T+PTRwx>3 zJvkzY32wX_ds$_d0woj)Gc7NGa*YUKn?YU4#uq$wEdvz>VW~U_Zhy6jw z%-Tr`9MbdwVh&JBDpHw5;vX8~DW@L=5u=o#AafSk# zO{y~y6fJh*exJj>O2P?xTIF0Csbmxm+i#o8g=Ipt_XD$$5k`mPRLVZG9Il(#)Wnha zq7!6WfM?mn4eEE8`(U_|%Sbq`^==ENjk!ufffRHPu09Z(nX9jw$arhY)%?eeX{6@& zRm06T$r{><9_$6Uv`7#wWLI`KSZcDWseYdA2?o?p*4vf`?dZ+afCSmlr+8l+Yk*4A zE)Vihk>Ix7TUC#72GEl`V~MwHKQg1(wFSNhi=-U}QfEjJb_4uAw$}yk^lCe<+;E7VK0v zp3^les%Dx^K==Sm=d0$0o1DK=5I2NmK$7ojkrK3H+Sq_q11A&=et6Hr-OeW%Tr5zJ znJ5w)?g@laB+XhqaFsXi9HvQUpeDSE>}Z?X-u({)kisEJR+O6w`K?8`kgjMF8IBAl z2w^_Wdqk2a>vMqmSB@$X*}*B>Vbg#kIrkL?3E=5L3_LAf!C>&d@oYPT@7+m-IF2fMXp#@!?4@LsY6`33Xns{KBW!-B!U}3~ z1#O?%VfTg(KM)LFKXJV=B**)N_9^nI()xhMs`{jvRvdzQoK(D&#o`by)`;3M%buY8 zyTGn9&X-`=WXUc{@YmuK0~W1B=$NP!oQ6Ep;p#4_`y^!?D3yLqGjsDbRkOEs6?|et zZQ#J*%CWRpU5P z6Gi3F*0s2$AX}EhGdNTu^v{w=HW>LvZUJ;gOoaKPx36Bm3i(6+Grvc7{+gu%Eoy&b zo>+BhXf-kD;4r}HjpRUQ%UTw7C~oDI2nf9OXqH9NH8R?TUZm?qHCHTjNm}Q!XG_#! z9pON_k#kc`X;)JG5HSVfnPaShFOmTA%@1v1XepmFNQmo6GNk>JPAelTY0|t8W!OGR z2KWN0ExW7{HNi>oZk99p#05&-JwMA&RLz!($`LxRSk6)=0Lx}cXs>4VowBDb)YNv^ zNg$+~nZ(O?dtx`vG7%KJ%=O=Y^v&N>f(*@6NwGE+K)*Bh2xpF}eQ-4*{Yggs=m7L( z2GvOZ+qh&tlT=AX7A#VAX!dbch1$}Z_aG=fVor?TzJPQoSe5Wp0~_VuudSu-1hK^n06c1(a`tK`?nYB#(mNX}C_e9<#yo~=1!?=!6Pq7!Ub&?~XU z`4rrzPqLoCGGa=N@lxxEBM@(w$&HDI-ip?$_p#HV@3NxHd1h_4N<8R2zMidNj?k5* zx~#gMy!u6OT4)rYcEA)BUI5CgP~e-eL)OF8;d_CzU=&iRqt8{MHHzp7%?vW#U4TjF z=^T~EMNPJ1tH!$MH9NeKsc*Ft3cp?>p(S!>YKFvEs*bS^&8c5ygUc2>U4rWyK{m;u zc}YU=nJqMpnUsu233A0daUUDZLuDZW1vIXpmfhG84iL7;&mhBxA*eA$W?{GW9zIgk|+t1&B{`T41 zM?t>$myD$N90p;ktOVRMlPFDmC-h(w_-yF8T6qWLv3&p_3lJqVAw3C3ni6t&lQxjgqBr zTaP-he*zhW$Yv#r2M+F@?X#=G{9W;&_ib-vg|BFU`MJFwJm4&ehguR4#1-TdH*VZ; zb$9HkLbn4z{xUyZUC=ET>!COZNujBnB|e+* zWM+~P88=&_NwY;3IGS=UQnsAYQqTeqAi!NsSi0(kGv#W>VAE0*unIo#*n0i=^-C`& z4$|HqAMJ8+qSSTKzLO*=aS8(UG+F#(bB)2ZCm-$$;&zA5^}+sNcS9Zl$5kl!&|0iq zrB0Fx2r?GE7Nk9~qcX(ot zCqBoGrnM})o+@2v2N}~C%jqwf%$_wZCt`pV7@V@6V5GrF@3JbHoyCC1b zMaHr_qgsXbl^hN@sulixgIYJ*Gu&h_$^oEvf@shH5{l&d(5Hs71f!sd_Iyh9o=^EP zzc+<)XsI>#ksY`7u4FfRsvBbnX87Rj(8n#@o0H079JzF|sBT8Cc8!jvk~HJt#HM=D z0iZ%_KQJi%>_aIrG{+3olTRo+3u+{~#!A#<=G3cdAa4wZ{(yC&fpc*Mk*NY+Q5G(F z#ML0F1`Ri54b;1OGFP}U)DBYfa%M?O^=*?@*-SlUVHPcsA%f4DN{>lLSJR-r2Lg^g zuO{1x7`B<^5~{D?(Um1V{#@s}z0t z#Skyollq~t2!hIE58U&G_QvxJdD+$pl5*dGNoj*@1yje8mprGm)y&(V(V{JRc8pb^ zI^TCtoFw-{YV0SS&ORcz48&7%+CbaGcOC)N!+=&_j?`vUMf;tAP0l zKE)Kd9Oa0U*RRwlAwQQf;(htEr)b5KI89N7fj`*p_1*ZZv~=|4DfL zS`Jh<%K{{{<75`ZpZ#=gIdLk|1&WLw(Li<(F7A0z?d0hc$N5t5V{$C9F)=9v#L@Z95EXc`%s%?s6xwCi zB&#uIKTyj$FmEUR1}f#XK@VZ#+3v*bpc!M{gqS>9!2`g0kD$#?IJ!izd<@zxWNHJM z*V7baTLK$I zB0>zE-Ka|`x3{}aQ@t*f^AF?xE-D6rg2NL!Ud*$kG`pk;NG&hFY(mhW$0ccBbJ-#1 zHJ}53pBM_{Y~28VfD^I<>Tz@()*@z;79zeEzWZHn=Q>L_qzKKzemzhm zXL-kCS*VaeN5&1U)fHJAejO7V74TEFE!#?RGV8%9aTQs7nHE7v$NCqNynHU_%Uu_B zry5{X&>s)3ViGJN9c@7ak?X(_h`XH~z`A+Yf+##iL|DZ>NcgO^A>d;-xuYb+yQbFm z|B?14OV%XUdEov&g+pyEg6bx<*I?9p&?H(6ej_4pOcleu8Mz{XrPwlYNA5s?g{ndo zh@rp&0Tc>mnThx6^Bq6m@%SNO(+!FB-~5Nn7~K6#-;gwmrda}XSL>-2pE1c8Y2r4w zIx#Y{bMV`|ImO&hgDF8zb?%&Q&!JUamkbczbgEKR=ClrdW^(zUM8-j%%DC8P^^0Nc z0*PZ;Qxhj!O-p+?)R_~y7@n>w7o{=2dedq13`+A5sDhtg1MfCY-NQ^l4>>I*3s&rm z{RYG|T{5&79XoZOoT?;+0Ky0xmQuPjg<8&JPqW)26hI%~$cUTzl452VpHEi7K*Cb3 ztS(|p`AEx7e#KvzuKX%JR7^i7f1;9%6~nY!YZsL}m5{S(#I(5{{YX!y>rN@iT8UsO zeWWJ%s=y>nZ>7L39H0O{#lDboytckLup9ETZQ`SR>X3lD_C8&t6bgL)T!F6(lac?m z8|8v>*xnGfV?RTYZaR$|>!hshWdho3CPXFYR)69sw@eG0?z)9$XC2by^-|w$PN)5I zW*NhDNFBk^%>XS^IR_lS40{ys%bmc5C7Q@PHYcRhi0;~H_`R>8vF?=`n@(dE^g(9* zP**uS1E##K$81Ets_He9Q8{8y#=Q~(3XU9XjwQ!gMD5~Kb*L%~ z`RE=Z>6T9yaISKMRvj8l(=q||iVBg-0dAWUH}PZKCpc;hT{XL}?Kc>=GR4vcFl+kxA??vw(7+s5Wlfd^`rteyi&`AQ-jE>WAdw2_CQ zHP^ZN2H49fZY@WEB{qpBylm5|>jKnvMxAnIw#FEPbDt@P48;N6$*4tcoW7gTF=vW) zT*|w!;aPm*5eGuGli%TjWusn5TU}}F5f%2(q&A_Z>osJ*(~$!->7t9CCsIExb#icD z94v0sJc)GA&~L7F@aT1r;`)7T*%nC!j8XvD3hJo_L8q*+Qw-z^?D7;^8$X~{gPyQf z-7xm;w7j{fW%cC=mpNT+;eiUfU7$vI(gTR$32I4>H!oD(iU-_J!~d-xk!n)BShoJ7 zPyxT(8HUiBe9OyI7Qe?=vY)xaK2`|zz>y-60ci(wydTq*)3X9EjNNYi@uI0T@ERhCV8G&_jz)sb@1J7 zZ#{=+IiFP-X&UBfb#BNMhT+gW;$%93slNdnB6J1_FW8n2#1%S4^_)X)>}9V-a@f$` z0d2J~hV03U1;q&eA9&wEPn2C{(qV%nU7+l8Y-sDQG>#^H6L;r}>2?>-)gVPtK+5q_lfaPlE z!RUaso!KZdmavwS0m?$aOW&1ujhLf-f3B9L5nR{uCO|9gx#YzRQE2(hm7j}93(d)m2*Dn;! zih<+zUVmksd_9Ekq-CNNzjN9ND8osGTOLrOt?#Rf+ZL25QHu$wp%)r?GB4b?zA@#e z_@NYZsG`wrcVm z@!1ZF9sVd#T399H1JRaTx317+A2;N=l;ZHZ?9r{u|Lgbf^Vh%+-1JQ(=~rGEIry~O;NTFL@KE$AY1PkF@1&R z#=zqTnjq7TUMXC@ZT74JSFQpHk}1)Pt0F!)flG2Tb}7gpkqqvo@>G2wwM2=Ow=CBp z|ECp$I|c!{AX!$Ev1t`$?$p%JIx}*_8Awes*e;ay1~toaII_7KZOn)3wOAy$cL-2s3e+M zZ)TLF`M8|?1-2+>w(Fx$*-?1dqpDciJzxsmu){OYFx;{4*e!cazs%aD&?cC2X5jRW zwz=mpa(S{4d|0)#6N4o%rO_vhQz?5pZN@najl?SjWyvc8ToGZkpa|0GkWZ3p4|)yH zDh6Q>5U8|kapIcFw^XV)$9=Ge8^Md94Na%nUIF(V^OY^U)%B3v)i4j{$I@ZRfG(0? z^%Vdmv{UZQ+>D30A?h1|$0R8OF6ZpYbBRe?5!H`tc&naPQU(4U@}N(H{O3m(?Hv+V zjcF?zXFE>WCwc-YhccU&B!9!V&%^KkT0x29sC**os#fjjYCit`EI=SWK-Ypq$rb|| zTQ~){QL?oT%e1(5Oideeq+g0F;*cd>FD6`K-(Wf^z7%2-ThKo}q_? zd#7+=7!}5@^xDBz9aMD6nKp^q+Qnu&x2c4J5HGh)P`)@XeLq$A2R!8Q8 zT{id-Wc{dz^v2!WaI8j$RmaLb=uq~Beh!ZZC2bUVm|cSuw49z@I^p~+Ucos`%SMq4 z`3O=jMlJwl2Tyfyd}Vo)H4oB3U868C=H(a5|yt65rFmn`$?GeW>Ft;%9)5slGlt{>F z05xt|5)p{>o~`{A>$|IqbQbKJ1xp7*VySuFd0S)&KOK_)Z4Z)BIyI21FHI}eY3BpZ zYY)+P2^oBNbL<+e8%WK?X=*Vwpjn@>+DxIBFp}Oc3HAXJX8jp z64^IyO{sd#MXgq4>D~|MD{MH?2$%iIS)O4BjsCJ7n8~|f?wy*O6CUZ}$-@HXib>Lw z(w+);zG}5ru}7WMx#dWb1!Pl#WWz}N?=?@jp$0FE}e~}>%{VBC9VK|Kt2uz>JOhTNZJeE+I&Ou3cD>&(<8X$ppbG4HVP>0)8x7#=C^?gZ}RiciV!Y=aPV~ zj`o1p(wN_2uV$`FRB-we=ID-!mSm}xb3DR!hnYU=uwDmdF-zCV7QjA?*&qT=)V;yT z253-ugR+k&)Tr#h!J{Fp7MMv&onN=?B0yD|OdwPX7c-8}C-zUn>-V{Sz5rnB$L~M9 zynX!sP5Axa*x4z$c|R4_Bi}P(98+cWy|70xD)E`a8Z>fz28Q7l$@g`wsg&IX`(kxB zPHTZqP1(sSvy#3TZ*o|}K!mv6hb+d85>}9dju&LM#gU9B_DoWS!RS4B1_>=j*q$@G zfj}ZJ4IELxW0fu7V56T06K{JQegH}4xD*ex6w#6&T}7^!MCu7Oon%$NY^(4p^>If-qNv9)TAq8) z#Hm~*aWcq(#C@w%0OykYye) zqwsRbT00O`Yn>Y9mC>uQ=0#DG>6NJlF)>hze7%x|*M!w*M18EA+?$Ux)-F}P)u&5| zSUA5dcD(?DkwSH`@}PLM6ZBc0UHS+djgTi_ll#`Mvm|{4xIjhCS|Z@WRLBA45rlN^ z@YtE#Q0KX(fo}k)o;algbsAyW_**zO4}bhMs6HF>b@hM9iWctVk&HZ?rU>%DvIA7O zuWs7(I~*rphu6=LJACv0BPYY>FYF!(LWdA9KNTv`XOZb~*2U_Ec`;+}#AZe2b)_&v z3A~;_8g^8DvIkBN)Jxp`MdD`GtK;zT8b)v({U@>G+B7G1N2@NTfsB>?71<3 zHoennE!_9mZ=4ST)`G?rMi%q++=ok_}Oyh4#?w@I!AL zRn%Yy9U7sQY({H6HQ-!9?R;UBhc|@O%xThZZ+*=A_VC0;lS5g+j2%YMshA{<+S*GO z*Tbujnrc$Bp`)H_yWva08aBzIT`=yhc@wxlf92*e#P#tUsH_cT4BXiE%yklR1Y$$fd2OE*1+ z2WF>?K7%ajv_BfPcW{C+v_)($OTOlK)*a(`Y&nwH6{-o^Z&tfk1)~686rYQ(H?>*R z_ICOWxOM00Lhm`2>a$Ix0ijV0@Ms*S+#IZr5$-!lPmMYqkT@`8{r`OZipGg>Q2gfY z@817OvnV*T*n&q=w{ZTHeu`yvuv9VuxfY2~B2rHW1c2!q{{#Kw7ZYaN_I0KGkes~E zFI}NZF>rhUM%Ok;rVzE^KpbeXDZ|t%xi}{BkL33a2o4DmSJ6 z`%Jy$@Kdk%E67P(F`j?-pXCABuLMD+$t)(scZ-Z_^l1A9KF^} zVl;Qji)tyHZAMX}tLm##)e!wTexYIv@BjM0{x|%wKhVsgBIFz~BfyZy*m3Du+ z_!50b`n||%XVvoXz@ic|*~?&cp-;*6AbkSiJBjKIqYI@A<1&?Qiv9M<>%YAIOL+U? z`_Ckwo1rIj&~ZieB+~|qO=|D6(Q@OoK*xMghE6}a!JvW*-3_XMqlBBfm5FLty-<~3 z)!5S;RGZC94P;@4n!SB4N$*#0pF{NHH)!Omw0%zdC&~2@bYV;~OsBl&F!K+NDsw=8 zQAnVi%m-%Cxq+4G-$YJFt#o0xBr!z0{*vjnA4$~fh-E9gsGNItTOuo|1Px^ZuN&CH zog~G-AgfJ^V%GF`t%a(~J=BIKoEO(X0Q&{3U?>7dNLKAc+0`f}AqIT{xl1|>gv<9;iHrmiE|0FvRq)bl^!7aGnW=t;!;b=awqOL4keh@*1rRtkG;GpS=h9w zj%{w06nr6HX249k++AAHeNU50ozWDEVJsWF@as|JgK9#Q5`I zAAZDF|68|&IfXMuGlaF@%7-7zum57F_NFIC&+VL&^}3@i+&U`^&@I3qKtS2m6=TDe z2rgns#vSyWMdjixhc4Bdw8ZJwLt_2?=NI|08jB6g7_M2a(Mly&n&=w16P~W z_Ro-}l?I5nW5T%1&XQfj-P+`m!8O@Ro&IfT$51kO$K1Ek-ZeW{oYZPNW!BANDjMiY zSvWbelg?N#;YG?q6(dYnq^>`Hib1;FG0@AZvZbltWA9QPUMXpl3q#>t9|1Cbi9JOe z6UPu>PM1@tW1ktVIy3_aw2V+2x=Kj3U{@(@5uG?IFC1+>?t>zstzw7lZG!96Ns!UY zkqX3u@dC@UjVayLWovbH1AMtyvkpT4oOy=4M4)z`bf;}Y-=Y`H@H2OlH+2Nxdyiuk zTDgAs4RiL9uR>YsduiIsf42Vxez^SkAN();;cr|FwyS%T@^ma6_KK}?J7OoV9N z2<00f2lbZ=M1F`)ZMC1y>1B9Qq|pS+Iq=vBl3ex%qwDTPYD4;$*3Lfyi$qd%iRx3+ zGS>CQO8^Hf{ru0~KU2Y0SU&g6I}xx=`eQZD);gk<+fMP+%g1hCxcugp+{|ImLWocM zP=aX07_V{zPK}VV2E{bc(t!#CQe`-nQI@om(Kero7GcUNX%x%t5N@mkJ+)z_(F$xJPok|3Tp8~uy(=M=qN z7z?9Oi9po?Cie<_x+%AlP@mEZ;P*K)R_%OC^3;3$58{*m@K#A$a@f7>om z&(ar#=X7nDhf7p-L_6*b70{o(UJ-b_V8dA)q3zIN^qOwuz=G?XF9|1{Wz6}tJ>Wad zwbNsi3OL0@V9QtPnpEmRlTG|!mkfzys#@b@Sj$V)obuEd8 z0BEAha>jP{-8%g{_AsB6fX(@dT08J(ODbp0nv{-)*RK`u`T9e}+$1khmJ{+8fn0Vy zY00dplZ&Z9$A|atY^EGCe>g<%H*`N>WhHocm zXaL8UkJY(316>|#WKECByVffy(|JyXF zWU?`-Y3;-et#AqbMblur!?#`LUZy zcRFYsVMA_p?o|z%Z2ovysTQ^m8}GYye5)Sw&cAxP8sBzITGj(>y^x-4uW=h77 z*HGF#1yszDw_`*T214NOnK0c`z0H35nQ!uXL7ARKKVl#Wg*qw!Yysv5uu<{Klm#1-Pd9qGO z$3FygIV`RwN7xt2(S)KEcq|Z|1CUOIs$8c^ZK*ot^{NUvj)aV~PvyI@<)zlQK3M1m z;8$)P`IU2z)0>F5{Uoz}k4mAn4wL)|ej-d_peE4`UXcT_YELz}Xz(i-AP=Bq-MX@{ zReVGLjia}2ULRmIBp8ikue%>V>VtKu4%FfbV)wIpEJ|0y`X|DwbQ3!@a($@I2Ad}n z`i!m;3YmG?Ne4PfgaBDUroR)6Xg!fbdXwZgE5OOak_hFclM~0qy^yEI>u0Kz83{4 zOKMeAl7Z&5=_v48TAu$l|LCLoiuRbIM3Ns%e23d~OU~*i+&NJPP*sQt9ZLgY5LGhj z@M%|at$d_od~m-*NnFwCk)luauumCV)p~7ILW6lN52bnL)a^x|QwJar*S>?N4_f)~ zMwqENcEyqX(&1GsJg|*F?OX=c5eFt}guZ3r%yfC`V8|E`1?8BnYLwU1G7R&4QWauR zdX<~OaTE!xsSlRx7^YgN1Tcb)5HJ)CC@y>J7vc3A3o5QOJ40R;JX&V>Sg(MGtT48A ztjkbo0@of{WXjZO3OSxzM_9+j)x3%wp!MVOjNz;u63}LY6AsSmw(t%k50PO9pvz_` z@By=d)&b*S7WqkWB@e=I0Q+eQ27IT&ncgG-^CLYzc9T@b9sQT0p;=qKBc$1@d&bbw z=@km#vnAE+@IJOzSF2&0bNeJNe?Xt_qnujqaFyi5(s2X3&~+v0cnfaVp5cTbadgzN ziR0ZTGf0x)YSuf;LN#eAGNU~Niss4(QiVSyRrpi>nh*E)FBp4h^oY%;Vu@;b4Va*c z2?8Jl;LS^?Cb+Z+X^Zs#LW>O5)+!vPS4(tOY`T|&E8a4XMTOy+wygJLtQ(Vg8Jij- zG^&W~0*Sog7m`f5ut*v)$pbg*?poC--#!NM;7gckIq_rNQ^8K~=@bap!9Ck}VL?rX z5^b>#Vo&%IbQMiVh)VWmC^8KiTvxJzzh1?*VgC9S#H;e%W= zeMHi&xi`Z@2AfKPlu+5WDrybKd9HwI-zZ1#0PW9{S!~2XPg*UA|0m_?UxnZQ^*QmZ z-IpZw)?If`R>LqmEpRL{MG&-CtNyxRPHHV^e@MQY{VC807)?2;nQfMyNa9`>s zFU!~8>bRCF6LP+}$o{w{6>Mfr9nf%`dajUt;>9T@hH8PB<#s;5>6UQ6piM`7W60dx zIzr~vXI1EN)B2}?$v{4_3qBn=QfN}VgJ#;fA2{%KsOB%YN?DgzPl*MXOeS$x^&>)@)bVmpbyR2nqRGBjQ8l*g)ZAeQ!&V3o&Vx4}f|S`s z18e#N6#pq@arX$@ESkVV4a~mnJ{V_N)hx2Ig480UxPt(S7XIw?^QmO3ygzHtcCLlh zD62YM_XZlIb|TrO(!l6kh(EyA4ii*NvIS?y<;bo$tjrE}d0Ur*O zQR_20fRM@4LVieVoemW#Mg9=o?Npob14M>mAa0n6our_km&kLW-Y8m|l1xvOHkHR| z5o7@O@`G?*R1m?G-==R9Ky5_N!hwQ00x*(XD-#Z0iCf4<^q1kd+(KgZ}E8T1tS$n9ks0uWwP-*V+=%l5CRvxYC`WzpOdw01j?@e+ssdPu{|BpDY zhlH^V++UKp4yQT`Af-`)p0`p|1iruEdNP$@iwczXEF1!H_F$fUR*$X#F>rBXYBS)Z zo=IGRKZfO`OxV3^;61C;JW(+&+H& z8vhM)cFGYd7iV%}J4Vp?Q6|iGBdc_Gn*o#FPmlD*MXpJM{8Y>|GAa44qOv(oIQG%(jDlRC6Hs;8y zb&Jxpp+hhLYYmf_f5iCmo)4~2M)&9JlEKrDlzeA*Hu zFqP`?R1Ce^h1vKXO!YA>m0tz}YpUkY`@dRvRWi88wrPahbc7fwHeTmrk)92>D=9YM zlVNbo;1{80+o7ZpP}88hDvndh78_)9Bc4fZ{IBBufi0 zR(6qpcd(NqyOpigWlnc0XJrc#uPCqCA0Z0=M`0)D4U%_s{84kYs6A3JjCNmBf1-$_ z^v*CQ*H&e2pWY?yv_y8ohS*03#e5Wor`D8DQ~^CjU(9<6YaFH(cmfu{12f1zcc^aD zTA}DN@eY{Am}U^kG|1owt-?$_RV(y>|E7qF$$4lfcL2zog38?FMKWb5B+%ariN(HT z6rsEuEB>L;5A|aAKIYH`(AAXcraM;-n1oN{H!lWZ242k+!sLDJmz$(3Rti=M?*xg! z#h(5LRRng$+pZ5=-V@9N&@^eI%PWIaEjg<(mXHI&uZ$CFcO69VyP;Qq!Zab3lS-&B z=B_@~K?TJSljd?BS|x%I{LEOre(&{5Duiy6`Zp_(l&2GJDQ0~;)#y|6o$97kjp+&k zRjnd2K88@-G(4giPjEYDqp;mxM-y`br^wQ2zdW!#cs+n6P=Q{}V7nLffwiVSMu{CC zqU7XmhSoVkA6wr3dXv;kMoyOFkcO*)!u8}mKbXVi1vlq`5H!sVhYFKj+fu~~!?OfA80%uLqRKm9 z5abkBvZBZ66D0%`+YhNB@rfKI1(fO6?Scuq93Gf?D0;F{qX*lbz10&Ly_G@IGp7I;=veL2LaoiQGid}# z)Xc40Ir7AoLT_3n99|}gFD^Ivf*EDHlD))y1O4gSW!}+k>s&S+1K22KoNUn|+hfW( zDKR~hdSKp#qVx1XS|4EO^u_SEk~I;bsLxNAxcY?+l%3yo1}(+3wM^yVFl@qNLQ>ZX zN;u`l-M?-Q=|W8;NfNR%d)aOBM5Y}EPJ)uGffF`&47PBvZ17`V9Jn@3mp>1GnJ#}) z%rLOGc003_g6b#8%5O~im-OC2RAgd5s%mw5u2eZwm5Km?I3-Tn2^OEjNoM{h;r(-9 z^S*-N((6CIe-j|$1`RjZVm5?-r(K}7tY%F>b+PSwQf`pC4h7}f-GDi|5h@qhPlad9u7)9a`!D8SP-06{Ou!uV zvc22UTl+I>;>mtcF;8U9Jk#WTxSBxMfb+W|`pl%%bvWdeW7h8_*W55Iq&xMyc03*G z+-H4i^vFB`X_Q{VK-WVe+}`AVcEPDsRGUqcO3MEAw2NqT8U73JN0Q{aI1mf$$n9&b z#1(E6N%VyfmU}A#@kC)Sj7U1HOTg+>!N!&#PznT~Uil)Ts!`OP`EL-8MQE$a$S5@e zN>+KkbX=b0Km<9EsNpM$Evf)@ZU-m7i2!R2+C-XX5WNA^kTG=a#Ec8j@<>$i7tHrAwyVM1n~kVsw{l??S>ge6L)uQz4(Q8*ZmJ>jF>5SlyM73OyAt}ob9 zGZNcdCP86*5bslu&b*8L-a^&eh18*mavstb9qB_=EKXeLs8Rg(MUbTckym+dK6aT@ z$7ht2M6Pw(Q^NBU+EQyUHHHLMo)r53GyFw9CVov0+pjHUS}=1pz38J->E`rAMyZ62 zBqnLvoNny)&{E4Q!j+LqeUBepJy`Pws#eA!Lf-}Ge{YA+|@Cru1IG(&BeB{90; zJbD&X!#kaeFcwCJNJ)lavksCv3|L0+1ROPmv$bDX0+KGfgmz(f=orBEMOFxPbKtUN zDHe)7tvZfXO{x^cXp3A{C@QC95mQ69xg(u?(~Twt*SahDeSzu|A#l@dI}7k$iBd|R zmC#sC%yHB~#dR`2e*G-zWWpBkVqC<{wmF+WVV4;GT4QjP|y zyO*}=>0yIPbxZn@bSp`saTZapVKd&I%ZS{e5o2eg9GO5mZ>~Vq%58&%x!P22Z68PYxu+8 z(0`yKr|`jGXzMmr=uN)qh(uDO+u{#OY_aJ{(wUUidqq#xq)<;4$ycye{QmpbuZiIC z;+i1O@ZTLh5xJ{tkcR3!*ay=GCImY%2o<4eGv6>doXV9mydO{?k9!xgK3bKptglPt(^I zLL{d>L#;<35KOBhJlh*qlX&RxRTj_yg-&HDs#1C7diS(qYvRe!TM0MrcL1jz>u4v7 zo;_iid+$=B`|7#b;2y$HcmZo_dGaS=Am62)MAuLBk_Cm2#(g!nhr|#cb49g@wruBy z$4{u=&4>L*vYk@-FbgItRJfq$mM(M;I~7G*D;6Lh;Euztx{dmpKqTmf@i0@McW$?< z=`EYcn7%hB6o+<^BjUPT#pOSSWN`P;j!!zY_Bn7aJ!NITDwGfERR-Fn0KDr{b-*%` zZd*S4bnL-07$6D|7}d761-^4LS)wN#FBWck_g_uJu#==swM)FE%XY8DdQRP*08Aw0 zAheQ=%AHy2{6kb0$ zZHlu-!Ovg6@;?dhKeh7*1$9L$E2XDeta%t7a;QMpu$r*Lwj$(gbaJ#c5*_DqxMY8^ zt7cIi?V!HnJH1Oy1x5k+q-yKneaG4LKx7wV$lcMmv_;F_&nw_YHYxF~9Sp#Qb*Z`} z_m}s*0tgP3IgJ^Du#qXcsSmXpToy}4J4g}OI*xQe#Vt93jc@kQ?)GG!;-#srvr^-z z+F9aC@NiZej40J{DgUV)351vzZa#SIfynNFHg%gEn4roZ)fqCiH9L6Hz>6xCFf8q1 zw*i4jIzfRegxb~e6-gzzmp9qAheoBL#K!KYEjzK6veAn}9-4&-2s$jW>bsffj}Gm4 zumj+Fn4bT}L$Fp{jzrD77L`rBJkCP?@H&^rjU#U*3SCa=t7pCF>H;ReO!n+s)flxU z(1GE#GI6uio|4fMOpefcLiR`823F3mRoNcs4^?%~od*ttqtMmkQ%!C+r9mK^Z!gIL_j@U7-6_v8l6Ywniu4MNYOi#mN45l+S-UQ$AIk^yeuE?VFk^q}PqPtP%FKUFOof=zjPiV^DkTLPR8>M=5G;_JY=@V0HN>=po26Q)1Vp4KAK7e9O zmU&t>75XOd3kvDSA(pTySzBygKzfQ;k-Fjd9x zhS#6UT0SOZ+ga#Db8k~3E{-+8A=>TVA!T~1_$NK8XkxQ75w60+TIRi?V$$a_u)cwA z35s4&AF2~Ls9BL!>G1! zm9*Veh=L7w&>6DqxUD#lvR7-; zAP1Z;4^8<(>y0}UNt{|gVupXJ>0`QAVAWi#ipa!Ubi91m!+D}+qovkXpv_h**&q%# zfmkTW3UIVkt8O2&!@AmF^btO(gATeTZp3UqGG3J?N=#Ct0&_mo2GMPh)QQ1ZtzNg> zseb)L$@Gd<`xLO5I~y`<4gX*^OXW0`Dgq|#a;ix901w)Z>5jT3F`Hdhdv>>yLI+!3 zLfx}07d%qyS?{&qg)Fn+;xvndo-lfndPH+k$SeQ z+{P+h44o~${q6AWZ-bi$kZ*R*-Do`rKN~_kC-3#)@lZ3hTI3*5$3`Mk0cMyU(fcXW z&ce{panSknsRFw?-V{b#xz1ACz)@V?Z*4hQOHatuOO(ntbOUYxD$TP$20Ti>8}|L1 zHpqr49^S*lPlv3DtLi2Vd6lw$mbwqRVsUoOmek{6mR2cw1thxyGeBbP+Q3$A8iM@( zZ;bQ$A8dcOM;M=NedA_L`=tms$M!_bRv2P>^z`g;R-o-lIb3YAiI>~CQ={@rAdGo6 z0jPF$!vQ|JAUf(fOD$kbq1|A0_mKTGhsHD3P91kUhPG{VV0fdnessRzP+uv>o;ZK6 zh84@LYM&4`7(q?m8J-8JXCK}65*PPc8TMpWN%eKf4Yo&mMvy*Bi}62%|HP-p@FJ@g z5_FOJ0P;j^kzEgt%T%91YMF|<->qUQqxW~C?TQ!7y;dHOz&gjiBFXF_sr>_^A>(#! z2%UAGne#@D|Y>ly_o+1Zr8VaG4jTnjh+U{^Io~wiq#aAkzm=5PqG43gPh;)23h0@p#RR<6c9|-^wh?Izr!fzJ+)GX> zfOo&bx?X}j(1y1FHCMve>Uht&LWP`VmVfQq3vy?Ygq9Oe*Fx$KsX3)|EZ~z|wH5as zO<(^}{rx^huK6o`brkM&1I(2hDrr%El|{X5y`p+KQ&qN(ic~V}gx$bz|9d09w;zEP z45K#CxHlpMH*M0W6bA>+3mmMtaz+a5gJL?Nc~AJ!2s@_L7JZzZYEAf*u_sTxK zCyl;qbh=JA0{Tbd7}=v$T-{4g9?kvqV8i>bF<-v>mRne(F0pY6=nQc^$wY6gT)eAy zLt|M#0e}<9iMm#S7J@+%=7p_22%(&&-oJkT4aZrj)hl_$_aRxoO>)5QJmHH(knJJS zZ*K^IkmZ88ez$?VE_VyPBW5aBq;+WleH*gjzc8=}%5nQ}xld4v>#kdyBsbEtQt1!5 zQ?95M0#M+muIug=MhHMh;fd{Z4X|#{2G|cdoD0I_yg$`r{6Sy^o=QMm%3|5gRLf)D z71fsxjULA%vb~E33ftd%QB` zm&zf~T@g3rRLIuc5!BNFMdP{16}l?+DMoz)SE(!b1Hp%o<$a0G z$p)oHZY3G;ZilVpPb#Jj--H{Bk9!hnv_nYN?oEy#NZA*I3Aw(soGkT74u1QXHO@o%j(pWUCUih#QD%K(8ILO6djl0d77kV5^pcfOdF8*YA_Je|Y~P zI)7hi#h_6MX6@|1$&t&|h1caJ<5HXiSHLu?c$$xs{K={*zdR&IsnF!;m*`LQ>X7Sp zZZJrmc4fzYw5ykfB>*_ox|IX@HS>|zh$Ok-%wq<3n_wd>CMZO(2lvQIS_dZ?n3Z>& zHUW-knY5(*C)tt*QpV7d_>2hdE*?Yjo1_Znj+ItL49H-SG)7q4E$&-|85jag>0bt> z$&xmLJ0S-SCmE5Wp5o;t<5`)*d<}fay7^S>a00fhL0L%>^qzOA(J}U6`M%_KP4ftc z?e!}WZs42%iOE?O_SK@G_0->dbP6O{{bex&+e)>?==i|kqfL(mu#Ju3m43fxb_l{1 zTL+b87;90R%a=4)| zqR@`IMMy3o4x*jf z)a7(wxuTAr%4xbeHL{dPXMi}>RML;np(pZi(H`apUX-%53;_f?6qr{wk%zVhIg)Rc zN)UYhkF*16g%k_`3~nlD%M8}7ev0+1D=CkXBkvN+-QLxwd}*IvlC8?5rs5I>d)L%9 z2lzZ7gse|GXJ)iQ($j*%j<0;ce%LdXm>>7--KIS2RaG^#X2wXR*yZwF!o3C)vM(;M zX`P@JnNCgzh|~u8+Ta^E^wRR2oChM zM0#4Gxid>*B$=Q!+B7kcm)TwhHVP#~2Iw6}RY)f&w@bpOZQ;D8riHg@Q77n_OC5u! zkf$;5BAEstEsThzz2Dz|2i5*pREkm38w5g$1DCw=*;ImXVJ%--|&`qf@O3Vc2P1ad9Ay+bpdFfwUL}eTUuW~^n8XHNVJnNxuo#S;nDe| z0f@qn%@(kznd?I0t6`41s9cjBvCxaPqeeZqKg5M=qrzITtt5AL@GQD%<3toVM6`7B zpBxeGMJtQ$0vapoR1EJZWHbUWWfq#q=D zU`Dml|D&2TD)WgVK$TFzR&y4|<@F^A`-MVzELSbuQbZ-P>|&-K43Q?17>{zgp$^Rr z$g#8*ikFu>feR=#-NPl6J{Aa&9Oecq+bTZ3BPo+)2^awjaSQ_h+s&>n@Pdn#79w-lj*%()g&jO#Q)gY zVJTZmel$ALte*Q_bIco1J;?#xl#C_?0<&S-bT{YKHAZDT_y>! z*LYDA(LLi>qrb5Bn00PR`%d6Nvs=(rg#>8cUKQbqAV_qNmk&12SNxTm=d1juU%q}~ z@JJ;6*A6QY1l2|kW7`jdCariq>qcu}Kxlm#KBA6E#%aIPkOPh8%{XD0V-Q0c2O5pM z|0;d@*YIu%i#xS=Bt^eD#Y92~RG-<7fs^<3N}uP@Sz3j@5jYCu*;VwJTBbBTACjrM zBI3|F{6oNJ`8~M%F{kDlM8#>I| z4lu*oolPbaKz1_IY1x;+ov|@$tVhi11N&}~ z9kG>~`AMk^syPz}+hdXxhoSnaN^g5p=4?Td?8zZA4NmVib6w$;WGh|W$8Zsl8Pwk8 zlDz=mzIgvsF#>g_gWD)SbC&E!mc& zR4#SZ0Z#GENC$2ETQ{!B`aL~`en&v4Bum$9r6dUh)5ko^dH*uJ|1kA<{yx0^3dJrv z0HB%>2&gA@IuiEOCSqG7;frJ+Uzy$yG54P$6_H^mKVRgGva?^ZSsGY+`doqnYv(Oy zAjJk#(Jw6-R511sDQ~kDVVaA*_h=WMveA$HTVNX0C5O$KtkPFEY`xU6hbCt*s@x&T zzx+?f-Hn^MVn)Atdo;CZ@&NKco5?=QY1zX-Jy0usf~FRbN0GeAVPCx7yeS2U{=|iP zxu$gs{7mbhMS?b1KFV__r^EfT-adW*0eYneJW?2aMsJ<0&%upI7lRqCw;&mt1s+G; zt_PH;VAVpO#6tZI<7Movi_GEjKL7Up3&$*ET#qCqCt&l5(-x|s+)eDpnE#I&6 z_EZFK9NnZPd0|#zpIkm%HQ6dC%oC6p+J(%H(6I2skEO)dkO)a*bpgV+Qt4}}nV~~q zD+4-CoT3eSPImPL?x|o}SgTa3vkWQiJ}?M?I4XwjdzR)cRr#NA_^EdsVA)Z`8c>lF z7F(W_<`!F<2!On8b&zXK{X++omnGa>i>f6HN6v9Wh?Vxv28aL|m_IgI0qrS5exh|h zmGT28x<(E{w$J9dfE}75zN;`OgMuAS zW)ftMKy42IkV?5Ut=$=DjuFJ*^o$_SNyr%b$y+4MK00Q+QgdNhE;t8Ok(w%%ae*Sc z{E4+>S74;Bm!dpa>c4&e_uqa0IlT$<=kUk=fI+2kUC{M_LW(Pms=VE}`R&2QwM)Z12xm?ppPua28>Y5u3 z-!tzkxMCT$ag#b-wHbjHBJ4t2=`h{A=9U6gnta&tP{(8wd{ozL?E|E*!)&K?)Gmp& z@Y+d*^khj`bgrPq1<645Hk@i~8(Mi_Kvmr6S0tCPX+PUL^jS6x4nDHOEgnsIW`-Ga zOOi8m^&l0T&Mc{mEz3Zxb-p!JFvkLk>|IA8=pZ6iNp><&`dj%&pu$3rt55>GSz_Eh zrmV&8gWtr4Hq;S%o(Rb=FNcaKGX&uc?AI%CR)sytBEh%NQ6ZA(d#OG9Xp0RAPqc5b z9@`NrFIX3lYAJxbx~j~g;&lboxXO#F5jBo`dg{Dc)rOTWqGN{Z!M*%a!|a*jrP@k` z0*D;C)CqX;=`834a-CBDceb7Hpa}GwX~X8yx!c;ZcC!r~*?gummpkwV)_G~t**uaB z1o?W9!iBxYi>kJk;)TrFYfg+tN6B(GOSkm%=j($-s0r&tTx^t6-}x*&8EW;KcxXW)a}8u=svp zQ^h||4HRptd{+tqd;fB3*Zc@XH?;4wUAyA?p{o0g7OjQKDyp~8k{L2hw<#*9z}%}p zH7AOpR3%c@P!%^VCZ)1g*2#@w7ijca(`1%-x^!5U*z?!k-ZP}XxvgXA=&0(H%`mxn>@wZBbPf ziEo31D8M!=qi{-CwT*B+S-M15YXo<(oK}A$m8w**vHz#x-=)jQLqC9zCBwV(^#kzL zbJhYNTs<`xa2o8Q-aeO``ReWS-~Tnx`#*mF<@=ZN-yfKqK4iD^7FZ!c2=U)7xgA;6 z186O`0q|yWdA$6wyWQkHcBU(HJ5HuMN#nB4mS~cy;CVKD7Zsa=I_1dPDBV(@I#(q! z)$3_g25?ilunxesYI1<_fTo4#d??lvfE#Ugn@wbqi@r$Y0rHPz^Y;Z~oh0Jme@Vq4 z1)Mb#n+f6tBdpw2Z_w@v9J`TP%1&f?32_GAdsBf{yLJq3?Ko9wnRQE9pZFdU!JO9Ity?KMSwYC=|Q?~;G*$TOQi_1`4r)R_+FY&I6+ZU)Gu{F6XOcDRmOjJ`?|L0)B z#B%aln*s{OCu!pupYn+|^~W%G-Y*&?rM;fW-8bcvBsj-)*$o^B8jn1xieD+P4k~)3 zA4tGYUXn*oM{&K^Pe2R%{PicVU#H*spOgdF7MK;oTW?EfI(Z&q&NfrisV=r6CCxkn zv6O@L2C8r`d5UBO4Yc;|leGbG3bczQL;B7TIzkBlyrt~*?An`Ty#4W9czzFv367?+2xSVktjZMSSl;_ z$YxEFQ5m^x4n4}XIc}#aeJs>UlAa#W;(X-Uy*ApX>qYhLAya^JQu0U+k=cb+benCAh1pdgoai|>2--EhWG44FI&bJPFdM-NP;aEJK#klKN7~P zHXz-r0NF=~1)R!{b(eY%x|cSnXu@pOOiXB8V6Xk*V%o>4m|6%!*)CoF3$)|pkvyi{ zBL%4oW`QqGH{8QKC)1m0x>??|QRyNLn(#1RykGwmZu@Xim3kXjp#I!-^n)j#frRSn zk~2*$bkS6^wFu30YcEDcmZ7V}n(qL#hQc^Zz`#HOm@O8Ko%aho_{P%;H~x0-`XCtk z;&8~Jfv+2}!2;w}VLw(Hgrk@L^fu}WLpqIN$;v3B9+Xhy;uvHOt95OkLeZpq!U4s3 z2~d*#q}@&J5&CXcOFJ*`p$y#RWcE$HBUOtqfxI)=S*40HZ5z*Evdfe+%nLn8^mwCS znA&hnO^n+JFrP(%Q++#>uxF!#g^%O@P2;7!Kwc~3!3U?Q1?wy}_?QsZ$reK>GZnt43g`fw- zM$!fk5puq5j3*$UxgL@v^cFYvR`cET1r&lzMPcup&s3|%F#CR>3b`7R6i25qp!1Pb zVSt`kNDMfhC?HR%ax>{So&cXo8%82>UAyGc5EkQhy?q`aF@HJIBXfo6M^s0>pbT%d z=_4kr(+N6Z699Y?JqBj6GR;zR;ZN*R31lnwmQYO)8?gxlrG&!gH^yVYi?y8PSlC$@y;v3|sl6{`q{ zb;z4$o4a%9;52VZ&?WiZdnX5$wsqtzB#lgmq9&$o(OIu0ZgEiwUPrg-T%adysV9B3 z=x3LFGPKk$`D^&Y-?*%*(4S49_KG7vh)@=l9IpxS0AJ8WY9om+j^9(A|Exn+XpR$l zR|&?3v^}z7*0=EJ0s3l0utz*oB*smijciA4W!k7y9v9~%qnbJ{5Kc#KYh4SiFg!r0 zzU*|q?caU~soqEY;IiuMj9l?aMlaM{i=2=+_55<{! zCL#ZZ(z8*2nZ@;uI{YOy7N}WnK~w|1T<$oI60#SzAejyQ_JX9_G(k-MbAH%h5=ZibL|YA#QQ~?^{YCmse-FFZ?1_cb8hWmuC;6R zP`X@A+d(*p&114^OG2 zvi7>p-N`Z>K(CQFyZKNcbXN;o^$t4vLV}p$N`Oeqkp|>wHYcu96#jdQt8br%_s={* zlm}*SF_|YLH;~K;umGyM!=pN0VGm8BJfw+$na7!I5Z@nzn@Zh~f24GPFzU6Df2pWZoF!aSQs`AsU$LIJ zWDoX1Eu*-ABx(jv?*J;$e!Y1-BAv9VzNx*=0#g!WK&3~Et9Of zgji9hC3`;)40Y^S@3Y$pS_%huuD~;tc%-r6kpb?{O-^Y)MYfi&WZylUZ#7qW{~?kB%eU!r*KbuVPb+|B`^oKXr^4F$ zw(=0ca=zR!A2!Y^8b}6Etd*2&$3s|47zfzv1gy-}b70Z(CH{*^g1T^HEBxyH2f86% zKemO7zNC%I;=|8nU^=*UF|pH!?s30ZaBL^V59-`acNGzUW;NXwla49hgCcPykoU~U z)*?KPxG3DL=sj?Q@}L%dFCBNdDpN^NLUY9yt~$X}d=FB_6}@?&F0X>27fjJtnm=v3 zCV+%v0yzuKvj){g`W;=o3!IeLH;*$~tk(1#R^p@O=7-K+OK5k59ZAvwQnN_mGZB9H z!(Z)66_vj85k7(x-fE zBcL0KB+Tan$14n_fF811M@a$oG}Vm!$Eh6!kTqJ|m$x5-S+f;wa*bJ|n^jH7kL1Tc zO$1ZB206wC+s>3j>L^T6<0C0#T_Jf$%LFt{vRZ{gq)tRQb>Z1L2wnJk6t3_w>0z7H zW7q65-#R)PB%aJvSzNGqlzX7{YX<=j7=czNy~`)e6AH%8VY*w_4IRXKeR%ED>{J(R z(8gHk^`&OFRL{j&8e0jmzxY~tgZ}^tlfO6H4yjlhLlNqr+->Xi++N$s zrC14|f#6lLX_knOfFGU+zj41qDW_3P8Y0ed>XkN{ICmc)j{=*W$!*4uX_fc0FZShr zBYd3T;&3Yt+)7@MV8GA3^Wl2 z!ZB4T63^rkVSxw}%s~w%Y-^RhW!BJ3g!ugsoUKBKTuH<`*SMTlpTR7uUX;V3l$As9 zFPlR4qbc`>Yg$83aRddT+&4dhN3Jil$sn$rZOhoKmPgc#ZpVl?nf~c)-@bDliyB5o zFnzP#46Xh}%`GF6cYC0}PR4O zgdMmV`pXL&Mka6Ijb5FEXg_~+3BWJV&Y{Dfa*+x3SB08V-pO&Ks|2yiloz@l*s_HM z3Cg0!;UfY0cFg2r^vU89yANRZV|Lt~7+2evbQJ7eO^cd~(xzT5C-*hqtgSJfj}@xy zUHc$DoVU@&~4lCG{_$53inD#ypsyH5Q+OxtBzP@1jZ*hjGio9V5T(zN`VHT zip<+iS%Pa*CF93bR(xg>iHTOdNe!`BGa@|L!46eLw}|DmXKqE3d08bYIJu}B)Rm>5 z;nc;byAgIbDcu-4!j>C=d`D1nmi{YRS^NNi*`HJ-d&3K6&Wq&haF%fSGQ9s20`{+8 zf9<3mSj?n-fyxBh?-D`o9%@llIJPBx1Rer)fRg!A+WFlmOF>0_IvT!1L!L#;)5O{x z{zCE&CrGXUR6wi0+X(NmmNrj>w9`!zJm`1dRps(l&~UnC1(rW4O_PXEw2yHq0K96?TpxjAz$7 zq@-;2146B2go^lO*S%R_Ol$A)3fokP+t)Cd4*&+UGXbv9?cE8#AWtLp6uyQYowZm- zcQkq0v+T(eo^S>hjG#yH*e>?wB$;a9s~-@B^@GdX=kK4xQ1grT-@X3g@}j0^12C7+ z2efj!3$fDah@>T`8M~7?$7AHC1nXk*38)&i*ujo8ty3(g%Zw=J-gc5CK5{c4u|k^G z+Q5)dI_Mm0>(X@)#J7FFz&{WfmYzkT}zc6=sM{_*>df=U#|n>RAV3c^TL${&FDl>R;_*OjeZ$kzqu&rL}TDGRfI7} z(J4P*vjyPV_G{K~USW~qb0`h@+P*QhYK(5JEf#ToDY4C!xXPSWM51-Qsv$GjBCAJ9 zG`i{ltfjI3+DjzE_ zbay)*7j%23p1a_oSf2|Dy}5Is1iF@K(F`GvL<7CDTm+_7s+$H|yTuX{DrfhW3p`D0 zp1aUh1pbWN3W-3Rr)|{2m{G#!j>Z6!-K=C{fc*3vZhSQc0J)+~)9$t_)Qj?hMk{Fh zTWe3RSyYh96}&phcojd>-PxJks9|wLx+s*BO6V{|Le3#lPk#Yara7>vAP->gJ|=Z} zTNn}#<<3*q4jve3%)m>_*|MQFmCPT-HOHATtj?ucH{Mk0Cj5IVq87p2 z4e!6S@TcwCjpVmZ^}CVjXSEEuIctQVMcY#?J?Wp0mzHQ(r0`2zaX=AHT6$9fDaZTA z>1(LU!U6hb-x(lHRd%u#CPs-88|(^h`q!WK0ZdJn z^UZ|Q!;8vN711&f8Lf_Jl%(sH8cg=hUx4T0roro#I6V0b6qOKsW|ll71nAVx5H+=x zUD$c}blW&tLqKUc_Ug(_R>E;ciD8saeL#6Ted{cyAt!0cluk*iWZZ30ZSS*i=5FTGE760RVv3jw+m?_$>1GyBB+5(f#~B&0u}e}J|@dt4?a7m zZ|hzr|AdRhc-cjcHrg^hZADe4_H&kg?N4Fy*oP{KtvCQh7LwFP)iIJSpv&pWJqDf% zU|1FLT2h4!14FMR5-yNbHJ!kBI@5Xor50cRcrL+g%wtm?U^#57>U`!j$X(*oepe|t zj%A5UPGlzAjI#Y8gw3bbbQ!?c6h=Icl=v}P;C0-@24^~Gy|X;t|OD>4+f zWjYU1baPrapy}%~p+@Q+v+{;;T5_j{*C%%XoV90Jd$lIb0D1(6u*yM8%_>nKRFaCrPidwO+zFOrMRPE;sf$W!Z()#Radwe0fsM3t`* z^$gG>@%i#C`(H@E*bf^{K9z8jx^y^x+|MsO+oxex^>SIg#ZC<%5L%G4_KC@ocIrb5 zX4^hD=(drbtg4Xi8xUr6^tx?_vePtsQ&kf7xj3y(-aCkT68l?EzA?)8nRz)F6jQao z;>wvEWV4v=t*VtXx5Whtz0)({BQI5c=q;VNUi)-iiv@al6wsg9M2*ETpg%JSgWO^#AoMvD|VGlfSV2-@=6=cH&D*# zs+U_cK>)}z;g~pZ5?9&w1YVOuF$f>xNdwZ zdMXk_*4q>)8@ytpPR|KU zH9xJ4RDy>=nN;n564Ec}*kHBl7+ODi`{=tdR2bqi)l)S?_MFcCswwOUf3H74QT z5Qsf#nyyJLYL0Gb4Btfz$1n&cD`|)|gmYrrxcxMsWn=r}D(N2@RDTHRs1)?zaugL= z_ozHdJO`jAhGSC61O6k)d1ChJH3Wt+NMJuR)>^C&99O-|k0n*LgV_E8Orp$5_*(OsP#2{p~@E{pe2EXODKBrO9ep_V6+t2gI7m zOeN@HBXtIudd$$5^GaX!#@Ov>YP?pG`_$TTah%Vn&SnzlI+EXIIRNwKK7VBdq(DRP z)v;lrHc>`-BrmLC0FZ9d^jnHa(2^dPHqL6h2X|#CPIjkxY7J?%Y0fl1K-M-@V_McT zxJaLXq=2%!(RfO?g37+w)IP^Wh;@)jbedF;vN$Clx=-$LF`~z@TyF3rXf8MC@=(=b znE=%o71%X;rU3~9{Ut@EGo%%vnXc~&Cv^4-XfK%Q!?=N~L(atJJkkMfGL2*;*S)4m zbOhZbj~ewEw&rgGSQrlr*s4hyLL^@g ztn@#k*{g)IeP*j3;Q~VgR!S!a@KUwBZRH+XLfDE=o6s@tMSI?(aHAol__)fIiOqiONV!Py7I??-{D?NDOW3FkLG zcw<(|nX!Hba+5~MNABE>Lt|+_+Nf<|UZ!%=EjQ$t4cRbv$6IRQ^RuA%!_WCUpGuCJ z_Dy3A8?>>e_0lI(H#V@^>0Eve;NlbSpaAu_excQ+&X7~T_Fk9 zphX#!X;ej)%PMJItyWMoAS&`wqBkwCFsNd?hM`2lcZuG*)M(ga>Gmbic=eTAuStO- z{HYxn)*W17C#}Qyg`+L04a~B48c#&=WGPu#d*La;H>q8Db!4~WR2%%fQ31Vp#C#RT8M6A%S=~!kK;A#>n0h8u_NfTRQ4beh#I_}d3 zTBe&MtHnWPkwF=f z4W6hQu61V!NHOBnT}G`lr)#<$loTq46{MYEDm!TAqPGu~UF)|E#SPxhmhQUP zOkZTF2R(b-_eyF*sQ)oqlpQk08t93g4h`tvnBaV@4kibc`JpBu#O`c91T`q@Ct$j`5U#h`UKuNO8!K);kCP1N z<ycufGlHmlU|@e2qN_2W^yb zuu0k`&7%M|o*`|>;pwX4%Rn6%c^|Fj!$J!#C&}NMng>RRUOGaOXIHHIZo@ffoybF> zyc61$+9w zac@1P0o+Se^o#Cz%}A%X1D`0ZAa+|ySH zr3M{1$lROc7S6}E-~_ZhWcft(W%TQq0_0PkNhM|2W!bre22B8XobVyYMdp1pVT_hs zKa=Y|O)?fFMNo4oSIZ8-eVhGYg{ko64sf@fn{7QNxzSxcDC}2a1gK@H+&}73@G}z< zQ(~tT1kr^O+}CXL*g6f98pheCQ-$$F0A2=Hk^4f@L&PvM3cusC1xv)G8XX`Dmr{jS z%yI8J#me1>HXRGvmB$8WgP6Fu+#Ok@OIeVT>#&76;$Z zOqrXNIycF!=MxnG4KOUp-<@%E)O3|OcBLbRD8vORI~7Hua)w0z_{yML%0sMB0DxLM zp(e8v5_|>rpR*)`ovjBXec{Qacx?;yI%u{U;~9DK<(MSDlE2t$eQb3r=wLP&Uj+(l zms@Q42ZmxycqWyW1fr^wVrV5c|CVB$oW)NwbeFTc$E*_DY5f7#s{9bEoJ^}~OS?-oA7Ef}S%@5+?`(*z^=qKG;cw-v`P=mNzC7_(0Sczy#fG!%O#}@XZVpIV zN&Zst;X(&0mOR?ck5J!bst@%go*0Gd9@?1Q3sp*x}F|EMCyAE560^?!=@Gc6TMU zw4}uM;TR1UwLl6zaL!#7s)1m!0JJYyh*D?TJVhu+qegRCw}-1;{0Fa}gx5%B-IBcN z7G1YY$ccy5(A#JhzXO>lV5N(8@k-m;Na6`O4Np(9R8Z63xv|womI?pp%{hp+m?ERp z!+B_#&Zs*x7b*ZWRRUvZ(OdHr#^uUwJ+`=;I!8}R#wvl*np^5G7B4TEM&hIO`(*Ku zCfrs?dN#FWhNwB7x1D8*Epc#{oMlQ#w8Q4@$FIK(uYb9`{b_jpUBq?8SB~}`N`r{? zZKD-OnrcN4%$St#PSk2DwI-1>Bjrw#HuhB&tvRlg?29l7jtOPqa_2q+*(ooyH&oI- z=)mEbQ#=4Z7R-z*7lf1Q1}SZEqPNc2D7IWT)$WKFT|3BR0-|8*>e z|J6tck4Edk=(IbeDf?D4=IFsNmd@RV7qFeJor?#c$?|A$=8XW4yR0*G6(l*6ax8Jw z^1X!NOT1SQ^plDcaA+J^6^;BFoo2hjR8)nK(#qZ(+Sy4aZK8SdFvT9C_c-PHN62Or zZ}!$qrnN3z+!GVKYC5UJ^O+{hI?g2`WRD{pm#0L!1#;JG+&f}o0U2kg<%84Q?@#+8 zp`=3BbYqn2Gp&rGycN`~fW3$hNv`cl7Im$Q5GVqh^imtt zlLTsXdLP6U;_OXX_SDG*!D`L+>;dbc9R+y0Y1%-lRxCK5J2F zGppF@`{m`aklV4l*Ez}`d2({$1NRH?$~b*5nuP{5IdAkyrInO2Lprc2rj>7bRYOqZ%d- zrE0yl8&n#!tXSY~f!Uno)aRB?T>&#KX+U|mHb>cFp8<+jNICXfMwCJ|>z$~MF5H{l zl{TfsZu`?@E}AvTz5`=0!R96vBw657gXegeTi{(RM$gJ~@lB0s$L0k35$cI8Fr!@Y z7@ODL%`9L!NA`NACoiH6ZJ%+l7l0IlF+pg;Y1=PFf`y%4Dmfc}il$soU_bx#PJF0U|7ns!J7H zwjet}%pTUiMMHthMo}Spc49LCvSr}UA>$w%e!k^NTNxu;gFFXg)1wLU{f}Nhh(Qfg zkqaRH8SgMc1o8g1a8o%cd8_4wp2Vd%)Qfp>xr<_nlEI|W0Vq^>_Mb1nITMhjvqFG< z%gp+iQV^bJwF(Wkw;DwoS*Wai8>fWcRhG5bx7X8<(;f{?65!FhP&)^9C5e+S+5ZeS zRRU8hM~k@sM<`c@oCRREaGJS)E zBE%URYJlAA`z&&ZLNl$ojWO0;V59@W++Gr8>T1J*jqfUA(c*I6455b3_B!z8 z0{iit4H0P|VX?0U7*35-1Y|mGy$bH_#kLm)Dr|sBq0GJm3dhAT)H6dH$-C1E==yqlVP>mcp4FS}5qTN_&QAF)?te{U{zK&mm zsRfvdkb$9KmVCAL-sYyRn(>q|ZpRf(Rk4 z{+Rg4*(C#EioLwR$^ zHH;q)I9JW-CoX5GvO@ImsAg9QLqNArlDyi04Rk0M`WtNPc3>Ra!|7;0(kO{-gk=to z=x#!fLmMmhf>Fzk-Y6;5?kUAqByzglX>*SIwbvXP`+MaOSiG&1^(BmHFVC!ZMx}%k z7O=|MYRM3BG z)mBhaG?aDFd0Xyli`ng{?ZciFGZk$)vQei%H`U94;ASh!#qqarx?ZTO=|(%iCT#XP zuPuZmP_cB)WQIQXK8+oBB$blaY)jyv4E`7B3(Yh2+glYYnJq(NAl=kXxsd1}kElyR z6_M}X5a3fJh`*e$MJ7j!)U)|cX1?+)dgCZ=2VF8ibj6a5z!dAZsvUBuIZReLehWAc zVgQg%LD~(-VhR1tn?17*7wiGZZv*7N1QHFMi3htjH!Lq}XOw%V`?=V2@7{twQah*f zq(<-;{_NuyI^`UCuo9{GOkZnscvckf>T*BvO~OTI**rPhvL^t;YR#VF4#Q;>L|;h7 zI+~dsAumuxU$E#jmDTh={?*T*5*(0BU3YsD>eT9FxefWJK`AoFgbqGGt8*SF@}K~i z+c$qp0Cd1R;-bbV9Qx`28`LLXXK^x+S5!1xt3s<83f;?kGaoA10Y&nDsMLnR@@Uyk z`59)vLojV&e`+Bww2)wiW#9X2g9kS-t6VJ@|W;Wwx=U9h=3Y26Ty6r&TnuykaUnl^;%wzm%3l4M#A7naIoOwjS3#CRCsUBoA)6%np z))Q=XGq?)i=uux=L(-J(Hl4H}3UxK3-pmKDe}R9Meu?o$@&_Ykg}qcA#w$!O3Jf3z zA2IbRNp7MJXbl#J$x~ZnO*KG$3iOxo^2O!t{}o<-YLSRIA9-sSjjwy;=r#;Mbr?_F zpGFA*UP$6fY>?X> z#fkAIzUa({`B#8+BtduzPVRBh`W)Sqc%x8`8ZXbg1hRtR1+W(j4rIzy z#XFc2bP?PDQjT$wIWc%yvK?(hNuoefekNUaR6s~>Q%^EAuqp}RwM_hV}@8a zSH$-!X)4?&w|tfa5^WgC-yD-ERV#^7ruc_Sb;2lNPs>}A&x})OosvL-ljKCT4p>$6 z*&Ez?$TA6T7kjNRBww>DQ#WN7`yi{1&pC#Da*ovM3#`2O9nQry5 z^4r)y{vvjZqcGZ&{4d}i@Ja&k;lb#1*jX!UYoNHm65K@!`avf59`AUk1u%d$c`mOE zuS%g%8Wb0z#SquFRTNRRoJ#mxE!W+>$1r}XO zU3Hp?+mX|L36s~>839A4TKwKP?OO^e^dLl+(|kc+o`-rK+H7d_coPs z2U(Zf&bY~e3@L$z8>xX=vahGI(x{Po<+2<3SMe>LjwiIjm&_a2ZdRlHa+7CK1()r? zf3?oxA^{ESyHKeC#hSyM<6I01~VJE=Ug}-`@ary0suOCVn z(2{qfns^jo>o33n$QjYXy;yCaJ@QHEkxju8EY%m{loGqf$^^-+jw)N!D9V8Tw${ed z>69JWB>*K=Y%Y~xp^qgveJV2sla5M_Tg)?C)*^-(`uX3V@o9emUc^3J(A$D$6oOjG z>~BPW@&r>x)x=g`C-FxvskY2x(8j8<{Q`^g0?os!$xY}(f7`Fv?2r$t=qp+61%emZ zCMTIY>p}ZNYG%-Ftg-~?A!><1SEWHwOCJ9-1ZUaI0nt#ok+$!ez*M|$uc|7**B^|5 zSh>STj&RLSNAbPQKmuBjmgJNIf@+82)Ix??4~aD{nU&nX;<*B2Nh0JuW5=_AMs;FMYQnaTj#sS(@MLg;GgDxEu|yo#?=t`@#Omj#`*xbomQVt*e*!=%Eh7?A)~f|UrozA$jv9(Kxw zVpJe;uOc0m*RsbAPW+fyI@wjxf~CuH=>q+Ips98QaDV@!iz+OhJlNy?qIR|-@E)%H zWd~e)F$q%^yCal5Oz13HlX6^2Sdu()_)}CIN&zqC8f-hHP9@@RY?`aNz$~S4M#D)| zl3m6jFDSCqwTCSG5*>6MXe2KPstDQA=6Piy6NZgal^I_6SeVVV3bb$aImKU|%Q+F( z&0|_1Skm?-24>FqYeTYbM>A@4VYMbW!5fBfrhITnC9G$MDfmrol7~_;VCVzJ-#DTy z31Pi+mC9>b@j1c_|W*Rgp9d05q&A_ylm{z*LdLO&vl3nH}kHF0M z=I^bZ*?&bZh+F36BYqA15bs5f!7{M@rhKTb=fL$I*fw5JERD1hL6#*2d7nLJY~a+? zRfCal8Dtwa(|u&)x`if|sbXKE3cI6+6^8rZFT!`p1{#SJU7&sf*!E9M_V_k6(7dQQ z(!GHdWt($cl3kW>MI3anuM3pqKj*9&Ic*4SvKD@q|N8}^eZW{s-CgA;g`tMfza{-V$pzxJQm9 zz8S`v5|$k`(u7sfELQzPdSG<&^yW&Gt8A{dPOUvzdtF;yqIn79=)t68lA}oujuSMi z9pOc=q}B~azftYAmP&^H=}|+2FnCCYrghZvd6j4c*pYi>+M27^qHQ>|!63;+qg%u& zivT5H0<1zL1<24&9w`G7Oa)SbzOkvManKIM05ufiG%AC5uP+pzO!*f0SCR z{>^1ZJLn@|T8ehV60r_*$jz^Eharm*_3Av_VSWRP9sR-oZ2t@V0KtmBbwE;*G+I$a zoV07DZajB71~|>5R*JtAQ#^N6E5b0MmkNg}xm`%+_LsMxzyAF7i?^Ri=rYvb2G>;f zMzEJ;8Mu|;I-k_PS8WQ}!&kMEhUq&FD>5JzSqP7U4l8x?7qw-2qHWQ;C&zZI zwB^NCf)uR)NVU=S+fceQ;qfqbu@g{^?@LslbVdZYJK54{Omq^mtZmg(k<@Qi*!8$M z)oG*d*4+nPz?}mXgC%TE5!&83#&Tf^sBY?$?Av_rpw76$+Mpf@nfYN*U5*c69c0U3 zMbZRF5;VaU@KsvI|49W(2)5ByyMo)Cr@S(HZfVLM(S%9HSXQl8CO9O^GE=8gjjUJDcQ%E&uJph%q^bXlexM4R|jmWaHH zPzbG!PU-od!t1Xts^dYw@f9ixk?3F2|FaElrBJI#OM!zrZ(u5;tLI>dm*@RSeE#TT zTN;}*4Hf@L`GB6KA6has4N0c1(qbvENC4dFyWY5MSiNYGxUv%|X{jVYlY=;AALXFh zWWin3W=eR#OJ&(tPQDfX2BT>xR%U7FUmv3`a*P1Z697DzDyj)5>to;^{Y-~}B(T5n zUzwNzh2dM|;2{Bn4TK@D+BG0`*I?7Y5-cuJ%y_L#2E>fB?+pSkoN%OQ1Rq>8(^A7J zj%@-88ap9Zbb5?~1V<55;f|Txe}DZ#lFea8KT)oDalU$mmYR0HXjePqm`^9~6o)zN zrtg|txRxL0Po@|SGDD3~b#DP~-7rc*w^{Z(0Y+G|vl<53Wh;6)2Dk@d4{_8{tBzDs zOvn1l=%=`sv(hSZ;3^mElDj6gJ$YzCU%P|*Q!XVeLti2VN-C0 z&f*D}p%U+RACbK$_B}w}#KwiHSc>N>S(8ICH=77t`zS$d*pDk4G{qsM*bex|7!L-p zXNDuu7=X)iOlmM{lZqz%`IJ5I8_D2t)SxkYSEak{hf~DjdfJum93D&i%H9otDE7Gz8`0+zX=m~Sonz!|6nsFQ-zHX~~URA7$1abaHIhdN~M+%mZ^Q z=#{D$DAdUvfbp>O6za2f+L6c5v^fxk_Kha~yBo$V*^SR+#^EdfxZJ8$0(Ei@2mF06 zFINbYv59d7NF5a*D-lgb`it_A3~kh_Q4{-LXl7ID4IJF~82?)S`>)l%!`q*~eDnG_ zy4tVb;-4>HT=sRQwF%DEooPPWMsm_j6UmgLT0f0>feP*5Ndgvt<>Ap)Q4{%iZTEmQ z^@G>nyJ{eDcF>0{N$-X`8QO5Y!--D81C-}2)AoA|pF=N+;vlbW#@44UPFSh@3W?K1 z8n{iTvUYk$mG3G`5MV&>A!Fs*vQom!!MX)m!Z(qKImu#LM&U6;7NZH1Ov}>6{(=(+RhXAIkaed`U+QaGc4_IQl-U_ur8l*}G4>IjC%yc>jmA^Zp3GPWhJK826)ItI2vgIin zG9&z;TVxm-h}OoG-6@+ux^mkA<;j6)GK~UsEY!2TZ|#sQkm{+D1BOy!2FKG%ScVl@ ze1SiC{V0&DoT$pJ%92>$s7<2>+2+uNv)!e*PsAGZvMoOV8B{NOqxYsfDyy!*Dd?lH z0}ED3;Nx?EXuq6thGUj!a0RkVpJ{S4eI!2^C2b9DiH?qKBfy&N%32>)O6Cwd#cg=r zLF*d)-OjrzqeAQe;Vo`iITQe;w^t78l@)UNK|Qz}9a}`5&ny7(#F8iRjw_24Qq~XI zWhGKZtf?Y_blf=gS!GKH2hWCPS3uWO^8A7LYG;cOb*_X)|1 zt>Ae*BAs+gv(I|(6*VzeRtmPGa-k<{$~FfQn5RRk#~J@E+8)mhLpC8;;5*M1lCwq5 zMpX>`AjB^bxWnw=ky#AiQzLOxh2phYXut#6-;sE)B^!n)HxTbZb{O=VY)@2}8_;QB zj(9f191-N8IAElBd@HCIYRhio>RPB0ya(=R8;5?xxoEU}SX>GXBW1Qxzb^#%v{X!a#27vFr;G7)|r zpdOmIUAIY2Ly3ND+}#u?ZZEyu3-@6Fp}|F4+Zz6&uI(&$V8aUVj?*O@+bddXThFL6 z-s~3Hss=b#d{QpUuBARYfW1Hwcq*rHblKfh04jK{dWoD8i$E$q44rCM+C;CZqDbq1 zu+5JNRJLLK!{{d$d9z!yBmN3?a_biqxR%bDwF$|Y!!W~N*35~ijwvbYzXZl~x1*CS zQ|!HCcY%HPjOc$K26gt7906&wIeJxAF`d(IbSIVKV1y8u$MB-~TTBvwrxm z!Td-L0Dg%eZMB5AM)?L@kQzp?xd6rfcEguqi!yv+wTWL1OpQ;6l;T^0aCJCdK0h6C za_-$G7hfz+le0Xxq7(Dd4O)W)4tEg6Gt?Yf7<3qs6U&_r=6-h%V^~&0;odL~5E#QB zT(cyO0zZLqD@d6x+f}yfYzI7sp6DsWU$f8ZM&^wkEj!)swE~W%Y^7RhduKe)5ODe755vFLAN?=kANA`q1o15!lYKsoDx2mO zkx9iL-70&HfGe|%RCgYm&Mz(NEwoc<2D!0zZLoapM&wNEc0D4{W-b)kZeVBiYl6J; z$PHBh>{B89wW_qZq`8%i0-jop%NhHXGNrH2b^MKdTAhu1cH#Rkj3hC z`c-le-ou;3hkR0$M;Js7Mfr&j<{!d;k^f!L@?75DNIS~Smty?m={5Y#zz!r7oGq6_&H57GJR;30RRCrWfto@V$K~-Ud zi6J9DNRe!@fzzFo8KZC$=DGF+au@}bWCuvDv_W{3@XyFW z?PX#ML-HYbGZ0lckBPZb=_D%C?BUtu@sx!=OHD!rupW72Ns2bqzc6?vl(RsYYiAlP z`KYrdx4T`QE6}8`^F^|PjjS#v@>;H zORRp{rWWB^yz_VEE!(Sdf!lG)It(iQ5i#QtbMyAImoLNXHy7pDz%ANc_{>dg)5hYY zgf$=r*Cvv6>&w!>qVh5`3JeNp9?&$4x3#S*43xtKtqD1E>sC3y6+~BivSl&1)!d0Q zgk{or6=gov8cz)*e68s~1gZ#e#i-V;TqLxpWvv{+CAr3^hLX^dLlah$6^I&BQDQ2r z59^`B_N7-zWlMvhm>)&R9Wqq}ugJrbB3tX|T(CHwDtE|#HbBjt0?Y3qhOM&t4Nu)a zzWj-E15KL^WE73$F-!Qv%g6D>U;@5nRTt>_sM6dvNT3~3?@Dze<|b%|b{bl9PxpsR zmVQs0$D7J~SHA2gpi7tCo1ja=5*Cy~hmO+RMp%etQP2khIhY&Zp@z1E+yJVwyA%w4 z+iueVz~WL_pGU58ze~94cDG)rD)%IE`p z|Kms#{XlY)0<9s~%{aqy*fp?T+6dyelM7HLoU*NPnWA33T2xhzgM0hw_y3{_%WBLR zH`%cRZ3m;s9WqZCb<5v+*v7;T>x_^wtMGpxMV65dP%8yoKKZ#k3OM*lxICl?oe_cz zMOf}Cr)672a{dW|`&yl1uI1V@eMFC0urQes=WFSt(jt0=E-o;t=yDAd`Wzjsn)SKr zBNMNN4Pbq>$DK269Gpdi2Rf{{`ku;Gz~INXtWZm+(aC+8$VoLUKH7$km6T7tGjBjR zS3H>=sBX&m2oL;^7y9lf4SrRY(Je5|5Gmj z_^2=kD{+vA!79GO0)XvhKq$q znU<~P?73R5?w3*#$#WyDSXM7g_d;r3JD9EH}Aj#gr59JFZH#PiS$C2=S91lWB>fASVG4 zvL7n%N1D;9O+d93$9d`i&@t3Z0itwheC65FR3h3O?83zn1KOFNt z>vX9#_@w48ZL~R);tLWE4iqin`exA)LpW_AFqI9J=1p!LkoC1xA&N}{$<+d69dxJw z0~CxdQHhndzTbWlUVeRf9BeIVQDiS73d!0&+tvIxTJ6=LKgN;sdE`%}&OL1!)KbjsqbSX9QhDKE!tHs6|rves|!d*^;4bJ!V%nw^tttZ_u2)bs9T@|tf>UW!*v>| z6%D+GkFNm1k)k%-T2~u&BAgJ7aPWVGb$W-?r zv+>ZaLUnXi+gEjY%Uer~t0%d&MMY}el)Y%!VF@LvK5Z2E0y>3rIEjeQ@ymj__FBy< z)&o^qD0L}31Dx)={k7K?Q{h}9;^c^s4}u*m`@>qX@Q#r>&X$U#S`q~0U3vMe%7YRF z3uCZP44_%Qt*Deyk+2qGbX_Djzv=AKv!KhSY2ZP#MCpFir{P+6;#8T*z zryAF8l@t{s2%B+yQ~MO#ap=3X=J}H+O57pae%JIzlF|yuZ_Czz*QY9(D(BPc6prit zK@}r(k>f{|2Drm7NU7~0Tgj18bhh)dLw!Dc76iR9+5ktB0|zITkDwQm)aGGdC82HD zW$PW`SvkU-Mah;jla~XqFUaOBE!<;CvszWTK(!ur*Sf}Nqt8fM0e?dxudG#1YUD4t zw@_^{7fpM)d*XC<>ZB)C81m=clXGT`II0)3CF!NYF9~!%fT6IA1)#Sr31F`+s!-LW zf^Xay9Pky^*&Z|QF0^FF_RxT{QwtbxZgJ$o5of{E5n`kj)e);ziZxdO1x9g3{ia?l zZX%cg`KqEE#JTowUQ_UeR0YM$(v0#>B9!?n-i z;(D9ffD?#-9N(3C7q=L^W!Ct(fD!D?dnT%!E;2Ol!ROc)}x(qr-Z~ zSYZST4?t?dN&lWAD%>`&$mcwWjEc<&c#9Zq$OBz)P)t1r%aT$A7&%2$@TLVL% zwQ$IZ`a(NgY*RU#(z9V8DjiU+)lFRZuzvyrSE@xh;5!QN)T#y^R}oA)pK-jm>}Fzj zZ4Uj_1T?obS4w)tzeMVL%bWnYlFaFmMqfP!tQjA>_Kj4qGt1*F{y>8^Wzx_WYL)0n&ZM!*bOw=p8 zn$DLkQ)U(Uv4cet%_!$E?>#aidzgbd87g34V*w*ehI7SC4%6d;6NHBn{>vT+a9oq+ zD|>AREo_6ZLQN=a#3`Y{k^rL#owTwty>5v4=ujbY1+Q?`k-M;&LpCU3bzzEE!sEym zjjWknRep%6l#d+UJ|hX$Ny$RKLaT@@FhV7RBK>8aI>|E9tO7GzRXIY4(@ zLei5OQh77CQIi*lP@`Xu2)wiE(KBFJltW1=XgTM#lJikU+(|xrhZ>?HV z7iNhBr8U8^3^%?B8o6k)&Jw7T1-h>UI&CW_fN&no(#13M!S1<4*=vysQ#AXC)V6LD zMMBR$+5VCZ+1qL%q_VfvFVg1Kbjfxvxo(=W1KejecVJlA2!7Vq45r{xRA`bb(Tbp_ zd6}dF(|M>5+Tr-sOdMYDjX4Nto+^o%iSU9YiH=|I-&Mv*G+ZS{4N`=}r-m?)S(o&R zXVR`wQOi!jJ8DN|zvk1Ut<-+Pg0{hh#(1RfY|}| zwlEF@p*Eu{z)nGlk+)psbu^EoadQ(R#65Xc}J<0L}??*)fccwc#!$XWTa@yZq`ViX|dfEw8rMQ=5 z7@O%cu%|u1_l}!SLF@BraZ0BB889Ed@E(YL+DP@uAo>7d?!8SrsA`7CO1VC&LrB@A zt&kj*<-4PV5@!h`C4}>EE$&`w1DcOHsrmTw00cl1O2}a1Y02x?&K`*@siz8Tje;cU z7OpxMbyd0xX=Su+`}3YpgLz@7UDTz$>bcuwF+-IwpkZZOt3v~gQj$49Wz2pLH%SI) z&BB0GEwGNv<^>_7I2AYFy?%Jsh53pNX!)SCoz+|Gq?koCbA+YOj_`yZtiwKvB3K#> zG2&aMnbtZs&QSOW9X2(AXgO#`ki>$eE`Tc~APSD!(CIFiiyW%!UbUC{pynWOMW}W; zzM0V~Viu7-1vw3dBj7q*$p9W`d;%ZX6L^-_NZwMo+AI+%Y#??EwkQuzWOp|iKx*m3 z+gTrlGx;4O148I*l{AF*<8Fsd3snW=_>fywT5AQhgPd_|b&I^6xFm$#X`N9tNn_c2Pe%S;pg~0zMPn47ebKb7L27GRI}F4bbTfYer}(iPh@Ka%)*XBD{*%R>BF12MB>9m=1?gX6Nlx6{tJ@GOuH|M{#Sc;i*`8;^fJxp zc0yp<-i zfwE}~z)g6KWPjNTbg_d4W6D`EJK8Do4&u}-2cQ*hvO0Ej3w+wYCu0N9~C z)BU0?Ar24IKskcRRF=DX&Vre-*ijn_nnAW5Jln37f{9T`W=^(tj{V#JSIwof@o62KEeZ5leh-yGqRQ@ky4%^S5f$y8t#dlX}uQRTvF{ zJn8>H72L@ynX1^7uGs$>Ea|9U;Gmc(x7`W=H%ftE`nY&|d&EUOICWid2vmS`W2~KK zcS{8s3cI5$P-a_4*f^ZpWQn!V<)z5U_vGX)&KNVUW(g)A*rUW~e&P;NbEuMMocGSq zPQnI0kRP2iozZSs-53$mHgLH0%mgRCpf89yL=+X&z;NMmf``&-5vh(KO`cRWcTAn^ z-hna=Uh5!1x4;u-m#Z(=>X20kBPwI^*2XA^-{7z?+df4}(9A+@4iF^Mn50zT{lgZ3 ztv$7CFnXM%WWc(#b7FGCp-55C3qkm+Z=eI}(*ORw8<8^FEdr_yao1; z%tPG4lRCQvAhp_v!tbMonttxkSjh}HWg+TWHG?y=FRj_tzal$O+2ewgrfVCaRR*+v z!tr;hwiU37ENP?`;21YfPbidKRqi^m^~cNRz=v8h;-q$Ou;_(AU6Bl!nSgT3f^mVv z%6fB`5eRjH6HoJJ$W<%^0Q3-)O6hcNvPbb96m9vQ37nOXAMvZ9aKHbt?T5%6y*$ns z?p=Z6uvc<-2S63=g#ZZC*$E(tz)eY1@gd58bOaTPweLZhNHm;M67&6yJyr!J$VmcK zW-{0%3jq|)0!t=kit>~Va+2xBwj-p4(ikf?tVs0ZmWkb~aBD7+Vq_Oe=RiqhzkT^U zy#4(9|Ks&H>H}0VCGQo(<1WLCM94Uzg*2x<;32DggFc#2SUknd!QL^Z2v_b-$a`{5Fj`lM-X83o(AAG-}~l9XfuzhF0cYC zz`07BQ0LGIXsy>g1DJAjmNa6nc|lD<+!>Jy+Kz)Sg{QCW0MKEj0BVaI{gK2V5ELzD zpuBgN8fA%X>4=ehjG||aJBZ~wWnKO*YH`Ih?%08X2qZb*p`f#Jr)lRIoSs=b28|#Z)cwac*+1G zW6}?qqNw!q4bL_`tDS}XI zVF*lBvOAOJ)tdazNFM?hA}(8}nyE{pZr}JVPE@*tLmlU^<8y+ZvK)1Ca;L_OT;#Kj z1pyRkl_yqJkg{F{ z(!;~>I^Yyo`X_~lnneF6iEKgo*%8-7py%^|BLa3?49F>|vg1ocrRP3(SWduFqJorljdn`nsQ|kLuv;US#pJ4Hc?*t{PniJabz3)_m(}fR zdtr?dW=Nf+s3?_OEjc6=OiEc#a*YysCDJTbl4$Fh1xbZE&|3?#6{7>2Z5XkOh?~KL#@( z#oK?y02pVApFnHoT02W+t|5*Q#cUX(btz%#0XOR294@-umCllT=RywxsWvcA$q7Wx zam&3dis{Oh!>U6t*Yc7z*r#+^5}_>_h7trlx$U`@oRaW%yc{xJLC%}xK~2uzud8uV zmr4tXPeCh$iSp2+i$><)_s2(ehb;_du+)>pnViK4_r%L@H9t&gor<$vX2N=8iAXS! z$}%HFevn`}0zq$q9FVU!yA9`Vk^Qa8;)`NlH>z1Q8HCL*70%VGyWBxe8ucT$ab7`v z_q4`;Ch-G3Gfgg_`Q$7B<@Xz=2IZDKwkLHYB+5t!fh-ZBWYR)8O&* zL3N4K&k|4pL_^m&fm(GK5v0ag`Wn zKa~Ifrm0NNnFA0$u=xxQsvCD)guS@l`R2GjV$4~PyJoNzc%nO6&l;n*-0h_m^5$? zEp?DfrM=5?^86|S-3`L?vxQ!e606Y)A#Cqid-#T;ZB8D!_bMqbs+11p0zs8pFDe@m z%4N40jlSCC1-6PD`9u-}^Mh9&%ALKSLPa_F+i!A9lCoXeHZ%ZjVrXWVo)R7|0Im?X zqTUYb=*LbaxQX#Y20Xxl!JnDlz^H6>c9PVpZ1${(7hahGpx9q+@xga!+FSyIa%HE) z5z18ytm9TgJ2`~_UD`$o@8efXVLD`@scIrCcS|$V2omZ zPGOdVr>|B1!6rWs#bv~Yn?eVa@XC@C>eBU{=YAg?t^wtQ2dfW=fZFC8W))NKaMJGz zA|%%1w&!4}R=9W#+Ro0cAT+IBjjSjTgRG`+)#||R>>4)Z2}xBk0_mU~1v{5s{}NvR z2vACAmhd1N6Eu@2vLw`6dRiBCv%Be`A1cugL0VqznEb5d4Wesu2Ob)SHP}x2FP^p~ z>QsR|!zI!wqdtmcWus#kd)PtBF^1{`Mksa`jbQ&)PRN{l(EnI0&9GEw#wVv#e}Pg_ z74P^E2> zLKCuwAetny~mcsUpdWk@{%$m|-bT}cS`m)_*|TpaYIgM+6gM@I$vbWPp?`k)0heG77C zSF8#7te7tXX;%w|{l_8rp&I~zJjCIL5r-2Kv zqzL0l9~HWm60`eq&!6Np%MXkkb||!6ch=wQblpzV>fvy+liOYb9BIw01b434td|c1 zS|?BiK}$7hhyoUCXg*Ad_MSaaS?5hODjFmPp+Q<*+L=zDz;dXDE`Q~0H=6^!RE=sS zm?b#?6;}XlHEPy2bRN26Xb7e+XB(O{YjUzOA+C|iU*Rl#8jZFJ>z{=l{5{2PDyL3A={AMKmdac>KFyoxGVWH%CeTDOy{sZ@OJ%L zOz`aEGTm^I(DSzS2NH68IC5D#rKgtQpuu56NmHp#G>F$GZV zvLl46EoSBJ135t9$9Smy1f9ubF;w0#)~M|E%J3Lf-?Is7Q0D^-Ia@scRn<%jTp5%# zJA1K;Gx{W|zkFyHUvwPesTVZ|rKmU&DB~^c0H;Ov+4^V)F!h=J!iVcTh>b2itVsOAy zoMh3VHw{_^BgGYl9<2Dz0=U)5U}u50D+QC8CTkOt^DS5fITE4SAx`SZ0x973?NU>6 zx!OZ_!LrbvL5t=_d%}!j%J%%8ee-W#zKIJn0*hY0xIBg48t}688=j#CI!2&Y*I+kU zxrWtb@1(+%bEP&OY6%}UmEnlE7gIUUG4tp219G%yfv_*b%XeS^mx%{sf_i@(Zzxdo<@J z1zHXu4q)IZ)dg9NiS(o2qG=1aG*=YKeQ+d8qcoN5REW;;3Z$kiajsHmOA4QO>+KcEX zDY1{aG5XgqA(KOqj6YntxdX{z;4O(wl9CbvO0EA=$r>j%?OK&PwmAip`k|;*G>B7s zV7aW50dQ~(uFZivc@SNvHwn1~n+C{6K~JmlpJX7wsE~lN@p6>WmVG=>>F}t9(fYCz zHnA^s>)i$L%2jUd$zC0LIs~1S zDz*lbpRskgPNCJ5mszo$Ruc`a8B_cXP% z^X&&Op9jvL_xX!lREJyOzF185EGWoSK#&Q`0hrGN9>XO`isQ5*y&F zNT6B^%2ET77Qz`+f}bs3SPTHji5f#Y|CwR!Ij8y=fwdBD~rRh+}+));# z_p`l+|IMV~|1*!-Q>`ndjU1Ub63V2ig(?BG!mECo6Ce=&!s{iLcqiBk@Ff;q`;eQ$ z_5}0fDgxXZRnlr&GIg&llxF*03YemDf>Q|)PZK+-LyUH|jZgY|wq_q>*Tk-`{DIwQ zjZ?0DcIzG4S0A{oRhx=9rnzN|^`-?_ss@#E7CZU6CH%u;pj7w&d4~fd#s`caz zdhyU&M5v{7zB-<#zO z5l&%iD$^b$-kLmLTQqNf{`w)PQZTRjL}G%%c=pjx26@xYIh%Y|1*<)ZfMyZ~$%F$- z3`$G++1Xg>IEt(pC#sb%WweRQFhy9Vy(Z?SXK}RgkXRe>+!8zGe zs&iHJ8iEW-g>WAorGx7lgoay^vu0TucI1ZA(xYbgZh@-xTdV+(slrHJD_fHRQ7m`7 z3ykKl3f|~}_4;XuUm&5+*hDMxBCJ;ogewwLi)+sXed;5 zSF5ZiflC}Ne;fWmzXPJWg+49BO7$mi_GD&g5r9+*6>?=RGwL5((TmA{c1HZR2`#TWeEG>j2vO!Wd zw5|OlpXD_{gd82J$$*+SbpSGGKhvptLgUplt2U zo^z@G))R#8An@R=j_k=XFB16e+TZ@`%g=xSiQ{(FY0IIF<+z*&Izx~4*?D4UTXN2{ z4~o_#$)1`SYgH`JAIWGBJXd&_sk|8E-o19{RZwx|83|RWL@z3%t2S|~`?6KZx>Yer zmd$~|!G(LZ((UapUcL@5pU3-<6e~){TU>7e`jGHqqJP?W9;sUdw?|2Nh(I~yDVjDQ znwz0B0yW?tayAu3B8zwXGs}XjX&KQkE|-$K!p}f_BuV{{n^2bYO0cgS@iZL;hu?d8u-}7lp*{FI5LrK3*KDuW z^ysrehy3Zd{B?N!ReZ2bl7(5p8Q)mCH!xAdApPMvo8?ydbO62MvOY+EsNe_GyB>DK z4g&~@5eL~YNZ;K^dP&pjED{Ns?nOiwSdjK1K4sJ#T_$B*2x+jOY!&1ISL%5kL#$WTdBduT}DV%P_r66Xy!m?qn}=?Pbb1R_#h*qNtKMo#G4 z+s|MB9KQci{Jjr=;Fl1OHd{~7tYvsyBs$dr2e<_6e>5wb5%DZe31wkkkyb_QPKI4Qy_LWB@&5aiahYFxKP%ZHb6!RA1BwY*i!YnnCWeTJ@ssWXl{T z0)mJfess!w1oj1yxmc7{GeV46^xG#n^rolFW3)NdBPv|lXB;?oBF-uwz+o011C^w9 zFLosW7&1p!l4ZUfIxIEZBgZVE|s^jdV2Ki3OW!9E*F_9(Zg4@oKlQTgP85hvt zO$!dIiwb}6W8ZM>fcGj9X&tcO;4gYo;{k2shukZrs~tR0`f|s}?R1FbIplXcKfNKr za9MVoBXT0KkrB|&p%%of#l+5uOV>u$(q+8%;2y#U$#&i()wzkbOUXTGJ22i6E*bwo zgjE(6?UX03JvmI#M5L&oZ*mvL*KvDT@umilaX8 zQsN(b3Vr)zFG@4enUaZ*VA^4K#fc^A#fst|Elz}65*g8p<>XV6O}Ep=&|z2V7}Z;} z2za!mp{g^*ab7aia6gkG++A2U?WA8KTdo3iieAfIkoVgj8JD$e=ThPh>nvI0t>V^u z*}ew(jfnZSk;OKrAzEJ zp}M;3#cHYlFxZD1(pflqK9g~X7S0M140@ZGV>6059ZZst8>gITr`R)Ei87eb08et4 z)wrgyzH)1fEJAHK!)sxv_Gb4~tb@pryuB{FU~p?-DRT<$9hRVpD zem@H|qF@&s_v)hM-8-r;vU=tz8b!nhkZdLLAv}ohl|KQo_)}DO-@pmtE)o=`Ibvym zWFKrIG)~I{wv;#mOfzNJtlgl7&<)$lK6~y|K;&X5i)-uM@z@r$fao4PwvyW%naK&r z@b-Va{5F^$n%V?$Xw<6uP<2uINlzIT^tgKln-Laux64olD&?u>b5}(GuU%$dKz1rQ z5bUrP<>fq|C5?bU1IvF*o7Tu?Qp*ekw}KjqL5<-lKmnq+Io837=8E^RXrvaeqq0`C-0T8CgNvxIy7ikkzDWkS24tb!WjSERfjrKN{uZgMeGbQXaU*!i z-O#UwC?-YEYDL9j3`4v+PB|8QS@0z72Z5@|u|8Y&+IpyuoIW|5c34?1ZBh6ftsgngoz~!N*rlI4X!AUl{Zg3R)LgIa_P@L_LN{{MZ;A> z{~rTE3fWjB6@#+6Wp|51r7A|M9UhIkv|C(K`{y2p!qz^N(WCT8!g{(d%nS&4q6I8n z@N97a8X-*y8a0!?G~o##wW*5}8KfpACWkHt2bq0aR7%>wq3><*?B*n-g51vk82%o} znU7vRw~R^o@JXt>JjH597a2DfOb=4i5MmaJ$K(8JR1KrbWLx`<*Db35t3sotBqH;F z1gw(Y5jiH+Xne}mBHFYzB^;4kN;NFCr924d%xNReWiOY4B?cJ7;Jfw;O1Be6@&*u8 zCo<}A#1T_bO$*X#IYsU7s&Pwwnp9lhEh3l7QIt6p0_D1CCs+D_5hwWQb=-#pXWns$ zXPhbZoN7yr28OG$UQ4cW5bK@^u7F`~=uf6vQcUJH?}Ok*>Oqv1az=WGhpCo$qsSXs zrM_pbT1Am^w{J?@XB5c~IoqTpai)B}#H!0HJ=LkRSUVyP!r@J|n>o*xqnnZd^Bmn` zY;k3qcK+>bp85j^Q&Ptt+YaQS_W*j5M4zBZ*U_52*H+3_YhA`4B>i4hfN!`7pd|5Y z-bT{;t>Rk*e-{4^Xw z1x3@1$6@QbZ-ndQb}=vpl=6g`Wu?So6xNcxqv;z{N21%DYd1YI|kyUNv(q_ccs?%r%&@iYq1WmmCNq8k+vVi#yhx(Wv zm}ib86{VkT!Ah~)i8rr?z?wXvfIroT#`OQSxexw1y#Ip>gc0QM=;U(kjJ^@~iN2kU zTk#UWq_d@6#Y3E;c~$9vwUWa|m@U_5lJJ+|w$C2uz;&1P;=rumO%cN++?{D9*nD&VJc+- z&ksRnY&&Q#8Q+>Zv*U_1!=fLX+}j0=EkL$T=}(ubee1Y!u|Ukify&V}y)6{;Y4zR? z+MG4@m+TQ}<+)0vmxQ2Y(@EA*(Q1YvSF%Ac##j+*TM(SLcslVgEp0Mp?&_~ZsKrgC zDzKKHC+E^mJcvjN$3wyH_dnX&7N zkVMlY4=(S1whY1f6i~WKf`M_+tK}`1S)L^mAnn_> z8wNB5${UOhc9x&=hmyX>rmR>CywQ5h>2&v2&5XP#Si;?qnStORDJ9X5yGp&oguZH> zz+E1zJntu~;o#BBgGohsmh7Fl@)f@_uEgHVldKC9ebcl6-G*AO*)_N&w6z?PzIPr& zl%4taivB9f*-9a3Hqi||{mVeCgsE}0+@n_*bM7Ks*}sI3djwG?E@N}ioH*yNfqy$R z7Y+;>FDs-ShyZTYEpsF45(0gMs4WTWKdFBN)yaW)nh64KDO>=kp$fdyL=xYcsa7?P zS&NdVloQ1s@!s(wbmFkj*v=f|K{w9_gQ~y^Cs12TK=s~Pt;6-O;)AojrGobH-fLZf zOSJ8?A&q2(2ZOl{9u6xYqVTb0PDphwQW6C%D=a%6B+Xaog~^uLu-TsyU`mz zAm&ibRW;I;kP4!j)tFM3+-XxJ(cubsmx@$aGeZGNvrczzEg6gzCjhGPo1VybFW>Sj zQL#3D`fo2^zx{72!t?)x*Plx*J>gf`G-pZ!dbO)#DvVjCmpD6c{m_h_!$V3MT3Ixx zUTpak4$qLXdVgoQvL<0&NU>17N~(XGVX6OSJxVZ^10~dy?#XJ`O`vy6E{UTZt=a*{ zm`~Dsw-<#(>lFY(HZ$NI12n_PX*`CM6`>O6Vff&p$XDnkT^U)bfvU*1mMgW6U>`L} zyTSRxTp%HVjtVx%jL02Wr6MZ7*i&V8)W9DrWeMWk}dfV zBO38>$zr6*6c?Diqs=3Ek_{s7p+Aw`C}#5r$|(iu`W^M>3Ovt{#LT1l90~ckrIOf^(hmifD+Hf#da}E_Dd5=S55CKiImQJWnWsyX0>C3Mk2DuwDYs&Y5(J~i#Y?YQoGyqv7bdnk|t&j6`kz`(fS)CjqN z-KmdYuZ7expbM~?`_BfMT&sIzrPJqX&03cv>X^HAZuXApYX;?hpg^U@nOnSJsSZqT z4eXnB(u7)S&IhF2$RCAio~44o7_is6j@~_ihnEX6@1aJc&Q`*(QNnW4QSH{qClwjC zGg%IXD)1R}YHA->dao^QiA?0{pof)ASkaoj$!ag62^T;q&@JYP355(JfP5^;&dbk1 zqtmGAq7|S`Vv^btuet7OF=yLCxgf46zGOE!cQ(n&u1PhVn`?~0VK{8h0xv?>(Fnef zno?f@<(_JZy;KdnO5!|3u1Mp2hH79X7ilAvkC`PIttE?s*KXq7n#@0W8c~{iOvb8! zXOEI&sMG<1A*FAA>OE2y1|WAZnQE!q`X)u zx?&ku;AOUuP}p`!Xqn8Kd-tztrA#BADB2ex3CC#w zys+JBU=P(Z+PR<6yDTROwv%3y(=?G>I-kjXW2zH^&lM(eCCXbRlcT~?&I2>1Q zl<0Fn8HZOTc3=x$*rrH5`fNxgP@}``@6-@L8~Hy&Nk7Lv+FVv{d^ZM4Nu4ycTlElQ z7Z@766CXtt`W?8teZ;-0K7%6vO`3jfRi@Buw26Cf0)1g@h=dv{MZxf~HxpdDC>J(v zvgsXAFBhgm7dLl>$KRKVw0Zp<9J*e9s{i~*u{U4o&p$96&d*=IdHr1Z7vJKaFJFYW zKYRJv>xc21w;#Ry{`L27fA;!2%L*dmE)D8XJ(Za+Fb=9GZP>ckalD}^7+t-Sw2bZI zPSvUGnM#>Bq5Lkq9KozA-oIo`s0-RVkC{n<)-(mcOm${d>kSls`5SL}#pePp*B^r_ z!o{{5=mG|p!68Uq1OySIrV1w+&nYobmIh3*jEU!dPvW}!0j9NQZ*(w19N~g~6ES>WM zSaMGE-cuvxEULA$y}w+NjaA~Yl*->p!a=2ds5xTTDj#wU_L=OwdLr^0 zRZaup$sQn4gAc1uK;2$xtlN;Nl9O|d=?x1buvL<3UkoGY?%K7_Y9DMUXIY38c~qFH zMZE+bp2i6ZlGbd9I`7Voi{uH3L*`vn)L1v%_GzZod9`{|!9mB4Z3+Osg0#|-l_kFb zl9%mjFA#9kWtta^Ra@0GQhe;DwKPoZeE!mcNE3%emm^IC&_e<1?a^Q{)(f?&?y%}O z8L??6E6GLLhTLWOT8?2rYhXSASznlu6Cen&Lp08fgWcvUu^+&w>d{qyS=RQNo7 zV}})#276b3?K4L<01;R9S|XW>ImkGRwi#|2xM0ur2ti^#h^FZgWhqxGDS(e)ko?Qi z2F5wu+o?}$7H3BMgn?9s84$*d9E9YOeaZS&?RaA2azK|^RO*BO`t?`V%eMFMHDAcr zQmETgeN4}C-PUJ%XxCKbuWp$GVxdQQQpv`c#`YfVKx=p1I2aLDfiDhvW%J0&_!6#eIRP z%oSsmm7w8j)~Vv)8a$)y-V`ylQQA1CXx39ITkKKHm~^P6xmtdDTm}-y=FyX;d{&k% ztlfK+US#sv-cPEgH#pd4{XmS*CJRP#1*~#Qp!VF-Jg9a1PCIwzWsR{vP6oKdK zGK87uVPJmS54R_X8OH~reeH|0x(2PBT}xspP;(i49Ihc{8#Qh$9_^uo(#^O!(dMe^ z4ICoEryYPo*hsp3z+^K}D5S00?JV67_YNV^c#+^8R$enP*8eW(qq1%EV+ zre);dG*-C@^EZHi)=cQ3+A){M48)e_6Kv|5iJj~YFVabV*(2)!#aSUF2}C%R5zs2J zgbhm#6%`(~{f>uIGm>v^t4AH>p(-CL!H4eIg$_{F4=p74M$iV&HqI-$zjxoT~0J>kU_P=F9(e@ zyUiqqHY1;~Qg%ush7RE9e76XYt6%{9PI{(5*kF(BX5W>o_Q&I&&*X(rIsWyV%iB-G z>z|S8g*&=o0C7LN2vG-ZH)7RVm~?MVZIPz~$Im+C?Kt5y0V0}HiF>;wML*R~hWFb% zSKA3v_=6vWAN(MG3V##dIy_CR@ws#Sul;FjddX=EVZyD!!4vKoVkyesfO-c#t%krK zxgLAkSAbOPxIcU@k&kN3%cz3V@p|Up}+OYUH6E$(nFM8{T!-a|pWu1uS97u0YFl zh+HW=Jzn4B3vyL;eTh32$&s@P_?gnc0tPznA)%#UhIyT`vZR8=2obSs#%R$i;*?H7M45l=H)fyPz#s0@UWMoqK0`9#;6o& z5z!@XP0<^6!_|7qZ@zo|j$gz3Kj2sW(?>=bUtpS63Jv4jf*XcnLFFkGJY{AD{`(+D z&Kc_}RS$%0&Lz}8MOJdHRMs?RDxp&Zu*tNwcYDOarrS5EjXw&M|Gi1tLU9@!#-ztQ z7X3Sx_43>yN(sC+6Ug1QSBfP8P?RZa1B(w{Ka}eDe~OD{QQypLo9t|b6iqnfOI9Qj z5!BoBoVAD~1|a5gP@;P5IFdQYYO(2{%nB5ZJ(ti}N*)GOy1*quZ}wXC$y4GQ^-4L9 z%L9)MfDy?}#i&b>u^`sjy*XtmIuX?b2HOk&HCMu~fs`C5^tVFpY@l_lQd#T<$DLV$ zWTxmV6&Xo_sBbJckaI_#ih(ncdA;MPe$9H+mLwcQ@HJKHEb*O-q0}K+22fhV^!4T)s&!wkM0%)Y0R5)wXk7_|`D#sF3jjSN z0Vf7yR7_$D6&E$_G2zso>d)hBkA(v0+EyLuc+$tT>ui!pD2V{#uxl#Zv1^c5wiC`c z$a(};Y@RC8LgCvjE6tdONTKW*X`g3dsW)y4nqx_GaCRJDdS3_5nP5Ood?)ISoU#LG z+qtzdsu4NO?l~5^qDej}khehv=@`&Km58m|6bkEiFDU&+@W3zXWoSWE9ts8xdQ`;|<) z)Hw;2`W#%F7`{`WHYtdGT~XLh`vpUQFz<3vPlm=is9qOyvpiYxO5UHq2?b3uD7?N?UqN2`NqtYr^Ho(LIufEWOJQ9lmU$8i z6><9wz((=snYUV%h!AK{tsb>@1h`_9DmD{DnL#XSSsLiz!dQ?}vg%BUMuR+t8&~%> z^|a59%)#&fCH$>^yN_3e8DAhHYQ-9K4dcfN7iiIcI8J^aO@aq!&zJ~v(iuB#!3d{! zlr7F1$2ig8uABDynjMp$6)sAF(7Sc6{;FVA=X93tfo=!ji^^YFHDs&}d*~XjB?OLR z03qIvrRT6qt^P=wTfppTiDy~Mv_M7Ka+(UxT9P_k9F*AD=is6VFXn!?eq8eX!#T$CR~C-t8k&eC4RD)kRU4m=fJ8ZKPeIV?coJ zw*t1(pbZ;xI9W#IQnC-h%{KBLu$a7^W)#hX(=Pf-XD9mYe+d8hkN>Ejen@sz9N}x{ z*UC+}7v>J-E+@wVKdf>AD403yrX+RyTp_4C9uYnZj!#wND0J~o#xu6|t`U^v_z;EV z*KEf3&M}Tn5C?;!4V*E3_Ra=6AyGEQdn09X)+qXe+=rZ_Ov$Srl|=Y`%f_xrspbkY zK~X7@%(X;ky!DCN1;bP(_kl{0K4``j^a!KAn6qbV5RzOQQ2mh@@1T${GmDaw5KE1K z#9~+1coLn^zR5X5S5u3)B|rWC$FJXnx1YX#`1&e`B~l^S?( zWk!SwNhqCPDJhW+ktV?4xEY$4!@Nn;CBiL`~JsTPgq!eoKT$D&kBAe7uA}LC$0`eyRm)E!U`c}kc^@A-yyeIFF z8N=Rdui+a&TtkV5hNvn{w9)O4pD-k2#eXNyb5>s>Gu27v=S#q)tU7081#7@U8kTh) znphp%9U#1N0hf~BydcEh;YMMn%!BD6zJpW(Kl+iS9V--sZKMLeLOifM;Om-@DzZ&k zi(q6z?7DsqE?=vfjT1`sSC9udZ>Wbd}0+IOJtYeNj-pho;Bkt zi%5-z2_>xIcET{RME0uW#EBL{@-CL$Ml9LD2n+}*M$UjU`EXa_Qy`AJLnqrNRpaa$ zU)7A%?fWE72u#5OMEN+JVbzMUn|(e3>HGZr?mo3Z;yRp8x_r<9g7xv+Hy`|7{;lx- z5t}%X zR-<9;8l8M035tQ|hTX74jw(M*a)qUA ztixHkjFTQEYwIp83oIr^Wm(x$zoCf&mJmp105w3$zbg^+i`y?DSWS!CsW$WYU?)+Q zu`Jt_0IWniLsccU8#;vHf!4A4YE=f61hHr-PnKjk*^hwgk7o5<jwMS?IVZ= z0B`mSh~0*FXzSR)VT($ORZ@R|62n{dLxJFO4sbUBxFkGP{o4-u&{bW-I_aWnu_k%x8%x#13OWy{@qi@i$?dB?RQStV zPAAPT7H1~OJW(OT-6^@=Oucdfgy|>rFrf24UWrlvl%Staa)kNl?d$ORYqXW5imy5F zl{jlH?xZfTcJ#G${gp`QU2wxdQs?ldv)FtKX;o~iTnmN^p1GBCQn;#Ph!h$0`ll1@ zYUweQA>e%`<3kOUnR1~ft4^>6^f<;*EkfA=N8P%RQ9Gn115}OK6)@aVQ;^oB5{clJ zY$4?bT}a6W40_Eg{hl54x1{@|rRI&_N05sob-PE2CEI0{Ur3_UrJjl3sZ#wS&eq~G z1z8GgnL(E0gtG#b&Wq}8@s>JTWmY+Z*kscZV1pHj1m21Sf6JRBXwQe^HH1nlZxKKw z*V66I9h++;0f%`RfYuztLhjn9KwUVv1l!>1dMjEnaoDqI@CQcIFF;+v3e!2Ey10*r8q9owo=%#FqC!Kw+AHpR3? zqHpZiHrgrOLnN70?Y;(Hh87B#DHyP^iz=y9W6))Q=FQdSONe*EG^x#+;+RPQ{Bu(C zTnV4aN17cPb9fr(%1M?*XgI$?yP{zSPLiYt5X+uRY}Zm{l};-W1^JFAo^Kg_D=CoX z4XLJyzm8G>(5?{ptY)s=Dn?F1s8901S;NB6JYeU}JXOBHc#p$NUKN#~LS-RH4Tt(#1u( zY!RNT8^ln%kge#lKd@7?9`NS8=l-xPh{qAQWVORj!ZpCRSzZn|?^GY|di~a*?O-80 zTn$QmOX0pTJcX7;7*YXB(juRLoV!IN%};aO&8OFwl&~Dn0?+`Iw^qUdC3WavsFWX_ zK5JJNNe(ONl>0l6vi9qVj^)656}2O_G216)`fN>nQ!ytR(@9Nj16%p#gJz?{)>9z> zCNcQ8Ovau@hq+xtkz`w|KcA0*@3ogO3%q}9)__1j5nb?)N96rYmks_<`{IvlQdJLRi~W!z9k~7CEg(=;4CfR zOIW}U>O5bJTp0+1bLxbtvVzg6(+w$kzR5U%V8eOs zqymP!&N}UIkaRTYssD(a2n=Wp$XkMwK!FaA#Eci)Bi^vMr7Ej98s5FmBD?G&ptWF! zz0Q*2!^z92OQ`l~D&IW#AXihqm?3Zpr||U_pd(<{E&Ya9I$UPX5wQV zsULLfyZXc%Vos7P)!a5c1UbcX8mi^50rWDr^2jY#&)W(~G*y-A_m}rSd;K=NX5`lY zZUA=J@o-^6pvq3TU@A-&Bhm45y8o1R7_m3-k%bZiJlN$ul+J+bhb+Y9I?z4z2s-3f zvcPNuCKVU(L^iQTZ6Z7y2pukABc6xweI)&%Ku@4%vO#Y_SeVH-K{JceNcRojOM>s+ zFb1nyZrd<;tp~a0j_51^2NKevK8yHqTS>KN^HX`>**#t=1KgqQ474naHfq6EHYNPs z?ePI$;zKG3nfr)+PIo`mX4T5Z_y>(+x)gL+))d8r=k$)`2C%q%Nn4fCL~aRpy&{Wf z<(*#I)Ahu2&CUllQV0UgT)M4 z6(871T?gCROApAHqVi^)Lq|x-s9d)E9tS*9h;`$x_ahg#W6p(ksvECLP{Cn;DT*?; zZKViwK0Snc(*-6s-&}S#U3s9+YYtmXl!jNjx=KdmoVE3&>5~vi4n6?JOyyQE2}BF8 zt?$%?EOXa0Q!(-bK-a!zqo)bpNNG~nB!GN6I5I@aD4m_euXXJzL@IfZp9Ksm_lt_> z4)(Cy9%o zUj`bDCHP_oH)&C39aM;Bhun;%Pif@jr~ThhH%brV(0=r;GbTj4M67EUpASKkDqdN? zl;dz`8#m7CwgS!c{2bcs8aHc*F5wV?r;aYP^GsAC2>Ojyp&ns<0j_xn4+SQZdxe8C zK^z*0tyPmTi^e@5q%gdsloduBr+o%9U(mFU#0Uu1m1;k|q-%CoJz*C_UxjLgu+T>; z9rjWOX#|jcBgx5j3zECv25)DpVawX${)X!83kc|p!-uMtEr3ZPW~h&bG%~u{%Oi-a z!+FE7m7sXp{WeO3L&+m={n|SiOp!EfG>l}47F$)dM;p@BRHaaE!Fsd?-J=YJrFno4 zu9UD^_DWrOACwu!r(=wxO5g6L3JC!Huk0X6SC`Tqh@miJg`tEtE3MTc4NY=eomchc zvmLLx;aXsG`5oQ`8^p^p_RJs>vl3y-Q=O;MuyQAhQz7J^qy{=_!Sp!umIy09&{j$v zgJ87Ez7&`>>q)XlLNI&)mU)|e1A!dJdF28P0Juw#!;*kbT7ws0D6=kG?80>$*C8{j<5pR8*|E<|#J)^N?(dxmIWCQloVZ1m_uxX8;p=yP4=XnvG zR#JX7z*cJ)qm^S?ZVP4`Gc|au_np>_B>nov!FLT6Lp1bE`w>%&(xoRqfBSuS{gq-h zueHG<&`p@x_s3uwacIE|?4qM{;9ZBd12%%EdF`gTon$?`U6@*M*U0Z45M#2538x-l z0+HYZYE#F4;^K_MYf>P=5SfkD%3o^^?0=QH;S}qr7hi&?24hJ8f@)0I{zoQHl#&&_ zzu>Ro`@fM7AMi=>{!XuNsT&nl$m>z+9rs6?)X%|Ir89PQ#C*S;Q0*=DcSF`7fUBs> zt(OYypG8%mE73ORnvO`MXvc?dch+rjIGW@JCS@U;s08(_qsLKqF4?b|mau@mj^1v# zy7Y zAc$a6n42(~?27QDcNLriIYI7;T_rpN2nH9)M+HxKKi1=ada_IvmdVy$tv7y~yKFAi@R&|ecxiSgV{ni`hca4jF!iTUpzi|&|-x2f6 z+5n4`gXDx)lEPq9Q91ik)|?rZCMr*~XMyf3&Rq5YfkWGfADRy@PT(giB!+B*V2`-) zrl~t9_>67Nn4Pa{n!(&dNtslH(Jpa<)}uYbyl_$SE_zk-advg!Nu5v;FyOSG(u`x% z)yV2L!o1u(9LQC=N!{J)Bq5SGW)}eXqP6_J-!UBBn1#lxL?_DB16nl_=^#5Os@^z7 z3}p$;P>Ph`HaSNfBdw_WB96sSwR z()z0gOKh99pjEpbI|gRxtI8^>&9k@QU@7ByJ_1g5^ub9YpA7g6YUlS+&m=h*d$-mJ zPxfPZ-O--)DKUYkZmQ4;G=RFn?(JIH!G#iha^VIAfpXG8+RLg zRHTNPze2acy=|o(WBq)Rc2bnPT!HO8ry9<9vQu=r{dJt-Xg$L1&?g<3k4i0!7Ro6~ zY%|WB{R2{45fv^a$qmj}#thK1PwbCxhEX7rs*hBo*WI;QB4&jM9z$J2W8JQIA2ZB4_6P zA9PGZ?z$m<6@{#6`L!F_d#o_~H0_$swfQ@DxP%zRmX-D)T*>)uTRT2V>MQUAs2JR+ z7g|pOOCS8<1ym*R3ph%ouaw&s6wD6AEL8EWs>vVu>6+niWWn?u{t0`Hu8Bdbgz zi4JB}f@Lfur7p=yte}#|?g|UfO(nE_``2vZUqi`(RP9>#^9F4{m($WYrD`@FNVgW2 zVtoe6ZcBmb+f#c;Rx?cvUO~!`8qI4MYoC+v5ps(wX zu?Iy_cKU{-^rA^7t20L z#|?xxYhIvh$AKlcU9?8YTkq$uzkK^Ty#Ms=tMC3gi>2Ahh7T^V6Gm}?p_U~fHL7BD z(w6l5OKEesr^$DOzdQh#adP4RZTyQPw z8qGi8hvCoiq<+VIc(ae8#j=rq1!&Ecx}DWQ%k9T|s?RoQow_}7y-d2cy@}FGtrheR z%-ZeewnzsRzsisBhE$Ll#ycrZtYeFeP7}I={tSmGdAZ~hX%iRI?ZJ@x5+yLGI^_Fc zN(z$&(wN4%sX-z>(7>=Xx9u0McJ2WwxXKokGH*%tDkWR2c&KGb)jmkAXKMu~5W|+Y zZ=Ud`YXUsfUud%6A-2ov3f$ ze)?e_QA&nG`q2)(8GY+Jk<)CLk8t+nJH{M#jqmJ!LZO9RRQuQob_QjpEXC1~ep{uFx&NH~n;JRB#$$yLt?)&VmO zpuhr?sW1&Y~e8iL9aS zT$7L|4M>dVX#Kw&TdH^)SAu#}ucL8(>8(DA>$J|nXn7ziklFgWb*A^m50LNW4Zbs` z`hu+H(6MZwKvC`Lr7167cK4^@Eh7-tf`^tI^2i9Ry*TV{cicC9&=MfOZwSp=+*RT8b?IXi}W**ND_^E!{kWkDYGWTQl$zfKipCfMX*e3q93C7RbF3B)XvpENW^R61@`M|D7D(ND2)& zKfC()KqAsEg{Yt3s)~sZ)Nj~WAVP>?fJ+@aX<$|dL%P2QjNaK{7iTG5q%J zGg~M3T7`y{)M-yY&w&C*Lmy6tq~wtowG(maS`--U;)q)72QgG=CD+IvB>IB_wqLHh zK`5}A826PrU(@0O1uCN&s&`vsfQ%Qe%UsH#luCl0@__k(0*@VLF;aNsFV%b~KZLG+ zM(j?Wrn`?TPY)U;e3p-qsKW)$Dep+)Yy;5;WPo!Ji8?^HQ7&2%bCrB1{^};nG~O=h zU6@xYOLT!lS0oHc9Yl$y?LZGw_Zx7qt)$T(HgFG78}R*SZ$G0t*jCa`1CEbyWwVTN z+SDT0ln&sx7+1OA2i1Ujt$AhFgbAowgSB5ViP@fPk5*1N!nZE=;qp?;B{elWGLO1~ zajYgTu0n=})@my33tHTV=6ihJMRSiY;}j{sEXNfBdvnn3&Ek zeVE|d7ua<|yGP+3upyJB7)w`$8w;nV74YCr{pIETKSDGAAKyN|yo8;M zCK~l+Xw=nn+pJ5q$eBv7KzKidCu?b4tu`2|9W%OJk|xxbK<)sZwA6>iiw@|?FIUf` z(hV+=_UyWIHXAL}&-GlMa-;-)UhyTPUQnSkqAuL$@msP$)*`zxgT|$N%HVt#V50dN|WOLBeURwsZbqz2^aMu(M>YlXnU!ix{U@> zH96oRnolgv6T7xLM>z4(zj*yR@I#hJR`hLd(vFaSvTGXk{0712MpTGa?2cK3^#k?u zZi!&aG^jTnB=@MC)$z#oVgoP_|8a{f^=-*{IS9n8gnO1Cw54F?r;P=VqF z+kXsXvQ*j)xHOv@vJD4lA+JN*EzKA)?mm94c)%9b<1v-({#j?Bl z50ZTOCTP6F$AU=!JZ`PMtBnw)KvW4NUOAeNHtY=^!y}9D>K+zD*Mm*T^GQX9Ez}T* zqWAH2c>7bnIGCLAf^_T}3zcxxGvm-dy<^NY;F|Eua0+j-sAfmCO8VGGtzP=X!}l6( z@>_xAG`s6!gwkd$34^Os%s9p3`Pv&rF)GRIqC%z?0_6xcLhd+2oWh>HtU6=3D)2Aa z$W#(IOM$^zPCO*do}=Np(=@6D1W1wfxki)_kQb%6aCJPCMDvnTo_JAM5RVwsG^|bl z0<^ce%i%1=@r$KD+i;i=6R31{dzJ%4EkOqAQif(z-`@Q4cR6fAn(y8-sx=2P!fnM zVP~{;3bjQ_oScP&TErem87Gh&ZP$>^|69h)x1V12t>5|Q%eqP4>C9^dt^^e1tX;W)HkeEd_nSxMq5EHiQ}6QX7P^DDC8hq zThbZhMAVX6*yL>1(OA!rqmNwj>T{&S3*u}$0Nii&rOKp!EJWrFJc*UQ>Vq2fOx`ht z+9{4JMa3wGUhGySF69UKAHxrS_(T2lAHt7+oMSqI%aSf=4O~%h#tXdQAFjV98Cq~! zGrIqCeVLXWWHk(zBsS2}5gG|LtF4@5osfXw#0Hb+Wme!6JfANp~vn$9Txs z^txpSrocDw0tP66prgPsa|BF%bRaD(Oq!N&3*vRI5(ox)Q~JB?`f(($Lgmx$wk3D<2TqCZe4xTS6 zp3N+Sk%B;grBy8M$|>t`tT0`Tc>5=`10|}+hS*IDbAdT`SF5SVVVP4Is=Sv6+Pl>L z+++ss;#WVQ9cI$capuemgS1FYPm5h;@k@*4$XOOt>~zA=ao1Sw0rkzR3#Z=G0`G5J z?m#C%h~9a(cHL2SsK%zH6uo4qiU`eLrY7{%Um1I6V4^YTmHU(YrG_VV*toZvh(pa{ z1qiaxz=DE-wy_Ona4gyiQuDF`ZDVq5QNk3B#F=d6dr?gVqV;p5M1>|I&o_wV)zu-} z2X~5XqJBXM(0Z9V%=g_Ox?iPGf*3Qf*Q{JR-6axKMtdVq68?xLNFBOYy=@rir9wE- z39l0YJSwfU(*@#7mnJ-|t?>F=KVr_Zx&t(9XE!_Ux2MpuBLtUXc-l7p1aIo1V@k*9 zy5caqNdna;cavzj$~catRo7JqqlCS|9^8$NB}lYt3$q+Ri~@QnYGnO5wXA>f`kVY~ zFuwa8c~{A&hmGln&^Dtiq4DCP4LiOtOfIjaPr?RA4sYV&!s52VAd9eePcI?f*gI%| zHBR1y-xTgrqN#+s`=ZRK0y5{Y{v!7k1$sH}%+-JO-+58rO0oE7`S_W#>SK=dBc)Jg zofnL9X2K4@^i<@3!8Y7&^u}Vlp**pC4w)=Hr$DG=T{4o5i~g-2&842mm-y^JfH(}g zs98~Bu$9I8CY52ZgCq2v?6U|u5W=7itS!^2H9gIr;jcwQxc8q!vEYyP`Sn-f^>b|% zfV}r1kt&bWAX{TOTdmE$(qcQ{Pk9xWnuuCxF9IbfAKD*1H7KFyW2gOX_Dman@CQNM zs_G1wog9dc@4P|Z;C@1b-~Mv!Z^sO0=qi-0Lq7&J2&~9;||2YTJxey7MF_> zyt9u)-uK?rR~nX-1(L`O%G9+itX2Yr&fX*d0XBqAmO6qt&j*O;D?;mbeyt{Mx?Lr2 zRjZgHwk__4oHf!aMXgH@1tOLZZ^E2F`z0BC7O0^jp`K9k*Ip@H@ft6=yEVaL! z|0J{9noEwX=x2CPSvE*1P=gX=lsj8i6Bs;6_V0Rd(j+QwFiT?un|L0}vtTRK6y+{W zasqzr29IKRVYa`;#)4cM%pOmY9K~`zg7}Kh3q_^>M`7L%W4zLr5|> z4=3-EKGP`yL8v+Q0w5_b+5o|ZW;~I}=djaAt!xqBphlbyyHPbTkR4aZTY6S0>CQ=_ zlCWk&r~G9Z998>48!+odmyVBrXaHBUUyW%NMeFJ$;I+g8bR1vo?@*CifL$Dn-H+>8 zUinFJ4@?ERZd4x+)ceB$>;*DzB2*@BYlbX*peOokgEIdyeE&D{_4k||-ZK`;%MrL| z&Hw_dLJEcyl22_0x07UFa)l05wVC$6PbbdvSssz$7%+JDt;(F$k`XVbjB7n~YO9*> zNGWQWBfzc>6w<3KkpEE@wEW6m%;1d$i4r$xP;q%;7*n~*4^|};b`&$@NR~H9@V;0w zFilcxcU=j8u_xQ3=qf zz4;Y_BQcv2r_n6P3E;a;&UIVl@{)362}N8YX9X2E4K2|lxuV^^I8f&b(55#Q>*o@1 zdG8a{m}sbjEmeDf^Er&@ixD~!o1N=$?j-CLQ@1O5Jf6oZV}Q%#q%rkGT4uf`I@lLL z;Ya~S43l~&=8u@qC!QZ)hPN*-pbxVLAOT6Xo*eUcib=M!l)Zx;9?R7p3GAzrx*;6W zU$DtMdflMQe~-`cq5ijOy}I!EteRR^6(S(#8gyJ6LLfg|T(wLmDz)4eOw{ZdO1_of z?6w^2p#8{)u19l!86r-+N#f@(0s|;Kt8%IVz)L?x5@`nv6wzmt{{>Sic}nX^%`Fim z(O?cluqlS}M8LAC3;H{af`;m8{F7Fze!H6luN;snWas zr2nJpdb7*w)kAZa>dYWnCAHTSlAL^)I^IlM>Ua!thMHU&9Gz6aBZD0$&p8%3&~yL{ znV@<`4RrVf>t72`V}2*HqHN|t(i4Qm@5Eqr_`4bz@3Q7QU<66PPElB81~=NndRpAyzS>MiKJeG$Po=v2y@g$gy4K(h6^l3M zrFqv37B1|(-yH5z$?1DfPi)bYJHS2FfwI@=BX6*YJt3%ts%*9CF+h0|-T6G7jMFbN(9m z!Qx0$7>;_M%#16!x1eko+#2D5%Z6D+{s>8ql})oA{=R@TB&%4iW?_R%wSzfEmB=0L zbX!icfi|}HpT_$LofC?S_mZJ3Sz3EHWt+J`*=p%*ghS8y;QH$IpL56KmzS+qt5Irj zgZ<|D@goEE?T9;RK7n1wCfR~9Pz^wa1=^%zXDzJx=H@vIAwfw$3%VGyx`RDmg$rQ8 zUG|ay-Qp~(JhJ80j_@V(yMZ%mz7W;wUHv#i_4!2Q-oZO{GrZ%lhpfjWE6Hdr5>CLw zWjkFd3Xr|K8iW(=bMPT=Bc!>P8+++5kUcy|zb&8>Q{>nO|3;70 znS>(S27pU4nOm+3*)@eLIfF@%suBQUl5A9xEX(4rPFfu0>YiQ0nq+x1FPAEGRS)=u zbQB4S)=ibA@XhO2)SuJk5BFg^i$(~XxeThxBfzI{EFBW?1cE%~*iHkxN=|Kf8ITs! zuu**bG%?p!rd=KOvHEJ!6Kj!_>=`PjlG0o8=OaQ{mKNA$xkAg0NIPAaO`6$2g607~ zx)TFt`15Gce&_{||JARDc5z==4hH9<^kN4(dJ0Jm+13^+6#1Y!8^XlGRI&DiN_ zFxX77M-FOBwg^x8?vX!0F0CimPJPAlXV^tb-Ex|RBA;B*PP60@XU)8$dU0mH!ZbQ< z3;WO;8vn9~)NG2vtetk!+$DgbcZpQ8RvpxEQgL_)_b`wXEN%lxaF8lw<(=&bRM%^i z!*vh)ZewVqf7wICt~4khY2mY#B#w|l$ygW4odg0rp+V`uSh)o@OzBK6f}uMzA!I8c*cAQk#TDzFNJ8dfl> zS7`psVExV&*@jT8S;7FOBGrC^nI$6hla5UdT_sEANfOI+4M$5_c5(b(<6jxds_2v3 zl9I9pV_OG(JTwRmnsh81Nhs((eWsz7@ zGE`w!#xO2FfZP8`c4aS{8row-r!{f*C~)0WSoJ6^NapKDN9LkXQ5p z#!Qj7`mRvPVi=#ZiVW9@vCQgJ0_J{WCzu4V;t=4J6%U4#?5|WgT5Hi>Re3v@P!jjT zO3oTizBx~`r%AV+GMXf^9lA=rJaBb@S=fVC&aa7JVk|4G`r7k^V=EE~<%16rUMvU5 zYYr}00X+mml*+Oi0G+ANxpVaM8)(ko=5nZne9s|DxNLYQ2kropA>#lw{MDTZp*$I# zF#%1nJGFrN0|nHh;T+|kw}kviUe4ZFpSp*9n;WdH%PzZU=K$3OI|-fw(O8&x^;F|( zD2xSVz|)ZO>S(=9*=Prn1g&lim+6y+rn)t6CHaK&Ldh;0STHm-2vCn3=Y70tXC*=T zY^`r$V3Qu()1`P-VJ7me0)`ACwmsAldaCPzycz1c>gq#02$nG2htmZ`?h>DP<%pym zRp7}YGx!5DL73P8n5?MZi+0dWmNyoaDt=kc@B*D7DxpL2mb&mtP4wZ831VQeZV<1w znN{qvAS`hVFjIlrn8#Cj^ppne>w{u=RYH?dN=6-C$N_zgANqM$H5^xlJJ5IRj7f?N znPB;Qs2208Pcy6-DPJ35OOOUb*JrjASYuxE>u8HB_ zf6h@kD$D;vQMs~Cjy}dnd)&Z%ra#yqXN**6KE{P!U%pCJD9uYL0pxSJCW(68hh~>a zq8v}1*-|xf%TyU1ijz3N-V+Sr9Vw5kg;IzX;7_BpO2S{^~mwS=~-0EzAIk0M2 zM<-dWwR3)FSWj|uWy0h^+~7IfZF&sYp19q@e9ywlpiDLMc7zBj7|3n`=RE=z$c!Cs z;otoYnQl=8^s!9kIv&|0+3Z#lpW z%y?xv;)Ek`>;VxWUR=GT#>ODp0V+SwB3y5aNPpMr0TnD zx|5bK{4C{fmjwnkQjXeAm)pD}-O)OLhkTw&*)3s!L9`sYuw8QOjY~mvI;!;o3TTV* zMd2dk)I5&VU%`NecDXtaqmt;*VmM)dF8QG~kuGM1_T67!?&DfRGV4x&Q?Fer!=olS z6CB|*LyGDisX8^oEY8o?49n-_UO_~O3QhMKMm!1%&A*cgA4p&t^%ggNzno@=`X!qW z7>yFkyxBA!P_Fag8G(?zZk@M0BP)l07k==AAKH7ta_%l`Z%kZCN+9Ey<-$}K$Lf?@ z;9(=%?GTNZ1e6aM$)|k+oWhTYC2D_Psf7O6}6k-h&+U2kQ- zU)6>hgSJy?)5wp18V5-+idiSkb{VinOpg5PHusiYvxNnTmV;W1so6Vlrgfw5DKDN{ zs@sxI2}SO8T%wt>nQ>XZ+Ur%RdPEAyCh3B@588#I#EyM=_PbVr>-gZbXu!nQ0w8v& zonpg&qy__|U}11_bPmxI=%~y;tV(wr4}h+`u_e8bPOGR;hx*Z_eCFBlt)q(@3 zg(PCd0Fj%wuoSEC7G)hCHmvHuR1fUFeMKzc*B(Cr*Uz+m5CG;=%_Hxx1$N9uv!AJW zs*?DOe7&rC14wFFF9EyJlG`%kQr^X8O&v+}tY`lrCG?-)zShDsy#ITfZ2edC3IAX| z^gAppca=r69BM5g234{9q?$JV;GqBn01xZr9t5pa0t{89%wk*XJZ&{t{gW;`smzYF z1O_@h5p&$zW@lxqJ9}Pu@+io*?nC>|&iD>gwK-0!3zOAwQR5+`t;3+SXd;6TOf{x3 zv9~tS5T;6>Aw**>fT^84C&wyVw=HTIn%7I+O_*ooEyc0>oz-c*E_*O7jC#V9jB02V zZhp@k?GtbJi}3bydkc`ngIf1!3?!xC*6U@WECSGEwo4>B(H0~QKGEv41bMy@2}_lU zEs*Sajqvoy7Y9}cp-S~h)C%zJ!DU%W)C4ylLgum`14es~YM@GOF=QHtPOI`X))CUm zBtwP;N1>b<8$P3wIuOtk@(=T@36PkQ@52?*qy4a>ldEJf>O9=SeZQogmVscn6fF0< zO=U(FnFX`O(|Igts$nQWj^sRn&tDPs8PL zR{KGnhT#)t3yOHm(8aQqjdnV()JTZw9^_KOp&f)-FrDlxc@_s;a_rUpBXJhZ4gkbI zq`JWAI>p02eZ5On_e_0<$g^3l1rF*qaolFjcOw&OIfDJ?gN_xAMf)O&G+O}BcAx8T zX2`72BA1nO(bX|~buQtjUrq{D;Do0|mNE8OrPMG_hY&M|5>*_7J{Z;6AC7R$cN=cj zi=6DuZboWJYA$2xz}ogm5ir}R#`&Vi7m&1+)9CQkWFs)hR&oTH>WyM7lE>UIYOWCt z@3vqe9ft(Mlh)NT97#7y70+D!4--8Q8kO;6#)_IRdb6hlh1SwlV4vm)sye|94~!ew zK7@!0^ztdPBP*&8w~<>?mYtm$k^r|CGy|D3Pw7RG^!X;BC$n`5Dml+@p5n`k@*dKi zx|47hu&xe@40i-r6lt9!6(t#|9RL1v5Y26({_)#q;q|8qBXO}uI#H4&o9>plOEh>P zTpA1K;oGxSy;l=MniW1uZ(t-f3xsi9GPD9+aUOV-)(kPS)S1%2(u3AVXf|**lPUF! zosExOevriX)!mrT4wps9mIg2o3XTDOYh>H14oqW0+Oxelq5x}Xu*&63q0!njOjVdl zt3@TLR_DCqt;id)VBKffnZ(9vRKc10DsQDXMsEuxRrgkCfSYl3eMC0ryj~#>;RYLW zw8PzqYqK9S7~t68C14Of@+{Rx)dlb8b^M?asHT3W{OecYm7sG>DdJ!#X^`941Gu@X3!WY0-#v5CsS;6Q7M%!$r1uhWNv}HKQXjn9fM&PVSh!CO*bn%g>h2S zfY6WX1iTWQj?t{FrpHJ#XfocksIiTCgNG_e|M}f-I;XJyt(;2oKMUUEX~}~{B?&+y zAFi?0-DfQho4g}U8uIUy>Wtx>?v)Mo8Gmh|>Vca7@DMND-wa6KK03x;{(v>@E^BCm zNv#E|UHSSjJ&^S9uu6nCiy{HR$sUR@93xC%DZv7`#qEk#z`*CT#6gz+icVrRGQu_> zkXUiOVPhl?1&`hvGTxSEOc0?10QtyKUwVcw7`R{%7-QUP>=zqic zi~Ohm`1VOwB-xy+pNEP7T}n;_1wSt^#%WC_1}Fd%o}S&*)bU9te!Jg5qa!j`uv5bV z#X8oEdBu}eM%sC%d#<{-IPWuqLGq5psMXUQ`AZN60@~S*qEu|>rY4Hd8`2+qP`qGU z-_dUvZX8sjXsbL=B#v;BwQoo%K)`oQE)=%m{9Jk-VoWG$o7!;_K(Ut{hGeIB39FVS zX>wOr+Vr?btEM3b@1`Z*IkQbSBS=V!SVO-ZMmO@HA!)XF&?E#}VuW=$aaf$>A7K;A zA?4N-dxqkc)Y{tvE*~JL)y`Xqr8ba+s43l^ubo8PCng1`Qko;))C5WwTZu^ppH873 zwf0z0<8(aeDym%NS_`bU1VR6U%y770az!4ctsK^>or+jIr`1fl)_Gf)*U9tPY+|e3 z%(SN5jlkI74laep3@XNfA9%>8j9USHm^7ReIwT>~VJl0Ywl0od1ePvmb2}WxSz(uP za+{(?BJF7^SES0p*HmZlwm=R^poiy`0Ho4=OqFAARO`Yrlx5tJ68S)KroNgQoVgkp zB%ZNl`aJq;qfcm|O3pSiZcu9CUD9q_g+)}yoz>qd5}oRzGimoWjFK@S=N>z4o7E=? zeRv?nrS=XGGH4Vzk$X0b*b&dBRhI8!k?fiGkO}u}yu4V!KOtG$S z7^^^{(3?DPl0s-bkht0N%k}_J?Qof8KGn(rxmogsV|<9!1)%Ju#zHTsG%EfT(l_G3)nlpM1ciXff`?Ih1H#<+Ox*bmrtbqFp^Dms1OFwFxE^ z)R<}}1-by_w=CfR0y)7Ri>k9g2dO_X(fNR}>27Fh$-WD~C)C#lh$TX$p0=iOE`T0$ zs8!S8IU7ze6ZKH18H*Bl9~@Yr)Zb~j8@1)mzHyQBOROqqA*_$I8dSkeYVmauXCwYh z>OG4az8^rHMb6&Q05(XXZ}sI+XqUG+K)9God7~tm_2oXM=ggPK?|vO#zr3tl4MB4l zgV4Gj){@pfIINX)5M?*eNgBYY0C1=z0?@3(7}nMn<2;NUVYg?=+otR$39vPtzD#tD zTx96tNxi*zV-D-ij!`H)59>L7grd^MJw(p>$0k*Ruj*%j z9Fo_4nuJlQ(viUCa*K6qhd1n1^4-;e&TpK^ET*X#yTh?>TJVk!9Z2L4_9x(d93nD3 z9eqHi^hUKZLG1p}aJ$I{z8NAcTd<*Mv7-Sw!Ww4_vTD*5uVvuL9E(=9qHl8TijY~R zk>hrsrn1kf-0$jCf=|9%C#WFhPpWckPkfLw%NQRRNkaA=4OdBr4(-0pJ&M%K^K$E= zx7eRH_z+){htyV1G<*Ym@RR6ehol{ z15F=+%}gHehMF<}=@>r)lD8_T)xsS*hO>7^|Ml(n2f^IGIDfX-SKey4)-I%DK5^aR zrSvqk%)cYgU8*`%5KoT#(Pj^I?Nxx=Lxw6x^1uP!wZ2RQ<-p-d8FHnY&9CULB~thR zfFDp^(AQVeRg*-PAOJg&3NkH86YT_GEosT{ewWj;ww~aB2>&s^D_JzO_nO&A&Cs3un;WAF=zrzLi&1>f5Lv-f00QGaXUZf;nfFTgJiIUBC z(OSEGEGA3bj!l@%BdTY|!!`vv^0M4o7dDV*X-2F)L{pOv{SU7~S3=F6Qhi*#S6;-M zyta`_#Q;e$3((4r3-}M{OWLd!xP4i6`yP_nJZ$Wq%{4kA?xrvU24N|W)HpkAW-9W= zkO!-3a9(1Y7Q`)hBe|7b4<6rIcqUk{TOP$#;tQP%p>GSczi-49vk)^ngNi^ThBqHF zISdV0&qw5aaSSpbL=^F_Z=OXy$!3tK0jWwqM;kq!K?(zTk)We;E46__oW%w#QSFOt za&>_$HK6JPK-#<$E&kT ze-!@Hf67|}@Me=5U=Ms7Dnfsm{pT433X1zh;ocvhVSBZmg{3W`IBUv-M2d;6RFyLe zr>tCnj(N4qaxttN)Kyo@?Bs7o@S(W>dz|nEyK_?15TVtgUx|LeXkW^%CO@lgZZpc^%pNQl8IB4$rYx|bSOc5I#f_|JkVQ|#zAj@tz;%MOA#8PrXwIa5erA(38E z&osJqPf&15z|67+vXR=L?mZL-Dz??s)`kdO=m%8@ z1FV;_15m>uLQ99}Z1NxnrAO7{1~->uE1M9==Trnab9w>%fyu(xAN1=n;{V3Z9q6B& z96=$LWzCVcjwq*iKCgKv}l*(|QzKgX9l6wHuzo^pKq(tCHk~+8qhd zy`g~#{EonS7@}!(NdkNi%m^B2*+)rUlw7R#8=$dAsE)FQAsbS~{ZHvIfDiH6pTg_U z!s}<3=Vz03KxaY%JKR@%Xt+%A5b0W!3C_K2Xn!P4(3YoMkG#_D5Rx3&y+}x>zy!l1 zb32hXEKlI*=uxR4Dyiogy_Zbvw!8=WLu-OTFWWLG8f_6ki~XV`SzkD&$jGL*+~_08 zCVRMa%zSo9krfX^vjNm*2yO2}*{TyXm-dPtBG>i}J5&!E2eR~vr@(1NO$VJpJD03n z5-Uj+x;#>MaMkGI`fgJK^fDgcVMWO~ZS4RdjK;yYhc()?LcZQ&6qwxhXkR?d+EH=RlC$n$Z-yC> za%%Hq-)6TR1h6C8KUB4#&e2xGU_GW@5l0-PB$aBJqibs(N&; zVfVQ($0`R)ZIEW&)RVHsDR+pe?lqP5;G7NY?sT+N1`yYPb^rq$DtLCZ0Tyq=;oOtT z4^v`80A!J7--z6 zy4Iytz00c;G9Z}iwU?x!i}uwe7I^2vNsy3HYHIkO<(pGUO^X0tK%u`XFZi*ShuLx5 zVa6dDTDwVA#bangVbJm94KL`mz8H=Hv(dQtQ1>2nw2M{Wc;9%FcQ;LrizD3L)}(3L znzZ}-e|Y^=4$ANT7FiJ(zL7-MH6cXOq;=Iqw!sL%{S8uhe!eW=UgqE?(URip^3ZlQ z^l?A~MjvBG`>fR1!G?P~peOi3vbqkg>pW7cR96xU97WfFun72%tU(xH=O->pMgA{a zuq0k|)h2TO42j_-v55rV#!J*q`FD~S z|9KYse#lEPu7jKwvKrU=IdHtU9@5kxUSXJ|L~}ODr5seZi&53jZFNlzmY$RcNV;0< ztc`%LuqGNER|%pCRF0a;>cbmQc7aNhEl_8&6YO!-8H8%j4w`m`6bS4nG({h-&cB+X zREq#KLkO~zhz8l`aX$KqP!%2y*&Wpg8xmxN=CME~qzt}Zv-d&$HKrCz8^jIVGC*pM z9hRVO3H&V%H@Gm9Bi1qXy+TB^q6l?b(EeWl-=jbmn9iG$7`f>stYa|FomY(=v%iQ2 zvQ;AQKY_;f7Z-K=dHbbWejL;PxTqrAfaMFVXw@3NV7Qw~1T2gA3p8T-)ioIE0l0F^ zJ0rbIDoqC+n2kDIwS^2d0;34yQZGvm{;sDDr5pGfYX6I>&OLfNBtF6*8?D63n%+^3 z%<#t1Ae0>cp)xks5?w-t`)fRci;CqlatK^wW;kx&l;M?ufwxIfSL&X!9y;oh4&E<6nND zhW9Pi@T{8t^!0b)^>=nJa7c%ifnvT^M+}WH^GH@RwE%iqzq%aP%x>oSvxL$9$2ihb zm#t$kLZp*8KHw;L;qixYXycv;5;M2z;H%a{BPmy74g8`Ah2*ku7a@t{$3OmY__G}K z{>Sj6(@FmNW%!@+mw)s6hw$SZ7qh$?MF@Hq5*(}Q0POW@n#dt;IDBSXS?xG6IXS#) z{&>0Ct2`@tTdAjPTC)Gt#RqM46}Um`O(j4)zN2E21Nhq6%pKpxM;!n1`g5=N^1Yy6 zjBqxp!@|H)3pnw`Gmo3YW+g^lZr<*YADR`#?8_&6oULZBr2L`vSvc178v4nsKDa<@ z9Ipp)sazTW_U^UQlT^zNG#=AuN6>0)Ft2W4j>ic`Zd*E6iI`Q`$RPPD{>J7gd_f^B ze^K8l_^MgHQ^Ovt?6#bG?|Udq6Ww_@;1<$eUjB|Vdeo8$QLh0LZb(*I*dL3hj8Y~r zco^@l0yqHRoC!d|3(X!P*EB=~pmh(uDU+(dX|ki`diX$HwKZ>fdG(<#U4@~Cyy}@a zyDB_^!8fxJj^0el0A14MM-ahsKjbdS@XS1CL};Gdnj4^2g+fQTOH!d9wOUUXSm}-E z&tlQP0IN)asJZ21t37&b{N)E z$Waa!Bak%_ zf6ZUR_kV-G=D+>PcYi}?1)zfnyMx+zds&9$?Oxb2;ZVWuyv`${k*jvPnA05D^*~6E ze(+>jz)`Zmp0X11#yLSN(NSc_PaERo46Q2R$4mtELyiPL%w5s1P6x!>AH#V@e*DRA zcq+dC=)1oPufNKl|MvA$8+bi{p|W?27HYE6TgA+VLmg(tJydLzX}7^L2b_P+xI!?d zfCC~y5a??#rd#UKANYw$3ToAVh&gbRHSWflg>7g7pB-N={Bj1KN-aYWD|O7`7?D2p{gwtnu*n zsT^{{41A=IFwj%9V@Oi_iZ4bA2vnjRio;T#By{vJCDzJutRN#}tDq;%9HNry9*jTl zP&Hev(xulciBn}(smv8>c>BV1Pkwt@o~Ztz{Dv9enWTIw=L01*NJjBa_?U#P_Ri2R#{jRVgCBys1r(8L)Nl8#bYT*oVY18$>`X8e@M#{yRJEQoX;+ zZLg8%3--UQMg=F?XPEZLWg_2KHS*CT02?Ejw}g{qmv?-~FUZSrSE`Oi9f}ezlSBGd znLvuB22KHNfa!@SB~za&ng_=1SvJAbW^Ih?$V9N3y{ar%V(#-4(eA*!Cl@%csvSCg zSN}Pj&Cc`s`{~UrJwNoDiKGmknoS@ie zg40sTmEd%-%)5>qOe<};S$Dwb&9LF#To|R$_ESe_TmzCctFIz%Jto8}wOb_4_Bm{* zB<$oB&NV9E9+u%f5>2;5q_lmN;f*Vn2k^wTHz6DvUr5nTp(hx)+F=RFYK-3C&!I3n z!=%>gqijI9Srt%fDVK?&bDS-_r()?iEvdH&$LL`0$c(j@TokPg3@(=&i-Ct6pa#$E z;HP6N1GL;jGpx#x_Yx{t4k3=27{-=5$nMH2IY=c^<~)W2Z3&ElD`a{?fI;j{iW$k$ zjmv_uQhc&yvm1h8-XR+|E?#s4&rBL%QeRf*XWRgbbp7Dof=!l#qf4_K*f1iI*9J|= z!aFvY9nsPaE^1o0MTBJLknts)sTm>OU|5#-0A%npWNn)!U?oZlG@-Slo&fYNL9WWh z0Pr9?1-)jwJn5f94KXSS)h)fw+Yx+;pqguTm_)$v939-FyC{F-37%Qa$y638v6cXzk}6SPw-dk!4J7I8ZWg(u@Q zUO6g$#CGCuA=5D^Gh$r52!_<5r>)xFmRvyY$U$tNkpsb5smuu>(l`VL5iUYS`6ScQ%n!|I99V4I}%`WGV&>_G<81@Hkk6g&R(lM|Y`Or~X$u zT<#8~;SGU_=x_PaH3yZl^a~Ea8jj#$?zx#;Se&Rq9*+j8iopCt7A4YfE--l>5V*4N zDJglcNJu;lpldof9jG9)izZ1%mSt#NuzS?O9#eNoehL`I4ktM#wP_*~H4}D@sa@e+ z#9w^(w{Ks)|Am~2zkC1b>&I{3y#E+9raWZY;Vw5^p7Fe_2(2?av+Z=W>t1LGp=i5v z>NKlUGwA6`)2tac;J4~RHam60y3Hl)yL8vQGT&z6xc~4_?m-Z94e4<|57;Gv%=@r$ znKNiX(N+M%JYcO0m5;DJh(R68u|`>k+W8!Z%LZixMN!Z6a-%!I)YWo?H!2v|!Qcnv zIhQs7s_c@GhC|GHIpIM|MCgVeTOTs0Xn&O@qU?tixpf06DAcLMTj2-gH<#1uUwr6I zbo!0U%i%Y%*9({89pcGYt#emV6z$=u}=bq#+V&r1HI9yJK6CUOdEQJ2RMD*{%>!)^e=u!*_>u}4!l9RwTS#X!f`x_RDhx@t;E$pjY5eeUO)@IibpHoyRpf(q5fheH+6o zyRV<+Ny@)>6Sh}k z&~^`EoRqR5_ffuKZ~Gka1lcjD)>0}PU|7y@XI6uTt|B28PV9OY@P(7n(NGBa*c&!f zmO5%xQ^1hNvDE0VLGsDkwrI?_@i3qZvZ1;lJ4Gcu;qxAo6@ z3G^5=#Ot=*@5yWV50Hn(NJa9BH$xBeZqAVB)*F;{EUW zM!rX;`^I2VDogPCuNDhCw=zciwQ2HShQItvZWT4+o%vOu#+eFDqQigSEV97t zBkq6#DAemv^OtR28PyF{;W!^dPL#(d_K%e{r z-^!=4a5l&@Dz$3Kad!fO+}s)*3z^xWmNRdqr-s1F2jSf#Dy2i-YtfmXY1p*SkRpI;i+!CWyFHNE{npD5NWB&%veIl6qlht& zK8h-U7dpfqR>p^G9ZL0HhoGb64OVQ0y4ek$9A5u$dH>n#muO3T{`R>w*2STMQ4A|J$-CT9!*O((a*ktCQ4fD^;Izl8ZtMJl7B$BCJQrw#1eSurQl}zSsb9 zWj-c3o6ste?@7$V5ZxeGrDkm)0|N?u;+LBoN0R4_yMDrlgWUywFsNy?R&EZ|2c{fm z8B-mce-+}D1Uk1`ImwQ@=P0U5_)L~44iHu=SP?IbG*EHhgTy6Uk&JIyAt?8_vO2A!UGkbc zJ3HcpveM{9iF-%?7sGVh>~cYhBd!7V@rl$Tl@4Qwl5G`?0Jh0fS}*Mik&$X#$$114 zZ>PDArV)1bN**5kv4&!o-MLF$Ss6JZ4k|zGqJn4!*iKcy^Y8v9uY}Q8%bI6O5MEjE zKRbOfh<6xzIir;do+JZe#s1A$m|TbZsU(g9AmC~)D@=43B;NM(Wm*K65@S$QPc$hATMU4HiZo68G_ERPyAS^(JLgQX6hUP-w@6eoV*iZ0{zlIbC# zqXPld#wIia#*=_Fyw%qiXCKSIZESu&wjgZf2m;&flOEJf*(VY#vsM-WP{f*akehP8 zxd{moTmj@8UuX}-0QZcQ$GrK%M_Eh5Ur1cv$V9hA422fIdT>b<;vFr_pg!qBi30 zi(w-rJPo-G262QOW5L9hCkYKA*D%r{Tz*tP4{u+C#T{a_bo#!yoYN#rhxr+*adK86 zzV`$nnj}fDLNP@W6Mi-DMYMhGsx=NlQIqnCwWH``c zhId?cG}qWFMEwC)@nwdW2>zqsP9M6#s+)dT65tMj>Kd{DOMDS*#gO>q#7S0lV= z5SS02W0rI}51ycJR>6latS*iO=G~;3q1Pof*us(*bF5s!oFocmemM_K6 zUOx%h>1JE0{J2bDLpiJsjz|o{8NOscaAYe18Y}T~ThV10tcJdga`sc%t7Io!nIJTl zdzSxK#NR+j?*jFW{?zZNx7_*9UqnJ=fK|RZRCkC)I?7{6%t+wA{Ka2{zxa#1w!We3 z;2q3!U#Z&!52e*ukdOJ)m;l?{-sqs@Wj$*amAUn;J~^mNg=DR{ALW!&9~u4fi2_Lq zAQ^Eek^&tE1%yW1XxVqwSM0sk#MzPkm^E6v??FX+m5}DUd?0*bLh^sqN!~4!kqXaRJE9sogq00-W0-$Nj5vY>jP;*#kOCkV4b`OV`%?gh3J8my}`3x!wOoF~v!1hj61izK@?>eXZc!V!y zI`)^cJOul3D&oi+7tA<-^L-*K4vKA%HJhnuyB}Ta2lNO4uaxAnbP!~gXy(wat`MZO zn`!T-f$oBBDA_jN;YTwuRZwt9b^cD*s3hzhcHpM5&<+jOC8|%E9|!cHk}Q(oNq4Om zNBJ?Z1heft5jk_1Mj}eoK#g4`$VR)6&Mh5|xf+TlPI0dB03p=!B#lJ6fm&-b^t1pt zKBZ^2006_UX-ygF%4L7pNhwZgT=0+#Ge&l7!QnqO-f>+M z>Iu<~gM9iTr(%<9i2^VN3;3#RZjDV$vO9v-gB$VHl`7_&bWPMr=V7^}sRjhFE=v&> z46wrFrp#{MS9j{>B(=WmxJ&AlhFoV;>#|FhPAIi$))oi%cO@}m z>uo-)Vp3p1+GB_6H5t%@cKf@q7K*dnklbz-_;G=1xw9+V$=A>xa8LOTg=E&4HO-rW)#X6Q zu9lK$eG%UNbb>j{@nbUE8KgLh0(^L#yh|Mbo=LWL2z{iXqxW=U2Z#6^!Q4I3swXYt7uRH z=!mGb&Fy4ie!$5%MqJ4G28gr8dO?iDF56HwGPUeMoy)c2+qZ!qa%%9#fG%N#y(L+= z64SSn@q^lTpf^(n2tGNB6#aJh_<>n-s!Wt~8jl~6Y(;zy2L94q^#z4n$31|+=D7Knn#EQ2Xy`U_>Aw8YoESCeH7eA#n>trvl zb$N;RWC$>$Gk<)9*^gfTXfyWzfv05WmfMix3#E1u7NF==*@mawQmgQlkJ(UDK>Qgf z17n$J18!t-s+xJoiMg9Wps6y3G5JllXO}DK&;?Kbil2Xxy`!Kcc z`MnRn2S92P!8Gy(`mj7A3Uz~*BWO*FqxB!kNu#>Ny2Hgae^lWN@2tprRNzk{djgRK z6Ki=l_Lrs=^m6STyDsIT6En${c&meRn{_&7B%FLgHV=(l-Ok)Ii*2vo!3f(-X-!Nt z2h5o6a$hem)@s}ovd1lv9n-+-Qp2GrG>qAAD1+p0@?B;1Nd~Lt-+9H!X~jGc61JU(Ea*cF?14g7 zX3cn1*>~*v$?rnO(^G;PrPiZPv<{rd8^AR-Le0WR*Ukm@5+qgq5Q1cqqi<9)xpZ|b z*v1n`2k$Sg#uDHMIfrZdxGMZ&Wx}Rj8H!5vw-{ZTtx;qz#twrd=FkoG$kM6FCOgY7 zvfAPiN4}+4^ z0!|pN!g_kc+eOk2%n7>W^DpeRbvFqGIT%lv=1-8K?jtJcj&4$*kvpmmg0PUO1w+#6 zUl_|^t3R3Bt`f8cN{qtyzPiAzcfoiVh2c&~q+f?W&p%mGppVoIRW-PB0D`0IK{LlR`zwOxtvs;L9nyH@8_@$t#`BD3|e^YI={HhU$yrfet$o*EcF9 zpJHl}U<9bw{>Sk8OP-7Wf@N$;iiFcR5nG~qY0s%Yl`Rn4O^`?O_AZ4S-oBFkkV3LC zL6?r>%BSiOdLt;Vb@lqC9FOt;=p5+*45KRJpn=0Syg?_~Wv&kE?kd%A?}rmKgAQXq zY_Cf-D=)D^_4iblhUEjlygr(*&`jt&evT{bSAYKYhxebp{mXZM9o~QZ`tj?Zlx_Vb z{`>mN_dk36_Vru+{PXvpzW)C0zv-WT0WS92=lJ~HU+eFDayrcKBj*xQdN{cZu#dPN zqMCzyTtd`|v13;A+#EZUhM}#N?P#$cF`0vKe)Lm9y&I8?qL84P%#}-w{qT$02J=IXg@a{MPv3Dnm95 zyR528ZG!D=xPe+~dsQK|wzO1JK-+aW%1eU2TYnv_cfu&RZ!p+lQ|p0D&g!U#+X&@1 z(xkb=DvMqvplonOZ71%@Zh^>IENgFQ;N0L)c94gapg?AA+Fq4UB9#;YV%(T8ZnJB( zJS!U($(Ott2%z00S6XliaKHc(Fm%DGPg*Y^il{8?3wHsIKM3YRg6?fG*Xz;fRTwZO_FbJk$4a}GgK@12u#!?zIURpS$pERI zq@=C)+QVe-=-D(ll9B|pm)BQvq7|q9Q&qEtedw%@ySIActT3&7E&mRg=+CGt2#}kk zs3+s7R_UenWdohpOK9_6w(3M>VEa1z_n-!FHS8N;OV)Jhnqm#_$W8{065{8qd=oql z$kgPcl$UA1oEj;rnu5LmrJRr-h4-I-_gAl<8;_cj8Zh0P#z|_;hT8stYH(0|9cc9c z#$_d4q2K+8)X7Gh}UYGHzK9aJS4z0F_N{{gs zuMjSSb*v64INVjN(QuhM=1*)}wWW@L309j) zH%U6G#3yQO%AQn#o}MS&ZR?M&)D5UlTa5{d+3v9oBLvePgTsM5Fp1?Il@(=`=Mj31 zJ$noua7Md2JeuX$fR)b@tJ8YR$oW!jJ&diQ<2@$evW%h62eJO8)~4<~NuGLjorDfh z+BBO)?-a_znY>VO!gM)Jkt);q$Ohlku9!v+h?U6KLU!b+x?ndCYvy2LA%!dp^}2S8 zI^d%)T<;bVSg`-|#|4r8h)0+x?w6Rec-m&{G3=wY4M)jAp4m~5KvFpBsggYlVGp`S zaQlL~T`yLmKOL>&7MMSJdP>d?HYtK8PFFk=P>Hhi6`-C>>QHK_Kca*8UR?J-q5*d` z*n}0dpZ$02JH8BWKZi}_Ey5@iV&naG8fi!(O2F;ZL)Y3xZzm+FuozWVZ{jiCY%}t; z!%+>s>LoA^az1pt+a6IJH&&ABQf8}Mq;(IXnx-s7#PtWi&>O+OP+(@^qLV@5EaIUj z6pK9o4RC%2pR&6D^s*lS7%Af3*@_M|+ueA1IhkHGU&DRurt++$5=nxYKX65=EId;hQD2S511f6G?8%mzWK`W@6*5_>g!10C4@yjnFmSM^-^ux2xN)m0^y60_KNbkf zH&B7#ybcW_6N!i%XdqxdBbREx8(d{w84(+TKDKRuA~;TDEd2aP&BC55J4@V*zV0zt z0RE>zFFOC&5p_ioDr;DnLtPNk3%_SdX)hGDRz#aZ7OWGfUNhhAKQu zL1e0aTlfW*RZ5Y9*EF}g6cGId(mgg{im32sR<=WEDJ57xOB|gD$pY%7JUm9xmCK*p ziK0+gXugL=wHB@Ru+8=B4?E)z9S)5)L*0V)#a2CgI9M%gb<9ftgnAvS{Fj+yb#g$M5kGfq`Vx71KU*y$kt}hglCn^&Imw~ zE%f)$QGyhSAi9||E25X9FpwuT2C4&r99IaX&QCld$;c6Qc&gRpUB}tAUoq#1K9QES zQ*r-v3AH`ghOGDP)5)SlV6;t%!rexlbG?Jxr?W64d!z7KUCmojS@%=qg>N>c{o3^j zBoupLvI_h-W*j5r{TKP(x?A&OcCW%mkN9@)Q@#qEUTTiv?Uwyf%#I{Of6b$3RqR;f z3!8x>n85pPEwB}eS$>YFkRpx~pyYdbO2Z{nIyEh|0QwSxt4jgC1(4Am3mu|ap_raq=DS8Z1g7{?}S(R;=^ zM95AiH>A50`=3_t1G7!yX|SmQKzA*3P6UM)I2Y$fCP!l4OM5qEa(!|N!_iCZ)eSiHD}25#>hT#JdRa@C%uV65vQLn6FnP-(YU3}GZ4 zHtcqktzEmO-k*g(`?C^7|MBeyoXz}P76Y8`erb&;c)sif7?@#~Kyta%{jTbrwkW(6 z1g{PBG1l4TD8bi;E>=(CE>85RbS*)#Qg?QHC#%V(`EavvW>PErgyM~Ga+!C{VfP&e zBCQTIV!i#t=Vaq&GWKi!gk9;5sr*$^4D2#57iHw3BOzJ;1XDTF2EiCDzmhU?q{AN! z1;~R0>Hf%5DjRenZpjLD$U!rLV|Gh3Px-ia2p(3iw(Y9kVHSQKK$W;q(*c5Mkl$Qb z6jN_iXtzeSd=^4Q(GtH5P^xA{dV{d$cqzp8-ixKSc3K3cbMh$wu68;pDH3lkVBRnLkoCrv|Q6~$|Ad19+_3$d!jHukc0AOHTEFt-;hw>1M0qQQQvhNX`A6+ZCYaV;C&b zR|XfkP-JOq#t+!J*eMpsvNN>KEOm=}n`VVX*lm$hh|9F=*?LmdQ8_4EAjx4n7ijpa zCg|*)RhS*ZbD8QS6|!fwjBi~~N*w69q-E z3wX@3o38lz-fqL@a!^?p8C}vnE}yk#l#$xY^HJ+diAVao70*vZr9qaTM5&vV02?yz zEX@`rz5&IT3L+T&I+j*QIOJ162f2dGXSllU3u<-Z^ki3J0A-n-tZj*-a*IJJf`K-) zCT7SJ9QJv2LIIqXy&uAdBda6NLvGEw{DFLv`+_|GkdHFWcfX4?jRB~&?Hr)NkB9CH zB$8(k#7U?6*hACu$^&>**{Xq)4+y6#pQV)~(z>v?(N)#&3M4BzK$@UZLL{F`QG|`zM{D*QLSV5~pm-J2?84r{)F+E~*#=c(cut@pIcS+DkQrg6JRD|M7oaX_ z=+(BNkfs9|>5!m6!;3z87DWHx(G-i+2CN&n)W#*>Fu0u!l7l5mjc@fELU}3?q{fte z@iSsH)eCtkSr^RDP~CDOi=OB1TAC}`fs&vPKs6u8QzF_wOF#4ycWmFOnTy2|bc;?< z-Kzv+iQ*Jq(tO8#CA1U-KdW-t8r}J}9CG2^(GEmmt~UUWR035^5aCF{My4eBd+bT& z#(0S23HW|M#6=z}@~o?uJ~!z4^6;Z#Tv`Dpq$YoZrUQcrRfMZv?Z9!^+kOVs-!ra5 zP8HVS$t4`Jf2>`KA{Fxk>0e*LsFmEJ-+YGGhaw7fM}}*mN_KDVV-8Y2KCICLFJo&{ zVT7(G$C4Xt0JUWwH;dc@G()WveU|b5s{^sr&1xjD>dw3sDDwKE?jFCknX_ZMt?g+9GsN)e3hmrME zmldM+q*CGjkMxZ!qM-<~K;GisOHE!4fcii_2_-S*PSi)+G~xaqDN5iIYL8`dB?pUT zFqp)F^t`McW-%VvR&bsn1LYV5*>s zgYLG`C4yNKO%=&rD5g!wmAGtp znyy8X9hkexVNixGIMfRg=%=d-mNo_?SWUAP^P(r%GY^xsk5J*0JNzi|x93^DE3$7> zFjrAgixP3S@US_{aC|)0Qvy4n7_mEWo6hsEj)!j5S3?hCqTQZK>J^}EynB=y*ebCJ zR#kGIbZc@%UVA?If5+d$*T10M$~|)BA)T|n^ek^iPBs=}Q%Rx5WM_fTAz=Hgo|VAj zT;V;u(%@sG1X}w*VvO2PTaZt&8(-XV)`)gQdZB1}u0c~{@*Vg6- z0y;^ELDmM+v8=$GHziDD5utLlmHXHz=cP<~5OyNzU0|9@%!96~qmO&A#DTpxR5+mW zQv#IUEe2N2T*KV4<0+BQKAnm?(?j>gAy@DNgrZUD`2TtM8;jSLls%Bu8;Ix#*1rS? zrK->&S!mUPq4S`|0nf`qM(>omRJtOnY$PA|s7o!=Da0yYfYPm)DrA>8BM%{_TL8h( zT=my5BxkK9wAR#w95souPKq*~0e!)QH7}`~rUgAJ z)~>g5M($vEa(zhHSGjK7ior*BbXqq z#wii5j@NMORm8I&+3ZI{h0IytN9aJMTo_w&0FqJovg*}bOD+U`9!M~j*(TJU>^1;? z^>Kj+qFqQ2x*YmXhAW%HHd-`Eute#Atg0=vs?a82xulWTnMPh9<%1lfKup!-GrXd7 z2Q1KV9|;a_{Z6+w%t%yll_D2EfBP4TT$r<9_f&J9M=Dya$D|T({k?QF(KKKKR|^e` zE|a=M=QlmsG9Tb8MdNO4RF{5MH5Cd5x0uDvSLkW&=dL-Vt2ynu#z%ykNIaU3ls81C z#$^d%APv(4ww@X^)eVt_0{QJ{S|+Ou{3J2x1NC^3ZnJ-lPw-SC?qGc884x43jFuin zRo0>34%P~4SKvUfLETc;{c?M*?b8asTd1oGV0AXV>9|tb>qmKr^q9w7Y>#{`>r}q6 zWW|;ztNl260u>e8t!w)Swr~G{e!R2!9zlgX@}~#%%dP{wU2u(>v(_dCQ6qevnX;&h zI9Rk^uR>~}A^jCmZ%rx~1zU4po|5|mo9}Z5FnI{eK~+6)HvtgdK{pBxcbESZzIm}V z`LCI1^Uw0@@7}-b?e(U477Vw_nxX?(A`H5Cs`laLo#`^? z%DO5j#^(Lf%YUJl$o_0(PsoBGj%d}z#zqsma_(4h?cEVON#<_hONp_#@1|7^{>_63 zA*f-#eV-0fnD=em7uhwFTBB!ClC9IBjYV+_ES7iV`MHAIUJi_Hqv=VASXvN8O} zt+Gmqp&d#2SVmG(g%1fs8vElv`PzTs>t9fzRJMe!3a>k5Lk$Q$N0xNv0AIam=0|a* z#@x_8=nbk*c0}T!jnT7>1RthVr7F|PK?cmvdDz};DqSb#H8;hZ7lpgUXa{X<0Cxvf$ai3gge3%nz0d49r#r1kK`7PTPt z<77XtD4}HsTRH2?D^LQ;ciw;f$G?Vu?+;jX ze8Cv-2Rj~t|E~Khi)w{~QbHB52AAD|ID22G^LQP}0yt833yK7HR?rL(vCL|{u+kZ+ zpQl=yXz6c}RwC_8hmR&L=o!&$FAYc;?}Qkh_#*x{a`NfB46)IV{|frb&X1Yu;^d|( z-C^IH_)|tha_@J0l271#B~5w&La|ugaqlIDAG|Hesr0SFdVFs@Egy%1oO`06WNR=p`y zV1kd9&SY!r?p;B||L0vkqlTH1(t;(a$U57=a5$qfqtyOQn@+m;i<}gVRu|*UM+Ux+ zg4=JG8+tbe9IBf@dVo4TZh6AgnUhTwt0y!j-O5&7hgGSbdqINL%&iTs+u?3iJU#yU zuft#GvQ7Tk0mYA$t)^N&l|#yenN~gtu$cKG2QSQPNkdla-knNxGvvj3Yx1X$3QB<- z=20|zz$wknk6GtUGuQD+cFOyAFOpW+pc?{&IHgQMlvB~?NtbiaXu(`tTI2!kKSk{j z&^`f44ouHjXQ0gR3r&k0s=Wb5<>JuF%-2(6l)bXhly7+Tru0<}#4H-&jDg4m$klS6 zRoKwoLBCN%z73T8ov*(A{U2a#&bUV%@n%;a)yUBC1+|`A^piU7~ z@gVODg)5`Mbfn%au$s+l6`au8M9lfg&27(a(J9q0@TTuh-C{K1=7H&Z$`Z!c z8by9R9O`|DVkrE`WB)w=qzA}qV zIPQ=JiRIZ>6jMA--c;G@1Ac(^s6m*zanf>o25Z0GP%?rn?+(f@b9kAz3t(y617Nw? zA#bas;_k9Wc36#_I`SM{VNV2!f&BOWCVV6BL9P%syMAk-bk%=sX&L&ywn)g`Kv#Hr zO73|Nr=i}m*m0r#EybtU+63xS$XmPJ5F!d`(ke zUT~(Z%eps%yb2`T6E68@B;I3p!}>V;qJ+X++A+G8bqfz;E=%noW6Cd)%ceh1$gwc? z$O+Lzc9h|9H`krghEWBi{Up48a8idBIeF0)awC%~9$-#AI_@B8L*PanCUj{Nn{Z8p zBb^C-tY>`0fbRs&K4+V#6us1vNXtK~Ix!$9H|`#lM+r|#A9=_g0jCe%dQaFoKsP{g zG*_CM;Ch;0FM|Sy8o6Ot7g1X@N%EVur2_!kr^Rz*Ss8p)OeoZzLw?>(ww*)GpsZuv zC-cW0CAL{w0te-W zQ6iZ=t)O<29C|36t%$N2Zo`-$@VUKXHEXsIl zen$q#4LPW>BLwo9?|_}3$P!VceSQs01PJ9$8k`mFFlBE8Wq0M%RWkoPm$D}iS^RXR zZ{3mG+PdWGfw_t8MPeH3PU@T)@_JlepcPwOm0G~~465|;&nKmiUuTUE`3+5@--P#n zvMZm`D`>XS4Lgxrv@J!&x95QA)RTY4^E z`$E1&-+KFTAS0l$mf4ICeln%pxIk8DTRTkSE~)2N-@d4KX2v_(vt4F(?#3oOKJr*a z*RvnAhhq)f7s_g2$|q}>cj06mthV%ZEVvpybZx>X+s?@X4&cicctHIDe#DXnq7k+d zVci39^`FVMXacwDLyz#DMqQ6cfRr4>*{p3)0Z~+ z9?h>YQ#P_zw6nLhzR7iGulA~jzQl4*riQL|E#R2RLsokq)wj?Oh^lNJPwHmLtVh^E zLD8cM0r|bG-dmL4oJ1yPp}Bp^ZNt`*l8r6C0nFSTDrmz~`Af3|`q@}>TVw8P?HeZ8;rnHUoNw~17Nj#C= zRiQO2*EiLaHA`s5SbGdUr0d0D)OpYS6MO;)@%X81DtvFyX;roYctbyfHI|QViwkVi zc4J+J^YAo4U;6_HD?265o_)cH38GH(2xd3H^FI=(1uh@LVowcIrEN6 zsv(eLM*$$AUnAOQt1RFKqm^cdDd0T$sZFUj~QYDHa8)g%A`!Je|Z z3)TiUuuLC!z2CHE)ftSvOaK=ldf0_dh`x5-0Ums(7dgDmRm1j41<90 zYO_UB^3fFWo=MeNuD!=4n0^A}fO&w`f?JP`Vhn~)-+uf3s<*(y#snyoD}bOb=~=z% zpnr7k7&^qW3d^VpgGDLiOGVQMWPQx4ala-Yz7tbD6s;U*%i0P%QAbq@CwC(Bh9uuC z`O0%frzpNs3M>LE$3EJYJyUt5lj;&vu_$cYb*}6{Q6%(M7qM$6(7NN_&wYheliK=fu}2r-Pab zg_us6B+*hQB4?iVLMI%3ED0gjD>Tv-Cg%0D+{l&4Elf+RUJ>DPlT<0vI!uxp-LitG z?T6O=W1_0p%F$D#*H;ZHX?M{20-rQ*4-Tn^TtsOonFPuN3^@50y?hF-^3q@z3%oFC zcCpa#lhm~Up)feuh?PQu&3y1*HHoN?8WUVjj_$G~K}z~jc>lfyuAq>N{00bwq>6U3 zMcQb?F?nJJpTtT!EV)7UW`(Cz^^*;b<=)AzANms9$3r3d@+@0kF8or7mtSi*J}Q{O zdj>~%MtWm_M~oD-c9N6?G9|may9-*1rB46}0nFa*4M0x$;(HnoKmbKfn-6x_DCSR2 zN3cL8HO}xbRDXwliElR1fNyU?Gu^-%v5ZJY% z6lc0EP!j49k=_0gCH~~@AUY(VICparFvC7YGvfRO^_Gx>V)WZbn2Tg`OEFW!wsa}y6_U5!@53}> zmb}`kW8C5T@*1{kvD+7Ei+#tQvZfNK=QKUMAv9I8+o4oU_`Pg!w8@G^!ggXA%k!~Q zx`ljsVh9HL)83#^^?qQ2l*Wd+Pwkj!b?)&8PVN{zFa=erT~;5^BE4 zY})M@3w#Gdw0T2OV=b>*d-24}-9GTzx-0_@f&%;}9o-_4Pd)_eMHqsRBYI_H26L{) z-6b%dnWsmJgFMvYa$Oz$u&Y<6L?YEF!+9(>`XXB~+%KQL2w(m0ire|>+nL_-_n>&V zj_N~A_;!;Zl>%I4DAkDCE>%`y^_aucJi4T0I$+JmVVp!IEtOslmPBa0aQOnIAGLDL z&lYxBP+B#0;9e5oP6aqtknouXsO;NkGYZ0Ip+1Jvu36_l9wuj6!4j8)d^aTkzX=tb!v17E zs7mn`uXf2!R6k-(08cuaW1S_1akGjFO7IS52H3V#8Av*rKD{Pdv8m3!|0OtINfCP4 zT8s6Y%gCb6)OTFt9J*)2dIKU8wkmHlFzg91Rsgznl3?cH z!Cewg)kirk%MU~aEvxEh2T0u&r8^8u$=@0RRRX%?sNEqc6St;Q7M{dTva6hwdPq~< z@$+fi@7{lCyLLP-x{oElYQkXG6-PYQwng4pK=B!BUK>|=J~nPhG$m=p3K#WFWkWnc zy!N{CBIc8l$!FVi;0jh*4;(eYrVGV&rIB2>N<}NI2atw6(Li4ufP<49pS6l( zPkzJ#L9iZeMdHeR`KUgzeBTAj7d4~JYx=p_a7B*X4~If#lI=h33ZKO7)wrwCp#qF| zjLAC>s3~bod^=#3v%-=6R+{V72~kEfASTf!bERJiX- zwrmtaB9+q0fCuFjRz7ycIAIAs=GTJW8R>&!)L`X9904r9Fu95ZBMyC%yi6)web*_L z3rNPj;DK7m`7U;65_@)8SX+-o$8IX8DME_tn06Gn_;GAzOc;4l|BdrlX4eDZYC4QSqwY*R$&xU4sXczxu22SD0P>+nXU}!=L0h1qkgg^RMCj z2J|dA9p%pllY0Z~=s=K>=vmt0x0z0pU2v>&Qb^LJc?NcwX3T!Bs9r69+0;(r0zihP z*pt=;tMiMsmj^k>9hJ7u9IRCX-iMdj=s3>%to4~;7p`G5;QtK{Dk@%Z$a;tO898pf zH@O;gfzC!?iX2Ry9@Xen%Su*ky&^?%&lTj`IAl*M&zXx${cbE5m7AFhX#DJ(gvs?e zNxJ3EL@TVBT;iqW#UPzI?g1uHOh+ou>g-H4y?qxg)mazM|QuVWfyyf2wJQC`g-m5qw-Qn0E z4o&gQ)y?-~U7u)`>u-|2L&0u6>1Wq&ceM|!BtE!(^O%O*w|3cL_zJ0zwJm{xDEEF+ z5ofDlTTDuPJTC`CYM?0FXqRC>xlZ?(H$VnVTMDHbmB>dd?x!ET{Up5oDz``9ehimV z(5x^D4tz+Ej&OBh9sfcxVwEVu$;E`}rotNY7!3)ZqL3rOuq^!MS0Ga?Er7fI{c=U5DU~BNTJKqXTMj6=oE!XRC5Jm?oWtk+P@cW!=%$CI>$fJf}Q*pDN7Iud%XZ zmZXye%u%s0oQB-PXwx|bJ($yV%yy}87Ck$nMl!?e%76paF;r;SSQPrR@E`ND|Norz zd=_-Gz53f1{FC3keG$HS*#VZ@wDq`{0Ky%o-0|x-pjTPZ7?2eYdAzufjRgRKO zl%*P3eZ!PjcDMT~cJ)FllJ`b$_L7@;&u@Xp= zaK@ObqH~4%Vw%tkOA=59=-X`QBzn6;ogi3(t*(Qzrsw2v$wlYqrCPim=yF+KVFD&= z4bRIYi^fGC;KUA1vFSxJLttx-s$K(FQIXyz$04MSCH&YPl<}1`yNhu7XSG6 zOB;!P^=;_A?2U=ozoGxFQ4moNaHlQaz>AI?z^1r|! z=&JLTp70ul-gl5@=2B^~nJsKc`qK|k{gDUNa@GRH{>8oQCD7%I`={{!lgq38=l;&H z$2FXUWHz&+GAYsndJNUsF;ZkcH#{ep37PPUvgB&p6R?yhP!9Rbkji~=*&Zn35;~FH zeA%bliWGc{=IWV#mSn9W8v^+sFn?l{VMlkVH!CCcPQ;?&EomSQ;M(ne`*pr#ageP% z>R-J7ijgEs{oFZ)KG2L-0i(xd>gm+kX1S4(NVvtf7j4f64@!Zze3Z` zi+~BbFFo`mc1jQ*pqU>fLxs#GfFO zYI^b{(gxtz*XvvX)Qh8!?ZAf?dlvf8{evouoIHc1sm_pDvr~k&upnrW;9;}R&i>N4 z&8f)J@nM2^vf~IbTk9EuNVi`0w`GBS{R}np$WBLaCLIUTPGIP7<$Ps8zVvsFL07s~q#oep9TO;U(XJAt#`$Y5RFYxkrwZF zd!pf@lDF*j*>P#@LT%$JutL@QHb3^0@vaVF37}uPlX>5WDMQ-9!`LB+v+a%^S8W!_ zE|UUZSGii8vT$2>StsCImHr7YJr`1u#cQr;;Ml$Yv!%n#9KQ4ZuY99_>lMRJ_=@EO z=dR3`LN-Lgmo6LjOlc{hA^`krreN)r@G{lA_m;sLKe(07q>7BSZOLxlEB61dS_qb- z1-ffer`N|&b_t65hhzBBCC2pX!;x}bur2NkAD6j~g9QD{`@e;^-|J@$4zHKU*jstI zCY3KC9bUc{ikX8aHNrd)Tlu<1M9N7IHneW%tQ0V25iQtPS)~xESJkOd`I-?Tqsr^T zIJya=r9bi=N0VTA|4rbF%WFhvlR7uuIepk*LXk8Gd)2Hpek^@vkSDwLgh3o84da1e&2rIOz0hXOXV00c2 zt0(f^G?tJWde7mi!o8B$M;E$KKCBId#`>;ZXuFY%_w``7was()w5S6E7ZO1x*u1UC z6Fn78Rfs5-!vtyJ(Dni`k()!OrzwsFyt3r;7Fzu$%5(TN(r(6~|AlV#y{78%-_7 zzYiXcKjmSQQ#0DAUj4j|!_) z@rX$Z3$)uCdKRFfL2b`x2-tkhLQ>A5g9sFPdj0B;cL?2fxq}sA&4XVe98^4XcqaD?_`R0y6n(psZrG)e<1;ci0@}WS{j^0N4 z%tYZkH58Xsa(fuUUmMa8aZ*WUE`QM6`8mGIir`O<$z0$64SzPhj+ z9CXy699$urpY58**i;RAT&_t6H$?05EOYX<-2}gQsb+@xNkSN=oRUOQ-ZJdQxsCFK zfzV!0s4RH^VTey%`UClmsRgLW0(#C9t#0Zd(bp>5O_C}}1F2dK+@K9KUx6A*Y4J=M z>#rwnMMVm1ma<|R;|>ET#7%~H42N9U^{N0`E2nc-f3u@Wmfo#jZL0O6vbRdC!_2nj zoQ0tMe&9JNudHW3owPt2V2IgCrT!ZhxSVl4b+ACn%MV#C>mjs&+NU?!l-TGH!wQOu z&lB>r2;-T9pkK=-$Qgx;K#^->|;B~k!zOFaurgYqkM zfL;hU>RZ+Pw^hE|NcMA^V2Q{1Awotlyc|(e*$8?ogN)D|P?u|f?{_WE zWsOxQ@r!NzB~E9d>PgMPZ}zB)%Ljr@%?JwX8HMZh$H*z#$R1#o38A(lQ3aSqh8Z_} z`jO<2d2I2!@YT2IG>DceXjV|*j1Aolu<4ovK+#@o%;c%ueTvrE7yFR ziVT-;e)F5*Kj-IIp*2_9RjTl%Dz_WxM8Go4jWv-h`Xhr5CV#ygusm9FZ(_|JgWbGT zTv9OXaww4$uv{#9(p-sqyv5Mb+XR+UX)BArQ(zyqlzD;6F!^_Dmd0n{3VO#;D@0vFsKter6Sus5Mc zK6V9{SJpXwe3PsJMjAQWG=ahtZSH7ts-pN<3L1Kz4!^_Am_1{xFvDws$TL?8dQ+U< zXhYEgzz%#b^PxrKBfqgJKO<29=xrv&b;<3Ik33mX0L;r%)`UThR^?O4$2|0b1A?bo zdN-0Buc|nNwh0|DaTwQt> zmcvtyF!m+alruV?CM%7=Iy$q8qUP6$N38^R<(awYTeu#pI)Stka&yU7{yh8-e^J8W zzr6jB^B+S40d3{cd0|BZx@;MJQ}U!!8vfj9S4#5XMUtYiNT)59cml!YFd+!s+1a$a z;F{`nNiIkiQn_*#XvogMD7?mDgVmSasicT^%g@$=Y)+GuVcXdW?_^4yU=>R7k)4>y zT=VS*ggh0%QfZeb{~62>;R2e;1w^gd%|eGGTwRe1<~`ft=h=`*Dpp}&^g<=pK4mE* zzQ_lB`Vq0mqV1s6yz$tQL_rYi?IDl-pjkpslEm;-)-AeDCdszyRJFtx4KEIUOH?Aw ze6_x#DfJh5}aMPf`gq$$Yz$v%(CBnLl2p{zGu*D!| z-A^{(Fpd`p;TtC1G(nNffKLY)R@Lq4IK5x(e5%l7Ej`RC?7MX;?%F-|h5q)v@ctvo zL_qccwFfE5B4QoA*J{0+6@~^9g#OHDEIPUyx{xNr&xK zNH7@EY^%F)P66~z$0E4%t zhwo;PF=2?=+1^*Z90x&EXt&o za4uFs9(RD3TSc zGFEy1O+U+K#?H1`x_;jVTFs7!lkXJC2x@|={#Y&tg4Y#!h&w6#W%%>FY*10X{~KTb zHoRxFh8kCaF|GioSw8v4e9l};<4Uq-xKUb$A~6`su|9K>EX7=9o=Us1J%h2LN@Ejs zD94ZHvsSOna|@F(%u($NLvxDzS9MCui}6nWDB4wq;Eh`mfvR9~B%Zn4YeQ&r@@%4RKkNPA1!j>>Jr4 z&)`x&=y_b~0}O_bIb>o;7W=P_=1uDJw>DZ(@f25(N53VEtxb&PQ4W}cw&_!|C9v`O zwOA_kr3t58bE7m!FjqB^I%N!Z(6;)}L-11WTw2v2C_mUkVvH54=ymX5PE&sYg8ORU z@?&_R57y+G<^Wtj)Y<`R|SB4wHca&$l*DRFG*@~6-MLvuqXL?fHzP%g#k zN4F{KJ7te%ov>Ec01NE9V-_ma=5ym1Om@ z$T2PiINw@VkLVttYMg;m3{tTm7a`p)I%C`MdSU=&H!VBFp@(OE-gOJ)c4n^~+g||d zpoOM`J%mc_5h?N_qJdtsbls7GNd+-@aKK2%t=f>1Q%qOkwswD1Kcc8gC4D$&izYed z#{zy*yrp|xgTKMl9U_QiDt!6=Z*RX3pME62{X)~x0#t!sos+kqrM1qen+mL0(s|j6 zGm-?KAG$O=dW2~36g#zSt!0f#*%ePcbYS+L&)37vdn3TcA%UtU?S)1ieK$vFQGb5j{rGJ58$R;PzB>1K9^)tFtDOLDT7Qmw6dl^YY!OS%POk9jV`oG2`|f$RK_$S*(z zs=`CzwMP$vhF=cn&D@f<1@Y~pvN)gaWUvBaHG2{f*RgNWQLt=iZnRZY;6x!(d|W~} zYZ6GMbp^z5Q(1hwzvvB8w7|rLb;N;-uoLU!$BzL!mfB2#p#T5LeZ2oP{Ldxw{#FiT z3&B}+>C?C0ejc1=FqTIGW%Gi?zh|Vpm)Mi1r>K)I=+&^#HqMGOhPNC*KCI4EBDdyP z?}pwWH!kw;0xnjIhu(}sbS^C=DH*_7QfqTW#FJ!gSpKpM!SKhudSp4F1!xCIPWW}l zUqE7ORAn>&QTXsR>7#%9xt*Oq~E~}1F&rGl|Eb8lD}-Q zAedJ`1V$IT4!X8^#P-#Z}-w&e-JMu8mGQKawCMinLu^xEq;8;eL z2w1JqH%U&Gk49UC&v}99$v1~`4G&PJ@Ul*(T_;Qy_46`HFX0h=n+z3N zRBX}@rUznMS+?s%?Y1H%rWUmem4_$)1^l94|BJuC$zXleAHDs3c>Bo(tUyzf%Sz4G zZUF)Ymk<5zz%vJ(l~Ky|TNQNi`PzHY;>|jE0KIK>bg;Rq^xKuE<|r#xvQ_$eg7(nO zGjXiINJ;J< zq8m^xt4*TkwfDqVf{WvrC93JT@Wslr5sotIZJi&JlxgS$xvHyzehtT(cIc>km6l*- zW(!AdOLOobzx#*{7}%reuc(2zYl%Yz9w`}-kzSS5Cfyp3=BQMtsCYO4DGQ2>y$NYK z3D*3CZgxL;`xnL`aAC(eljzYQ-Yo^&v%Ej5dWeKrR8aBK&N=^DAV@Zgmj3jL{(7{m zVmfFnJ|8G7h6MR%IW+Z}h#taa7_(gV*#xG{sq;0jkO|P-Qy&pO05 z?wMmQYjDKOV{Gy^<)2M~5mz1jg#zsuK12HSJ3Ygim9rDoK8+U$((RXQU2c13N8i-cp}rCRw|q6Q z_xtKwIbh?=o;_TrqA-M#-Aif}B_Tc$@*KCGZF5YKJqAHU%B@mg!b)hodN}1Lfs()y zo5L5U8hnBxGkN0*7#>U5rEoY5uyiH&I3o0tl!9}FmC!N2TfRApeoH<&pHWtfZXT!3Z!oZSC%}aTs8`K7Uj*tN?WoZ=Y`mtnrX1 z^g{y*_68H4I6_1=Ie36bmDL5t7U=qNv_H+I=K)yr*|@4>M$kaO)WHDr2z4TK_Mx1S zHb4A;$~igpL3>A*#NBVr+jqbEFP~%bULQco=34+4>t<$~;Rw}{@d3HPyY<68V;T9@ zCeW&(zj(d&EMZ`YA62y}ukpFfDjRM&Yg4SSKkR5#SiCIw#vo|HW;q}vODPi@?^VP} z@-?XzEMh*JEKs+hbKO4pzUzv?r= z_O5n&B%AOUL#Y`&4E*(Z)dIc2iE1A@JjXnezq`)KfTFOPpO|}F>}j4;9DCJc8j0U+ z=Jf@^^=Ns6>f8;&F*%PF8@OhTr7j(I9>IC-S1OfG%SqJTuR23h(7hDu11!6Odr;qE z0Y-s(!k>9Pz=|Wu{~EQBp|9pOJYbfjJcj&(|1ZhNK7H%$Cwa|dboRKIvQIWTENU~5 z5j!=q72=2d{g>~5`1GYJuQD|5eXBC4R$ABK&#=?8 zV6U$w!=6<<+>j&cu zw^@Drim#Lbfcl{JeB;R12R&&Jcw}K;@Mzovo&Nw-0;ED)ZVctGAuJcAJk@ow-2&&r z1m(oOhGNAQ+M{nAHHtowZS~-C@JBB`j1Xq|qPp9e%JsoS!&M^4h< zfn|d>*)(-71a}^3-dK40@ZkY1H>(ijhzi+ZCtspU=|afe?n0mfkt9~IXUTyKy?RUZ zp}}tFFa?<;uA&?3YBXtFFjLTPT@8&34r~yg@fHOVFv^t;2f*}`Geg6;Vod0#-r}0W zfQW1?cMztok~mJs^%TJ;)wFfG>eF&aIU@24`FmNVhjtWwb%YmYZ*n5Lcvp4Ih}0ZJ z=&3|n-_R6IeC^xtOzA-vgm!9YgZCV}Shq=%O$3;P8+46dN#a5-kyjexxtx&;&XWZo z`mYC=rA)@q~RcxQy8K@ly z-SZ;$oOZTdHv{6hKp5LfZ2%9!owQTBZ&m+2UwwFVe6<}biUGN$2vX>TT>dir=f5m5 z_?O}R`I3>UTY9j-p%uSi>5G z691x$ekmgd0tR#Ql;nowPRvWeJBB=bt4biYrX^B?SSGifleQsSRz;3QhoQ9kvw)xJ zM&(b22-eW4t_F&5Ch$kCM8@iZqP$`=s-|%-)nLEO@&DHXps@agd!=Q_dLcF(-d) z@EN`{l6Ztuo;xgyc;oC-!0*QT4JW5u_px6Y=rMx@f8zA)gY~n)H|kN!LUaOJRlN^V zYiKT~&^{OP24`iI@?j4LumQgVz=l2uKSz7Pl>VQfzkgsYx+wO-Q6~~h6d*stY5n1N zg~U0?ij$PB(?2sC<;QFX>ahYtb2evzq!h@nfQd(*|BH6M@{fF~e8?@_t-9Cv-^l(Q zsQQvVx^C75N_T51^dWa`cV%@)gokIhJV7cOAXX z*V7EftNEW>`AKd$!_Pr`c=j@0wFRn__~TMfWoY*Zslr@7j; zhl>0j(up7uHqLobBY2+&?9dJx)xF7u30TD5dJh;c z@|o~G+sVzVv_)&g#Ml>kIPE&d<86D|xINHI5kuJ=>X} z0ro#>E372GT?P;I8E}ySPghj=zLGHOv@2BQII4dksH^(@K4;S9k8SFg)ovc4&hh20 z(q$M1S$9jeIf(#!ayGmIrfAL~cmKg~p-mfz2-w|FjU}=IfX}eH7$Byj9~w1U1d46} z4gfw)Y6?F3*<#H>G(F*>90#d4<$%|U|J5-#)b!oKc_H3pMIt`4)Y>&lvh)X(v8Ps; zI-VyvFT$=~&spXgQ|fGPNX69updxc`CXMu8;rXEAgBU$HGZUSN$?qjRLRhJ&D1f!x zix=3~-_$vM>|bpMOyJ&cdu~_TPE5@vm(x$PPn@jdeN)qO3rEy|g{+93^o?xi%t+-Y zJhx~+*LV7N{@~wxoxj`Py?rmdeK)`U?{B|_wF&%9vf1M+rTHZbR5(o>Pu5WtAWRFu zT7&a$5ouYCu&vqaaqeS>!s}`!rGz+Lvr5uRUJ`^{XWGcsr~W~1ZNB}=ec}Juf;-1k z3A(ief8}Q8&x%_4GuF^LYsc15t7sO?%u#uWOJ&BPUEg+LFUmd=olirCm%tH+vKv$! zG+$lPY3=4MH8{W{lS#}w99RG+Z+lfi6il{CfxuJI58W!XPRllkt4ga9A<)Q;B;HLY z4Q!l!4A$X!DAfpP5vivkS4UIQDKr1b-&;#~ctDML+v!ohNro!%c|BC}o=soq>l)Um zMw=2LdG9#LDaZ>sRhJ^U9GEz)s#AyZ-I^pm9{}L!;IjXh_kYO0hVvV3gh??nsnJ)> zQUNuL9Hh%hy;VZ5P1V(68tt-MIBbHyJ!Io1%%AN24js~&%VlVS+ezHZa1t#iYYEh$ zHBqkCDP&{X)0}aoZs0CwrZR@WWejc%Jm~}vM#B9Bwaw14+j%j!dV69zCYa|E047L;DwlK2 z;}AQY*SQd2F*Z0V)WZc`yJQs>Xm3iLWOBy`%{vEJsjo>pi?s z8mk%Jg@#1hD5MlWxT+!A+p$ui{H`vs)!hcH!hieC=Zbkb{lE7&;A<_%0<-efHGb4W z%(LxfMp@dsP%Gg1NS93LMeZ2v5s{tPbg&`iqG&GUv*_H4*CS$#c0Zw-w+++^3v5h= z7L=%U24B(>T7b96`+fvAL?G~oCJ=OKkL%U-Un?M2|B3xB=5{ zdTZ;-`SJUY0$(s#No@N6|7-a7{=mHLXuh){h}nUx`U~t5%jPLWW{Ct3j$VAMkwX*8 zQLFSYxEYmWGEk*q4AWu2&)ZY|;SjuEm9`9_bQ9K98@>r8yn~WKh8QU;AjcQ#`N%Og zXwCE!jvqe;@5)MbJj^}K3jwn!R1{Q1Dm(cIu%OCuL*;Gi_@F*@QK_Gv+tRt>E+7y9 zKu%$t@&}w~4G9y~uBL{;KzH6H_!hO&?`G@de_y(Z7_udT<WP=ta1-;Qk6drL5ZtDylWXpnRrH5U4M$s`|x5Xj#i)bL$|}#A625QY|D1 z%$H7QF=8S}=gBgUj?)Sd>*4yv(E3ZI{T1!@H7E@+_CMf#RkjRE4KrwcdRo`9g z3@M>`A)*(o{Y-e~qD{fXFH#M4+8*@bh6_%UJsqc$op*S!@@rv|QttMX+_LauRYIIx zT@3P#<|y(KPEg-pg|}aWH6yEO0BA_cc)4$E{y#9~2js#PT(%X8Q0#wfvJSx|?JIJY z=PQ`1#GrphCQzjdpB38}RRKH3GLfgCx-(MUOVVXAb*P9xxkVkHMmfH*{BF^l@kkv) ztK}qD?$eQ2ZJCYitQjS-z_9;wg!Q3YfMC}%3cG=I`Hq8)+3RTfb99O$9QdlVAk zN(d_o1w%C5sKoK&Ni;m{_x!~c@@dCFk6B2j0ibDTQLIkW6mWItOYvRCu&=KvBHj&i zYW4BjcUFkJ1=WG!w}OtIg)Q|!QseA=dtO}?;L*kXIeSC*k+fB2BmMZfAk2N&49xb| zvC0C(*%_UO4l`4q*6vt9Jl{4H)o{s;Om>&mq2=;NZF}kGhx@65;~_i2eSYM4>!=6{ zDr@a{(TF0`PQE$A8<7yo%B?7H4ysg{Ayahu&%=NI=H=7h0*mqA&4%zPH>@8tAetED z9-%xzbl;}zPzfe$e-Ll4-ZPiwW>jpLQVgu`RCDQ~Zg>=yKH3sq;2j7omgKF_#ju-R z4RHbm#`)I!?gid<$PRsQC(z>AoQ%mcP?zTxp9PVl7#tRNSY46> z^3)#Cpm??9VaCmnEwsh26T>i!T z@2vs*Oez+e|LhLw!I4uWOir)JJ9>gb#wuJ*F$1{FUgdm|9iH@$2W$F8MpY>~Ex%Co zM9X>}yjINdd0=8k+x6BQwpFyES53nF`M(G4rXSf_)sj{X9RR&S@t3lvk!(Cj9R&i; zm1s+Cm1+JA!8D=@Z!fASEH$Q7_jcPs#&s2ym(Zd40qCxc_16=LF>KXW{J!pT2zi8ER6XvKWD3%aLWqRIkyNO^6U)-eq+btkCRz{ljIS0ruv( zGu?yJ1reZHUsBKn4{T(CnQf_I73k2^x~_ww777;!qY{Pd)qA+hb@x&%!8#q$XWt`~ zPc-qKf*+GdbA+w&$Mz=0rcW_!h@t9MNuIz<&$Qs)YnR1B>I%&0^halxt$Bz2Tc zMjF&pB@3ykgBlO0Q~Rt%P0Wh`smd!z9#9jln;*N=S`i$crhmtFM(rNA&=QT8BRtFp zB{+Eq+SYmHZ4W)iitr1FE1Fo3{p;b2hkHGDk{48JYU&l&8KXM3IOZNAaq!c#s5 zB^!~fxW#X3a&5sBYy~_INVHEE&|l(k`55jmhfT~^D^i4^Hr7Us0&N{lJI2I6x?gL)0syo77IZdak;Q)yr=z*-o0pHxG z=?FBihT+NGFR&=Ms~FVkLIUjmY|4a|yLMdR0O@nrq`{SS(}yEZMzu#KTX)^9*qXt+ z#_a*(bz%Wqd$w$Kp9AJOWO3MXI6*{&t9kz z*kBOzam)@|#aSz~lLv%%%4e5RY2}bsp9&L{aC%1FofP7pn&^QnSF8+9-Y`w?MScUj z32XFAK{^1ecsna`R$#hTrj8SVsn~dGoF_$)6>2<1OX~Hc_t~iS^Ap}7w&*?YFEC>T8fkWP08eT7vp$_nDa zWl7AI;rl)Y%giDabcxybnfwV&7(leMrmTdsn4t9p4L3em zq$t+whpQkQ`VQ>XudQ4)AT^XWlFc8g)0HC%_Jj343>cUv^k|DNsbvHh(F`KxeOdLR zRlR+%{EkVg={EQ70EF_d_5^OAfyVWKd#SzFCGo%sb#)QIrdQz{?|tRY^4o8WQvK=M zZ@;zX!+j2YOM5O=bB7Q^SPt*T4))?7{Ht%@ zhuJUE*q_C}M7}`&H!HH)*Pe_~1k{HUj8IIoEhq4a6JoB9o0ER8f z7j_`_8c)YAB&jW*h+tu^ihs=i^qHb$1(HXin{Gkt9v80=_vZ>vB1hwGD!z}73{{fg zWGm}ujW4odlpnLxv<<5TRq~ilj>52MnTRE9m0(K&1|%~xEwY!zeU54fSh<;_imO%H zQq7mA=mNeLo^$*)yDiJn?v9YCx|YG#L$yLqGp@zKiscs^SGMFM@aSH$pZ;5T z|Bj*wF{`n$m-*=ikyL7p4jP2`*jVK?+AEJt9Anlak-&n6s zlBT%KvW{SXbpw3de ztv4?d?8M1ax|>S-<(sSO5VF(x7TYLG`dPRL^zuPZgjCn7>+8%9kQE#$r=y6Ls%#lL z`u6M3X^)@&?(MrOzpsh$&bHWHmF8`)U@5NsEozOl(Y!I3#!M&ohmMW_uaGL_h!!d5 zC4e`QlJ7;lu!8IGsr^}@)r)qW{FNHGgU${c^^nh~*B|qfhp&Gjua7H@HXbQhgJef> zO4Ic9Y#&gs$8t)kRKaml(9`fNC>F14SHSWvY%Eb^rInV`t<3c z&=nV?(IzWV2Y2fwHgZmc_DKA?#2Xx+%zyWFmMAPsZia^s)DLEI@~26vW?6?$;+F)1 zQFagBLaqk11|Uc=DxCxQ#Zo|aXYEqt=_nIz{qEdDM&J8jLRQ}Xr( zZsMi}#XfqUfWfm4AY>GoX`|s!EpPSgumCz8aCn|!hrsUwAi$bjRO}-&9GJioehNV& z3219zZz6fW3hLMM^+Yq0n0qTzh(~Xk)`NYgyR2**YpQOO?M=BcvV39I%-Kh+P;D9m z<0Z5#q2(DAF{yHf1pCCNDnte0a2GV}T zK>9P-Oc9=LR4<4UGUS<DiMBYPr&(ug(}~s97A57DMl8+j$RD_|QOO$y zwuWk5f-7Vy)eO(-;F&gi&ur`68cU6o(&fW3Q|&=&ZODqU^c)nBn6DKA8Wx7kGOn6g zp~!AU{^O9}v?(UaGAD2~Pd1zWozCslpX_~4aCm9+JA(u`Pxz4)QUd4(xaZ%#hbv0w{gqG<74Hrc(; zU9ME(U@)59>d+SOGsvH1(mW0Ku8*rAQO@pLRE1e9ek*8Q2$hNuq^kpWsGHh zPQU`%L#hHt{N zMQYBJ4=%OPiIB!ftqRu5HO|*7gJa${uKombUF`LG09exo;f_T zce`h?I^WP{I=TjvrI2YTd1ixhbxS?_Ajr4ub=Sk%(Ff5$5=ywT0Rv=6q+X^pFP;;c zM3E*D88GDACZe9M#${2ApdBY|Ar@_iRB!7uV~}&$1+y0|r9x$osxvf@H--yW`7Aeg+8v8nhJ1z< zIzBxX9fdSqqxF!lf3R2KHi6`)?bv4a;qJis3U@DVcJ*1=-U3f`jHK;FpoK?y}m(ffFVN#Z>pnZJ0G`A z2lzQmWc%uYYvy`DigIJ=eLX_w*WVn-lx-QvDa6L{O#MS}`bc%b=G$$bL{-FOvrlRj zTVsy{C0nZoa{cH2*Y~jJxPII?amqY~JNU^tnUL>KjqoEph#Dy~ZJ@>d zdikDbvq;n1l>ke4Xl|fs|E#FCy&x*swLl;|Wh;5gt4Vs2_lpHyMUzX)#A-b`15IwT zOR)9Y@N?G$)xCkpOTLwr^#LT*3{T7*(1-#M&Bo~0P+u?KkSCsIO;pkpjfrsbZ%aGkGh_<8w&Q z@UX5;)E-S(g!#Wr^dGNl`cUjb^7L_dIJS82(eBZQiBsQ zLT#<3>NAQ&r%BCHi|WOk=E{Yq=fLMkGm7gx+=>I#b%wAXbbpMyi?$J`*|MC-g_x-1 zSvys}Lg-&Pw&alhH6>=?cQjvZ+0RGmb8ZXZo-lBEO>ov7%ta3 zNl*2>7DZ$!yhatT+v3aRxVH`2Us<;t1UO= zLzam-E}wq*_Hz)4F~G?zT1?g-)@7Y*;1JwbsW0x^=(F!9SX`5xfCk`FyZ*@r3~+Cg zx=N21*+Pw0vxC0WR}x&G4q6HensgXb60HdiPBlMZ7qaz<61feScn@;r6vhA6%ltjQRCc2p7Tv&q5C5#y4;7&S@H#AL}mn7 z%G^suK^QvqdE#+JhR#|JWWojxcubid*;|1SLHR@>$2x|(zN(9*ZM$aqA5@GZ+uoDf zKkA+3jE$0AfLzZdO#VXEPI8?59_Q8n@c!Mm-^j0D0Nn7H3>yFFP{%V%mLoki{R#A7 zDk9r+QVC~!mxoajJwBqyT!GmdmvV?g!X>`~Xv)ekx!sR0F%yOFAT(f&)`P44DPl+8 zxU;oH@!SoE;(ZS*ME8MYl>D~8eV2;=KYjayhNWB5CTC0Wfje5WgOZKeec5(Z z)L2l_%Z8mtZ@1_{N__7CB#di62d8%e>0h&=bgz>(>ER~XQ?Z_lfJPaQPdgjd z-#EX?zvjCN^+}aqZ@k8H^-t}?3_QUhNS|+%avz`2%y5`6BC<{`wGXOa4^*|eqLG>gToA0yPr|VGPV-Y->Z1* zzG43bzW4_3msx^-E=(bzg=+Cjs?iEA8)?N+B9Xw-V@&8tyox^AK-fVkHulW^ULs(- zgrQqIxxYynVf`>QWHYs5j2v9wr$=m`*hWC}CD|jYR5qAsIk~H9NtWM$XXq8DLD|9A zP)6P|6R)!8Mu5GmJBSk0c8<<#qslwbr@OPk2YTmnavMel2f|ewj+Iw3lnkn)ErweJ5(P40B@}_>8^^mA(s`?Z@JLor_idS z5&7QX;chxAfpJQ&Rhq<}(n-V{w4-%{L$9Z$kh|x|N=`Z(AL5|<$NcQj6Sq({*ghM; z8n~-TZhQ35p89ZkIS~8NC^wpstaKBwyY?+77ip1C9Eu)qRP|hnFPy2{vj1+_fU$j--owfa8v#!yniRZ{%?G>ze2R9x97I2 z$&n?9I=@=yW$oo`9w>(bSSq~kPgck)FRrGnUBA^qJHYw#1Af4oQbn{vQP8^T&9?lp z$548wb4MhP7%T7y&E^;sMYk5w)r#WM3GI=Q!I)5^@~}}G5koYhB?nx>=qe&mpCPl0#g$2}&LrNp8i5#CHupa< zqL9A(UqfbHD-8mQ9AHaD#rK73qhW2YQy$nujVb%U*oub}0vsN@lVsIW)OG>Lf|;o4 zd&&lu01I7ndGJ>-0pjX|R?;vLI~GOaKz z>rRO0U%q`O@CDZ>fDZpr-@MMFeE2N@q>pmaV19Qkpa!V8yHmS-*vMR2TgE2O`Sh5F zoAXMs?x8Q@gEtWGZ?yh{b_wP~vL~F<5MW@QB!9{kXU&%J9pwciDKM~?0|2(5a&$7^ z$Tm&I7#)CauNrHN6;g@D-rWaZv34{-+#xxO&R^?hl@IKusIBOHKfv501qh?r5zCS7 zPpz0Ni5J8KWVvxpj!5yx5qHk^?uOA?ItBcTB4u zU6?rTUyD&GM7FjQNqz$pnxtoW`N~2J0#=6a_JUk7=#rP-pa(GnX(QzjJ=G*kwRAhY z&BwY!l|}Y&!#($+N?e$GF4+gT>&vKcrKgCBu|x@bFBl^sQIbl|5u+-|dzDPW`lkLN zalgF7R(Gx(4Y;)BWS{=;w_nTuzXZ*!EBglW8D2S3m(9B2byj*1!irSQ+2U-#iU>veTBi}NC>~lGw ze3mTP<$yGqzwN^ zKe8|WIE&AJ65f6bEan%%#E~BoIftvA+~K6(ULaa3tfa3#sE>eJ27<3pKpr(lO&ks0 z*0@b@@}>Ays1G$Z(BZS?P+3G$4LE_7N>|&XaE`YP+MoyyhwM~Y{Oywism{{9zX*RN ziPBf!3h%$t_s_V3B9f!zqsKYFs&)ZJPzOv8cG+?VWgkG(L&p>%)vlvecMol`x|EIg zghyzIv$CmG69?)ex6WCVQv(}GNhB>+ZA+Ny3zQg(+`Ng?z&;MPtZ_X#3;aC1|KWUq zD#@+;U}0$p4L{T)2G%5ZQuZVv?mDa9AqXdr2k6nBy61X~Jt*atV-rG?+$6_ugLrJI zviofgy*zV?U_)ONcW%`0xD~vh`ltlRU7JXlq}>~baI#tE8q#uL?((1ops=B+Thr@7 zG06jnq#SoCfeYmjp{fTaam1-Ap&?;6%rja*IoaF~4q+tgRd$K-PPWD-W^0Tul3vn^ z@)*_Ne&!;*9XKXe{0|)+3oO$~{2s+ivbgrKvE$RhDW5m z)?qq6hGW$pU2QFy8}w0GLv7&RYeizKehhb08B-Foi`ZxB4$WK0R{)xkx4BNX>uRWB zKYGF|V0Oobr<8RP!__?2T6=QVP#QN-Q~n-%tIzicHZcu^cQ^%DUBC1vMYS3uUhCz| z>co&=UhUhw6!RdkUjT7%B?o9HOI&gX>uXY(4a^R$1g%wQTk(;;1gcePTUh~;kToq) zqVr9DqHMsC#G-{-O_-Ad`;HgHt^SSu7x+Rg<=?+^_6z+n3;w@*`!$qR|L*NK?_b*O zlHl##g6#n>O^Y3STI5rVd{YjIjjIV#kbk7ZELWnINT|~sTLkG(qoAvS*rxRJb6a^x zWrW`&{UD{N_a0gcCtzg&$X40F4K9S8;c${Ipj)*ZGlYzTduM~XKe7LU{ccf07X5Xd zM~s7z)1i*yBn7#KI#x?)-SyDB%os0N9;$ALim(ZOC5pgKjEDlM$=Kb2JokE(x&Jpr14^{_n?#q{sICOlRVoD%ApfKw;PsF7l3FxgHiOrC82> zW7hUk{QX8LLDkF8m-9t<`@!YY{}JAQiDS2NP9yRk?Rdn7RI@R*a4h6jep1U;p5esf zIZ|bB#GJvibmMN1&*n!(U+lvg{5ubj%557IZV3bXoE+#R7qw? z+_C+xMjUaWwyC;>vqx5;4rQZx0_4s44)OK1sQrL5$-(Ojssl+%Bu#yZwi*94{EvU? zNabGvtq;3PiY=P#HSKZnoDQsUvd(g0+D;x z@fZfX1{^a^0+95~TYdS6xeS#_riRZJ9=JKrhIDE{F|?B!8ezZniov7R2y{eTiKB-Y zFy*PEY+x6Qo&5;Ap*n??Z+P0yfDKsWW0I}9bd>0n-D7oeqc(6#q~cz+x$~DKM*p^a z_50!Nr>Ao7n68kvun?Kh7J}%`E};-PD&Xj}1OjkU*3nK;BzX!`&J_}R?-uT_TGsM| zbVb*!4OOi`9kV!sy^#WqnRY<%jzqR>hdK7^TJ#0wuAS^Be)s-8Ufp+3vA=hsGnmI$ z#S{>uGmcVK_rtY!N;oq0RVtxY0&OG7;5`&44eL(~swg4#XSaQR%1OGqK6N4k?=%;F zf+*CE6!c(&rH3p&;q>dQF31=4q+WR`Uj)9$n_Y4SlR8k*2lprLgH;?`WtsM-K&pd6 z5Xf8Nun!dfmak+{PWP5u=QeZInIj{n^yYKR=Q@vCs)4oKS2iM%I##zoEimzey_jzS z2WZ!0w9V82-~DQ-PSXQ))q_ISgO%-#bEyKdN{WF6szjS}g`f-uwS!XK)_IE%>_wt{ z9tpN2lY3ZgLsXreLepK7ar5n8dSmRNg+Xfn&(fHJaKrL46D>Y@-0cbw3CckcEidlNb|6umjHI1ArQK3Zc!s(sJd zSv%l}h=cX0rVAWgJjKV&Epl?6p21>3^14{#HtZR8!m!(@C0O3pa5{njsJS#+ObS`) z&W$5?fU2PHc?`0}iBHfO63-$KtF8>msKvZpBj=TI7>3qnJpBkg+zAsR$vHS+AEY26 zx`!#~omPk0_m)j!AmVE_Y^Hd{QEeyR00n@?wybQ^yS?Zb$h?1tCX$@0*5$iH(F^>R zqx2{Cqr!-XSv=Sa#l%%r*k<|oX5pCcp^~E@rN9pM1iKk~+7d&bL1=)Dq*mW! ziU8eK42E|-x6nQZhG4eyR!KnUkm#lOd=O|mx=T%3CGMW3VQ)3;f5V7(CUcR#_sMn9 z=ORMJ)eo)9TT4akYv|Zr+ub)3b7_lCK(+6OGavFEeTh)>o&12FRp4k=OH?~0(9}`i zycYAjMy=5w3~4Z~w4l9d(N{+D2OJXHnMkIpAcv|xn>ew{Sph?DQn#`IrmV=EES@|% zt2pklffWg?J*}|=Z$w6N08zYmyq!wQH9KF}<3HG?0NMsZZkgC8QCRAot>E-@YJ8m; zw{BASSybQI2#{PHHGb+U@*xnxyE(D8iASIn15^_R&cNRPH81TfJoEksG-BnjEZ%$) z4411l;U#+GWI%V{G6`tuENjtHU4hvvrTYrBv(94vU%K9`NtWa~4}8yG;ed^X7A7d01i)Tbs#&%=LtSFlY4PktlC+LluC!rT~H_!mPNi;y9v6$5@{I5CR@$(&z z+ahTaZdTpCRhb^{$ItRD>;z(L_HI`sWfpS;xFT1sW1F+hiH&*4Z9!Mq`X1n`E2n#E zL3A!7!!!MUP8<_zoJI;q-?#c&-S>0!T=?0Zcl6*jUFsFuAL;ys1UuP=a@9f#Tyt1 zZNg`rFjmFg(|@gG>>~q7X}Wk|ORW3C@l%9tYZdY{LE77eX7mP!)UDx!wpui=F;6Vq z&j+~3Kr;Kl<7P1e;Eaq~d)i^cDoX%{6$sTu<#SV=rKb}wJeK&Nnr*;?5X}Rd zlVt-4_){eO_~U1n_y6zfw`^-KS^lG!h<)=66#{Qg^o{RGZT*kee?fak z{`@78NcS#$;I;@*m__tu2BU3@EM02)`bkJX3udtT%eL!AK!~lq7@n;+I|br)(2@Z7WVh8q!l!;PbsfRgMorro~C@W^BkDDB6C=WA-P<=zF zqZnt(!5(uPW@QD`k^##9u&n?`_*OMfI?FP8w=ILCdv}R#7QKn#HmNq2BSPVf41&Gf zO(@1TWc&ED!%7&Y;jav`bXV_j%U}?o3awVHK2?L9>}l!!5_}~7I_*(OE;pQA`L9#uEv)@85toA7q;BmV$VNt)Cy-*TpRXe~L%`dX0BCF_dOi7d6bg{ex913>|UF7yhJXatxK zDp@IN3<9u`pF|HG?l;eUgE!#{^nhlwpVWIEbV3b73y9*f<>>jD zX{L`bdz$1SjvPs$el zz$ZqMNjs>{TNK2_Y-v0gh_?0WX->|i51W#VU%zxTcHeUl1Ei0gj||9ATG8XV@CK<+@#@QWfS4$lI}1Kcb86N5NM4Rvjk^G7lq|LY_?QaO#al>k;q(q_ zINm0u84Fa4e zD_jCtTKH8jkD^Jm-4_!fk;5rvp}f19W_%9}F>K)w{R0}@7Loxin|+@WZsFDH%YaM^s1crdxFa9N}}>T^esA;yA<;YlaBlMYTQUMG4Xnv?R5q zW`FDafl}@bD_GHJM;V8eIdTM3O_!$reYR=(i!^|>$S*(i1 zvLV%g8@H>vq$akKwAY3wTIRwZM!Tp|!n-741orY;0JJB$x4Q$Zv)y(UzIW&WP6oC> z`Rb?3ecjfDNSTBe%2Qj2hyqtkgE459iM6(^bWb0ai)d zAMz8HL<4~w%{&V_N2)wz9d)uPBx9AwF4c0+(V#YWGJ$WZC4Tok6sN+rTmLmaYaEy2 z8VU=po>RxXm}#zu%G+-{3dNLr57?Z0ivLzh)AU*m6n|lxyJR|h>VR#4{7Y2WU5#l) z@^+E*BwR1h1ZchdipxZIylvSdrQ|qbRIUakWqE5#jY`e*jiCQ4dW{Ud%MN(QI4!uz zH!9NWP~RT6Ji8aPy{VKATon6a9VQP?{K66es8pEV-61E-#x~P{K{VMks+zPAOnIAv zyIRYhzRU9f0r%wL1S-fvceUuA?q!k1oQxg$bF$3;#E^_TlQS~?vYIy6tb%VfSp+Ne zUJfz}tWPuVp=^@GZ7z>dE8Em*4yEbfO?Sea#wQoRtiTiYUP=El zLZWmbC>0K5=h_W+1JP%HDx=n&*8LB`5|_dYm!`YkTANVWd=%# zvRf`-J4Khjn!r(@Ebq977K%xQgz+VFUxv`6hwy~$K|9Dn(sbbYaf84KYL|k7ct9n4 za1Ag7uR}@QC*?8FoOn@2P9pce8ldG@aFvC&Tsp^6M3!_;-Jx$~w^Q4xLRH2&z+r)9 z#GI?9@nO`uuB7*LoH(vl5CiuBNYhIJp9NGM8_D$rawxm({v!Ov5Ax&q;`Q_NXZZ7v zFzL(m(z~17OXfX-J~&bBW(l&5>F4`;RY-F$LmzYvq{ z3BWlu!r8Ls^~9X$Hco0HSo4yC=7-C>s}?4W&?4`4sQw~&?VD_rL{3Y)zm)2@vI2NV zyzbQ)qbLc{s^L^FY4RP&#Cw>n0&vpZ5@&UpMnC^y?N;y=%!fq<^{l%y={;ltPktzL zW@cIi!9&b)7nSYMYNV$z$mxQ*=p3awZWFk?CSTAU(3-RxyX`hLWlqt0fT4y};2=kI5O~u< z1p4incRs>e93&PfmS_>A4 z1$(1|A5JC5dJThR7BfcA{%aGE!kHc5p{*A+@Udgfw#;}`ifyZC38iXUlg|3iGh}#( zJUTO3g=OV5`rRSFRK-cdLHWMAP&EbX++KYjbt>(@d4_!n@DQ7->9{6*SlU7vmAq39oBh3M_6Me0Vt94K;w z4CCpt4hlpAj+zoKQwE8t+v}u6!*}wd1`2n$waNf99iBc+OKCw49n98tH_yk!&o$o`jn z80glHj0rbf-2^SlKaSa@?$j`duvC?Jvs!6WPdzoJC=_K~i zt&nO59;qbpexjFEBVof8h~WBQ;kn+gCwYo;>U!;JJ4B&W6RNBsTnuwbXp~W&en;-p z?_|p$yOQD(BASzA-!^~TLpME$^hWk|sOhJqFa`ud{(lnBn4u15NyPAhZ6s2}=?Z04 zDMYNL-h#)Rf@lr361v@}!%iXpy1!1ck9@{NM;K=G|H$nQaf89$rBrFg+Brs5@An?( zQYa!l{j7Jp5~-QmOY}vR<>`HVfK_Ehp1gz9-;tWcB_|eYrdJA1-Kq2qO+nciD575` zbj=cv?1ketWUlupMaMftxP=y1DZQG2 zRSj9UgT|z)^hE(I0Cq3}#>g$3vb=-m)84nTgNX@H69I#!frIrl*~V0jVEL!X<5!M3 z7_viksQ}GO@8gF*3_tv<)0TtU?p=)~OG#y2F-Xy<`*Nig!rHr)aEhG)uF$!jopq}Y zQ3CEUpt_e(dviZq$W^-%!_&m1ww0@ZnFrWOw$%!4h7v!u%Y6;z*CRGL3XLO>3fr)SQYZZ8^H@s5U-bUnmd;?5GpGbhW+SSDIq~N@RJB%P9}@>hvP_f1FTzVlP@5dJg<1*E z>>FJnx{&Q4l7RyA+a1uBM23y>ql)u{Ah`x4sB)(?gawp5w`&ctYSVZO<(~EuMn@Tx zOT6)lE{n|*!J^uoEb!Rr(v#fj*cehn3QRU1XX}EYYS4TkymbW@827&U+en>|0%62(#JT8EHL2_+R5R+RV!G3vzBki& z?IcJn*#klr#rm;H@(46e0u$7NEIE+54Oj7C->q0%sl-FmvbSfZ?0*bNR8GHlk4S2B zQ|_LnRg@WkZYKMqs-5~M9*fU777QPeB(&rtVaOnxN1@^_Za9tV70jYh0)03YRuQx39Q+9V7|M zW7id`qv~$ky2Es6ZNs%kHOaZ?!eqZJL*;Wp+b-{a^yeSJ#OuYbpGA|?v=b@(oOBRc zKhUc-nRY!y9UI z<%V5?v)4|rGAD<=gePZ60@r>lb8iq>eaw4?WSK#aJX~>o&pfLF2x_WXdwoUt;y>oy z_x0N^NV!#eawu z7|3qfp&shp@Q$@@<5B>cCH`xYYqq13T8?BSZAX-u+~mnIWjmdi!Rv|Yys)Y9{qMr} z^P~SAYHBL0e!?>%wI#-6s51LeuaqWk6WIs(Qn6#ym0B$W%UNDlv`RYn^;GK~i!chR z9ArZtp(Z3nXwMeQSmr6N3j(Ex$*^$T8$quBF<6US)RqU@6(FJ$U!q0PnhOfjb z9WS`7#g)BtW?27p*@tj5pjj7o^9zDr*rI-RE4_4X9dQFdzb_XM)9*HH#cDY!EkS0S z(S}L3XB}ubd^oQdA-KXoKVZ;WW0XZ9*$!>na5Cy?j=-`%0{8(SBx(RJ_aOy-?99f( zGi$t+8MrJ03q#pyb($HaFVUMT51`KwcI1+~X0_YdeV0ep+qWXy-!80(n-o>Gy_%@1I>7f0`xZAg#wv>rA1oM?2>?IH;h{zjt zfbHNpAl49o*uqdYX2J_Fj|C>yNEmaC%9nGyea&JfvK`B!gXl~~`oFwb)TmT%n44I# zXN;g8REZiOuw;@A>e9TCts?PncW4C!&ze0?=E^F3;9efyegiYg&Nio7(ae{7hy35k z%~EMlPXIHBb(Ui*wQ}5PcPG)hqbCtM402(Q>qDNqr&nYQYpc!MN@LotPlVE@Aw zwWk18To(_Gu~L_ZQ&6o`;UdFFO@>T~^%kih442+|!t#2o+>+87jpcBxa?2a37aSdc zRiW7?<{#-3$U9Wwv2-ML{9@;^s)}5^fMdF$q5R^>+A&WZz=QV5<@E%zU)r=j zoQZI=#b?PtXGt+i8=9*0GY=^0`^9pdm*;dI$?h zUh+$&Jaat4vLvB@dzKKDr2|eG#v@IT5B0W43#+;b#YqO@cYprTzx8MMxBeon+q&Zh zprz~rh>T{)X*YCtwV$;E3l5g*Wo(yG&Hv<)pz&Cqdgeq$GmpMSWPj6W`|GAW84ATI z)Z3*Mr2w5U?6bhyYD&5IlD9=0Mqm|^On@9BW!hQc1UE2uP^mFUbhGN0WXIuQ#O8ah z(*r|uIWnw#Cx>1x5Sz-2{0&e^?>~`%@ew8#e|-H??!{lc{ptPZum41><^Pbs{Wb|U zeS|M0m_mi>3U9<tSM--$(7J3OPF%(QGd-fG+lM6N36p zjXnTaoI62GI5(HJTU2<&4vn&v(`nQRcvfR>lyU)1qebGbM9R&!gF>VM_6IKin|HsYtP9XbDsY?w5R7iIS-b(e z81|-l98OJbivA7|0fTJO=WPt_|L*es=dWLqJ-AIJWS!kQbj)z06oNA07~C9?JCH4} zz|>d@27lQ2jH^pdZyTWJ=yHzlAXlwDbHE(Z=dP+8rNMpZt+rdH6C>|{_c%bs9p*;^0G=%i8r znt=VR2N<0aH16u~Yh0gwmHM;bEJQo>y}Px*wKR|53;8!$dq6AX$e_Y%qz^Vrx#j8O zQ;HkKf^Eg8*%meUDC~$x;poU50k2HnKb?@TIJIk6A)Q+nyuhwzQUROQcl=oChfIHcCq=njMUPAO5d& znqhKVcSL@xGNFyO7bxAXH{=)5@l++&FH0X)tTiCAAHlFmo& zNvx2OxLNwA?U{vhJ|Ep`(|0+IyGC?AwHr;wnM5HNl^@`q+4;mIRyofRoecbI>qUC(69sTsknD(-hY5>kKz;ScV0hHr{(Y57hlEZw#@$`YS#eT%$dD=#A z5HyuHCs|fBa$n(hNRQ9LIvYCUh^9W`m5#*X?c~2Zhr#*-5+$Gv-dN>48sHl-J~w)D zR~d(!AM=LtdxupM`Z$WJLB*KmZ2$^k2Nn1gZyrD+8T{1yB#G6TI|>OGlGh*+kZmla zqJm&cF0Xd#F!vZYlQ_D>WRqfbaMIsx;E*m`mknS@P61V=dKHwLQ-^}pJ0+=MIytAZ zrcqhBPlpHf5_cUCTg0D7YBzq(5_SuyRHA(3&k{GQQH3CnMsbmzxPM04y0BImK1%xF|DA8-Ll{H;|U`WBZ zqa@S`?wu5oltVdasl=jRZm#Yk!HDgQF<8B_Znha$IeCUMl^gaXPa`LT814yIAf}14 z))wjgV^VV?R(MIADBcsrQaYKZQM7-036ecB1$-))&>&l+>_{!!mUh`y9|z2uucofs z5=CBtLb1dX6fJ|S#_&=Qy@_YMoo(40At#Xi2e_<6808&<>;h3k_5M=L21hTusGS(wYPIv907{}~qagxL zPR_t1=nS9@RfTj%u0f~Ws4b11ruZyb9!BY$Nq$F4=nvo37BUg1|4tah9UUW+=II)C zf>h}@qhLt0mIMN=K`TL!6j^;I*8psf>=HwQU(^1OIA3jfkeYv?X z=#t=W_VG|zo@};IE6%yZfi!^C5%b=!r|BHD7KnNd<}3ztE!=sgIM7T``f!+*&ff-? z@&L@4t{5ug#=h7Dy$M6_mS_}FnJhF7+mR(MA)OgNPPBtU{g`B5U*7-n?c?zFFZ$hM zUUh71p!8O(ghHPq@1k!`+=Ehu{GUuihv=f*DptHL0gqndP@LvGC~olt+(#4 zNN|@7+gmNznfb8bIo0YHJ;VLQN@~>b+R-IBsFJ66=P8=*>&-hF1OC%T;dstLk|{Kx zZx`jNU_(OMpPg$Z#@V5=tI7D)Ku|EIHOBxK7jhd@!==?>u7O&C!huJe6ZAEK zLSH{OHhB8#i}aPbF1~)2zLd39!2!K$;)jmIE5-vlY3!&ZtEeE;j6%)gd7adOoyt>l z3XXOZC9)R8OpCMf;zo~i(5VO*zrl3J9ItO-GhGl28In~T()% zk|+C00^3+AwAAh?IZp2N1UF!)-`Y0BFvA6cp+IAaN`H)Q<%fy=njEyeserP^p2Ytd z{@M_wFmd=338TMHXF|kx_x6cF_- zA`Us!Y}^kwi|?u`Ldw`kAul;2YCOO`Ytw<-K)bf9_W+}0hxku#yNdrlMyMr27)RL= zd~W5wK&HRAk|kNjzJS*5iS+RLsR8`)0-(DO%wDfSNlnlVFb5N$HLZcOPzvp7(gyhE zF49MssDs;R1UY-QD<27*EqTgIok&6GvH){IX<(He>T&%Sr!(*cHA%mCP37nNkKaCe z{VJqCE=O^b+sw4v4{rQcg*w>}#5O9k6X0N;GB8GWO&>Bm6Z_;Tj9np(3ae@&Seayio0ZU4D@%rQJ(=mq)B>%dQu5ql?#M4 zMcb{;XL{1>hJH@r!CXxup#-;qi4)w1DYz5Wh1X>CP&Tf18`i+F(FJjF1z>0Z`B>QH zpw8@;w7x5gEy+Csl{vI?nt=B&YC3It(pl|E1?op9`I(@^HToLE4m`s1fKVHi-+)wY zN2uHa)h~&THnX;g{Y1@8HAa+Bu}ONaO#~Z!N@isbYl6$Az8a4}^+S2-l5TR0XK?IE z%uPnkoSGE@^1pJgnIs-KJCbB&H0;yvvJsicQv+^%)JQ!|Ic2-CW-a73cLAYj~7EDk&L~6UgBt3T&XwtM^eUL4M%Jq73 zJ%*0%42M)g%K$2;JW2!_$q6OZjxm_Four(ePu6)5=;K>Msk|DM0rT43EE&?@{`>Fz zU*L<&`@aj8;p`P2v|enFZgYjR4N$V;aWiz_ejcW-3I%95M8Y9tj*speeunzQ6gTpO zAZaRV6i>w87E0l?VUvYb)tL!ZpaVc|k&yHdoAd;$T~S3&ubDF49Al43ovzZC4pNb` zeZ3q~HOpRFvUH8M@#OG2b-XF0N=B(E!MvlKm|Q>#PO#4!Fxsv?=9xtNBcqDo!zgdU zQRZZQ?6e9QR1TsB{_j=*QoJUk9NcTSQ~Ul&e*9Bb{SQ)E%9RiNwiH!b*=*EDiqCe> z#&u1@m@suN-sEXGn!Ju?mtUzv72K)>!m8?xWg`DM{O#ZV?SD>>Tf3f(U5oOWx~F7e zGDuKXzrL;T>}yEMQ8rH+l+a`;IgFj`v!T6WX-k5!$h!lL?KWBv!uvbndoY$Nx>1qh za!K^`sL-erHcrqADFF~}P9l@2!@bN($^hMZ+R8l}9Z~|x-F%t$vormmLU9O*a%rWk z=BbiPl3L_(yn^?(O$_hoV>0gw#|RK)kX5ddC$mj=Ws{@WkdX5;-Y3*;OYoV^wXNEC zpMW1I=re;UFcFK(L46Pi@8Dk5&fVrboH_BiBW{T0GH!P{Qscq)ZOTy!ZBq4im7vQP z_Vv=W-shELB|jb0J`{k4TyH)&COYL}nN&?cyA&_`lK8iB9Qahr&Ow7x03tJTS$42u zn9%&13C*whXO7dq39sK!nk{inKMN-W=*!+;yLWsBFA+w?={KNvh8%5IPp+<#NKIxB zmYf2Dy29?kCmUw6v7HM*vUv)cnRf+eTqkT9#mzH!k|tE$cG<7j!aANR%C?eFS34Bz zHg=nP^(G(IoG;-zL|S@kpg|jm@seES@)p=a+}6}_r1dQH=_;qM#EgGO=TS*}1k*&OuV)!M=BM;kc>87g>hFW`ksn=NhDQ=LlcYuM?(8Wcy$C86 zYs-UaTu(BkJCMzuSuGA~o)Y}!na+rtM74+dzZVn&1C`A$_nQLYi4=K)Pl7XbfLY}m zt#1yBt}s0Z!490PK#olr^}fDnqgxKt3TV;iBWq7U5sC)DfVFEVxTcv!57i&G5b$V~ zZySlA9VvEob-h1*x8qv@6?Bu~X4 zA8@D?FKho@8xNq{sFw8blU54pF{ou}nx8@fL z3i5dz*sCkc>p_)`?E;aauA~-9f=Ehr1Ov^%>cYfzkyM+Sx2a|9epyj=eyxSK?GvY` zjfDc1TK7kFe}y5c86>C)ilD?s!$8b#A{YzuoJggjf*2G+MkhVX<`x}Alz#ZbKwno( zmZ6gs+h@Z#}h^!D|YTIpS8Rt`CR~rVJ!u}_I|RZQFVj{cyjfD zvJZezej|w=PG{jL%1imAa=O&GDP0*LwYI{a|Eq&~%bF=I?5m5jPhteX>7F?uD}3Rb!E^>QF-T%3aiXbI zYJtOHx>KjD_a5C7#;>%>!owho7dl-j{YGgNc^)vp8BZM;fFbOQ5fpKHGgQz~soD$f zsx#RR$hgx02Tq1W<4FOQK}tFmV_KlB-P00+OJ^9vZ3iRYh9;^3138MlI)M^kZ((B8 z(Q~$*J*`n=S?{Pp=-i~Edv!_w&BD)8~|IhZrB^ z(Xk-D6jrImg9U=lkwEGj1TjhLL}8)PbeWxz2+nCCL9;8-(W=>YSz%&EG=gl552f~{ z6o(}^Zx*#%^Z|M`+GMtZqVS<>iG?#olOF{WoB{~9=xz{_A|X>&5q+j??V3i+tBNbi z9U7Btl=YsUFu_tCQ?(VO!35>0p*pSvLlUfh65c+$yiBe!4tjJtK+h(x@JMEc-X{Pv zYMcn;l5kk7?uO_2EifhYl~_Rq%L4gj7MTybkVajliixUk(nRCG^ph0yzGr@mF%}sN-A{Z z*Xe)5`HK{qpoH;&->xIIpnGb2LviY;8y*Z)TcMKSAY!|*AoRjd)DxiCPb%Z!4^=Qp zno*yHtNU%J@`69o8T~V)~T3>)RCLKEnp8B|-50r*A)d`#dDp z<-b9?gnBZGPC%+j+LwHES1%YK3$#QG7p>)q)~=n9Nw(7x4~$|YQ?;R(l#=yD#h?P_ zZwwqzU2K61qmiPV2b)6NG2Y49iX5dCQV*!3*|MmxL<3b()JISU(j6YH&z%}?s+Upa z33a@6rQ%f?B-des8lJnmCr*awQf7OaM?K{4*))A<;0ukzp&yc}Ll3f89oz-e7YJl* zsPYU>4J*BUu`6c1%I12ZIQsybBhC0u3XKa9L=bnjM+^}&%ef>Mv7LzlilutDQ9fS9W%;E0LRT`_qiEMh_@Z14J7 z?a#Yf-i_2b8@+-68+9i3kx8D>r;RJDxZNLca+}~edE!`v#{^B??9$tfXaOFiK0YPg zz0HS;w9je!X|GbBJ8R3;@{CR+@cvLW&yigPVf{# z*RQ1FNx829vEe#n5`!Dmb114$Oo5u9(>zp@_uYB?#{|q&%?b&ajIMC^<17sVP%upP=b$C4LGTKQF0{AD4 ztMay$U?zJ)wGc-n+`y-{QwHkDX^*P8FaN^ospF=d6Wh^fV{$&dqpwR?x6}(dlUx}q z!aBP@Tk)L5Nw3;FOHug!j{(E^@#|M90z}oPK+o?`Zl6ys0X}-t7OE9|usU`OesM(s z*gMG=@XcDeUMs+oE%BbCG^KSxo17h@yxrYr`36eLHbJyt;UJ`&;lGz&cKlo| zKoc*T4ldmW5P0V_P}!&I;Y-+J6@~#bA<6r@_~A!Ci*N_?m45$oc+#t2qmzf=EZlB7 zae*wDT?1(M@JhI`Keco^Zo8=ennZ(o_wl|`*XCmH^NH2TLvncXmgE|7^WB}1-Avj( zvCHkQxxVZa@WklwApvn#*Q%w1rxgS%C7D>lJE&XA^MQ1!?wAwSshrC71L3_A^0F&s zHzn(oiyU@>!RhD;g*-%)3zY2Vuiyh5}wcV8n zm|hKjXh%4lQj(=t4@`;)_oy-~s<(xM^izy5KO&7yY~~KIPu{S=Ky1=4)l5>IU=jg1^;W-c^ER`(_O%BxnURX0=2?Fx+e<^56NxSDG z4U3H$qVOk>7kXE zfT%^DVF~R7mP0JV1=!ba!1#ag$q+7N&F^i2}<;_q?(gdKR^e*#R6t^EbX_Q@{P5{ zfCxtvLK>8Ydd+T=YBv@iT!Dq0jfK+s3l$PH-HZv<*ohyG9(jS)>r0VyH z;H}5B$b+0Amu6qXTq4YOnrEWk2fiml~Y^I6P>cDdF4`-~Hbsj`Hf$qJQmM{R6F z>M@mw$j;^fVGBhQICld+*R?kshoYGjVqn9;h)dLFr=|eD6g8<36LK2&M^bBB@_njl z1S7Y~p!lkts);gH6-@Rr$Xqrq-OP)J`qdYG4UuvnSD?izrE{Ow(Tho>H$}p29L-8f69B$&w$N zwhS^v+niW$6L+U}`wohnC+=!z;7mez_eIUTRHTh3?Mb2o{JS{Jl^ASqI9#uCZJ_f} z*oNxWgTmw(JN3<`Y65u5=(k9~9vFxup<3xZfJa%&z4??fsZu4F6&bx`Rp_GSEWZIQ z9`x|a-u-_G|0O-3FB6ZD=ooj|HE>)SX|6M-$CkryxW;z%X6p)7Lh}AEWSw?}2iDwL zP(=p|is-oUDZqnC@`vk{jMFET43Tsd$rr}dA82!TxmawV-P!cT37D;ICTAgzcO)@m zWlz~`3A3g(i0{EWqzFx4U&?KL#_9DMoH*d94k7JHDgL+N^(S_y;hVQ^Z9n9(pyHt< z4!c%ccXIez^8ikwHLzNeIa0%@gYHW~Gu%Ghuw8JK+qWbEOIfPg0mx%ca;Inm$Y+*c z0+X24;2kg4(N=#bTy0+Uen0%D|Bw!$EW;`f`#E#3<1kZZa#dL!7z?c{`?aeShtpVC zNh8_1c4$7(8QUD}D9L5gS8g3DNoAE8@{v8XMO^(bb00CXFa|4QIsw&twFbmyPw92!7iAu6I5PSju3O7eZaq^H0rNq!9zzj__*;A-8 zAe^PzV|{VA2!;>=4$_rcQ_6j}m!ksADST06T0>JnaRq*wE}MDnVE-)Td>5p?lFH4n zHh@*w;maa&KM4Oz`rID~U_6jvQAA)FwJGXwn;pIw%!c9)_!Nu1C0>_Kd(;_7F)4EZ zOR>tHnI{svd|Wg{dGql1v}`goQ-8HPSCS_J>BA#kDmPeubcAokz%)t@ll5t!=t9!V z0#ZFI{iuywTIfo!sv()46q1z{OK4#UQ!miROXj$8s6$8D(@z5p z*f5B4bs;Hapj{lS*j0)pNFPSh0D136@CJ%%;zPm)IL^NJmykxJamxs2>TQNUq;D zz$pt5<9qU43gufB9j+zgGkx^-Ema*J+H|*$!6Q#`)=hG%%sSOhf-MQ)I%#d+IhYPx z!PROsxEf9t#!D0yZNRr3U^M8H)NrIt=zvgrLU3mL7U}Ok%H3v2*8Vx|k#?*6IACbbMn|2EbsAOFs z3tXN62I`cTfiV-7htKur;bE;T|AD(Wyvbmk;{ z4$gJUkOB!aD`MLq@pEIRYDJ&ieIojB2NGlIYb4^%ylODE!mPp|rlH&~z#O5u$BzTVycS!bk&g=}qju$?fIV3svI}9LCFO3oHnzY@%xk4Q zzrjnvQZISJ-djulRCaik=CE=AUN1UQb+Ki6@^zPVvq~ONOIKcstag+{Rqg(s*U$iG znrTzB`bKe6%zN0}GD4q2pCc^y8&jI zdM*-`-9CLtPQEURk-T3};=$d`YJe8js?p_aD1Nq~SLCvF8&q!Xf#II&vl&)9?dM`h zn_7=0I^0Rtx!oawPjse=ipzx#|KWu*M-+p$x5G7Fno#Z94{Zt-%yNtD1d0EFAn|YM z9h7WaRD&214t+!*qGeNXBms#f%Vsp02^3D6r!G6I^^jUnW=v1iH@kkfz5vBUTh1NK zoGtluhr~+p!MuAr!1Dc3CZs&^8t`%v~Co(iTs%BOWNF=+V~PfnN*`nxTH++rpw zC#VcE%Mu`Or-7}V`@}C`r9P#5=$)0qI*bYgeL05${1eGFoL>yFVujS?oT_)_?Otya zBvDUx*XY7QM(ZtBa~i-o!#_PXOH( z323dO(f~-41n^GX5olv(5RE)}S_u(`Dscll`^CWz3m}Y{7b2C`y6(f^vqA_lr%(Fv z+sEPcPnvoJbL4uyh003e0ExYmIs^4kwJSsK3i$mIJ=;@C3f{B|i106i?TPCG!H6tZ zd{x+}y+l)*iR%?*kLI0z*U|hhxw@gFu`PR^+xwMUhq1zh`%jo~e!@FF^YroB7T{*JVUX&`?Dp7xew(wm_RpTvp^kYgsYavNCzVT9FDFuC`(>R9W;YkOq9PIVS2{G&?0rwgjm!3Ml~7 zS(Gd{!3TFUpaovnv^1BBJ&Vu`hr35!$xEz@7icvSS$z*aijjIy-jMbRuX4!Osp?Mn zT=Tk;q$#A#Z+539wE@r#^}&_UkCV^VwfdhNf@!MDMbQY_Y|f} zsVxqEq?(l-eYM^#9HoN;dvK^*7+2nmC4)`rdgHKt16Ngvy%c)d`ot&8;jQv2NXa*! zn7uY$@Xz$OpS}H&;Bl#?C6~+iCOJG;$A;||9)Sd+en<2HvCzuc=CmiFe$07dZCfz`?qY zdq7d{tt8HfqA-E8_F!MU93OZm7aigutlRBFKTU0*`H9LdrgvWK!FZP~ga$?rLvFo{ zT9`SD+(?gtmqCqgy`4fBch)LGH~vpYv|N(1QikLsk~{PaQZKCisK0g@i`G&N47yR;r?s1A10J=Z zHc8$|B6kVDS4=x;rJ>d}&WkO^o4rXrAdH3Lxa! zZ@yfWr*K00{7MQr(;f@o{YLt)RHW7n@Gt?F%F}|?X$o+IZ=l_laN=|3|u1fBpIgsF^^}3t%TsiXh#N zRchEL1(*qKV=Nl$VKuOjbXcBt?Ff}6`?R8gyG?itwv4la_|s=cf!sBW5)v^cIcdwH zW)Pk)sShj50tDT(EmX|5yE*Yd3HtUsoii;UffTvZXjAnSf5rV1fpViPb$YFXseP<^y9p6#nASdNeYGh)_TX(h2%#&(*v_7J$dWg(B3|;9_6K4Fxb!{-|bQVx?g=CiGfM(77P*W%FOB8G- z2Qm#9bO2()ykhNvF6Piy>Om{QqBO9#%ZY(0Mi2qNgx55kfC^Ppf>h zElI5F4wKem;VdTxrd>d__1-u#CWHQ>dpB+%P+u`cBKc49`jvyPZHchd9VhE1Y+A2P zIR!gpEAPESdfwrklOF@%GBj)-1|C*%-xUJTXb1uv3c@oQ$7A76lJa&`ciGO5%C>^4 zi!vFN1X}gB6)$i10~(2j)`8ze z4c^!^yZH&;F!8@nAnLsUf^z|Iowa*=0?^9wdXd<)$bqm=BtLVW6|Illk!NzuLM4OF z(|FgT3@E#FZz|z*OFxlQUhveK&rb~xOD()wL2JTlud8r23-LA)GMWJheEgSOBWlSnCmWu z+<`wxv$zIF@S-OKb{ui4*LcxgZfW4yL3H#qzd2B%ll1i{=xDG32Xt=yt$S&540Nbp zVO0oZfGe~c;3+)=Ib|=Gh>m9H*|dxe>6Q!VKmN0l)k|jLqB!Oly^Z~DSYDqX`-T%^j-eu7T7h1XIUwmT*o=p zPNB)NQ*lvPu9galO8Xp5hpZ$7qa-&cfXOQGFuN(rzy*<@zGez%nl~^yQ-5~>WH3oK z3Y$>O7(__Uy;^{?VNg_RPS!#Hw4X}*aoq^GhM_MT&{kF+`LjkMDE77~swxZ}yVF<{ zD1J&d&~2qkKFX!cy?|28awxfBDt&rVCb2&nmqy~tkZ!;4Gl%-bHag6;xtW){8lt1K zoW8R;5D^&@8}1&m2W7Ybo|S(6t$AcdigGp!wMeSNcoqbeIN~6~sNVHHve2PF1)U(# z9|nfGa-)?2D!4gWp3jmy>{%vE`(n@!gLdrAxQ4GLL?tg&8?(SHq;o`9s~M5o1jy6C z9R%MpCDE!4(%?C=F|PDpT|3DIwO?V*nnmLfT4>$YZnk)Zp96Szhy*O$x^+#|aDMcA zAcZ{%UR%pXQlO>HKIO3dq!?2P!h^xcXUxqnMGd|uuL?V&L3R|R8*@o(N zn8Bnf#7Q|ZSW80QjNNwe8Ir!4y%$xA%KlR2>Y! zrp|Hzv@J{tXN(fQ_6=+*ul*%jPFZ6S?0FTA0?JWdaC-ctB6RZ4{dAzZ)mz#Q<_~`G zgYd&2`U1Ru8s1XH31OJv`4pW^Os;8<>?njrJs zE|^vQvt(B3h{&#WnOX^8Hrs9cvw<_}m)gB8cd%)?yZ5D|nr>Lj`x?r$gi$skg|Ae* z+>U+$?90J&7R{NQgH@`zLm^4I>&t1OEpH^Kaovs{3+1=sl7&W19>0RdCdAu;43k%c zzTUd!=H^}v*rx+itEtgco_c%RcASJo4S{c)8^uBIlM+`8tfmZn?Ylw2#1QMSXwWM! z0pbsaH(Bx5_EAggpqOpy>zC=Pti$&DlMg~fju7EB5t$#MUegc07m9?1y3r=lradH% zPKIlirPAtxqzuq^Qf~&L5AcDvFQV;c`9zpmkw>A>yewgSlPu1hizj*BLnSBaSez(% zEh+~nLg>liinLwFgd;)jR4&s+rl>5jb*B-2(PN4=_c`lALC&+Qtx=d7+Z8i(EFNXI ze_|2)h()VXs|x1LU7XbOP5Gs!ACL!ORi^}_^u@bfdG)qP>xq^=OX*cd$8|0!uA`;l zI^@_$Dwx&^T1Ob9*j2XZ#Ct|!)-@!wN)m0@Dg3AmFp~_-X?lR3Z$QV|CO*alKr*_3 zl z1*Bd+rfcXAVby3#rv`G~lfNOyR)vD}W#Iz|Nhd8J?D=;l=|6Y&M3>16w6H30F)cS- zp|S~^gzOB9$Mix`3u=UFS0gM%0y<=f|PzkL7m zx6j@_lGnd@`{Vnchqqsv`63j7*5c+g9ISP8 zAKZugK|TuNNh&Sf*aG8$+Eor9&si{8e*Y=-4gSDLM-h@Ox|7$U4C0Q-+`AoI21Ty- zUg=l6b8}`bO3(IHiY_fWJb6hzRq%ZAkv5{;QnQ{cA!9)w$NI?p%NywZa$C18eR?GE zY*lsox&g$zMo0HnJw-Kfl1)rTao%>J){x%vEA{o0*PnVj*NkR9diz$kO|C%Se-Yk( zqfHPZs?nfMD}`$%+w#h1U3R!PgHCW_6X>9KAg2ZUydSK1__3g@ z;GDGGj>}LrKuEHqyA-|S^`De`FgB`M-CZPff(R8S7&RGcrQdP1m4&`oqK6Q8sP!I7k&i$UpzVCm$T{2BuF}5hGNR;XrD!$nuUOpv z3T^)eA_khY0zF9LO0USDbu7Jvb+8Mn3n;kW%okGO?dyEFlD|CT-2U_>amp95Us35qAI=i?4 zs9Q<0kQ~jJw#qOZ2pAbN9k&LN+<$bP^bRV!y&>Jiuzcqvw@_EoP8Ek6vUieZg{83{ zz5N=HmzmHss3jQWC>+ownlKMiEIKp|V|Un{D7KDQN+x1Febzp6m6d)HNk&mHA1vA)Ah zSy8yr>=*S6qC-)zO)AN=Bwd%=qE;I7>d&um`1PT-W{|znGOJG}VChq;ek^CmKAe+V z%^cr<5dL?QlKA`Z_Kg&c9XMcCO|2|5Hw8OenLS~q>$w8R*ZaDuZbS#RdW(T9;gFJt zRRNmbH7|%w4Q1FSk#9g|*V`tNhwSEcJ}oLj;{#yoHp=ape)bfecG>a3o3xXgjBi|W z^(JE-{!GeeH>#pmdR>Filn#Ik%*roG&8-^#nR3hNsjx-P{z7^5hWCDo9 zKNA!#8pJ}PQ(B4jY7#S|bY2`auX%{k0_pp8L<}T>lv8f=?#OvyqG25%iFbdJtUBm5S?b4FtyDxMN) zikMLFN2m1o(5tzbQ(rkf19uf9-DYJbxn|43y`nk5ncPlRcl$(j7Dyby>f{8F>|%C3 zpMnoFwuL|_z179N3bXxs!I1WUT)au+k&XhRWgWwX?qK7v4- zf(IOpfo5`zZOj059LmHFax?bX(F3H917@a)w5`dQ4U$7wr$>3+6%1w*6oBctN>Zow z{jR{Byz|GxgDDueU0N>O8auMv!Hz=cID7oQv1Z?X_rXxBJ^8aeRHqS`kPLVLl%P>5R5AaM7xz&i29v+85UK)HH;6rYa`rjh#c0mTB(pe#)DuWZxD{B z`d~ZnMnj96dw(^UCyd%bT5rh?$K7H;MuwXdvQWDkn zOQy!fpcD}hbN5TFMg&&YAmlGKhTXxnHgN(D1Oyg83M88Voca_W?-x?jB^|{ViM+*f zIg|^Gf&4=rh|6b$4*3Uc{~!Dq*~~p;IrZ1DtzzOJE9; zX6n6a-MdXY_IC2avmu^T>|+GF!(mf zBZ}=Z>0>PE*#lXlmh2u-G~})XZDxtj7pYZUl11`NdGGmjrD3ls8Et&ZyFJ>4vTVIe zBWvR+T#IEXT!$iE64qmp=S?o%iqj*Hq%E9Yx2X4aS-cc*169Q?rp435Yob;+NK-;l zFp#~3auJy_=zvo=$EJL)WoMlz47iFC!WWQT@Gz9UL zRB$b6`*)6@Zt5|4aum9T6ABAGz{J9p1QFMg)NhRJ7_giSSS zxGkjcBUcls?>Z(bQQ_#OH0YK)i`At*jDHMFT9F4T5l&WW*`XU{;DN1`67hM-U@9bKWYO%dj?p~>9brwqUU3bVo9bbv{nujdaG0&43Js8g`9x1{*@c~|XnFIm zK~b60Q*;|Dsj?&p8X)C5JtJXLFifv+=xJ&qU7_c%imsgaT|-zygB{1>I}=ZQtGCs|2?wEzs`^A>$k7Y$u1~zZ(oM@pGk`I&HJCq zUw@tC6TS)mN&kZbpBid)>HQrY=NXSWlxer3Vt`XKaeJF~s8U}j}#d2u@=Zcx*B>O#~J)j7-Zc>1P zWw}$zC7d|K1ldAI8WsRlP2P~qooK_wI5?|Bsu3s*$(^%i;t&Y# zR6(3TTao$@|AK>;!C0kz#1GzRbyiN6-nVYP)`DaFVxPP=t);{x)u{o}QRiY*kI)0+ zx11OiW!IqmaE;Y$LZJQ38mHcPSw*?x*04n~;V8Dh<&aG-96!Y1s;HG@I~*iFBnQ1^ z>i&}s_#42NR9bc{UbM}}UI;WT;K|!EvZ*6HKO=HC7hsVv++CERCcoJgvq^;jkj)ny zb&WU8OH{he-ZhSM3UkYkUrw|VQ0$jI>;pO#FvNsov{g0kGYj1eg9^?E)WMh|gZLad zi0ycU=R%WBZ`CE!7VBKx4m9D=P;Uw<@OJ}>32ar{?hrG{C{NY>&>1~5@P(S&3jbhE z2;xe52Pz;sCtr-mDU(f0C~sdDS(1MR#g&FRufkx9rNjA-%!l`1z5VI!pI$!?=|yVY z{}vs#-@cjm9kp||dmh&!?UT0#e?a(F?F)1j&NK@#M)OTH3jDnWBTU$rJGMNp*7?j@7qM^m-gW9!JCcp4t3=&QaTW)ZHI7*uV zo#Yps%|EP6Ry0>B8`icL=r`#JI!>qB@2WLxbq(X5nIyVhcOVM>#42NH$!3~Vps3LO& zUTFtp^& zv-PM$de_jGAYMQVrD~Ze!#^w;2&A1G2-Z0Un1`Z*R(#VEue$|LDE;DzOG*wH0ih=A zQA=751Jc_85v=sh2T*cPWGp@Cmo|dlKpEaqX?~nrspE}8s%@k+DU{B~DRt{VP#*c> z!y>7kxBPCPz)es=v6NC-0Q3~mT-EWff%4Gzsih2|&F7}wCIdNkD1Fgd_Eo9kS=#@7LY){eR4+2aJ1tO$s-fFhT;)y1%MZg}|CL>n zrrG|3{N+EseZ)TlUs%vni_x^M=y1A%-ow)^B-@&yFhSj1CviP0l{Y4wWrd`G&k1Mn zm$LuO+_{pY0);$;A}QgWH_6_=x)pHrLR?{!Ht~r#&`8qFGVV!M>DksA&9`fYg~x2z zS8l|m=*T8d834HL2s<9T!TEOZTbeC6%gft@Zb$_7I?poH;K+ahMYg@)=PZMVsjU=f zW^J|TJeo{TLnT8TjM9LEI$l=XBtwO0Mk)!cRoSTNBk-U7<|c zX3It8`vB5`m~AYlgYzrcVR%!u=*#Ta_Py{Q7>xhumWw}LrQBzPXO0 zJe8(J(H)hzV`HwuhJQvO8LKG(B$6*0#b>(3ZpQ!Sw_yz2B0QB#K3=73Y2m zelQP-&omTUQ6p^d;Ai(JW-| zyVVXF>+l@q?v7+f)HwuHJ9xC7PN1J{pP*`ckntohcu{QtkY&d00}$C)sylSh5a9uM ztt2dwJ!E;u53Asy7PavAsD)u#K%uj!e7?|UCI=Z`(B&32o*Xh1?m zO8s>;%*MXDa<6O~VhS(;HE3Cs9JlmQqPD;a6*pNTIk0I7FoU)8x2T(>{gY8meJ~?B zPFfvOsjlwxGASh1f^?zNKu~w3UYeK@p$NZ9CY6^?&H-t5c=Uvyp%y74Ycy2^l(Sz@ zI8`MsF7N+ac>5eWwYAe@y6uG%gnNh1X?DlB!-85;Df@kD!lQj0KV&EqS8u#@p@D6e zbzX`Aofj&`;ch0?M6T@gBi_jtFtFHo4_0l#jAT<_1+O?{q9d`|TW)fAUsK04fQonNpgVkonE%r-P^Cnjl zz(^Nr3`!EXWf(N=ejXMkB*q)*Dk_f#v&k#ey|RpPRXnoe1O$2Ws(ovr_**i|zJ2qd z>$k6pMEv&k=eB|v;-{AwZLgYH=**ecP6S{pL9(UV$1FKfJ3%#yW)d@q>LKoAC_YsC z(?{;R^(vFaCRj-G=Eno0wiRtSxd#%zfCBXmgiMTchcgAgG>pU+rzi5SF(nIUO(*CO zZf@;a?C6sBNywT>UNO)8;Z~T1bEAHM>yJL;_pUx9RzDTPz!rtPgI+>O*6x6<;aC&+ zqPX@c)AsiU&VGQdOx5N>%9V9RWlO#=1A9l@-W)+sgpUtMDrBkY^DHHm|n?Mgn- zeVqU!P2zu!o>%33$1ZG1rYC)I4K;D3*htWvLVO=c&$@=PG$`qEA{)UMIwz;_Ov((Q znThJCIu|^+6SS07%~5VgrW3~J*4N6sbe)9{R;*PMXd;PrP<%;m1lMyYj!5)y720J= z(yF8*DEAE=U|X=4Gq1whc4-Y%ikKe7_-AI2C@V&mhzpzvLEA;m7;4xhdPNwCnJ@#V&Duq|M%=g>wYTCd`*PwqnNFwPH z%cYrqXrnTas|V>q=1{@Ik> zpzD$7F1Y%B8D2j|(o{hDcex;ZBs{Oxvf59(P83%C&;dg6%JRD@^1s7#0XiBK7{g?J z$srFaths85YUn^6zr8GzTaYEC2uj;ILxsfq@__^RtRBB^&4xM(V(`2G)IOOa4iF!e z%29Ug&2Sv5!GL;Sr&_EM@M+T{z}+(0EgJ52HSXHdkc+A2nUMdiC&r?QNgz>g${+k7 zjX3`@{Lr?ovCE(YYB;++lx$1h!0FRuXyVrB6Zu6u`=t~Rx3(z*V9&Flx>fS@aU5U@ISr)I;5E$d5d#Tz1E1ADC-V2^yn1ACaJ_ zvK}^wZWpW!4l>4f&IwReciZL@`bP%IE-Q%q_L4vJ@+VWv#Szwn3eDbjRoJog=*aUgrT#(Cg?wwg9vgiYaM3lMR!Tv6(9w81kfe+FCupOYYhHqhi{Veg}l zow>_yop1cUvWax7%`ctdTA-K3WH+eklJYZ-UD`sx;cI8u?r=%D9}p^uOPAV3b`XH| zrIBsVI8&3?h)JHd_o_n;f)+x*bQ{sr34N^%XmoZ2|2OsBe*GxP=bEtOvpfn6Dpyvx zF}iRx2HU3cY|#bh;?}v+mi!%1Ah&J<&M$pa64aEVPqM2}wUibrYz#g@&={Pmo>Xl4 zZ*6GN%eU7XQRHYwxRRd)wPkU^V6<9#kj+VQE(`Zr!G7AbA>8EVuVjgPc(RmY{*YiH z*-HD6^Pu^ReiO1*bL=i^2=!#NH zPfgK?x0jNM%n|%BM|y+#ToJ@kJefYiV+vH+2XnoL3&7S|6F{;GB8d;(FxzAco!Eu+ z&Yo3AHoa^MmxaM+H!Y-nT|p5bW2*?}6oW1dH4NtYKx;L^76IcnHuM@f+B>O%z(!9J z8)kNz8y~dFv%l~xt*?4UTs!#vs7-BnV0x4V0Ep-g*Y zLk)JjsC+coj|4C3imorR{o0-UyNuYbk_Voh9hm<>`6BbdfzW9d*W+gyY ziVf>Zig3Axh6;@!b1n3CeG*QKk1GfJE!18$A=0w4ykNX{+GQ^G%_3{=CC^9&0RI)ET!U5>m! z)Ah;`_|=KOe-nQ2{ruFwefyf4QQ^Da`0m%~UqRFL%Pcen3lms2oe+7jrH`keFl1CD zbRrUkEq&RgK#m*MoNwfkg?*DkGKyZd`$ii=g^s-22^>Pbw=Jy5C1oq+Okt)-`$-Lc z?y)gJc~+@sT{gg|AvI({^aqlWkSyMoRO)cxwzlp&De1E0-M#jS?;I$phfe4crxyuV195n%b>EkhnJejk&FK0LiQPLQw_BCAa;ZwF zg{MO#>vb!%R&3%p?du$;IXS3XTTxPP3w$8f518PKBHky(>AC7aCPdTQ~x9aIiOzX&}#D~dV^Q2Q376tImA+dJOl?1Z&G z$5i>aO-i9=?`Rdjub_nzWB|C1a>@&buQy?YC>(|g<{$&h4Z4MR%}&W|nN>Ix zPUtJ6$QBbH-)>RK2ro~Q`qkTAx-2J2@)m+hmqs$ri;C`F6eXlMYKB$<&OV9U2oPbNphWu zz2~oRP%_EL(LnDolc@h8X=Jf@Mnq<89ZTko`yk^Gng`j8WWzU(^g^OHERBuWx|;xL zcI)DQ>3qk}cRUIdVTP`}x2kSsdbl4y%eNeJoe?w1=E4myAkb6own-#*_noR{r7vOB zbHTq<*~8}wr=IhG-T~yvbR-H*E zXQLKJCasIMN*xD{27%;@7$U~wvL-S3!ljU->zc@!wo&#Cw#j!}*YU*S!dq-85a^ky zN^M%V=LQTCcZg&kYdq8MAjveh9$NtjF?1fL{*&CP{p4TP7RRNCh`tA_-tFD1LPeK| zbE%5tdWT)}j3fCiA{yQmh< zA9HiL(Plq%tJ^N%yc|U2)D7UjF1oI zED!E{bepN=j;B-z2A?*mk1ctbHMEG)5Vlp5V-c4}fnyOKCXnA!fk4V{y?^57OheEg z(YBoamb&?>7VW$cPY6Z)g5uSv7SNyIq-%^&|Kc;(YpB*N(Z z=vCH!0nCDU5tWEODvYTn27L5VZAd%s;|ti+a(>5Y7>#;{=^SndHS9@&qf_(B`!h5~ z#cAEEP_LIt8Mv#;QCS|OZr*aEqqkO}D>1>`sktPR@(EyT6!##hEjS3Ud(ReKkaAFI z%ZnTueONulu&b$>DPVfW)D5_W#^=+^+1YCe?c=gePyOfg;c}!CjGYGKcJOodS9#Qu zJ)tv}o^}gNmK+#4Hof)a?@AgP`M5ELY}H#}uN+fVOU(!2LJJyD$-~DtXW5E}tvrd- z6mq|&Fr~_V*WQuG>oLfVbFB?I^oGw_ryirxVx*J|glG1M?OL*QgJ&2GrxtnM;YB&C zay49#QI2)*!wcZg2<(*H)xEu&5%GkIB|z0%GONNqHVzzA6jv4!JWfg*0sg(P8|P!` z7D%d@QgjW9YHPo4VYE)D@@ahg;~i5KS#9EU5JeY8iKkBB9wCG2nlEaoLvY!@mH!3& zN53-jfN$tJ`OTmHdiqmu28a9=F*pg=^c&)uzPWt(yYTky<-^}d(guCo$$&qI? zfIUO7%{5!0lukIz>gvm+644`|gV*b2RFx0yO3Ef_;iIOih9hgkgzlN0AD}j0vA63o zx@jFgMjy3oSf`5Z^155){hi$0kbouQ(-r%thQDc#^dFZOuM+6>hV1U)SoHO&yd-OG zgUo3CEtrbu!5DNA=*+dMAU{MZNnOsPfw}057$($NQVl=TUjQy8)YJ(|#?L_Zca&bP zFpj9X>(U05OB9CyCSnV00(KFfjSsu}6B zzwT^PBFHw?CIoCaXJS z0*jbQ%O(6|efW>oIHUsyBi)Agug?lIDQ|_55}SswFKg9A@0Omc3Mi~yMq^1$8C=?X zQGVNwiDcGw9+jYB*Vd5*Qtz_KYc6p^uKu-yS;l}~yFF7tPNlNNcAXU|&JT+EobuP% z0T_NPhlPtj{`Ox|9(z5^@ntGOUq~;_}!>)$X?rUP7)#DYna~iiv8X>u^e3BS4Peksh zeUK;hlKT(Sk_91D-pLBQK2EaG_31{sBW?54L5i1sA+`sqkbD`JeBU*y5Kd6~i}~xi zCwuK)W_KHu|3&!T<-^}&K@K?;cgZpj!b1=DZ(RX@>;^~CS%RbO-}H?N6L9;B)2yN} zbTt^Ll7vpGpC#xg6DKr|61ux;ts`|iC7+qII{Fn!YvY}{J!l>%MZC6twTK=8-0>Fr zoN?OM?9j=8J1(Z+`ImC z#?U4J)Bz<(Bz6muS{^8-Q!5}!Ovx=X1rd^+RBT&#WJTZiZ>cBaz2THs{EB(SFQt-u zk&9)c09V4SF6XgdwZL~<{^NI;W&<5vH2^o;Xn_LVyz2ziMlv@xJ}lZdMVCZqz4s+S z!Rv>cGwO%jTDcaWL`(3tbvPue>`Awb{RFQ{ayV-hH>5ZjE~Ar59;685vW;5AsY|;y zJ~K7FRqm-R9V&uhV_UY*hA#Vbwb|7MSdnA~EBcD~+r-Ih#XC9NphdpZJIRNGYdK-i z1IutOcxl0o#Bn~!AhcpjQf`Wo*cXS{K{?%BLE$#yPkG zlS*=N_)#gaj#^w*8wVE|t96LBv1qSutR5v>U6{ueI`1M$SKi!iID1<=WoH_;O|?5? zcu^f6i?w%*nRUQn@Q-CL(SquW&R{;lKEp6^g@%Ht{bVD42l^SMqkZyW2Eg1wJYDbn zmPR(I@vxh?;crct_cSMyELcqE@+(;Ci{oZ6pm99wnW^RXMGdF@mTokQpRB{6gZ@Of z!&+x`lxMg@LIlk-hbPPu&gQh)_(VOIL(MsGj@+x=M0yEIy4A(zzM=)^0V;-;M}Xl#ZA|nOxYUD*nkHjfsK^kNpcP;fT0b5e8C+yIm!a52)n9 zSQJ!bJ|ldo$_E=rY?6P_#jxn8C2Ga~=O*?;lHS*8wO|2l+>n{!s%7_{eiFi3rDtM`&5kKuM*$w4fRlZKcsS-7zHIz-c^0jFboif z0;({2_EKS56<-yy;l|7fh?73S!*T^ln-56J+0sd#3*V$+uiVq#j;SirsMseZYGkv! zbRM$GDnBS~eVIHKn!Z;hG0?kBg=y&5CIx{+U%k>7CRPZ27ZA7!Uj>afy#Gi^@Ksk( zl3+^g9>Zj&TwnsMF_3dMRH^n9U1msYI_SW-FQ_{ zpdFzr$ayUHaGvgj0VOWl3qOLF!&N9x8in6NS@dj%=(Z(rsHKbOss>wNOmzgN&sirO zs)H<;M)#v1ioPp%#15vxY8-rv9D7$z_qgjgO@ZI{LOXp(T8fI{QAPK(d6hmh5X8JS zR9P{-#t_2hec%A55BayyI{Gi~KSbqS6x2?KEH`B3+1xy|_ml25)jM#nw&=+%X*$_CYE-o~ z>s(^!N)uSPd~J*5;B7VlmiV=p3Zg)L%>f$Mt2EbcBIw;nY zdE6pP^^sa!Q7Srw8bWHk2VEI^!C%wwe)|3;RA}^<^qs$<6+Conpp&Um+{*JSdX@J> z$!-87ltayQr%)?&a?;a~<(ZV1#|gvWRtCW58bkD?v2~L@c#jAlYiF`cjoOe~e*?^q zVy}scfF+`Y3;@Jd6p0>hYoInq+9=fki*n7O9&1^-{3$x|VcSaDz~P7-b9pwZWgx-y zBV^rkV*>G%f-;@v2VfOTtR)hoo9}c-P(pgj@2?QV7>JO7I!6tSDs?Glo;9oHc-33^ zHpvq=Wi?ur%4NFLOo`2xF})78DYgLe4)LaDz%@$kVkG#3REKh|eb$UWmajql9W9b; zSF^h+WUhs_dRnPh_-U5U=sm300>|wM=>mBQSHt;$65A_L+s7Bm%u6p(8srE(J9b*O zfrQ^u?lK1Vb!4Bq3=Djm?5VjAgnJ?m4Z5Ak6zcbvT@GMHLeX7PFUnTmh_3-vF~@y4 ztAI{8x$Q{}Vpe&`-sz{fx~-uijcJllL;I4NPV_=4@Rs;I!PJd9hI{mdDVuu_L5+jJ zxR)!gX90!g89b6Cc%jzUKDo6Hp_#@Z@c>0oA9BFm#{!HL)8R#e_Je?3vc9nMC4``i zb5+p9__VWxF}op+tKE|cMH;{VL*R>aCVmjoFG=$~T893VyW4REik4Xj=amb|KK3Nn zUH58FH+DBqv(|yJPVLZuz&I&Q_mQdhy~V-36?~o~FH4QSO_^yM2Q9PHheNT!IFAI7 zmQN7O0tZSF%u=|_c=VuNI zWwQ!)sPHogSMQZ9q-DRF$}6ljtU(`p92L7Av3%w5V>cvv|(sL&V+2R zow1>Fc3F3gs>%!VE|N3Q+>ns1wtVn2CY*rc$&l=J0frJv&Q=CKr{27y)7PUq!m!y@ z^zz1gMQl)?fs^B;77svPsp7n3g~RNb5o0KWsyX^}GC^_9a@|+DEp3|;qZ#Rj$vXu) z)YE4P(P3_aChHijtxQnJ$E^1bu^yaUS9rJ)VM5x~)xs9*}aA=-+!*K}^hpjSE4Y*t@ zukIxR23;-pYboEmTlRRY-UNFdWM4n!VZH|HZajdla2KqHszP$2wU5^>ISU1nWb95o z->4ubp-4kC-gZ1Kq9MRL3VP?-BR~mwf;ErGwh&;fBXum)pC8m0_M*v{F$$rCZ5rKx zYtsz7bG>&ticetT*eJM4=fg~3ZXzXWCXOE^ z@5GId2A|7d_b{tE*Eoh!f(THj1k z5#ou_PAcxX1k~OS1wo=~GbgHDC!YiEE4+w$nWGQ&~;xebH*g5J09% z_*)yABp`z%PM^Ph8j@Mvnk84)q;Jhn0u+PcfFyS*fum#}V3v3*r3S!EFh!L>mA*YG zf{Fs!2t{%sfQ)3Rp^8XbVtRwgmc5)@l=~)s{2)ZnVja}=)w_d45P8IxMAWwGDjD@T zyu}VtSypJ{OhNtI?IcN6r^4(U1>g?!<7%t+b4odcKmA6Ek7^K2WHWsJ+Gx^BsJ$ea zQ)HCn2qmFjt2*zx6BBw7HdvFItTJKaWe*e$mmKnnkwOR6$MoBy#r1{w=dqGa|FoCE zwKB`QwYEA~fV<=?NDqXxNdT5xhLdoeHpI&n@{^e^R7DIZ`_#^jH14TdxPD7Pysi$z zP-*rs%`Ng391#1=7*lPCd9aM6Y`5IHXS+>uBz+Rrng&MVamstLX)bRH|R%?7-MaOK-f<}d%{sQc~9_kRp0 zE8CA`3cvc}UjfPSl#7rWO)9Y=(FN711!&n1km|Lh>X3A52da}1H_WlNCp4iFJl!}@ z`T&+f;vnTK(LwJ!wJ+3G+el>1OVs?0MGL?l%()~{cyjI+VQRW|>L~5w!yN&J{Et|> zJe5`~3`ixCBdbRNst=>h=d|zp_61-6x(wq3|>~Ne3NAi)g)D5^x?ktB@6U~pz_x6n}O=2n#reE=v94o!AzdG zJ9)8GS`!uuVOtqJvqze3&R=nt{>lyvt4$~qJlL7r6of>+l3s=U3Lva2EDjv{u(Wh! zTpS4qqccl_wVp{Hs)6$Hu#PfW6$sEQfbKC@k0S)C2*s>{6sio+UF+Mj!v}tzL32~U za10V`*1x?x_#ii@sBhrJ-4z;yE*u#YFs*i@(-{$@AuY5Z@l>vx(UKS05vX45>~ty% zZ&zsFmD|Zj8|rIns7MvZA+xo1WcXxcoF-mLpGdA4*Q=EDb04>8!9cLAD*Gu=yFUQ^F*-3 zdaapS?#=cfwbhQSR7r~GXN|bX@)bFo27%Mp9RTzid?jd6VR~k7A8W3k&py~<9XM04 zbR7Q!$P?RekbRj5NdqFOxTrzIq2#}wi;7Xr22P0*`q$Mn-no-_<)TVefrXgN8cv6& zEq&L(t(f@N5M6dTn=ngUlXH+u@b=fL-%DkrI?Wb(fPv_?dVyj>@7(2r)Rc&iERo>^ z+*L?cHq`^L*3wEqVKRRMJak({%@f&K_>6S$&lu&`Opbk(zh>jVrPzn!L{eR!(2_|T zEqw!Jx!v;+K**9VaO?pyoYXVa`%h|H6~QGRRZJFL%5Fs`r&5$6)xzaoYh%F(+s2BNAEVnaq#u6HisO z&u0Ed#jrTHFffr?k|e)r@=_LcG28u;YczY&#E+fjN1(}k3fz_rB(gaw#7UA$6@YEx8nMAHb9<~P5hU}I=+wD!z;pEaV3aDy zUdcJPod~=o-5fC_>i{%4fY0Y7tb3J3hR7hX?Jxy7s)5lAz@<*y3rsSxPXuS zW9pp;Whgnmhnx`lh^wz1l@R2ZFXW#Tbpou|W-4?LGqMu~5vYhrJ2jd*Odc+edBV&aQDmzx8vASV=Lh%DTgKta_Ii z+{0AjBcz7?d`Un+-$pZ4V9(9zJ=H!?(f@<=?d^NmbG`lR?!b?F1iL` zYrFt8?kTt2c^E}r?vn%mZWz#6@2IF`Wi{19&CHZa;#ZloJeWzlyLC(Xt*c%JcHYs~ zByp^o#v4*1OM;M~^+vS*E~hJYDkskhLwpYT+W zl#zcV4|T%6Q9%+oFiK@uneqcJ_;1s9)i>i;=g|56KYpKu36el_e~Lr^U=Tjd$)$O^ zOmo)Zh0_K-gdyw)WS<>doM3IzHsHZHtz=QV9`i$0$9QZas6qCUp~?MFhx%}It7;@T zSh&(;(}^uA%r=}p>HE*apYgWql?S5sejT5$<5mWGd-W5XDhdLOnmj+eOT-y~Fi1ya zXGpv8eg)GqxcyRdIi$2PN`_R-~^ zx@-U~J44P1U$G25u|tZzND=rDUlJKcDscle4^dQc(Rkz0o{?%b5$zI|)AdiunZ zw>)qhEIo#ERA3D#r4C23U_VN-Q{Ar<^Q>6~ZWIyZnZ0S$A1#Hyr&3uM zIcXTChmmETEc=E+K6Bd<6#)7R%4^y~xqmipB{jb_8MR3zR~vs4X#FiEn|_1^N5Oc)^i_ zG;fq20)OcU2?}D=y9M@~2*DKBth?o7whVyC3+I1jMm7MwAW4Z~*~;krfdVAT`XbRl z4hU-OQMIzIg(b;%a*$3N{t;4dCtF`wl8wB@^XN4dqg$6dO^vJ1VBVZw%B!?EmhW2u zntDoh^Idy*XkRx~i)?Bo&G_)Lt4@|Z_ij~Y2Q!9s8b-)cWfU7G_hv5lqT@O~Z0s&( z2hfX|*z^QEY@VER2N6;iAV;lPG$R!{Fd*=D#G(ngicvPKvWqsU(#e6A#K^Ltq@VnA z2`b$XGU-^G7>j~-`$Npd++n zY=$o3#9Xp{L2muABD2zTdah-?t5tl4I&`i;(?GwQk`=(O;!v$N*kk%N-7{BlLH?!q z7z^4H#<-;5X(5;yd2(hU%w5>s^l!rdns3EX09I1Fq%!IM(7s|POU z3=y;T(e1?tXvMlrXD4665Q&_{SGEMS5-L{cH_1KJxgauH#m?}W`u_BO0g?6&&4>Rp zykXGP1H}$D0mx;h+<-Ve$u7q|BP&Go4hn}SN@pkt(nbQ5VBnCAGK;#Ij}~Ip<>L0R zw_RI1kUSj7k3nNxhwe5fL3M4}R-?k>=(nlQFC-RHtEMTunVS$Rs<#ELT~kCOC=9JylO|AlFtp_lw7>O3va(bw>CBOw<5gSr_@wB=3-@9 z*~E4-9%ctd|C1y)rmZVQ2t=Hv_H7|IA^EXM%krLuzi|V&HKBrGvtrlTa*e9mn>wtj zGNk|pZLsX$C5g1G7QcWp5l3`#0bN-DS9%LJ`~sp%+RlQ9bXtzhrG|=|q=H1%R)zEJ z^%(pnynmY(2{q-Wo$i6fuYB@6$yQI_JRJagVtOha93}#*c4$~sNld;XePT?SVU@}b z|M&`8##U!K4a3H;_kgWRP~4fF^jYo&4|s!Sm6fRK#bOyAt`NVu)vq_K7icLzEE%mT zWT0r_&|=*kpWeRC%kk~oXZ)3u5rd`w$MF7p7=z}1;ej9pOIyZ_PvkOF3*D`iXzHXg zS*auNE_)zfv}ZI={Sm6exdvkkDuUEgBv=8+&#t^GLtEaCX3DC8wGSkJw3GG%FV`^G z=2;{gyPE9Z<1CTjXG$$gk6~sR{dqDn(YQ#TskU<>?x0nKPin8hzNX@+yd6xwR zt;wcsN}jTpS|C{9gDF|X4n0-zK#^S6ovEIxSu@(P-9JND@gmQwbpRe*!*F=2dA{d=Qj)~4bf*rZ3?*m6r zYB>TiWe7haZ+*gs2-@xdvs#Ht{^6?BpsYvYvTkdvlky{!;@K{r;|50n%ci2M z2fC=pEDi}UDXiV83=->&YY->Zca1WrDw*heKPDu)Xub43?$*#Cvrk6u1HmcJ~Cf65FTs;<) zP9!*~72JJzOep7TvREQ2+r(dQXb(k31XY9aGjfB3jJ*N`6vl#!)SVc_(}o*vu=a1Z z;Z9E`#XDFLf0ffh>oPTrSSXWUBayR*g}zzS<~a-CXOb+}s9c`~TWKvcD=PMI78O;X zZBM9^us_De4&YR)?zPSH5Xr9){$;z>I{uL2k5|AN(d_YHsorRFBu@a$1=mDUpEuxq zNP)nG)$eL|j*&-~y#elpg6)dCggm_saHN1HnfCJ>jeltj7d7WOr)} z>zt(8Bvd}T)NqS0F$t}At~R9ebGEav8D;feSOZEaDj!t!y>1gu`>2;i)3IE}wM#(P z`Yap)zCME80jjM9;D`D^cixLoV7uMM%K!@)lkyxQl4CfZ6ZZnayj`wQH%UW3k7l1m zw?Uy&Q6XdwVx@~KWa(o|tjQfTaXX8Fx?-wH(N$1(UPwj-o==MDOX6#%6QNTBcQTZO zA)@_hVklAsr|%y`9LWiVZ|xSdu5SWnJ~byPb3{u%H$xn98%f7H)6+1Gl5Y`Nb&V&) zUjLDe%{^2!dH~*yS?#l);LkI6FKj44MmcM-DigDjqBrI%ad7maT3rnp1PbG6LhqqI ze5!Gx`SbxR4I zUu{J@@yklS^2<)O10+Is?!_Q6cbBa9mhZ=MB2fw4nSOdQ|Hlvl1^|<`%aj;h7A5Cd zFLKZ(?*#6lazE%vD{OTYbCy7fvCPKJfrxMPi|>$=_G8--1t6y+niZSu8M$NDF-G^Y zz>OziZ^^_>2^g~9F*V&L9R6~GuX{hhk!)gjxalk2goxIf-ehkHGJ0@em zsep)vBqQFgt(J-NiapqrzVDDBZ`w8XqtIj=NFTPr9)E2C9_{rkT`?qkhUm$s{{sas@wda;^xF)`)`$+JU>o@H95I zlzaj4#Suf3(6Ix&anwd@|9t>8qKO~il`;I)smz-Aj2pPThz1bQ+a!&B0p1ia_41;_DpPN zmNi|tK7955ZFu`3IuXBv3LQ40+%B{2#i<9l8R=>_t{alT>510rN5GyH(KKlL>Y;-) zm1Qq_%lT*P8Kp0#Wv!AJ1+TgATqMB1qTIDpTC?y*maA@1)q;@6!m>{|<_l!eg;M><| zhl#iA0=)HzBp%LN?s=^@y;pFc5fK*v(t~Wu3^43tZl~RMOer~vKA_3d9?R6#>;zEX zi^B^wYE@USa{#xr4ihG#ojNsJxm1t9@w;*^QCPy8FMSV^;I>767~Xz_5ZtjhzYb{H zNFKHAmD&^c z&eL0Ayker0+PuR_c1c_%lomDeZC-`YJgpUg4dOb*+Jc+4UMtDc;)~q>9Rp{iDzQYT zhkUIgOr{$>#Q#t%Q1z}oKqhvW9aLICd z?R<`qfmeNn2w<=aj|@}30u{c&OdU59?$^6SXO4p!@8nCuQsKPV7#U0fS2=bW?MiJt zMn|%^X@%x8uKg(CH(e7_uG!uH+&BLz&xkRWTv<}Rp$cfNpC*4rYLTaGqB3FvVUHNn z-|}zml)3>ob`IpJ z95ikO^VI#-nk4r|2xcYOkQ_8;CqgYwwS!ddC~Ul56hcY1wd)rb+7>efv)^5eEdaX> zd!vtT*&qvvYY5$<%~r(QAduOplSmOos{y06A>WeJ<0S*I%%X#|wcY=7P1*axRY<4R zOZTZY@S1F;je%>z)9MJUHP6b}&?T6;NKWi{=%b$E}6@n654P6%*TUcLgA&m(g+P zH#s0Dq3@eSi)_qhNqj*CNGSqi2N`ybd%#=+^kTs2;Cqu@$9dS4V2YIbsNmV?P@l3x z*Wa0FFG$R|V+wX+3i-!dQ)~O`kADq8y06~-Law3U39 z_@udukl|2(Y+9jh&3TF3aeVVq{905)CJs@OjuO+|6}^>tU+SH0o2MSbtU_&>`W;Ha zY0Y{2Djv-(i;;bfQbcyFG!xP#LhWfIqJ1cp*-vG9;1bDW+f>neQ#Q&bA?{LyGM>g{ zUx)XvI3fGW=mUTJzET8;>js-~Q^EutzEWTBP976NKggp+0oWAZFOdG+QASMY+1BoQ#l~&j=Q!Mj-RUUE0R(MLh zvw+01mFc$hL}W%pI8wVldqXsubIzd-!t zhTT*Z0KRi)&(O8BAq3{k6Evv;1V-!$j}<#7cf}W4{(Vq*fzM-7C=D74ynIQ#t9UaD|>z7OR3Rm@Xzcz#0_*I6~+kNm`Gj z`J%d3yfJCUrFt|r?(tb|I;)wfqOLS2rBTS4Di{z^;qa~6aIg(zJbGDr^;6w4xW_K< z5@fgO)p+1uUFp4qa-XQ)-en}4ZVE1@xKm;(DlVsTwX`v3xaM9+z&uC`j(P{tS7D4X z>-?3fbVL>X;`Jlq;fCorNj#p7YFUbLRy(1s3+2VgdMhGnYU5z-I^=f8jP%Bo>FGEMS$1KE{mN4 z{uEtVPRa|2$>HKazij(RFyPaFg=6*$8a2xcP<&?DWy*YH`IAQ1D!S=LN~_$3*6|;v zd(1oo_1qZ(k~Yb!Q}&zS&$(pmeWd9AO)ZeK3jy`rc{ZAzdu|VvYn@T zr>hd?xLvBqDsSoxys?wvz^m=vRrbn;7WwR$p-!8l<0WhHDlJD-F5;+sj9U%9Mf{?YGd&OIBOJ5E6X8hE#X5@Rb~@1dtJfb`Plp%LA~F zs;S5n8jSNcfxQFghMd)3ZR4wGbuBu|46)Q*4)3=b#z!5 zlS4@rOEq_wPpCum0geW|)Y>BHJWF+E7m7OPl4}d?9io0v`;BBtje$BVja)c2Aos0` z>RbF%0Ykey(CgrV{qTQ;_g{fyA6{QsMlFyyw!2{ttx+9eZ+3xm?n?FChGYIE?DCmA zKyV=u&{O6KuCoINb#nD~X9JP}>0NPUS4~?Lrr8iNTmlvy9nVC6Cef~2z*@?NEGtwR z8RVk#D=Xkdf_r)`Y78Ui5xVY6LV>Sc;}n9jQ?qfWyh={!uJ>miHyoU#;5M^>VyM)4 z)LR8A|MS_~7nI@s!@nj2^h2<8e|$LrZCEL20?>Va?oXAi(U&{4pS(A>?vje09K!~5 z;g-1jB_UZ;jS~^IgT1N69$<{n)3Yrr5t2JYau5}xAO{99)lw3D8DFy3UPIE1JWFV* zv9B|0ow1#mRcdaH9yG`NSu91KU-TO>U5L0xJH}p^#Wj+buenpMIQJ*I$D3D?y9XxV zTo)3O(28@+aTyQUjhv;c%Dto)?(Qaeahq7Ie14z4e;MBY3EUeP5nhfMU%3$;kMJ-P zdo>ilM`iz>rXO;LNs!>4Lo!)iCN)X7Jq~DEbp1<6I!U@=qyR}jYCz=y=xF<_5Om!) z6^%)%GU;2Pw(Lg@oEHQ}31u$&gYMoMDeqE3$M^D=;m`gp@0zb+{OEYnuiyRw{|)b- z;urbo3YT!)$9_j8V$XTQy5PTF5U;q5Y1p{NIJ-aI3QBXl06B+dts#~rKT}_gB_{88 z`R@>3%vZAuF>R6?V!>=7Pltas{tKEdX>_teE&MsUB?G-sFxm0(ZU zYN+d)N<8t+WO!{yu#E{*&&`x(R6t!q>{8GR>9M*pdf1tZ;+K6%L^Njjk^Jr zy{%&>pLQm`5&od$ITE~yn$@ty$Vt_gL&XjW3tqgZTtm*WT8gXox-oRM`QV2y-~S1I zkg^TlK1EFV?fVbXf5Z8U%LA--Sb40c+C#~i5I)$vzoIf2CE7!q&YppbDewlGO=p@1ZNJ4xsiKUIKk`Fyxj; zL8SsR=uOj7HN>|B&i9S`g#MjvcZuTO$cF-0?^mKKi_dVY-jXjD`wie2+G~KnPp;JH z@eIk}&CU$~v?{x_?8I2flkcusoN&&A!cnbED-1p&&_HbN4N~!1sRLBLrRF<)Vw$B# z`>JGwjc9*(#El^R@$!>rp(KFJ#;QAjW+wJ`Mtwq#48X;_F_(uX2f3-ZsCw2VQ<$cU zR!uhVmD~V%Gh07$U6=-D16ghxN7X?KQiXebrB5j+HAK-NfU8J+*l4M2%QSAVK~Mv# z>lvHNS?}lysbky~%nWH;H)+yBHJjIVrOS$GtqdfHT}_b$xf86qUiMLq3~ZXDZ8Gdl zy`ZYJCTU5~`!9UpeLuMe{T86+*I+c`r$YQCAwtE)1(U5hyV9`2?{S8p9cY^mDuV2> z!N&SZ?LqUJl5w<2mu_dfM&aI2 z^I+Wq0q?6TS(QgniV|y+rCXIq)q8zeO1;{2K9gMK9<@pq(&Dx|DkH8Z@ucL4_>q#5 zybN!j>g$)V(e#hdq-}>;5okc8qfsHZ<{IrdngLCkL)nB2LPBUezrz*jzGc4r44&te zA6b39(kr>x2$x}R8*&tG(pj1x;9wFbZ=lbw8hI2skM#yhR8V#?AN z1N8Do*<>f3Oi5uQEGOweXI*xF;XR%^9HnW|gcF9&AFawKiDJ}i9ib;$Nxfa!g-*$( zI)gQ;ot(RBv|+J=1;&fIiyVwm086_+RXK$lqsJ@y3nu&y447h->;}LOpwup14>!XJGi5S*@Isc%z@^DIh-q= zp-Y2%2jk`|cgyUO!_Q~#=BYe8THZK#2cxYV*{bt=*d~yGacu5ve^jZWw9h)jAl7yk z1RLyjUUa~XZVF(0#({#&wcK*v1DlI8mQXEG>`oiqHA3#z&gH^qKNOgfbo8^nP4%JY za+zF&va3VS`PUZQ%owS<(jl&@D(IT zE);W<>b&DDLf#!5K)`F)kxUlpLQOHud+)=KBafJXH=&s>hvk?ku{zM{(%}zGcA-YS zD>%w_qb|Ue!rA~T0X*bj7$r+AC-16i`8W}b+>dmR>0!shn9w|F1-fU4tt%|;Wb>=U zJxO&^L0%zNcGfzSyKr8$BM|=h*E*|fCvbr57$>nqi`QF0YV>*})64GFu?8{huz79e znz!B{{2H!1m#w(ncd#rL&Uuh#bQ>@$(_*@3lU(dsOJJNHs%i<@4G)%8Hj@N#LVmj= zh*Xxu#P|R|pniF++gRmC3`$Xy=m`O$pSA?`#ARs?9W^}7;TPaL`uDE+;s;aF69jnJ zgu4kNfR&Dfpe`nphB96bz>*K1QKYVw_4|4s>S9#E*R|$?4j9MO2BZyZVRu2{NeXv1 zngH6ZK>-cv6Yi4L!IscX2RkPz%3quPXFVaFsdFyE?89}Dstm*nSCNp#`VNmnrBWs%@H_6z3S|N!|P!oOcG6Mn;5HI zLa)|}%9)WYMNTZ>Tb$y+5u)5{H+L^Ex}wLnSp~7=M;goi>ZtTwju)C-%w6$p<4}}R z60cze|GAWp0s&>hLS%2t>g*Q?D^wk->?fpw;+7b&Pfm9cBCT2fWT)NN0ODrMJiiqMw?%=tS;$NP$0v(Erq zK%~F*yDtD^+8w1bIP!0RtqIh;U1V90bG;u>e728`lE?Mj3+S7rA(S1+*I?3kEvEc& z^bpse$S;#3DZ?d>B!A9X3HA2Ix+cy3Xj22$moR18gy2lOW{?f z&wlT;1c??vZi*wevld7)h=e)SDl(rtj8qgsw}^EvhH@qJ1{|LO2JXr*-MCuMKZUm> zLVC#Ax$TZkj;^$^sp${3<}_W2679ANY$a^knHExS8*2T)RTf*33Skfe)?CGNy5ThY zm?USDGD;E*2_g4stc$sTqz>s2XeY7tCAYN?Zto+E>K3_#DkhG1*FHM=C1_RvDzjW0 zW9QuiujVwgBS6~)hs-XNlY2+VMi|vRB_ZIcM_S4*RE(9qwf{N%*J)w@%lnVucKf5t z6I#hzJ~-E&I}l0rdfBIIXp&{>Zf&b+Q8^=sjHa*WmfJzH-Gb3}YC8g)2fZ|{UI}!v zyJLj3I`QGwmdIrQXG>da-?SjMGOf{WD2Q|fjRL_FXI%cfrbu=f!YQ0Lptc@IiP>u3 zOw@Q9-Tv{fSVW|5=Z8<Vf{d_zt4CUxz4w>JkY+>um3#!o3!*l3Td?PbujYihyM`Xet&^lMwnYn!Ywvz zdyr)qRJd9ymz1*dox%MVhB5Qf;Y&9gZbj|3wt85*#SpsbVN)$$JnFC(xQ4CIj zd+DUodKR5BGSW|c;DoYhfv|zw2LMI&R8GNu?>MgNT{t6 z;$24`mgFo@d$mY1DOn`5uS^n(`cUg%%U?0$;wZDI6+oJ17m`R3av0(DtxbXSWd+?c zXG*|p!g0h>_RI5_CDsxaDJL$Tt-|GQGzE;m4R1*+>9InZAg#-@gLDy;Jf5z6ffCl` z#<6#)LN(oR(A?t}xj2rd+~HEy-o1(dwmvOXTAfL%!0@{Bw|fP&D7#0}ht5YuH$47m z=JNJ$q>)|AwDkl&k!ZIET|KZGHr^3gDE}HPc*K|M)MusQ_`?1}y?~Ym;FO#fsUziz zLdO*A%jHzv566?f|K7yspE{SYyl2xjw1i>9@W=HqsuR9@1_sBw!Rj(P*MZc~t+U<* zT43R(sfF#BGiu|eR;%f}jgPKEAx5W{UWp29Xf%*Jc*Q)AHbb3v0^&8AAnxmx&WP^>`h*&(%gw|3+Ygo?q_jZv=B8jKF8-DccoNo5CD7JLbjOu zf_lLFqt9>$Hkb6L@r0LzKH8I(4X)Ffbl!7?wXXOHK+Yk1K}PEGas8e}#%C$$`f%c& zMQ_8)dov08q4en;I%Cvc>tqK_K>hGuhBBQuTCI;bw-a@Oud>t?iUs?Ss#MuUiW7Dy zSCIGGGNT8_YRT+E&sHwwPSQ#VtHakrQE%B&y+o^W8y)&K-W6As9?lNW9g7@lpEUWj zytoz~e0SNYa(*B%9RVqHkzH2?2lk_#Hh*2Rv{C6iPWhD)ZTb&D1;!(pWkUyK%j0}0 zXm>DGEgh7c-B82Df=i$QfWXG*t@C!Z{osyTxtzE{g@QZ30)0gBs<2~X(=T{(XS5Q?X}SHYc1Lmn>RQ=!?~PIco=@b={0ejO-GjDFU$ zpnhzgO&6;qWmj?rfR?OqSbrGaew9w?;{F-iqK(t^nzS9L)Sv^X)+6Xl?*ND`cZpry z$p`1YxG&GD6k$7xaduF*lw}87hbT~Mxjy8kvZrJKHu%}pNr%0UXY+a;j%cxZY2+V9 z*W#qO(R7NX8R>V}KZ?8|2W(%Qrn4Vq~ zh-GVf4U>~=Eu;G?y#2v=$bgwx)%y$*$w%aM<&K3%CW;QNB+5(SPK;RT0jl3Gyu-oq zcdm%TRMqEzMbX^qv$2&%Qz>maqFnFJR_NfLd1|!)SF_u_BN?0xcB^1;v_ZuxovV!e zQOZLo`=fUR8i9iXu+5mu93ejJEwe@*n-GoG_3VisU(=x|R-{wD3v zT{RbabOCL818+QL(RVc6Ed7T1y6OhHr8#gcvP;8Ec?Tr+6G!4*QN|4_f$3kW!J)5U zBA`n+@~)98x|}rrH#SHBeh7WmY!{8J0TB9vYbGymWRteA)wS0slNqCc4(6tTq@#Vj z6S=^zPDxil2?cdAH`f_DlX6{`4CzoJ4SZb=C<~GNc<#P=J;! z0jFh>9H}t6owRN9DE7%txRKh`+IgEs=a0!olGu6BHNBAK21d;BfAWZ}8tB37FfyN3 zYXHvo2RB)FS1yf-9Rbp`USNG9X8}8VjM)x`h%dCP*!iYn3fVZyNX9Oa= zk~~B8FfXd=mY4R|?_WCNn;Yyg(LP#jpKX6h(nAv^0YJTIeq$L#P(Fc_vAOGYe@g$XmXnna*Pou}wLH-uOC;%^?nkaB7rn1xPYe;kI^mXXjqoX9CI-*!^4G$r^ z8^bLcj0VZXDtoP*)JO}#vGc6GXko(CcbLoln1Wa@^1mSePum0|NKXdN+9E4lFV)A) zRtT(8cOg-IB#9V|R1iL3Sc00n+!q%h`zKo1jbOOYknnltgNNC*w=t#bWA-(_4IL1o zz5i&Hm5|aOFTk||k;FA76!k+s(&FefB&F$vVub9QAjSHC;=`9f{B22IRPAw?Ah|ki z0u!)oj8_Qk(~AogWHuBmLP;bb?1AJ=Q8E|Fz*JtOmbzKlzPmZ>pdzx|J&>f?M=hy& zpl@)*lza+;SDjP_`>Ai%4au=uz4dH#yswJ&ASbH3D}MfCCY7Xr9quIASxA6sycbn< z*||h@cN7q}x+^_Eo(CF^3tOAoOmr8{1wPw*K z`edKTMI5WU)5}Jkz*UOwjz@(K<`l9sK876mYArZrSYaljO z7nMs&pL^Na(N?cwcE$n$wJ-v;Wc4ezOF{?YNRuivf;WkvhA5Q4>o3?)Zp~pjB%s|2Kf+9Ol&4jR4%Tvkb&} z+gak8OoNDr0XcwNSXZ(y6awkkm|ustpQYD-`}RW&3Qf{;+I@nm;Z%Z2WZk7yiA}B7 ziRwUrfHjfMXoFilsX>xGH-qM{vX|O$hlXlDr5k_Lu`b=3pxCqzKB>mNUOXB7Zc`h^ zLXz2Q4+ADy#~lSdOYa(5(V)nW=v~Z_@{G3nRdHNUn@K=m(S<4Arey-(wZc4B z7qByqm2>XU#3N)Q6c!h!fKCdU=(3qNB)}!71=*A{CMVr}kWg{=g@b?-98~6I@>EWF zvWywU%1J~~Dxtuh{r?{R-M>p4<$yt+8KFpSnmCmOj4n~$X|7=RhHOWBDfgyzUZptX z0iCd(pkzX32Jkm7>|%jzsDmPx4sab593FvW>BLL{2J-q6}l_W=WKc* z;3%MvgFZK5duaN~hb0yY$Ob2x0+gOd1xW{r&Deedq2D1Sz(&{@;RZK4n{^n(<(HgJ zhd=#>%^SkI%^6e$DSY_J+t1&A|KX?a-&(ZY)IUqokJP}m9o0_cF{f`RTNvdGa4|R= zVZ9eVIDl>zA`NR zN;-5v%3(=+>{LrK_O!<$f%4TJ%2=OdJ5A{CM}NZI1_B~5 zBRm1hpoTgP>5`Gmay=CVpbkUU+k)80taetmBQ(hDOGq)?BOHI>Zx18Xv^JGhO6odW z*$h!D@rA1W=+iZ9q(Qx)H|QAT#k=*$MHij_B#l)mbp?YwncUsGF$*LVZNGztcNo&< zr{VpFmsh#|l?UK7fM-(9oS>36bS{>PV(To%hCvBxQMa(KQ*kJ0B%K|c%V{~2 zjiZFeNzF>_QY2#rLPwN9H-%DX$wy1@^yCZ`;~JA})USf~owI4$RSKv<>4@qNAMGreNM_hY*yD-3>IVezKP zpX(Wi?Ma9=%rz!t*u(59UB%c*jk&6?-@dql-+vQ~;r^fAeiJ_Yr^^#6N$?x$kA^dv zQMIws7bSdT+mr2wVp*LD2H11gUv$<(r4Llc2C^H%*}rhyITIc?ZHY#?GKWGjg=h*q zS%9dFyA^arX!roGOV_B$p-YUTUoCeET1RyQgvhBsQ1(YqDH&Ci`S7`f{kP9#tKk+a z?0y}+4FG+Dz`gra7F*=e!`rrqqL{appY5>WMRz7-T9V@Jn1jzr zfxsmAG3;Q|9<+xT?E>y4Qna!)BTQ93yZlCzm9?rP zjMJr(f0_DL(|A=(Y!$U_ODjpOir5FNVDB-}3p$uXQ5oeKTGd&AFk=?BP_{g&j{R27 z@OSJ8v+#%cbKq%}rL8QEtJ76#KBpPg3N&{K(31}lB+-ya%(16zeM}9Ey#==q7a0Ja zE1Bh{uaR($7r5r4McY}KqB9m{&rrVzX4kHc=@o{mfo@R7r|M$w;(&KG9!d{Z1!bYi zklrAYIO}M|hiYVPicg4RO5f@UB+qrDc?r6+MJ>nBnrHBnFfFyRa-FVHjm(j-5T&%i z3DJ;SAHI6~5{eB!egDHd{aL`?XCDkCIh(7kcS!tZptQM~m4>QWHMPALK0V!~RI=Zj zH_M;rsQO#1tQ7RXyO-W_>5KbLJvx=jR`{%~`6ihVc#<8i)tVB7QtazskVUfGA@!0g z9Eb=YnIh1kpw1>f14FVz9gu`h1i4-<1g>3m9u^jThfH#`@7gj$&Rd?=Y0yuvP)>Tj z(C@x|0Yj9pWWoO-g_+d@j*fKG%a92kEpisQ3oI~e1cPbZM+hg0kcT0v^K7B!{|3s7zKnnd!mdgVN{IO3bImU|Ty- zvr_bUeuVJlMkrJm>;l_tY9nvwSgEhd>c;g-(wds_XKNRc34dWQ&HdG8DN20 zA`SKjt6tfK7`}`Y>P4BT{i87pGy3x#KRH0B#4nRYWhEvlyFdg_j2U^D? z(W;SXRZuBZ3Vq+b=Bow9AnV8Dc{GdCi{LJH`%3zkO6wRmU~SboYLQ*MWCxXHN7mn; zZn|Zb-Dc6|j=m1CN*qZ_hnE^;(Ga4EUa>%@}JC>B}^aht0 z43)iB3GHl4pM;rYqulbEW^YndEowe*%~AQcXIl0xxbqy+dSGBEC3Ln##O-ntendj_ z$$o;j%HQr>Ij`WY^53Js^BGZ#$*hZ}%;|eSgk0!r8%A!^3ay=mfnGMXk?z2#u(rwp z#bHHT*eoeh#RSVr`IDiN|J2Jx`F7ysS|`6k%YLFZ1Kb-Vc3E{f$j|PLXjLbX{jBF) zca6&C`bBeuRZ^OZs%;loY`Vh198{Ko0m8O+WM^tfn&!%J@#B24 zIQ5TC58b{bPp#Aeu$&q~XBBT^6%$~YJ*ls2dJW*@&;gyH{-Jhmp^DpgDR-GT8}E77 zjktlANpfNfI{j3^rYgHd0{7sr8=y_oPI{%V4svAgsmit6forldoor~h85OBW!d3}M zJ7p>1qXVF6&0;W7ga|^cOVC72J-ZGQ1x0$p0v38sEVB|Fyw=}brF2`(yItp zT4p|dmbZr>7&9XD_9)o#oO=8-;0sybr&Dq$Ww9oZlme#f1?&Ra-hET2#l2u}Ye}6c0P(c#4xXxt1aWpb-j~;f$%#X;-*P zGE@dRsvH-g8p_+`TYm&vCOuiOR4q&fni^qpAsIallvJWoeuZ`r_aDX;-91A~F_8y{ zh(q_bQ$UwLZ9p&?B_wDnuz2yF^@KTr{PIj1i3=Ej|Dh~rW z32|Caza~lRA#4VUCllJ&HkXrR!@QOU?A;0;HlPg3QBVvi`+Qy3UW3Z}v3Ns|Eu4;V zv*S6Yx=*ftr?(tI=p(u(= zp$;Lbs)fqv zMlR(SRzAIg6l&s{8Bzb7l)Gb*p)`<9&iWzqp{b6|wASLqk{SRoqGXu(*G$&|czdlp zu~qNWWk7^oSF=`^v<@{JMP-rOq#dPx^KyhQw}{;o^@(tT1wbC7>_M&3rr(`b2y6;wMrUctcu1$Qh)c$ngL?TmyP9Nl7Y-R!3#EDbXBUkH? zc4=JKcFXK~fO`v9CU93|)#ux3T!gc-GiF-;4F3U1B=;?qjlEo>EFGaNzgCQua?=G> zgGgUXF)=F9zGEc_F`Q??`$n>Qwmf7d77SO-vPN`??%Ov@PBn^ ztlUAD?QHF~k)C;Cl*`uq#C94Q1aXG$1GgEV^St3lO-tHof|<^Z9elKCVXsUDvKPNV zu*W3VdGd=Hx*gPNwNWG;CDj-nzOvk@@P=O<;e%{l(h4htk>%cz9<3=ou(RvVD|PpR z(WwJw<8sH5a^XO@ldawjxeGk#Az{s z!&z1J&?S8$0mM23W4CuQ?WOcpo8)ij7DBxRZ?TbjQFc}JOHVP{0wjOk&j81BK@9-7U&314b!}&wq)2 zoa9+FZU)+cELp3_?8f=ta?dLDlGestmndn?18y-xSwfPwjC*-imoR&LfZ@M8G+wkn^klSxC3&moOLBQ6}3$dw7%{nxC{mSmNAA)xmV(%Pu=SNi=D8E4XKL zKZqt%pzj=wW(_+rr3kL1bYOCYYyw@G4G3&kU)_!{!i^8huoS~Zp;VUbcAn)ms%_a> zKu}pLddbBFSPV&-A`VbS@2XW%cJaZC!&pSAjJ4yisF^?t!8`CQj@ghz;2AfZD!8hm z!MI)a#W4zUOj!ELnjS^Dle-AXT?unFryINTU9kXg2}*nT6?Gn``szCl<-v|p3mdMo z^~mQk65RH`45eA#E8u3mEAQu{IV z(pzNl>fJ626(o}UCoT{25YSyTyE%-h{$4lRc(Q*&azCIfK)8eD7jLjxmPVVTX!5ij z)l65_*})hyiOfS0rP@wi!ddF*lPjiNY>R|UwqXFrs>xChuLZJv&U;SDoi;V)o}aFu z7&0$L<2bk@T#I*W6Zt^aU7;LIxgIPdfP`L;3#+@sl@AHC?5mNnCz(Hox750aVuVty zC6642Q}7JKR1?*aP`B!SMle051UoU#szz(6V(hZCb)W23EuIzTA?1VZ77)#Z*|N=Z z;#sKEJ5T);Ex+lRXbGHr=+ihgEeW5|wq?ogNlBFcP%p?&u)}jW8IPSwiu~ED9*N7D_R=?W_N~C{bKZ5Abv-WKAX&1Zx)sOm zEzY)h%9XyN`jHc7Pd&b%a=z_#_KvJnVS=t89b6MA(tG7JDXhT2E8jG7pTkl9hiPOa z=kddT3~xVxOuHovPo?=>cKKh}0VRd1zNO#y!j->Q(1+H$4J2+ zVBdC4#3hcYOE0T&<&F)m?t|+3DjSUZB)*_Soi^1XUodB?CT%w2g0nmbHW}c?K&LKe zI{^&+>n|6`Se)^%AgnL3hB&RH9F~gM@5mKj(!G`i*iL(^b$5--2)!;0b#t}>R9_De zvPvI&-yP>yWlfogNRBeD;Mx-{xj-#AqxffS=)SO$(V!m;y3?YkYfq`^rRa7vm@2np zUdrPaWwGEsAv;rhp!=fe?J+hqt^6dkMD~C!z}GdWfrS#G50%K99o;3d=~{ID0XMj7 z8pa)#dK}z3HA$7#;J6J>wq(PK98_)~B279eu!<#V;uKHA`v5GZVB-0#X`IH_1$?07 z@i>}W-YDAlpqsa`_QC`vx`ygjNic{3Us`$}H{H_9b++3u^?DFZbHxQ2>WR!q&$0?F zYx!OzCRum)i1OOnPbvG-+Q1D?02Hn)_U(WtrGGJ5tJ>DW6+uuen=v<28{ibM!u~^=&IcxtP2teBVh^zlM3gR$ zN|tzp3{CD^!?e0z8bx`Ru8}|O(_r;0ZlZPRMwpFE14SM_bt$hC*#8HAYLWV*x1X7h_S^3mgUAR~ zg^OB((ZKBkEg8}yTD9zCL0h$uvvJ`$x%y>AZWE$1E7?WLgAB(Xw@26;#~}=zTZ0XX zV;khaYllj%_(F=Fp-@3LCnn343FRXF>ITHYazWF!Ny=jKd&sE$me9T|Q=ks2sx2EP zSBz7ETTtA;cVZzrCug^AR3|07zL=0^LOSkBUr8@D!+TE7%YZkJ z?B-bsOAZTxC-txO0$EqNSsQ4cZR8;R2^TCO1-~E5L#^4%hITekv%@>=t>Q#5=wv+>W%owVyYA8 z@+xVr?E=o=ASCFQ%n%-KQPyM^*B*YIc0N^BEx^;xmEh5u()){K#stkp9V)rh;E+!6 zoN!UH3I~?N60a3VBF^2)wo|W=4_~~08{U6`p!Kux{%geeTJevNy5%(JnXuPc?&2wL zE}aOS>0^?LF|{38llJP|A7|4(0->97OdwHh(21>3A1nI5<3=U!0npvn(tkV{=b%Jx zKjae)Z3Ww2C$!V`%Gw>W6ZXZ1oI2ZOfZa9vF@`d>T;Ftnh*o#h zI4%#BZKhKXW+1=`+Vn_5+^a-d6F`~0eP7X!QI#)P)dIybx{1dca(X;9fSvnTR6$F8 zj=_utrKtE!ZX_4x{p{@uvUs8pq}UTYEV<@7qKLLBtz4%^9vn)7 z^6Y`^p9tQq+?}tSTs^vkl-=TnClp-gui;O>Apy4=BqxWaR60k6l%%cA|K+?;zC|It zaX~Kv0-G*%gL2sf-a3*Z5SPoTMC1HPY8L4kOJd-B!tplJxpN5MRvz8ZW>EWD-o-8M@K*}m{ zQ)%rPZ#lvWy-zRkDpbWv=U_D&$HiMo{D~~V!*EO)mow>t)-)qh-B7}Q#{(H`(l6+e zMP>9bVqoU9k-IEC8pT?6SRgS(gb@nv0aM)uld=me6|u zwH0r=5)*YG4CIZlAb^6YuEl+}gJwhOUjz>R^}ELc`BKOCDNw~79%Gn2e75S|?dr9N zJq|2S@YviHlRRensKQPuE8XHi7E)|}`s51m;%wng5uSEmbRv-y(>Rx&XXI960eBZ% z)q5{dxKC0C*@Y%b1tWKBaX7ZRINlyxo&4+FI-mud=k~MYI zhljUo>o&8hU`7zMiho(-6F3!&Yk99pS_{YBkeWQnz0|-P74vZPyDg7^Sop*Tjm(H% z6h(6yyd*ngZwLRk;m`lOyyJgP6W>RtDz-;W_QXEx1n;7bJJHt{J;0vuT9m<59Fn_i zfck&u9_mNP0-b=dboa|B86|KkeXjmsauyV*6*%j^VI0#k3rL;^uIf>z^%-T!<%z8< zt|W&Zqc-K752lVh65&d~76I)gHl~1{*9Pc>ZEURbeINUepg%vS8*FOQJ(GkBihY$c zOVM$0-6s=zf!9dBbVpQlqnw(=I7vv?xn^`U&wb z%cnYcpQPa~<0V7WO~Ru~?Wm9VdXe03$C547HeB`jP_^SK{|gpzu7xDlrewVm@?B#h z>9dM**^~70xS0}N!zxWK@EtRM=$-gYuU>x_AVem%Xk;~BQHW-E6IU8OtZOpHe{D$NuDp&)&WcfBb%0J9XhkjY&g}p0EL^<6^cv zqh-`(>)RRJQ*EoqCU(?~nBy0I2$V`3`~1C2;CS(Re_wk46HJrXd=f#%of= z%Jv>g?AJtX$&%}|Splh!6a$Hijlr^JHTH!4Jz!sz$cWVMaI12_Oh z4A!T`iRV3>WXOO%QvOze-64tn@Hwnh;GR*xmd`GCcTV}y=I>)nTohZ|(Pw802X<~h ze4JH89_jm}@_qw5TM!9>2-7fUKd_H|fowdvHZY#oVAN#o4Lez>mV)##QL|bQH&8X(aYs zi+j7!)sR}+(Am32*MOB8h4ijsV~DC%-*QuY>T-8t_A>A2<#vvb(y|Ul8||LV^4!;1 zuI1d!$A`{t5+JY687lc5rr=*)UBh+WsPhRlK0@V&rUm+; zpOE5UC@0nMR<}lyMI`X21q8=NW&0VT8ZB&cI8v^V9|h_=XxT~2qgn-yGuo`$0XB05 zf#EEpRb~f8w0Gf|hi+6~cJjo#$3>fJBiRAPH87?8uKX{2_q%_lU;J4xHMVC7KyD&uzIl37`1BU2MSFa4x>6X%HnDc%5r z1PPKLNP%W`ivKlxZQpBq9I}Tp0aQ|2f7-*|1RjE=@xRv?COObfHCppbi;n+!1C!hGVKEetnLMlQ@>lkNcT>D^r z)qy;_G)qEIMPGyc8OY8JYzyNm1@8FL)ykfd5^Z1Gu z(WRc)7?&~sCLHA>lE7vY=5+Y&yu61qN{p;5olDUDmi#q?3;O+}g2Kmv1fWAt93cFzFI|BZq9DaQN|l52 z+1M*^EeVfZ5~d@ZB8Rg*812cdU{p#;l)Jcf%NaW~9fqQ-FV*w17daLf{_&Tk=UQ*> z$+6`l$-yZr_LxS8M1->bUCA(NwVAP(@_R`ISY8fXQ9=AXNTkl1-azy7Cg8 zcYRazV%|NN$-@=ZD>pUwk<&WyD+=^%p`os@d~6z-Y!g6q|% z+=*l2Dy5+sL-h2BMhp9(fC;Hndlb8>$r}a`-lbKf0r^s7lu$dd4Ij6IPIkONt=P*M z5I)JO{}%3mtWm0-QE29H(RLMn-C(n97sJ(1GeGKgBssO|pf(Rl-`l?FOA8`#Sa@9)giBW$J(H+pnyk+>+q{2R=NM52lN4#iP z4H$dW)2ALm%(gw=B#Td3&dKJUX^ACmRIZm??#k0)2{3r-{QhTX8-OQ|6!UFF~Z+^N-5#>QD_(-YjX z*}LqUdODTvS%lJ({OUY*a27|ZogWBNtz2x3j#9nFdx&Jj0PzR;${hA0^fK~7fuhz< z_JvwXtX&0sce2a1!_f8MPJ*=8?j{8p^@(EvDa|*I6rU>IKCaNzq*^~K5X7DqFG_wI zS>8jt>@c$p92KFdJDpL3tJrwGxzesO^EU*%tMAgegFcX(koIhKNY<-!XuqukhNd>y z+4TT3Y)K5OnYzk{e2MMI6ITo-dtApahN{2z2gJ%X)^>W)u%#~oI2B)^hhwcJ= z*yJ9*SY^I187g4>1-aG%BfNF#DA)nuG;xKYCB1koJ!(w3t)Hx|UgdfCUe%|`#+VXZ zCPo`z&3h--TO$?NYSI_c|4j?V-9XmMEs|wH+TEKJ7j5Mz6eEn&<`c%KQXn=z>@x?8 ziwJeUv!k6W6etn3vNeu?X>galFKr$BFz&kBOdu{_u4ihZZ5=dB@tl8R$!EG>*V3|p z;m|>XQV!J&V0T;xx@D?D5gR6wILm2A%W)#S7fqu8O6A&d+k(48vmO^Ekj=l_aP|Fv53ir-tB1Zt`MuqXm$YaiwZT)E zS<;!JS;_KcoI~Z}Y7lWu?AFSvNiKI=AT?$e3*aR~_Z%j-N=F~a5f~L_*!kl;J-NDO zcb$Bs*gnEk)L1t=Gp#zDSW|_-dFXNLw9$5}?8Qr%X2WB)iH(fPeW@#0)S-7kFR%(x zzvuX$0=~K7ba(W=97UV&X0X=XC-stpubqM+O0lzHgj~^E1+m6;WJca?gIeh=%*C6M zVH;3WZW*W$SV^yf3&2@Pn%qj2M_}9@2>4Ovm(gUWQnN@Jo8KS5l1!{QILuKJ9z)p2 z0S}AP_?a8%?dN$t?zUy`i(i`uPik$7HyEC9@UyiTwrn5Z!hsujVwSupo2XSE!hGta zGLYNdk~pa=nA^!s0c@)T2T1Ux#Y|7e2>osgiuzu-yh9jvLc4JVZD8sd2L+7+<+)>8 z?WJ3z58c9NPTU+9hBQp-s3X0i%s)%D;Qiom z(9xh15$QafuX9lF9uH$)ZUs7e_JJg=-hhb~(GIz9E0z?#cg=dHjw z4SzOD@_NASg{O2+?sf}1t&#BmY7fJdEmM0N93z&^k!=;l=Rh`%Q-kx_5`_$Q=z5dK zjRsAURl2J*=-^NQSUQra4}TpV+*YMt@=JhMnTs`c{h@5wyz+?zph(WWlAw>y#I^LY zUw>%*F}%npM+NMSqR#^X`h__$q$TTx-dOG2^ZpuZDUi^{PcGdsMlb;nN<)wYl&h+f zfWGaswt$yqz-w+l9Z4?+1g4E&8dhY0mN(YNdpv= z7cXSyD7!TF8`<%)xYkWloi%s78p{V7Bu5~Ve2CATr%f2haG!+Q=%CA#nPVo9{H(pa zOmLEaoSx-O^-f_E{`=1#k zwVd~r@55f(L6+B}PnR04gyzZ3w_CJl=na7+%ttE<5?;DziSk1PIytXr0|H4y0iC88 zfx>QqHgdPFfs_kr=P+MnQHal@#24kK#>+`Jh7)O*X*vi@!h{qH=9(oclmgel%pa9K znXjy2cd3UQ62MsMk&LqvfeQJWVkOJI*$Q9byx`+hl4~ZD^RrM|n_}vDce8U@=CJ{4 zNlG^wzts=zZnDJ;X{`sur#7l&Nl85tA|r9)#rmKCwQ>1@gnOLg3xe&q@^qr1xH#PM zu>!cxY0RXJ!<#1cXw}`M+QDqV

nj;X-C@gua07)qPBmS6kxKbsrp_1VbHQ%kr&^ z!k7u#?j%tu`H)R;4-JZO%2!$>0QKq&&?l(kFwOyPi2NUpf%zN7>I!<1?&7DVpkI{@ zmL_`FL^hDUgy{TA_m8lC`Sad3+E!0evYC5APM}? zn}5A`nP9%7s`jCld`%y;mWtGPnVBfxz%iS`08PY`1H7$<}!~CprTo z)#v>%DxgFCoTl9s)+Irb`hTaxwGxB*h@QgTc!zbtluM2V%bXNRZ`ntM4b$WFoRne0 zu3kt3yDfkl_t2DDc$ybS3Gak--iSSyr3B_e@?}j%xmv))(D`GWy!1vK8^N^o{WU-s zXIFuh2%`yi#eqI=PqppK9Vz+~Ezk_d+Ld0gnrYe?kc7?;t~|UeX?S z|M>>D?eFxjX*!T2C zQa|i{iG&hks#!K_dzy7zy*oq_SxwX~CZU~!<_+5D?-AbZQ%ivE)Kb`hijWQ(?clbL zX30qBI8!{ARUTXe11G6x3>YoDQplL?PZUlT1-qm!?d+ZOy(ZoV`}v=Tw?CfbrhZo8 z-4EnQK(MD@xU-lV#Z7dTPtftrL0a^28qc9WG*w7M$xsyd zaS&^bx<4OLLL}t0L+~H@LknnZ>I@qSB=+L!-{|eSLDs}}P6csZZbwyU%wN=yy-Yo{ z4hFeQYbfWCqoRW2+iocm)DQOlj23ajZ@A4Go{Vjk6eWhom2lH2*-+LbW}1gladIRH zIzBH@nL=-iTM3=}n&}N}0dsR<@VF))5*C12<=!(qw2|3hgY%+gsogE~<_k1hUC`ow z-!Rp{?8UE?6xGqOXI_%j*SCRy&NGu#ggn#G5#J*uFUGo!vB+V}S~ zIQf~5GCKOW{^DFT9mlD|5M`(ex21&>WV;XSUI+ifGoVne0(E|t9S?+@tqy#^ zP`Nb|Fs!zNCHp7!2NOWr(Jl@)j;IB0(Z-113Ur&|*^g(GOWu;%y%n)NSam9N97&V9 zELjR!dv?4eTv!tg=O}yA znfMznpj&qs2SxM(uJ~)1+LUYQm#<&{rOxR4@4fyqy#AW6f5F!e+4-|qp?kw*t4->= zBiHX1u2f}sw_~tmw>-dyNwy&I9g@}-%~q>8A1-nYMtpt|z*q&L#n0O?DHNsjHHLUp zbr>6|qvUVd=0xMqpW?El^L`+1bm4C5Qo&Fo&}HnDrK(a+gR2HF;~kUz*3-|$P(dqH zJMD-%^ugelst+jR9-bz*wn7f#AS64yY}cXpr3mQZt6N~ z(hUZX&8^2BU+2>C9@)N|@RT5b+mRh0fpVCYV<4$AHOaIkBv+f%tKPIqJ<56Y3}2Yk zU>-YCcu|cu$3)KsS>*w>yC+SsNWF4}Z*nT6h=-}fYK`Q&ha@280>ms$j20cY1!6d)A~W z$bOU!q(~t~T=mr9JQbj&VJFELn*#cT?{t(-?(u+gBmox64-4#sd^@hO&&YG{)E+QB zuzTn(r@o&a4UV*9MwI;86Y;pJzr5X)Pm^4!6>a^pGL@@e!|Ke#PS1NV6`oE2~>eIY-JzS{O@+@G?sJcIQ@?FPHm0r#569ynaeZn2m zQ9=DI^_RU&>^xl$VxUhLUw3k-fgHDf{g~B^^Kzn(H*v&QtQgOD8g@n$)qIp_?hxL0 zTsg9sS;gsokXCDywd|R2y)Qk++#O{#gQdE4xYVZ%m{VnfR<7HLK_htm#Ygg==);@? z#3$h&EeN1vxaOinHlpnQhf0kb_)q89TOqXGc}HwWy5#`_#*!Ky4-~cW(7&A5hrDA> ze`nR4$mctx{l+n<(sW!}Nrj1qNI6p3*;kBFR+~Vys$a(}N-pI61WWG5TS$iv{9@1t zDqc6}7)0nHx$fMEZ@vHY?RT%AzW?-3|NQpL@cz@+-@SeP{->|MrnA(?Z(oyQ{rT%3 zauAKrp|YFyB{Y^7r3DV71mAA>>77%1=hk+01td;fL4pG`xTwfa^@dry`Trao1KarS zoy)l9|+AvKvUwXfTt$iD$tlGmUooL8P{$J%Ly0fQ^# z$dgi4$f_`@0s-BFzJt>fI+l_}D}|eHTcWcX4{UKDgdW6;)q7@Vxqz8J_ny{4NjMN$ z(}ZSm#XOxMqGYQjx<@IOFd*v_*)QV-WG2U-j~8?US8}zLgT29;`^RrmAphv?Ya6QG zB_>)&=q7JJM_>3vxd_uXK}X#6ST@M4u#>F4TiHcw;@Df1s$e|YMs~9?hp{>AGw(l1 z6%54=NQY~Ljgm&ElIp_q8ZFn0d}y?405#|(8#|bYf=43f7!Wl$WM~*gpGCG7(P|G} zv0G*Fqn)d|wM0Ul!+kwM#PRl4svD@OI z+I4%i*~cf7?9fhefU{2!$h+EMc>{b?A1}^C0Fa|OP#%yFmAm=V zTp_o@zK~WeOG;!##T#;pqT#$tfmyMcBuV-cQee}bAp5F)%-SO+)VOs~zkEr$0@7s% zn`6So-$_orCjyKcZK~laLfwOYe+ws2q9CR_0|yXAUH(Ha+c1*65(0#glsTOIRrq@~ zNR3uutH;F|jgmzT7aE?y7s*)c3ut|+W+2F|gEmXCEvO0c4)_KaWs$^c+={QVMJPqW z+go$Wr~Eouo>Q-_$cctD5_dLlE{Ah`fVqM0$pYHRLbyX9kfy8L{by?0OAJz*%xW7pJ_Wr6JHpmr z2m>w-v5rGlN%didHXP7zkPF_+5;<$Ny;bz2R>Isd<-hXDrfx`^ z3v8pszk=H%37-D!mG?>@c~Cy&UCFM7JzT6~w{)vQn(Z)wz(M8HB}s%?OMy3Q_hlpe zc+Spaq?|}y_-xx!QOPFE3?BtP<{l3AClzSU^pCvTG(~D*N-i0v+{9b~RbrG6MM;Dm zqG&dyI)l{bW*E+wOE|F~poOJ20q<0eM&u@ShZda@qlpWyvMK}>E!GP8VBvxd9}H|H zeqqgg$=-kG^~>-rBwDW@V_x`#p*HOxgQYp^e#8k6j}v&Jfx8X#xiDR!9Y#>#hzW)D zw}*~BE-kIrJ|(*Tc5Bf?NC&_sh_12f8IQrw4MY=am@m zR_TmW=>!Z=J-l^It~0>{lOS&kq7Z!@jOOEnHsc8Zd>a#BBD$7hvy5|;^lG^fu$>la z(Z0094XB(|SmmZuG5tSUC+^-|K|Wzd9hVOpU6|)T93unH*JN)>Pf_PbE@*L5a^S*u zoiKKGdkHyMlsiY4>uF)c0qJRw!Zp)Q8F(a%F=`SCURTNa>vp=Z`PNHi-l0j(lX!vY zteri`$Z%4XV-Z4;7XxQ0Ib2P+p87^DWMEWNoF1Z$hT*9!NpfzCq8s(x8BP`j5>1fL zpJ#eHHy0BDog21i(AcY-R3Z-h9$F(U@M1A znOVyj|9N=(Asmy|9iGe2)soow4%z0xeY6M@U_)c74#9}aWRgD zP4NdV#j5Mw*}wz57oWjFborJ6rQDJ9OKah}oU-GJRC}1q$G)LL5;{n>FI6nqlQ!6R zE~b?TVKEc^mM7CI2g%xD^)5%eGxseOsizqy)#<~Zf8)=;&R4FKuZ(!G`~ViHiq;B~ z2OqA}kS)1Q(Nx97$xU)wNpm2PA96=lMns5IGLl>mK#C^FaaHZjME z%kaoK5jW$6$N%kbe>;5R8{a6q?=v~;*|+okzrXz={OP};ees82_`DZioI6k$D&;UD zWtPKTtA8;KBWnFvRuHI`$VhlS^6i0EtqVj!r?DaDf`IIK2VWMDC`d`Tyy=MT3YY5# zqwy2GL&CH1JedpVVy}uAO^y)8EQkc(wio1i-IE13oc@QI(w?x$I z{@`$$E3EMLYa5A&x6eQZw=OHMuPTa3Chua*^8=!jB`2SMcC4e_#zd zDM0)n-6Itpc&t<$?lj+TQonRlSwq%LRecV#rBRl}y=HNn$CTB6t*Z^?pu={7JfYpD z03@@uCzoR3`W9mALVuXKeW1T7?+G()V_%Lc+mn~9tI>v2&#`D}h(ugTW}fYJT=#=* zmqa`qppEw}X4VK|PZ8m1INY8a%8KX{UuqVIgkKpG3ktb+WwVuhu-bHr;)5&3}fIp0mz*L-xE2_muHtMns4N}bP109&&adR&< zY&_?c2JzUG^2{WaxY~GJX9bkGfF0OiP5w5b!)-*DPUS=L>!AKrIShbi*PT>h(q?Nr z9RH#OQiF2<_e2u>VU7oltZ{NhvZ|cO3RrPl+Y!lvgu%^f_-RL@^~xO!9U1vhF18FF z^d0HMLme8uq>^fUM7~C394sNH1GlW}eJb51HK4a*Xom} zrO-N4pYh+}&%aUj;19#wC#U!S^7{4re+jR@Ki!9;!p$9n6^pHs@K8w`h(TyM%csKx zIniiOE{ij5zTw3SWf%-pB=>`hmD+{uMFG&I4u(3zv*?M~A^nk@XSD5yrpMjrDjm98 zb%ofuzg)lzH5ZNHWHlAcv`^d^BE|q>1n-Xgv7}XbGC`VQY zvea_UOQd~a>%+;KP#KK+ESth8Mn3;F0jN*e5FlVXlKGY9mG~jn=6I^PM<0>R zkZH{0Ease29*(dTbETv)IGyT=ki3hsJ|-WJU6M)*_h_@IeIyQapVwLEy?6crA3=0uBI@IJhhgK`)Pp}Q-6|dnDwz- zEOJ;8KCB&%vLoF}(gQ`5QDxciyZqbDBb;gQ46g{*lG=~3Y@)`{EiWKw;025m@9Ie^ zL3^eoRB*NHy|Lk?TBCHxs}gb65Yv%QvPn4Hjd-?hAQ+&%#t9967^law6$9lEW&1Pu z&7E%HNTt8nr~-AqFJujO2y;EzZtr&hP|HvOlCiB1^!gMpyHB}#a7XpkQ*@<%z_t#Q zQmuv;xqrCgu#Rq>%NvrLXiIX{r&{yv>T$}8@ow6hXl?*n?U8<_qO$m>q;_od1K#Hd zkQ#Jj8^FtwU3ry1!nL2Oy{1a8C0Kv@XC1prF_UFdUm}HIw=CA%_ws7adRa9=vE3ly z?y^K1n<4|Vja}`Q9lhJp_F4IXagmP{e4Z3+X9)QL61T0bGBE`x1tB#AE6}{To_2H> z5H5`XBnh+04B0q9wv4Q@_NXt^M}=Cc#kDhlo*)csqgl;*@&kw%hs!E�J#6HekB- zpg%|cf)oM(=xr%!!i7-`+pzr^`1nibBx6WkgjloUQrpJXl`#~unjel1mO52kY9`EQ zTZQ0W2!w;_eBg!m6BwyJFotQt?XT4bGwfF_q-alz_%cud8s3gpM!~c|ev|TIlC!*e zH+2FTgo6Z$8IOIn*!gZRGV=4HZNK%;26fu5WPT=3)sirbt7P-+L>Wx#4(V0Njl4}D zB3ZRvz&_Tt-j$t4?E~ADu5jlC-S;A!A;o``)6+2+Y57|0fpIYh)p_TzyeLM(tZkT} zi#5yLrvm$rI9?~x%Hmo7GU`bE`kQ~NBBt6~e)}!_r^4%xPEa8Y?vHne(vVY2t04Y;8+yHR~Z(2qh<^BX{Mi&T{y%Xd34 zN9?OYFf+ddYw?ym-{|*kI@m~dt@CCj12@7A6mD>zTY9*aUT*{YB4<9!QpE7~Wd@W(T=qw3Eo7bf z?P13>bCJPqOk>o>ooaS^6Z`J)=7en!fWh|txso8S@=n&4#v*qTk6;?DJX>C^I;KDG zt|0`knQ*7(aHVqSKyNIde0xJb!Cd{k6FOJz4OG-PU{nLt= z_V2^^Me2$6D;;_uCDxAA?+@7f$AlSM4m%)r+a&bfhIh7Y;Q|BYcUd%v8y8AtY;u<@ zti%AK=^@`@X>wg1kJfy~IDNoQW6n|=QCse507KB%c~ZR516=BiJc_WgCPNiMUv9w# ze!0{*EsUd{+-A{Q?FHPVfe0F6=rOUy5V zuj@73PPOFFRmGcMVmoHM5-RGWD*gNKASnM6%9r08sRSz>XZTz%WRJ>5h7@Ph6I{1$ zj&K1Wf^)%ndW@ckfFmCY@I3EJr8(CAB_trW-sz^7Fxz(Q;|-G>d+mHeyby9DFU(do(pC*&uj=jbK)Ng`q+5>#|q8Aw( zjX?jRvZ0r6T80B58xn@rlLalBC{#&oi^N{NOmJmXV#9Qn$b%tpT1`w72HmLGTyO}A zF#hW*MK@c%41ajr_3n3|S>tcR>+i6g0h@`Vd{Fz)`gX-9hvo)J6C6DgOd#8r|$AuQB1ZFFg zo7`@Dk&?bf*4W^IQ9wbq66;|64R|FJw~9xX?_iY+mCWzT3n-~7TK=Td14>*^Q^n64 zCQGt2gWFqAy((3+VO@pMdU@1e`=@^j|B%m80nh2Eu<|*-%Br00l&k|v4c7#~NKTDf zHXjbkMb#GXp&1o`6J%F5RDo0;)VBTsbf2t_)Je~>GST^cm^#>5P)-;ik12bA%i*nv z_L4+y^`67ow8m&Zqm4Vpeq?MeIHoZYkBQ()?K-u>5GN{GDkIP(2*rnLM(PE z#qHnp^$TK}1uo!>E&oyu(WrX0<2n<=jmsQB45s7zU0Wbb8g+cZxj^3psTVVqtaAG0 z!bTSKgXBY3r)lhARml7XF1er-@Z}qZIda%1;Rg1a+53>ddS;&zeJJjWW*@PR0QCMghX9YRD^Y!kmi$t6aRdPl4oK=Vfk_VSe2 z^(+#MP7{?9ush1?4*-2rhiYHcWtI6HgwP6vDLwCs7Nxj@s@*t|MK*@c%ko#@LQND^ za>>3#IB1BKx4$3*=7V`GjlYj@_&ITXc>7rI>%A_7zewpQL%}Z z@((-uaMWVbh8^crJsicx@zkmyJxx&5_i&Lr(!K_at@?rQJsaWBaK>;n+KrA<8<#+ zb1Bn-_a93jG&YcwyuZqBJTF>`$o*Ma>wa+&s-2@LxwZF74NE3tDkx9gBB83)jX(w< zsex+xT4XuFbf-b$io@c5oPZXbdzVT8Nr+HD03Y)!U^&J>Yn2J33Nj!%>>Sj1SEM>< z(gF#u0BgzeX$8EN4!9h5u+IXpGqhkH9XF>MlUB`5*WyqPjWh_19a67)2bYYj%{%}o zB7tz}YE)^vl%RIT5NK%IdviH=v zz|hliPJx4Ar47Cyi?x>3O`h^C;ml4gEs!b5vhE2H<8#|LNDb`}!|k(4^yR)FksnD@ znsmd_z;Xs4gV@2V-k7o#ynr90)Ja_!I2yue&bAhT<47IH54e7EkDa~K4z1OC+gEu= zOx&S_5^BGMI!7G0+OBcQXn9Zy>D|cTQ55f9=t$=h-Im z5W~lBpNH39ekjfG14uT=zs%_Q4hTYyC^)_r46c$!z)i6GGoL*rp6#+tA0Z{E2=o3{ zJD_uSz=rLxl^I>%qE8!;}{+I;v~#j%XCHVkh+GtdNzrX`3CPBZmVi zvM|#&r%?p;eP#T1KjZ5HRF}1&&_QM+Ufw}_aJaJJN9Ls33x zs=0!s^S)G_l7y^L1chSuLERZ(gg}6G2BdoGhOP(Ln&>L*?cUDuQ{2^_*RTTXL1z<^ zY~;JNi>fg*@Xc zwmy^TwT31H-3C-w!g2>VD>q5oc%&}MQ~wgIPG{2B)Hu^=9wap_E`iG;w=6o0qj&CS zd@qIRe0tjD6oLzkl2TSj>XHRT+{SKBX4jmgplB%J2mv)k)sOMiKqcx%@Ob5q2iPKo z7QsX`f2WV#a+@BmYF2Bifv$~#ASxeHBf@v5=(5M(%6JDb18Q7w#J0s+?`4lh@g5iiB!o1J(Dh?14rX&o!#d@`01y$LSI)Kc5o;@0mP|dC z3Xf3x1qz21eTqZBqeEaS%=fTKG=?HNTPItKsh8BHrELh&`h8Xe?BT*Zkh+z3R3gZ* zqx4X5fO18TH~3=bb?cfwdnU0)mI{6_f&<$k3UtoF5eNJN5J8-%DLUMG=MXrhc4UF#r0woLsjAc>6)FZDORimPuNt`EsqmN@+k)tiQP)w$)3EJ(NjNUEU0*fl z8IlKI4rmJ}=0wHI$~F2h?w8zjM}%lKm3aU_m6AL~P7eR8{V)7i{qi6FA^gMXo8JuI z{AON9<@uWxAWtuRNYUlkviqII@D1%l%8Z8do{`vxjTxO5fuyZ-jR3Istz8&uGzMiU zhfVUsn}t(FaAcPZgSb4UI6AaV6-4buI$Or2>1zM@U~ZPJK!N7Dqqm9i9ZwxTh<&g&mWX7N`4l|pa-&HlBGclQG$l~mRXUr z1D1`MGH{@SQwBOZ1EI5U&%gc!b6i_#D$~EF<;EWY-a39u*E>8z-9OQGgOuE=J$Dx`_k}`D z3fYVO%x}dF58#Qtx+mILqRB{!sSai{SDemM&UOr}3o@D`VN`0{#9CA+ZS0CZFbh=7 z?oBf6tlGS>rxGP}kZROEL;yqbvp&_N`CzcD9?jU;wW~{v5sa@4!{OOejt^x&;F+Wy z!u6rH*qkE{59o&P{4oCz{txO`|LiZ-0q?Qj(4ZiPamS?7j5>jekegMd1-$cyr)Fvj zk^s5v*`lbPP62_EJhH_)4S)gic9>zGB)cJkeQ)(u8BO8lrJVg0tOpBkP{oEPkm_5k zt#N!i`H$~XT8(-8)LuYs$EI%GDp${zbcMTN;0+Q1vZ|C!;>Ik^P47$qK+aI<->l@X zD5deAk5Wrty#AERL4Q2N1$JkD@%B@6^s^Nt(Py^-kvW}i-OE8XSUy0wxgFWQg_~wH zXh=r4M#Q;3GY?vo<7C(N6#x;H*30XhT^A<(&8v$lV+hY;48OWo@H5tq?HeiBn$s0_ z)^t=;<3);RIbji|x|kQpvyls|-l;Tgb}PLUkYqH*;TqP<2Y_}EfnT)7Il;D%bC<(o*yi=o!wk#?ZuaF| z9tqT<`^RbJEDI$CI+L9X+w^nyLG~rb3EZMvfo6EArWjjQH!A*p88~ zwx6L_S4a!)dkow?r)>{z}2CjU48_WDIIO>=0=7(5lH*<`gP zFlM`BF8(~>asgYG{v^P45Y`-F18#qSxN;>A43>$8s&F-ng?34>D(T4*LkWF=kq6k! z*u-tSp*-+HIS-h8L^Qlsxk@f;M3qgHv4f z8DW&}Q1E(@DiQuLvGm;Pt0I~`vD;PF<)lTEJt5>qInP-RL%2VLx8K^i`O`=8+F*hO zFY9o|n+`pR?T~P)MRS7zGN!i^g4lR$v!WgA2?Wc`6^Gf!_1LSGcaPfTq!W8KwSg9L z*20KM3)`b%?X%P2nSw1>Nsrv0wA;2atAqc9oIe+4mu$eU{B8|6o|Hb5g1)=3<<}s* zemK`qg%g5?TAieiuB}%Csi01iP`Em2f;vJdT5XOWBtBxy=>&=!`<{CZDHV=7Fqi{h zA%6w&l6cxQ#aWYf5}7&67B@}$ImxY0G#m^E)P|14x+-@Q^A&+rTiNC4RppF`O{oU% z6Ah!V@GfTEv#EfF9ESzx1;U5{6<=}><Hao$rm|9lxcfGCo?ai+Hd5QbBYM@mv*=61oFYCk$?|4JWSXc-RPUMqLa`me^wH* zX)(*}_|!Gw3GLgw{~)lI*R#vd5DP0A$>a1STMXXni6#fyRXJgcpeT|@NWY4>901y& z&%*Mv?a{1s#&k(1|@szXEjQ^{vc%127P zPJ3e*6}zC6Lde&Y3oCMX!qxPGkv3M5;JR~v@b^uclpYA^2$aT9lu!2D9mZ&%zx_KZ zmXF_lj*j8m4+uh6_k%xul>bewC(PU4K0YQ2pS@*`&%4@DRBBMy4{R}LRd-r(quZ$m zls{!D@BEGKG8R1k(n;F1EoK%f75h8PB_tdso^VwA>;qtm(@U|7&}jj(gBj1&%ikv{ z=Iy!(R7AwBFrCy}CU-1!>>m4@C&$YL$8M*kTxh8KB&X==y4-*+Eo*y|Vv#Ypf%-Zi zVygSZu5Cvyxv^`uWa$7Pe(OR8k!04&N%YoF6-G|3!J)DA6{2=XZu1wFPT&)w!RnZ7 z{jicE%PrRt+Z4Qaf^ie{aNu9qI4DmU10@fYD6dn<6W$)|2Z(W!jdVs|8V|=N05hgO z9bY&0-El&u7cYC#ItbFPNcAK9kN5F{_AXH@K$!Mg?$@C8dG-V7N`!AQbfKq43ek%v zR7p09n&KQ>qmv)~X7_@$lba6&04m{heIseWs^cX_ZakCGJ5jK3?5WzGpHxAWEiS8y z!Krezh&dg{-J`}s{ul6%yy%0qA<#Gm(#Y~9#h7T#2w-QEOwAO7W9XpQq8rC+Kr)0|Miq0lBs=(fpH7?N{xwLFe0@>|K3XO6zZw2Tx^{i@A>MmUpZiekZ?;=A3AR8Wbgivz8%gXdiKYvV%sJxSE1-svjjCG+jNNNrI4TbmuM%bjgcF z_d-b)4t=du5|Y7jD%cfC?(p)4M?;OR7W_Hs z7xmTlnw#0JFyh)y8GB?qPtFB^F4myHkl4(kXN%24CyUuo8fcs`1SH^w-tNF(_v%$= z*A1qf9KPTgTL7DTEpFV!Y(zrr#p42;alsh$5XeW1h5%N*n|~~&;|iB&??!`n!!Ats60DE2ss@T}9oend*a9HW>@m*P zU7jPPs3LuRp~JrN!1lq}KM<)Pi8-aBbbd`cka0@>*-eIaN)L2L4dB*lrYL*-%+>GZ ztG#2l0$nk-pfP}yQ)i>u=~9@44YDTQ$~$KdCc0{gdSfcVY{2DJ{?m5?Uzozz>rVn- zXa^>|eVKLEzC7xzy~OMF9v*#@fKjkX0$7)P@npt@hzoH*s)gPPWYcsKMutL1?OjYi zX10-r4()NDk7-%yRlMFVCZVoUX-Vpis9Xg30k$7hz05U;CNRxVv(V#5-h$DB?=vQJKxyF#3r*BN}a$?82qmP|R#NqEn+gmouhR|zoG|tS2Q6DPFMCcnSjjO4D|NNOU1vtz@(9@;^t86&U9Q6puRGrJye z)-$S1&9;_QFnWVBSq|c!J@42)U#HP|lIn|ziKaxqUU8KYE^ZJ`%?)NH~txS4!l@RIE@B$osbcZj=MqTV9Vw?OHozsg|9vP&ngB zf~&;`zlc?FLK2B#k}ynmO@t+w^}F)%?j;ATZw3mkCp75s?3A!15$VC0D_7*eEs3Vt zK&@}d`3-jDVmIFof0HF3zV)qdg>UDVe;fWPJ9oVQ;oI+CrS|>d+t=n(ahJ<~J*zh2 zNSX~e!1%<^47_qzIZ#0b!uJ^nnMSWAe*~*+hz%Zo5BL5AJKyT!aGSLI@+8mAs5h(Y zFGCG$1KCUtTuJ6M^U_mnUnYmEO>CUYU8){-giT1T`TnEVPsp2v7Fs6-5G8Kghj*S^ zaDU}DFkRaTTgJduy+vonZ;1lN0!k{Ij|xVf;Ea<)xi<=KEsmb7J2^b{}}!{Kad9?_6V)*bXKP-c%hClFmHq`hirLwgTOl4 zOQt8o)HrYqTvYaR`iF{7a>R#eb+P*dIx?&L8x*}8ve@y%Y?SiudrGo*BzF%(UGGan zP+o#eSqmosbiM61l=Q_PFjk+v;zsp{Y}FEQSAo%Sa0MU4bTY_pXxkbQhpPoBd2Y2kNGR zXF`1Jl~VmhD;*1h=$7E}=w7fT zsB3$b{Pk?jtEbMPZz_^>!L4oTj7Y9Qa34EIWR~GS3Ni!E%F;Ac671EC*7YL3|N2AI z>bx(ioz0f-n8QE$gUD&k9fUKJL;$Hdc{==RG3;w&-?`@Zzl*ET9C~sc{$+k{u(s`2eAs zYTTZeSfMzqscNLK#~-rNIedWu59{IuYROxM)v>jsK3-@OSSRZy0c&|X$h%}AMkq{T-&`_xz_aOg+?h=oYar`lC+lVJEn@gq9=9G zw4SalNOXBGbpuk4sSvw#zPu%iMy<-f+six?;b=o@aJe)MPJ_t}Hq!z2q3$&5EWKJS4t}Op?90AFMQPQRvjGEvh3`~hnbs(`2y^qG#>yd*!R+TXY5HSaJFM#(4OvWgC`_8l_gL0#<6N%v=v(W7y&Vo1MsK91u;ww z_($grA9kI)(iTG{BiRk+G%)O{sEa+S6G0}K8;H?Ppkkh;m7n$jj~7{RLv0RJYPe3W za^C?*5>~&XTUE%C#3fDS1ww9dqa796+Ides)>9kK204|8^+LpX6Z{BY6lYQQFl)%5fl?7q>#D0Nr@9AP9xe%@b3i7XEO0=5p>U8n2pnUAsnUXN1K;gVuZ6 zEmRKkTGVpc-g#OF%g{1%u4exye3&c4WG(2-oXHKcA*y#PDuo1t{C%gIQH!ob@$bUeXgq z9ML&gv<|gYr_%!5+4XV_BWx$DQ`F$Pt0i?mvpKGUKd-qP^8Wt~fO##@J|;jz_C4G} zyb*Bgs$`mmx2Q7FAoEd(S7`&h=;cA)h(UoGK%6ySw0>1LZHEsxpZgu1^9 zb!maf+aqTH?*&%WD)S#nVU#5^vOflQ_Jqlbf>T^71H54!U<^?Y+G?%0@}B4@Yip!5B_B9fU7r zG53*T^7u_!irYStJ&mBt22ti5a3(Z{1={>`8&3%eC^iC`hAI|s_}c5Gx_>m*5a;SG z#!-RhR zat6oJf%72nT{QRAKU(Y>lgmc3CohJE9WGLxe`)-qNk?)ca~909ad)%axk3O!wxOKi zxSe$B-`nv#1BhjTv4deVhjM5{A-UPr%D7__ASBc9tGWs{>n0UO{S7xd&gLVQZ`~o* zoDYGXfzVY?`R}3EFN|UdVY1>YlF9;w#FwCtIyMa!|?$p8F{;t~TcPL25Qw z2Y382%@Rv`(Ew0JhgEz;8r5hd!1{lDKcTy=-Q)ia!{eAyu|v@qHmf`sl3fbc#s*Jj^SrOa`cF@reX{hYXkMY)7c(JEG zfc`3#3JbZZOvvSxaR#O`1-M2&ji(1758aiBW*~jedIu^Q)^xE|ZJ;H1`HTkYdeW{~ zhxw(Q=JYJbTfXB{jBR?xSEc+BA0=kc6035bR(yoyQFfpjsAAk#kPlp@k_Vr@SkQg8SvEjTzFkwKW6G7 zn(6WecL`6Fg$Fp_P$%fkWL{O-ze{`yz=ByJfw>I9GV}Tf+Lp5&GL?Dj9JM`w-VDT0 zRI+N!B4F$Yfjc~-b3vOX)#GxT$*WUbq49B}^fWxrL*-`n7d+@~1!86NY#OjpHssIY z*(BuDxNml;pagkE?P7SY5jX*=9vBQm3D6=-eDT{Y&g~@klbyI0%B!|V{x1C8KbC{{ ztJj|&ANt3Khn^|N?5bs>v5kmzonA%u*bU!82bkv%SVQ#Y$z@b6rhHr^n}mOOl=R@H4i$Arry{8_ZBxN|U3o;xd~ArmK+>73x}$3Dh2YSlGOs`PkcE!J{CsC2Qe zP>Az1x~5o>+$b5EEditsSI9+Wm+6(;q%lzku!v93op1VEbUhLYa#eJ7T!j?iT1AUz zaw7{#b;9H{x)s&O3PC*GP!HZKl+uS8uS1`})+Vt*Fz(;2J`RzUrO6O_W!Jg9^aZ zvI`jQ&*2@~`7cx|xL|-Cq59^|TOge9Hlx?&_vx1MDP;>jdA?8yJ3o?^m5zzdk>N9t`MbMOAi`znt?)>4<-UvjM=RX z7L}oH+Xu1`M{lw(-hRP<2foOE`sv&6-hL_n{Nw8v;r-9ve*5+-`RDfy0Py~kw@+Tb z;Gcf__UY>n=v77+*PZVz4DvN({g|m9l^HY@mwjotF#wM4)=84D2pv#KZoASeT?B6<)fHo+YU&<=P-KWa$+iG`Lhvp0?`L6Phy>YR$#IN_KBG@1_q!`v0`O(Ym@G6ZD22Rt*+@Z8 zi(O|@=5d6F6qD)rk_ARaeCi0du8{mjYm}T`DIRh6gG4r-eC%}YHs#U~GZc$xbcDV$ zd^di}P9xr)1Gw+q6NJy2on{Z0!!L$b!Bn62x(UthT{{W;pjURRF;{RPpHu=~vW!K! zL1(gRym)qENDTm$Wq)P0*mC8 zG{Lkgz0G0?fO5c-DogL=+GqG}Ay&B-foJ$OpGh{srAnL}Mwk$>&tEoDX4`bGnpK}_ z8c*>B-7C7N_Y;S2_Xxq*gALEVf!cP^==agCOX%dc^w(2;@LA1z$V zd?tTgAw|f{7#4Suxl|U+i3GW#M5W*kZj&UXl`cF-cxlq$!SbSE9d>Iw@nZlsm zT)ACXGoVnFZ~1prd9732qS=4t3D3?hhZj)^AUUzyW$9#pc`~jN8Aerlbf|G(wQR+weembW3x8C0k%~B=rda`AMotcl%I!%Fbi7kKb3-zDeM9Lvq z+rwwV;DIa0{LEh9rtVo3i`H4{Q0(JyH#X{jidh-@Z?>gys2^oKlMx+m`i0(OcOj-A z5Blx3w%6<^mstX4)fKaJse6=l0Qno6fk7P@U08}t1Nj1Q-{47mcb1PSb%Q*|>3kt? z_KeA@C6sV6Mw5b0s0kxp+m%xCkrD@_vE9TEK$Gmycd+2Ta&iYP(4%#G1^b7oxEbB? zQ0{cs$O`thb$WaS|jYYxxXj2ZE-L5 z6Uhpp&=lks`RiuC@()l;SN2DYdN47kE}*M3PS=Ud1Sw#S!YA=eF3UJubujl7g;{#csnRS^5C1w z1bY>MBw(5xo?Pc?T)Kn4ET7T(R&$UvX;cpY%Wy#|Fe=@{?~Nzi?(qg2od+bI6qsUx zIqLrvmqw$%pu;aqY*RB-w^FxZ$~h-W%|N#nb4KK8vk9iDquTDJ4yvg#GOKH$AB-GtD<|}lB_Qa5ty!$9E-XPvh<-c8MJhk!(9}b5wgy1U=AT{ zru}srvoHhrW`zm{XASH5%iEAbxb3R0$chidt{~o;r&$A+*HQ(({wTZ}H}0WCWZQ!u z`X=mwOW95u`l(-AyIKQaCuP&la&~Xg+B-9=Vo9a1?&G@=y)m%=J%pRBcNlA1>{e2k z{gV2X_eF~-g}oZoBdtg`j~;f^1Zr@Ts8GAh&KlUKfgQ-`_uGKs^yVE!cL|S;P417= zO;ikZds1uo!vO88*N@3$`bfX~*vUpwJSAL))e6dm6j7u}Ed;SZ=75_-$1zz~9pvrD zY+3M%EGa4FFy7+>Z2I7;SB-+K=hiP)WWD@2R6UZC)+yX0wES@oH$a&nEaIO&E|Cn# z`oaK2QJ1Rw!2YVW-wJAM^chd%GRyVR^R=Fosi$W>K-AridIYd)?+Cmag?MOl$M(7i* zj0Xg+SpvVS4b+VqEE)_I6~sbw@=meAt|ovo0c3F#vb#v?!UPLc6GsCy9r6rj@o+k2 zdVva^qUjKL(uOeTZBRdUgz4U5l`*3r*R6vzBBdf$z_7eTg{;%6b_KLGam8n#Kw%O$ zCZb4t=ZB;49>dF&**~%>bRLqDy{JoTZY3f0X+lS>sJv9u*jqdAa!fbN-ZU)ZL@w?c>Ppagh+qxs-~>} z(M>twbvb`>S3V?^xsMR!>S6l98@Qs{U$!=3+KRf!-oASNZp?rjE(UC$xoHea({HRH zgw_YdFR^4sRF~)lx`SpZgcmCN`M~9ui#9l>&HAzmpbKPZR?|_NNNv7+-uwQO*B`z8 zG~|DQ>GQ|%`n4Q2Qy5f6B8Mm{5tNtb-swF_TQx9&?9RxJmbOZ%_m+X`RLj{pa0>gl zzR>fvCo1a-&8QCCnM$tuX!r_luS+;Diow1(;TKLtD9#smCmut)uSFwN8z{~P?tQ+c zyWsUREj9L4o7ajLwP*psUF6={Q=werINf0S+N)h*L)L2_>e*u9qK+a-f|QLWMdT+uVlmf*ewbtrYVS2Vf2pPnRQ72}{`vw1 z4XNOGV@)>ImumIL^8dfqF0H)yT>jrIT2cbi5U4o`Aqb=Phylx5=+P|YkF{wwxBgty zj*^oZ7=}t5M^<)?U{=f4)W&LOcyKhRiq4Ty6*wD7v@TS)kMhzkaF~Aum-#)b(zu*Q zV_T^@yYiA9lu=71>Ods$rYxC+&r+0-z3dz!c0Rs~7r&%6bo{>9(0^XO`^(qguyOud zi@nQ%cqnJ>!G)5Lg+v|-Gd4?~h*FS{dCLaWMeIc$pM8-LmY#@pvYlNe4t>?7iC2S&RYu;-1KK3suxYO4SqEi6K@EmKGNfU5kJoD2R$~FYqPUWMNU? z?XIksClz(SR~B;QzVCHw<_g_%8IUN^a>KB~kS}>4m61p9{|5}%pPxg=^l5^F(?PeP zO(X2iS5@9#S=DT9v7}M=R9f2Xb3s9?No?j$GNvc>V7ATMLd5~7(A=|uIb>4!L6)h+ zu-8NK(0Nk|z{WBQ&{kqyL))NMkmR&8O-q>;ltIt3QyZriaZ(S!s ziiE@oKod`Ra|D1jawu<%7(kvCzxD`YLVC->EG*B?p1hR{FXz0tyOMNIcX~j9w?U{K zCKuEWTrtdAq|#CeR?y%VHlw9(zbx^n2P@BCJ2n?$dV<&XyF%Ix6AQa^;yOX}xd1h4 z&Q1&vu03}}JHj~|(-i`#3t-aPZXgjUYip?aE<|)7<1YJ>U{PgR$ur(T-Y*vmaJXc+ zLN9>|Eoj3`R&@b8X<4u8&8A%4y7wJ28aW(py1CbEv{ch}Fl(uxJYavI__y)oSqAXY z98X-`+41kg|E2$aOdPX4gWqw#g>B&WhiER~hBRX-)#8wzmBdMjV(7bD)|UWOAHCX5 zNae!1M3=HfeH>+t(Ha6^;~qW5y-`l5k&Q(VWg6xd<;3dae<$;P))lKahc%0!`d5+@>kN3H0~LhmZPABp9>AujXV?87@04DNmo8(cdiaD{(Ia<6 z6S&cVO^)C*^@s5b29S1d=*dXXAg4Zgui@8@iF&hj*%(r3rFy%7*De>bN9h`606>Ag z-oO?JzwwRmzvYd*%xWYpQIg6kxL4T>Uq@IJJhJJkp+_&+hIz+=*GwQ%nfF7^!0p9R z>>7$Ig19b47lwpwQZ*}_>$lIBp5G(qDJ-(_TYINsMmutDbZ-ZMS1ew z!cOCa-egz$ZfjrEbXKGeyb+W79~9mDF;+D9N`N_6Cy31GL*Yjf;*?e{o{^Mdhd#bpq~_t-x7FuAp9@5zA~o{w#&D z$t5I}QnlV>4dU}N02eMLkT?5p6*;p zoERNjvPId=Yv}je0iYfGEuK-Pt=Hsr%(*F)6_$WyuL zB2@o@`MCwmC>FH48(xLI1SDSV5(+u;xgsF~_6d+z;*ZbSSd&WJiadt8Es1N2l$7() z!OPqmbgFW?L6&@#Tul@ z4$9(_W>`H3skPFA25%9;d65G+V1-9?!CZCl3|+h3GyoxjZsIvRNOw}K*zT3LY6k=f z`q3d8qI00(5W`W)9iF2s)K!8j+N?!Nd{r$Sz9xSg3aBU<^4MmlgsircN5kC&fVL$| zNsEgnjdWZbItb9GyA*J{AuF#K30MZK0#=48!UbyBMnt8%L!Kp|NDc-=bBm$q7ZU7@ zJEO)lm}+Zh`#cSbIJ-3`&Nmw+eb9n<8lQHT7y&yCB;k&6TTKsTxh_n30YLIu8dzce zAmnM*A1L*!_}3>v|MhR>JKxXW`Niqp^$q)`djm|6XAXc!Ovu*cP3ylE<}Sy^F2Q#@ z6s_#>$!&RwYK7W(NF7xXCZ?XvWH(yNNT%4hFtQq09$2n$lT0qN`u-!SX`!U@JW2Wt zqN3XsTqNz3k1G$VL5{x}W+GK+qREXXSseoeV5(%pNgUFvk0o9krL={q9EE!&=K($RoHP%(Gr z`&KZJCMCD@U}`o)tz@3AlA9_!ZI~$Aat&-746#+b=H<|;g~(^0py?%vIga6?sB}tP zToK|&$q}AZc0AK;Rt(CDr|m3RdMjl=dratR9sGAMk>cZLotUfJo z98fD2jqInjphaqcT6hZ6GJv!A;&BgGeqP^)yP8D9Z$0=#yf3-lk1iSVp5~om=fLi_ zrj7;1G?34dxeZ;`f-6FL+uh$a_q^!6i6qik6+=rg6`jL5%vA2Z$CT0 zJ^KcI%BhTLD@xEn;1d`A3^T~yp-8L72;TG|Qm>|#Ds@2K320*DIgli(#WlN<)$4U{ zH}(^7qLN8Vs+7&@kN&)5R+!aQMkaWz zT0szEQJ)mK5)2e4>o<2Z$4AC_mF&liqkGIlY1#CD9xaLf0Cf2OoUdd`9e<>3dbS*W z$*!e&$&*i&4 z!BB6{Mvd&qWgSkxX(b|h7Yk3s`nG_4F-HR7>_aWvuin1+vu?ttZy4*n|Mc}oZ$D%h z2MD~`?c+SquDL&x)PXr|J#znsD+QO9D)=~5lJ0wirYtT$Nz#`G8rm0y?^vjn#q8zd zKZXDoko=)87Qe@hrhWLZ7HE3Lk=Gc= zZHg&)J^?$QpJ=f?e2Ryf1Mkh^J_j%o=66g<&YaJKLuMn79VXE>Sk?MURwxZKx#)E_ z)(;Yw>(Vy@o{zHhKz4wqHS)6Mw*L)spGA^^$jD;?aQD=?CfEktCG{JDVg2yF?Nm~+ zzamkUi{aUt^tG1k7LaZ#I}*MOoeC*xKh1Jy|Nep5>qme3j^wIs-x-LaE+IZ;=wx3= z@*43ml3cGuokK!IZCa$fbC(eGUqYYbpli;W_28RuRep9QyZIEh*U^A?=6l=gfL63nW z3lIoh-$fEpYL-DUjs2qtaRmQ&OheXGad82TCo65o#wd`CGp-#sCPSLR>$yp#wcS8e1w#*H7Ka0& z#z8Ka2umCHP1r*LJrXn@6^7P>_^7g$Bf@J|9r)I_^Tz%k!H8Iz$jId``R|6sGs+4~ z1&U3k+6OVaShE2kQW$UUB33`vdm@wrQPzY9q*(V>>9_+mDXU4Wgtc{{0$WEX@x#|+ zr*E*L)ZOMKON!x#?(Q?XZKQiDZfIJhQfuhZk-~+_xY&V;bdkMqs-CQftipDee;m52 z5or*Wv;M-(?X%bH;3ie*jb2jsKxJAuwy}?;mgIpudPV=UDLpO8^f`=AAMPlAni&opE zm8W^2dXT7DYZKLu^fNCqWG7vN9Aqbcw93c|-aBt!hri6{enbhjpXP=lTo)j`sR(g{ z?P_yKTcL*>awcb0!Z-;^154j22f^~npLPLCTUsBz6rj+ukZmb`y?B^#7I8H@uq zsQu7;cS|#1VRsHIR7&n#QV|F~5Ou|(0-&o*Gm+ARymoENSJTD9m;}umpM9t|MD=zo z5AVT5CA>uIRJL7%fzG+R_;y0FE5}DQ^~VlZYSJ`zw~GHcutLNY8QE#p0X^Gio!niL zC|IZ-s9uJ+d2rQ(!+})iZ$FcN{^0GCzj#(AYWC^d4_-fg|H+^J`R!NAyEQE&(8We7 zD5~laZHnaD(O%!J zK(e+C4YA7(0~O{%puivpb^(r7B^Wv4TU)2=u1U4e`1c|tjok5OEzFY{CL8u?(SBtz zJwjti?UpTi)%D^(Zcr0To`FlTZn|Vl;~cD@ z$-T7fVcw9bBc-r8CRCm;p6FyHz!3e0ffX?DUZ{TQd4Gr4)#QQWYJl+x@~gICCB=JC z9Q67)=+dh#t&zQ)TyU|@7nlo@QcH|B(%684(V1M?k?zRmeZn(&fLj-oC4^|x17~GK zM34(QoioSoq$2z&!=&8#2*^D5h>P;qovE=SCbnuJYsV0Hitv_0>od`EcO>;0zOUMI zl;%U=v9xcyA8d{yFv9DyUyMOGr&-ElYiA=AT9!xzZ-tix)=M?@&8Fs7JiKbx*FWUQqVYv{XiYpa6nQJIB~q5aJvqN#`H0ep zhkZ+4*fg4ul0Xl%{NnR^rOMc4@;AB5_nUHle-C?idx7}-Q;ol;hsyxn(Vn}bvtl6% ziilIeI=CXgO1#n;B0F8LvbD}r`iW33hfLse6&pJBQhNbmu7fzSY)%K{R}z3N$MezXqg_qvj?gYoE}? z=Ipr#{AewLVs%vGAr|YH0CabUn94%+KUs+9-9FGan8oEjHcTD3 z&*fbKlXB}EAhS!N35IBh!_0Pr>UZrgFZN(S&_hC!!@KS4ZIUDIaam2E3JyFj@s8Ab zKaxUK4~0xEo!GeUq~r=pp6NN|#6Fa`+!M7AmLH=C07>K(+g9sEll%{9qzCH);iqe;hX9=YtOHc6&n;;$tk1e z3HW!~UV%c0s+$`WKycU&zfKPh5c5@PITtNfb<6x{<6~qd4bgp|1MgJl%~;GD=8FF0^lp=H38YA;sVA#W&B#|S9V$s~=`5F|RL|tPSA|EE%z$3I$Z^cF~SfhAo z!pngiz^q=Lvzg+^Q=2BHj0=yx7CBOxTMuZGVA==pjBL@Kxjob*V$(6i1!yoSb_bUX zNocVqT1+ewZ{&1!?G-c-O9=G@{gw=jJM@S3xZ7sgphFx;joiYMoswAxR}v!3O$*jS zo@_{Ts+_WtC!)yk<~&;}x5v`AIjgYqkkm`h43$)>9iMzzkcC9%!IyII?F30hVCnGF-os2_OBwEhSrcoY z$2j z;LbC8%41_vPm19lQYM1X?mGW@on%d@p} zgg@n`?Hi9w234q)mR{swn}yEHEru?n<|oQVHVISmowt&b4`0}nt6Vi1{U)0M=l8M^ zI3Wb~OEQhIcuM2=nUdL5`|SP(Da~7?uIDW*4;0C=`UJnWq2iQqaidn;b8VVR=Z#Ig9A;^r3(xE{hwN$4IzL-taljaF4 z#}jBO{(jI#(OsP#_4Ug2Ub$@3NfrKrsWB3l^}tM(L(BWfVw&z#2R)XDii zyfVKN{*8Wow6+QFUD&MZPZX25turmLZ)&+^=lua)>J{?s9QUYRky0n@i>!(aa^*fp)E% zTwy_$c7+QC^eXz!1aQ!KwTS|2K6nnSo=pR0<+(CCgA97r1R-e34ejZG-pj0_<-kb( z<=1~5_ySD+-@pC9#5nU_r)t^*jc7MSUOQAbrvB|$@b-X@9H2C+Z3^A~Hl4Du*0CN^ zJDer5@LbQhF@XbJ&-wzIVpm&*4o*c&Qo*57{Z>+z{!W(EX&;7C$~81}XEs;lIh^wd zc~YJZhsvO=4t1@Q71!{BNPA#c<4N)kgh(`=`MjU93A0M{a_)cStm({)yzbFl-<(wM zd@kq=Nm*je83013kt$9gQBN$&KYsr8e+X~C%zIcin+vc%WCa4bG#lD5K#)_QW2X8I z2F!*Eoi8=T@z6`OqCM&8r%}kU>_n|GSS2nVUApNCL50fTCUQx8YOY2g7iA*H3N+5x z5cYXlpgOb9Miu<2RW^F=x^98V3cR2KFvs?2+IKpKS#{&**;fWKmOC7c ztUCqZ*lEdSrEiT>w!fAtqj4v5OcD>yty86bj2<#o+{u9XHS0MAcf+R{fUuQR?934c zGO}e89{J3wm7Ft?GA#R`0(+Tin7&%ldzL_j4o^?nw+-x?JtPf7O%5imBJJgOj z8X;}CEW4&Ex2W(n$z&I-IjeCMF0cnFudl3&(dI76!JJ%9H(Q^9oJuDAuAaZl)dqxd zLo}hdP*n|kC$W=BD{Oo0>_RSPhYxD@oP^Jgk{yV4meLIRjljfTE)rs&i!mH%MUw%_ z5a`#9!vGLLl=$tYn8TdB87$j`ri|5MEjfw3?e-GnNF^Ivfg`zqJiMqi)2^80Hn#c- zFC=VR^xqdWv8-jS-2+d**M~d7uy#-Zh3F1i5>Q>71#-mgc%Bkr3*abNn)k5oXpfDk3pFvbf1xX!gi<@XGEnt zi1zI#1_p7=k@|8tiU6XxxaMU4L;JbiA~UI`UA&{BodRzZ0OioR7-oRXsuxaEHcO(K z2#|BTa`Mtvs-t$3JQadFY}EmI9-cBhpqUJxfD#B>4x9t!YOKnSW&k+%>A7X`1J(}6 zo3u!4?A{kMC=7ZJ7H!L9~bJELPa@ ztmxpw2o%TC8Uc^dA}sROvK;b^iP0aGeavpkq>h~VwW3Ouyyw0MH)=x3<3-}t+9WqA zZ-i{K#(OX=tScrjVxWzAMnl^Q3+36WkO}z|10s9=+mEDN0Fdj{Fx>mmVCNU=0|@^E z_3IHjbqbzVK$0bywl4-a?d)DYQ4{S|!s0|(K)JtVKR>0&%MJb#f!Gc1X;dPrQ4AG| zP;hi3wbTX`-kbW2AY;iVvDChgLH^YfoI|bV!^||FdO25S!O$jO)-!G;fRcMO3Tzkm z-Z=voNv`vTL=*JU^OuVkl)h5NQv@)&2H;(;r9Uj;MTe9=&QHSC`^>qhd+Mr?UV5KGbv&> zH7|}VK=D@ou`NsTQ9nW+vbmhVoL<2(9w;zhH{+^#>eavz34rZ9$kS8`PkEp;9C5%R z8Mwpl`od^Mp{#H=`9MLho?Y{&{TVVPE&%+rtDwy)JKbRu?J*5$SB!>}EL%_KI7=He zYtV)QYebX>IWtfaVAHB2bw$G_wBf0l4|&e|q?#e@E#3m>t#T)z8RzC;t?c7+U03p0 zcfhGFt7jtv$b>zUM7=Meat&O=?9=p;t8mZ0055RW41b;1;AeaJh7^ zg_c8axj_{3>w+zF+}#*^QU_83fwP;JgRq>2Fg^$$n!SCUijvN<1~oyL9!*&r(;@)GSq zdv!uL)~&ATIE`M!+s^}EfMfBu#tgUz^>EBjCsE52YG%d-SNjgA)<^-vk^y44Fzh=F z(p+nCh%XJIZSwaEfTe3ogwbR~jXv=jl&bmQQPm+Lo6sSw1W5*MHAC*e!^SLHTW3W_ z_M*~se0)M8Rz`;jJD(IlGm+tW1KQej-!=*A4MTp!2TI5d!3! zQj_ZKl3z+LsbJ2=9@Ffq*}Ia;Tgx4!iawW4vz!1Gv4S;{R^}ZD1nP9Qt1tWnjok=iXN{`=TE3aBO| za>)69q|UM`eEEGRhZ_!!_Y^5R(GKVsvAsQIUvP+5pymN%ZOWzf`gl)mL(zxq$R0(p zbFZKxe2UL*B_c#n9QO!2WI|&>{`~C03|DYegW&Z`f$Pe-Jw|@$6 zrauqW<@^AFoXmfHzstEJ(&2obR9`5+H4#s+7Hsw4#v?!Hs@Pfrw=mV17RY%Lk}wa@ zZ!E&g@&L|0bnAPU;%rA7eYWA_e|-CqJ=uklI#^{sZ|GbSZH0{C)~390=@|{a;*_mc zH2oC05$h|SC5(35J_J%Tp_JE^N~vvLXWUCVk`;e#LONj}=h77rzFw`!*<`bsK`rK{ z#OWv@**lRefIj>*Du1y@4tTf_9p|D|HK}; z24Dc|&u;phQ~)VIW>j-T28?l5#tb6x5{0B;Sx4Fj09}vE?u(Id!e9eowq8qlIbV`C65SXNnoK4W+{)_Q%K+8JU+ALZ6dr^mGmNS5 zbNgP~!V;vqg50XW))^05pq|qSa47lz3|;wl z^LEAsXuHv`Z^q#mG`skqAFCNJ)XVEkXaAE4*}l&kQuYI_z^JxVoi%%~<_ z;xnnqz}CK|d?WX(RH{M6w0Rd@;47NeEBaMZ&f*d#HsJ|6IWK@e@0dzBH;JrAxjG6{ zbO$vLSL>EiLAk3y5VNVUe%PVq-_J!PXi4Xt7%NE#*5Hkf51}D;R(Cf)pYXe^8^;R)GH3PTgG%22z=jc*TC zvbtx~tni#!EfCig`-U+3pgt!=2(2pk_&F-Gk3Yd(pOtf7;F@ixMj@y?_jg@{1*F4O zDn|lLSGYY$B~N73l4^yH71qj! z2k^K-mtQ}HFyj%!tZhXe=|?c7^E-xK(e0#LP6J^(XZQbl53_Q}GBan3SG5jXFEByZ9LygDD=#t({A`La2IqjBLhk6Qq9NmFYwgjJGwb0h8Z$^PcBv zlDrJFyMQ5PIP{oraoErkWU2B^>PrED;3~dj$3YoJ_Y#N<2=944m09_HDnOk(@ z_*_?|B(~!db1!vLu_yNO@&FayYOdXz{1CcAB!NCQATkr_$IAdOJie>3*3K4PRU@P& zCHXF~_D&RNCa2b5)fLyetd~rbNaF&G5o27-1SPOc4`ntqa#w-7n*TLP`YbTP?zWd( zO0A{2FCPV!e@%|uK{u7IDjH!gCfEoW=5%e7VIz4Gi~ zya2VhTObSpB4kZrjmiq>{rWOZ<>?#is=WY;Duoex0X4@*708||n^>?Atz;#lYGYb# z2oCA`_^ouU+^`A6;!FonD7r`qb^P0mDa69!k3>qrzX?1i1GBb!u^Ta?mGy+k&t<>d&} za>CP!$@dwBO5+k$TUH6QJqX^$8KOerV6p+A&a9RZRh05k%W~V67_&probF^22h6HrCOIK zFszBFMyJtX)Ic<|f4+geU%9wPlJ)z--8|R&+CwPAYMwJ7c>ZU{sRGqPZB>W3z|~eB z=G9fgE{VFjl62tCgrjKV5=)Y#?=C&B!)G z7jC6+K;@zz5~De_y?KKTbQA(#nyODxpDm84!)IG&K!O9+aJ@Hp1DhiUrlX zWL^SMX&{+l7{qB!ugqVXcI=^x;3eUFAINu4z|7+8vXJQm(K_${7ryxk5YKyBoWfQ{ z4LyKf#fPGeByk6Le(1ux6I`Rz_0UbO8h|j2;!(En1|`HXP!6DR8j_q78*2d9K?A|8 zUrrMGCvRV>(B$8~{vlYa=`l!jto#-!y~b^-ZPAwtrjXtSHD(crYFsSOYmk1DW(qTb zhN%d8HW8vgoX-~-R&f5G+nj}`i#Ed6>jzsl&7o}uHR-5w(1}`Jwn;fq-p1|J+bW;X z0e7lh1z5MzMui&)s6S_nffc3{ZcF}I!Rv$*x(!u(a5HmDp4N;I;UEY8+u>gvMxDE#Dzz`B^3N$%D1b$J? zD#L{~(F0W&N0NY15MQvwgCwzhfdzzXEqMZ@s3{175JjK7m30qq^sQkHvA>) zvwll<+~5>zTqoz%5ACxfKw3=_>@^qwCcsbypL-8l->Vo6tO*txs6>_J8QaceXRpu) zDrkc8(?DVuSq%IX;#m!ep?p&_jbOEGCI4*DBS-#{M)=SQDIItWZ0@e z4AICuOR`JA`0Nc%HOR%zfb1R`>!AW>7eQM_P;<}41|8`V#)*h z)b2DRr)jlY9uX%<=AyzqQyHM4{2J3WcCqUyiWyZd*J`zR(4tlD{E{?C$erB46_aR< z78WiH9O#QNnIl@TQn`|yOsb_yMG{qxyItTm4*4;AlRqz?{Z)9CtK$1_KLktd4pwQ( z@Y+c>jV8^U;i?D=#Q-0K&$W1_`T4H0HqA5`ojW3=a~&X6nIF44zFNhJCw3@6Czz4g zlw;>37`t2%*cye430x?ALGl??Wz>j}C(Pt{V0REb9;EILo0Ig|K(LCwKQ$5q$-T$j zRz^~iA0HG^Y6*?5`XV>B>DB|Dj^_p6U_ySe2))7@sa*=o*%wLC(u@|+!}fKL$)rsx zk|*jI1j;^a-I#0bAfn0?C}6O7f=<7BQnZIZIAgN?6gi1O3&Li3GZogMc~064a!43q z$ZmgtmSY!VxVe{Cp;l5hAPekN1fO5BT$22Ey0lPH#>^rhEnq9ynwAtr-%W#O z5$qUD!h2V5LUNiP(7v9-eZ}Mm9W+8AHeK?K9X;8nEp*Xb8)!`+P|fBqTs0Gw zZ@I;xh$9iXbIOVh3os!_btFp-(FAajwT?tL78k(5odLOhK|~_lt9yhII0YsTS0zaC zwT_as5d#}BqZ?%j*zI(t@rdzo)a#FzxmuPQvRox0N#p_mXN9K{rY7vW!}e=9#XYd` z1kn=N4(dS)X71xKGWm6Q{bPRj&jhJ|{q{!+i&4_|om}i4j38c;_XdmS(7=2Qah~FA zg#}Wq-Ouql=gx(-q9b^!P`}Z)DiXhj<>8`vxIwH{GpV$aUBQx95CVig5$lpCwKk`7 zk6K>U`}z)!PQ{mY?Bk>Ce`Si>h@`=&&_O?s>1;xF*5Ogx!40_n2KC>Sr?CP$f0+o{ zh=XRlR=`GOOdZDKzj*yY_>1!PN3Wl~Pj+4=30D$%Xg6|Km2~4U0oQoCO>Lc~bC@b@ zF8#bBlv~wCw)MD6j62Is>&*3a!$cj@l;nqQ+81W88Ws?XQa6sA=T+_{8y-ps)9Fj` zX3w_@@atST^j1HcN_b9=NpRjWHhGt@mxgsOk@Vv7hL7o(@VgF(Qa(80Z6Or~2ZONuL#6CuC~ z4pMi29{wA%q51sn`;d+OTn^T+b8Y^>uPS8Ch_z?Dg^O2(%W2W#_^RX6`-DQ!Nz$?w zX8M4Qm_n#9GR4EZWa)5P*6Q))CzY3_Ps^cn6({qtJcKNGr>Fv~|c( zgVY`6go)4F#f@91W=$)bqMpd&*ZrDq_1Ej<*!+2JQ;*khfxx60leggtChGg@W)FLKf4B# z$`n+uDpO1B zCF7}ud66xTLzy3Ua+-lZt5?;z4|$qq4;fw$Y>iGk2RyhONiCBDG`HS>lVGmmgG;f( zg(ooh4ZC_xF{q!hyGUSB*=bhIiz5;y@ViJu1|f{C!s*I+7_55fVL3q43mrNnNTVC- zJWWzqf`M*{sNsbhMdp%AR)NM$qRl`J08AI!Xl}|lI3*540tf}}Pv3qn7oF-cWD6J{ zLrYSIUSJE7(GEqjQ>Jn3<2%0eDtQu3>LDoxm%4c$pXI`o3y$QBIc_-h(|V^p+6;_1 zsY{TCXYlERPlUf2NYpS)9$52E!dq!9X%Lh=iD?;7`mu^5JfcroIh@! z^FS@*QWR-nYWf~8d6DQg7?4kjXlqb{dJGFnY<2nRfpfF4kBI8@>We~v(DQBFvk+=A z)=Pujl{NT3NAKp2C`O{R)N-e?pTBWOLKs`pl>uF}KI|8xzkk@n#8AJ2t^9mK$U!fj zUKR_SUMy})4uJk6Hy~2TMq3RL9c;z4lF|Ioq{||8;TGl+p5itN4%_T@Li#gtY7L8o z6i8)Ox(IKNTETvP%|m2F#rPANiiyf)k-oiZgPM>!ePMEI?jA;{9yT34_^Xyp}Og_!(?CU( z;nxD4YE9@A8c_x4n4pwSXzFb& zd^o1e7_@K^$u@jSa$8jC#Uh?+q=fX04A7NIKkeSs;8%LTX+_Dx`bt<26XBB;-7%DPHo>% z1B5YHKSkbL?!I?2i4l##ZM@t|(hGi|7nVq-1SPSL^mn5P=c;p2aP{Q)JU zK0oCahRRH46q|}Aq3RuUP%Q7&ov9v4?x~74==M<7GxsA9KK@@2LIQ(vqUNGRT8yA2KR1x@EwG^8XYG=k2gyFk z#iW8dP%rYl5OJCt74DgK46=j4p-ijZK8HyVK;{-d zE`9Vt9`vCtr8(nSC+gEnL_z0fjUFB4Gj&$M@VXss{7O@!ZO@WJKgqVZnY8*6=zA$& ziHwGO1yAv3H|3dTaPjEpmoe%$zERNSiooHs1%Rr#gVT-pdXPp3J_jg?$j?EsYZL_( zk6NTion6TRQ%jNrn!qNuJkztuoyvU%emgHvsBZM}?lN-^r;^G~FeCM#cxR^e=|*?d z;9)8^V`}8Ld<}jHiMSYhFis;mvWS7xnAEX#LSNOV(d()`tX0R@4X7AH?jlG4NgPtZ zJJ_1HeR`5TwCE(nvKUyh0>RPk1I3di9W00C*KgnBY51OgR--GOHnD^AN-onhmw-Pj zsn)K!6(Se5oug}hE-4m?Oyjk$;9cHN|QJ<|o-{Agh_=Pu8HY z9<+u*vt{cG{s4^nkFj|6Ji)fx+7+4GTVg1Tu%LDf+L@iF2wzB0z#^5hfqAu)BB>=6 z!TLe({koi*K$3;r765sU4t@p3h8Hs!NXd)-J_GX^&F~e6iikotdjkZTpOg)TWgV66 zpFaiE-z2MdhRDo@rh=_u4+ObQPi797A3Zv313)UZ6wa1!GQ7>eM%=+bbAx%tS%9x zxgQ65!#Mx*N#OdZwBga$y%CT-$_kXV-W1<@VMLEcHZeJrd_ZRc3SU* z4iwx@y$|#ztCNm9mfjEX$IoBCheYNlZ$EweF$S9Lc#?m)2^RxMVKjjLaO^vKTu7Fe zBG*w;lo1KP%bkVP`~7fYm_sF94HN< zjU$>mkY*1sl@yL;pDr!BOXNzOt$A&Fjz6TZ;}5M3aAjZr1}$BQ2AJ;``wB2&z;g9= zHq63pmo5^*$(K}-0@(LLkCrnaw7!+By>Yj}v>`9R0ss&pOcDBjoKLLkJZ5Kpzqk}> zO}h$Ja(2pNANyVYQWiT=%lm=CKIk5elFLi!J)NF{pU!rWa||$zloKT3KjRFXA=Zc? zQxzX_sO5>LS{3Zct^;b6rRKpcv7A=bP&A$%+ldlRat$&)| z{e7^z_2b`#*Wc!y4+#3YYK!M{R$m#u+`(+LFOMV;1R$eHBM!30R%n`ViTu{FJO zdBEOESGX)BjcK13>71_cCE4oG%rx}OQyehGaOv!JQ*-pYE3uf~p1sDs@4$p>wvMyy z4)_nFf0{#M>c%?!Qi|$8%?*ed=$Jr$PBm23h7G1f7NVi=Jl61cYtezV#D5LUYE)Z+ z2IHS)MWrmKZ~Eq29z>T+6hmoBZ@`(S^+pX66_x0;EssRUhoPxqT`xtR;Yy>_kx!h> z4A8YhM;AV-R)p43k!h@apjb+FdJzT{s9^m#g^ZG}|1ia)W{5}eAld&?$EOMS-IKMimHq!@oG ze$8h@J-QcQcq&+6P#8_J8W>wjvfC6-*(IrWGK^gU(QptY>6~kkTmec=MN5NBO6-T0 z79>TF-oF7CJs((b<_t5U8#ixCj9lVnk`&7>+abl~opWmMyxk7)bDIDwg|~?(^vkWh zBoYaPDG4*@yonV5W{10mdacQ8qdT>w%W{B$);fVEWnK2B882bLV)b9u>OotzUqyAb z3W|Nja0LPS<&AYH~Z7?x)ezwq!;|G@vq))s(GJHDItg;iZek87X?4g7=hAi(Xfpz1c#g30;n*9V*y z3}LZ|*rKZs`8$Ig{+;Xsiz)h6gc;gJ+; zl{ya2-h`M!G4c-abIH*D@uWKQw#-0N&=tN|-mYk5Sc?vVQh+5a;DK|z+rp&=-yV%n zV1$0*wZ`gf%HaDEExqu8MWHM!2(R~cE%W&RjSl{{tHDN&oZzmnin(2&k`)Zf#2=6f3SS0jK>Vw%E)LQGkLgq}} zuft6Ryh=6?YO|A7mD@?!^bnupb8lRY{+=S{!O_N$P;4+}=ca@F)*D4n{GQCV^>6{U zFOvGnI$o@nTjEp9H<7&$gGC3;!!Hz{g^U4*x1GBtKke{Fk)vk$vt0QVj-w@c^1*s> z7nK_!mIvF(#4sf4Jz%9)u#*bQ&svY(kb@};g;3NQ6z^=T)~W%TZDAc2S!jVZ^I>xH z+wf);okUs1^QHb=p4rNRdmpuv#5wy8;EvREG%we&?mW$Vf3WbxVekp;*k(ISSMihl z7G6n`r)Jm~(G%XY?WPy_yLY3PupN3AEAiS&G_|}y%0H4o7KpW4+8Vb$YY-v}sEuW& zj!V;id^6%$&wWBwk=N{59Sy)Qv=mA)MruJAfNgp=wr@kOAI;)>7-HgAKi;<4vKIUF5n#j=QtBd7jqdS}vRC!w#b| zM$Zu{Q%#gZ!CR&wh7TYFz1}9`aL{F%W(Y7%u$z+Vg%w$Zk$j+W$_x9$p#2-+;7k34 z0Z@MS^n9_Xm`dRoN^TAeYMCX!Y_@AG`KEoc02q&0BEK^mn za$4^(OF!gy}#6UkZub>mM|od;JmKeHz|=170y8 zIytwe2Ubf#X4p%m6`RiB^qm@e+cLoFiZn5)o-H>3On*%e?X+cfJVbQm`L^^C+$?Dt zcDLY-klD4(uBnB0D=|!;An-JH&=ha7{y6cPXE+BXzFv}o5}5kNduRxdlh7Ehqe6kv z(cDHn=Z%Sc4arbR5{bgk-62MwUF~h4@RgtELltXA3Q0tW=-9Kqp>(h*xOSA$<+Z*7 znt!@c4T zZ5a!iU;!nEUa8eD`fvx@Zo|*r#oeaj9XO~ueQ~O-QPI@Sh+lHcpLPEz-~Ze~HgY_u zk7v9U@@UKM2e}ul?FOd8Wh@Yv0rUL)wVy(|Wv0atyvvIoqJ`imuEBMhC8Dk>_)@p- z8P>ZG+1dP^z`zE-xyX_4uqj?RN=_g4(9R`aeU%{j1AX@b55$}LlSFFD$|#2T@!%L zuQ0<98K(H{S4u^Ml-^yE`_0Bu_jtA*suCzC`xYRVeJ0>wosr0?Qxa=4^b94)17;IL zA&6mO6(yg)dN&dkI`rUCo<&4}4|eNzciQXl#=84}p;suo;FBcUQnhw4wl5m;0$k9&&9=CQHGweAVe%t(KnFdW@ zf5!)RHd0KU(ht+XP|><3`KmpL4V5Pba<;x8PLlK^$w7mrJ!}9ug2w1Mfrl=uZI|@0 zbqb+&9r5KdDG`ho-UzH#mUY(;vODFuI6eisu>-HyD`Y5Tiy4zbWrLxzY_t0WVL4*D z9`LD;7gs-iOy{#VQKb6aDp!E5D|yE9*dmu@)e?^~`%)F%2@*sD8B2(JcIl(*UMo{#vle!+TQz#GrR!ouB&4oN*jH`z7Zf_s~yr=r`1i$*5 zJyuB*h^D|xIqC8Neevx2C}$osSIQpgAeRfYsU_KHz|kIzL~p-C>~2=GKn2Qz6xY^h zpK`ZBxrA5iCGOCzAMK5oHE3~+&SvrJsa6XBM~f}ftezm0)CN_Tn5IhdKu?mOgsAGR z*7KC>?baUJvf%dFk@|D_FZ}tRAG+?4&B__eHz^3Njm7i!S+FDYfN_rvU6M_X9_--U zqC((KH~IlXO3AuMnSL2|w&tat#GkeX08ZNm9gxB=Mk4e?i1u{6y7g9IFJK0c$g3|& z8b|c(Pg-OR=+VQuB0^gcX?YikIzZy1(3y^4h)#jq=48=A4v7`omEYzCS9mmIcv!aQ zKaEkD^{o?gJM{6Vb0)?!3#_kuLDK+?J{3IJ9-d^GH+qv{s>00?uO`EW%2!nuRsBzr zPAOULsTtE+sC&u*Ua=IoOP#2=q54Jca)^FMm^_@rjJMvRM%&46l&V|VCGyo$!HMSa zHzs?^V~U(|Bn?p|t22Y)#}9xnkG!9C*36>`Oz21@=1-cTRM+yEudb_eWkxIIk;+jD=g3 zeSqz?%B@$0b&nL@T8c42>Nfh^k+h-T*rAj7@=l}UD2x98=VSQhC-PQ_eFv8115?ai zEs`zS!=x*(`5lDC14&U6X4?;QpWSf%$}4h~%0xa)I%FYEQ-s>n-P2@?3&bZ~9&S+&X5BwnQUWH;ks zgPIAo1ez6>ogHidoY7O9m+8!)3BPysAG9!XfnCcZe=s)DWd}aeqT@x*{O{fgifD{Okw)gy(R4D1g`a^&CttA88* z{a;xU08)`l1Ki;&CslJ!>6(Weg+X!0G)#}`WTxD+{2DKjP?=5wT9wpYk>KQf37m%2 zWjiEWsx2-#BNpz4#BWW2Li7AhvlJMubrYu^eJ8>bp}_~QZ42vWpNJ zTL!ngT;$5PEp`ZatrKMmgZLJUbPEtbP;3Mc@64Jt7gg{oFC!lLhAe?XblcD(rrlZU z&!Jh`qJbjSWVZ3MKM?yH#;uZ;Ahfvz)nKxbGvq9R$18BWSz!~@-jpiKl|Cddd}$f! zx=Asn10#?sil5-5h7N2=ML2N2LcJUuVny93hwosmc13)!PV!~C4M<+Dd)>t<5t_Z% zs>sfE&snZlxu7~gARxZ894?tNl9np!_V|I--AZS+E<6sFVMQU&y}0G``oh6Q)2>jy zUI*=VuIM(>#HViTa;QE46JqQ47k~a|LH?f~94y|7tc)b=*!&EKXzvvk5;|?|3xxBa zc4iz6$^Kktwz8y3b7u%E&V6%jTor;`AS3&e@b+U=puZxn`c7liyYfr&wV|VB zIbhUDf<#UG!8VWF#0oz>Q-tMC+xyWG;BY107RsUaF*qv-HnIi@c=BeV0e>Ztw3yq< zf1%|JxxizZX)BZ?*(o!Ufu`X%0Bvpzr)$RKbPkvlbLilF2NYPey#Vpl+TH4e2;bd? zN3+c??H~s2M-jod-?C81$hv)l940azyEJvao1Z3V4EII8@J?A$QPgbJ@mWbs4qwc zEkddlYTm9OaqhI%Yz_wVvg=_Q`eGCKN`=f;1vSEWJYrZ?^O^&f&JO5%=k)OU*-4v_ zU;ho-B8L*Z;&a$%wmElH%LHLsQzHo6_ypz912ot)|rDX)U0K@6X#;Vni zDwM%4bP@^K2X`EN+QfN7Aiq!5#V7mMuk^yXv{NRoslKJ%UrmG(Ufr%LG9vly=++0O z6#%a(U<~@+e9~b4yXj;u8jn8~P{0f3>!#t9P&hnvNXA1vt~Gc)1-?JP3%ZAp9OpQ9 zH8mzA3_W#p`1qsA`N{(UjD9%T8J}>8Pb7;=)~(IuiSMBL29Nrs3E6goBZetF@iKtU zagiJu;1S=Yo-p-&fi->G1FQ}_2ib=SfCj0)C(!XIi36!s$rTF52Y2LT;r1dqso8{~ zNwO)JC^polyg<%8|Ac4gS0Y7MlLAP2Ho<~9XYPGTpz0pV6y&?Bu#Enx$Em7nTm$b) znJP0zEEd;p@GNEY)a~1m!v6L%wlgvsBCEw@<(Ru{rwDu|t}s=pX=}g#w}(Eov12bd zI}kdG0O|E^uaeb>sB*f3?mK2=$mOSo8N(QnF3b67!lh8?$V0-`r3_7zw7oSzHRc`D z{V5$pa<5WEr)TW6)g>!)?9pBp{J~7|q2|;lL3B%Uq%OKG{2?u4vBBmu5LT2UJpkBiPvhI)4*w#fjXr(`KjTm2V|e{JRM&3cMvl}YR|F50=r@>` ztX8=iBv*4+BWIIMO5rKU15(&s>t#DVFcXqEc4k9i2@gwH zw1CI-ls0biw+zeGD&g2}VHDYXu&@~*)cvZs2{z#+Bb5zZnhre>3Mi;fRd!Wy=(L=Z zGY}s6O>iXqJ*=eiUSQvxFAUB;wy7vCs*WvL*s@gHl-qNzxwsBeZPuzJpnWOMYSX+! z`-tuz4WqN0O*C})?(Afx?K(B@HR1;t zUH0VkjSa--XNisSZ1a7O{s8l_%ie|;O5H&Cmj?{}Buu=m=0zul4KR$95}nv3y^t;I z=xg9HD?cY&x*%z<9T8o@K+NYVp!5wq7#nKDW%8q=!eXU^D1iuMVO-^T70)VlYkl9W zoj~L)ldbS)E?W&~~ z!Fr%)9(cBMLolncjO~g;il9dA42~+_F+|J-JLY-)Q!x85N#I{ztg=WYF!${7cI|MM zu+I45|zHgvAY^q<9uBbX~eh0v!P3_LWTUN3g zFDgf*_!qZXtlOnl+4#&8Dd!yQyrN{I8ag~VlH~n@SK3S1FOsx$N~17k7PQ*E`7wdS zxc3l!lJC6*ADcD88l4!s>~j8Fog`Zch55{ji>IOY6>Bel<(lDSbpc+wi39SQrjQ3P zAfvPvtY20dA0q}MUn2V$TJ|=V%>;e9@T8949R1!PGwoJ~z=t8yR`h8Cx&x|yQhR0- zE<00KJxGHKDKro_DotWZ;ci))kUh!}H5m6N<$c~Sc7mjGWIAD)~t|__nJea z5~!^(gi?YviAGbhRi!IF5>WQ>p<&B*bO5_rA71cNvPE7`qw)tmM^h>6-mymp+pAJC zAJ^j72-g5)-vRm{gcwWF8b{pTv{$v_!j4UueE^+4 z6G+5*MYAuASBuH!)owZvtJjuhzDw*M19WHBOJx@uZ5=hMFNSwR+vuj@s8Z6??bJ!` z>e?*bRq3Ndzile9fffNB>{SQCe(ozcp3|w!u`hJ8#jPfx76UE$a%|5*t!Gel*A1qg z>bq=5VoWXy*`$iZ?kw&Ix<^urYs@|{w#oMqsACUk{g@1F59v=rIL=a5?MUruB=Yg| zx39wM?}?<<&plGi=6d;(f{4w<~RYuDfZR~an@4UT+>CN4iYm7)5D0yQ5q^3 z~}3Xme+HQwm1$3>pJ+@gTaMi4WX2{`XWu7k=!^c5ETQ**|-v9yOR)w zjCJS89&Z%m&ReW1CM%Vy;o9^b(nM>IUq6*H z0pRS{pS=Ta=Lwun(i|P6*oIXuk0N|`Yn6~jjH3F*=Do5))>~qO#UpvR2Jga|cF4^7 zfl7?9ah2z%Xqyr^U~-sH1bYmcK}YDhMN+0V7R?FhE*8(2CrJ~@;N0cj&aa?KE(aG5 z+xuXbOT9A`R7IFbm25F!I|JIuhN><|VR3`K=m2FT_pHTN+ybjw8?AB^!px7tMN5QZ zfk`a@sk2B*nD*Op9Ez0fG}Lh0S6Z~TJjfVbZ`r|ci4Q*#ZS)ox(C zXCAz@W9ynk6P479c)HdEsbve1XqG>*Ku^(Iw34@DVz8TtfI6vF3;Ko7WMk2F4|n-b zHul>;!EEyrs1f}h1Aevi&_DB%q8c~Y9)`UMQn%4b;(g#_k-Gsvrgk)akV8qoJ|Tbn zQr6%S%Sc3>t?qP;hk*r5sZ{+!o$UcY@gdaHw44r1p^Tw&^JUrWY1ci`L&wNwG?HT6 zsP+$=#dVf4N|Tmk`{qds0{$D&Bb~^BLX#5%!;_>_y(bSN4Ie>+y2);m4Q&**O7829 zRDL+5;RrCF97EalYv~Q@0euH_qG#Gagx5cvKK`Fj;r`E(SG;J0UxG_81nv!b@@knt ze~~pR+aa{3N(OR)e1q89cVcg6h4oR4GC}(iJOhIL#PdCxHs0FFYd#{0ff=?HPDQ;BXO22pvh)#H99w5aONPgmFZi9 z$I)Hkb7t2JT4r=O$;$P2_C7GMs;{l&Z6#@ps_oe}DH7Q>1?ty<9U-;gWk-VATe5I( z(evlcjwyqz1DZ|Su4s+WQX?#lDkT@5tXS^U;BY}mywU)oC+QJ$?vAfuOg~{xD1{Ow zaT03W(U0)t)^e!SR!sH}{Djsf*OL?rtsL$fGjSyA7Y0V;1p7-1kc~mLTNPxvL`p?; zspSw?^=DX-1HjWz3U3Ugd?1AeY6*%G1mLvGsumg3`OG=_S)x)nGc;kD({SL#)gZ}t z5?$DsN1k`IXTUms*qQM)2t}ybtIDD5caUU(vS98z5%G>@BtZYR0FcR(Qiu47lKQqq zfe2;=z|*?8qpDmHM0%)$#5pjTR5?Y>!}6oYP3p*M z8(vpconcI?Hk0hPy^vBFc-AtQ1rj;*0%3t`B613j;kuG9>>KD#fdr_6o*F0KuNom5 z0yR^al%M=#hir9{@Ah$V;@oMyLZ#?g_TFNOH950J$Qdk3&avXP*q6Xz2; z6dN_{K_&2wZ`Q~VQdnmqf)E9wUp^yL8WC@t_fzQ=zo5FazZ1*gB-Sk$V|SX7m|fwQ zws*G-;w9TdjiKyOC=SK@*ih+L?>-LEmxR$v$K_n)YfR7Kpm#nW+)74?i;qw}7F!N5 zBCEZ%q-+=i&66*H>x^h;T9|;15cEVtW~ei<$0NL48GSEFcA%tg(4;X1$AxIV1R?N* z2e8iSA1;Pp7?{K0rrLE<*g&?BMlWL8-Rqh0bHjnKvzh2nuiB77suLYPy$X zN9p{4TM11g5CBc>C}S%8AP&04ofmUzB1IbM2d%fbH_!SO(X? zb@G`{Vcw~WGR%M@XkWzDEy_KKZfO-aqqbHV6lgWM=7?AF&cTH$DDhQ6Z;HsX-$(mz z-8-TgB>Jd8Z(@t(9yTkG?$ zQbU7#!=*Bo9lS)KQSB`}Vdu%~AGu`FnjaonwtX54sZ~M5`);>pzxw|qm!AoeDV$VmVbcj`ulQz{GLXxJGE9B(=$Io}q#(RgXm^>nM0{w8PTmSLi!lD3W@4jH!N?!d|3g zGMu*x*IHSz>z_HLvkeubI$$c9ER(GtRW`59?-n)Ktkm3wQqw^D4Yk&CA;OM3uA z;Q7uvmTFX>*R+7q<%f|YE{~7=y$3PuX_axL<$YckG?+O zj0Z}Hh3dHtt}h}F1HW3Wo8Z7jiWdANR9my`6ntuc9V^+eaDK4YsxWt&E`Siq_Om;0 zs&t&lvF>6-@?k=0SM!b)D|>>JG7(f_a<^bt`m*tG!7uO+_FO(d=?B0x=?KvHjeoWh*1=B?8!nRQkBoZfXR zcQ3RFoCj*zu7R-*t{b`>bPWfU*1`0;=ge{h{kFX%J#mpYc#&>|7fr$hwXkzjb4QJ& zZ9;>DKa_F?VB4;uW_EF4I<=_muHWWB>rBjRG0dSQQXW436cZsiw?jd9S17jdB0N9a z6M5I1%{o3LD<;fRY#zAFH4WWW5Xq42Jo}CD99Y)M{apMDFfquF0GDlk28lKh=V!o+ zfdgf8FZk|5C!gvj5?R3zA3}758XyyaNLxt%Vp1Sw#}GuHik&H_Aq? z%0=KD&|kmiZrw{u@ZVj6Y0W!ebw{VLBsa(1(%>>q>#j|tLVpWS_@!b2JEzbQN(q{o33uZErsjT#G-4caq4ilsWer7)JQheL9+NwTqhM@E=V9W zCRqFL#rRuR8s~zw_!;xcbb{TimfIZhv|Z@TXuH{$OO%cA^p2z3ffjMMLuP1fshUvfTBWv}odd4mV=N9&tU55R04v;pvoB&A=F*YF%iojBx$!+fG* z3;9lN%cg*=4e7jrnIRrO9h|VT4=b5g^F{&+HhVuJ zTV8kxGF?Hm>&z}%8I>y#9Z+`lz7s%xWV{qJ-isz?c!y(P<2oZt5ihNR6OF39oCtvV4mOlk zLJ;)Hl9fmQ@|`E9-JqjnKX5g*jdDv3h>n{BW__!{)E@Wvllctoi+cQ62NZurVsKsx zK=t~mzDf`S1_S7nvO@rH&6s9qE9I>MdSbS7W;?SFT-noE+CwpQ%UKqR^9uE@9J5}ed zU5!a643+t^TBwY!4z3lT`(q8GYj8=hy?DR7kHC<`5_mf0IGe9gr{%q2pV3OUBMM^p zm0Pb1Ui`~*G!^dUk>mQ&(-P9$?8{H}7Q>yvLGqB%^_*g^6x4VO87QB5m?P@i`oN#V z5dXjc|27a=pS*qg4O-jl@BVqf1?SSH_6Nkxj=p(hcmJBufOAK`X$E+M2u>3q@{j*K2B@kwEP9k` z2#oP?XtI0%e7oD#CX0HGC*{1QbwabYN$#5mwTmakGlJg?&&-~>kD3L_d3(ywbm}pk zC7opQeK!$m(N8L23rxJjN}wTUud`z8K_K}uoxOm2Qpwb6+Bsc$qNG9Vut;zLi3|!e z+3rgbcZH=0Q_eF?u4;Bsvsy(KR5gwpY?+dY=QNue+_Z>tN$PobRg4g1u%xq6U0gPZ zF(&YKq0-u>wN@Ec{$(t+6FsslNO&{WS^{$L-f^{{uV+n3^lylL1`yH(GZe6|3W$KO zLiGSLiQ2;C@UJKusGb!RcBt}sbNOL)QZxY(oZab+Y;7Gm`G=8e98a@yP+*El#R==! zDEiFfm+no=JpsK0rInX0*xh`peTp{!yz4^Qf|C5#ko4+ZDo%6f8%AM)j`MZfrZO zfVIFs7s@!}VPb&xLot7uv|1Zaqr^YCz$*>-&%uJIBG-dsU1}M*U&7`)ChG}he2Oe@tC$L(m~K%PR%*hz(F-W znue5!^N43=U5LP;dn}ih{jGg~gKrlZRUuGg_eq~IGDL^hz!*X7+lxM&D{PotMgotK zFeA;HbUx3&6jU{cv;8sCfv+Xp*upbJlp3~S&Kimu;+W#*sp~nS+zzHrE7vY(&!+~G z^>&j31MQtUNgsEIh{4oSLUc9AzxmE)E9XVw_1C11m<}s&a8!3RlZ>sM2?d#tX667n z(uWTsrz@Pb`;}v7ST5HvvYu#PAf-AgbuvSN1+l4zhJI6biqzDM&>mNm3auPt0Ncm06>Xp*=uo=}iGG zOAZifEs`)&JH=|1tPWlK$LZsDG2ep-%sjPbXh%pvzJ4^E^{ry-WX;sK%ETPwQ?S%x zUddOOCq?_s@-36jYu*jjeh}x7N>h0Wd}>e++L(w85E${jU&}$jkrb){R|92?;hgA<-*BBKbz+vnJbnl^rbNLzdb9v;f|ue2gZ>x(4xKz` z>G2ztIKV@MdYnZtHTYJm!chAAZi_O5v28&~okiYtWndn2H-|W>OYHzGewN1vw1tR+ zMf|e9>w}{}`FGd|9CF$BIz&vtg;jST2eAplV(Rm-d4?!4O%ildYmNEh=>2_gqD=16ynZiO1!nit=bVWA z__!9o<68Xg^znz#j#jV^U7V%JeY9ut+SvM#HBx$+u>~ZsnY=mDe_5*gsBJ_fT+6o5 zq7rg>j6>QxXSOl=5Wh#;XC?fz!!+nYgu+7(rhQ)W^BQ&$#sB7M(*CX7rmYY4+VP$9 z-4za0P{)z1tA%wLn`DbroF>AU@_d#}T>NFpK_p`UC@87K)Ik5tlx>}iu7*;}%5ynY zc562+7$`)bNc{G$CInsRiIbp8^6vV`>Xq(prwi zduH<5#67rFg?xE80YoTkeGXPDVz7Xbl`(iyH}A(cB%yvy$KoFc@bf--`|R}-8)v*E z2o6ggC)?=^ryD0fNlkLhe${JnQ;pNR1Tl6h~4mVT9mNVD-$4~Vpv+ilxu;=k)%H>Yy!)G1)JfZTHW@u!VSrllFU<1Hk4S+Avb~B9*XM; zz?2d>b^gGV2bKNO0u19>5EMk)7w(}E2FbSV)JnOC6KU{XCvOM8z#5gcu5 z!qo<8a*s>FzS#5&{*v3lxI@h`DJX#+7t8`+k}_UEwMk<}+b!0YO1LP;Vs9{A!X-KG zpGeTghHT^;g<+@q>k)?dJ6r+q~)7w=TIej3pnn5o~Jl#@cgNJ$pSis}{I4A56) zdpRdeghQ}x=90yGKcmCI}|2iNTrE?Z8OI(O>@LP#Q;R9{c+W~|_+tnYrE{J83A zb^fd7Xhu7}%J(d5>K(F0$&g(9Nsgqu05kxDavIyelR-mY^^u2Tx!>lDig}ruy|D6- zI3^v~kPraGJ{du>Wnf&;Vp}|bZ;s1}DM&fn&wG3%k+Cok0R3IJ3-=ECDF zE6)BVhWaojSFMVmP-_NBWxN+(=L|Wl7Y2UxVXiix&#G@GAWRwS(g#Us1MTYx+6L=< z08>D$za+oNZIKM|2FcYIe?xG;r29Hsw2})F7MKJNr5Tug!qzMj8>Jqn6*wGPXY2&{ zU(PAK{Jf+Tb1Hpcd7@ix@VoDN==MQ=Im2LL+3OV$PgfavtmVv$|k2 z1g+3pj;Kd!)sCO+^D}rvCHtGsz)hM#>_}Ng0-J9okKIdlndy0gwZ19 zZIaBb+U%%Lgd}e+&4M}KK*)UeP|%EmJlE?7y9JO~ta=P2bXgLxg3XyC{jH(0j|Sog zb&r~*K0#5#BbnXJ^Loq#aHq@F34s_}wYg(#KXDJux-?$B7ngnQ>~(DbM%gjFgrN4& z2x|wVzlYA+2J^lW!mSI(hQ| zou@x(ul)6QSq0~NYA5^phj7eA{P2 zdNF0PWr6?*UE|Of?sjNbW$12{+#5=``2u3sd;_}vopz$m;A!J~mV4q1HJDELW)Vj zB*Z9_bsz2z`YS2XhxCj}{*a?K5v9B=Q->NC&}onAwqLz{_5WbjYjwZPg`l8iCazZhp`&#+KU%EfJ`XF?AxWUOHR z%ykDr7=R^}zqjECMhTd5x_Bp;f7?ZJgW0EyFz>^yBGr|>?_I(it^OV6t@0tSJl#lp zxYFU5-sb3ii-W16ffFA=r)1)CxSp0k{D@+uk==1++iC#L#}@ONbsAU@L$=Y)*wQdx z&^RSoSILaBsK0*uqn3EDnJ)N}FiVzaZNp1; zaPw^IOq|2EpD8tjT5T}!%QB(&fgf*l&FS5)5V_@RIEzxzTm6W-(kg}yvFzHZ9}A%g zJ=|$@b^Nv%%Yyg-ACY%F#b(E>Y2Y0I(U+Ah1=;$uSO&-jaY03*}lw^)`X(cJF08c z4V{-X7u-Zpp>5}QkqdHYOXm2B!e|EZv=|czJ*SW zT3b|Qy9HP&050(i_4Hw|#(L5W4B{pvE1-_DoH-3eFs+)Fl3r9vMHuWN{gz9?oF1uZ z!ea-H!Sphrwt;qBoByG^k#MjDdfw0K#p8k|^8^B-ool&9R;51X?F6v~&TC=OG}#W2 zz_bBla#_d#7~qElTNe99dRcOv2K0N!=Xz#m^L$n@;{z<>8cd^1p$F^AI|x-vgJ1Bt z^XFux?NXA9BLAiIJOdoC6O*B%N7B8Z;jLP%W9@n$Jy7DPSmUBoJ{Mn)&E&O%%9Q%> zTh)}@0y`T>HS9+pq=VJ8%3kD~C3lNmZ3kBlaC%nwZ7^)R@Za1<($3Xg+K>rqQwCp6 zdUR*tcb0^<8$~v&4bfL1234lk0y(np-Ni8HY3{LBv+n+u+Kjl6(8)P0$_NH9_^z&x zFoJZ!XE1EH@_2^U6%ZiKZm_IwcR`VdPYhcMx1v8W(HL-1(LO6jfT>da^4W#Y&+6x5 z%tM%KOH8B6P^zjmoO_yyL6Flj+osTovyi*$J>~@k8^2va;Iae~dSk@#D@k3F9LPql zWRCo+vdofEgm34!pTGVf3oL#0_Pu;1O+fG3-+GCG8OFSyZUJL|7{D(P)ykY?!yV=m z&V>l>1tdktIZU334`2XTpi{teBnu2`#H-?}>_IO`aVnw|!-eY)M;bsL?Pda#>^wPr zBH9gCLo*@2jL=fk89hJ+C;lKZ``8NH!$o;b2nM(O{})|)Izl3iDVd;5w9R44$G$zkdBbCf;!H|LgVBcmERJehkSV+&=y4K6abJ;1!;j z4t+Pz$qv#|-Z5whpw_I&GcQ)#V#m4>E<{xT?>maKl+%0cH0+GH> zFd~-NZo`R5RU=u`+@3=>OLFXqD!I9Az7~ojn}#;by-^f)GF%bfM^}^pQ6)5PFqp+M zB5Srv5WYL}lSNY)PJ$$HN|h8O1dU8Z8zzs$XkY{?A*I!dl0IZhfsJf?nN_MnJEbWLcY{YUgxcVjd*zD< zsCSzn85UpzHQEwH>tJxns;D{3;-!FCGK(=yn3v>&3wZi|Ny7B{G*d>h zPIT`Y&>cn&>n!CHzCaoXk2Z)kHR3z%_N*IS{3 zkL+NOEU`M-+}H?{d9;eO6_rMa&@C)(@Iy%q>CjQzP(D!n2mI;-GW5`NTH~|ygq!!0 zQ0z`r9g=X{=*X^XvWxd9yM{t;tojpWfvH5ake|vFRx6znuw#b`+k;BqW#N=;l{uCp zr%6wKyM?Ys{X({$86_vl_;;Vb{xZB868vN&|Nlqgm0r@(@9J?_s>Te*DKX;==FswS zURCl_{!r4u5cN(9S3T|jC@wN!lh|$c>!^qeObc-oX-pc)O!<2fS)hksl8EK$wyeJ;FExSgLpelLGFh_%+5S z{2kV+9o9nc?azPp_M7luc#|P7emPvW5i11e7SG%8~m)LNW-89T~~X9lgNW^fgrJ7GD+TYH6eZTm&AcvyTNJf3CnC zw!0NHe5k+-l4;gVk$R$nQwBiicATYwW4JjzkE!~=qKXSwN+`mWQ=VgtrPM_cFkOhGO39kSdAyRS zP*d%%)a}{ z>!)v@r(c8o_Js|s?%)UC-PKC<4CM!A&9^I}JiP{Bu_Yn`g(%5567*|Nq+sfT^VesE z^~vm++aUs-64>v2Y0rx8m{?L3fhJOtI8ewPVjt@60OO`^5fE z04j-*4e)rQuDkkLZ%_L1NFkA%Z2jj+RJO)2i6*ff5YbLTFzHaK78!HpvBQo8AZ_hK z(W7cOzf)Bdr5R3h7L0Igc!4=(`lf{xJ?(qK;2(YWcaEQQ>=53*$?tyr`g3{*84v%< z*B{Zt;}LwS2xZGTxWuH~}Dz@jUk3(gWC$khw zm$`&Bnb)Ymc9X~`73*~;9T7rf7|i!}`A4X1^{NrSk^@r*F1(uH4rg22VZT`<2at#S zD%bxRs6;5FT5N|d7oF)UIMZbCdj+g<1jAf0a|1A|7d2-qc)9KhHNO%sQj9m3L0o`- zgpQHz@~-|TBXm^kxl%r(d$zqN0n|fncFYSaT~<>J;yIhey4H9LSPrKu$gQI)V;c+P zIz8)*nKI=n(I%(Huz7v=f-UYv^0X|1@5MTaXAapUiI^-mE>Snr^KYW znnj;^suroJTJlq0-t$U@wdcSb@)CV|{G!`d)k@r8zQ_&$lF>x-RNy%itE6S>LR}7c zO~Xm!=5^`-oABx^mr|!mh+U+0K(hl8H>gGf!Q4*3u}}-T)xyJd-HH-A=<;0*@rY== zX_Cb(WI?YnaWo4DI6f&@2IGmH=v)snHC78}HX;O}rF(Ko=p}Lqy8Wa$@b z?qpq~+P~RlQtlLI=y)R~0Tf$rd0UQEN7kq3I0s-1SFF+FyaW$2mSQ^~Nzm13Z5j{*gFPlh4bkJ!sJAj9zBhEM3wZ>PSTJ^?+C)|8 z5s|!8%$n7>NX(p?2XZl^y_7K=kmu3+82GXSyeb0vCJSc}N(IC|doN0zmtD~oah@ifPC&+BFLgb&; z__xdbQ0p_IHX-Rn<+2KL0qseRc#c`|2>C@VeinvQ2wnmac`35|F=}Sk*Tu+VhC;Bt zypx*dYp}>Z%Xr_oy1T+%-9^zLC5^P?$x3n@CJ@JfMM)zW38NxAe+V^3Vpt-qT2KB4 zON9J6sLfMasb*C@H>tw%QwqMJGKP=UB-0c~?V+&rZB+39yZmFWo6_o}NE2;jXFu#6 z`4Cs_glyw2cc<%zE72Ksb~dXt@thV(psbG0>m#mG2cJyU=t%SE9wwTc9{iTgLYfNc zuQnpOJo6`6mC`aZnA^m3o)iy9m;ta2Rvcl5Y!Bq5AV9+0rORjY+H(edlV=%<83*x> zV=WJ@PL}N3U(H-y>j--yTQ)|JZN=D?Zf-y%w)SjIt|}#$Z_P@buOGkuGVn$E>X)y7 z#NtPPOJDgUeEWA=qDZB~_}Z#49>v^XROeZ*$BgS_jl@<-vG-~}=kM#9b@6JC4T+dK zkuh~x2%={b)n0m<1B3d;E+vGN(szH78%p7S3H1Y?ssbB2JMPdhO4o8y;LWP!dEeD$ ztwZ410^wm$LS%LV(e?WZV_m`Im?8tP@ zUIM2z&k%By<}rm-m{Apyr%-LNQh4MRWG|(~h-1ORPdhe}8o@}RUulI2Bz>19k~t`T znHrEtOx9T{y6Tie(5_{nojKR+)6CN(MZOtu!%&KY8}*8G-Zse8{j>rF$OmSKH3k@0 zh3GRvcg1jlaDN@8k(q82flX2-N-#q2Ogk2Eu&Clpr&P6DF)%jx3+~Y;1qAUCp*qwx zZ>2LOYJ?6_n!Wl9rTaNOCmdCJ*Qrw2+Bol9(;Ud9_I`sphkXY)M!%%i2g>wOz2gvK^g zC^1bjs|EHxs$X^fuu}i1- zEZ2mlt_$5RckFXocC`5Ri%)#V;O(NSV@bSnz|-2n+2SzIN;L28wE)G?_T**?8@Q4R z0J9t&AWb1VAPEv@Q(~EwjXnCs={p7eEzy>mD9?AduKqon1w;6NU(M912a-toACoHR zsw|hTt0#y3!IV@kW5yKs1z}@sU)2=|Dg)a{dAw8# z7rDodNWIRj(#F>3BLo2Uio&sc`tBdzeuQah8T~o$##BpZTJa-Ybv2Om*|zkXH727_ z%a8PT&kHC}%uMQcAXxMYr9YcG92qYb`)N)}7U_wPkD$P$boWrEY{aXgX|+2C>h47! zf^@5{$+*aYV}Smv{|I*)0Ntx>DBBzP;0KwUY%A16jY`@DoKx*TUwiP3DXQH{^$M%$ zi9I1jnB8~5e|*5SDl0jb?&_Ntps2Zi%yGTUV(B-cx&668a7=m)l5bwU%Dp9b=4U+)&qT8twR@N!ooSdlsBfNcl$`#?&NM4`4 ze*X6Bcb~p}_3ht#C4$8aJqsj1giIc{7BwV!9jd;d8h| zf*MM|q$2xSPJZmVoJhHL-yOqF$rE>?bF?`_m>azo~cLI z+K{!ukX)yDBg$C`SrQx=(#r*gQI&G&)tYX>^wyi6ndzclZ+Go|Ep-wR-@o2;%S`V&qO z$Hr~AY7*C^B!Ku)qSC@_!(%e(wemAj2&D>-N_RpK-A|9el87c3Z5C`eCqLJeZ~5=u zer5&vH{rWq`0o4sU!9f;wxyK(X{%s09jFd>5P)=%eLxT@?Y>3KuXrqZCCa5(!kh)W~bpUtP+VE&Q zqZ`a6EKZ)lLnudxy?}PgEkZU)DHMxOsW8=aMdePRa8%^4dI*zQGD9$Sv$>K_G?olB zcq-6eZK3cV-jiImp8}->$M5LF{QA4Ur@#H9w;#Rz2bgStgMIe)qt{>Qmp+k> zb(&_?jIJ>T_gE>{^I>mb9KR$yz!smK;!12L9G~DqRL~80k^g||l{3VvHQ-aoJ&xG2 z^}P?Fa3&hAM?h1e zvF!TF&$yI2Q>8AwxVMAmNIT8l(ucKl$v9O=l|b#z26FngHe|OE^p9uzsI2y*ydIY> zm#UvO6Y_Ywqeu*{i7GK@w=@C2JUh{U75?JCrrQ(l3L4{D#iBy@bkSwh5_>Ku~>EZrl{yA5S;WyJ6%Owl->Ijl_JPIXh}}4j;ha)QR8@;0yceQE)% z5NH+fE$hp7pTGY0?L*)nU%v?NzIgrU?U$@5?);A*hw{=O=l0BI2pltent*y)rYegA zNC^L6FM9Tgka2_;LasnUN!(w{$?FVeqV0cZlmxd1)$2I1;^5S=IP(Wo2Qy!>?+xO% z_PmxecHUTMyybpFhX7S?ryJ45${DHRPHLvttEC)Z2koKgP`s(6Mlu83oXgNhwBj}} zhY!74V=`tU66%)E@M+R6%~+X2TdFMVhVHWs#P@`ZsXA#K`cr9qhu!Q3TX#7N9hvc4 zLdRRA!4}J?M|4<$comqPSIY$>)Iie97T$k$!YYjXBOTQGlNq+$;nIAH7ZNa0^Efcz zmV@O008x;tfb|;I=XG*ryj_rFNxX|2w&N%v;pia|&Hcz56?Bt(sqzFI!$j%aEVxN0 zLx`6=+6OpdJ@{yqBZROkfFwO&8(3+(jGI=Plr1lHwgL#>g54$L&x!1r0+}b;6)n)u zg60!(7z%%;6z>lBwH=PN+wv{F(?WYgf(UchPvjn>9N8XJL^fHx&ZlBwHSrp_f9f+}*aHpIIfiNzK3XL7(mj9HHfI49DvB zGV;)%Rz2C%p(~_Chz`Rn-Nf-Eg#*LK*Iz1};Y6yd9XF(Dl=FIRj+R6)bd@f77w z=yRFC8H|j5sEJ92h9<(I^uf;zd$T2`G6TRM3?S7OL;`*cn}&~JA@nZ*RQ-$jnL=t^ zu2M!50_PoVj;5wu}Y$d*^tQqf_E9J91r zuZ`-p+g=)=>MZ$t(eZ?lfBAvMEl?Ap(`131j3=e%2ApAgoN=qNKQfqiFWg@9Ak}&Q zpxS3UiU6swt*TLs5eK;-X&PGzD^+8rJit-TutiC{P@m6^A!?H;@e2#-3)r>@)$7Un zSS=sDctzPp75}AZ!ywmP8b___TB>QdNcC6A;RJqLRaZ>wqFBNT&C;zQ7 zmQu(VC3`06@=jVY0`(zb5CP_(_rfxrBx@P^^!V`l&@GTI-=X;U+E_eCMnZ?h0T4wX!dUUjEq=^oC)onw`+stlIJ zfOX)MhzKv8+z;2gd?ewC6Hxdr6{}@E$&669 zV|kBtg&{8dsb8j6)lIF&g{&R7KI??Sqjz3MwOiI0vXndQ9LZmeeT_1qjgF-G&L4Y2GdcIYZq7UMf?1J5tBNefeYqEbY-1}-RC=Np*l5DypvN#V_9gkgLUTVytJdenKL-$E3 ze?HDpQ;x_j!@Hzoo(oU{-nSve$T1XhXqinU8=1cD#x2AN5`0xY3^o7Tc!yjua$iO* zuM6l%8!RJP$VjnbtHXAY|5z1_u#u&>2n=!7%m#517o;yMKghFc&X%@bUlh4wRS(>4 zEoRFB2lf{$v6Xi@t2683l6_l3)%HY)_LDk>|IkD#K&@Y4LQS~)4Vt^0E922I2Mz{4=@;~qaCKXi28MlC0N$N>_%9T0paSNEJrLedMK2%q1wJoo~<-t;yRC>k& zFS-Rd!|38r3tAPPADkFN1?<-uPvoWQ1FM>1b3;Nz78l_l^sixH$g!@e= za0KboKsMu~gT^S?CtgtZMDIkVZ%Wv|rEWcpz7Snti`p$eiCb<*OfuZT zRknmOh}Wt%^OUur;MO!ikqx}DeSv1LM9jsJ6h7aCX_TX@(V=IhR%NqA3kt zO{7iC&QTua8PiiR0kS6tQ0uB(8DV(Vt?MlywJtx@g9|RT=8mOCMv$&P8>c-EDp=xO zl*eitq64Byu_h|u20QbTH@X|Im?#o<3p6SfM%pI0zZjT&H{+94e4r$El}uewb);9@ zC_i=bO7~q5Kuk`FAAsUNB$nXY@w-7hNNzPs-ErhRaRO6(oQ%^}Ky|)w{(`M*e`R*J z=&621o3Dek&S&(pHUX~U;zWR*X=GDdQ#xKk`QXmyY(2ozvwM1kVJ1v02BN@JJh_~X z)!%b31b8(#T!|ZI4+){I7*_U<2ng*VC&n+*a=ROL0gX?Ob*826JpHWiV&4Y5sv!R>9}4r{VEL zDylW>&d`ZrU&u=ZCZX1norO-1USV zmsa`|Plp#QcUmjF&eALCZ+xFW14%Zs%m+pEqLd-W(Il#Qu%Fnzszg9eFl)Dn??$9} zpGbCt6em_kTo?7Rrk21}H5hpsF<{x2tWAkJrVck+mjXC|QoyfW=Z#Rsr&(!hcknDS3w|BVy2-`nrs*zdo4U&Hi=uiqR>idJg$nHl{;7x<%T zuq>8JcQ>vE3=Yz;&#u+|Bqp})5>{xKl$rqmKO2J0*12;Hw6%ljSLJx=&CwhSpjDN_ zFJKELkMGq<PJN!p!(R)e)0??#$?K@_` zMTrfMl%ln+{h|Ksa|1c{_15Y5d%N2Z>j*3*+X(e7s>cnzfzIU0X%2O*j15ln&z3a$ zLN(Ux>a5uOIYtz$E=+U$eU#qaFJ6O6baFGQrU23v`~px!%LvO9LVKa|2RvqVs#@wN z3yqDAk;q7%h=dZe*OxN$1|kc*iVA~1tW*Y|OwLf=4qW#p!v4r?b5Ve@gc$>q^axROriVnxhpq!D%Y#ao zM2c!Q`Z@d!snZTHZbNy@6*!0r5K|~}DWU5Kc}8>^5y8U;rH=PHWfivc#Mw0CD@MVu z(yf`6URga0;OdyV$fK(M57-WMcW(-oq&CbTzK#dl(28VI?1%>zAxnG&pQfzEeuvf< zyu$XxZ02OR$s@H7n3?B^a{DuQ&>h*y6MpL}pTV|OW_ zh$|S)*z&26QibAew{TqKleR7?CfR$N8f=TO!y_IH8zZN-_q`K}F*C7scJb`GWRO!_ zyGn9CFi7eUX=i7wh*FwiJpJ*UIz2bg&OlWufM>r5JrDM9@Ufz?^;J#KA9#O zjZ5jx6^U|)e89Sna+Y2Q7Labtjr)>yj%)tPkykSW`V5RY&pYGX^F+NgnAD-g2UMo*aH8&eWj2m(T>OMQe(stWaahh&0 zfxQtSf(8GRgk`N|&7dXptAx`%xH2%rI-r%5gNlmtRC$Wh@TCrx;MyWTY^B$yy>bQN==H72cR71vAe``s#BIS(}|jTH(E zYt2DbuxJQKfGd5s5@)22F&VZ7VZ69Y(i_Q8z821d(Q|)MOcOHv6BA`XhBH2PQ2&L7z!T{c#uwUj1iE~{05y@_pVVpTc7eW( zJDa50Un50%xufj!HQW^w9SW3V`4Cn_P|VoIOO)V+nuR$c2ABN6NLdM)L;~?rf%uLU zJ`L0Z4O}bG#uA=jR$LHgIA9vF*PEdOGnA)Byi`pfCpg|&mZ6b0851ll_jFQT3R_xW zV{N-@Jh^gK0VQM7mVQB6P$D2C zVrqxi6Im{hvmYVwESGg`$qXCz9#Rlqw++*R#}bjXViz9epYRR=7El-=aq6$#FnOF2 zMk03l`b7y}n>!wHma*QPkfr`x%8B608n`YSFW*B6-06el7HFyVgohT;hJ-MmRJCN9 zeulY(R3yKB`$X%Kx8I_N{yMNHh^`oZj8^F$u~(5;ee*0&Ke?ulNrh4C%LdvgHA!fw z0Yk;oy$N*tNwvYXAq3K;Cv{!;@C_VAkanGI+3-poWw*4B-cpLWMeW#N5yI{?F<eR1Ye9RwrTeJ}iCX8x1j6h{O7w~G4TdkLO|@#8QLV0cGIa3* z66|~g&H(@+AMCX^{zC;;J<4L+b?cVWziMB^+copZEc@W~6}AR$lms+gW1n@_k(*Cauz6I8 zyJDvM+?EvEh+-=ah2O!S>N{<{vado7@pY2hn~rmZ=y^&4f)!`oU|8*20lZ@~rgUN@ zb1`)IKF{e<>C}Rp<3Fqv;|aWVs=R*feTrU{!>sx3mR@t|B z2aeoVH0ZRU&OobOFj`3#0{f1IwOk93Lm^@%g*gFH5|iX}A|qcXiX9;S$&o74f&L)4 z_eZblyVBSDg;q;gdoq%twIsiJI!XOVzG>AX)}1}1XHZa2`n(O$OYNnhHfmDdJfv(J zI`}}IRbLZOO&;bsyH!?YsPfRTDypheon32Jv^tX8adVhLvCF3e{oeYl0@Jgg!v?!i z6$HDdd{*Uwvy4{E|)vIv<0N#SPPF{C?(bUjc5iP6ZK&WpZ@RFGP=M$0gro zx`KdFP5a$3DLnuy@_V<84XCa5L`(1~9-I&WRA&#if@`;=8T|QqDDc&5QWm~rfS~4z z(weMVLC#9Il_JgkO19lsL0eQ1@$SNHQdT$no-5vrn8A+&9vdB!j;zc>7`2kHL52|MQ7kT#_WZPfmc@lg@sAs53`yYFW6@e|yCbz}~^+uUDY6UcVq`}4v{*`i(YAn!3 zhyv?*iFWgNu@nNk`tiW@Wz;cEy2?dP3-{dbg)6b?K5UQ@X(B9OomF@cXm!NrH7e~Y z6P#2np3=&-QhZg&eFwhFvh6UWjV||R&}*?rRbvSn-r1XxCIbI#i4ql1;r=>z%=uY| zfwY+Y%OT@-?HqxOdXig4xP4CBX{N6>ft-!pl+0r>I5>T&cJmHQLuhx7Q6w}sqQ#`S% z>kN%hPeMv*!VuX)uX;kel5Hq#);MYS!v?!gKYqI1I#-ln&INZn!CIoCvD)Nt#({zZ zgJd$f0MY?qN+l=qs^(znc!t${=iFsbkvPC;5;_U|oPG;kYqP{rPI2GK-%mxge#Vzv z@?pJ}hT}Xa(j~6y1F~^)ch4$XSog+iYQ}CoTaXwk2jY~S+_nCeQM@Z^#?(1(-JmO< ziZCOXE7*v##;roliZ!;?S7_|m+sMJ2v0<~+KZc#HW4b>z`~_@x+)9N)ae!oURAI=~ zjg>BCPr9wR43OSshp}4rQK{JUsyD4aY4xu~Wih?zCE356^*es``kTNP{5}2YzrFqz z4pR3#@K)6}G-7y!eWHjd8_;JkLxwp+@#5S3T{nC-li07$3Q+OR)x~Jh!}*#lhQ~6w zxtJsirz=SvdyQEU5>qH=_|NZ&PC_6X90hEEh}Flwvc>&4aWAlJA=750T>2AszW~8K zNqbmF_0!~0S*gZ|9)4pMk1KJ_^2#NTlt4@xMZVllQ; z-qNl&b&#^GBqc`U4wv&@hHMA?0RT|x%1iejt8^OVu*w0?mp|(Yq1&ei?F|$(5R?iR ze!T_iTu3wC=(BCO;3o`cIGK`v;@;`@%I?R2l|*)q85})=5xxt2Hi`$1tBw`H9+8jb zgBGbDvRz!GG3Dd~R9^$-(niQ~q}O4#;tU;i$JjOjAhbzKOw!Ws!jws~`q4SO2Xz)J zA9!jxB5JfX2&7ejo<2}s|1P|Kb~Z~vu~(S-DApNn;Rt~Mdn^E4qthSOPG}P=H1gDV z9V@x$6upbpp%$hve(n^_P;gYUhaT?P@)=`P-B;Mly1x(F7YMxizN^R1kE+Wz{d7u3 z2h&~4fxu#~kxt^7+ zuMz|&@ct=7ubOmpc`L3PG_U|rWp-0zvzpmOdAaCA{XFxff(BIo=et; zRKodCSv1n$0S;|@wr<@~d~=6_^23<~l7l6PZG-c<+47C{*L7$pJ2=87k^ z;kkqIrCW0nw8-~BN3)^m-3`8+NS9I{4CoBnu^a5h(v{Y0>3#vjWJAhMH4fKy=-3HF@@SJKHoi@q9Z!s4C7sO18)zcY z5*1wo6ZC;;<&1)eN z;Yf>Fef?18tf`S=)I(3HwpUpfatFag-H96q$YkUhg2^43!CLab=s<_r@?7nG+GwD{ zxoIgUwL|elKl~D~t}J+Z?wI3Ykq|>fKE6PF`_vK0?unw9IvIA?YQXkUdt^25!cf2^NEB@H z%QX-RpWfs1!CdXoQ*7PF0vi=Kxvi&#hQ0q=_}@J4KYFalhK(z)(pbFzr+ zyAO7o2X4hn%+Xj9jM}=QT>xG4#g5m6m6KAA(t*-Z;TkzK!9abWJ&10o0ba^05zMJ< zsFehjvA9H&w%d&hM}O&RDXsd{L{C>#S+!3)oaa!hTRh#0>K64y@g&JfA`BTDlKUnd z+Loms6(~d=Y1+lv7TBUg0h$J{Dgc{v?b{OwVokdi1C+h|B=xuHp+;@jPgTnfYdY4c z!Zx4V8z_TI#(+3bgh!6mnG+-|AiiQ;viQjMJR|hBT4@a$!mRB!t4l!giah!1kS99C z-h6O~enTS?V97jl@7KUwKn=y>!`g4K)+u+8;Z$f_Dhp$P@UJT3j$4QYT+(7{x|64R5B4BdbD-SCj-~}jAL1QRFlK*eDK9QR z2>3N6-&(z0H#{0;7=5mlrhFI|-( zkp56k%nK0AmW|}n29;&vd)N|Fu6j8Uh$IVk3$=Ql4ec^c92yQuHqFFNnTY_8i*Zo%Z!AGRKIThAukm8ZR1D(d0ht2#dz>kTB{=m z=z*Do1*xel19hOw*!9s}xL@EqtiEq{yC7_xJ}Cx=h93UHgVftEDK7r=*KaOLh(5Rm z-Q*#!7hj6D(p61r3iRNxcflM~^2I{-v?5jwJyT*$W#!r7MzIo*-ZK`)b#1^zp#6D| zp@|CirIWU(76v5Y<(f=Oj$|wg3vNdnoX~&DT;!w$7$5CkCW6Cb%0Oi zGHO#k^E;BeolPit-!b#P5+f+zW-Zrwg1{gvtia{9j=saDH#dC&iI;`a7G3}bT(PQD za6lCxI#)3sWPVnkMV(>8l?YAtekgo@BTvaKVmEQeRofkzvFOGwy~c#67&MUkpc*G} z+&PYf3bCsSRXaqs+=RsUEl^rCl*?B1WrwctF5!PJ4(mROiL+P?uPIW5mdEJvg&bS; zbJKT!8s7c=>u1<$pmshlAr?U1@Oq?7bB7 zmRp|_6Qt*)Kq{xr0p1w!5ncn;vy*Vj+Dg#{76514axF_+AHj+hunm>mk>jzuz>z$e zHb~M6#s^8H>`eDbHH*5-sB>{dIv1msZwa`q3r)G)@lza?#sWYG0dGkq!Kx@&W?Lby zBjhAa9Ucr!@DO$+)3?u=Tz(P2&r~l~ zbKJc=Vsx>WyVTc&OApz017_^hb11G3P65T@RF%v-{E{BwMao33N@vwoqqjV&W`cRa zyB!LNcfi=#)2OakCvpXP8o5Wv_6?qS^9-uwhC*IwCKIyTd`t$#Kun70z6eiRJJ~l^ zyHFS8-4#OPvjXoFR+YX0f|(`twbBYo25Yd| zEt72_W$9)10|X!1VP~;MYAd>*hEKz%;ZM@BmB7FQ-1u#RPYJ=9gE{ZB>~v$ z71FO`bE02PHiE|ZSg{OTBf~14+MCthtLixGY|Q7ne4j@r9D#NL7vr?EurJDO=Y0ml zqH|nh?QDL#wZCR*kwufk+ZXul^3rjQ1`-+o9g<3>9VQA09in$zb}f%5w@gR zM-ULDYnP2s9v$;F%2Ogy#vP+Odo9iDzUqdoU}e*&qX{)Vu`DE%uMK_rkyV+_KI=81 zRjhrFyOLJ;U(}LkPzZT!sgY~#&om`0v=gh~Vkgge@>iH>iCOh~8E8oc<;ElRwip^nD-Vp$_h6a>91+<_b+ds1bOkR%e#LJRzvRLh3lGqo|TNroEbdk0%Q#IF%iE3 zU_i~7lKVjr1AmcXjgnQ;1(crw*Zb7Or_KKg4vmD-3MQQPCsLHngfq@6^G^48fD~;_k$^i!Yb9+QP)zS9B?0q^E*+Dq+T@~{TPB>!v4&l3%l6PuL z4(-Big~Qaqmf}fCnU#kw`Dqr_Lv4H}xvJMo)wv0CH^M>lJk))_Qb#1> zurVdWWV|if~JR@vZ>sBN2Y!Xz$`Hl3qETud>T%xx8SMJd$x+ z;)qla?Cq|Bf{#ewY%3sFs?F5rH60X_FEXc8#OTt95n{1 z^%0I_aRod9;1_mhrz@FjatIWB9g*!NEF3xWM@+rJ26A~RxjUpODE`e})+q5HDKvJN zjq+U6@DyKR6BZJbH^c8cC^vWNq)bK$MmTO2&?Y7+{eh7U*`8i?0jQj-lk`O$<)nRp zLt9arGOc1+xGe{K9kAyv98or+6HJu?_qkAe?m6fIEq|(MVtc%F;OcU@yFpZKi|FuF z!ulKHS0IelTy*Koc2J&lsvJtRf8NgAy|2v@5a&C8^_St>zfJExeET|l`}e31yF{Kx2XtQ>P1Q~^~z$z_{(98kh2K7wn6N<& z1B*^}$&y=fcgksTXVnkFltiYkZUsHNXyV-amTQzB*NUJgq#EubcBF=f9LO<3wP#Tx zID(?$m5A#LtX6vL=MVX|s#gEz5hfmY)5aB$rl#@Eny= z(CWs;I_Xw@+?#1iY_Os~ToVH{=5;=45}D~hy%RWtA*3x4ppAV7dZ8XkK96Vq$JVmQZJ zL0&DMB-JU#yUXi9Y|OXI2O!Fj$N{eis=`k<9s#XvI-c8!W~v1oOGtC?r)qbJRT+o140go9kOZwfbi z+#9SDx5bSkV_kO&Hh=)UjZA8^(Ylh_I9#my;(;BMpV;N1%rmuHE_{(F*KEiDwk_;X zy|g$56d^2?7bv43*q+?M4I{Kwz}{7oS|EU9Z7TpKPm}!W-Bcmvg+%BX6hiB`6oBqv zpSgYxo9n1-P!J=SVP@EbCTvM0Vc5wl0Q5{J1Cfi_#8#Gk$Wh`=9iItgilZVm!!#V& z&#D?2C^Uo1q7XNT0q-Uq5IXv>FZWn;L%yzsJjxL~fE`{dlg;@T7T$^_Lyh4a+;b25 z89Y0a<1-i>mW=j(L#H`S^aTQqF2+Ch_(cB2+78qC7(g$)nNnh zUtCx_C~(#;Ch8I{laS0^uJbACJOJ0tXX{tp1Ys1Pp-A`(#oz@VAi37^!%qf~SI3Jx zC>Ba&h8LI8TW*|`p*F4?tT95(kPm$U-ZP}#t$+Z2Vv;rj|F#n=k-_;~BWpY2YR9l3 zednE}6;^kM(Gqh|o7t&efp2PQc!ELr^|I_;Juwa<}Ju3j#U+M-%$FLVP!(7z&o@$orc#s0w2A&S&hI3=Pn zNv+UYlnVyTo!m}rAqbfrVSIP*XatPmjL&AI?Snq3&s|lr$9GvOhH-Pv5lODkUBxLZ zJTN_G8*x6d<;$={q`ryHc^&(;PdU#E6*;d-o90fMv# zy+-3jt<75jh99s4_V7QEf22O`S4clPFQP5(rx4y2S|kvwgG$;8Hri@QWGO1&OuZ-1 zS;s6-BH0i!Q+exENy!bG*BL2XO8aDC3TvxyJFP3Sl-xJryI-)n3pVEVLj7fS{4X65 zQ*2kId&ZcQfYVC}fC+K1-X%u>-)KCVPJzL5)(0=frx@>N65ou0`bumsl;TG?^r1H8 zHt7Te9i&OhESdq-o!WgFU4sRPXwzDOv1Vsw?-N8KEnuA_Wx72g3Dwz~FcJ-qIeZ-6Y6n1ZW zkc)Eb{NKY5{)fIeoOOQRVOnkUqC3p3}G z9AYthwm(`)++L-rNoqXdDQ1^cm9O`-1V+Z)m3ij(S(^O-1Oxl3YjCf0Vx=Kb=!8Mc z9trSJg1CCqp~5GyO};odI<-cVV)bdSMxm_gDpVBuIV04Wxe6-WC8JclV6!J(=o?ngxFuLeW*yxvtkwBk9znsypcuc8^*t6P>Z#+GZ?=^#8sgiAXCYbRBm z>y*efY&ukcL@HpKYA+#cR_o}NeJ|Lf)WN_zG6P2v6VV4o#2t#iPY&BaM!NGS!6$8l z2Oy~6O3+(C!gT20(@Dn;7|lnwx%76cgB7RUUDbX{N^)4C zerK0l(&3^`OmZc7A&Oe!E5ECKQwwOHCHY&b@BA|T*}tk49rQrH{oBiP$hWMrUVpn| z8|iB)s2<;4&0_{khG7lVTq{;5l#{h_f~Dt}vf{vi+}tSMx_eO#)8gLg;8W`n*CMt7 zoR)hOs*&!*hAK}^6>SfRwi1HOaH3V1_rR`V-GS}&(HJb4sQuP?X2p!G?i!x3Bmwv6 z+)J$lAl>3l8C+!Ld*AzB`2Js~%lHX^)IUZl{w%znQ|?QQNumC7bSTN>8en79PQ7oH(UuoI8iTJjs23uJ+6P( zVAf}8T`fk_D~yyqWB8mGc?YIr`)Um{lodIE*%zl@o|zF%2bNELk!ProoZ8t*ggAjq zsz7n=Q5+}j0gX5Vql_|?%;s4}=ULTje33ORjRb;sc`0k0* z=udF3E|2!0OGa{73~W0NH!o-%j)kXuF*8_@4;fjCRvr`EbImFS#k_}+$;q1yo`6>C zJ^9=PdSC6OYY2Wz>$V*0*Yxx;j*I@ z5@@dstaQnX?6W65rXxjk^$&Of3G`CJw^Vd5^q&|v9}eeD$sq-UtpHj8$Dri_mGrg9 zW@RIgR}xm5BAd#rVEt-!3VcL&%A=C}(hm!CzjF{^ln5ipb?W_=%~9bky2Zt$k9m|N z!chegR_0PjK_d)Z>3rN1-UEFM18>w2MC^RZr!=mDdg;)GiUeum)Dxl$T;uFx2*)*t zzLp~Zf{g0taDp`IOu;Jx0NEC9ysFR~@=Lj|5L!mka6WCZJxi2^L|x^#%g_BYs6eYva{$hee`1_AUfu;jlD11jtZviBMe*PA z+;ONc_kK#Qb9rrNc#3vX$PPNYBCF35x77nZ+cN}88r?h*y&NjcxB1u(ac#hAh(e@p z2i5{p)02U&w(Br?>PDq>RVo_bz;$`%PSBM~#p}sNKvK2GPg+AGQ@kS@DSCCStn3?4~EXKYYWJJF!mRSUUT z8)v{kR09aYh|p20rA@Z*rw$R50x5Rwq!z9a17m43Xemtiqn>~p;YvU*vP6l-gqLBH za?I*lg!14jWte@IiYS^A-D-MO2j8HA7b1yzW$!4m$J|Y)?G4 zD|MbnXP#j<^=`OUpYr8p_PF?(UIcT)zXt9W_urU z(~+68yI}8VH(fO|QqJTk>&b!BQfF~Y36Y4x{$|ubIcP07+Yl%59J28aLYTknA;-JA z@=32Xylq#b%jOa&!GK)hVN{x-^smZu&Q_{03SnPGN^Tik=nZ?|p?g-D`Jy-|zo;AuDM)9PVsRe21BgKY;IdqoiDaj% zLepwKU%x=%`QguIn0S<7L8c^YH@08O%g1kE9Zx}~$?Ruv8rCKcIqAjYkE z^bIa$lFh8M0b!+To;00V7iW4Zz$I^X1u_{zDHu4 z+9TMz4kFrC^eweN!Ue2eiK|EHDM8bqzi(d?3H-_1Z(lzS^4lL?zkmnu7Z~z?YEOD+ zlA|_#9!3no!@&Yh9f_K( z5%X8!2kG*l2K(8ojV0y9#7}r5M<@GDz?<=pwQ1;H(z_1rjPVpH}-MU&1M3lJhj<&ZBPfjA>yj!BpiUq=l71ViX4KE49MXAw$tt}SimJ1t&i!~FMRb3J_I+dp%q`|61 zVRVMii5*M8*fedFoWTd|4v_m0NI1Lg3&^Q%6dkNo>}4HO4E?h|3x6j6OIP(@-abR1 z`10~HIo9v_IS^c~;@=kD;k%tKfPBF6GRqOSv55RNBZA${Phi;WD?_C&aJ*Kn0&h4_ z#TNV0tymG!8W27l7aU;Xwy)CgswJWYjcb@~3B6J}7LDj;C@MIfogEeH?7gI`jV|y+e*FrLSpf2 za$|q@d3gPbLoEHuy@PN(Joj-EymVRa5@2TH9Ws;MA(6!?JEme%FF#1{v`nHz*Y4G{-A76j|?xWYQ z!)wCjKcb7TV)sA=MQlrNmT_AA&kk=vpdd^y+GDBQbFC;+PS!6Sdx2wPYYN3ns%RGJ2KLWmKsy+h|;2 zuZxd$Ie#i}xI!3>X1h z7*-+=tbYp^opxFp<|wc%D6r8`qmCMIHfJ7g>J(y>Kwo=nF+Mw@P_D?7jJy}zYH*UIO6ajy!B1NZoN;$fbZvHk%>eI_geHIO zFiy%c86+yIM4EL92UPxmnUr!85d6l)qxK${XB}Hba~J4U`$jQAd0$$|bH)q=Nz6&r zHS9j{xll_Li*zqUE*5bD0M;4|n8sf(fBBc;FXeyu%1aBbj8XXS-O{8k+z1_A+VIK| z1F<k;_7M=FTltqILf`kGzCJXD%eiOS?bH&UqVt=RF)a%ViBToiZ_2?s&a#j zVZyDr4h9`aMcBtft!- zbY>ip0&j5`ff*b!j4MePja?R;Q37_IwHBpV#mI5=Ma9zNJX`iI_f735JC`C$2H{D4 z*Yf9#Kd0=+U;S0Er{&$pz|?+zc~Kxrnr*6VnyM1j1(YSylt0~b1wFB%fgb~JmIBIL z_X-j^+G=GGEs^t}*3D|AVIKx=w%RkDYXIHHrBt2XOGcu)L=}3Mtql#xZR$k}Wol>x z_Yo>H8-dWh`VK{ZFyvwHW=?Q!F=-)n6K80TRG#*i?i#F&0xRmEwvJ@ri2zJF>bO#k z6tO-|lZ0NS+ZrRe*tIUNs2c)kcu}2jZc;KD3Pf4Xw&4e)k&ekbQkGN}edG#ip5=OZ z-HE4kppP1$$?4$jriIZm^g_u8_n+yjBcjK>Jtiy z!P8l$ACE`PstC5tstR9o`vfW)ASvyk8d>JlikZPskhv)3C@C?m^txEk8M{ov7wRUf zllu(jZ(=xBUTc7UqEA2Il9Y*z*AA94-6%2ps+Q=dUNSx_4Blng8$RZBn9ZUU&fMq@ zD?IW15~eEZj;_E`JiS(HC*;Xmx>Yp8+G)#M%nZNwBf~HVK_O#{|19CuxZ^!6z~sY{-~-Oko%#HMM~pBQOb;nCP^zjo;@#=C zeDnHQNb)mB5k5!S#TC3`KvlMg7+Sl3g`150!wBRB602;k&-MPDG z5V5Cth=H<2)fh)zA4`Spb4@jMS|+!68tJ`T9bwtA;lBp-!Q4PJTC7Y* z6aeZ2KdnOCN><{VjGai;lQwhpm`8Vsd_Pn8&%Age007HuU|q}8z^=gYX8Oe!}q^`dHa1}TEY$f@$1j*cOzh)zHoW> ze?$HMMb0MZ)Jy8K_1}UGwp_fLD4YUSLz!VhC-?GWv|0N_LB80fTYsoFd`>Q$BW9Jp z*;tW)DyopJJ+Q`bGV{rIZHIPVCbe21JSuR&346W5)yN5#kSs0_B+Ro~uZWP_rPY;h z|ClJl^rX0mILil*2VqoKUpx#Z836V8EZ=!mL$s}Aq{Y6|YEuXqN!dc>c!(iwhg>8s zz%d2_TvG?z_&xTg6@78X^2~`B@<{J|6~~d1I{zw(&ejQ=)J)ry0W;b$18KETqkMzM zb$Be+hxA$h7*fc|5QjAwI2UfvyKm_6(=#<5WYLb(9e#v5Suscy_Eswpfmg!@N*y-W z@*g-9;~vqInLQauU;X7te&~q@61szuWPrG_fO=Q*MlCmxehRQiNw2iSgRG>T#bFw) zHD}*I@Mfjb5m@E={g^QMJ!|=ul7CA_7MFz!jFyUzAtD8x3{P&M-aXjndD(bH6DfBZ zFhasD)R@uX%q>W(lEKU9_`;}w@TiVc(({hMBo|>m$P-zB`mn&X5Zeh?_~q=ub0s|H zq*8b#{2qcnFE$K7O4alx;R$_&A!0&ZT6%-3unqq(dL7m2#LE3?%1DP+2MDcmB0;P! z%!i;+s8u>8lkyGL#0axVt8dbyBz&p$fvy;=h?hobQ$YfJ4n=0$mnC>Fw4;V(A+hK^ zVCpkBcGoKk;IyGA;p*Abd{4vF3LP@iadbJCMT*v>O;Sk_kgoFgQk4An*RL!|zWotY z+ZTuV99So(kA3gJMX^#+URsL12ZK-DRSLcDk|o))&wEb@0`OSG`~m4}W7rmwvgZU0 z_wYpp@1cJtNno9ld>%Ol*jo46bgDX{X(nR`xKnR#Ny9s(?Q-ZOp)&(%Gtg=T%UeF9 z2L^NpEn3cUIckmwh7eW3>IhHi0g_y#{`KF{D}l~odLSZpgmNRU07FTY#?H8gqE@bY zYg!ayYdEhQ27xMAM<|}sS9z*i$S!W%-BT)bD6PpuWS@y31;@Hf-iuVUsgz2iOUIyk zz-;^gx4-V&zK{okA#U7Mn2Lk)g`){rq0l}M+R>eyBD;?xf{9DOoVPnY)NAbgEwmX_ z!vH2FV7L~nq==`+M90z+o({^qqABN~7MKSsCvlVji*pH$lM)cMR;Mv(;}X9FFgwq5 zDaVr611*`gKN9DxaQkoJ`)G83&IRCxtf|NXw@<_xB|$OL7g{JFdO!!i;<6kuTa&}6 zhj7oBDEH1t!PrcFIXJwULpl00460wOwg(8ke6;6oQg;hDri{|&A}qy)gZ^;}w`sVH zRUo4|TPuvPY0X6g5@fS$`S9#`)E<}{NWvMQ2DmlK^K6nedP~1jEvK{Cs4pn(8cIB= zxbmj;wJ#?wXg{IjN+aJCD(enof8fxo@uZys!qaB6^m1PT;$m9`ktH2=)ykihbOq{o zaq5=8e*2t`b04R#{^RRcL4NtgyMMgg!E59+V4H3`PT9KiPICf_ULWb(AoR(7Ln4af zvlE2u&Xoq}CJuF7*Z{-kqRp&^jJn&ttPA(`9-tbUu(vll&zFxHB?ZBB31Iv5Cd7sr#!Qa=G>fgK;e zx++70!^D#(j7ng+EDp6jpj-ou7dg44LuQ z;Y~X0|0}#DPlo3MN-!-aj*sX=(?{62ZX9$JZ2Ca!K8_G^Wz)It7y(@rf^t*ROXRo` z5NMFEfNhcwfz#XgG+OFj1~GGQl4Qv zY-2vbD>exZNHSPn0*I?A;B3yRQcmoe#|i)wfh;)EVFn z=E-9+2Is0I?PT$B_V>(7kx@DiGVFOJTpMH!S#MUwxJxBxLPx~zXbS}_zEo1}@}4}` z@5AfApE!w-nXvQx=rXeXj$7lq0zgQyXjtC6H%qoU-K8*GFGxnWNrRKra^1?Q%(~Yg zZ^@_Lp%20JMi^{(grab5lc6>dGZRn?1pSXtu_GM>=f@gfqzt^ynoHhmSrrE2v|8 zH6{b~=5m9ovw9U6H0sHVl5PZX{N%idHPw8&{%r*Csp7;p8ksKpsTA++3V>!CWA+9p zJDpr$dp9+wpF^eoUQG@BpI-kE-u?62hjKKwY}>3V!S{((=Yv?`y$rq<-CyMJbQLGf zZFj}K%2x1`l*-Pb$90xZBE|B9s!TAhMYw7V$M*sJn0XT-Y{5uDQ$?Wkx(!^g&GNu) zOCDuQPSKY8no1eWOs{rl0&NB*C&=xMr>(puYo59WXf^fS<&!6O5>=rNNbCzvJ;w7E zpKal&4tR7Ml(L2rzi>g4x(Rb`SLis<$h5H@VduyT)L`iXKq|E`n+|gGEq-r`D=2Ul z5Nc%Bk-7d3QF})tLx9z_BJQXOsB z@x+lB;MV-IqYG#1fec&W1~;oJH_$aCw5nRddm~8*#B)Z~5kan#JFajl+YkD%2F*~f zIFW@4tcom_zYO7Ad9m7+kW9nI#d{hIO!*JM2RB?dop|!UgoxJS zLj8~%ghOr7+ZM$dMJbT#i~2F8YoqKP&N}4`+Wz)mQJ#K!In+6ZJ09TS$+bXuldHP# zVW)DI)cL&)8MY}Yl~RyECo;?4G~n&xsZEz%M;*{MX;fZ&fOv<~M+!EBaO7hH(GW^I zAvxZpX~fcUJCot2gfj*h4(lno2+~@#1nmw5eBH1iEb}>ON&l>foxd%NfVU!(6Xcm} zPfK{W3-%p6cvzHW$AwKFI}XnOjMrG51iCPX{>oaAK;Ac6jEo8^@uBQFM#7Um)Ed+R z!$C40q_Nr=F;SuYBE0@2y;Dma_45AqhnMZpYmMm`G95WRD&TPMN@5t(7fOlkW7g>i z&BSns4iB&g3w2Y6ij;aSy4bw#ecl$SJ)+&g#h7gnK%byq0EP4pLH}TOGT^*KLwG8x zhWdv20pSySR{fFs1AOsrQ_CN{J=C!3hHoFLs-LLbAtljANBY37In|mcWc|@M|LlQ>)G5F^V8Qtl+>sSiP94By3n8i${o- z!Ej8#YbE5bk)GXTb4F)je}M9=71k$fEkbg?{tF)wm`9Yi67Zgm3!rM0A+F zRW5U7N+s|_m(JNZC%~Hx9dgax6{Xie5hG|h;27dlO0X>%TW?gsyCn|^D0~~-v3T50 zYO7KTcfMeg`fdSsiX+H&s#3hJP_O}idj%?mHJkjCFs!D>ip0dZBOR|pO(j8+J#m@F zVd(}z7c||g?@<%_r~38)eWmY|jhCs0_oAPb%Nnz#I?Axi7B`H5Y;=bG-3n?Mf z5cdw%c9}=2M^u*pV`Vy07QE4h%maJ@|IU`b(2~QmNH>D~{nKDi+ z)DBCsamih88NE%H#|{;37b`z<>ohZ7-t2lHPuZXAKr(&rzcvtZqUZ;y&JAeywf+7Z zBl9Z-Je^xW9?@#=QMzo@&USN^y=pgdy5cA}Nk^U>YWc&lP|{f*nEG@9)}pGi#PnBT z2n)hxq{HW|tRxhcThHSPux{^WJ5wkqeg&;(^vAfYa*nstdS6D@i>NpPNb zd!VosF<4)%qaAxZ7G9vtBrp{2Jc=LtV7)oiCIvFJrvxq;7l-D)bj^ ztzuL;sq`mmUt)kFs0v%qXt7PVSg~M-6bJ3KrEyuEt~N@0a=X08CjpqF?I7e2ly1Mz zM8135qS(s9USfqPpJ0@-HcQd9%N>iL8<~dNS@RB|JZ_gO%s}epxWI|aMG&sVD9``W z>rKw?z%`5u=3=9+l|*qvrGc+v@H^66flcVSsBrY*vE4_(mTNC`}x$^8nTKd6$sq@lGP)!M0d+8BR4RT4Ts0 znzU#{w&^(O04B^Dj&SD^y$)kx{VrsYEImRy#d2fFYX`u`vQa8RGDtyX)JLP#8j^xy z5LEWTU-44FZcd)W7Ubl;j3wqYJ^2T&^THSWUH|j}^m4IX_P)S@EDHL$%f*R#BO>=3 z;NX*~0h&mL#Y-v`C@BZ0`x{#FA=?>9g_0#L#{HUTr|QwhDdKJC5Din*D+fn~)-y{M zUYzhuKjD$~23DRhmkppnWV1VLqKQ8Jxn{YXSVOvvOUruitIjD%D#Z>BV0LSA5GJ`B zSczO|C0a^lXi!$HyPr=`0JUDK-ZS8#uiX{YT&n2t9m_(DcRIC-P{2@%GKD zEwFy_`deu3|Mcy1dDf9V;eL&WzHsu~tsu5F>^I_p-c!PsLnl%Fg+P+f8t*5uDW{9d z99l^U{*KL;Tzz1!1F?&skUBtYJaH7Xl zX82okc!9EWB9s)}8E0y15G3{jrvW~XSMpgl9*7R-@+%Rd*eSr*`L43if-Ai&y}h(9 z>*xGEeD@2NV+cG9kBM%!cPt@^MZM?o9eUG=5=e^8gQf%Jf8=Md!RUI6y>j9!_|e<^ zY2@x@?v(muw?J2LmVQ0ZDz&_2w>(yuwA&N%w4;1%FP&R9NwiWEcurrhG2cd*q-@Ul zo0T8TaE&>p3N>&G1qw95%W_d9)^`i5LBObIEMPxVXJP#sAn;W1x_2sHVf(;_VU3VO=v>lR;#AfzKvyzDSTw!U23v;$5B`v@dF)YGar1MJO#vd1(Vp%S2h!yR;_8-$=ModSW9ZL} zdvI6pk&ojF0PyCyLB2t7{=+J*$;?FI&ereA-oh;BL=P-6=HLuMK1sT)at0LL4XA{5 zvawP?qp$cBMYphmg_fUP+Zzm|LDadyDJXq{Td^pC#$wvS@A!1fDzcEfu8J8@wwFlv zO{`GtD!~0s9$so`m01V13F|Y25-@pUL__FKpQoM%-+)5r-frEHZK_?tgHpXWcAce6bnU-CKm z(z=^(|BeU#%U39!rPm+7{>*T3e|-Ij79{CE{5_wz^f&cy@XrhjrplkJveXt*D#gCY z&*RqNWcu+1B*snrR`sV)#~zMEr0s*s#1z!tN56;_%H){u0##i{@6KWvG_Gw`o2zj8 zHpwef1L##0%$^}6^7K%ExOG*bTk1M!W>Q33L2WrSz&8dNrAkea0!bl6|eMO2tsm zom;tJ<@q~MZB+M8E-l^nxz^0h0%l%%4i!-QWQjo$- zi$bzcK3UQ!>o1g~f6(?eOQg|~LJ8ivF_uwFV?S6h@6=q@jx6AiPs#K#cX9*I5pt5y z*|rNjVseFVdV!XLJ+E*+)w#4{#6>e|INck|XXV~fO_Bv+Y~@K+Mb9uu67 z^P5g$_pB@n^pM%+T&sI{l#LEeb82EXSyy1QOG?>olndOIq3d`Sj=d0d(qgr+y0`eA zm+!fDl13vMk@%2x4D^~B4sND5dwOcm;!|}{t}lJmd9Ih z5Xm+iJ?m=KCem?at&UJ`*D3j7jFb*odnw+f#AP>6;+%%LFtM~Ru6x?SJWSkwFL6uX zJqKINd&eyFh7K+Kh0!OVRtV0f+g>aO2_z^lHr2(A;;($Lb?|$sZ`&c>1JMT8v~Ajv zwn+fL?#U{8}QJTp^3c@HyR8 zxNLIDx|E(b*6lNf9|lhWyG;?$wp`%bX-|K+7C{IL;~-qdMul3co*i`A<;nOkBSG#1 za10RtMK#MtI#`3It#ehM^dqd&j~AvoXKa9TFCpp4Gm5hV7NY|++eHC@9K9e$dwVrc z4`B>~4kws-OTN_59e2^RYHyKbLwaMLfm#IX-XboVliH&E`0Xd}e)#s$>o4>(pN4NX zGOdsK=l=e`{nx|Sf3JU>KlP*RvK7`lfIzPFJM4Y<|FVL#k{R${S94O`S!3DX5H)SC*BDS3vf-L?_oR5!SeeJqA{jlC=c zrU{~T*@R+Z__bC;nKZwB{LPOgJb(4}G5^+&%4dI`T`44!%%6i;&#(UH{~iAS{s*T= z3>%81A!NdV?LswT26zw{;Z1_)OoK}O6PJlZuX0lv%=|WmCUU437et~WCze?0OZ<8y zNso33_=!Lvwdk>4O}Ni?k#D*5uzkB*sW&|sqNmQ~W8unnLh?*)oe`?tY^+Hkc4ccv zq77OU^&;W%k#aiSYUn zX6x&2UvF2;4`b)LM`XW0rGN5_KInuSXG{(@nex0WGM4lch&-%<5nOiAzWbNL^w5Mo zsP9M75x`{5)7~Mxyu8@LZ`%RO3!;&ACG(Qs6kAeJGj3OlReHt&2SZS!$`94iad;0h z{e~UP6)UNs70Fh(j?%4)QILW)!^1eqV)dBh=7obQoL3A|#H>iyk*5HzcP0EN%VxVy zDuB3bR!xdm?uQXYN`IqVzcODLbU<_SPOSQ!7wtd#NLF4MWjQa5>581!herlX*0w;Z z1gaOFV!PYedz18{x?k@QL&$cXc6PM~v6Xei-gUL%^}>c!#AtvC3Fz|ZgfO$v)SciD zn6T5*#x(NywHK1l!KcVCq!btdXO=W}^BEGRxurQF>B>gQ8l|GkF$PXo(rDNTP~Zp& za$JGAC}SlhHWiC?buO*kBNeD7x$wYdx@!A2QvEM`(Xz)0E zCFA;+-~5=D=Ft>HC+s8T4mxeOFqt;3a;6}|eOL&ftr%7@&0(Vsn)#bQUq7SngiBW% zjE`0ywL-~F9;4i+t;AYt%c+{I(aElb>pV%ph+@v3?Nn_${1l1?nIx5L%8YTVYVB>h zLRC(h7f6rylx`dL5uhc5J0Ge1SG3WXb7o2(JN*D~0L1QqngsH*@wqcRlzRFYc7*D7 zU>KuT+a-fKtNE;Q0%}rVTa}x$!8>v#*l;MTKCkT(?{LMU^lMs2=o*78c41FlrC}#i z;wQ5f$4kMNa(>y*pMy5ifW=@zz-AId`0wP>|N6V(%@`*C{Q8@(zZdccefRe3pq_>w zpI)jaW3)1r_Q{eoWn8f+L|?Pox*lE_1 z6wAQf?=7_BZWXBdDxsLq>*S|ubTRqAAU%3G$up*VGO1Uzrs z!rBXB7{pztZqC%Cju(Pz&@0VSt7|kQ`A~@Y>R7*p-HrC35C<#I0a@l@u6??6S_%V7%Oc%_;ggSnadnVzexY|StSN~ls9In>X$mZnx7MkTJ)-wI^VwA6A*p-N-mJv&iD3f_ zA+n?dcAIZt(M>LSPa#Vr8xE$o8Yk7<1sgX{SdAaIlV%+Ci^tXs30c+T?vy z$TF+a@jSx zvcyN1!A>f_kw2+m{i#V__mBHgH(bkpB)Sz|w#c4ULd))J$itbCfpVj7=E~KoSE$Mn zN}*XKfMy`gDM2y7BVCVE^E%&NLkO%6JPG8iGk%Hyw-0ir4| zTC7u`Qg3-&>poo|-9lQ95}KAoEX>+JKeJo9c53X&3cJH*Kkw8i zu(>0J*3kO0A7{byKYg$#oco5qhd+1jW>T_k=X}}*_ z)*VYl4=;A5>TZs1d#VOWa^ggnNN6&X*oI1&6Gu=pZJ$)629hS!)L?S-#rv*?|vjD-0#A>AH9D0`gvyF|M-9W zcldLEpk3(KUk3ePwZ+J}IB+#!T$24A(dj>QfcFUqZtSHZH)CF=8*!Iv?^U^A!n!w5 zxv$x|?#ErX3EzidzedC|Nj7BL?z~nB|4&8y3%)p(bjlq?shsvtiCrr;i2dj+~jXe}@ggd7WkczjM0GM>@?kI&R5kqb-W zt#P8;OLA0pKS{Lwliha`9ndyPQFC6%rEmrO;zLJV0f-l@KQ<^ zPa0UAQmB1SNCze;DIh`g=AmTTXi=?@k#~`X2_ZtRBAWnUK%c*dTzhq#Bna#p9{@5L z^In19^uPf$(yp~G;g+;3C$)&#k-HBT-&UhsAj@p+%p z>sv|IERof6daD$l?ZPn?T0aiAUZlLBC?_bY&=3asV#Bz6D*~vssswNuZ>foa)LA&P zm5G~H8PlP?S6ae%&Fy&{w83LstzFIUBya8ge%KOt#fGCh(^401%#MA;WZnV2gFEC% zjKrx+1&mNFIes^lFSULKQw%g6$cct2oIU0l^Bv2dt1OCVi8E@KuvEFG8dV6|E+c5l zppURQc^tld$ix|@AzCuqX%F*|Fw)+4b?u-*iYc8fV3-H*iYsH-xV$b(#}Wj z#4&lmH2cxKH(rvb5obH0)sa+MXEOntW!oqlimQ-2ULbhZU)*M|B~lTBby=@2yndqN zLrDcs(2VCoqQ^d~lB~C^j(F9r|UDV)7p0-s87j?cWAVLUE`J%RuUaf~V^ma5GcU9*03B5ve z@rrfQj&VSP9sqD|?BL2zhJ~-rjw-2p!t8B7Jg=#cm9wiAqxG+)(UEfx+mI_)kCsQ$FQ~JOG+0>TS#%bOYqpt}wY3F0>v> zy-N;2#_&=&-?jyyfK4eJIr)&e&~_qO0kX5Kt8&FYBBZ?!&nFb26LDwqOg}!I&wFvK zLWx&7C_r(t2XpwC)vhUZ&P~GWT?($7EjmoYNZ)F5cTBB(kmA%TBT!UZpX5e*#8|kE z8G-mvOHj*!?ht>s$la@i^@UlE$`|%y=J#G@hfa8@v|hML(oAxZhpmn*#rtvSA^mxA zSS~QNb{e;)1N%=7$Fui}s<5_l`UY}EuE7Jk?1Jz>ZKuP!bk?qU&0+2(P#dxdk-G7+ zT_glIn_MF;aPo)__YVb@mC>Wdm_%sUY=h=gSoqH^`@r^MRG$&&YyF zpIIkG-9p^)*i7o7bsjku)ZJ&~yUqj-*GbNUg005qFq^pe0CX~{)P+C_?J}!X z1Pz`QIoQ+D`dYzdqw7Zo(2;uBCCTWa#7=8k>g~c{)tO6jT=T0X!4e~wA`vGf5*BPU zcUHR&t*)$eQthhMi!4bgZSBKQSN> zz;fi3SgZS8(cqS|$XUj1+3+TW`I($@eIXxlUvC~H;S7i0;ZzZnQ=M^!l*iXs(+TFTcbzD&po}KY_M?w$hj~H`cDQ zRo15m+dMXs`hKQ152ktK(NB^*K3Ud1_Th=LdgEBExyPz+ofP*} zjan!1lDYU8tv{oNdAL<@$1MTzF-22Z)LP^SxRR&bSlElybHTk%A0R?b8ig#a9AQHD zqb{9OpulVuswd5Zb-bGk{F>MV5ZaDy(qFJm>RRp@*Ya853vI4PRTEfG%9@0|{G}>& zaj0v`hSg*A=(#2c^rIN!bUQxxz}D-)n(3Od;_oLcn}e4Ud9<+q@z!&agyd13(o=|* zMkPn%V7$F^vqwlpjfze#3actO?YCfyz6v|u-3lyv53E+|LM?&Cs_2_#Z{qi(mF#kcuF=O zOXM>)tfWbVDEe~-j|(Em_aaJ%9-F5;Bh?F~0=yUahMK@habfWSfQiceiZ;N@3$)hV zIjdnt1`@Z^{~G@H5+D8zTrH_vAHMzZ?I$)2{u|p=7{~c+4(bc?Sgp~vavrs<`&Htu z^+!9kGVZhl+;H2u_eZWKdVnO+%c6{Vj}!)~JXG>s`?e+0a7EzgH0-c<2eLTiDo7NH z(EOfDvkrxlAq6TP7S;5c)Ljl3`AA?sL>AaEDap@MAuBw2MvZOP?GiJZti6>t3)G3h z(2Aov3rySq`=B;&9F>4(*eU%RE+8xY_ul^K>LC9{+VbCDKM(Kz=`9mc-u(b3ZvXi9 z>FGs^DV?vHrkb1_eStf+3Pq6f(L#N6Nw}$5Km!arxIP-!22mF{FvIQdIhB%}E<+OG*{M+R z{S^avd|~!eDoC;#oJf}H)A07m>D~9kYhJ6Doyt0rmng|9FV3!gVrcwGedjgHws^|E zjz=}>^(xh((-QjPEsb6(jDzzV5EL9FTIC5sBgL8HZ6472x}?P^$s5E?X)Qd-?>;yn zXx!Vd4nDHMF2>WAt*4Fm|^`J+pTaR#Fi9hUqVYDiMLm@Z=f z!kJo)$+OQhWRFg#3ayuphkQ`qYTE=cxCp>se=Gd;x8#4m_>gP*&_DfEWEW9R!s@-J)<*8EdwUIYi2XGI>1^Na5)tO^l*-K4dM9pET6+{2>!v19&aY^*y zOe8lh!G&~8*^_p4*AO)FpgC(kPR7`>aW)0fpnM=75bRu7HLlwM5qMXPD1)ETVdkc= z-JNsQT|KSSM&&fwbksw`n6XGJEmChBM$iD6#-XxUBwvD1?<6@F9II3oouA8E`QCD$ zm9i7a>z*rApK6gQM@wEv7J#9j`?pIbx5_41IL;qjr$P?!+JLPL)P7`ueu7ZjBQ#81 zpR{MV^j2%2P%zexoWuOUi;p@$lP^$C)?xe!+IqUh^56c;@U3rstK3qbzkZQFhSy&sVEr=K z0O+A*)am}1-1O~^B)73>qa&Zi$Euh+Ddvgb_-cabtv|61O|zi&I+wY+!D+T8mt6An zCSn8>T7!SU-ZiP&ckd4NtB+bR#4i&>^@EdB$aj+Db5uITY-o9!Kz(1CykK6iMjL_- z)ivsU3fJhE=xqpUBZzhqb%vFgTy?X@9EfTJko8C)tpOXAyk5IN?>f>}W}D z2jV(JJ5|0V8KMrF6{ZI!_pSUN>5o~W$hNG9g!?ZTQLf#W;@Z_pEpn67y=SHEnt_vob7K)YP5I)Gf2BeAhT^344O@^W2unckH@)v2b_C%|2!r9eMWf5U+(zTegJ=je|-A_ zlG6rz)<&78EQeBS2Zk;!#^`|tj^~Bwj5%-)t*N_f6D7H;VSKXO;pF5EA9zPVKv`w( zd^}n`9_aj3ytU?p!Xa1$_`CLqhe1oOKH6GimgJL{652zu_8Q( z2ReruM&5lbD++%uP}xj%S!IkcGHMM(Kdbj8?=H~61B_)n%qRWCy6OwAk;JHHj&`+! zkt2yLlJ&CW&=V{^wpP)MG#Sh-gfntc`U6dI~fYw=F!U zU;z;MS6Ftscj1EMYuK78#);vkfsU`#KBgf$04d|8Ehq)y0V$-s@RDX3HlV^ku99MF z{xg2$Ciq$T(=P*6EC2cRH!xnqho9l!_>BDNr+HU|=RR-uJGf967HD$B(&MD+iTNkJ zp@WG;W{hS(lNVddj`OfHJy_##R-%O^j4Rg99SI}}cf!GSH!QGRMUJt@)a2a5fDrVN zsrByMy>qEYaCX+olT*$3qTGK@Rvg^I9^GvC!d&64d(ysi0Tgtq=~_`&9i}txF>t|z z5>v_9vxN%;Htl7nOeRRol^)+2Vr2k5k0q={MZ3v*a~rj32Ze;0V;dph9#>S6s^Go2 z!Ll}{&S|0p!diTEsuipi4jbT}X5_-oN=cP2{SA~#|L~UGso#Bqr1z`SOLfIelL{uv;tn}uH0GRhJyp~Dxrf?V zSPlV3iDV~CU$J;v{+VBea1fXzw5co03ipxSW>Dq{Dw;U^1SRchs&-aaN{hM1iqIfpY>2gXE2UB zI~y!iH|Kq!g%7-q)Tuy!a*RE=3kjR2f9_-WbAP}f|68dn6dL?%5BpGtQNp*r`TX?a zHHyr2;3AYeVm4cKO<6_`jm*)OOy?X^l6&@rPo?uz73 zjRAYnJOEZG1HX;8D(8h~R2{edk%IXzXJ}*hH4_@HV4o_1bOAF|uHW%-IuB0V1ufri zV0+cxLH3n%t39k7V-x%pE!?6JY|Eu&F4<=uj3MyijXVid%7%}wV~R_jwC==~Q`Ig& z3aLp8;Sq|s`6L5wa$vqm;CZn6+ES-T%*n7xn@-Q!F+kqt+`g(f11yj?owVtRL{Z^V z2PV4|TUYz~Dsq8YbFqLNAV!}S5~nWU15NGeibyK|S{3~S561lXuj-~jKE(>+7R?5_ z1XG3az)bD^Va@cw_5{*F#hptIMsrbT2J`~HK`R-Rjwr3GqQe3Z zCrcd6v@vE5FV)%p_@y5?-Fj$W;Tli(hdgRe<#rmjslnquj#LT1(MV09`&Wg1sOGNY zK2*$@<9Gl;7vgVG(yIPs7uC(#zGg~cYvlqRABngDFdN3|q?EZx|4=Dvo^36I-O<2= zP$+T020JK~$gh21Z{SFw+oz4y{2x5+VSd2EE2)b?OC?3<+C{ADSVZ$uNtlQR67V#~yYIZ8@~o>A`skvdb5yNO)e5%*eNrYG)YF6r+=U2ENfh$+b4U2ym7gg5!`*wJPQMTid2E0WfJ+K5LJ{ zrLkapLu18Gqc)nPDh6!FmI%J3)R32?QA#p&si}ZB*>ogcIk;~Z^~#2jKeCxs65fbj zJ3w-N5Ncc&bRAdMg=$HJ2K36>27b?)OBJx5MHStOQX3cl^!4|DMq}#URe%gus7BHm zqUO6iWv?jZ%~ENcl^jL4O_~d?oNUbvGS%o!poL#uXy|fx9}yKAQuBy%zx6seLhMU(I=a@kbd?E2jgUO&UEH=}cY@cLWW;h_hqRi;q~ zZWsbVAiW1GrD|BZKy!9s(>AMJtfv*?k#f#dY$*X-{30o=3%;pRmyfj;J)0y>kHw{S z?4Q}dRO=+t276`xQMwmH-q{4?@kE!f7enwl^NAS$(EPTzD5+{rhau;NYV%+OJpj(e z$z!2~HG`s`hiIzVwUp!b^VKn?1)VspotEw`=MfPUgVdkei=sCm=A$x2id;kciWf=W^?D2C0b; zpYDowgqtLJE;J+|wRQB43W+8T9MJaQP=dWW976SrpS-Jpp@KX%Gz=Rp$&mlZA=s^| zh$SDM@D!`*%4T5$oFfmJ>f=oDfRTQtLNS4@RfLps+@IK|8wYv+=+79;xq0=ql}{Dz;O54uN=Ls zQahPCjU20ca{f+SEz*lkAzG)JF zrMkfw(>>U<_=+Jze!fpo(y^;w;)#V86)Q7M8hGP676ENQv>@2xhYw35Pvs1i&U_cZ z5%IDlW3sjBvVKGSq7Cca)^LGZK(UTCzBju-`<8$}y^xiU5bf3DO;w~^3KjAS@mj0%deHfMB-=EgW#+#Jf5Oa4o2cVf!`6^`2dLKYgh$YnnJ zpr8c+)1<&Ch?o*;^}Yo+l!TWUT^|734R60V<`%NMO^)>j@fF?|djaH2{W?KJ%C$JP9qV82_kHgxXeSb3a^M>29-6!VTo1Zn93kal_bKJ{EhDz zv-RGrjE1v(v;qcl6_RZPR> zl5421jw$-mYX(Tr0>(K2v3kMnIZ$0GX2U9iY6~}8o>2jyu+mkMVise2{S{NfKjdZ8 zDw~6Id6BOwz~(G?+>>fiy*M^wp}@qg>JFCRbOe;@5!5)!0Bo#yX~eps`|T&R}LzqwJp0*4hJ+q zs!`dWM>&vd-W#VUNp5PWbJORN$p^iR=W5C{1yjy;Mte z!RX!wNtZBEA!(3HzmvS*t}XD3i7kULBO#|=SffVu0Sa?~ZMbZWC9$aS_6j64X zyW#;*>Z(pO`4d|GgM?)F;Mk$SKj5tFt{KK~1&ITH+2SFlRgjyrG5rP8W6Sw>DUOz6 z1|m1uo$84@N)GkF0!u~Cw;UF%zGQSI`=}iw*+}ZtYeWXZvGU2b{FKyPT;`xdb>ty; z#swII3>3e7R9A}XZJ>~Aoi-Qq-cA)UMq8bAPI7NQhMUWzse#I^w*m1E`ICxBRLSk` z@=&6L(XOiN1E&GIec^=ZT1hRyA0NbMIczvRdv8UP;y}B4*iRqNl?qoy=Xui6wt)G0(Pc{%6ns;VR3m`<&X<=3u|P468<8;RnNj~Ss3!096@V|HJ0XOnV7rOp1cvw zR@I}ZqK!aSkrZMk9%$432tXw+^I=geqV}L!0xi&NAQJ^V#tTYcBD^LV8Dc3RW6JB% z3cOJjQ054kU#t_cWy3|T-#+_3NfD(Nx$DLZc%Pdks1ekiB`i|S=}S$A66UNdmJzajLmY$_f?)eG}@jt>UC7lb23#GXg%3>#&C}uv`UG1 zwt!7i^j*kCS$4}!rKc$$BRnrRvJiFf{scZgNZqW^xIT#S=aEc{6a$S) zXaZSg4h4eK2O+Is5Y6F*)J%!pu8BUVqH@jAot%pG!H(H*pgdm(C~CULSJ?fgp)tf+ z#}lrk5%r}hL=U9k5{S~DlKqa?k4 zDUFfP_6J7TX1s<}9`clGXnwh_j&_~ddjgg(8yVwYXc;m`?Qa+yF;W6^0q>)wM$grXc?JI>fiWGeqg~+$9dHlH`4SNQYYH(KiFzXIv?2H!eFMNSv~3z<|hw~;w(*trEsyTyw7aB zNz|90j)ML8HXXvv0v)a!7umuG>=Pec%_XlbmJv!+jjd_eZFsObDnyEsrm62zOTjDc`y)(lu6Sqq0@W>RXGx~sE0V(fL%_{Mvn4ytb`=yLafvIvLZ+vc4d?X-PSwVmnI676k z7gzErRH-DRw_!6!VBK1)j?`P$^}y<)n8XB^0;=`yiI!BfQnOOW1mOpC%%0<*0LO_QnZ&jCYH>-%HccC(_fD!MQQbTT zLBnNrFc3szeB2{n9HL=%l;o!?7wQ%1(YsG!`F_`p;R7Qm5H?T{kt_WQ{`~puLRKrl zo{!}4@;NqJ)#!Bvl1u0_wb@!)Ri5q`e56ZCL36dAwS(c=%(x_1iCprHA%GDNAf%9mGOw z=JaxFk6kJDAVgAeaWH4kFMDWtt}&gnDi(VZ4bWV&IW$W@;E#cOuh=-mS`zJx>D-GQ zo&|jqzyyJYSkTA|Ns^z|rKKu|R=#MghtnUqE|Vmt+Ilqazgy)-%eclsnzA>r1fmq| zz`A*zLHeM*?HHB~r|BN13K(IJjF~lL6tpB^dQECF+$@rm!tbb-6iEJn8x_R_G)F>h z&0j=R##1>1hZe+~P{I|~H#Iwwa~?)eZh3Uk!@lwI?3=FmheK8`zkrCYHD7lB<1S7M zepl9X>O)xX8!6xYfr2N2m9!VR8OiHL0gc)c~QfxvYAxe4(3NPmpDrBA) z{9y%F4FnPjT!PEzKn~Npf5KSypWc39*WThxw_PWb!7sSl$+mz<`#G1osQe{aDLF@W zy?nq#7oM7)uq?&CHV-D(a7!DsVJ#Z~g7EpIo-g(Z34tb3pP(i^RP3hdzSoJBVFMK> zQ$%6Af*!jJC?cHzb8cwzCCO%dp3`waA-}}4v*6pl*$yJ}atM}9g2iJzX=f;`E`ZZi zgGtsigl-4JT3lAlMnJC)t5(eaTlf$8yy4nCJ%Ad;T_j~e{?DKqFWg@ zN4YJ|Jqp<2aXN>omgMjXbQ6V>(TVK}$E%S=Kll#Su*|W6ye5mJV|1JZ!N4M_dY^Y$ znp&v7Uw?Ld(!dMB_bR9*dfYzba&vC z9l8~209?}1y7hD)*F$edK0!O!l(n9EIkN0SZ{DJuV(@{^b;6R-#xA*_|CsMwIg(1p z-FW*BDopDt>iu`i1Pw6R9)%Tp_W+k92bAQ@o2{(LY0Nbq?)g-c8SnJ1r zqiigsXfZ>A<>ndEcu`^`SdBy}fUxVdP^golgTiws+ki8o1-a)l%D|P&fI%f03)pnz z-6Gr*$O`WGlL?(ed{9a1YZwL#YD*7yw5#OnDZptNE%TLlI*?I(9zD1$wNyVn+C$bD zG`0Br8sqa-DVG?2t0Xq?-WFJBkj;S)dhb{{DMJaJ?cg9VQRhqIXO3lOsfQ*-o1l%} zTI+;y-j-yCN~XiJ0{A;cN2VEoGqQM>T_u=u%+?}O$D>wlkR+d^MF!G8jsmbE-U{budG9b|p>jUL%*&f?)tm66H6=KrNHqt&hwi`nMG3O%id`VhX?x94SBkXly;PO-uIsu`tUbCA;|&&Q-;uqQak&o{AP+UL)+g9 zm**g}eT$d49pK^nNcb)U@iyZBXO84o_Wns)M@TY)859NvS#02@E>- z|ILn^BlEZg9E#+V@Q1_%+2j**`~g}T@Ast!`W9Wg3Ub)}#xh%~>T86fkO^*rHiI>0 zo{kV~vo#PskTO}|!#HnV9_V)h48`f*G#8je-73%kB_di41qes`IO)W>OBwZesKD|o$X81F z%If)^wblvR!AX>a#&Y*uwT&o-& zJ2#;%X_}ntQO<^>p+Gd=!fIZiUF_A4aFXY$eB+IP{Q(3EN?M=MqcEH>{0l3mO197= z;nj1&JUb*eXl|?JejM4TwSYGzP#kS)YKe*46lRmuXw)4!?Zg)2=YSSIYTR05XDB6} zWC_`KUElpx_;-I(0_9KNe#npEo1fsv{I@^*`oD$OpJ!^+uR{KCdVUViCL76N(p_yh zX@FF@`0uUv0(w)|X3k3izgmeaK?+to+7oOPx2&Z@7d;NV_B+Gw5$u85|^A?Gc8~|nle`dKu zuGC&bC&B82i#-Oby0SbPUDu&l%lS;B{xk#*0 zSjrmN!95Rs@mxQH+t-2?w^hjQNtJ5)8fsIdXiMNTN2JEF>&*cgS1(l?vXNwdFUObN zOiWc8mqXopc_{B2zWc$jx&fs1&rhdEX69v@a&?;Epn~y85 zPhWnpN7Gt#y)xNDhJlr1M~V2-{^(*u{kug|Lu@2`K-k8_-IwI^i%GAtrO=LH?V;o=c%CBRaylfk)6LF* zoxJNUnGt$^6!P% zOqkd9M%0!nDP~x(t;}l1tcqQZ=&Z59BI^|j!#uhU2zXP$k#%6#P=5}C&e~QGb&GN zZ6L0vQpWXCIJL6iu(|*&1?e;7m`37Ppn;+1a`ibIE@@N}7DzF?^%am`9-7@!w=Syr zv`<=umu~uo371y5h@6z4#cd`(8#DaJ1bDu-$Ls{ok{Wf)KQ_XvItbGIZF zB+K;7r;47fo4oYrO$U^A6r*C=E=JNtp}=04}NelTvOw|ER3=WxXce!MdWFlZh={ed?tdn$^!TZ}m+S?zl2btHf4)mYA!YSnY(l$uuV?`O8QJ56}p z1h{$$mm+<6rv0bfos@

xjmfIWPbQXBQ-hJBfVL9X{NWyGi`~VAmgpK0ru`tRpDL z)~h#wmoE|g{oa>e@)8ccC&>P94*-EA(W!=_h-#S2KaoxTCnDOvB%=MxER^~ggm~=5 z>D?D!e>Z&nJzTVsH2wC_EO;dC!9Ajxq_|qsfX%BUYcC}-c+)2|TSB|(Oi07zD4z8> ztarne@h`6s%9;IK56T2uFo?ABGnR1=GyLmc1ws31k8r;5i=@k#miQD zVXLNotV+?LAnPi(Vsc8!W^w_Fp10``nwg-tkk|-P<42&3Pu8RWamNzd?5CHXI;L{2 zr6o7_K31oVT2brXUz0zWwUL^@5_MHYkSY*kq0YjI+6pA4D)};jRUTod5|?vqHrEoG zfd~fz?Be~3DUwJa|G7LB`4;!4XT8rXi8q+Y&k8viqug`2YsyvALiTVvVVBAhSB$wjUo$C!sFH)v; z&OU~4Ji9m!HPFtwL~(0jLajRg9N!5>6!^+M{zgCTo_enMe>}mzn$)ZP)%pF4QJls%1#W$A~k^AQPs!Jg@~3Ct{4k{q07ohuaVA2JdX{D5F_jM*5K zceFd7%f0J9W!3Tkaf1>qmk=K;qqG9duP|7w+(EL#R3fT&=IrL%7qnV06lVoz0cv>n zvH`l%#zwXvUqFY5x%o;m7~0GH*^typ9beS2W@buV=<+}LZL_GKr&Tb275)#q3Z+uo zr(WA%7MgCoiidMLHK8|F)JG9<9|Il#ROBeX>|%9RHX`oMRPtowHmdY)meIj}a>?tc zB5V$_nzcn@Iqr+)COWE04k427&-AO&#zS^YakUND3 zb?V%>Rx2Sc?&KGUpRP$oGWYC%rnRh4uq_r@8RJQ_Bn2^=SXwv>56i5Z7^cz!KXpkEv2aBBIPMP*I|aM~&rW z5wpNgiq-FVS1KhbLp{KfXAJ-48%LtTZhhL7%ShlY{QbN~yO-{huKD5JP$c1yRyoPH zLeGoO_yPRp=|Rc9dnEsAzbS8q+(r*hX(Mz~l12IUMvkneKr?>zOR zPK}|%?z%UN!xQ1~vI02cvLmX4vu$kcMF8EA6-~vj2?{ss+S~C8uOGtM_LovzvE%1=%=giI2-<>Ovv4Li>vsZsiPs~M{p9JI#z}REnrZB z$Tn(`E9UR~!JgCuuVO%)b5GViZa1g=Vz?>0@=}vv-Jo+#P^an6SVaunt+i~@)u)jN za2^f8izUD23XZsan|>TKBzdC{Lx-%|CTxJdlnqldQECn&;lV zDP(o}D-{Cw`e5cV@05UF2h>f~N%4Rx$ddPq{1fE=cCM+N1YVm`$`w{oOu*2VSNokC z6?d=U#d1LHCtds2vn^mgsuvT7km?%3d&oBOszD!H&XZy7A@OTBD{>tI>m||FnMMLg zD%6zR0JNc!TNzB18%-qSt97T_QuaS2;w~59rK6g#=I5X-BzHlADfuUOD1cAdS6Z@x zZGH{Ku3|`6T{`^ku2eTamZU|k&r-FZj4QYX2ei!`%REzgCPdrx+j}wAH991I_cl|cldLEaC#wrSyE~%&0zK#6iRHX1|@+DL2m2b zH2YZGZdZuFan6fbJn5K}$&ws!03hm#zzStVa>|9EM=gkGBYi~AdFhCbrm|x zC@N*Cc#j-8L|J+av;N}v_Q!{}uOGjD#E;>dpWsK|IN|M&`ufEcWYk&%#2Sl2k_mL+ zjY}#dS(7}adB1ST0GLrx(A_5q^ovR-E4!F76za#~K&rLM{X9N*GzFH*7=lRPdGyw5 z*f+&1#^vTS?)_4Hk>NopS>{qCvbqOPCbolN2DBT%1OA*|9 zEal+v2p#)q5{L~vb=jphpamq7h3SM+rc)#CHl7E!B?sCxHJD~$R-d&6@*oU)$s2ol z@*v@Dos9S;Wj{vj*8G#ryK_$c)XNi-q@$AOZzW>2vWZ;Dt!UjnEF4$izDt@l+lsCo zY`XQ3bBo>4oet(aBx`+fn+KFlh~2K;2ersU9VIy{qzHBzSwK1V7U`SRv7tT}m>fKk zvh9(|@O-dqmB{LF$jaYLZ$NZkP~h0GaysjzaM=N-wA-I%uz=5??N)x)9tA|t^)^?+ zynN`ulEf{4YqFQn=2#mWGqV{&uac^5rDjBDH?F6tR_+$s>8DXLXYKO>fnbrI4GQ#) z2J^LmW&(T0S3r%(Mx1FjfB_DhbI+j$qsSrm>S?B=vdchje_aGW;IxV;XpZ@~!F3+gJH#}*FEl#H^?7Erlbpa!6 zE#=IVN*-p*Uw0!E{K*Zr;k+K;4s9XqC4ydW5;{X#)ojzpiZMfVO!^dNd}wJ+9Q?}d zxL-Qr79Vr=8*uNy#u>2?vEA6}thK4K=#;`b!$=lMQ-O)BJYkX!VhYVx*#T#bMCD`H9&t zq&ACWroYnGC1?1sD$i71_UdM&7x|{yL3M)Kt+mFYdR6viI?u!bSW(8;9t~j&R&uB4 z2zzDlnk7VgAnOUU=+sJvh{nn^T4AVX8WX@dcz>foAC@=Kh)mk0CLopI#(p3b+H$~i zrq?kb6^fc|KPXzLdEY3R0_U#x3{_KJ0?W#M!o|NCX;E+e9INE~Y)SVF{~{U}Ytv&v zz5yptA%Px>rrplI@EY6W{euHZnOenG+SF9X#-NBO;ty6kohH!T30dG zUz!K$hTz@7GJCVjatQxedY%fFCMAd@I2pwipN*4S@~P@yFl@$m0?m> z^f0=YTpVgG-gDlm!?S_lUIwfO)An?W)^JlFa-?KG@ZnO(zeyXwsr;)YW*J z;3^j>!*hcmD&x+0h6#s`Pf59!b%%6x&#OiiO-&C*c3eePEU>M%+V`pt@BZ)C-&uW~ z$J_M1h0KT)GY_eRY)pi1mJjTqP~@26jQv)_umY;BQQa3K&H!aHDTPVU0H_lgNSJ3G z`q=ys?JOkRHfFWmp)xvIVl}k~n$EjVzW!c#{Zv`dWrC%lJj+}?tBwG3!Mo}0iJU$;8MJmZ7!C1^s1Bdl^1?#aNFD5EN-nmIe6r;6 zAULhs2Zz}v>@#2zD7o}DW%W6Qy4p`HrMig|08C!H(#zr=NL|XN1Td_YHv#Tqr>;)# zHNzqbRTYl06O8Uf4=4_lHV7;}SW4MlDo+Je&NQ>{(jslJy|EQ}7tAi)WTgQQojT*y zB0m_6-zFkjtLaHoz?J#RjuxY}t?$7b*zi9d2xLUGU_WNBLFzWd^}4tPhH5l`$DWwT zV`kf5ax-NH_O?tR)Pdb%Y10gWQerqo*UAtTkqjJDv$Bz7KhDv4NSOWXXk85n}I zd1tXMchKzwrRF1Zx*BV_kYt@DC8@`}3U}ElbRL1cQ+~{l;{5#Y3gU-^b}`hYp6;W|oGigtQJW35Zbv<4aQMXQY+@PC&80Fsv}Vd|o$6yCl6gIkQceY)T+ivG{w6BC;|F}*RG$3QjBA}r0ook(Q-dR<9d&NwZaIsBXt6- zT!u$k**I%67(*GWwvWonSu4Fe@(OlRm3seL)qYNMXd1MwY~Bvd8wcxSeg@98_cfH4 zd$5^Sg}Jlu5S8zc+b&%zRky8(;@{LfJO@?G-jPYmh`M($e*;5Ow6T|UM{(H(^{8xSb5pqttrA+BfC4`a;Jy}eaDr4ye`U)oI4n#aWA1tD#t&+nVC!BPXF!f1LalQz#|YVk z?e^q%r;pt50QaGl320sAngGT0-4}0vq>1#q zABNYD^3y9OT%WxCIQ(sX^AEr|eE-#Y%2HfEq!_S}iQleCTPYc3CsMY0xUN?iMG){A zhK*2{qzYkBn^^X&7~b4ZS!IJwpsji?L{R9aP{9Qb5}un%C?ow7bFK+`xRxR#4<$(( zwJ8wEL>yja*XML40q!6_y&+?~?KSNzuO}_KED)=~g{|M!#j-}UI?Sp;a#K%DsoL_C zAk#q*e+3vSmlkc~0EB}@@QY3|?C4w+xv%D(`w89Mh9f>GH*lk#73Gl)f%Oxu27J~a zVCZ;(sn)}p_3f>rdO)*>XhryXb`Gg{kwRO=Zo*7s2c@sn1S6{3<~$T9r|-u)O-uJZ2fD@-Xqe*KO5iM@Vydf7)nel|O~RH?F}HW8LinS?uH zcRF;kO=~*)I}SO~%N%2L?IiZ2VK6G=RTKRc$pKG&7e0X1>(gmzYRLnansnwY*5x2x z1oV-L=aQVq{l=54n^;mG0I=Aio|zx^6F@2!om)3a*9aZDeJY{2Z`<%Nia~_N4@}>d zsZ>F2_6I8t^HNa3$(vG40Oh)yGzJgEKUJFw1}v_HEPp9@n;HtRGf_UMMzNcDfnt;e z?<$Fu4{!(`#a#)#r6KD5WSSPWDkL*AgF=Q2Wv`Brl`jp^q%?6qfyxfZN-s5z%_{6q zFn7j)4ft;Q*bS|eG6VnESMTx*tr^VbHZ-QJ;aexn3A)u zY*s)Cu3w>n6Rwb`-O$m(=vVI!tOv+DlnG0PTC>6d5Z7l(=4Ihc?j73PxN7pw(nhgg zG_c9+b93H_ost{(L#o=qtD7clQ$$V6q4r9NN;~e>LxLe zcJjmSILD!%*GHI|({*Ki0-CL<jR#mjr`*Z~@al?X z8%lOVyu#YXa)d=Lp^ZXEl99N$gxtY3aip?mKH!e&-SI~OaC_0zt42stZh%%=!jC zpv}Q)8uQX>F`#@U2a2?@evOE_a$nmeiV-34@2Fwr`k}P+;_xr26@217U?gaZw@t+x z^b$3Pu}cFW)|qy`SYzUx0o1)DPv#^pwMu$U<`!zmu51m0kxdQ$0!>;V=A0kz@7{iL z9ASSc@%}F@VlOJFkc!ra{7!?$X3Rh*^K#z8MB3y=1OYCikZuu?nl86WlhwJPJ@(xd zFFx3-maTW3BZ=ahayTrgfY1Tlz+B;0sFRJQDyi^rXKuDbVM?~phY4~KJTGVzw?)to zf*hWv3|JJ7n>UTa@tAw;AmUYloBKU=9cx)r{Fx8ko`&4ii!%rk~@srY-kN z1&%|*A735>?408IUJ{6+2tSb0*n|2d=7ri02%!ox%yJykS$}xYL*(Yio%4)-&k@y-&QgzxOw~Rtz!HWE6 z&sCEPET0a-2wuykS(e;9nxV+cHDK&I*eyX3no)s+V*Xf~#>hT3$2GIvzjrX1d|8V7Jy=3x|NYXtX8 z#6)fI<8W|i3Af8G#0fhV(>V0 zu;qv!QhfFL)%zsL zI&Z?~XDM8W$HLJh_9K>T^xnwruka5P(h6O5!3m%*(O+ju z;6XRf{_+O^)vij$t!lP)R3{Kj*oh5Fxs_xI_PR1jX|NshZpk)6FgvvOLAhLQENR)G z?snGBjFTj@2_D%aSU@VD%u;zG?cxdGEgP-l_>`D&Xo|&Wj>pwol!cJWo<0tk_9h+# zvLuPGc=gwEzXUo!sV^@p7B>}_pQ33~V22!qvs#B$Ry1qf*}!I*T%Iz&gTe&_$)PTa z7X1NQDh1IK)d11&XPxgAQ25i_C;)jT_ z8g}T1l8G@Z)WrTe$R=roKBOc|bV8qWoD*e}3~FUcB@yVps_3A5JjnxEDmk7~kWozS zsVDhXyN#wNf*E>Gvd@#2YDU6TlqLrYXm4^lb3c0g|Z4@)TY7xpwV2sA~ zkBR1~md%4yh;khFu17wK6VLZZ<^rO+;~?eKSn09EL*NE!gLJ&B8=X{|@L$Yo9Fqc5 zIa}pA`aHk^toI4HO2(tQAbM4vWV@!_@8>|#3tWw7ztfP6*%Kw~V+gvZ3@YJw_W<(7(|B8-laP1>;aQWGF9sXsXQ8}==sRZtTo z{{VEebbVrx;gVk}P_hC)r<85idlCJ-#vAR`p0fRtgD)2`V7G8Awk;kQderc zzx1lOQzfgb>sp*)8xG}SOh9FS@AhnNaYB1m)x3J5)^2EoZrXt*@&a-ot{9}! z$@%3#@gUGqYlHbijwMo8F*!SRiTT~ST0`ytp zt*a_TPxLTp#1VMT%!`f=dehEaM^gWXPLbta0AAcQ8gZV7!F%3;<{M=zfRVwH0dBhx zeYAAss#1)#_3Riufh#AFW-EW){u95~Anwcfb4p`zV5 zZ4VphV4Get&WhEoLL@nym6T8^`lU2*ojH`n9r5{17pT&)hO6b1b$_`mP~?gi>oM+V z$jZ$yQLFnLik@|b=Dp_?Z%Vj7p{0EI<|p#sg8rNx4NY56tDJOcT*C%gN>3Cx?4?i@ zEGjgdKiT0Bd3$s#CW-6)Ud{3!3>ZgQppz^FMqKQ=X*+Ia@dl~i8+*QT9Ojv}7a$2* zpOJN(4%_{3|7CxRDTiihdLtPM?n6*j{>YoYC zc2coJIp%r9rSj^A^iC4Xj8B`?k3wK(%Rm?UJT1(GdAEtJW% zE=6Z%x#alN-#py|avG{>#kOs~6nA>bfJfy};|^L>iF~SV)`mcNYSBm1LW?;26I`sR z^n!%xLV&J%nnb=vx?m~5u&*iyKz}gR0Cm%$L7B+x$yO>R3kG3fh;2}IvAEEWS+ruK zs@j>;!0dZg*pBD<$*z*~0L~E0qqF>qX1%zo{`O#hE!GkYxzT#!?^Kl@-PbvVc}sr5 z!BXWtD#DM#v8|B*h${`aVB>_m6L1Af<_B+y+}Bh!t6e4HYSC8MT%QODf)= zceGpQ9Oq*-;W2>gdXB$o!me3f9!M0-%BWCX%YL;Rt_UVPYo&nx+$&4Jk2>h41b1=I zN4Q^xV()vdGBlM!=IG|yqeC5jNJ`mm!;bAOm2V(nU!p_3q$_Bb%fR>Y<5TfLP7mi8 zavr2uv!SFi^Os}x8Q%T{?eLG@evNkc+b_Yy{74qyv)A9g{aF9tC;A6p;Pu!4O+RCv zT_3*v7O16tRwElDq;EF>kX&CNGvX|+s|>}qpI`ucvvUYBJI_d~8~7tjf`^~nJFRz6 zF&|n_%h5SR^|65E%I^?FC(vP}xNNzuM$+ol>OSAnmFgqXmmXrMJP43ww1r%5$mY7! zB^mnM)@X1V4CFj2ZHfm7Ohb2Nqhe^i>=te71nwyTnefDvSPTp%Mi$SKX6=41X!@bG zSpGWt%gS9Z1=ZFSUbbqB9uenTh1kb{$MnFS((al?1~Bi7^D?Sd3>BHVS9}=hxi20N zQ#J^-pa$$*S6R+8L3`HPG*!cAeBFahA$nOiDmS77!*49LtlV^C_Li{js3beI-fWTU zNC{8;D-v$l3hq>osDX4~m#;=~GPEQd=8ib$hDg3K4Pbp*DV>`ZO!z5+JHuA;)2wI< zSR?#deu(GDay;8>=erFJ;pylvPG}_^jD()B_7|3Zw!7(z>l38;LdZScAn1tY2fL&VrZS` zuul<9FC*tiYvIXFk_>cG07czCW+&5$R8x2k$+s=v6*evnDdkz68!p*EVO;isw1o>M z=J_H)R}K@x6$UicPQgro{^^aBZdGm>+k0r16cIXG#O2@z31UHHqw3wKZ=Z&@KR{P} z07#D|5^{n8jgnQ8X^+7>p2T!EBr<4LRsd|pjTOpQt<7q2qKT_S_umPptL|l4L^ivk zTmctAM&nB00-mL;3Ah0|R#P~gT|}zwCeLm}xN{wB>=Jtk5H*k-4vM^@>-2zyAwfPM zC8@{*rxO79fwV!X++CRw3~tCjz{{#!oxC{8=Pg1vUF=Ej zk@6qmPPRQcbl6EeGh4xBDx{r_FtC?LTS-{6qq{J zN_x*L+c|#%ByGt*K;j)(Ur6aTTFxT3#s`{btRxW2oi*7G>>jEB#Vk#-;SuE=I0%@( z&)$mcI9lsC?Yv;j>;uO0E?IMa<^BV0Pt^%Dx(15EG^SXGLi8Sn0?d+CLbFSv*@d5y z>%0dL3wjBDY?`WvE~P|%zCT;et41x}8^vk-V2>H$W1$|s3%1s7-Yi9_t2mB)q%lph z8tits`(c@>JH!&I4I@x0mjAzK73-LQFtcos5MCx+2+scJ&o%6z$u)yNAT>j?HPTn{!MteJNC0+4_!{ zhLTn9fNBY;D=W>>Rrcg+g~3Ly2PDP(`t4_^9)1l~CCOty z&wuM5-#!Z}5h~RKaJvuo7kXNm;&5V1lQNu4!UvU;%}SANQNHvtR8XTD>``IZPt*@;B%t#d{pGx!*%bo> zElm3cPKMm>@DA8;?}V-3^sfa2n!#PjI~|UK+qk2PSPgxIYV%r&Gi)rZ%adEF`W0y# z|B6lag_fuK=Xb?lp6>m%cTJqT*2NZrB2{_dn$4*t=5D=ZL6SV-AG^W;58~;UGdA*C zQD(kmDUyxU?!O5JT)VRpSgN93xyHV5hgXRjytalY(M!G6r-vMYX6GMBy!OrJ9=J0c z*c_s!-d`{qdXep(gBT*;0uf@4WBcdW;-onP`>MimVU-P3SlS8^m%^SR2a;=PGmU!| z(q?GEWvqfn4VmCA(9?6!-`y{GU4>K~vF36>}@Da7Esn;&Sst{nv z!pIB26DKlx3d|lDSGO#v7Ij6oZ6c>${@_$yKs3U{HI*Ins{ozppS*nvBOLvpgBp?x zZ^=rdESsq5%BmgnykPwhs9v>Z<482Eyc4nj&xr16_E%uTe42_=!3@M(YOE&!8eo31 z2@%F5!NCW7Lvg;E7 zvjqLC_v>+dncE>WrG(ymHpX_m|GAbj>q%;|{CAu4UKT{Ca~jE80>3s?WDA*;5YS4ljmWlXAur#03b9YH?Xw_{~9h{3%-WGIPtJI@(== zrZ)_y@f{d8S zy2=U=9xjwvsa_t7{wS-ffo7>F$AxPNB{5SDAtt<%Iommf&9BKqh14ByUKaD@gedKdiWMXjPSD42nqxQmE$H6vF5GH}wm-3?^7~W7hN|G2{Y!@GibZ#cz zHU8sw)vYgBxl2oO!x@E>VWee0J#?;PAr6Fh2*LsV@6}VQv|+Fp?8@Z$`+cdcItzPR zs14`4omoP@E6HdM+T33v`OYsswU4IX_Wjr2y!(E5{oUy$xjps6tx?hSfb@ZyzP-4v zv^$;xIt*k7s%-`zv>gJ3&8QazOW-sR5Q-$h9j)MmdiLeq+^A>WAxjJf6=C_>gC5+h zQ*(d0cogoA&JM=OBO8b+rrl2p^1fE|w~`zTT5<`)#1-j+oo7HC<*ldoXe(E_&1)CyB)>iA#|A7!YYGav2W%+1 zY}o9WAIpz(Dcitf#WSYa{s0oXmwW}N>MWS5{rFC;+)F!dZw*QuM1q=(4D+$TN zhjMm)O@x60s7J@_sXOb1)CFX=k9}vTm8|L|T+?i`K@^ijSj^UVnzM65yEj{L?SuT` zGX+mn(NU3yQA)y?P4$^)&2@ zi^pUN;F*!RP7;{U);SGNaX3NW=b@_Z0KgCoS|5PbtwP@HwIs8)WGWlOychbb-gcS7 zo#HHYXf~Q45&KpxV|b+V>D%A_cKFZ#xg6@>!ScCa5pDht>f^8A+xW%XSH`$~&Pmb^ z;+(f%aFMZF2n%MO2voE3tQT$!*(9x==^l1sk{Rwm6GEe~asaA|DX}cW;3BV24^-um zVuwcR+Vp55+71N<$;uOTFZFhKr-PiwNh!Ss(1q=p)78UzoZs(0@j-UGosb?uzetLQ~f0 z*TKv&@*lna&=xGe`~1CkpXGPz3qFVjRk?)JgU;M{&qSOUsEc7tZ7rt5#GT@R4R@+I%k*p80V`aRud4d9L zP(vH9(0z-5)L%ghmQmg7-+^>b=Nb+~k>Yz9a?M z%=?45;yD)Z8KefLO>Th6lnLf!AUDFtB+r+0x!)w%Sj?``K#(x4dISvrvh@yd=WCwT zUMWW6LZN^(tM5oRtBO;T2-v#7OxKYr7fI`0-0(~xDS3gRPVcy3Fy7YnFyX9P(4!Ov(BaAR%uO*=%1c@9lS{{)k{M#qMA5&4&`^|D&B)c_zjxf&)QX3Sz4!HDpRD&D-~4!>(ZxrG#kcf;N^ zJ-e0g7VUWWt^{yr=vAEz8FCNfmh#0mn~u~gs6|ig%z?J;Y#P~KXA;h29p)a;CSMkyCupUEZd7LZpQiI3OwP(PSy0Nd zqNvxjmDa&lMnyTjYdMDihu6UPd2y@#d^@9H2^kFJ31x!uzA+fB3H^}VL@udw@w5QO z0!y#5knWfbVN`jx{owi|mFj=F+}tG|d`2rofz^Vd9NA)|+s0J|8@8yNp0v3Q$biu% z7aZ*`)MYt9AAaGQh%4xy{(q#s>#ii%l_vH-pJG#hF|F3L9-uvT&wC7}8*$kg5t(tT zxMZFTUiiXeJF7kBm5e)*-^B0-G8ky4OUMyk1^4o6Rj9+;idJvJc0 zxAalN-d=q|DGsaFi^ck2<*_9Ul#iY7zy^asPkiw8k+8HXry)zt_y7QDelD7PTzWzg zFb|(IpK}5%{G?kkviiE@=0t;s5kEwiH@d@-x#I(hwM{xp*e~j+3oeN~6T$S4TAe+k z<~kc<1v!3Vov+$%Nw_M-fDPqpy-OIu>?S?$2T%^g*d1j~v8ZZ-tXAdgPB4G13x#ya z_OP-bY7s(Gh5Sw6A?(}-=NdhYx4!<%T0Q^1FJAr__~LYz!$!3c;6;GcqJm~`fEl$G zu?Mlqp$*hJ?XsVs)PGp9NE_4?&%8J5JelTO+xdV99*_kG*e*7ydt@a`OY`mJ@0%S5 z>9E&sA%gz;A%{=g=TGp$n@^M6Gx71135>&eOL#3Jy1nmY}LB0Fz<@50J)w|D5&mDai?@Q8ZZlp~MrMLO& z?rmHGY&YyoU}NfmX20gC*%Yp(Z!|~&;(8I~PRH7A_AT`cjEq0JHY|^Mg}(<6K|-%o zPRB$zg>EnG--jDp@tWhzA%X$uGcq8cio@uENTHS%P<22*&KX|1gR&J9ygFEas2%*6 zS>HiPK?ertZad#)QW5K{p&E7c zZ6_arrY&Z^BTi+G6VUr>)prA-He+|?S?tZEq?QWd9tfZa(v$UG8C3XVy?_Thj+BkQ zgTWP8K^C4bovPX5PrNel_u5e|P)e0Ra3i=3CW;L=I_F-&t={=#E@;!WSi{I6!k2m{ z3a3_b40n;!NR4?0ImJ&8*|RU0EuV^AIBct&=;2;YSvbG!5zLVDKK19Yp6=~&hX^T>0%Wo*DGY=Yt@{;=>03v{8;sR`Xe{|+awX8j z=dr1vgu0gCMo18;@K}K^td`G`3XvFs9DIC{>u=P8HK6OW%?ogrn30>iTM;D-s1S>$ z_X-VK2i3#gYKie2NIf~jGo!PCjLuJQ5MCs{Hgb>wfW$s{hYdkkPtiafta2hw_~1w0 zgfg@L%R&jD6yjHf$FyL)w-2AzT}rrVB3b}LDXD@_Dn1P9R?F6_>$XTtflcV_@gK+P z8lEh97qDJ@tRkUtL1jH`n-3T;t=c)?U3O-Y%Ec=**mT9sO-u+&gYPYfg^m~CtF(^g z00x$n6IvN0J}_B;3&tUq6N`AM{c<0IiQ;01NCrxPd?u(dUG@JD~_I^NnJxQddaqBj;{s3R}TX zw9B%>hldXb;3{B&RCL@(Xmdf!O*JaA=690+$|P6i9z%rOu9W&KLh*`Zz-EbAwx#I} z1$veORSFlA*pvr+g0XqEtLI^O&eFKhS<1?8cz)LdweAFjBR$JNY#PFTi=~RiS8+3*d6dm#kNF34`qrr9_@I8unex3@T8{AooPjjjCuuX!R?5E4nhDe~hapz_?!FuTQ+m!n2`}HAlCt7YPVasszrKEB&zqD- zV6I$!E@?Ck4t>~`ta^%`MoMuNOsqM{Sax`ZnK?`$)p`#((Sa7rk_{%Kp&ivkH1`V_C9TsLSk%Im^-H&>#Tlnfd$^~+44&*#NV;lanN^xd zyGcC)j&Q*Qg!M`u)N{Nk2@@n7f~C+Rj1YKA zZ>K!Tor2xr5#mV%i1qjmr(FfdtDU=i43R(#>$YwL7#y1 z0-Ee5o%X|ELwyjbw)Qw}0M$#B&+C*842!a$@Z>G4iO5a4E*-Z>5(G)FXdrf;WQ@z4 z{U-H1rLms|3nFP}??zRY5ao1D4!WdrS8-MecbeZk`{G}ocd=x^#@rsg8WRw+y{zaB znLegfK8%yXttU(sj$r?t@-$4HQsr;CPnuXx0GNZ;)WXBkO<*n;IlfQ2y0i@qlqrpi z0}u}DAK=GT>^GgBxOH2G`JLU<=R7zZ1ebx+h|#n(EiLB z6$q~LqCj%*X+b~iRcno2J=#gr(4&XI@59Kds8j>p6&&#$EsE41<9%}x8;G9qzd8on zh1?)@?w(+P;*WC7)YcuG4G$!f@`Qbxy8>(DtKz4yaUw3|^B6lImAFTQa4CWd%2fhm zTa1`7CYRi-GhI7CBdHN%fp`hm;xJ2N(mkN`<}oIZ&y@j1<30o9-<{%m1?aUpX4RQU4+9qBs^~^cxYR!iML{BX zz}_i9Ep;CR_HHx5bj+7fs0hUenj_IxaJWH&7Oa3YUuFu2EuTSqj39q0yU>{o)KAW*N z>K37|4P6bF%u9@iK5tl561m5U4`m9mj!A3O(&{_`df42kF6$+Fm6#Di4qNOSMZ>+Iz6!y(|6y5nZJI!moV&^3h-ZGyGfs z0+>4GBi|3no$D(Cwmv=sYL6QHWS<+?*u&Ft z9Nk3WlO_KbaR5u>`BXQ-=SSC|fIY*IS8v?i8Vl}ujkXOuRI@|ci<+?&QWceiEEeV+B?l;aqi)u00x8IRgn6( z*9h@k@BvgHp=q`~&IQ8Ev`Fqoh06HYymdj^RE8(;w#5cXCiWmF%!$2>gtD|%O5HlA zEiJiqt)epQHRiTHpVjm{X>(OvQ4~o9#q@d)4jY3^pd2;JP?AK@t5#&Jw{n{>AGjDw z=7q;5@atc=c|@1%x4SpheIQr6JuATW$Av2heftw zg%upxt_tDSjI3qewyLGfZle=GMeuP;wGFooIHu{^Xk9(K>x!haG8E8|Y^9Enu(76I z9lJ5)5nO*fT>nb(&HT0j>9Yh0Z=k%LFD*M zb9UGRf*wXwVcp4-#^yyG2IS~svJAGmVK3*P@KLL(fqb??T0M#*qS$6?X|=NS`Eho8tEx@NMY4toW@I*$Xv~vq<2e!d5MTSo*ewOC2}6^p;Y)$qPhW z<1VS;+rr2&fo(iBzK4mU(NF>lg`UuT}jqKm2f)7%#_|@}j_$ZKtY)RgM9z zw{}|CpiAQ=9lP;^i)TkZ6d32HA%qqu@D1~jTJ$?)e;xpOzk2Etu8aokeKy#e0BuzGuNtvu z@SsH?iI4@8bFj9m@BncrD-maPtg0UM}{7-vJ0Zv1$oDnom-y3E9uRI{cKa$6S`))D!9Oh3 zbdBZa)MqpfPO+87KJ6$U8-6ZbRRZ`?@j@~i6T9|+uDK4ZEFrx!pbE>bo}L?|a~u>p zugTeht`u;<06SGu_8j=6(KB0lHK>3yChzF+ipAxNZiIfT?VEzg)Jf}v5#%Uwpr_k4 zP=D#k0}trCFpS`+8FDE@+novU+b~(@Wt5Zzjhbv4_&!Vw zAQkTn)eMir=z_+XI(^|pJY*3}w-#TVu^TV< zvQ&NV^#L^Kh_FSa;>n8c;G}CiRp3rJ%0DQu49$GwTP{0?>4l_B{}_v8!N|W%zC&9> z8RY~ssE=R2qK8T{Doiw#V{mG~-8N~7=E@{d0y13QZ-L_na$8k$AzGkiL@(J4*Qytf0z*783v)RHW)+dz6>AptOH=dPY=A%Z6wC z1>In?qUYe)-siyT<=CI4D&FCY1AkowjG~py0-n@NLIlKzr4#zhxx^-v%uI!D^AQIq zn@`IDYzmR4i8BA}n)9)GG%;RtCXjQpKV^`$(hM3(D@ip8)+^shXCsmGx)1hrR}{;| z)ph-sBChgNJvOY#pEgoG5-Ju|&mH1`XDZQd;9Fo<=|O<%5|ayqDjjgvK;OAbBS)9* zX3Bz{4G>WFK+juX39&&>rav_DScf5bD-UXF48(0PQG_>1oQeBU2{1df1`G4-(>8;F zqi{1W6($@eRp%N>?tFqhow`zZ2yu@5--hp}g!KWti9av^eE8>o4(S(QoPMqn7!c$6 z;p@lptBR)l5;LdPZk39$`6vSq#QOTAiopf>wr3sK4IJML?%q03HLns88h|6Y;)l7r zG>CRyuvc`cVJQpBxb?AU_87ANj04Tq;&SmJ2e5NK%eIbrdDLxCe4BKtbLScjQ?*Sq zJmUEj#CT!-qFrxP!o3 zOaT^^$xsWy2=vbO!04AM9i|SJYL(Z?5Am{x!R}sjH!e=IOU_y?k)L}VTT6ooF&nn) zD2eGPUrigJSpCGE(M>`9ZXtktY2i6iGz`t1^)zLL8oTszuxN><{eJjf`p^@l_Z#Pe zq^~9>KzjW{$Pq~>J{`q17_V7P+ac4J-YI;>>c#yU%vjtm&mEw=A%jg>KcSm&RfRG4 z+G*2U4;2J1?g?p6qDDaXwz^8*c*h{E*%_1D{U|UQOc395)`moX7 zSNgb(C*ba6pzTmM49f2(K~5-?`4LxfD~tx^iBwPvec*>-?|v?Lb4OUYatDjl+w|`({W1F?4gM>>m~O7x zZPnUe?fTO)u99f>7KQV9(t?CP!x>SWJ>$7>-){-S zWc^D`Oj%VxX z=i9h*_k=0@sa~*f+oX$@bO`E0DCN(p;6k-to!SNK+{T$&9s0kL zlVzYQxdAMeCAcC#z#*GdI?L%%RTc}&N5dZILYVr)N(iO2;(?$RXzkme7kpUiB}?W| zm?iDQ>N<-|&#EdoJ0mPhR%yhWM`Kx-)ZxC-;jEGqS|y!`u7@XVpchd^;z$+Fwzz<$MwZRoA;sD` z{-Mizu1c!V^8~u{}(JvWne#~I=W3557awhW3PuU?!L(`R^RKvT8x9`WMiI`OSvvOTxI4O z6KGcoiiO%PEjzP|l789=Kz}FIHVveWpImqi-A23jk%%to)<%@}7U?%c7RVT!$?n}b z%28IQm0SglUxDQSs#J9mU3XCxT`DvL!elteNUVG^P8__jpo@cTyTnyS%zWmEM;nP^Kn%dw~P)!xl^tUquQQ3R_q7yxPR1 z=hi^Lk>x~4gL`TP8PxGNGM#Ga1B~CNjgo!x zxF&MY0r2W0gzVJDM7j(B5Z4Loa$@$d0B{r?K6w%d3Kf=mOs#MKUlF@M4= zDEwo(9GIrhTzB3vOriQd6!O%j&{ua5yEwXfPVH^ZI z#rIt^z8AtobIv8wtUynrnF?tOif1Ahm15Nb6z4#zv(yv4g;hYFP*$BX8W`-kL_{5i6C_-L z%b1Hu0t7aCwv&-=Rr0+5ZFMkZrb?;NqccOX0o>gSLSdx+aZ&^77-*Ov&qwu~R5zQv zyaihwDh7tO8{i}RA^som5B>Uqb(A#MPk~^-iCKA9JJoYs+-@ECa1%d3(RB9+*J=Dv}=hMc|6PEN#gQKYC_F*asX>=;YYnJmZTtK)@>mT-QF|^#cg5jJkVO6nbiSvUh_9EY30Rqqj zly9}Oi<^PV0EU9xa>+{=re^?9K(D_P+gQmDutvAG1f4+H1dnyYSO7VXLJ=xZ_B;D7 zyUJc6>|hnYTUCR?Wvv%{A>3~VF^g^E!^r#GoeP^JpH=j}a~f`a(L{Do><9ds&^_qw zhWI2EyRpF_dl{S=-%X)?=-@z>FyZbgxz!fs)GiOB++0g2NGoj*G1w?rDf{^DyzN=dJK@5ucb_2yqx*2@cPG)(;H|= z{|{`j(?t`_Y}Z+;jvMq7S4MHD>6?y1Z?Net0=07sM|`t)8Fep}r4$4lxzwHHD~dD2 zqRTIG@*%&Ea&N(L*ovAayWpI~Rqn5rem3lerOUxq;-~NL?+yT@qq@hq`muW~$^!!h zYFqYU4qR=(M5gTD188oOMy~f)AUX+NF8f$^m!6{wxsmz-^eXi0gxWc9GrOXCsa!X~ zeM%Pd+w+vWKRQwNDkVOR44yNrl}^I~_}4fdr3)&`b<}2lTJp0$)S;*&HedjAbfHsL zM^5lHlL)U^h0tPI^^C89D@EM#5)T(b>UP)Q-W7;UbgTGu^*eMq%Z9YTYQSeW`i(3}~$L`+~ z+Wnj&u1N{{Q%XW7!05Yw4li$k($CT7?%uq&?wZ`DsZYDFeo;3w!%1(@V%yz@51UjE z_W1zAPv9Laes4u@o8+~bR9+6dy#S#JtCQaBs@6;$xC3wO6p%Lw(QXhq?4hq7$%if* zU&akpa95$B)J#5D2xvi@OM!o{&^!@{wXH}Ha#TuIau{&hZ`FqSs_ZZ@?iDRKojNG6 zO3xw(1%r%*+OQ2CH*r7bVpC|A0<^dyhz|LUV{;3X9O_-B4#ON``xc-w^Uzpsp~}p< zSVB@FyB-EGEHO*hL1GF16TyES1mohsnEk!)h3|bY&GbJCuQvPtZ{hV8{0D#%)*B>u%5Rh}+H&SBT}5atV#g={ZE9ApE7<5p(WIxIU4juW0WmXH<)qs(&I(thd!vG0(!5z6CliK|) znIsC)PCE#@yBbwUT(u(m2>U^!sxOOU+MeHKa44tY*;vk2s&1iF$^k>6xHAo z%B+*50yM31J(t*Y4}4m%Il%~=S;)mr3P*QAmS7IlV*!AU@fc^jwcQYgE@zyod;=CYeZM&Sy z8NXTj25{U*1@_arx1_AuhqQ+PTk1 zcAy-`sIa5-8WbA&L#!2ea9;V_?}qQ2 zVCaa7T01?tbe7apYSs~Pto8w(m8^_r2z8uY@Eh)dz=4iB44;h1<5RnL&nRM!wu@!kl2Zci(xJFTD+D|ln%!=j>2&?H;8@d`9 zS}`sL(Se4rj~S%%UOVuP3PPptu4_|*5Nq{JshXXLx4<*l6h$#jZd`Q^)dQQyeIkEl zh8$)yDygq~cI}h(>PxRpn$|swf=I3lSE4UA2`CdM`8#}3dKxAJuZ$9SA$ZBy)#XHs z&>f*$y>BM;%v*E-ok}TAOSTUkrriNLJ=P+TgAuhCxaS6YtXBX(dzw#Up2NjDOpj3* za2y+{Dcn)tbYD-PB$pPY&k1Em(EnMbiPOUZ!@Y@Pw-ZENOMfGQeB+xYYhB?Z@Ei*U zq`gF$;BL)Tk(f|4cvP?@Q3s`br_>?@IBqRkllJ=SzYc#*W58eWUj3SD&)+!4;ytXz z9U6JuWZc6zB@i;KD$|ibBy|vyeBOia)Ui=dI?v!h6w-XU1D*6Qq-M9s?-+adUKldF zB-}uQzu;7CjxM84v%s~tSIk>k(|}fhbl3^OK+aq3@Pw%D^tCwKg-haqwyaT5RVHIEQlDeX+Y(#W>hxN0>m!#aE-b(4W zNZjsxZZ9$Q8PZ%Mm0eI`ayqjj;!nOs#`RoVc^)=Otsy-{D0LlGNx7@I-l!?VSd9e# zL75m!N6H>z(ojxhnpefVyQVni;|2Ha=(4dUSCvA3t=8yiM-f4Pr&l^w9TswC=(F4F z5rLs4C`j6`y5?W~efLHD_OCf!eIbX~EI>Yd{p96e|MH*V@eQ)cSK;Ne^k4jU`L{1g zh7qhkRN&N&mwNMw_Z*N9+5+v1uc+Mz4q$rw@Yj7--T2YA)LHdRT9yu4;~g*fTHFsL zn}rsIilxC7Lh)M=x1vLd0(J$2sn1=7C2spPIv1tXOPHZ|}BbW0yT>G-)&x zj4!Yad!}xY4@D$ZprjgHYgf%w(1ge**FXrtHdKmo zl)m%t^P&0GtC^(!)>y;u-b(fH)9~(RuU}iw2`s{OA_U|h&}a#b+z+D1RUTzz8jKj~ zkSzxLOQ{J-0o9wZ+7wb4M6nNeUJYGKwLg{OeB|^Y$&k1$BskDeHoi>~-@9Sx z8a3LHq$oEBbxr6jz{$^>$5BZn@~|KFtPFH=1{7I{Yp?y~C7C`Q~jzy9x3>c-X-S#9k4EUkoULt-H zd{8ZTcC3!21U|baP<$|Vf#1BdP2BSla^Qpq0096{s==@2*eg0}UnmTI-X0bP@)M_w zeT9JmY2H_rl1O(58PepQPl0P1Lk#O$7T!XlMsT*9@MFEWKh9_E> zZu)ps@W*vH_yC|9gmAeYMCD3S%%!7Xg4Xu(9bdU`51Xw>fF*YiE^tGpY)Ynj$!xzg zox6=tt(0+SsqD+5Ld(?Rg}O!IHclY0)u=M0h){55Wir|*#(RmE&Xbm;4E1%=aSF(Y zFm#5|w(xgHZQ-ZPFs(xQw=Cl5wD4`m1^)u&7JpCK#s9DG!~fqu0KFmY-Ht5Ro@Aup zYszqNFV>dO-m5Q;^@#cYsJNojuDSgmJu0EMgQRxeF0@O2rhuZ2r@0BWS*jLSpQTDT zv7up7v9&=tbTKF~AQ5@k88xIUfoLX~cBr;eWKbJ-s=sk1b&cEL@(2h$ZKrO9Qh{Wx`d;VGjfyatE8L+n>?rPe z{sA(jK6j1l65NZ_+@$POOWhxi2U)^?+F?>DRis->#QZl^3LkFhE`)(kvBa$WW`dPm z4*(CnPUlUfC;z0V@Yk=C!_*ge_cpxz(ZUiYR5n{cu`ao7Wip?VV(*!=KAfzsZkRtF z&;}}zERT6oab(lx?%*}P(=<*3T#DAZVZb;a_GAw8D8j8v%VZ|#P*^k5qT&L2*H>hh z3Ln5FMA{N}7|l@Ur{)Z{-Aj4uX7VEqCx@sll+k@>l%z|1R-7dH`%^sz5;1}I@zl{5 znU+#@p~Dmcy0Juv7J)zy%)%_zKy7FTZZ1cc-?L4X7g=9~TO<8_&+>6>6L|W%2-+;G zOL{AOE4V0sNhc88?wR;@R>Ieg)}#!VozlZeSy{eKhiqpd>v00W3{Rm7%I)!oLVM6O zKvEi+J(Fp9SmeI1TXcz>^1`k!`xV3o`2*N(%Aq(XV;@LHBC>Y%?z=U74W{Kl9brV)Kdd+O%_v%Rpk?~ zVr7F?Q~(46f^8xgFdVbgXmWy2!CJ3dhph)j>$lE<9r8#)Jy^0@f$E)5&ndm@*yeOs z*W|-qzV&AfbieOlfIB6Kw}pl}-$eRarRD3zhGipAFGNa6`g7bcZofox`MLREz(-@O zxAD&DB1w8$8efqmmFZL4yASd*5mwX04cc@zgjK)>R1(i;iN6KA3z#Eiw{kh^a!PG; zY9$?<^A7E89J5pd&!Gbo%XtqoKS?jsIuYV+Yqa+@HRS}T`3z}SeWMgs3+)wzc}j>7 zBBa`ZNT6_O{4j^n6oo2}t4{pJiUw@gFg>4upXL{!tH9PGDRG5Y8^(i3^@Bvx`vx9c z;1wYqrc^nFON77^?ks#f=hH0^jRYKyZ=Zq2pt3SVy7n0f@Hq_mFP>qxwi~B=-0_Ev z-4z3<6jJ)#`AAKp0pL+y13B^l`Q3I2d9Z? zPSRPKb|UE;1prijK=~DR1m<~M!kyRCU0)>2Eg&%uspdvr%*n{N#RBglJK+U5G>r|O zzW@F2ha|52kQ7;J|LXOt{M9d@wQMg=#{pTZ;!JkN9a3dWgqV2+SrPlIAXos@L9BcC zyq>uuS4;CviOkaltuNt_ps?(Nc1~H9o&gfi*wi(Joh4}k6Itb+W}{Yq=gX(~jw z!uHz%?vkih`-U-ealgVfPz0h>B_dV*&kmtQH)Ovp2$dFT`kY?Mt1uZUpuoRLarT1` z_^dvAe1f0-MT-3c)U{z1AV;E=2rEAz9E%^!i_bKgAcJx4{W8t!>*ZsK^{xhyzyu7H z!$no2L<-1>`zHCkZip`>Jg$zM+hDq5dZRfAYs&w6rE5B!uFJA$40R$wN9Y>wqKxr2w>K&iHH7mh>CmS&d~P0gUhDf8?8 zUHa<3y!;}(`)}Ak!`cO`H3Bj2Kz>ZpHtA}*B&rZ2mi}SSVZnKubos}*gnX;#Ex5;x z`Z3`e!H-GGu*~^i2V}_DJ9P}cep$s2c>sxunI5-so+EHrRTgR~G8`=e_kEmZ66B_7 z-CF3>+n*1^cn5<*pq{=zsz23`z9eTG*>o}$Bs&?t? zZm-pcY~oT<4be8Rg#x)A00vS%T-$M{Ka>)y48t!?xwMvG&3F|nrz{fG1SiOjm5b|w zs`Q)umQzu-Sg!^1M=e68eLituxl5;Thob+(g~euI-A>!SN=7HOO38jRYm&j8BBV@B z!t{nDPMATrivavd+mWte2NHaOq^7>SmmaGjusBDxSA(u;x`uK_nsnU832 z5q!7sJEHYYO=ckwuArp3LNz2r$Tz#8q#Q{xk`tsN=r${e?mYp~bNUi)WWJI>hd4cME!EgyWlUZoY$yziECKavG7MF*AmYU^GgCXk{CdGAkd<)D|_x?|DFB+5NqW_ zH)#+{(M4)zG4QdJ1EqZ`NEC~Xx2=Iy&rWv@1y>k*R0%&8h}XjvD=`T=DCSihT02?& z`B#7c58>~>n*;FMzx-$TxBi7f%U(ZBv%HT^_oK=m>>W&TM1xfc6;9m6m}r2DGmEE9 zryyxou`0qdi^1WyjXZ9PRDfqD)_JO+yj0S0clQ0LhHx1cUDydl2j){3pQ- zAUOPl7Rx~s3x!jr|AyH(X+fJPn7qKl{uNbQpSvbB`+^Jqlp$F6R;t3oX8%&g9H(1X zW^sZ|rDpGIdgT1xx8g$JtU@e70CCxTEba^HcVrFTIm=1`0B&qjf1e+A?6;s>i1bz( zg(j$&p5%by-4CQRB|Ldhx^Q$4MpSWj)*v6mo_A~u-veJE8SqsaHnJ}32e&JIeG#rv7$G_3-Q(3Z&;d#4oKA(NfR&gNWnIqxXTAn&dv_xgcQuxJ6RN?DIaH^!@1v`1M1Dz$M*K$eJ3BK zKfHb(zD;lc^5rLq{m%dJ*XeLQ`%}5?Y3O48(G970bwRNWX#|RWzB(#xWRDCY0U$o_ zk@^J_99EaPSb2ip_cXHGmciZ)f^aP!q&Hg!h z{))F^o*vXs0lg&-PI3}AXmT*5s?7SFN^468VLDcYm#OvJlm=Py(Kma4`p(~m|K&UO zz`u|GrRy)B?o(R~@`4UhK-rOcu{{`&;s@@$(3dFdN{Z_ilhUC*BV;Y(mnul!cFO=4 zwvf}Kj1)$+MjFYkxYIh#t^L?4$e1s%-2gUJCF&ic={E$7IaWV85Q}ifXEx;%g zLzBk^CcT)fdj2p;7>V!T?gC%H;Br^ybnxc)<xzAhO=UQ?91}; z*ya)&7|tJ{jK6gywTLI4ocIKPty2V}R?6`R7IR^Lh4eMugh}?1xa-}@h6fcC=R)$G z(S@y)N(uE4RW?B6wblwfa zcH|X%Ew%B^Dio0ZVnI2Irqc2XnoGLG0_#jRifPfilHmj(3Mp#~l95D)G8wY)H%;}S z)=CQMw#A-;89^MyxZH9q#6NLYgo}ecVp!h|qg`;16d7b!hu84Eqttfb_Js zn>^>OxKlT9!61s`8|YSqiTd9CLtS0s@TW6Y$`20%{U{Ip4!9MDN@cJ?2$ke0(L&5`%y)+rYX6@k$+5!3leXn4%nvBHFvGE%c zeLU;c)knSAB$v>?HqNcWREUZOE6L_U_*OaOl|%EsY4tea<|^lP48Fd+$zOw(0JH7% z2-kHFbd{rsi(JdIrUbi}hZ;Rw;tsim-ybSv9Ak^BK(8~oOQ6{}@(sj9)px9hYc`Hr zVAKmO=H=$DfRnQ#1TT!tvO?=W>mfmK;3Eb?OcFxxyCQ%+%g#)03K*|R0o5rik`);O zpITTc3dB)Wg>)s6OBrZHTYR#$m!X5-{mYB04u5_+iqWG|avgjisof(SC-73* z6Z$G8th#h2m>eZk{N!I8IB7(bs*X5`6@?prt@kd)eiE2BxJj%TNr29ljCuLFZ*p>$ z8{A8%h}xPE$L_esu|v-)zi*=bA?Xe}cjif(r46?1&=&^|9q3MkRm#^;F8NRv8eMYF z*9JVqgv(B2>D zFm$+itjZ%{4Xexx&Ni^{-vU~^DxP*N%K(fGgo zWK3jSt&OV@xN9?V0Z0iEj8)x(FQq2@!<8b+a6TK!4McdFyrb`2NcyId#qUn< zK6?2E5anl_zSGlFcQzc( z7a}$2fi1FKM0m4zRFjpGpTHRjv<(AY)9s2=(?yrv|E6o?qb(}$ezdG-w_o>xXIDLL zAwfqn%W`1Ji$zPHam^r5>TCf^>f|^}@6sL|Y&c!(J*UjIlo4lX%6huVMS`im8~!K# z^{>KrlQkIfL8=z;`=A!bc959jYmb2N3W!5M-gs zHxj%F0051kt59zA$|>Qxzsqo82_#s_TPqM7GP!y;*0@SQyqLtb>S-J3ZI_Z{I%Ag% zKHdomWiVUk2y%it9_*}1o|h!**7g}TXck+!%)N)29U0ceba_!RS)S7Eu}s<`7(J5xQ}I_jTvK{E^)Pe& zE-4Zv3X}6G--T@wD@2CL>Z_?t(gbJAs9VeHJYdhk>5uACa&~xxC@sC*g6;wAbtw+i z5%plUfzN@JxVoN=3e1=cF4iXCslD!2k0ElT%aZxld>*AixHy&ItnQlp?eb2241Xl? zEd`z^pUFu1xiK%W>o`kZJJeumj6~`{z=*Wqq)Je6ej}|AaPOQYP8lMf)G^RMKrD{p zVzYZYNT3*)mEL{)^4phRNI?JB*FQqe{^jT4-6yYq{PRD(`{?zvmk(9p{_VR@UVi=Z z>vtc&{^Io)`jyX_mVX&ulBS6o6Jjr(-l;dRucvOhHnmXx#O_tC#Ox&8b*e!ifvVoQ zxzqzlL7hPI7*?8~s8`6!#3sjzc`ti)0}Jb&M5i&86uFJDO6+2ss*exeCsuo7_CdIXh_<{rFNkxh;SSp9DU&c>?I6X z6h&!U!|#Xhm`ml`KmW5FlDDsa0*Lu%uU}*75W_je;~VHVr1K(QyHz<#dq`eTwnjd^ z_5PqKw+@rbX|7kG&$Qt3fpM!ccGMh<3iaRIM&?dN5;~{@ratbc1ZLO-<22uf+KOr- zJOkz=g-!m3s}(Og0rCm6TOAtIcPMnx=C`unEbCv#@FcOP*;#F0q)EV&W0XwO&d^Ob z6{DgZYQ~SPIRTABnlt$CYKZahfK+tSM+Z?FRtcXR9z4PGgdFKsZjWRW$La!TAdTU7 z!vBg@LAD%)DE-e*Fz78^=;|0Ac7Lfab7T8^t6GEh@7g5MZXC#am>o7=?SCt<-KazUR1iC}k@5yIl zvsB0r;Q?_O4Wy5dRL)njO+lBEVOORa(oF4AC!p;cWI#egrHqE5b7QlWGNfrGn7qBllUYtgk z*hDK^RHv!~OOg&2FgrqJflbrlX9<=b?mmH*PU;RQI@t8347Hh}EMd13C@n_1}kokpIasd;OCMkmJRP(c`n%pS`@ro7dkb;5`VB()`JROvm#_Qk}@} z|3~v)g~kE+r`G4m$C~aX#{U}_%sw?nYyO@Fo>Z+4XkM!po_la1^hv>!YdyT#mEPd# z<;^aIF`1}9SIPOvRl|sELNX-CmV~uPF_76!5^Oqu{Ly*g@+2T8$%S4VX3%gXQWeiW zZjw$1gM9gZ_L9=IJ%uh6kUKfz8p%FDnPz}Q(lj=wBqneF7NTg+e_=oMjam|f*Ke53 zzX*T+Cw=|ASJ#Ke@gSa2N<~cFY^8dKPA?!b(r(|~B@kH!CM6ueL%$Mh5@HLyhs7WU z#ru6hwtkPEI6IPmQZPW^!f?7m^JkD6QS!h9-qK7VRXEg0az~5E>i&j3uC1P=6qmbP zDTS3QCv2jn)P@YbBp9kw$?w=_7Vv6E;{*I|m|Z8R&8VMdA9*GlxLu}lr zsz4ngZQy9Me~Br!Y%kP-mSy_8PXN(9cC-Lm=g%=~pl_1I0O_ z%TN~0NsDW$(nrPq`F!jgau*6op1kB4@!cQT7-o1$=xgN<4x#gQs8^sJSuA({_|j_J zPuJ<1#H9c*GL0trI~rA+RQ_j|wl=GlXGA6GYx`*$Fbx;7Z1J2Q=A5oro}Mte#F|)p zk`uu|o?ro?34QYUO|hWg>6UAj9RgM-b63$X7Q6L)9o9?-_5$jFje8Ek2|n4rkP@ny zc)ULN;DZNa@k}EPFBV*X_WJwq`djJske_TFwH@JRn;RTI#gMqX?+WQG-55`H_ty!8 zVy@tBsNRRzXT1~Pf=@~}RTc7S?U3wUS~z06e_9|MG@T}Vu5WhR;lWoBqg=1z1}uL3M)38e`G?2u=<3t zcmsKD3P&_iwF%^c7(wz(<-S@4fWV`e#xz~>LICcAU>{;2haZmD@L4*DNU5nYxX*E+ zB7WSqma29E?&luP(fhc!uRnYJQ;=WY8nxn1r{$Yc^Gia5^dJ_t|CC~zR;qiscC{-Z z!s%&z)Eg_#@nL+4g$k{wVu(W$o{CgY#CFb6V(!>AM}H>M8RrXU#$q*;<}7WFFp5*0 zhl}5gH508`P>p#N+i~xw&Ots;>x=6EoVqlJ(|D(23{LFn0?L7cL%(GX*sZxBmD+Ky za!1-gg5Ex9dE{8wV}xucwkZ@FWPx4|y|Jgp=Wt+JnDP^fs=?N+@;T?i7=MoZZ$cEb<<%6LveZFD6cma=wN$Kg_yfaVmVb9=nbxRYv@Um zW;0INDSLVXvYX@%n{JIz%}3*g=|?G79Bu*W@mEUw_Hhut;YYgGfB}7*ohek3qKuF) zOV=N3)2rus2q5|dN%Fi4QYvluBypp%!Ov7YD$ZiT=eNJ#F$ha69a|HZrOAGvB0m#K zuHMgkP-sfp3tpKgnMy z`HNg`IlwC<+G95RJ}|=ZcK}7(6CWRZq+EwSEqU*N%)2yz1J0!t@Iql;56prgi|;N{ zYKWY-`M3|}KvBUTcbK-sys?J`;2z=V@}!%jpy~1bUhtVa9ZR}G)OJ$66(Q1Wtb^I3 zN^LoG{N|suE>7vSX*v zE^E)wv-pgktanU4vkQWb#{r^9?_6B2*f)$dq(SBSBzf47TmEyC7EFt;X|?_D3LE*Y z&2}@IgP@8qcr#RDw`MVXncA+*%2_DhB+y6{2U*jqa}W*->RMvDDj)e&s*;;MkLTbz z@jYwAUV)hw3nA`CCFn^-OKtRb!KB_G6&KebhUXi|bfpCf<SgiknYgLNWQ3b+B(0N?ug?sxL*cCY5^3zG=uJVft;ixa{D> zOh>Ci#rLIwz`CAO@I%p!_Kfu7xytU!)A8j1KKWA z#veNDGo&)C9>v9b5Oi7zyU&3d^00*pF1yjM|J84limHUN#KixpH7`fc2Vz?3>-I6VPSoB zN1Rm!9o9oaxx;LV$B{XBzaYJ$NNFw3toYzg%gv^n3wX1O>o3T~C;l5)@OdlTDs_Rp zD3;>(p}yIRTK{DG_iuvTY7ENk$--58@#8o^MsiEpniFts`vTBx04lm6oFs@H(rl)X z3nAI!s=Rn9F5OiKsJn$gi4EFaD5G`~Js~z{hX`#--TBU_NuDv=9Hjb_;vL3XwV~ZE&kndYo>L((j)A?#0CK~>(O21j~;O{Ls>1vF+Q3b@X1@d^M zLLOZ-6cL{uB0Y_c7A5Vd6@;@aVXNCk>%FA+9#vmYFRrdTF^G}0!SK}1xp4!oSKpR3;+%*q**C^D-foAvj_vW=?I+RZ1G zh@lQ+9n6>^)$--!wnCwC=NQ-~Hjqk)$%5uGsXiQq|9Yr7?k@g^elE?o?K}*fYkokn zsiD>Lge}Z+z=;8dB1`uKB@73| z#)nBMq-&(RH6`}71vgfHW_JkfR$kj@2~z7+b$QN%)hN`4z{?_JsvM_f&{$;{8Vn?J zT5eG6Jnk-c%3R^e4;YRtne>-fm~ve<-)Ae$-wq>W0IE)19DABcp_a6f#f+|*NYfFb zL6&ZH49P79#5Cl}Fx&1~z~>q%gmf)xI1!~AaoK0ZF{LM|u5F`^ywU}r*%tI~b5LhX zTl9|Q0Eo@jt!Lagh*p< z9mQfZ%|gePi>v$C@BaXE@DCoCabLcEK_i|o{PKRJ=+c*u^q;>>NYmd~*4AN}T(P~c zC43{R*k`7bbH_I}fnj~GgEjTr_P*$%gB_G;%X_Zm_}$-x!RIK_74ur7MtQRn)W1M2 zi>xSQh-X`b7kYKnA;=agl?}?|d|=|-PZTRj6 z_bjO3A|PQVD^?K;`>(EaW52%rmJZH`uO9}p8j!Q~Wq3`_*YE!KVC2nb)d;Y$A3ULY zJHDwn^fE(A!wH&d`(jVgEHD)HnYHaS`y?~3ECGPJryz4PT$!R*weF@y^GMs^WbbXM zVWGvSvNEKhs9lJ8f`x_!;ql;#Wt{dKusul|ypBo%96GABj8ths0($WNKF1rIIH=1{ z8;VLWCOLjdfGc~6&BRiW>LH&KoPCQtu7@CxwC)_q4?c{oeen;Pxds>dQ`B85QkTP7 zQMHb(?Gz#x0#**$Zi9eSa54v_!P(=*8OeG?F=SD0@sYODJo~~NuR-u6$rAlaP(}50 zI(z7lq?ct_7n6!Ub|twVL||MocD&{rR3N`%(BjFh3Ka>&uuVwc#{U@p;U6GvCT(&@ zki^|ZJybz!?R>nC$-k6Ar!8D0@?*%3*+RAuD8rhiI5vZhyt(hZ~HySgF2Z~$Lm|`S=a?cJ&-xX>R;EMo6 zhPeg(qM}Ynm@7LxE2bM{VRagiVIpe234!`r=SRJA?69E`;LS{wBBt0+5vtAf8Gscd z!_D5iT(QH$N_FrVQ{SO=3JI0-tnYjhBHa;(s8Wm6eElpb0%N}#L&cT18%v$^pr+(g zo!)@k^{H&v-^f zK$zXbNOh)gOUD z24)2PL>FRMaKg>JFTlr#Hge?!wOkme0+ux7#*)T_zllT3rIr9p4OLs?DPf=~%Ln`8CbQ8V(Xo0Jc! z5);5j$`AT%hXUeKC+xmP$OLImWG5P+$2%o6aidbXmNwK!)=sb1%w{<9_VpW-!uuMor(KIq zy3;~CesJxm4b)PEv++H5taj?M+5}pqSfAq4tXG)5I=I|G9F0XO53>&joq>^-HTpGNm7ro# zkvkk$DBo{!O@8!TT_CH&x^z(s^md+`VsspYzCZ1!n6uZGtmQWT8IG-}+>a5><<}x~&a8LCWxMw!^$j3Ki3KSPR`! z774juY$r5d&ioE_4LJrme3IV`MUu;oGjxyWb){SxyMTZJY9m`N1h1$H_YzfBRZ5Ub zvd~Cu-=@s1tCWj09qJPe-^~nGpfEEJwv?0z>a8P&7FPq5IMqVRGYv*Zvg%amouwRF z1Gubsip7wtdWf*77a$PTb8FD4a<+YDs}2M>F@&;ol-s9$F-yPxfZbql7$@+m5?dwS z7Eg+mo)Ya(Vs?h$*XmzKH(@|o3_3KpWOBl7*4!yWR9zYgx{jiLVZug^p!*r-2~r$l zmPFmOE5{EB0tmWxvrr}Ora5tGI{Wdsh*I0mlN40w! z7>Q6#dy+%vFa;3B93iKM##V_!JkbVHg-%##D4-+zfh`24?~@f|MIj&bV6Ke@GyDzh zEk0%f`P0j<9--cVr~Tyh=kldbUVof^&wm9R`MG|F*E|LQdkusd@ySztr zdjZj8*nFP)X2)g}Gh+OrlnbaYlg`^E4&aJs^gt+)&*UWKBs16&Vg7QKfb;-REGH?i z0eT=ATrVjF5e_|>LmJIa*09q}_7v6s=XH@E7 zP(;VPgW4uE2@e9<+qKAji2~623A3$Nxb@=V-( z5sqhzmx3zbBTb9?YhF1smrmU_;Mmo)(Gpe?m!79#js{8E<=ePYM_LE}Ft*1eN*M)f zo)u(Y2CX}@MvnT%Y>*QjH#l9TFJ41O_XK%R4@#2KvnatQIY=()MBl)A@)Na9O;kHq zHMa)8kJ?jUg21a9_GJjPU8TH!7V}s|1v2R8Y4Wv%g#LZRvq{atbOrAtbO%qw1ZKdn^jSKoL(>=GxpSBaU_0q4V_x4UTS<%IC>DrL7!{A}GrLNgcWaI+BxaRgBtHNfcghU| zoCK*XHB(G~^xuXDN5J1^V-pyF;O?CEr7Y5rA%$hUO+#B{)v$tuwI(#*M?b%yM)PHf zhj-ePzPm5Udv3OJQPo8?YO5n^`r;PlAZ?($u1kI=Z$ib<6c8+fgB#NDP6B{3igarY zw(L}KAEA!79`51gd|HERjH`Y1NvaCk5UEk)45>SZhqD7QMPkktdtgp6>a<%f*{F}% zryj-@S^I4$V2F!jfi*4~8R8Q$+dj2rNPRt~0UGj{v7^L%N9@ERurJ)hrNbOKy#-(= zxN2FYh>2$&n-yKrp8G)g<0EkLo{AFFsM-kuK+O-!LVDpr)gc`uC?GuOos>#G_IEwJ zOiwUS47HpLDh>>Luz_uHRgd+dkVYhK;pmx0>Yn~bKcWB8Pfmb_TK9Rt5Jb+;J_n!n zVsDXU41rOL{f*Y_$P@#d5NT__UsY=$y@4Hu{BA}dfDNOkR zODV=fb_kN!si zuMUXVrjHl;p&s?57A5H*B3c@hWm_n=zG4%#2Gzv2FSM$CHG6q~n36=Ij&lsCWusP& z(%y6W1OX^Ftz5BA=nvqgDjiwFCemP*QsLQp{(!$|dbtBtFHQKvij0K>>~VJ-4o(6F z=tJgl$B^xWJe&DO$o`qdC-uD%psS4JGpP1LgZ#jO^>C>(4ul6vQFs=JT+Kr!3@R_C6I)aZZw?TR-5v6sK7MiPv7UQae zR+X2~S2*J7AS`CjN~s9Q3thQZgFY2D>5V%3O|CH+{P$Prbg`nO5^0tZh|C8AL<94Q`rHX=nsz*bNKe{e1#Sgp#I; ziTNbxFFyv-l?r_~o$oqj8cQ21;WynXpTG;xnjMm^j?}nIM#ThpRYn5&0{AhF>W8K2 z6`y#7S(_z)eCDpb6_bbQb5>kv(`T={8WOnVR`gUIzV18$mnle-dXXD6A+lO~EGLUz zhsjeIeWU%LQh3dJ@`xv1`~#Ij6C^z)=~#U<-v6S2F2lW(e>8S!Ad+tFRx>$=uW7pY zzBH0G*F=-Ne3ZVbbo~$Y_5Gkogv5O4{|BWI!tK>0w-y(!*mMPH=@UFpES~AOl+tO* zR(b@F!g5}G)UVS?3#IJjyG;*lcOs6d=veoR7=`xQW+4@NJfMs)C>{G>gxvQ zaAHqxb^T>mHNx~-@0%sZuuA2HiV4Kx4$?Ytm{eH0bB3ne-i3D=iWyG^FCJ^Htlo3< zfdY9PsjAc$_}J8$X|%pV71%77?Of0mI&@~K1nr8KABX>_Zw`P_`sCUXW*6SQcYUqe zDiG!FAaZ8W48v@Yx!J<5yWv@!0^-Dvu5lG7KnG`Lv3RWTGf6fniOM(GZ!oK zE~k+b8F?!SEK&=opxuY`+2d6$D(lvTR;r*MoTfK9=j0?M9H>WU1uEKqG?nsb4a?zl zEC7wreM7P;ldc8?qB0VZtnQCA0FH1@`d0gX$$Gn}tW6Q21v(v&D{qvxV+9-wb&=}}2(g(eLwsRFycHgG##6^cT5+zClV)+l*LBDfmn z7BeYyxLeMS!L-BOxQZIGHB!;o>ab#5`@0Xq-#uU^zb2yXYwiRS1mO4YC3r(q{`sHq z)jzU~)33qaHh=9d`PL=Wfi)UVAi)+a0(!cWNu@ALE4q->w{GKu9QCT{KrW+Z9sYA8t^D!_R-2j`z_iQW!q`Usc}>Pg8%gWCbV@ic zeUY>THQud$2*)V(`!2=8s6v$_$H`Mv-&h(Kzz#aA3tY#2%LC)KaC^c_LR^PSaY)d( z*l|@2&AB)lb3bm9lVdug64jb`0?U4po)0V+J5N{-8991yteuv_pV{#{n8HuKR za-S3T4=lZ{lveGiGG&e$O(?H0Ve(Prg$H6l3!0uNuqa$FM@>pn>m|osiAuFPIbP!m zz_~7kD(0l;XNsR)!W&G49!4=K#B{dLg9+YgcMG-y8w38LAkX(hQMM8IFVf{gZdb)UO9)-x3y>KwDI5B z;P#Lt1{)EpHcL5=kXW(lYuEIszF{I&N`-)>GCBg4U*glj8s}7;l{h%vYyqGyQN|#L zzK6mE7+CMceh2VtCE5LG2oG&GbCOqQ6mX~Oy>M>i z6{Mog@#ohOGZLr0sMlVn3V#KMW@<>4!g3)cmrHjYu8A!j88#_N&qWQ6&sZMA0``84 z)9B*r4+pM-4%@>`Ca?^vg5;#rvZpDkCEX{VcQ3746uBJ1jENgsoT(?RUXry*w?TG(l_O%1 zO}U;2s*C;1@8^n%kL_I}glr;LuN`w3NID}YJ&i6C>;S;&Zzsq*9*l7?(^l&q2J+ZT zyhmG>ZO*4mvQTjs3|+9%&bZoYw9x}*>*;bopmb*|Kuhc@SDqO3@taEf(iW?{+UE*> zT&;3ov;27k<~+-X(R0!37P<%=w$xAWi$nsN>bsqWq{IJetNhPR`|l`fCz`AH#K7_L zU0DPz1f^V7Q<1#G=@y>22p+;vojEl}7gVF6ZMvjSzI5EKY=s6Q)@EAJ*g;w6^8FT0 z%D`D}9N-!!rHe212_6?f?z0K)R8nB^x?t|2&l_j>98E>dh;OtRlrE3OkLtH;r80X@) zFo0D+U=C6VuqKaV8}&T(w0Hq}54t>f4xHi@C6ERap<@5Zyd_`0dXNSD_3Kxr68Icr z5=Mp>GO?p~C~Yq`2u^;J>0<@Ya2lm;kMxntpB=y+3tREQH+Jw^jMzB$?X-DK(SjoY z)8UW|JJYA%)$j?gJ1+3SJH&XZmI`rV1Al-)Zm+|Gt^2$;QA#RTGMTi0wmYJpFvRD; z@GWwN0>q8&0FEAjKO0Hyi~9LuO7AXprTQW-X`Q#yNoGLAUco*oci{Y_MuUgT0d(n^ zqF-0gx))lGtB|G@Cm@>5w&Q7!;(hm2gL0FlPrnT?E&eHgFG3g3tTl5ITZ%ZL6*i^=%0V`9w%-YD1 z1?qT~77_ZMUToHTX%eOO)IWRuB)oj3grJu%l@J7a(2rk#0cqL0uM}>|ea&$tT@6?= z(f7p-p4SZ(qWkb{&}0qSNn!>hzs79FSc)k9?U2uod7f3g=tk+J8QZ4yG{LkESg!QL znc)Oh8^qZ|-=gQ?fW8o;hOP1k>7;maMn?ak(?qhF8Ls0*Fj88F?s|>=>R3Zq$EQ3Z zNp|ryiewcW(vCSsH7FKoekK>X4d(Tug-1aQ@mh2|^j#S)msIa$FM&1Hy%WdUl0VK; z>sq2x6$b1Xu|_||2whM7FCDgIY7Ndc`m#Rj;X>ap5EioOd1Xi_Lsu6MjmK}o%P-TV zmm@%kFXRccy64t*ORa882sOK&(uMM~=w4IEAy5o3YWd0R@k8rVB~BE-jqUK7ZDfj} zd>~N(BgU=-+LY3~s(KaU-#jU1%zD{wnAPsp7A1wxXvRs3rDTaMKf|-L5hV5&lr2=x zmcG*ju@L8eiH-ujI6b=ErCx+fDChpIlzU{DVG~0;2u>goag1XKd&8nX0XPgn0k8@j zjV3J%>I`fkuH+qIAZoG{* z-BEN)T^Xz>nIk3!5iDB6+O5)B(tn^=>$zSXEVA~ca|VcbL0|q103jthzz8zlDkf@o z7JaaT1^ak)f*{ycKATUD0O}M3@2H8efpgL)xfA|;hPj+^DbFg1AD`c6{?&{U805?o zRQ&j8o%vk?uWgzxc^0UW4LQ>SUbiLV<f_QfII+ImBpAEETVrAzuT0aKzIL4HZtc+tWUh5vN=w ziQttL!Q-y>cihsBP1sh3`d*Kd)Wz0f4hhyGQb9Nwf5^-la+bPOsp%7+?`&-!vDd!0 zm7`Ga_&3~LtJiUke}MCcl42POYg)nY7@=5rrF;Nm4o}(BK1u?Kl*J^Rp-7acFTJtsM zptIao?M(9rfwK+Jqp@sWH@9V1aDH3sE4*M#!Ajy(mhHfnk^+n33UYEzeE&?$;Rty$ zo5;6lA{-pAd(js@x3)p)8%no21$U_s;G`S@ioyg|gwzQ&TmUOITxiJ&Mu0-5qGbIX(p?d<)?bv?XH=aX||Ls^Kt^KQOU? zD`9_l$^&2;iCwG3`K3k1?^^>KUzv3@l0*o;6$ixLflxwwv~@I+L(O^$h!Zd$h~8tL#&TWkT>BZpJ%U zk>k^R*|tWtEn#Gw1@P{U_U!YjGQYV(Y0!tzZ5^a*4B{<=oHR*Ed_GcAXwq2nwFyxH zNH81deV#HllU1aOaTxw7#Gx$QU#Dy5FuF+$sG&9^Xllv$rdtZZ7KlpVUvs@&OL*er ze9v-k7G5T(L6Uf0vsX|$OVz$!jKBtPv-!-TcXXy~3BS^dXp7XfcjlCKykwYA(-1c7 z1AcAkt9HZ&7&q44x=+y2?NeQY@;#I@JuTAxDHWx4mGOs*r@(VVGHX3L<_}~543jtk zD1*ZvH+fP}#c}z$!baEa1{-ilXBXL%Cz^H!@{Ly3fn5-M;h7KGtX^DXY|Ozo?+~bQ z=07t2Cd~s>DLB6xU~ou7saPfT!l}=xA>=gSyx|Q-H_cQzf?tU7K&AOL<4`Pl++0vH z%cpNhF%_w90R|H05jn=*(RPiEl@GHOqiJSOo$k=9_hAE)j|Y}#Ix>o&zyXom!^kqs z6Es>*#Xe=Yr;({0m!pZ!LECLntd!4qF0B62uySwm>7l8t&VJ`Hk?U`tA#Y)}lQ4)1 z5Z?eRe5B2dCmJfb@d*a7?ni7+qiVOkQ$^%v*ZT;5$4=W^tVW&(2ltCM!1fq(xiu$+ zhJ=fdh+RjW4_jbh*&T|fWf)LK8>u%sDqn%{PL61+YOo76?&Sih;m8eI@x_GSQRP@8 zrrvmI1@!j?7QsEcMo59?7Qs3MEvVd;4DW)KQgXR~zilS0IeWmDaK(-(^0%F;EvI#F-75$MbfXT7MhzosoL^v+7;#bNKgUY=DRLMPAbS*f6-v^0{cs?Yi3A^R9<{k8&#jDc-|f?u%uV-kgM!nd0BU3;qfG4CKC*afCw*p zSW{GOTi^$*T$o6uTO^y3 zX9%Uv@P+rd7_wwFge6uGHHkwuKo=v42?MkobCoED~?mHZHs+F zR>58a%_~>2Lz^&fc12bAAhMHD4JD=M4jF8YnX^>9H%B{nc;;*(8Auz%7&YJT9h}d0 zG=@Y^dvaVPI+{Qtwn{*s5t~9)cBL?G=PU%;uWDYRBF!8?nGir|_Q4C%i$;C1S9NkZ z?qUbkkT9x6)r7qX#w3L=YX`RFaSM}TkraVGQTJl>rX^!0&~x<-cL;fp^;`BT(9pJ} z4Qkmtcd^Jbax_+{L%PTT2X^BaLY*S_@+NE!N(CRDdyURv0noIg{=Al_lgjbiQH#0( z&W8pxc+%h)$idLL}%XSn5C$z8(A28056QeSUyY{sh!+_L8^}MN2H9MPPrU@_` z`&PSz1#tp6?o_m>S}URvk5;NYyhxR74+VzZ_A`K{sog-MYf+QW0WX9`d=LT!dafNk z2+i1adk~Ujbzi`@_pJlfMJX7z0Ml8KHHh7*$Tf;Xgqk*dbEjlt?PS;^5hgx01)lW^7W@T7v@P-nykw;@g{K zg(qW(L|x=B+9~69!cG&*M7MEKOyqKl5|1JCV3iD5o>m?h*Y!)2*L!PEhmkilh4~0A zWSF43wa6+3Z8qCg?+4#(I5ee4xJl=PXT?$?yigVA3(2U|!|9=ssB1lULs}+O_$N!4 z=w~;08T}EPmr2dt0Cjdg1W=Yc$Pkn2nYh;{FqrlVlvfK@YL7OlFS+ENr`0jxP9HXq z!F;vJ{taqEtEP17vi1(rkn6AeJURfEIEacdxI zHK}qGz0s1CwSfY6NqVw|&I<`Yk@4zxHx9Rryn7x%!b@=jE`3v_@=}Te0McE9m(6zp z+*j2vAU_|@LUf){dG8f7&3dm?AAus8WdaDhR}aDX(t?>CYvP2KO?lYSFqm<9ij_g~BZe=h(3PWbdcKE8K*!x|dkpth9ritO5F0LSFJIHh@@F#_&bP7?RG z_{JQ~F|?HudTbsXYp25F@X9AuG&i}|@dTyLvpk72xO6!}J(Mug4qgKR05mf@t89L_ zYWFL(cd|wBP^yyB=nI<)PGa_&BR)lbA&}c4&5m-Lh1Xtzs8*7zV0BelGyZ7PlMzxX zyVjT<^*S(U)jFd$nm`>XM08&uJ(S!#wSw-5odd^=U8P(nhD!9=MWXgw$EN--!e3mZ zVSWkvj=uQg-{qX9_EBu6pCgqHA5#_Y6U;e@uUjB((|W?Q`GM9z7d@x@MBl&ypEfIv z(^d#knI526V#--uDvVJ}V8FnRB7k#~zRgwi^(}SpN0$PP{i!-RJ$>E+A^TG0*eW@$ zNPh>^P?l4hD}o_l@}F|CH*=z^br4YZpD&x9TV)H?;@qya_9sZUEXo zL-O6F6qS>F@ADLti8`qmKOs>N3^WR$l*p5Vl*>u&WY0~k)ba}Ae(w`i03#MkcS-N@bcpVEE|h`!MHIC>(qs>- zS?cZn&2BP?4V#1kj6~OiyJAbdNRhHzy5(3(TcwtD5>Bm|0yD|& zPULdEd3bNL>$#hgNj(e=@r%}MgqFwogn#w%D{l0Dr5}~z#(wsvT$CHc2~g*)bO^xk zk);W!3*m(LK!yk?Hrvj@(kwqV=vIdbb>~1si@alhN_*Vg;G4!iVNs(73(!(36^e?z zEiQaFPndGsO;5_NU~!@m9#${}%MVivXxMT(f)7bWu0fK+vtf_;0-QzbK^z&X;_KeZ zSxkrnq3hE6rr`$7i~v4uzR#d8_b53yCd7{mpQfzqH0}e}_6xdecY=;qI?9cF+Koi< z=u3JjNPZuBlqJMs9PqIl+zuF|W{4741-e#uti&VatVV$T(S_L1q#!j<@A>z!*u_@G zaRdie68X_yX?XR3HZhM6mJ#^d(xz0Ft)DG@#P+VEZ9L$m@vWseEZU9RvR7@ms@^OZ zD^O1quqtjw5ageBy8$d@H1AEZ4`gXaJ&% z)ZrQdrTNktvqW)2Stc0v$f=30{95zqU_8I6F|&$&UwzV`%W@~69|l4TZQ}i6*Ndq! zRLi7Vx_|@NSao>;k7zoBU)9C|w;h5$a+K_mU-nWBWL(>eBSa_^j6jNT_^MER)y~N8 z!DBW90(DU%dh;=nSrGT2?g~6s01c{ikHv>KUGZ`yr*^XI4pp)-mC)<7kC)+eDN%b7 ztL$EbB3iS0r^S1?w*;8KZfWsY12)s1#ub!dci1 zEuPsYA0yx~wjlWQjX(bPK)g0ESvs)UY}MW;D74yrYis3A&;fi%zC1_8q@ue{yv8Fe zmkYb%jECcXwZ`3dnY|HL_bV96Y1GYEf51r9!L>MRI|mUx2^$K+8OZEUdAkUjTwH-GlZ8!{o1;^3f2kJ5W)B8`Qyvq-< zq*KVPrQpP8lysAqYpZ*btj~yjBSF?0?@GJQu*;DGk=t`Qz=m~OQMgEi;eD5Huip^W z=b1BtMTgbC>i}an-BeP2yR#3M*Adu6Uv8WlhaJ}a_UZA&fMbn^L!R?#&esGxWa!6} zlq>Zva&i@v$9Hyox*?w_`k5XeuJ)(=F>doybtcG{mYed01!B}^7J8v*w38_N<=v%3_gbqex{SDTZyF9r!0E1s8 zR$~k#MWjlEmDqmEHQT+QksG@@;BJvWnCaWOA_jKHZIzH=L32}3hF_>f3Apv4N&7k7 zP*cN@)n+ zoCw((-@e1vR23Qjn(16Q=pweYxoiotf~Cv}zVo^^#qck=Q2JrGKxE3}7F)u)qY<{7 zi_!X5A3ysOh@8$!0`&{>`uclZUuP)uu{-zZ70Y%~x}FGqqd~=X1jbDjBJ#tj1HKDU zUXJstJ%1A!*-G1hX|vLs64jgL1Y;nRkCoe9P2+Hcjp~+jyku&56YU_NA8fg`mWH;t z4JD)qI>y(qIX({aaY{D<$r9E?`7`V%2FhDYJwrBqv1UrW?Xz3XIA7$a#Ll3j7=H!& zL}EF{PODK^gS~`QX>_z&BR|kI-D*hdxQPxXdlIRAswz41el8G7fNi*=k_e7{tna8= zwE-b>Mml3M85b1L7Qq*_fg!D@06MRi`go_NLJsR3CF8Yqp7H|j zxW1^y4)Bp`hLlbrOm_0Zqy0=yN8k8De1R@c4}Hv+dTq=UE@+ZU6R<4m@lk?>K2KHy`8<2xeXLY1x>%^lu<`bdSQDH z93Gp}%w_yGUQ9D8Rm|;4e}&4b+}OdFCK&U!TBY?Qh2+UEF`V(p7#g|DZgx+hZUQmxOaA`p0IayR_ZqC zK-6FXTHC2qah)aPMukIe%or-fR&pdK4@Hlg1~IA!Z=n~z*qBpYLrU)6Zc3lBVukK2mz%;;b`ArzkrlP{Uppo)q+RfIe%9;&DE4g4e$=XWFPubV2 zk&5slgnN-cEi?Sx0zviJz^&x@QzUA*c(y6oeNu${@YyittIy4|R@KfArDrlOhIuPRp*mifg$Nim{HqR z%ez+PwmTiPVr^The!+S{906pXpX+u2ymbo~iThbsf)KIUQ9z7z5rGG&Zz*fYiZmok zKOh)rC1Z^}j802oihP4x%xO)UwnKSoXcg!Tt|vh525kT|}O)uG|iUD#Y;MJ!-ZuB+bZj>cCCdKmV(9WM+o+oT#M_8#i# z7H2oe3{c=;-g`jt#6qe0XJp?ox;7aTAdTv-K}5_P=R|eL`l_n zM5n8;DNAzold*A#njIxx=|UYGDO#WcF6vMuovx}=qwZ@#MR)w88Z}ZrZy7G?3#b7o zqAI0LXm+^eoNFrW#@_!~UmyD$+%o0Iw#MynhnXX~z4nu^91K^a6(w_x3kg7e z(A(#eL<}s5@mQCJelOkL5yMlXwYKU{1anU9WbFQjbiVDfD(poL5bLK+& z@a#Rn`E>ykm~sxB6yK$Sl~e5qV^D}TuP>_y^SKl&jUN2`ZfxDTUG;PW*MYXOg**0H z6;_}I6A*(vZ8U~Sc^U5Fh1mazBu&hY{d>I96}~QXmOcFRo??&Qvs5zynAwY zBxeZ@ENad~vPeWo?Lk-VIhy&G_g{W|89x2+{kx{N_C$!Gi&XYw;m^H2g3S*t@n3g# zy>nNvm2DU0TLY+KrwLwkCWT ze@nm>xHOe7Ur=fF&`MS%H7S2NhcEi`8!Vv5_W;2EfE-5Z9qkIBEO7)yQQ|msj1`WF zRCREh;N!&Ev5FP2%2umo5^Vl8T;JHODxJl;sQU?rVk>CK=$+?%m^)X>9QMn)bXA+4 z#D~7TH22F@l0Z6x3Eg~t`jhT^+L2OsVDa$jmZ-Ac86<2Cb3iS4%W`%WHcq8;B}mpF zM?Xl6kq6`68&VqtcUWxHT4zb#yh9c@S#Z8z?A0VsQ&ZxO>6x91@svW9j_}fHRNyO1 zW!Rf-p&fx?Rv{7fVVUk>Jt|Kn3iH!sff*e#0YQZrO1Zgf;l}URZ+G(w}-BZqst3m?D1dH4-^^eRC7-H?CFzgkY|q)kv& zxN5@O1rSmf@vb%HZOgu{7Y+(iN)46u4YPY78Jm_|z1W@$0hP%CTr-Yt3G6nTu<6WC zHc%Q1c-45ra%h%&8^fysGbAZL<;+P<^2TKk+83RuP53XijxW9+YZx4l3pVZYT)-D_f za;U)BKVbai;-rA&48uk0s|$$vQ=P)Wu`m)t(%+%v4gtAHcRnerR`Nk4F3Hu6(tJ+_ zhJe&avw0PL_QbUyc%B-m?6xg8?5EH?yg>f zlQNb_Bfy^i-*PAo`K6V|vXc5&!lW#kAG%bux=}Aru~8|`o{+hx6d{WNz+oYWKzLmN z>j;Tm4T@GrgPz}W710CqK#aYP!QecjU z6vzX}zmHg+I=Zp?EF@%xtz@#v^@w;+d;d{z@>?TFl`~9<;~v2Cg>OSuL%zXS4{_A zp1c)#nuFA1)Sugj)@)aeN_vF;ZiqCb)tl1L&iGO50y)3bTm`8_dz*$(TQ7rU+L+hX z*fkNqiK-Lz|3qG5;HoioVT-rKz#_-{R85D;E|()!c4t%C5v?gfPTNOwEpp$Q024XL z9GthS(ALKy!`$wOfsFnE-vU1V4ZlC@cD2hWd8#!E}%+;}5TlDG8I$ zm=Q!Oq*$!gZFs8ImGmbA<$)=&$Brn}}w)Ch~N0j+|SuS>-< z;12Rj^rMBHW~??`D-8K)2meEgRe0DD_z2+>n-KN2!Es)IC6`bEtLn4e`-@ z_eR5|qvDo3tS$Jyczr0(ITtZUI{CN2y=5^2klBX9kuAI4!6C^rMOUS=X*;>N5|b>Y z;|cdkPbmAmf+^98QNRR1OG`=XXL}Yjl&)a*fL@lp#;nsO#h?D?$9F&d!}}lP_iyX( z|M30`dHtn&6#q}?VElvRwSO=TgSUKYT5B;uJm&y)olpW8;zZH|R3ROOADgUqn{TDc z*_ndC5l9V#pp)IoKE7aKYH8un`AA-moRXr_=N4%r-RD(DLd|j@Tw?>Mqx`8?k>yfI$ZQg=uCd6^Wu1o0% zj$cWy;leCdJt>1e=Z}8#{d=Fj8Qy<%+h2T32FSsoyI7C1ShlBUZmeB!Kmk}J+H8oj z8z;O{h#=Z0f4lVdV#tyJEJ0{0D697QV z?ki=G{iNG_>&n%_nhsctTtYikZO4Z}3XDmerR?C8*l*$S&w*htuGm3mX!+(;Brl{9YIMWW zx%gCA@XKsEJ=lBLT?e>l!1qEWWT2QGcM(;SONt5z)c;#hUrKuxASGsT2X0E#sf);@ z4`R_C!TkmAA%2l{YMcW)asas~Qgmknv7jTfst2+n@`ysq;op|=A}EpS_!d}tOO^G^ zcN`wI6kB_dMv0vgrf&`=vtyjihVx6wyO>vf-)=}!sEK>lCd_p>0J|fM=U3D6rh^RtmhJiC*;z4=u6kgA;8HqRDF zlx8BEuTVD!P+O#2qm+<#Rk2L!xD`jvM1i`Y9vk!pU>=lBO5Jfyq0|p|CEeVleui9z zB?>s^dZE0mYmiV6JSYO`aB{1v0kx`CZJl$^4PEHCwnL|Y4h6%-wPQ@)p)@a@fMG@}z8 zCuc$2im85#6$YfVA&JTc(mKH{DO4F)@{SaZ(1f)|dPZX)X9dDjjU9hrdT3gD&(FJh ztI>T@UgTr)uOB}TA74Sl^k*Nx|MbK6pT7U#(~mxWjJEY(q-`}Llk2?g>vnwbR2ppt zfGpZ)LsUvF4^_x}!zPg#1*uOu-nY(;+LSg9wKTUdRE+F4^(o&Ll}=;#N@EGdcWHW- zun5gt%ME$nmtT)1OwwV#XX`=)gKtAQUA}LNL`&?@sVvcW_W%o&CsZS}=Z1TRu0R0D z=%(4DzKv-Iq_e-lEKg1AMh$oQo{}M@6;Z}UM)_3M6I5wYCkq#At+16e2kui6 z6ns46LAEZAg55=AEW;;}yWw^wrJm$B9&AqPF-XQjEpkPK`IGFrd>_^80qPg) zlwac2$q3IF!x=%o<9vT@kJv~?JCGiqpyRMMTv5H}SAo{&hQwL+;P{61+&*&7V)?TI z(y?tT6qs$NyVQ0bg*P?6Lv2(6=on)TU!J}{)3ZA0O$lN;U)@_Dv#a}$ zkGRvTVl5H|tJ%^#pIwR6`$Wtm_&B#s0&L7{6&j$?quQEm4daFfzcB8WnF zYVowk)x=e9rU^nO4zXVX&9Aea_Ygh5W)5f$3^)fYKHJbznwgJj4gAiWXf7oGXounV zfHdyPZ%x>_pKxg>JVom4xn*W(fZ>2sMWn-GD1y!=Hm>>30@T|f61^Fky$G{eT(;B{ z#w6c@3kY@F8Bc!j{wv~Ke+xy|ufoUAZ=b&V@xR`GCcpmn{deKh_ujwr$G_9bucXs# z;cU@HJ&H+1lX9zQNgGC~ykfLO;O(XZs}ZgOW-AUEXLKJ=cfea=)@F}<53bfi9`ZE9 z-*H<`p!bCEtgj?%ouk4rg}u8CvmL=9xrjoiD715d4x%6yjfp3{WB7kj&j1^oz~`ou z42I=e7^vDDD-L<@swS;KbQpE)17NLIBDbqNQVZ6hRvOJXL3Xq8^HDNK%Bt2Ff`7(h z=7%?WYP-3%8NR&#hQ9~C$oCU7&u`^v{kLwfNc=O2p}p>AmV^{horZlYHh-jg?VZcL z!Z@C-z%CWFp_zBcS6SaIH8LFQQm&HgNqr<7nvxg;)Rvn4baekdc%KmxHS6l1Mnb^Q z`JPuQ>t-T3^i4z8kvKpFfSrISH5lu5`BX!MHmv-KuaGd;#S|VZ6e)Qk)er`GVyZ}K zE`Tv+*W2;%f^&Gf$f%92WeU~XX>YKj4eM-3#->$|9QE^-v`H(NOefBAjWj0>TikB< zvUAz*9@qp#94hv!ZoA=9(<7i{bh&}ib)PY0rR)VR5H~+r_B`H-e!mL0(Z3@qq=)w& z00Frea{T_w|9O?_3Ln3`TDCxt>yQ5(zkfUMWB>T^J-Yn?X-C0N#eCNdMqTpSUY_S) z(JU--AU9#sz8%@rdbdjeOa=9cMtZX0vl6yAq6p2+|Kx#!bfC+k=yxs{; zUE{-j3gjpvws?OAwInW$Q72c^Yj8*~rZ6-cofK;YXJ9*sC6M?oQCyh>Tb7e9+~K&7 zZ3jG@ZF*X{5(B%s6@Ds*W2_VbV>*D4=WE&lLxGkA4GaiebVcQ(Y_9{1LnJaA7RB<6 z-tXaV?cZI&NTz|YP|H=W)Q-TlwsW|krlRuIvAvNe$Wqb}8naxMkRn-WRxfk)r#LmZ z3qV3@U){(d^IRRVNVZweIQfR`4UCv}TMr5YZqmR@8)*8GC#GMWHpo;&Kqenbi3k$c zM|+KzQa+UAPp;FQ`&P8;2VDuJ>*QutQMx=PYQts6M5kou;xG}{ZPF>E#)f*yHy(DP zUGl-kthFhrvcC30+W>=iOKl78*3?$abdma`kM^^oWN172!%z8?u$FJ# z0~#=QcSe*BQ?a^~^*Y&$>ojA@W39NtYUSqEIhIq)fPotFv4}2-zSuYrG?bB_f1QTG zyOS`L%r>fo?TZ^63Czh|#Nd%G5wDMX-KY;HwkHO|4O@P4<&i3huV3IBdZ#N*QpexI zo_G`{t~oB<^izRNx6G9cL@s5(0zmW-Ds^4!S1^fF_Gn*-xJ#q-%ZLK3>QuIXNK83A zM~~p4z&2cREB(haHcE91{N8sA%N=uFdneSL`+H_Ao;UP8Ji`zxaEkLMFv(vS;s+a?uO7-%- zEg`9Gi$3Wqm`6ZSk;uHXLqAc)e9N%q{4irD-x6L6Y=YryA;3PXa4ZzDtb0u>^dvuX zg6N{#`YQ0&!L>zy8lvF_5X}-{&0vqW0$VwL$$ zz~&PoyZ$fotS{ESpe{gB_E=v`;MDjxQp6dsT-R?4FMCGpTdM{JYO732;!$G1DT`xE z*!x0{JqvXu$FIktgs{d~VL(@%vBW(}era@CRa{Pe+jS;*Bb})gP!IVQU+iE3D%Ngo z?WWlqfJUuS0JeQ$C$~j)SKu3nn=`k-sMRg`ly-iRD{e;*;71bqFeN5H&-IC)m$#U1U@tD;e7z5@X#@)+D+g=XP*UO+v|pFl z#tGeT_fY3g2&d%P0j$-hZ~XBa!2qI_3J_Uoh{4F?CPl>tHPbo`1dbx4V-rPVdXAppESna}Y_AM`u=SA?V@)QMJW}H8Qy8*d zU&F~-vQbTo@eE;6*0SC+?#ncEu^M}eciVr-!#)~3=MJyUq!w>%q7XxG)#Y~(;sCn7B#i?!=;tnIk<%sQL5Ka>AVeO-~nhGmer_Aj=AeW)uS zuqRSjvR@xiEIfmfn|RWwiP4|r0Vg})=s{&2M&4-H_kvh=)%WUd>HuQaI)-KfxZ%YL z5a2k0ew%`qs5(S(wYCcSSk&+;KvRPQEY|(f^wSzoTJh?@4ja8pj!g*{o`hroS9Tkv z<4tcj9*n@2DNq&Oc#GC3H%7jT!~8fl$se(M!9@jCT&wf_7Tia z(BxqUZL)nya0GnJP(XkvtJk||N9T&{x`DBmB@i3l{vO)Zs^*(ibr+z$WKu-=dE)wa z*NO-;aPW3EEiti%HI1!9dP~I2m6kYJJvzT0029Ly$UP4NUupDE@wL$O3aIXP^DH~J zw-UDE3mRo|@aHw{V0KTVgRa|$S`fJBGE`#nOY9=$+}u=Kg{zE7ZmX@$$4d7?D{t!n zl_xy#(07z`0U9t(^Ds$q5k{Q}84?9vk%hdv1tZbCGShH3Fx=l5C?LaOtcRz9r`T6@#17GCG@=b~8pT7CW zZ`|H6?s>>TB(LZh?k4I4%fq%K-X-Ypz@1iL-_|e#BA|Tk{JKKpMQ0r^x}CeA;Fowu zKbkD7&bx}K`nkcJ4n(PZOa||4M>vmEbX~S}EuN64FYjQovSb$x@NU$VRsNB;p3p7! zT4BPPi1-*7$3rtp8h`?>TLExnxtZB!H zwy#ud)VdSFuD&Z6+pELdxuUzra$Du>O;XY)YylWntNr4rs077?lY;f=rXx~IUWz>m znnzjVtt%G$v<8PzeZG#-Lu46G>E;50f!LMCEmxoGrP*DgGWRY9?7#Z>p8J8z9msw8 z0eh4Y6L|E`7vR+syS68>aS=bC`GKqAB}ud@Oq2!nN1eEq3><1b$dd!YhEsKxbVpK1 zvbu5%xlSq5O5@eDRV7R_TN%=MrIhF04 z!yB>*#yax1PhBVwq2Y-!@GvQ$@a>L{6d#IcpD$z_Y$vZRA= zGVy|F=>V{!#T7N{BI4Zz!oh@yJ5;G8AApxwHhYIjeC9^9L^~*zl~dPBrSD2-rHwU+ ztD%}ChGRPFpcFVpn&z3Rs)z9R2?h;2(DWMol^@Igh1koT+aslO?*{w>80?5Qlh00<@=jmX9JM{9Wljo;O zr4fR30KZEMhPXw=n%$j#zS!mIUv-Xo`Woo0<)#93datrCGsYAS6_gE@Wk&0EXhJ!Fe)ZrfOQh+F@G2n!2;|Rs>@& z_10%3cHPTFe_e4ZdzqgU1@^{r%#LgjwQw*hv5INT}w@1$8N{xdq+Mci@oS&ENhUM*5nT$PY-k zPV7WVfn)$SJyJ-x>XQ~tV|BZ@HxU98DzG0phdB z`1(opv0XO5X`Nu-gjY+j3vI<}wK`|K44s!*^1aXp*G(|{_z14Hq@kb2nJI9=hdgWH zu)UR)RFo6}(5LBq28(^{vX+&-RfNi|fMoc_6I=P*p@1v`u{h#@J_|p$iy8ZW=p!Dz89XtL6R=l@QfB*hNciDquK|bqJlbnfK zx(uWmWqfeO4X`}bT6Gw%y5I)xf&fuKuD@^~3dh;)D_5y-8bz@fuMs%C;fMIxZ886y*zAW##&GvvK0>yosqlKye@3esDiq3x$t zq6l~ZmhUgdhP^7B1H;W?zfUS{fR08Ug3@|TMQteSA>DM+DnI*CGSJp)m`&q!)tbC} z(FJ~U%RIgkl4oCOsKiMw4fEZG_s zG}hL~)!^)G=geEen|zG>3rt9**04WHKD8)Aa?cv9c5I=)o<;^M0L;J0{5ZAh!{#lG ztUcxIY)IN=%q|%25RJW1#di>Oav(C0_R#mz*`x#ar$T+Ir0jwAMU&8_4up4%5}&LH zMG@z-odLx{epPTLpd76k>^jFD>d?Dup{2w{=*t42*tA@({tHySrH6|WU!@{9*&=o7 zMXy7b6o}jy9H~*oGb>hV*v6fc?CeB5z|~BenM(fNUU~q8bome+0G*J8tXKe{)T8dW zeXc%(?cG_8N_KJvA26qsufN~1V@`6wAxLgRlOh_aHH&EHmpaDd=2YEzfjvBTH#pgnF(d$vOuE>W~mz?cj1p+j-dm`8eoxyXp2ZcxqEKBk* zJ^_3UY*s!RUbh1-sFh}iCFu+2#EO8v0qZcGFi&I(c;2GBmSf&i&r#tFe0tTi+qObuReru6x?iHoCuH@`e25@yUv_j{Mty;nz$#u<21u4uy{z6+#Bpq$d zLb_yez=kjL4}o}=X6OdMCDu8k#Mc$b^TeF}W%&AeNPqe9TMEVgfsOpl(A6pm5Y_V>Fm@&wR(`e-IISXPEwB%TPrQj)YINJz?RDi zBrHK+i#zTt%EYiwIOCC(4Ak}9!>hr1 zLP`VkUE2C-fQV!qR(ZoYW1v3xh`mluu+QXbR?^Wta(DPP?5w*?G^X6a%e_ptU;P~4VwpB)^nae(zxw$19P66niF$=fZBOiq4P3rl z;AQfl9wZn_$_7abd93#t_jW-Cth4qYrIh(RQkY~NGK7_h7EwqeASDp zr4b=lP-~Oi81Dx2YaCjy#5Sep4i>3a2>* zWED$^LkrtyX}iAI+k|y0CNlIDN6AA$ms-xHlfbv2j2)@j%KenA0wqgQsJy7_z-eHW z?iexATtU5Spxooe@``k@n9<^!G?|t=P%{=De*7mo4o2hs-|%{EW%k+X3@`Lg|0euR zPJ~l{8R4>{SOT9`N+gW$XpRN0N__L~Tb*rOBW;DpU2#_JC7eziO_gPRKu25snCO0F zDS6BkG(7N>e*vEiJ00OoBhV^=r!@2t;IjFyFRJW=EeL?@PM913SI~*Y29qPTQY0@) z&fZ&Oxt-Z1v9GyXsxvE|u_LrEoWMyAF&t<=ty?wGQZs_64s}$tc+w0GTw+1{nU*Nc zE^%eHFI)7Wd2v_OXVX}hz$mm}YY%pan1-Y8fjvs6))?9Ej@TxYFZniqFMRys#_{h} zXnV)4hFQ+;yTW~18n;E=8#4CSOG?l#1ARZq>Nrnn)pQujKz(NF!=KcUA8qU zu`ffRU&^E8W8eWr%yHH$i&B;&F*{SGE)hOPQ-+eXG51pk@{WwYsOTqW74lD%Luv;M zKHRnRX*&1kk`uv1OWNT_Ff5z9$V+m;#X zRszj7e?ntNpTTvIfIH8m8~~9>@14>6Ae9v#?T18Oum$R&R&#c8dY;+gBH<6vw@x-Uo7%fS-EsO?a6oLgt|I7fjS#f(Q-MWMa zT`t?{P%8bJcc~br+5BmOZ2bx|tk2!f02;*z0Xvn8!gs2aYuXz2xRoMz4I~5aWyxnG&eo`IDMo{}zV6srn9Hp!wY_M$ z6%A674+q2_;z?gpHSu_npF4$jvX8_C*azY~Dy@8~uu?iv)rz_vuoF&~ZK(pm$h<^d z47BJA=1m7{T5#>Sr*sM>*DM@cSkxBvF_@ZYj}@V7sHZR08Mo!Hhs zT{;s-j?KI3fqt=bASh*ghQ}KNH~YQe2lp{tKA&MNsJ5q@q0>%8<-yepI={t$^&D@? zQv;oa@uXUUI0^ae-lj8BVV{PcFe>5g9q=SpltJ4z6;tT_Ty^puuGB19`^vhRPP$6- z9f!ac*=ZeA2(6lcyb^hm`071xQr*@N03N9Yf7h*orKNi~i7Ztc<_7)ItZkvITlSEO z1PgM@hO~B&k~WQ)K+1jW50j-R_ERhcO%YmNqYeNkkUw6lgtWbpZ$V-VcYaAtxVWKv zs!DZq5bBDtNPeSkzj+llw68lC;^)PA#PuqHuYJ>+Ml?tZRI-P|ZMV>U>S%P$rtu0% z?Kp7UL%{(vG!F~1=h8AO-ay)K`ddMGf;7n>{W7%c^otXP{7>7SRZ6 z!j^}Hlscbz@RH+|KMZ*lVpStIOd~Td6fse*tX|x|faANi!1yqarB~hcM=BbEC(==S z3sBA)fFrkzspCFwr!3+cx*i; zVEo-n!^x<-JKPr)PQR~A>fL3E4JMyO!xu$B zknmm7rLcu6sWY17vBaQS?e;9w(WYEc@YLLc)`+fXEO$0RU6}01qQ>QbsUSn)4zZ5K z6`bI(26R*l=N?QI^H34xU(cii$h2KIIoQM_VO_sa9KAx0ru?f!kp0s)-hW2o=T13q zdB)gKf_Smp%g@n@8MbDpyOM`~zSym`134JKS~?|J%qFRSgUu9N+gB z0KWUIeMC+#45DgU-=!JCId-V_9&ATBM6cdDYI}ImpJKBouA;=_#fPBS z^0GixF`#&+%=Dhz5g@wZ!!2!wstVW+0PgSD^}9qR3X776Y7LcNv%|4~CrpopMsdj< z<^@g6nKg?7GOvD4r9d`ZRYexuj=4t)V!B>p4Np6}hH?b4(XePW%_z8OU4axy#X5CA zMh|6(vZzn@$O3+JtAc(~!|F{=;~I%r?UQp3u`hNZ!jdD&29?W_hKVdi#G&Nk2~3Wc zbx3^2^rC~D={20113ZR<!Uiae&M> zbQM}(WN%^S%_`)X_M4@e3Wk1=irp?wsc+P5grA>Z9&IPH}s zu(NVNK`_?079;VMx0K8bgM`KbrryE2M`;Q;pavh0s-w`H%v$dj4is`_^FE0&J6SI{ zrczHE)+g;42pq6d2Mw$(p;(;5!Q_UeCAh$)LGCaUu;?$J=a65~HAzs+DEM^N)Rm+J zJH05K90Usex^snui4^+V)wliiWD|nCi3soCx;@nl%#m`>?0C#~2z1UPc_gWBfn8;7 z@JPG%~aszfLZ=hrGnJ3yDTSahV z23;aRIQL&7&Yc7e2vgs87n^x;1Y8G8x89YrupYsR*cz{1S&jVi-2@^04y(}i){Uvi z3#a^N?Zp_gJB=?&*zo~8A%Su{sx&#pSN)Oa*-;@N+F4v7-}m0f{jAEMtz=wM0OkTM zTpbfXVN15y#87Gr`TIn_l!)5{u`fDxKA;g?oVGf;1Pfi4nP7Hvl+TRe)J^jqyG7W) zIoAlMjxH<}=6?F}ufpH{RX$$d`S>yXqTVoqhNDO>Rm-?>qx_tt&@$f3GeMaiij*A( z1kzPG=a_5%ZQ8H?Y|47Er~;8Cj*XfV=BHq}k=XYvbwTyoC2h*o!&A`$qu0pu z%y=n(pK@l43#i*$+ypub0-40l6{b`=3b1!z&vGh&-Q;a1&RvQehzOtT$8pj}UZWkd z0FJ8MrI~CYDP5!k%AzYOeq%Pw{$H7_dKx zy$wd()8?KkrO~qO>Y!1d;$!O(y3=t zkCw*=5f9u3Xfdq@L7r9|w{r##)C+xQGUQExAT|%TjG7cM$8B3gk(2k(YA(Tn_dFjO zAE?_Vk6jP2ffMwW#j_Q*SA`c2ou}Q&+dB54S$QSj-sFluWt;uOn zZD}@J%??F}$@Y`}b@;D#*WQ2h@q^q7Utfp+-5&s4mb1WvVHJChcHDhbgQv$;av=B} zva=o&hHCB;B6e71zZRk6JSH12DYu=&jTu)xzbbiJCavEg+rIL>f@Bcz(AaF}1_D0G zt_8?+Yjg}OdmUiE`Qfj%K=>o8FF^WWrzQV z+UlUo_8Zu$n)<0GH4ug!bEd4XS8tskkgNWK z_uph7qTye4YQntmg!S1FJ5=8G4d{gRw4sxjRWs?ZT!ij6_Q|uvV9P=fi&Pi$G|cJ_ zYW)#zB?r>&tRq!oGb)w-{=(iBJQrBFxwI*&RqMReFeltOp`L+(x9&&24>Tj>ZS`TR z7)9jN-!N8{ue5vV4LSd6FXa7p3KlE#0E9jSla|$QPg+j5Lu}94sNh-khp8@ESj&{*JKziPu$uo1bjj-jjBe4eo^ju(2$wrUe`W&MFjbXm(4i+ij`7zkqjpV#Xjz^4ssfII}!48#5ND zKPY6$&hP~P?UwbCGTKbW&B=bHuSqWJuT@m`HEgwxITyswq#deWjn? z8FV>3azvSgKVb5Ba~h{A)yP(xBSYlbsL|l$w+(#BGYBh3BSoU|RNp0-IAH4@3jp#s zf59lHRU0$!zo4<@L{#8UNVoM}v4x?nC!jXfc zFQ&g9zVUWcO=@cpTLjQNb~4=a;hA=|g1Eb-S#>~)J(s9CNaYY@{qP3s2! zz-aN1-y&g*s^n0T>ffYsftlOx2d?)G2Na@I4UV{i$I>Y#MrsHEtDyW|Xr zPB^zn;<6IkDf^P6yCo)7W0Jd4=-_a@topG$%C7*6u&w{&bUK8s^mg1b09+BY)GUnZ zK}J_Bm9RN;F}7BJ!8CSZ7D-O~_=#H7Loii;%fDI@lS;ehg812vz?E^3=`%8QuPdpB ziS>_U2P!1Ubz3oTZ$X8P`zzz6WCANZR4oljTzxjF*1b)@E&vxd`eZ%UBUzY}3Zp@z zaP2S7+-qB%Z2~;}d_f_%oCd#uL3$itqVu=_ns*Ig%$%@gzOV`A3CmgXN@h3jf-*-k z9@0uI3O>+ zVpI+`JT%g+9YQCWNBKz>3tQdu23-r-iI;D0MR<*GTOvfDg>B2Nmi{{$;s72DEyUx) z%FCM|onr}EO8o6Ki7R3Ecfq#Qjd^AMSM#sJ~Bf~tohY&^{a zrs5^(@^17&>J+=Y*1uuKv_`meh29D-sa8A6&A?Mkx3WE~NURHisF_p?B@)<8MZ;Rg zx1|82lQ9aioK|t=lIlcBqIt~VM%L00UB_eXe+gL8q%nt5F_ZFbAP!6I_vB4n#60}m zsYnm~l;5k|)-H8Nl)LgJGcK_t zdjdPC`*3?e5*`nU2@zp>*wQ8P)L+BYq4#x}I<=7kw;nyA(yI4ddzl843VDcMElXl3 zr`XASg}z{To71LrW)`uE%Dgm(?QME(!Ioxv1cP|7v8I^<<4rtAG~_ChYcg*KcR##8XSRmgljH+QXS)Vn|1s25zq0pg&qwkIC?FC)zfPKa{Q)e|k*967;V2!DZRXk?XxkDkdyt9xmjJ ziXF&)Kf;9sG%0@ld`OJm2nDZwrvB+WAHRV6&UfB_XF#Gi1fO`1CiHb=ZR6)_cq(^< zTNXuf18Mq=2~qiFzKh2WG@Bn6><%g?54dP5xYjI4|;Nha7rr^r+&Ij z*w*SQ@07@Md4x?WM;#(q(UZa*m;qEKfFR11lAF(p9QV(sE?|@485kQcM{4%t zjGg+v%_L9k>jf7&CPn8NmLtB&lXY-GJGOGQdz&T8rT8BQen+fd5F?) zv2fQTlx|g}?t7p68_uYiSHQ5l^L8Lt(PVMzW4Kf0J1S$9E*FC_9w7O9zdI22lUItV)Y=ioCX+*1>MQLw)tFJOo0~I94`1pIkfTM(`}C+-c3c)$`cG@}X#={lsKX9c zIXVm2_;024wZ#ddagS}u(?*8HIxVN&)PIy~_~pkR_$RLP#XtEy&lsgKus*4P4b6wB zt)QDvm5)bI?XG;N6#tQf%rmH)34#)6$QF69+gOt4xb>;_d(DL5jhz)mluGsBz9ufA z4d@M&{1z-LfFlWLQf}%t$sDz4&vGg;?SRH`XOCLIdj3AsD(#B^<2h5Ee3D+Su_2gL zLILCQSmiN%K1=w9ZN)P{&Dgf{=$I@jVLP+Bs1pf^XkSGb2BY{diE8m~LpX zv_VSJG)y<(irLdZ65fLtAan!9kMRGdysKjPi{vb|N;Acag`!ehdd!VZB>zac*7$V# zgLX9ojuXA-AS&v&2tH6#4l-Z=^W3BV+LZsPM01g=`NfB;*T~-sA3sCeBT0VrLy#G* zuoj>Ii2Mi;s^#Dr+gs^j@z-*1KJYScctS>onLS{tEzxU^d%uP(y=u`2=Jo{(T@cjn z23f+~BcCpy;3|1$&$Wnz8692^=bpqLPB|k~eVBl&z5!#rOTmjH?(E0W*oFfj7s&>ONjn|7<0 z-%N}(xGZwMu=|q!v}z^{Q7!o?>CxR>0DPQDy_TAU11TLcX{8}I#YYxptD7=zLgZ=g z6y{n+Z3I_JrfK=0dxH$lumiaSuawpe6U|&_P{jbb^}&f!s~#I}7dS|S-F%P&d22Il zlHwBPZ>eE%m+odqycK=6aznOBTMY}5lG67xXu?K=s*TH zW8zp$P?D1eH-CwGX>-K`tZA#Ma- ziCaSe5A57wwxqLK?B}4wKUV5e3)SplTI>ibq)WSfHD&k{kzy&FA`-<;{fNZF3F59@ zX9N0v{L&mKe<&TeMj%C3|rumFsF~M5Heph zht&(u(&qAjc=V8l(_~WBj3j}spt&ss2*+~;2R;3bK~aTb;9ixgY2YQ8C&X$3$0SW= zlH(-pl=(@v;PK~|3BB(qnPOoFxFs7hQVs-=7YlgFh3d zP?L^=18$wB59-D+?kMBj4*9O0YF?*JVRpwcmB~1TZnF^`T@_yEa4IrOrE^H*LY9xT zePK>@XwbrkwE1@bQ z@4pV$+Kp-S_u)O0)?QgNKjRk!6#!6f=p#E$VLWbY2Q9S(K`E6?EjTIEiY&iY*;>hU z^`)klMn>gkb_V?=yCF$^9`P8?4ju(dz}@KQX~vY+Iw(n`?UgY&7jkfmwJcmoKyqKk ztSI2X$}GimnFmyc4m~Mz0yxV_hegh%w}*Q30X}sEPhf-2H5llmv^2OBMkQ8D=NSV= z4CmJWg+3!7&EJ5Ga}+sHe9lRg!*yJzk*X;HE08u(Lqf$(W@lw$%#`dYQR_o69TYbu zosrZxt!qh4u4WeZ2BUwNBNSN$6 z*c<>s#zX7{T13Fb5q+b?CazMX0s{0pzX9%kRGyWUf~`vnH>d6Z%9IezctN^Qn9kf5 zDJ@4PPfT+5^62B!@$pM|mhwwk)(nC3s^ldl|He1hag$0y4NqOcZz$!6J{aRlWm{4F zvJc#rJY7(=%W8QxJeMOqQ2jc*MB1lH;Y#f;`P&-+#_O#qEOj*D%|hMkj*ild)>1MV z4ivMxd_c7lly)OrSnO!Nq`D~g(`N`GT)ds73QsZd21gx9K!7GbsOK#=#f2J)DWANO zpO8|PKV!Hv<@ELnW{6=nn^(OH8&{_&n9U z9-*>%#;jfrM4`a7xB?P>ePRA>R4M_(SO9%p=nYHFJSkYT;_o$o6307*1|C;fZA%)& zAb+k5{|nK;?Nq=U-=wf3MN%;jmlfP}PJD*8?*g462AxdX={Z%NaldxZ)SA{XdkI1- z&L>xMD`UbO^Eh1{E}H}HsIR8Km3F_LjoN~{{F~fox34*nq+JUTs0Imww>wn%sf8n< zA|v{(ElxGTps7$$;zDE$sJ{2{!73YvDE2o1Y zOhD${jpApu&~g|1K~)dlEa@JGCz>GrojpbjiO$k|l(gF@CSvR9CER0)#$*d;;T?NU z#r;*u`16Bm*BEz84v3mj5+AChcx7i|07IVEz1KF<_?JB`8mj5yuO?9{=^|!4NB12E z9~W>)2{Ngh0+gr~3c9mP-L|Sg8q`$Sqn$q)!TgY*hiW42?WD9?K8O82lP z#@-iQr|NBR^cPQvNUW#~^0(nH|JEXxG>fHDS2y)Bw!`znn(Wa&$n<hmBg)fjj{s zNgvml0(ZV1!Uv~)^iwPW7z>!nO73_n(aD5_V7Fr)fl^~u>L>JUc`9HRE%3ktC zBQ`0nfcYw!2&(TjXiHLnY{b|>{~cI#dR0l6xciJ}fY^(@mP1ZzKA0BP4SQ$575??bnC~a z%cNck4tYAB2^=)2%&0Jk87?RFNchUoYkeOB^=NwZgIX92(=wVJM^BF`={GW}Bj25! z{XZOK4&OJG&EadzVw$!*W|~>GK>mSRcOlMPj`f;SRVD7t;xkyk`pUYH_ityLZDSLY+`9(zKikwal2_c>;r0Qri`;YWW`*4-dg{%xFlX=+Vh8lZ~4oFr=4N7Tlw z;)7b3w_Zt}w;sDsHQ{mmmBJsUMJ3L?LWVjXmm@Wxy~+;EZ&3jj6J=bUR9?JqhBM6^ zdZ}=3(8Pnxb^h?YBKpKK0byYes470&gIuX~n|oS9Ip@S=j3M1Gq6*WXLQJ^*k`sW{ zj1=7Okr|g0&^WEdL}e@If&~*ZP)@ELtkzDn93d-=F1C}g*IZ|d%l|91UP19|Vs8y(iN zPq*q&S{k*8jSejvlI3eB!6pnaeU;LLkppUI>=M2`s5MKzRQKuC>ks6YmOQ_tqeft+ zrlq=gEp9Uf6(Kt*j z)}#)VkT~5U;F@+S|2%wM|H~2Y%a1>V_g_lExag69l9CkL(K6H}^2uYi7nm1rtzRS+ zNwMrTUis5_^eRZj%)q;HV(SU=5sDN;A{!Ysda>nTi5!x2wjeEu0mYsgkF* z%n$7t?$+f>t_5^AQGyR7IcXde_-99+3UiF20mK}g7^ zVy?cggc#RCKVbQ3M_^LSUVa_6!XlUtm9QMEP60>VI}G40UOYBcCdDdEI2{BUZU7Rt z`<*Viie0g2EZJOSL)V_0*h^$Y^;4z`4eejUM+Su*a`nzJ%D%$P`s9^Kdp(*-I^-m_ zhvJ2XSgV@5E%1@!zYS=}%bzUd(VtEOJ5kJx$(YAJZiM8bl7roRYq3^%2Ii>r)2?Wa zJ`b}pz-v`f9gH`Zx*? zV@_csD-A@p6oSt^xa$~DH~R!}tn?o`qdP8p+?KZM;NL|7Wm5 zDAweV_C7RQP!ZQ;8tdAEYk*n0$*43vGD2pk0j1|{3@5iJ)H`DoJWCT#-nPNsX(e1~ zQ1>DFjK_V+YOf|I*GCsNg5!bQSSpmY4uz`W$4EpzR=%4KN_G{SJzc*OU89GMq9EsYX**mnBEcn`+qQQ`tU7l3wP8C2nBsB1g|?TCLL?`F18TFOY2I)X z85!_cx;SW|paoLi6v$3_fFpYaDOtgenij6Uj8HOs$ZUAG*h-s9XQApLp7KIR>_JZT zwR+c3YNee%hZ{i5CJwFEP)Ns}!_}}s0bsHr2E2w_RSgf}9H90~hD1FA=2@itJEQ}& zi3<0ny#z1G$XQ*bXC9rN5|iZ4+E*zKeyatL;uT8?sQ1z(7+SRpVdGL2NtdKGQDx$b z;p4aY2xXBY4#^+zqnN;d1*#}YhydBw15(lvi&~ns8DEa@Mh>5isWl zDqGjsG)HHDV2mM;*8Qw9p!a#kDQMcHgvGuDZYo}kZPj)P?c|fH;v{Lb|G%7ix0E(LwimJo< zAi9B*Z12knSGUWig{A_fBPkitvV>W0ciDDu~p3Td~( zYbl#{Ly5l94Bb-dk%ATZ&o*iMof>XTQvq}^0wDp28I@^ey?L-E46~0F=>B;&a+kq2?yPS5EP*w?mF*!;^?VR)BfYS19%4+_q z&6z*EC|z&VQhaq-{s=k5&8OD~A(qN2=EoD%!s|M+RNK`2iQ5dR;$H)ow5qt1UqR1h zl9Y4yRvq}(FY>9P4Zm7YnXS%8-kNARiG55(g9_EVl=gbG_6<^kjh)5{dI44}Qgam) z#1k@pahHXNanS;pS;7=+a3Jwh_Chsx|x%mWUp4=L(_AF>bgx|fs zhztJo{fEJ3Url>PY^l;p?AJIqcxXvRnQ?HE_&0GyX43y`akXY2RM)pvd}+Ffy-}J6 zhm#!L=(sG**~)1nVrxB}Ua(7*CI*8FIjI?FzWK;8FOlwcfR$~tc{B_!(le;fltC*2 zuqbw0Jp&7_mRW$ijj`eW9_k`14`CBu^pLe7?HFdL=9&#Ey9QceFLo3=^#HPIm^}OP zPo#ymYN{JJjbZZvP+wO%DPPy-Y(I` zZ+uCZQkf-hTy46LpFyIB@1HgqF)xZfIunCvpm;IpI zkp-m=o|8c2b1E2<>r=L(TW)vbZ!0*mw!%P-SANA96X z->hZ1OM+k)-IngXr!B`g`5r}09xYhN{QJFMhb>X4z^uE!JAKLc$9EC5z4IaUvJ(VOX9u`TF6D_MIScdOzSGDTs(E^ji ztF?)9{lJ}wpsM0;f+}7Aqot3(dh5hbC%#Q4i$P@f%3mDH@ zPQLE|xU>tYQ1|v#KI85>v-eg3zo<6sAE@V5Qa^zF9P28{>QGmi#p0|-?6)aO*|&qb zBx>OaTTV}NCE(^9Jj)NNcA4dLn&nAVds9&5n5{Iegit|{tT&Ziu_b#Zviu>gv$jTm z+t)KPtIC3#{A|;#n4O(Oc8$lDt@RF1AO)8mfS+M-S?T3Ty$0>;fv!kZq)a(P-O$am zsYa1cvjcG6B>A`7$w)KHvppp>KJ+-DHJtMuIds7K8lKAXYfph%-GxlaZl4RML z*t`FVO9~K%!jO8W0CN7vKp?IyZf`)!o3MF zBPEn-cg>jT<^=Jk9Z=<_*Q(KD@u4DW$hJI_KE9 znhLj*NPlqrq6-Yd@7##@d+7*pJ@7=@jT{ zT=Nk88wFL&)KMsy5yHxq7>uVdD<-LOMrjv1w&Ak^>8#Tl)#YAYGgi5@4>>h#nh_9P z4<@^I*Us`;7~hlvVDdbOgVY*j`d9H2RicRgQ0|m9<^5IAC{~|5JkLA~|!OHtudWIjpeew45^yj_|KAt0gtb?8vkM^f0*OrB;_a`Z{wq`4J5hzBNj zeSb(Xy3wo!NB5O6?L>=~`o#C6<;j7k%R08*IC-Y%Fg3um%?u~*;K*L?b=Y4_E2O^w za&t@I2bIFIb3l28|F(V?^gCYK&$m`vg*8uBhAV zX^vm1B#alNm4xe^3?2YR7%jDXUbBA4&Awq{v-&YEd&t~9Qau_UxCR{2tK)MRN}-6c^8bw>K}G= z93Nx+f@Yo2m41i({xsS$um^BH9bx&#Q4U*~-Hi!%Z^s+gB)x>n=XmL;>~NQ)BjuSb z!f$eh3Wi65`ayA*D`{`!sh<}3k0ef7dAZg#fX!tmwOy}tEj9r!v8SYB?9kN>t z_;PKU77Gn21#N7u&cfP~vUr}Q&9c)tDx zLu?I`bHN79@+c&Uc|7hVa+p=>tIGDd-!%rls<7TO-%9^wvjGX?;D})ppFW}P>=wA7 z7yo1sQ#Eu7@K#lDL5R#slgolZI`z8bTGm$#YqFZrf}i_jAqz!)=~;T89e|(|KO#YY z?_);RBbNI<(3C~Tv;YWc*LA2uKcp`JII`Azi$IM-UVy`XFrc-bgfgHZm^L@GC))PXh-9uUXxx2H~Fy$ySf)q+f!T1kkG+ZLrzzu%3AF6`9! z2$4WvsrQC>#)0Nzg0cecniG+SNt#%Xm)i+tm83qdG>U?D zL;K1p!!!q_-rCzp<-xVg!-O?HG0dU(5f+QvUXuEw+H&i};(MT$tHx?0Ck`(`MJp^ujjay( z_eimZ5-m~yO+d20TtG^OhTDUTHaUaxcy4H1OMXHUnOt;-j+9-e)#%Er2ti#tT0=N` zWt<$gasT@LpFa|edHZePi*%e8^(U2Yc4ABRh`x`&N`y$|6$m_-52gX9JUM1p4FRf} zG0OCZa_z1Q;%8oh-VD3Eqy42VFu8tVOSbVE&zv^FgnikYS@GJ zxTemm?68itX}4OSJlx{(rpiXHK$M=)CarnUs7X3@5Z|?49^S7&PcSL|qQKefPRWfG{mbo5brOf^S&})fxs88fnR^$ZNRCQ?sIV5uF zLO?5>j7%}rQBEWy9S0oHP&0*!vGUWss%#F z)!2YQnUy!w{~6@4SosP!GglRttke{80p*+N_r^z6a-}T^U9q(txxTfKa>Yiss!!vy zKmOzJ@6$+8(NjgE4?dV(ohXw^8|Code8u`E`mL(FozAF$3mI8Wo)L| z21*CFY=fJRqFaTlGV>4~69!sHc_3}<3s?DiR;dUMpeC0dK>fhMph+6*KBR7xN}kTd z1QuY)h*8UhKpyEm7lmT)h>llyM7saW9-vjW@t_dvY!M==t#gD23|nsWbaD@@5m2#$ z4U8#3Ql-0C+2L$AxHvh3qiRpeKt3>dRby=FvDX@+?DaT1j^WAx0s$|JcMo;DyvQZH z$D0&jBy}m7bZy#)0^?g~(#!WW*P!fl#MMI-uFC!+Qn46wf2lXnqPIPJ11>e{S`H!P za!zFlL*3B>kp0#tyZpTrB^1}yR`iBF;NJyLdV|pK+a4iUM`y(Wov9riq?9@>Ukx=N zrHC{d7FiTqVV9$;Vet*>BJ_MEgQ7Krh_(fh_PVVIAUBJ!4H?td9SyR9ldch>CLm5g zy;9m`>vJ)N@4U|)ocLcN3iJ+^*|K$|5`looRoO)z3QUu3=xnoLR`HQofx1~hBI5*S zD~b}1$&BLzR{r0O@d7KB^ z=O0spJ9cZA3yfji6yt#KdYEjfjk{WpBQNMSISXV{zh(mT6j}TcFI`pZfizgG@d19wDR?w39 zeL+n=whOVst@=@2`i~k0P{U4C%T8+n4&U%|52d`A+3t37p158J6X5`G{(W zN=Ac|b;KLiVxP&O(7jkf7W?J7dc?`g{bU%CW4WGX)O48t(umr=$gVhA-S8j_rt5xb!CU zg{q%$3+lqvB7>H3B((N$sG$nUsypcw{)I3yjl_V<^90FCwMQzV%D#!n+dTpekN3-mxfOdb-!;#6c_B#dX@jes{x~4>y6?gPjHdyBU@LZJp&*NWy{?$=F>IY2R9IBvG?V$E6^%$ZLp)*O!Ub+{aXbBzb6VN)M zDO75e!>SJ3NFbRwXhP!~&o0xqBaB==?rMBv<5=D5QmsgDjNR#Y4M)Yb&ca=0x~qF% zxFL73R}}$L#dI*FLIoULOc;tU>PAz@FE^~x<6{017#y{x7oV)AsY?g1p2-r`AA~>4 zC*_;>&(cTA-=044k%ZfaFW-L^-hO*|!F}+||4`*=1J}yElhZ(lX;V(pp(M%hW(}~ zWlTD!hXn4!QVLL|P`9e2v*pw#nd?H6zAanMu2dz%7zJuNZv8z}*6{c3on#0KUZpn4 zPR*t(Hy94A6GyUGNl&)mDtL8cFERSGornp@a(RUn+~x?GcDy^$d+)+4as92|I1Hf( zvNj=J-v+AA)a0w~4OmwLXUYrgkWP~tcup#K-yZ2fp)n5A!urZ(aOsY*+@@;6VQfn5?cC6&<&VjFks*VGr}YY+#z8BN8cfzT{B&7vYu9n=1D%(geI!2J=HB$-(qi0uMoL#qU*5;A3 z=+GJH5w)-t_W**VwuWmpm|M@(`#@>P0kmW|IRXJfS={b;jc8>&> z>LjK(;jYmv)Li$121o&N1Y{%4Jmcc3V$ZCYt5Wpf4A|01$J3+YDC7}yjE~0DHH(Fx z*x71|NCA4_KfH8E(?K9Vv1EwzMJ1#&-2HoR-wWwO`ZXQAHoV%F;1%*y&zfD~qkWa) z)1>E&-dDf0B|T$tpw7dc4SS+jQnTcI-6z++f=qPbl2R*rj0d&d7Jw_D147DQoxD#u zc+LX6D9E5nOs9<~brkgn!J=kO7C@&`M7M`b>G2Z&#qV}AZ4jD-U~zGt1k`b5N0&|6 zyD(dTeFaI=7@g8mgzE(Yi-@LHZ>l%U0699xoO*VIeV+}oIXHoE38_jyn6ekYL9;U{%v^s`Nu-wzfJ<- z@*#ajiuSi32K|uGkAOv#(OtftKzag*Y=>g%F_pHy`%$Z2LQp>Zj8ZJP!srf@*#68u z!U2Ifaa~E?mJXIUF16ilFY9ah3h{jm94)0obZ5md?<~tu_ms+Cap3kWMGk7e!F{9+ zg9fv^F~fbkx{PIvsL`9&v!xSWoMxZ|<%QCF^008!KRo17ka#B152GGV zu?Q$amtjDRz2a3$js=WC3l{Q{H?i*l_a{rDXl|1X0wsU)i60K+nJ^L{l(imJ(_~ut zKKWb`vp7QN1rH*1p^Ir(R#OpM)_&??&NQ#00W2)!bYn~%GepbEDLXhnKdCEAZS@6< ztS>IFSd-a5d3ZonB@L7?lUGk&>YCE{nZ8rCZlbeJ&=R%gLi4GBChksq7YtieB-E)K zYuDVk)wL@0Tg)1`Bnh!kW;?jUDkwU4X(Ra_RPkPd71wu1eg-PAU;uAD2+w@GpG zU~0+f;s!80J=9`*YP=9tfYeh>?S`4-ok9ZZ0=+wGw_sA8&B>#J#9QeurGJy!2D@Eu z*Ok~Qr82RYQAg);>E!TO{QuwVzrYs~Wx~C5EF4y0-9>H}oZ|@R#n53Uks;9la~RoF zD(VWsE?cWhGs-Cv2&|~;O24gg2Mkk>BThv{m0ZbghZB_8$&Vc4L@xFymwEB$o(2Gk z&Ow8Eg*(^FWNLPxV@P|byrr7|0K~pn&t{exyip6gU$-TgLoFsxG-bOUwn(qlVM>n5 z>+69Ejf5IBYT0*JiWSr<^4!6vZmZp`DQamz=Ufw9bS$Ree+Htq zeQybZ-s{gWtk_$Qt}Y^pDQQJgq0a7IucETtD-Ev4)9t<5nppL=CaD*n3bf;0?kENc zaEni$jl+(|pF3E2{^_@3Djr}1F=mq{Z)d*aT&3zKCFR6MxLrnj)Im8@a_=1?DRCWwjRaQ zlS-GE#!~Vzc|yc;ajd(9ZMmSAt4?#7ysnrOO{612?*zT!{Q|}Mczd9kSZSlNdbhU|0)txseMCi1u5YN}2roY|4R2u2}f?8xR%oo~{L8qyN#4+`l%` z{8n4@@ctu$b^iM8E6e7G#0vS3;&mv2@6$rE{T?R5zWAwa#d9eYaSd{)!;7{&&Ozm= z?jsxnWjd&?&ijaF{pkuKs}^M(6QTc8V4*dupIB3VmoOE_w_VmZ;cJDxAQ9a zV#qPb%&H4cU8q7>hTOY#D_!Uyi8NX?>|2tgwS;Z#GGJjl%{7br1Xk5CE(Y>)y?P>t zc9-kHNM})cgeTF1>q$U~Ft)ZgP*alF;01K4+IDgg${ylTcI4Zvm0f~iNCx(b@i!EZ zTAGSu4;bklqq`!kh{3bF{7>>xWSWeS+8QkISDB_dvP zZh2rnn-GgD+cumz(i9S#+qI7m3*{=a&aoMsmTd&PJwv;AY)<-Q_Cx?=Zj-K5(b^f`ftVm%3g+_HiBy7V z8IF*E?N-oAa8|UQJB0uod?MS}u*uOAs}4$;*VYITKrC1x<)!oejfjM$FvgJ<`t}zv z8$dK%q5}vyv`bIICwrdb!9?JstDOvf1Cv{a>7P!0EqisLNMGq5wv?!pLOZl-9Ysr{2JCVLK&A%_ z!zc;+*ujIIpz4a;dW8uRl@bp7?S>bcU-H_kX7z#)P4t%PqT5UaKecqW_XueaTgP8x zhUMT8(=v4f(z0#jP-BH^*_@OoKP<-W^+~Q4;;AEjXAyh({iCDN z@D02cw=-AO+)Vd(0EmnuTqxGt$QF`UuD1trw%uo4TW&S(IE8mgSbnI@5QnjeS~RGW z+;p|i(eoCXAcpV2C^y}%KMa5V=YO69*vYZX7M>rKq2Ki$lkoPN_fO^5Ux&9Z?MxXg zM~Yu_B^yz{Lm{-!Y~2~vNx8+Mbz}6+#f>&KwF^KIruVSyT$79iBoWj386}!Eb{x>b zV}MFr`Jm_0yPrt8R&M^D9^RL$RBIa;8t%0CK*^gPF)-PuSf&~8lS+~5wzdK< z(vk0}DfL#LlsQl`0+@<9Lxy3fS%@k@U)Jy>_ak{rP>M&+G-mjuXoIH^G;~{W6Klcp`sb{Zn`0HtFSAvTHa-C%NT_W|a2l2Ge2K^*Rekp*`R%G1+c^XE|oC0>|v z@TRypETJ3st7*_oer-PC~MY+qP8MJ<++ zQV>kQgybq)&BW-1s*<-AmL(4r!P>2dgBP_tiWlhtta!K`s&gzYQ_`6sEbtx{cSY58 z(X~J8@?kGf*Cz!!9T_wlVOzKj*HCO`bpWM@w(+{P(&Y%HAykyaMxrWZZnptrxuNXZ zqHsGx9Y}qtFLnue=xyY=i#VIWm`BJOFRqM+`8A{R^ERDU5y=5u%90HOd|LTnHUzQA z*7x_4n81cWA6{mFE$Sx?t&+C3)80CT*ma2Ot?)2g-kvq)E0+FYw}qo(?e_!(*g8x^ z-VIa2bxPW}?-0Uzf*k}}=;AY)xwWMf;>&V7$J1 z`aM#p6C#?@)^$3GXMxv|y>g#az`-^rAtOq!xbW$fiXo<#m^Dd_bWyAhcL;T|29)Pp zsRp#%z%YYmEUnMvluu?e1ngH~y8u8hbOr68EExi<8q#(`uJBi5^|DiOtnLe*VxKamB^F_k`T@9Wb(E+r;(o$aev;kdrpiXsZszULl%5JYp zERRGx!{*NJGtfb`2i8Mf#kfJc9f-6oBP{0r<9Qw;cTt{^2{R6}ySVmyTT!VAv%>RI z8JUwq7t?{U1c~&Iq$n?-Ooc{~EanJuj*k*`{*qN!TG0DC5Dbc?9ytfR*E*w7J3>N( zZ;ID3MHYat?N+1dFwY`XZ**E{Vz{Rx1lC|=x2SXv;+Sf=t2x+fYdrQIYUpmc67gR^9w0)uUYC;+D`2{<)T`M+~P}{ z^sMYpC_nG@>NYS5OYMU=LJmq{Q zRah!(srXUuF+}MkK~BzLacI$lQ`_!YzCvS3O2GnF&n?oJtz)LQ4v-gE>f9tC_3+I-BR?qJrEO#DFox);9BC?V{r- zt9LIaa%dk%66=$KMC-&7xjf2g-|jZ`fd891rE@g5wAZuFK=MB;VIP#luPq{mnPrWn z=5Ilqo^my0}v;A&&s39Ie6)$f?wp?R!^l`^e}oz z&jJvM_EaE`p;Jo5pFKDoNbALpX`6+g`#vAOE`{}rJ%hI$fJO>J$o)&81TZ03$=#@C zZ`E^yy$f0aDOPL@lYEw#rBu~E__QVh@NFkux9_vGRjJ4hf`y<#Zt+xy zG#CP8$DXM2B@SnDa#O_q9V%6raRZ1b=Y4}F2$~r3hFsqv5{w(*y)3=$CzfreIiLv4 z5lJoS$PEh!3CZuRqk!!A|tR zsago(DL>f>(|Z6`Y)|aI!U_VKYmUnW?@K!Rv?SaB*Y*v`RXPDV1`=s8{j(=QEimXX zxr5akpu<5Kj&%>NzP?JrsC3^<$WI*MfxO@mD5u%`6i77hjvs)8SWUyX2QocbcApU7 zC2{$h6YUJ;klImTFo+`V4}yu)a?)FxcQ^)0CV<6sByRcX2jZLZfi?*W0clp zu?}H43fR+P?4u44St4eb0I=p$vVfF&dP+*vQ@m&Is{>C4Le}A&!I?cpQ=l4f%a+p8-`2ELkpMChr`xo$m zc*2W?$yqUri|+1D(txT_o6c=`KJ5jyQu%QM4J>645vLd&6mPRCAYesTdGf0hS z)ATgW&IlY>zEu;+Gw7)>9$n+fb!tFhf$kc3a5IVX66@KV;CP)(un~-V_vQs72u3tk zIkbvtFr2+NSMrp-SX@4Q>fP*6Z>jsi490g7D;2waz!%B04MuAOU6_;v6Gn~ptA>K1 z{28L6pv+5-?GtW1s;pt37+b%xfI3U`>@Q^tlrbr4P0@A)Vud7aog!@Qi{=du=j=rwv`SRlDnSH8Mm5RA--Tl|OIonn6!nODT1Or} z+y#0FP{#BooV-{iGiCG^yjYm8ugS6^@gD?@Sy|c4=(~mCMyhKuaJ* zY>?-WnlR;|k8yNPu2B_0pTy8ReIJ0dfl6_aWOX&X1;^XPqdJtR;<-2F?}bL0D5e6XBsnqX^i&(GfkK#te76f;%&l7L zu!gK|x^4fL}}w;Ip@H!rPDkE%4*p&r)iAaZ&N-l&#yI@Fc`( zyRkOfMmhiKEX-gwWsK4~U9sxpj0qD8_h(jIR0D)b!WFT{niVUQUP58te#mj!wEMXX zrAjl@i)XObWm$>fg054v%L+dI2w5qBUSPpzVFP%1bNG3L$=8%n95h!pIWgAeN(y!o zd!x3@jZXTxz{R?mL}@7SfUlG-yrIuH!t2kv)tmf;(%t=tcYTbYcELfCc`#}Ev_!FD zgI-HCEEQ9kJ~?FKoP4cc2fG{xO&6XCjV}FKxx_04y<>77=IR~ZN)e+K2(U}k81P(s zb)O{YEzhXpd~vL5wFk{kslL$yRkhk`5pb}^bYDF-l&VBLjal|vF1yWVa( z<|+KEYFAPcuYh9XkfqL)sWC|Cq_<>6DXXP*Oife>$B|5=JRgF4z8e||3DL?4=kA;2 z>ZkADynS);0oDPSx!CQTpJotTD z$SISv(=hVj5upVj%vhlrWj9=RR_SFO_m_mgXB&AE?gV_=&V_2qVdT0p6IPkgh2vy* zUSlN=NbFB5NYv00Jer$NNK_ND4|0I~XU8X@o|m^9rQ=Xm0Dz>fCR+c&2Nd%nV}~G6 zO9r5BTbwx9iv56i6R{Zy{yjvsT2C*lRj%Re#aqPijqH*S|K;tZ|M0W-p9H>0gAfxb z|M2&3zXmS8LSD@ltFfF3!7 z7f9wxvaOd*cZU<`Dnq;JtQfkYL19t@18!&=;#d}63{)+yus*H#erc?L1zBy9fRtuj2A88?R$3aMmli_PjBC9kox_9 zVRrnTOVq&5B}}`)Y!W1Cwsva>{Xxq zs?O&zxR9M3%Q8@2c19#%xWFl=mC){wlhpN}?0ii)H!8L^%YUNX8yqdrEG?B}YXxah z7;&h5$qUMXbiBo-dj@;1uxv&*jnq zfUZoLTu65<(eSs>H5{<6ssW2;RkzmQR+|qROfe~JRAR}=2?GSB3|zEAQitoi6-Z*N z3Dh-}c@ILz5iORTw}ujJlggUf1WHQ6ZE`qK7hwNJ>Ld=-Gx}Bvs&7QCW8R`esA9rU zfn4=oKcIVsFQ zmyv%*D*B?oD3$l3Ix`rIF8l_f&ug)7!Yax*l79zr^S^!j(gKrSW(;tj&(L2~fDd0^ zxBf@kYDfuXP=;r%t!Z%p%_K#t{CYbQ+h$yoMkKaW@-_CJgd30;Tq+CU$s86q06WdU zSh(uLXmfDs+Dafh)idx4SD9(m5pkqgq-n1gHMv*XJPWww*>=rP8Hw4d5V)m*aJCiyK#iFc#}^Wa?^EmJjB>$PoE<6l8n7Ke zv!F((OngeFf@)>ER9@W`?*9iw;pS>^_>xn<=fYiTfMMpb)Y$gh_n-1(`0gi?OpS%a z{~Z4Ke@^EQQ!*1YRga0=Zj|x9b*J+e7^y#DDy(ZGn9$hwu&->|B~(^4rw5-xA_t`o zM>WoScEL+6X`Hh8+^XB1(>QsB<^V8Q_U<;F@pu63xi;5;=RGw2R4|spiN%3N5W%I> z`dSZi&kRQpUd_h={lPGVi~(CxSWBwoFr%XKfci=-EzMeHIKRm8pY@5-d2NcX$Qx?1 zw(tp1Vx2tzkG7VqK5+$)PuL?jlwoPXJhR2d9v#P+R)p*xXnU2N*iBP2P@O;=~qN-Q* zMWytIslSxNbR*{+ymi>Rr{gRM!nnJw8m2)y)DC*?;);ZBN=N(%dv%G=dQBeMP&WLK~$F3#m2oT z2Gw?)3&3Q}`K*mA(8_ub|7c836N}=@!Q) zTu%pD4#4S0Dr&%*Z6Mru5&z-GZ$A%jHm&%(_wNV!CB0J~d}GA!X@s~^;JteQ(zb(y zBl)DJT(2&SmH3I&swlZDT|ogBHyE8n3$qyk$I6p$;VEaGHASV@sO{3ju{avJqp~~CfkE}(vXj8lP89$LjvpOWyD}Y^T^=7e-f)Nk34nAK z_8x755Ap`7Oe}Frp5nssK84Ium4D;Ob;79qM?+lcIyi*1#VT=W@9mvM;OLfl)G2WI zFo@TZOw_VN`cg=>08(SaJ>bs>AD$#>4pZf`Jf8;wT*}Ld#I?}BHm$fE@QyBY&d|>e z9z~dJTj-Lmz96i)E^7k%qUY7=e z5Fezs)qeb0h20rv(6PI19{fWbvjeF=`H)#%1IoxsxhR{Pq{7^Pk z1qr1Ap_m~aa(4zC)bog~$9LJL>zpnJPxe6I4EXv>)^-Dl@T5`o3Ece%+SE>5+T@*r zLDIp|r4;RkR7gX{)T^}gxjAtq-Z)>z8$=4_%e~?}%Pp0E)hamY@I0zHk_Wa5);MD# zQQ5#FId1o*L&F~1;G4PYT8sO`L60=PXYxvSRmc;EA3#6O=qSxA< zBq>ZfIe|BduOwOMpnPo?_yn)BVo;7P_Vm2z&nw5-8^yoZ1M^4@Z;HEOtsGENU=eg> zz)*w;5Fc5^Lho*n0FvX!s+0oiyu_S;))HuDIdV_esEAj^EoX#W1rHLlTCGbt89how zEW=LLBNGfpoa zxo}@-4K-0tpTmokLu{F7M;c-t+JUXh5+HEJvVnIGPC0>f;PNbrGd{99ZJD&wCDdB7 zkob2SKa$^6J`|}Yhan9$^nd^TTXVGf@B;{S{gR2`H}7AlO2Yd;U!FkoNgd#W>j#K@ zc1ib);M!Lx^E^qQ*ml)gB71UaC1Bvz#!u`MF(Hs}d~$D(r@VmxNv#RuP6$|1<*{6# zDdJ|zjzH)k6tAw_rChwmIaF%GWKUY*q_kx$hoJVg=`HB`lKt(C$}LlVZrlJ!usI@% zA|rRqDo9Q_FsujwVNdUHaNVg`8l-79!@rgWMU`={)3q4H$Cq>D_PKzw)9=#X=$F_8UPbUmhf1R1cGkB#(Qz1kSB zYJA3pokaad3r9go>oy+3V{rksf?rU|dDlS16KOMzYm1t^jE>{Gg6)FBgqT4S1?}83 zOhRf2&E}TV-YPbpg3A;kZ9LE;1i8f)hGQpJvl1B7$!ldr3Q8434#R(P`TNvl9v|v|LpvC|OD(7)+ zZJgBY(%rne59l4Uzw{~$cfPP(3HNqqG~6caG?OSGVP9n^ZGO2ZoYpo_? zFw&VXgy(>=-I2op%>0M{`u@H2o&0h5lRwGv^4swCDex4nZ9`vG-FCB(xU1vA<$177 zLB0jLy~QfgT`C~04oSf&)Pv8xt6QtC))eGa?1cn3s(%B=pF%IF>jqAaGs=)1lSOR z83ByF!<|qDzL2fHbc%vlR9!~p3xM;pthK2Vz{vISAYIHFvzK6x{(uAN%YH(r+Cb+OQkE0$FHHaIMt4>}7$; zF|2ZkYL`@$`r=z%`t%>`CDko-kY$OJ7I)52$}&{QRaHwOK%{Cp;Jhczzj%`rj6Pt@ z_Hs95a+;K4P;4%J=@U3yh3(VeOJOs_QjH>lZUgMjPW;bqZy4N~O!Di#EOf8c6_^`w zsYqhOq6%c$a4eY{*g+h@@W^n=k=#U@wpvBhk@^n9hCv=WDdG*z1MD87!&O?n`qhqx zlvOrK+(YBqY0C4n8^3X;qO8H*pulo(uA4mHY6V02q4t1lQ5RZ{8IvR^xM_a38yCJV zp^zGqLmd>FeO^3{VW&zb1~KxNJIdee>i*aBO&3=Q4^_28ci0|%^l&htqdOt03#v{OVaK(Osa0kpp-Unw7VSGpZ07|NCl8L~;?1Rlr$vafMw-uAv^sawW9 zBpshs%TY%BVXU)Hth6q~Zfr9^+cXN;9))DpuRZXt&OXqc;y!!W4Sw1aA1#Ssy2f;k&Ak} zxTql?lS(K{yxA{F=qp*AwAFOc2rG|HCiM)*6s~dgE_`s)(g7Bogi@7P$wG(yj9sz{ z>D0K&O7kwx&}6n{?0GYc_D$MN>**v@(&?#Pu>6Ts8CG2bo1M{m+#g(sL7vo>ky?oH ztLsY6H&Us62ErYt(US}k-9TK*fDw8(EA7Emj<$TQ!*iuuQ&RF`im$Ds(aIl** zOJo+#pB5^8b-4l%dtwy?t_UeWCOGyQ8U1kkBZM~RU^@kdJPHpbzu43)@Pe4 zJIuf0ss0tPGv5pEKfwnKD834B|Db>Jb!u**Fe?^GvGxK`wBA=IuWcr1rN^N}LZu(n ztp?&pzUStm`T%$W-1xI2KW1$e!$}LDa79(GJ3D;Aoq%@$XZq;4q!rp76*Y(;0^sGB zLf^A3VqGq~y5vFm76UlgP;OrP!_GoA>Ll;EA49KGNV2lyqKoi4eD6!lE8lrDo;DcQ-vB(=e|a# zuH}A$(CBk`N#SkUI7X@VO3ovI*`*dMxF5}F!BpLo-PB5tpapaGmlt~nN;}sc+>lEV z&afSQ6@;XnU1uUnd9T@1nG%Z|;4FlsN+?S>SzQT3m<r40o*iQnjEpyin5+Tm^K{N#WOs)|j@K6_($7P|^`K&*LnmNG>c2HI8`&4lm z2$u3kMzF|Q!81jNr)*<*1LJJ~E7pzxFY6tC*hF z_==p2S^CeLDpc8w@TSH+auqqo_qM;UOY8(^c&u^DRqN>2IL_@EK|qOfN$GK(f%8N3 zVz8?rQH?1-E|Fw~L7Wm{c&Me&6Lya-RL!``09y zeNBVKpVMIRXP2iUu-Q#N<+4jTfEX6sD&vV)05v`89^@i6G-WkKICxTL#J7!5@f=iln_#`Yg6wJOb1{NO07a-vP{}eR^wz$31X04LZ;s{f zRn@8YxFU~Adw0EBNE~$iY>QJYet~SwGn{I%xi=~rOhxU4mq;64sljYFy?|MvcR679 zOc`OddEI9^oYE$`Q6YMnq3|OP;mS$}aqMWSJ>0FQ(X-=1kT0OhuZ)UMDBv zK(+t~;>3drkB6KzS9_enWPuETTVnx!E#1bk0K0O%TI^~pmtB`u{eNP~c%`!0cqkig zdkTXR`+fyxyA3lWh^?)<5UUcbjbsXt(}q*ba{jfvMK7^RFT8Kv!kX&k#hm;Yc(@R2jY&!Fv{UVLV;DH&G{COY$sdT%8v zy?S)nR-H&jE`t>Mxcd}V4nRny3Eif#{vav}5V}4Bx<(oqPD>;}e7Rv9;jrS&}fj({^aMoeU0E*tztcEC2yHpL_CSA`6tP=kX`U3c0V14H#m2iq*kV}pDC#VwyyZ_V><>tg017`uubpf zYPn)NaAQ)$ARTQdXc6e`u5k;o$V$0Dc0bqeSWv8!u7IT(^I7*=g_1a;2TZi=HP{Vk z{hE`-L@DPKiblHfbV(y6`N@rTm?ktrF~uOHwBqJ;39r@}LJ2<|fvC>a(>NBkK`a3~ zs)+x5sBt(@y*nZgFyIYWh8^ABQM*Q$JC2c4yiXe6rV~?H7%vaZwQqbq6s?NT0J_gXY;p$Nu3R^Ou8k4)|f^Wo5%_{EdL*Df$ zZ>KRG@?Y21@==GW^naVBxig^)l`500=PadhFMC(98>fe47jt&etwaypl^XU;#!RcS zF?A)yXJn@Un64GyNa8WO*2>u?Dgcgrc8Xw|QtTb!-)-faOrV_IVLmD7=Vf{&`PR;q zavbRlIYEHbe#lb69WK z5$3rS!%Ae3LieDpy_RRoWINX@T5hN%!>JVW7QS=+M~j(nq^7hn%B>3oiwtlvHJb zkxn%&oLqn`G6C=icR)vMqtiH~-o3e~E^M)a+hc?K1?pEIwkXPXIOY@gtMF!;BtL%p z-rKhye)Rrjc>f}W%gC{l6cvaxgi}81rgnWD+!;HB&^WX}_QWg*k`Z0)i%*z`O;1Rj z1D?Ltk^L2xT`d$?RZ0+Rx)nHs?^xifRik}*EORfIWPf7GS^lsbW$-L5;z@NT7i=J| zTi!!~#JhMk$-s=RS0%`WLt7;8bxfW-P7WFmBGpHA#N(Nhd$mkg`VjP4n+B>-<3Tft z7wJLVuVTNolGR1>*JlxbxgTIv)w6(%dEBhU^K-0r(;3S$ZB*I07J#xmGM*dIv!ja5vT#o3$r5!u3#}?BX{7 z2(se#4Q#$uRV>r-teaLra1bA}==X_SicS*pBUx8KdejhON!0w*JfsGJ?NE;d8Ld3( zeG}WCrmG!F{T43qbxN~WIUjN*?-Je}7!CxZZuGhFLR+8rt|yCiP+lUIY&s`qbCHSW z&6MouQ)t9A1l9Y}aA#P*C=fF{P66{R-$qW}r8=>Ky>EGX7<9*R!i(J$&0Hy?*Y{8O3rqaP-zsd2Pnkx|qgdPS4Sf#y%TOU9)_V$Fjl_J;H0)KA*1-`gY7b7Ir zko@}F_wU-|zI_?q^3?9_v$r1yzW6uP5eep%>QwT|Yp5TN|JG$edX4K+k1WhrETo)S zF$K_@u>i~N8yLvJ34&}u98NaJbrK*=Z%RzY33i`>Ly2>4TpjOmJEE{`@kOvV?0=!GpLT;S!)jiq!#iXg$?>rHGk=MrQy-Y6F6M@ zah!#Xfe@W*iI8(VnKRv{Zs(W@4;%R9j~YqcVy{wyP*c#;{vH$wb0R-P4Nd5-l1C8H z%%!Sbai@y7Q7gMBbBNSL0{vl_uJCxBvjpsJ@xAA^DKqGHh}u$I*hxS&ujmX?%6z3G6Mi{VhT)Rx}>NF`F5kgA}7 zHCM0L;a}PYLrqqp@;B#wyqk=JZUCNjqe||Tl%3WkNm+1(@N;L+!j^nPxJx-gZHNX) z+3pu9lp6WPf#|41l5@3j-r6zbMK1F$+6PI7Ph>BW%Z#V zB!BT2e-Zu{Ru{hw@89zEuZeazxvRea=5okEv6^Fo?1Nm|b^|@WX`Ie8IA4D#!M22+hMjuI;6Gbq zVruSze1JU!MBd*3Z9kc_Cr5%5*FXIA+pjRx$1wj6AIqp^K1G2loax(Pnmi*h^zQ*bM{<}JM$Okju*sxDqoZhKLCuzn@Y%qDtMa03NxAsbK zu_Gm6$))uXN^iM}c(Q*1%W}_}jth?_+UQ6l=skA<>Iyy6KNAu<$_TR>B2#%rolDzf z>I~=_Mw_}1x`eeVqV`E5jZ>quFGmCEoVbNO+Ie{bsOvmEPe48(4c%!^@$YL{mKJ}3 z^_mJ_{eaMAce6vQaseh5B1?|C9wkI`nou1Ic;(@(lV}!7>n1`6T0vOXrB>q}S`12! zVzXipr3ZV3zK5jbmo$>Lf2H29xZu{+Ng|!*&=MJhk>6>PSxtamwl-9$>aoD$6GR*f z-SD-YF#N4jD7I=`dYUS}%6&h%-ohnJ>ErfbD1(8xpH0WIHUg1e0E~Kz!OV$8QYj$3 zd&ROZYuw~L1k3o@`_G7#6h&@+`u>maU#DL~`oIYNE5u_I?{A;75c>PKf297&3-EvN z!cGD8**5tAB0$3mFa2l`Vq#2{ZZXhUR+Um}6z?m{*E`xXRaSwt)XoJb78|2O_YO;2 z(`g2b+rgn{tx`X4js~2easm7dRY3qC%_hQd6p=@zBTrzI=N$Kgmb5zc;OHWSW86I& zuHS4&J;av~Uze7>r*0%9nxIO-2u#koJpItpgrVBQsqtV(3@R%vWilK)6NpSVHg-&v zv2H-%T?L=aHz6((dvhF+3=EFIvewnfm^rnKNYF|zl75hf5v;(?cMr<41Zol*Rk(;a zV^C4I;EbQA-EKbh?d3AIBWP|?cS!=|AgypM(*o!>x^rN3RiJA;fExl}QUR%bWSAQs^yF*xGlrX!1S zD3mBlFMJ0r%$X1fn;)V}CCh=^Hf6q8ZHz(oB4sCD4Pa|<)G>s~{>2*e3=-z+0oa~3 zIDP{tklrfG3cJIdYi6l<;UUI@P^xJV<%|^(x6uEmG>aYSkRYSX1`-Yl=_P7j2lGPt z?j(O+;KQ|j;oL)YUo!3KY5?6ILgoJlVZ*Qbdk1D9YvKimbur>otIGI?V~St`a z&#t8_%f>~z72pzm#M8*1`1LiksnV5hiM|TZ!8Xw5uC{g* ztA&{9Y)Z&Ys@)TTZ%C!X-axjW{NV-Le&?1;oDV+A$O_r8RgGGY+FRtW1x%lhR_1ED zk+rjtymZE4?@IR^hvX2x{R!A$lWu6GH@A(YYUlah3@#X#I5cXaUGfmiEwuF&gzIKA ziu~|j!~5q@BzZo~g6oMX_5&hu=@deeRc_qWyVk-^5oZ-sSSq@6WvxRc;C7fOXls5_ zPH?l@9g)zFYP_r#dMfz@~-aGPL}Xex&26N zLe}Mg)J?8tuk`>q{Oh!54Cz&U%hOreq5oL5sP}6!dB$8eSE_PrCj`41Z{kN)T_M-! zh6O6iY0cJQ0NW#zK>JLZENV4rrh$FzNkfiMRkMRtK#x*iLTUXEjTDUD(6DW%boZ1> z#>$>&e7Gewel|NHSY}yV0ycnKf7P3?*RC`smy6i7BXun49hfYRNB}I-l4+ig%{*Et z>1L47Ik>>KG(D_XP|5R}PK-QsYaz!2U=9E`$m8lxEUW>#{wt8Xc&ciPG%iZf(Pj`h zF(OC1kV%5I^0i4%yN9y4v}&JpbN0Y(Y5@DTb_P&d4w}lmONfKw`r5(YV|L3&qnV)Q zK4(ZTl~b;18Dy_pbvR5k^-L~RWzKj}OocN^)l9t9>Cm;`Q4r=Opk&giJM}l{qBwh9 z6j%bagQh;KZWWP8vIw!{lSZA|WZH}T*cziK7b-{1lxlhYwNFFb+9e1K~y{!Re?C7ssSFQkR zQqB~3m=Ne!;j3p$TQ4+`8^aZl>)92&8E7kgU3|e&9VR11=+TBHzl|j1=I^LJC{3sG zP(FHxGHcsR5YD>W$Zx$tgE78Rn4oGQ@4Y;M~shFCG$4V zNb=)y)dPz0CQS}^G>2r*9p0pwzk#7QCL^E)1UfXJbLi18b995|49tSyqdyzisK|IJ zU*Jj)+54~Y} zMJv|Q8DIcGH87_^rwqGqH#w{8jiL_00j<+jY0E41k8kS%A84foP^@8Rm3(AL!@FBL+9R@o?pq;G29G_7zt& za}-EjKiP?UTy^-ISnBN-@_UKw^}zg=5$kVj(2TyjZLPt}L>n z9e`itW?HRw-D$LhQtLv*4-_u|mFc;~>z)yISn0rkmZI(hk@r!ucw0`hszWx}=MhA# zEve=qz8=uRhew`UIKl?fYnOEU8e1)>z)1F@P(Rv@1PYw?z2IPLM7h*96qVF*zJ-`a zwjx(8eb>%|)FzNOEcam?gT;idEc7!ks)l00MsE34%G-s3rNKboK)4XziJtwELYTju zCu=cQxJ%R=x~}nM0*#jWc9x5`LNPE2H}bmz2^xk_nV>$pkT}^M(7LFmhPNWQf~J=) zIhbVXfI)&uOk6K!73BMglzGF@R=#QIb=;aF25#x#5;*M$*5-0nIcN(&xi2u*uH%67 z&`U6s6Ef8H2sb!Tm+KCurqnI!yFjH3U`wU8#W?CEVG;pJ@Tyo6{6$?`c^WIY>bPtO z(hsMym?GBLzt;OTM-E+C)jl$X2+S4CXP%#Mi;qmNoL;=XM$chKMm5J9l8PO z^%W=v;5$k1t+F=FhcDlM4okJq-@kePk=lZQd8r@L??aaU@7}*i79oFU!0+c|52)i{ zp6yD$5zJTAg<-5PJjLu+H+H7}BsWF^EYyOk)9hBFXHvno_yWhvaA0J01anlh0JS6< zI8E4w=_7yLWlB=5N_cyK(=ba%Y&!N+iN*3vY|?~jN#i5^8t|+Z7(@%u=#JG|CX+rS z0Mfw)JWRE(g-+JMI021OV|vzJjpHKppcDs&y8CoXtmeC}j9G7WUT@X5=m0fCj@+$2 zMr3H4PGL1Qtr28mR938QZdu^7f!u;aYNEm?on20CvkK!wIX45y^gOPBViQ)Y26^^! z4IPU5vIDBz2gk*v7#a(FI-#Y9?NU-?OebjZgwFoO+t+kH`uZYg?{{$P`+m$U@3 z4RxN>Uy%YlN!qpF+{+A&-k~o*WHZ`p7q$j)xhW9tt~>5TfzqW%BZaIRSPWsDCI=c* z?5A58iIh7eY0J{n9lcbEj#32$+l5_LaI0u}9BK@G>J>~Q%dyQK+%0d*77tf7Ywb;} z7Q@l#h(^g*6W!b@ESZaz@@$n}Q9BC|+jfE^md&xuY}h7BSl)YBSRL&B>osR12?|>e zEQpJrpjOsJxU#QPu=wyfwBNtMsrWj)nG4GQ8Q#9S9Po+639;w!i4_e9_0PHpo7p5M zGDvH06fmiV$Z~#OU1$*Oxmqiovj~}F7ic#OT!Kid$n$8_?bE1|shl;!RcahrD8(6? zT5S8rKnAw_6Y1MsfQ+)G9hPkDt1$XwPt`VBpE$q`FjK6Jx3-sRx5R3xCPV^D;(^Lw z1Dv44la+A~XFGct8@EVMvyjp?Pn2O@WGf66=Qo*t`-EKB$vh2o4Rli3X=+#?+@4@^ zn$JZI6C5RxazBTTj%1j6NSi4`s$n>2L8J~gF0PJny)G*1u1gSk0Or%MQT~b!;&jPb zn@O?SB4K83!+{o>;yv2RbjkoZ$|tVGk+C-tpI&WscW@RImjRFoK5PhLIG*zK?@wQH zX`}V~zq%Zin+rc7U-?QtEuug_L4o3>Rv`*`s3Ad-RBNOPk_h2?Kro?NAOMlx;lZqQ zB>BQ|3}!H$JXS??@;1&e8UIO>gajm{ZX)18Afqp+%IHa?BxVQ@pq{Nid_pOXAtzHk zo~<03*fUHW@rF}Y(i>kf2NFurye<(Y(wL;$ zi5(YZtPoN^Ldqbnr9bHC62X4)%?hMMNcWU)6Pka_KnRz8O+C`Yv+$J!N+^&8?M;~M zUKH)rgXJy}zVx*kgo3aZBG}{+h=e8bfz7BN|)51ynhbQRF$Ple;U@#cDjyw#q2Bn za}twn(LJ5uMv~t;kFgHWlm`s_7Iv`@O!+ya#i+8pY`qDxNeC{i*g;T$CxDdw1d|n7 ziWq%(RUHpZeMVQj!fdl`;z0AsmRR{!?Ir7xfpCs}?82~@w;MTfJABDi2*_n(B-U%Z z+*;LF*MV@JlDNQH@0@V;*OW7TP%>dkOHwIMyMV0Ygg2^!$^pM&r`LJ>5M zF>q`R%&0l2WT-=s{cegjECe(ID3aiE%mrZUD~V6VHE`_qbm(1_uFP@TDe8o`FU%ss z%poj%%vAox&nBH3>c3WRcJw@|a;Xy7<nppRo$2=qUL)mMMtRM_sVO;W< z9<2R`GT^hc*OilWtg5lStM^*^Ll|?g8j)C>;%cYDE)!X|N~J}KrxFq-Ni1)5ZEd0} zZQ<-ZYjMcE1wCU*TzR|A(7Cs25J23MS;+$b4@9d?I~;js224QCou<0ruv@=_v(-(P za>-(8*!_ggiINM2^i}*|;5jU${b(=dS|hg+FreZX>YB}88pywGk^#et(4!w+r8r)k7 zTO`rRF=IWGZJy7`Yu=iL3!T^)J-VoOA^$)k_H8h z*?O$$x}d_SVMEeovxw)cQL`GHB1(g)ynr**iV3wkfazj$20m!2m>L84F(KAXo>Wa^X82Zta~Cxb}P*knk5nZ5r^xjUEJ zh1|gA#=0F^I6Q)`4Oh@(45nl*%M(A@Aws}$$pHF@y@o%i$+EPKr~3$~kc1*P%ZSz^@XbXiv4$Aci5T& zd-WN#&DKrP^;?v_0qFYVl4X4D)|Z}Yw!U6;`)FrvJn=5N*si+mXzMG-9aVj4u~|=J zl}w##M=dOhT)^WNWpl@()((TQ5am4RPY=1R`{i1zppEvGXRV&A#Mw*T+37E#D{GZ$ z*_0mv96&zlk6ezsJ~&hYBtniHY{2BC1Vd(`pbv;ya95=48RlZ`bdpN^)@`xB_x|PE zXaD`bhX0;Fq=ozYkM!5i_17PU4`06hlE6aL{=Yo4mVWji_Jy1pbZ-+MX7267tI4cu7b3_y<9eD-JJvur#;TSId4@|S-{Wtnnu6m963}$+i zih9UHsIZGv`+MoH#D4_v7AI_+sKbRi&WOqy_Bi`d0Sn(-beK78_FXJ+GohSHTA>%0 zPhez8hUo&rA^J^9Q7IYA{4G>~gu*hz_JDn3EeW`gy5!km3(e+2F22-yKt6X-^2(0@eQ! z2rGnfCJM$H$@;Zbu+YTKkJN`c%11J&4YMejW>us<2gk`^()v=U&p5dgZZW=)kpqWE z&i~;O)NHq=D*C7#TPr+@wgJf90Jx|X@q_W_!ccOQ6Lpi8{WaRgy)1XAfVk-SzY8D! zcdXh{WcxGy+}l^6Gao8}XzPp`C?qUI0YHn4WKhhDv{4KCc@D>}HsoQ6diaP;c{|4N^!B>^8)bbMcV@UGS7qxbbGMLne~g!i!Z?ASzk zuxaEwmTqOORTR3}4`xhY^P~Hw00CeXmpYKW)^1Hv^aM%S*u!RZ{Hj z{Us47fi63cQWCEr#mmg09ng}S+d|Hvuu~E|1Gn{NK%$zZNnZPNg8ISILeXlE--V@;mU3Y zX*u=V2R>HHLhmjS_F``73+Jqd`XR96gkgzfk*wt{M`ZdX{$2Q+bO`?U;eVC?a4<>+ z{A0?C|ML3VZ@#CS|JR?Z8i8%7)%pn=d+bjyypJq@G2LKvC-0R3$c9eQiCVT(KRfpK z5FK_nD+Xs`5}z?%?n>k$$%s&|kUqF|X14*B9fzimtq55m?n*QE_WD}CG@Y1b#iE{i#5zw4raB)bl*sxY{% zuZjrrmcE8BK^K)y8+~-N9LsgAms=~ zR5uRrM0GVp6jTrXB5_rZ0P5LoK@}yWv%W<6s#b(m62VY)W7VK3?04by_t5N;%I4Uq zgpHV`)+Ac+$-Q9qu|@-bpNQgxO|L>k^bM;j8mOu~Ru95t43w8&_cRvu1JumOws3uh zbWt<_hMcC?YDq#9WpvVr&Xr0Rnr$NHW+R3H(?Wp94k3h*BoL`<#w0JtXp&ZmLi0*Z z^F>h%@#&(Yu#EiZaSizM_KHZrvVCDJ^pb8bw+a57)`Hw{2}@?SEfddfDd&(2kUUx> zxgl;_6Xn!7mUAcNeUrDHsO)wKS3}!kV1Bzahf{yB;4DbkY;;9-Q7vanO|`bV()D|l zFF!|a5Q!J{MOo@gS#JrXM_%VF@h08%WvmDY!26^BOj}^Rg#GLfYy&v>h=VU3j8?MX{D}4p+m?RSj8^ zlNV6lE8ev%e1*n(mmXql?0u6)vJcszLwd;)xJ)}NAr1i%@RYy`{R$6 zJ=X5W2ELGzl_W#+*1dI*mc*sf%m=FN3@TiB84|TM4>3;QnL$}Mk=aC|c9xJ-xUf?$ z<=weEk=NV|o+jrSK_j%zXSXD`1AQD3Uj}4{(YV!S+ICwdH(eD9Y)>#bwd&xSW|!&l zv|Q^93$17QUh+!;hwR}0`YNANZeSk7>!vEC1b;}zUN@hVkjfOUQK@z_B;i!$#-ege zl=M7Ean1!2YS||OUU=Gh7R5OXY7GikGWU;)Cg7qm`ODX@ZM62HFI!SvFaQjXx*D^@ zHtd~j#nokiuT*|7FV4hOaJNekj#E~>0XoCAeqwgBS+R1h>bsq{A--IuElaPd8a;i( zmmrC&Q^GTFL5<3$S|n%+Gb@%pv*S+20hcG}8pX#&rx_^((!KwDQCi#O+IMoGps=y| zVBIu0!zlky)tzdPWLbbJxzNflDG%Y8tL%TKk%hp$5~{LGRAnB;oTOJH1QZB$O@Pqs z-PP+Px(1N)$up0-BBEu7@ia4oPPQtyhKS>s49%&9GH5eGqp4l;#auZA^5BD|2H41r zlrS;38P5i)gqhp`oQtkfDP7dvY1JNU%wp~BR21EYvFV^%kjbtB8X1&KT2(_ITdFO| zlTptcBxcMiDF?k`=Q+k!4!Esl|Gh@wQ?YAUrbBCltQajN+#q#l9HeJdWlOt9fNzvq zEQQjvZ(8*_r)ffc0;Fx$VBglu@cw(Re;9MOjvq|T3YQhOLC@ME*BP_z{ z1BP^Lbh_ub8W7)-(>fCbs8RxBH;|p70L!bSgi2jNoM4Foa2Ya>sj7?Oklvky6!|K< z4tJFV=uy8oBpx~IN$xQs+WLM%O~q~56dc7+YR}5gVhQ5p)~~$B8vmWTY7{&zc9o9!qcXN9jaP zLWR%N%DQ7^_=qD@+dkN3)dTezVkIVmwn1(QY$?UbuhE^3onNet>T5yXQc)qroofXhXH|sGzXgx=mEIK9n=AA zTy}%XAl^GUm+3+~%~G_tdlNG0Gr_~hT7?aYDXU-rJC?$$2^2*w!cMEYiIYO`Bks9E z>$7!l8KoZ?Yv~2z4!WiLBKDF9T+krgZT20d9+BIOPCn}G3exH5ihJO}NZki`B&=Y# zWi0`AsNK-6464hPPET+_j#X0E)?N8~C zqM3yjc(2E1C8xJMco(`t7(ZrDLo4P^z#O0txLv z*Th_-v^pZ;Pz^_o)%@ydy27#t_HmZ=kRErcL(0JifX^b?hHHTS=2{?9CKS`jf3#Zs z04@)d`(A*e_;R)gtSey1%W?}yf%LG(89>9Z0)mrm*SjMkQkV&-$k}Iu;xdUBX588P zpS=AkyncbYYTLuKX4c$fx5hfFvN8Vwc25|{xLJXksRxGuLzxug5qe|xGbEdrjRPgr z9eE}>=Q;|IASI*)7v-DPcYe^dB_|%}JuzUNMl~LH)g9FgvBwoxnh+VRCJy)e6W|_= zCZ+w0Cn)fA77h|^K}6p(d5j#MUH+s3D=zN>QO?{&>B1559*Os;F7^m z*2i3TtOMe1dSI|%3r3J; zSEQgm6VQkh*4aS%^AqUostlq)KV5X8)j2K=?$Wjm|L51=fd>2qWb7)C$I_c{WH=qn z#%_6WWP$a7%ar1g9vWnYi`8L9UbD*_v^}#lv_zF5C3Ew%1YZ#?^)UveKY%z;n z$sfT!)P7buhLzWxV)TH0U=Mp4?!;#1gZho-ly1Ww`8I3ZT-#QC-+w zt5m$G-Np{Au{5A4XAxpI3Onclsp;afDAtUkERz+6iTMW*2HkYfJrW!@K=Y(a-Icu% zOc8V_;I3F(aWLdMLGF34@A{g%+M9es&}zDa&sj6bu}Eb9G^jqgGR6<1S~hz0u{CJJ z-ec&$bSijB^TtNr2pdu0U|y8MGG1k<=( zqL)IS>NvgLIs^A??g(bStkU|_tf+!|=NSUy4!W#E^}{<$VVzWS{b@+MGyqYp+=HXi zpuS2k#i1^(2U7)s+X=D81kkG1FcMwO@w^`7>pGPsUkDGW@n}FK zEw?oYsQye)u7dtv?D-30SlB=w`3N&sJRnQB?Re@EId?-eQV6Y$O}tAn*L1eZEHGEk zF0nNrH-HBxjQ&Y;3=WzLRAKr`5ez!VNPh#Y0BNmNwJ5OE{i!ibk{fzyCIxsTGTS2z zw!N1dG!-QGILt0bv!UZVNdh-AFYR zxoK`br$uPsrbuCi?Nz%kb~-1QdY1pA>T~85Ae1f?n8`}8&!X&Lue4OwQk6zxhrpV# z#S<7eWClnphaACY=o<;4ZuYYRRH8ylEi zVrv=j))m+j$}x;y;6^jMzG8?fZN{Zy;zQBo8(~)%3R;ND^>3Q==1BQcLv)tb?$a~y z;$w7NtfaD;s3hf;+?;J%qb~j+7Y=>)Pe*;LqQvW_B`3lYl!42WDge_cY|}FA#E22SD>a^B!o|fiZ;3_!U|{MpvAb-{!_#m!}@9m-0&e;Hsfh930-9 z#tG9jLH@7(82($o0Dpon_?14-Ki99r>nE%}eiYt*d3m&%bN|2*xJh1)MM35dpg6V; z-BX0R{`xM5$K&PNeY^;nDKGW3wW^ zUq$K3_g}pJ98P;*y#4O=S3C!P8h9pr1mA@;rhb9fgB<}!Ut#n?_pwJ<_NJizVD_RX z#~Khhw51evmh!{-7gSwb7cuP7_$>`GflNmMK zdB+TZ{+eq!=n4DqeI4%bLmKj9i3o{xq%6y84MTlXSS zUt;O%r?54*Ql@*BSZyfv(p8z?t`3pV3+MnhVu2zDWObk$t3EJT(l`$jkY0q5Ey>+U zNxgBsfQrm@jgI2g(8Ed$_0l6iR6${#8qh%HP*tUwRsbw*cJ3AZ1bG6%?3o)zN^!SK za2ql9)1cbc+&VNH zM}#(!Tye@|XLpHVQmy!w3@yyhY5VCnc&&!`V+bQZF~v!m=tz`Np6d zs{yWWCM%peC2?K~ePrTB_5`)bhZD^);C8dP?ywnwe5^l*$$$xFRH(s+NCOcm=z#7; z5}szjvLV#0o;Dj=jc7#Dvcub|6@2=!?97La2zTajkea-q0s`n;`>Ik!k^UhEqq-!7>>EwVId9fQxA%D6sywi0ObIO`?cTy|4T)J*F_t^#oA3Gb3flL1 zxPj3qD`JVJ2ffMxG$NE%&Nr|>xesNr1yfd9MxghfobeQFCemV}aZ&8grNRD%tvU*X z>ZIz0dC`OM*C{}5T8AC8RTiQuTE{9=;bRg%!yUq$eD3mS6X!!Q1GVA)W6N zmxO6}mXx6OvX9ehtZ1@FXMswUA&Eil1=va8k8I|FEOD)SqgwoJ_&0x@L-7}HpE#Eu zYtgU5o5=-z@%9JEl78{}>Dv#}E1$pqBD{T?9{BHrK6yz99jSU6RiJ9`4 z3b{)BVIOq|u^_2N?j4rIOQ-JW)Z^LvQXw>~*yKQaa8-sIZo?W)9_fQ{Gg18&l2~dk zqtM?DH2q#qSGVZ}3?6c5z7hjUpyQSajAO$>L8Yk1a=$WUg*0Y%c*~U0V^Wmf&ptVN|*e6&a>mA6tca+RbzePUV+I4_kBBOudE~cSU!D@DV|s zx6q{DzXNPQWu2kotm6>sCts6_83H@OFH>AUZ<<+`OAYvwvt#-@e!@x74<@vwc&<^m zU#2TF$u*Miw{gl6>K)77OcVf$$R1qt+G22_a|HAz*#UI=Twf?*&C1;8+@C`1OpzfV z+;_l$yptq*g#q0CteW*{c>RU??HKwDHqc8;F6zF(J;PN7)fi4w=_UuR_UM1%t;ZUZV&}9<1Fw>*_N0)s8$TF|R*?F^ z47=LbZK3AO36L!3JvRDHZ+L*cPn>Jdy$H%oa~@Qv0~@tTH)@@n@0~OV(sCU5*=!5j z?kJ#-(_Dab|2XK_n9n#>l+0aWZ0eSdJB=%#7Oc)%OLoXA+IS~c9^_IQj*dVe0Xz?u z&W^GRq*eK;C3X712I^V%bsjAdk9T#gS!@N@M;{{4pcIBt#|o_5O|@^y@#;~ae*c1* z=%(8+j@^?&X3aDGohzr$O&ENk-|U^v&N)iJy2*ThQ#=DIW!D#2erMMQW6nXo;ifmP zKP`QIGU(!b8dZYM*IP}5YLdL!-f?0MD{pbC*#X#1zuXOT!+In`8jA({HYix_j#d3F z`Sr6C17-wvxv|;sg7A7J$4^~wCwI!wx4`0C${4Z+L2Q;wQlavv7-0uRGAzX{+sg|; zy}@VEoya#Ms+Cf9&Vc+R+_-}>CeLJkHF%=7+j^uE9x$Rf)%v0x95<^OAl+R#-wsp zf+hKE?3eXGB1e?U<=3?a0WU3FbFkZ$SYrc);>yY(#b2XsdQyli1sfnG7&wevYCsTo zFUVB&Yq-3_SH={p0byOip$}bA+G(qHG6upsRBW;YodWGyOuOsBp;*JzA4R1)vKG0B z35z1NjR`dmCP+AqzU-5>s(T@h52w3th;E9;DA_$-4Y!6ph%4$860K55Sp%aa*J~$f z#D=n{hKPB917joaF+5$2`jcKy)XEb6my~ryv#j${`IS~?w56HCVQCjvO{%rnG>eXT z?)CVA{M)Zyf55faC;8Q%zgk%-4=(S26kb1-lJT4Gg}0xj&w(ds@1CG9q-#MIb5Wvf%;kLisFA2G!N=Ld6JI{R>7d-c6zhL!auTd0$Ia z8A{J2E$kIGa6Eiw#j8!WY;dtxxdEI?d${e8EGWp7A_ra{V*)UtP)xZDbz5Zlnhz2GUzaQg|$dZnNoS2^tjW? zzMLu|2Z4F$h!TbEDz=m~2nAk4YSITC&TwpY$&E{K2qC(tL>=1mIc>z@c+f5&PNCxt z7!DI{j^Lku^Y{E1zWsvbxCN?Ope;VnNJ({d*)Z^=JhQ~yx+j>`9EmZ3a7$mOw7+0% z^7LUDw8X1~mEqBMW_LB9DXk+x)hbuYmsBvibtU3ikzsjPOL6PFLUuVqlM|p(za}P5 z`S&%^A6^_vb{=m?eQVd>fzq;?bMS1pu;kYXQX9L}$PX6)qcGR7bSGcJ&Trr7fs=hB zWrOehll;c_`l9lP<3TOfMGF8r)z(V^k|?25_%^frsbVuK^>6c66bCj{iW`QWYu}j# z_%6v(?n(>A%mu9Ol*6hfNk#ZsM%C0Lc3YhQ;4f*1E-lySaRokhb_RJl04_~=s;FW0 zr*<}&Te)(uYLi+0SkOX7&ugeAHsjR$OJ^~$*+;lKDCZd&<@U91H1?w$v`h;|hx|Q1 zhHt-+KI{9hzmu-swcmdpUQ@n)sN8@7YE(a109Zh$zs@=Nl`>aNCCD})2WQ8KN&Ta> z*y`$xRmy|x2Ho^qdRdq9nfuHOvOh%Jht6U7ad zPNY*bs{duOF1r9aO)dzGR?;IViHu(8$6_suF*)1Xr-E)PZ-H8r^78#{_%|mtm#-+E z@%y)*rdL0G{b7K1@jnBc^Pk^-e0g!zCJb5~^NIo^S*MIs zUE0D}sLd8v2>4~qovWH&T1S-O@Y1<-yEidybX%SBrshD>6=Psk)b%yH<)XGyu>qQR z#0A4sQdr|n$ERc$K>>U?i4DAd^7e7M_CKTEIkbpB4kzB2T>Ey9+XV=wo@0e%l!U5r zpyKB-rpb_vE>^i{YkNYPN~PSXr4eL4*FEXQT2+`hUi9KYm)-F(Gy$YBU!uZ6rQjg4 zd_I<(x&SJjC#n6WK%Bj6xcZT=@*~;sd%3MD|4{~7H-TLVV3nWuXx%MI9Z+Ef6}*{j z-YBPa67WH@ZR5@!Q;Ch#xL#$QRs;?5$r4>n;)cm;+ey-TcKuMvS^Edb6M#4Pci1vq zdq2CUNivkYPr8VLj|b1jdOV4YB2YGOJnA~UU^rA;V3x}QGCjo2+oTw^=2$*RYkeI&OtEp#hld+Brb8 z8l*^=GK=Abssk1kl8Z@0g}T=|Y=ZDu6<6yMuvP;g)!m*(Z6d8l*mXP2e=q%my0cQK z0xIA)U3V$(=cCgWL&rYCTpNkeg$JoT_QyuxtHSu4g#TJsiE>Sif@PKz-(R;aeQJzGjJ_oU{?Yj&rC z#l6`rIfG($l8%eGyMsFlqs(#5koR9;`SL?>U;E1)%)z^)1zP4x0SzvlQ?@qgH?RR5 zn9x9fBEJzpG-tJ85sdwZ3ko2J7-;}i(TM}itLHNL1?u}nNzGgCOu-3f_K9*-E7oGP zgrssF01Gv>rUsy@?OA#f+(~EOmNT6mY$3IQnJO>Fv?6qAi^l1eP~z`i_aq+U;bqO!l$d22gN3@6;4vl&rd}ZtGuBtutgU4Jd4}=e)y~7` zv@GYu5I4g_-(7WKxPV2=DPau{MeLc$6Ym53cbW36G^%`VTm@H53G1P8CI2U%oTXzk zR)BvwnuUoJ;p#gEx|)F&wHe2bGJ!EZdixCz%s(hD=vy9`FH$b=$@3Dtg%7NAI>|V9 z$-1FZhn$7Yl<80bD>lKo5i)MX2^$ZyY3@}^Bwb!Fl~s4Hkeh_Z9;{N` z@b+%ZR-eA(ExS z$bir{s#1YItv6Z~3a@QFH+h_(^wB!a%TcY8=e!`D|5B_aF zG=Ki~W6q0JR~Q<^pS*r{(eK1ae*sL_SVc+I>jdBeP;5`Y$aZCBX9C`J zGK<{WJ$vlQZ$h-BR01>H>qBL|q?$Neu-)7aSXX-$druI;sZEzgromx?QV2I}GxNp| z_x9awZWkZs&ziM+Fx&#S!1Bw=RrgPxaIU&nI)IZZERErQHVRH+0qjlXSVvWlk#c?& zds5c`g+TG)o)RlpB$Cco65guVsRsf*CfwSfGisuJ;jSlTu#2N&34OMVo3*OlgmbiC z`g&k*ekJe%7>YJV?@-`5(-G`mFXu-Cm8IxXlx2x$KEvg{-xlJ?7sb37XL#pG(5#j=vq z!pYxSl~f5tNr>OE(qszzrCbt*#)N^oJAVO-$09G4Z_CTEO71fH_)Xy}W^__=LI5Xc zGV9uy=JVXnOEBK$U~AnkM{4pU`^%9?1!1~@ScqwPkt(KM7J4Q~5eKaoOQ+SYrq{N6 zHYs4nGlcy~gbUBkFj;Gt@2hkf1{js=xg_`{EHw6^;4Y#}?wgj+QA*K7bTgeIZIoRl zD-lbiKeI`qrUl9$tm;^1cY|(*9n{W6in>{TAS|VIv)v!yB0i*?e5vc)%O88#<;cGg zfbzh^a!&G(Nx43(c^39Sdt62X?SX&LP!NiE?*bRa$2NiRHst$INw+E)wvEWdKD-w!Eh9~xZzSBlAF9| zE~Ty~C_s%hTB;9}ZLN}f_5_BBxz~Z!U;*%?+}R9R4H1`^gniShdaCw3wsQ5PWBXJZ z)Z2}|2uY`(<8vs%!++}+ zuzl$_fA`^m^8Wj;zflXVe|r6OkUxHTd5JDE3I_gqnwXEPtzkJ3gounS>m=Cc_ULik zmL+FdU0U*Iz96JNIvD&osF^;oD8y@Z=>xYl7|3F+Z$L@d4jz7fgo#|O^E-6QPRn1p z5eJ=)+4Kth`>}`%@3$pPHz1xQ@6ta>N{qz>k%}^uB>qdq=>7_2*l|-N;-2KjWh?D2 zNaBfBC*Zi;4d*29;j}qBqOBnn41QPU$wJ(6qQ=RlTJ=g>X$I|bh`mRHcB2JPHPz@u zusOfN%V1)nM>&`jE?s=<#MXoNa`0IJjnPW11*P}d-9TYcxE;ZFklR+Nb&4%%~AA(*MOo*SjR zH|b($*pc)7g%GyG>o?zlO6?um6U@@**bv$RVjSB`(l`Kja`wzT)h8h|kmlVjVC*y` zcW!F>kVgTM_9slwkMY@(YnA1=(iGD|sz<%Z1!NZv%dsuAz9q!QeYwEUY=LH>1BW|H zZ0VVlw5%$jjk?laSMI<|JR@#oysUmC)$9l8) zqD8$PT_H?LITnz82YJ1U;B=s*EiE+o9^z8AfJyUW z=WC5sc4abOu{{ac$bH?NcC*k4SxzL2FW-Ltp)Pu_kO-agTNwoddlh@QI3OITWs zT!|es%fcO@rL5#ZYg+EzO^!549CB-=P?ILcPCMNHh$IM8CSmG?Z9~Unfw(Ic#$vPw z{`MrBkzPoWqS!R<7T19wt+iIqH}^Zbn%AU~0_>tL-O1}=p5_{Jxz?pApeZKj#)|_p z4aJEzqF`gEI}lL&N#j3>F%F&DjR4AF5ifV_YAIAMU155f>Z`1VCOs@S@0X`Ihs@Z7 zzm1>E*Qu9$D*Zz%Nk92|T9B(wKq=*>k^1G@)@w={QoBl}3F?J9SFdce#_(cVK{%tP zYiOrsnW%g&=~V%BDfo7nZP8f<@?bU1!r5HNwSK|y5C9f0lqCZ)1*XvYRr17DkJE4d z;k;H<^xVQD6^ZQ5DrVc4gu*o#8Wu6r)kRRZyerg|5XB%9vC=|dN0C62>s1vs&k1#{ zrJs_6+>cf*`0`4K74HH1Dnxa>A{1m59}b)je3zt@Yp| z*YH%cr-6f@Qz|Pe<-xz@DCN4#O>Ou46=*Qp683JX zd&OZf_q=2{=xE$oO%37@h=8nNf>Ir@uyR`D>n#=cNn?)4QaOOku1W3Ej{NX!^Ddo+ zIgtyT{-$v}@I%TQ7h?s7^VX3jG;W~14AW^SpfFyqHpdzZ=|Xa?9cReRf%E8yZQso4 zf*L}+C5O02=!O}1U(%pf9Qy0(O-X?T58pMw`Jp{*PjHwq=t#VXFEPCT-@o~LH*cQT z52P^H7KUSy7@$JVVwbHeP?WfsdY6Yh52qbvNl9Aj1#@$uN=uGx#MZ#l@-;kWJE1!%grTlXxVHN4mJ`hc zDjnKdvDg|?woF}mi5{6OiG zvFIpv_NhC3oS7%K#~HP!RNxWNU9L4@S*u4%Nkd`)F_%sa;j~nBF1n=q9oT^rD0-b{ zRd?rpO3yaCoGWx>>~34-i{gNo!Ch$Pof0)%<--Gj;8rHk!5fiV!j9uCSuJ)^X~K)Y#c8O9;o+RO1$q35oYln#}&lLAiJlkXl? zI-LxJH57xwm1u|qy4;EQEA1NM$wfrrW?b#I{)8md^F{UPInz{SJX8TKm58wzdLnJyRlb%T z`dtswn4^)JR$=fq-l})#MkwX(f|~1)BmNFphx}#(S0{C)`N|0tPdB+I)?o@PPFI)! zCx-&;Q+rA|ChG&F*wJZfJti>4=|Q|`_tPm!#97&98FhDv@J`5-Y@zjtd~@| zWBxy5EN&;V;=?okZ&h)~lF|s0!X!&lC~pF02i^CxSEeMOWzB5B10^|TnPJe~)eF&{ zA;c#}AHUF4!a0w}=qNuypsN9l)hW6Tr}}v78I6N2Y++`{mtY!o(u>;Y?s zi}Ix~Xsk3IJN1~Zxt*(20=b+(l4J?mLWF2!9#v3&<$ERAlUpn1Z!PjM9hu;^SgQt9 z=Pe90%aXcm*4%E?tjvc0F}6EET2gr4>E7sy7+B5Hp79gel zRUZ~%>-h-*2tPzu_Vw$JQUt?A(BvQwtSX=x@qnPsOHLZeJQi~WjB!&Q1B`0Ih(!9G zQci|#X6L*CKjr!su+re3WF39{v);l)eKGi`I@M?0CN6e>8W`YyR-@s1kn<57N&Rl` zvZ~{J#h_^R7dxcKcvnjp63*k(BLbL5 zt^QJ;;+@5+yExQZA;;5*o zQo`1WN`LVATiXYbe=Yf17-5m-n`#l1BEjz1LLxS;qOxEZD@Guyr{kh>vy!|qLGQJ| zAN;aNFqaDuP3ak^tT|QxA-pA$oZ^{3vN|I%k>FnoF$nKr4?wAyogTU_m&AnJ4c`j~ zJKj;-P|e`ZK7E-e%!EA%B(Jb&MOZ+q@ySB9)JaKgfwDlQzu!2rpP>zA5=?MvwG1}P znOAvKtNu_5J7}6)074&BwR@}`TkKHDx80z_hW?zhYZY%|hJagN<5&&=n2XxSR^>@U zy4U$5mrHU(-rb0_4|5|OpvsrfFGd|?9fkA+H`IC|tK}(}wNE#>oO7pBGKdkWydLF8 zx}+qQ0)D6bR0C&Q$l)4Eb6SQI$mv?ChQ0F^>wBD2HsQT6TfGk@5;A*LV)bOXAm^Zs z%j8ElNd^qjY|@}9*H-Zu@n+qTP$y|9(3&8w3YAqU#3qgqLfawwyNk*s*nS4zn@b;f zAyp(=sIRyLIE}3hO!hfZWuMzT*Jw#!lBe_~=ei2?4{!ep0_mqAzW-0({5=#!pjq#g zf>tf5Xz{7p*5M{e!&|spU6i?w0^B;r+3Rzy6+x~r1i#wA#*`h^Y)}_1;wuy>qu7gxorKFe0IJ1 zFdpk>QqvE3Fpy@Bl-3zD023Bzac2zd`x6*m4^N;9{V>lqLy}-u>2B?qmJ6N9K*K>C zuv`)y7P!4~mv@ffqh)v90WJnFK5m8W^dKkpJ_mx4F+92vVFI*!E{$3^)#BD^n5i~4 z=FO5sBpRJor33}g6di9>18o7>3>#2zEqdf$S`TBP6eWBB$9{HUM(0{34#YMukP zUyt^Hn!qDvk;g^t%^y>Lm7v6m*s4g}pEfE4h7;!(r~NQD(y;5C%d$<})MK_y*HUbB zF#TY`x!4?Fom@_8&9)h+Jh461)FrGd?-c`Iffb z@)(5!aRSIO$97F;T#-AddB5{MQq{RBhVq#0)oI0~U>o^&;a2>Fs-<*9@P zR4N)}xp82QcF2w=Nu9G2FSlu@oRGWfDFfFbL;(02;;2?GjCULBJ`fw1M?)$TXh4$K zuj>Eft%u>oVk`-*#oPxHSa}hoYFJ++QLG z?;#LAe*0Gh!pEGt{L||na+E+RpNuE~ZEe!1ni`pF` zG1qC@3UZ;*RW9B{tjasQoNcJqt!r@q+Qm-e>X|k`9f0Jl`~%--#AkI;Q1n9ehPj>O z(m#W5SyCf*M(>DCE>uT-HCX9l+Ts8+$&6G3t;{j3BUH&$9EgHv!DpU8zJptZc|4ng zvDEOFbFIN9o>K0qaHj(TNG(0etB3n6t0@U(1hM9VgpVONAP0iIEi59j`{}4D3}OP` z)vg!};ojD|+P&9~MV@ClSMleimIUnJd6)rO$SS>zM;{ywjOYQN)(#YALjq$5%T!k5 z08;V^u_VAyI)$&0O5ZMBa@x=}kTYqa-I`^2is-6hacOo{_RRu&sL|A$1Y1b@A+%H@ zw?pw0ehlA!0U`gdy6UMp!G2UrC_Irqs7nozWGkJdMGV^xoV<#W0h4Aw`Zl48ksvpY zWj&4#S>KR_Yrx`HDJwZ{0xBNh`gIJwfh)KeUuuZd^{3hX$$o56wem1l#+-QvYiiYi z-%RRw?r8Wpqe?Nn!C26YW%A8oSLLE+=)i@yv9YHW2ECDG=pgEZvWwe7Fnb4k0<4mXpqgYE)m;`pgN$ zNvUPhvumwB$ej(eYN-$om%bV#7*&F~^9D1Rf?Cy`95X9viAiCTUl=OIut8g`h`=sF z3Y2mq+Pdt|`WYJ7(n3odD`OlBqlNnP%6RjdJ*f+z9C6X%r2}|eM+oVq((dEG34irJ z<=Fn}?FSz!2b^BusQgn7(0vZ`TO@J)kp9%yU(~FTD+zh;;bY&PV(_m#s$PUmm0g7BvGdLtkiU`J(Tk9A&`bgt>HQDfeP6Yzg^ zCK-Vo%(`>wq*j(@ujKmcDp{$8NwU116OfE+Xvmyrn825flsv}n(8CaS$4w-tOr|0Yt2ykLaqy-9Q zI{j|%Ufk1SzMJs(Jl$%{Ez>ML-3v(JhRBl>Q;t5e|L&P(H&8izh)-m|NR@Nrh)wFk zclg78xtod*PcY?5$3z&cvKcV}l4RPASKKq5_xnp;S;>9i5I8wPbX9uQN0|GfW#?a2 zQnCO~VSQ`^DUcd_tvF&)sCT&`T$a^=5Q(O|pd1>dUy<4=DCN^`0ltG^p66m6h=M^< ztHd%EF}LWpu<}!Y0=uMQpP1*xWk{o(xd5Bg-~y$0Q5m!l;7kED0l5xxV==zYGtsu7TdW2(WQ;<&rNCh)rqC!*8mo-tET z$mDP=m_uQDg$wU{0Ik`p50aj<_WywEll$`loHM8=qU3m|Zeh|Z3=niP~tVSoztEV|IwgW?3#tkD7j;>)wSOLl`;Y(KaYyN5ZA%oU*BvziGYxs(U$tU#C#5i86{sG}L#sa|0v^ECn`^e=({3fVm4i2Sn9s4keJDOzL43Iyh?3O zB~(&Lt*Dgl&LinN;V<-~VI@9y(FS|qRxDphKaO&PP7)g3Ip;q zSyc?5ln4_Fd~7tuf~r);Uy^Duw-R_gq-mrf)%I8pUHVhYQw*D-=6bTCFi<`OW7vT7 zO2tdBKS8Qs2A*LmBPRS%YoNQd+~iGbKLqB{{CSne$)E0uy>-S6C$wcPwI0+67? zwJI_1E?WngcSEwBdtv@Av3;&GSy$az>a^y~TRphP?Yi#8Scu%jKDOI4|LUt(@@rocPxkfWx8DRl`1VKtchV%hnmNUP zMjMfw*|~Xr)Vhc7xHw$Fvl|O60LCM_b)r)?)zv*MmYA4IkL2cO+K?vqV_S zMNKY9K7(dLEmb3q*>@IdB-YQUP5`9dA{CE`xMGwp{ux>UZJ|lS(=VebuQJ1&X?66$kPtom_tXrvw7i3 zap9I|`10{2U<0bgi{r%FGznwMA@#J26UH8$u(M)oQhu3jr&F&%+i z09!Zt>=7-yl;RYPdk*t7$bAI7FCIvNw7L+cWBR0XHhWMt45|-x{WK+EH0%a32&V5AnMc>{C@q^R-QdPdQO$fIp%TxD?20%IR&)U`sZg zvL?;8CN5@1xjqFan1`%1u>ymH1Ig};yQ#rjPKN;BEpH*-?U4Dhqj^!$3mbo{Yx3%w zbj-HW89J?~Idq%T5&brV@e!^9~VX%;)XyfRST*RI2sK zwQF{pl6{v_@~%_%dw3F@P2+xs1;pAVX343G1#?}=D_eaz8Ii&y$hk#n**WcfmRiUrA*9M(mWJ+}mjP-AHtTHk?wg*wua+Gx=ImMtDem#!a@N=7j`d=Ch> zWqN2qJZ2?KNy1lbwoX_$=q&c~nSB?!PNGl~n8l%1RLsZVhD+t5N=cTDr#nPWEL4*z z!&58*wF6ry{oCLVz5 z518`s4r#vh5N>ZC)@3ijBK;P5>*z4@zAN6i-~yw)F-eCaR93IdEZZP_=bH2Y-+H0h<#@9Iui5QE?95|=If#KnI4hACEoz4s$vR-<=a(7NR0 zs7P!}gD}9`nH)PFxX{0GElcp{?AE7x-g!dZ*K?Ym(li^Wqh?a6>!*5hT%^=nvs^d3 z3$#Vcvz8Xkyn0&|eIy>Qtvk#*tRjHKQ%}sjcH$0oO)D=9jnM3?0|95K(!*tuPuR04 zuiv;$wJwt@i5)6@z~E_7vw`#RB06VF>p-4qW${ zSNi(o=X>8twtq(!I}GM<<`5|Y+h(_M$5d$HFCza)5?qCE63TtHKtjJ@0i!z}deb6) zEL+|H55QD85{Nbu(FA9A*YN5vqNt<$==hq1u(1WglQ-{ej+n$(_56aA`bg<6$ZfIH z!9KC)b#ZKX#7K(>GPInX!WN-$9Mx`~R){E*b)NbXd25sqc-eHiK-hPO-Wmxza zOowy8ezi$b_hp{i*cMRAg#kSJhu_;bVke%Br%3Go8pt!fftWLNOQ&ODLrvHP>OqXP z{D2xJs;IF&RhwPhp0}(|($o{qz`4yr&J9X`z{a439uG*4%h$bja>!hj;CqDUE)C1E zTd+3(R!dWr?ZV}X*wVGCXCRW#qIBq&m+bakCgUuabt~u<2O39v5@y8_^rMB2q|{5H z2;{hBVyT>a6A#=%nVAn$^Jyp7_6gDO7SM`b$o-EC20^u|Vffp{&Y63(Kk=0xvB~~X z{=6^WKKoYx@Y%N;jL$x7C_WFb-@m;7VR-!tjG167Yq*D8fNz9<p#9dWW-?J8hn$8se~=#R zYRaB-7wnN*!a|7M?M?>*x?@%KI*l^%I5%utHaT|2gyzFIgbjIpjE<9?u~Q}FJKS2( z%E1hzW>Ia6nyFBJ;>nl_?QO3Dw9YC+$YJo=cBekQ1V0PHo){W)==ALU=pYA={p8p{ zQ&XicNj|wvK#J5HfDf=}f0}SpmK935joZHs@@{Se*nmWQ$o)rJz4}x?7}&ZwPuwsj z7?p((debhmlqZ9fU$UzxEw(YiQM=LgoT7zP!Mv zg*}40tDVH@^eEUDsEaBoitg-SnS(NOV$86EC%nWAu)cWvI?z}32XCLK3HC?Q#FOEZ z{^tJ(ufGK&ld0(*QNN6reNL9AHjKfGRLM{U3f*w6y2iw^6{D>>k8ELoSry*(1FOBM z7%n~Bp#h#A#pf<>5;hnsJGKx=!s^JKzVZ(!(0_$lZCCRq!h!OV!=-jRn*!K7a$n|mc@or8R`c0sq-VHk7{?{cS1D0 zVOa_j9XmSEG7*zCp2xBf3Ww`gx*t%aUctg`raoLt(q|g4yw)}mGNRC|GiecdLEc*M z>*e=lJH7yT!jq~A?uG-*^P0Jr(>^L0nRS4Kb>AeDVXKxpm_w1!S#`{;m~|BsO|~lc zH7YRgr$&raKGH5UC#2z*WVU_v_VNGA&GU=buXRlk3`TOO#3%ks$B?}BaE4Qv7)6Fi z>b5QQU9M@`RkXWnM$3&5vez>*P&nNrb=H$O#$?Rs_W_J{7q<_F=~6}NXIH7h+CvYc z5|qy=CglV`4pm~6Ahvg>!BBE3QpK@Fm#9wD9d^}Bsi=dG1Bfh5+_Nfj4)n2{AmsuF zt^-6l9oxDX58UlnA8(=bm>oSr4d>fJKVc}Kge|8(Ii(Fx(^C1T0j-z=sXlnAb?srX zShiB3DG3W%^I>@Z&K`>g@jYD5sz*G>%1@fqPx|5IK6nn&-hANNs@ucUCQAUYz z&y}9ikL({`=T2;{;pM3Lc^qhO|&Oz{B4r^ zl+GZMBYDpo{FDQz0+tC(-9;_miF>ggtoz36gd3_$Rtb<6CWr~dkyB*;`t@JK|CXMb z?(0{H5JDjI0R0s^gjGG>)}qHS>txmL=Jnxc#kw!|I^0~u8Ct=v8Wvnc6o#pAeC@l- zycbwSK^)dgT&w>u1m{Fi6?aEn&+ipRj(z5U2lhriD5NVnIky;0dKXy40Rj*T_D!US$0i~?)p-`)Frb)TA)*H z0UjoBsv1@NsW#Ypjjvemlzr9Hw(JmP(%%dri4$4~Zn^eCSmii?6fPU zYF%}=qO$YMKrggU8<8fgi;TUNZRxSp-)&OR7%zVn{wyb@FW)}pfZ$Vq_4Q-2C4cey z2S{uFIK2Jo0uB?h*4OX<32e!ZxA^09i*PQm)i!HFan|l>Sgvl|7z{MKbO{^{NYfAJ z14($}WPFmucufx>%QdYODF92ZJ9$0J$yP>U(HG1VblGUdC(ucKTq#P}=~Mv9XBbIt zy4!>3w3JF1ePO`XtBg`6;>M?7GHghEoQ(m-MQ5QXCw$*!Il~gX%v;>AS7q@%)spmV zbp8}f5?f&jc69UP?yg>7bSg?=l#h0D5&K4=>~K}#A`nW)w(SF`GO;nQeKHAO8ObYl zUzN%lPIepA&n1Xdu4;&><&=T$&4I0doe4yj&dT0`3iZsmIe4=*wSk1K zhX};zRo@sZ==0fB#D^jU{MS?itTNRmNNJJGw7Jow>eE>tB0+ENGKnEQ$*+i8hvtEO zr%tPOXWZKK%&N%5ri=wOY9u&^ln%cu{{{J99)vS%+kuYmClavJNxqU*{x2^9T8f@9g28&q64e? z4$>-b207z&{{rB*6F18llk%D9IH@XHOq#j-fZiuYJ`&+i+7YIxJeFkS1^BxCYI66? zLW-0MXmo_wjh$^%UOMb0>bwxqp8VS7ppR(&519NnWf6WDc# zDm1VvgPqF>oOP>oQ5Uo1QYn3lF~B8V?o?s{0~-!nV~-kKsz8D>7FUg(>lIgS2`{l9 z*y=R=%>j5u;U-QGDP3DUQAEF{D=I)dkUx5}NYN{ooTL3lyIva^wbQz($}A{4#&No) zqbg%OLS^Hkr26C@HIRm?DJ!d_N-Qx6x#$~gM=t*^{H6StveXaWJ_d^DMQzIL$Oaaj z*I?7*n@%K9DzHatLNBdIxK311+4c$*k#EG4?3==7H3v0`V~!c(odwZ5%!$Yz+Z`M* zEsZt^ws zHnJdC@P!d*?dLs`Q@?{FKRE$>!`#QRoZ8fVARW8F0m~=g@Ai0trL1a?NthP)QACZ{ z3ysI7@^<7+sNd}>)4_b_nG)iNfL-jX4}Fk0Gvt>NeR4$xCcjDEa8Bg0u{$LsX}OwO z|5nao?wJlr4+Mg?yv}m&)jr$YeZmWTXvqCMDCMUJ21n^LvFZStH&cQT>_?5=j0&60oJ z6UFAGTb`WED!fVg!@7WfSW)u_p0-CY2;m5f2XWAc_WkK`;X*2y8{Fiu=CfeV88BBO zodn#q!e^^bFoaBB=c$&S4GKJmdTm=omyk#tD-5q9Mk_WRALhOPfN(MllYDEkrlgxA zp|ZyyXC+ZN?O@YcfK^H{nSPU8F6o zo%;*{sM<@SxTf%db=$#eQYjJ~9HWwq{Y9tckFH+jh;6A`5^B>ZIYPNzAm9rF>{0E; zUB4Kh*E2i3M+HpZWQZMFOM^0wZ)K~ZS}FsWQO+&4W~;X!Sux=%_r7JjHn7I42MaVT z!Ve#kt3eBPOcqy_i-1EC2RU!le09CZ)l?ZWyOK+ECOuBZ-fulS_2rbgcP>ncO?sc# zb*~@4{hAbwEPK4AL@O%6pbNfFuxh6$0fB> zdCiVkh^x{l5HciHpoF$zj~YTz%u7*HoO0q9^l@vvwb{`U=@lK6eL0X<6!vvYSK@y^ zF_W|pm(IU>{c(Qvm#<$3KHx`-_fgI5;dxwNUL0|9)Jh(odX`WRNu4mv3@%opY0weD z)LgKj*PSqOpQbyL`~XOp&QuV+BSs2{HPAaV@lIZYd|`!Z^^jA8a&r3ziX7`Spz6IE z^m?r^B5@P=2ne6uGtE7`Ow-WilOC#|Qup36zFZ2}yBgbju61W*P+I%T9Jm9(ou11h zy~nIv-3`7xw*3e8g{oT&n5}h(pgGrc(i$WZq12icV-XHs4X7*&YXN7uLk3^c^yUMz z8}#!Y9J?T6q{Dxbv!~-?Ny6KlH>X7J&0>;meMORT(^}l#eVy_2_2lNmYS;zsP6=l< z8ZA4oMU;KaITJX}NcmQu15jafco%Cx)WGg%aufJ1WD;(nvTsx?De^=a)O6dOzYB)1 z*W}-g*FFvdx?j3;!MoLIe-I|g+l4^6P^=Xw3;#d-|NIyD!0y0rzUSzV4^bfB3$I^8 zN@q(ADq3q|2P7%o)JxonW4KwKawSWN&tt$IPJKWe&opIW28eU4=Ib)pY<6Wyi}$sR zL^9Q;0JWZd>oHe#`kmYmcPzN}ar4zYwU8k{FYn?-Wo9{M>fEj>Ap)aY!(!^$*GZ<1 zj)A?(h~#Y6*Qy~5=8K~bZx7|ez&&>LVhZbi`BqSaSSBjhTjiAqU2gEGGkj^DW(V9a z4v@t3+)yALlEsGVt$D3-|?}~Q-1JM0T!>bv-gLyMOurLGt+Q^+z1qn^w&~y#6#Ksamz3jg?CF zP1IXb{M?8<3`fh&6@|AG!w8De5rRoA$M9g=0BA}U8dt8Gqy~e)CA$l^JeEx6qT5nU zSayYG*5G7Ps5a;})!u$=odG98{Sk|ua__a=OkB#1(iOx$lAUC`SY3jGVH%!nI4}9n z2t*^WZ`-2L)k>-}IMS_+s&>sZ+H)p9idZg)t_R#94bYj}B(V5-YoM1>MD`Cvx<=09&D!lrLl_tzncx=N2A| zH(PNIt@KmX(;hbJe(AOsDMB7im=?NA>W5NhKY#l?z54mvuivC@`TX^Vl0^GTg(g#` z-$%@yBpk}@)~G-xH8reVe=b4Zip~X-wSvIP)RH1Fkg6{N)~`i9#7c-o0DV)A%DgWK zJ=aqs+jxw~=9c|hE*jim9Ui@O_?+Nsy+uN;<;;gJ&Xa_C=Y8`itt*t}$%Th3DeePH zy3@FYr(HfKUZZ8=RbHzamsx^gFul^T0LBjCL&8&Jjf$#2032q|fD4lxcGLX;na~vV z0B)6gFDP8tO{1DF>1OD#{Ia2%Vv(W)64d0*XAckn2fk1_QfM#(@BW6#{i;M>qed*9 z@*5s(@TCS19CB)Z?5aChggjOhC1vg6bg{adg9PuA z&sc1H#?1d?dg6SQJ_2m|(W`okeD(U(f7Gv|s*$z|+V55gNG=?^Dr%!`FQA>CGO$+i z^|z6)<&{;OdiP=#09`-)!jAx=B3MbYG$KyYVDZttNwqLQYfp_xYs( z=mvWzmBQnMrkIpN#sP|Iv8o>we$I|}QFY|);Z06}-tHu~GLgH-f)85jm98tp4xu^LB*Mw-=C2eTdZIZ#EFnd%`$MuDVZLz)tF#@-0( z6)4>X4O-AANzMh`h>=l|%mUre%?U)1^dkspkP~HrU(V>(r4XqnOgm!zWgD3OfXZDP zm$VRup8t2hYo$&;B7PIze$PVaCq(@GgdfxA{ipEu=|!bd9(CdNM%z-qU|UL(s&WXk z_ky7Bq#UvlNQY)R6h)h_K zZ%9&+(_zT|Gtcjk0?o68VKO@gK81W>7Kt5jhr_wdo8l$ZtYNdwHq$@VLW4qSR>dNfa>vB|D zX2Xe?TOUj0~&;EdX3VqrZDXCuDVf0RS*D=~+5|p`W%|)i4J)3`x$l zR>qhrqD_yd0?Uuns>DdGE!!P=qofs6;po6s#6fWVJwU{I0nVq5PPa7SysLqaB=_Ag z+euGU02D%6a7(^o;j=Ia<{t~ghb;mH*0k_F-XJbvKM;2LTm^xXOQn^5>wxF-NZCOs zpjHrYt@@{gX4X%U#vJgKj>yOx0%33=6v#r9tacCF?~mwYefeh3mbSuEtZLIj#M+iP z{KC8rTg-uNtlVjNKol5A#}K{i-F85yWwsB#F4K!j0Ph?w`?#!v!nBVEq0FG2%`|YP zJUdMvIPZ}&KQ$~*Q@@kZkB#41jh%>CTK;VA%Ea$ED~$ zVEWhivd|8DqO!XJ!d$g9<~3ea8otj0p|t6q6%r=R9jE&rUjO)k;+4MiIX#x}i7d6g&y+3K0Q)Ef7S|}B@G?;d+I?1^mE%lP1;VcCyf|&3?T6f z9HP4(wlD;$SE9?IkJDN(%2|j1Qs6Bew6P34*eDv+av1U;dY@hwUk4u5$X}g1AAn@q zoYJx!o(*;xfN55k#l=nf@$4OBRE%fGa=z((RI1We?k6Fah>*A5>q1s zT@#PQ^c{2ck#gxHaN|?Y!2!4j(kOt*hi=~`Z!y>6PjXf3+bOH)ERNur&k0o*Bs*Fu zo(C=vXfXl+GzFyq_F;<`J8Hq2Hx>n!-?EM8>nGOgBe6>Z=s930TWXzMPR$HgJH-7zE%`;GvsMhRRkL%)kM&-_|{tJ(QF5f+;&Lx&f`FN`LCA z8qn%Wx*rUxR2yid?bnip+y*rj95N{$s25*z4bYg9b{fJw7Y2n|5#+r^<{?#2`ZyIs=K(vqP{&B%+_UTZyTv!$o4d;3N>tchR1 z(5*MlR^;%kYL!M??ve&B<>*qpkbaouw3Q#u`T66q2kh`{$%W&q*{7UOe;QuD&x7?} z-+r0?4Cf~jnlBNu9trQ8ViQhuRvAG~QqQB~qQ(=84)04F2mz2x46XEV7^W_8Gq6P2 z&1CYsME+#%8&2Ip5UyH^txK+hutx zR2np_|AjKdC;AC5wL82?E5moYAj|F1N~dSz-G@?SARrELk7#`5M`SMzo|PmhYg&M+ zu>1b5s#Vx5y2}+&-_|kUEXwEz^#Ns|v{DTYwX-V0f9|QU(qJ6~ zUdN_uG~_(P)!GWVD}jGY1}`1cU!>9X(EXCTz-{%YegNL*N!-z$u1v>u%uU1v=u!CPNDJ3)~$5nu&elXaEvkR&` zQKzm`IluxSj7`*!@>@{K7up(jYOCXPs2bfqb)y1Yd?JOr0ScwmVt?9k2XxYngP>h4 zXqV~}8Ih_(U?Mj8uAtmq0wJ*iU8u0uL~x7jK7kanGz1efbnVoL3JS~_g?6LlTf7n; zfp%OjzIH-jT2K1VD;KE5Wm}YIvAVY%eZCM(OmdrJ1v3PJ8$l8P}@_2t@GhluSd)|sqeI6_) zPpxk+0$XKAE%PYVX;Nfux4`#N-B9GCM2+2IQ@Mc%veb?f#|%}9IP}{)mq^3e6?TBX z%c3PHE7nM(>f7#Ne@leg3H%!@2APi^o^N-#6|en%y&jTZsk5HoaOsI|QB$FGRScfw z=xvo=eo}d8$mpn-1-vmV7Sfar1qw%@^{iW@+JvM5ea|b*9d`i9!R4X=$`|;S0Oqhj z)pV)PfQV9pFzn@}#IZ*?;$nY!N$@gSmLL?KENI=K9!e-uYvLoys*ApV+@AJ2)jBS* zg<k?J>6B!BaF;hVopufg{8cOOhmUkI7T z`00MRm%Old6z?h4aZj@3P+zl<{LBE)AjSw);xKz|my0?oCsl4?CqYRT*J8!i0&SpA zQ>T+UDb#?XSyhJC|B(c)G`os@@}&hv6mmLd@4*C}u~QTr*tp+pz^0;8JvDHqYC0>k zL&~N%6^CJ$tYAz@4H9zKN=P%2XfuNJFNqv+lp-8&O*kCL*w;s$dDNWr4Zv^soqBMu^Zp-SeIx(v0Yky6T|TJ5^AU;9up1hctVnB=e=6X&zDP?pOO(QvB%bc!joen5*! z2`MdQ-DcQKF%2JDEoD#ULuw)XXNkSHp7H@-$BSbavMv{vrPzK-BUU%sQM$?ChFsJ# zsGvbjxPanz3;`tddZ$9Z9Fo+2drIiQ3z`T5IOiNNyOVb*zR31TkLCYtCY@st{`v-(KwYfmgRCPjFzqS(_ zw?=a7etCv%&><}Om zjFECfCH**1U+RZfZ31L%usS?b5ToXwFK%Y6@q`SmMc8nO8rJrQ(u+f!RaJ ziC%wbA<-^SnJahc6^D};ucSz+gc>Q>3{V~iOtY|3r*HPNl+bh_z*&D+MD8Zw&I5)Df z1aF)uoiNr9q#IIQ7PV920^4z;tKJQJlR;c?Tag5~)4m;KmqzvcfK?}S>ePd1??c84 z!atf|s$(=tXy1XCcaVGscKS)x136jGB<+TT!%n@MdeYeG4tc0RK~98O=-5#)St>|~ zONL6N4P7(rLG<|umosEiL`JF^OEEoj1{Y_|>eIQ8Ia=>}VY~dQOO=wh9s;8lcFPZ# zcqIl;IQbYWuoYJA+Lg+^TNS(PyJG{CbK70Ku>@NFgzH+)&ULk%2qyUulei3QLL})e zAyBlhS?(B8`3|r}hiC9^W?b8p0;Ol5#F!A%tmm&TTGhWWp6Lv9T?#gk9<@gZX%29| z2B1PzpXBxTkVk%%>=$1WgZTZwy#6-4eGMVcPlB1k+#RF`2u>$8wW|+obS9OSml+!6q-G{p1@>-mE7zcsLDGT~e&#<7LdfZur}xq*tA%YN0`EIp9~ z`NbX$!Ft^QQrvAqqOvyV)6IQ&xy-?I@JHx)!R~UKjGrudU6Y$Sqk1gZm`5k5gCuh_ z!X9>IgZYL^jtPe*H<1{Qp)A#FmUErEBh-6I1Tk;7eJ2sW;YbO*5Do<~J%weKK6%>v ztU{%9dTonar71D$3awBu*39rrrEM>@*5UPL$ylw1*(^}29gXwN?Sl0jGn%oi{%gn4 zNr{0fRXun0!QzFI4J&DgEHBJ&PIP84JwJ4=JH3#CH^!CZamu>a7AQ}BH6XqysrH(B zF|Iqka~_BJ>8Ki}T$-{3`~#pg!3^4rZQOP%`fPbIQjMpK$*ffOPk<2o-%0iQ3^ofJSR^rQn+4Q9i z9OD4G^JE=}(?A_MJC!YlWELDY3SZznmJBZqgX@{Qv_7X;N+@V$flbQ7;A&F~k`K&RETe0l#* zuV2CO@TcM4dj0Wu!DMjUEh7XY4ekft!pQM}K?|P~IcU>Wrr9!3^%s0G%mP8NT$PW%l z7m1Pca+ST|KrVH8yD){@O!qM)&l9U~X;_rl+NFD;Xg-u^ATr5gSH|1G7AESbb;S2`oJszV!6 zK^7 zYrIbjIrhW8g5#2hSjxvg&Hg4R7x^%8fU^zGcr>}wD@c7&np@h39y1D}=zbp(^BPA7 zm)buj@kZX=E~kb2dajZAr#u-_qaEWI#IPH&1xhTwqFL6}N<4BqpdzbI$=2*7;wE89 z@X@hCTU`q)ok|QowgD*S3uL`M|tb3Y9!joMX$J4lCn*DSZBG< z-AeF?mI44W0Fg$3zNY3-g?YsH&ecI(QQM+1{c8VcRo-3d1dJ7deB{)-swXY{R*X8V z;@4`>NgxvQ;7uX7fo{7S!t;3cdjs4tJ%Z2J?uTg-hPQ3<2!v{{I|i#WgF&)u$y$`_ zoc#<|4B6~Nhk>W-f~a9Z^qt!7V?M(rwZF=b>#Bo@OkGzU5jBceUoUHQ(qdd_mX&!AK0KV9-EzwVP2;@BX5u(RNv3Rm03g>j?!483Z9tov7OIIgRi4zw z_g<^}GyQY|1lOA_5s}jFSk!g|&1xcykuh7fSi@c2N7Zt54mPdpcRN(LZU4%xG|ms4 z9)XNcvVd3ee=4aHDiB9*p1YV-1mUV^O!b`FJF%J1ka4Fir3gXWUQ&8so^erIdi?EmFT2G7&>41NOmx_gFxywNr^>L z#BYD3U?$LZ4<$+R_?st~`laE-B44Y{lf+StxU-KZzz(p4iogKeNg4{3#MPaaJK)W; z(+yB137{}ZMD#$6NiRs@KVOuDjHzdH57ZM?i)YKw8)c_Qa>qi^mo)mU@0y3&GFouJ z?cV$yYuq2%a(>)Z^~q}d^m07Vt&Jy2Fl1W!%_@uJsR$YAzEW>k$ew`92N8-AvvPo3 zGgu=^x(F!($(BG~G2W8wC_-q?ojKXL|Aq?QEy#N2-W$C-sBw+-MPY9ZyMro_ zq^-cU9-U0d^l1(^vstRD6U!5A#1n(#w)p4_E-IF?hg+Y6>Pc1t%qX8~fEpkPhXuLj z!7lJLDHJF@=_WPWzN$Tsfjf{la(7>|pEf$f`_?jpfF4ws$#pA^?A;BHLuQr9dHX^J z8Q|~$48w^c@o7P)r38d7rQZjVWIqdUpI#)KeT)Xx&(V_lufdA9|JBr_4$swrl7rV> z-z?MJD>NzWZ=JK&9>_ip2De94+pA|=ZkVE@#Sm^cq~tE1x$_W}S#$ga>~W+$@nrMk14yl zcrp*#GR*7Y`W*q>W!Q^`vSFn zn4aSPH1!!))SnWjqLw6v{{{J9+6+H_ z`vp<;hsra;Zq|5#K;u&}2j12cAT8A%RXfORJ^->z2q(sioDT1~1q<9J`5!Ahfr*k^ z!GGh?w@ild%gXnmm~EYv2}GdSwzSaDw+^dMKBordTv}xeW3r7=8?M=QW+=hO zvqcA}|HLE~UR!c(SxSK1cLN|ldRJ>B0i!Ow|Fvap9%QkIPAN6*x7ma=u|AU|(lIMX4-d1)D*d2U8G}$m0;ZYY!s=u-Q zAje?I)aouvHf^m{k^)@ylf;3XGW1y0fTkMuDfp*Xr%H`{tTr5Xp5UugOWCL(d5UwY zShz`$j>Ok}aPY?h3i6KF-jP1H)VVD^*L_@I9zoxsIpi1$#eRc20;14Ec(pNT4=9D~ zqiE%I61X1T1!}>QZ)JQz;tN{!#v#p7Z0S(alHo zzE&#=l2DXsfu6=Po+SUUU1W=Vz!j2cehV%wQs1))8BA%4 z8U{&$>iwfubS_1Y3o&$V%Luxjt!Wj6H=)cMnsqTklWMwq0VRpVh}jfw>`)#roHk%^%~e@L_p>XV0NA zbF|p0Zm%gqK$-i}E!wA-lHgXK&_4+jGz_c1H0nTyO@|{*g~qMxGm#1VHyW}-vJ#Bk zoRkeES&Z5jFq=2%0T~zoTPed;k#-aFgLY5jL`$&r%F{3ok+|I02(0QJ@UES}{fQiP zpp6vTmbCl4TU9&(o&n{9cJ)hQrQ7G!XZZhSXYD%ZI>mcC#buZGgRIkEyl{a++Uw`x z{pW8Vzb2&R{}z6bVs%YV*aspa(fx8V%_PHwrXfQMl$*Bh2QHFF*oKq|-;ZFq^&MLA zW$;Y~Yfutc?@)kqLZ=kvWs)T2b2)w4;(#G9jeanznIVYXjVI;Lbw&nkJ8;&-!$&u& z;&z5Fq8gNPTlb=DUo`w+K1;$(4FeG={Qw6vk^MErP7uG~XpqeyA&_oW$FfRpn~o#d ze5U~}NQUl8I9>q*O^(Gmyy~cS$K?Q5iX8f*<(e za!`uZmK|S78a1eaYt|M3U@5o)^Zx~X+~RbQm!-c9WV&gY}{bIOi564+k5v6l)NL>nhw_uhTJFv+aBO`E`Rg&K=k z?J!b`99Czic}0!-S+dFs!^z%7o|9EAIz1@9P98;j@DW)VrJ&&$OmeqdPm2+#Z`;WR zBuLF{Yz=D$sme2{raCXUpKVMEsm6MsRj{VbD%r*rZ%84*OULp05!h&59~c}@-X~Q2IL|5^E>>#U z0NwDy;gd-P#$1kmcB2n4tW-v0p9!3nz&_|SW91qL0eV*9#FIVU z93|zQT?!0i)`pfYQ-Pwh8!s>zj1WZ(^=tJcHzxSc*}0;RTDd!px6B7|;;C0elu%E1=g8 z4^*VaVWnBNc5`uoHc!MLkYH`e8&u+#eD-{8esJv2ViwF=!E!uJ92FC&L^s@Of4EN|kN zT-C6+BdVl+#>6bk;sf%+PK^{?oiZq$+Z!y+jwO0xLua|v>(3!_N#x0|&B)>XN8kSF z?aS0CKR*utqi;xtC)lf>B8peXh(n{gP_RBC|1R?b?5o*f)--T|IOzatnj zg`%hXm&6xLL3zHX*OmrKI}_^1ZbPpI^D`)ID>i0hb8A4-v2ai>7iuiqjCMl2gSlD1 z>!@S&1ARwMMM7fX5$^Utc)ZDG;V!t1c>sC~g}HsoX4+Gm^J$Xh0?_?VQRI*fGoSP* z(ueY*sVmYBwi_h<3G_;pO{r+=X_b?*10G6tg90d%ic+Qpn>f)DPiDJDuA?P{i52g`abU6ouO7w0&C}^ z$J2Bb!|rrbs|ec$a>(%3709uOm{INs_nZN!zM+=FH>h%dA8gD6h@Gq|P89`YYc(tp6up^id|~uYr%FM3h~O6b;t;eA&Y7u z9<<~}!Hk?EScz|H@XLvp{0O*fSn*PO77X=!j{a1-`ckd=NUM5M){&pZs^GhjkbFC_ zRi;rD*Ku~SngH9twmE>YT#?;Wb$1CEAR5}blxqVxDOK=L6OER70ph@VC((X?02Qu( z^PGULBR_rnV|e`&@LFHLeVru;{R#9GX6PQJYo0_1dsmt1v{{z8Bn9;Z(U8J)-b%q8 z1NJ2Mhb3Bb=F?7CFR(@j5ZMMIeqjLXjyfn#nJxHmN zbtji>DCA*mLwPJDTa|&bt6P>~kl0%z2L(kY9b1E>Wqs#L0nphi)e?sNcd1p39|N%i z_RfpYSSAYU-XigJ-C-luvmXwSs;nx^BH?lmkcaGTC~#V3-|j9=f%wM3s%&SLUXof( zP|F!~*Br##g9HcHM}Umd;+Es-Ze;MQ=J4>0vr|JZ=~U_Q&eh6X%HdE^d6gj{SZ!6J zURx>S3e4${xK!*k$<@7DRBfuLZ9p3XO%m=h@AWurC98wsMVVkU_gF&~>Oj!t>u3>p z<1FFBtO*GZo*O#pl(2)6=AW50B^Y77z#d|?_)&)jk!-+C=R`=QFF;){^cY{pjD41%a91IL)t&;}3GCax zY&y#1YFAJyBYuZ9b=`e;UMDKn$x%eN_|$Ei$XeiZY?JT@wK_yoPXXKvELNFMaoa z4oMB3vUf~7lD49x9zP3j$v))u^Y@>H*DocfKzB)}n)N{z#IIZppw&)Xv%W3i1p$$ zS49zA>Yj6;qS5Nh^ngD7g9~?LbMAv+X0XKXOcuCq*$JvMjm8 z-fw8x1-IOm%7m#Od-m8wypJ=H?kdx|WzAN!ZtVwEXOJ{<%ZAAGH5LkN-Z)E{5u0uo z`AMZVS`lR{^?yfir(1fL4Z#LnE_0yvnH(PBrJGFNX;jy3D02D!^Tma@S1*1xt4oP? zk)SbiJ7GFaD5URPx*Q;{iI1AedP@5ceRu-fS!+9~8z7=wWn~uHhP~HMC^{_h&O%?E zE5mnki*1Rj?ga4JC1 z9D9}IZ#hGRr?QK@qUw{~FSp%rn-bdVVQ^Xs*onymuOKWWTb6)iz!n33YE6ces#y{= zhaUNg?rgH)fbF>Av{erV6GGK`S#~z6T0aS4&}=Y}CoA3LoGj=#APaTax)gOUJtFJ*JupPL8aJ9mCAQ82MbQEAk6P(>_gdLwGJX#Y8 zNuYLHZy78R8unsv{CG#8tvh$EZ$WCNsfl#9lgA@!;3E^tPj%qnksuIcdS8BB9kV}Bwz(m81Vvt)7 zKA$Bq5&0G2D~O|Bf5?#|_uBzhI;J0GS>pXk#$jY=6d}en{lBm<|LOIo@*sJ1KU8wv zf&^4+Ib6e>6>^#P4z7iib%$(omiXC{b)_BIq}FBQO*ye7NesW}L5!CZq%>`r0oRZ@1B>6ZOPVTz(nU9vf3 zF8WpF~&|bs5-T@EuDn%&bW;J=~6CTGe=(AbHyqfL+TuH=BqX)?4K@ zmg)>kj*qx(iGoD(onuv~X|Y}QoF%NT*!|uP8zFwf)|mWmxjL;@lJ;87iJ#K7B(q$( zrHH;td@`geZYM0P+uXT& zR$GAu$Oc$;&@n;Bb=fx8(Wo=cq$VJeZ|0;6J&mR&rU?^M!V;?B7=)Fz&8?3vV|~*% zwCUK=)S7EYS3XUwmL&i|W{3XvqsC;VLvlir`pi;L1Dj>}bwj7`?ko-tx^7z6*biM9 zK$Gb`F_9c)r5qYsX6_?!oknK_*SJUN)4(-EW#23{hhYO8VUscMx}A2RTnzNbz)8bu zHB1UnI2^h?ra&_WOy6vhdxV<3FdUj}g+U>r@9PsPZvmBRIaJfl(vxb+LK5E%-~Z2P zC4v{`jxnRr!c{->g?0-OSDac{po3&@LA9a*w=X@L>kq|YZiK?5w}6wyKPU*= zJ?#NkdZ9j>s$%sjBWlYQYMbf1Pk^l0V%t{q4j{eU*N{fF-=xN*7Gd{F=>s%sM~ZS| z!xn_xdQ_uPhG2IgX|g;${32JX;ar0Y(Ltf*P~mb;CUB@Rj6OvmnX;<_6+DzXcH<;# z3y<#EsyUTya}T3c_NJMxLPIdqB?|yPnhQ!pw?K?{iYy&x-5(pk*`kNpQ~V(%!7?fV<>4 zn+Y{yHZ#<&M(zwr$h3N^*5+m3dvNH{!j<~}fXuA5iI5vpDS1*L`>7?y>5oLo)sovz z`L5j!!Z6dQos`xVQ_`zQ*)OgcvkDzrb4=ghHxp|-$%U}>wJTDN_?J;ZtDEGzlFf!^ zr;L>0fj^`iA>d_~NRFOr*-5q*n?eI+PUzn=x zEfn3$Wt&Le1ocdov*D&yW{M2dk)8N;K;IK>3C72@Q{}we<=qFM6gQ$LXStXc1(;U{ zvIaNqcpw011wAazG!N%Y{PB8XtwgHo_*=$gH`-ueqZSSVT#j!v?}GnN`6+ z(3N`HQ->=^`A{Bcq{@f7I-ac4Ig{@hmiVPkNesCIdILt_>Qv_nhNE+YCEY=NLbF{d zNt9r335DEyH~k#7A!*J}oG(0bv7)OS!EveO@eo|G5V(6;m}{--oz|gN@!ewQ5DnPj z4mqye*yk*+j|(UVWfB@#B9OtF%o<@@77qda5@eAG*^ZMOdXB*NmU3_8x_8vd2S}o( z24_F5a`WEj#(eoJ7Jq9Nkdkv3c((sjK=2D2*XB|xB;!LQHfX* zo8gseOspF0h?{;cwnv^OcdPG4IM1R)?K7IbYC@tV+JaIi-y=UOyOryzQf2FoJm?$R zGb4w)rKYkgW!rp@m3;*GK8ab=s56eK&xlwIY$ZT17syJe*JWB80RCsSX!ToR7kFX( zmWzw=7sLm3S_^(i%T`+#mfFQ=B7`*@nhuz2IG9a1u;lOlF8tl!Ov*`{Uae zA7b=RFEE^c!EkOqWj}uVIK2HNnJ#~01LBk}zrgOzY-MR341lOOHvw{5(yAWxU(#Q6<|_&H-OoWZ_%LJ} zP!i7)FqqRcCpX!0+L!IfMzxZ5 zR5htyX!c5ONWMZL#nl~<0aFe@E#VX0PPy@t08$YK>!p{xuVfAmC%Wat zb4DK}E$gEDh@(E{Ua)-&oKATC=<@!*e)|u#Zz@SbV&$;hLGF$ za9wfMUQ|u^Y1i)Y6mHZRoP!oUwt)9s&B44H$krtj^;by%P8KgRA(&2;uWfa0-?U6N@k z6v0l;f>;ZcMh;2tvS%!VfCof+gp~mN!pqA6<0&5psnOH}Ut*=a2?vs8n@GqJv^!@Q zg|>@;t%;T{BE$k@mlTVirh;t*Rba6=`R$Kblwor5_IrH&jEY`3^V5;9LRXf;Vr=$8 zy>2Amc6{zH@`kG2y0jpPs?cRy_J{39Sx?6qS-6LGptgXUc59!aSvXsMK}WR`vuJvR%b<3p1CxwO!YG!MhRCEh`uXj}6J zSIgICa_c>mvO|{X>Z&|0k@XEAP2W$NiAW%476G$lw~_=M^g*6~AEDH@SruwSK`7J& zs4ZD?J+&&6FgN74A_hx9=Q{1i5=38H{ z?Xa}dgVDcicO9jot;PTjLBP(*+L&=xso}xNABtS%Xsb3q+i8{Cj>biqoS6wkenn#g z_8)}5OLfrUqq5hsRcErK2kyW&@M8?I28or4k$tGEEJpxCm90VpR1HVjsT=NAV;&3?$L)bcPB;4v+8=Ts9_DU!Efm`zmRv@>25djXi- zsHp5&9b{LPqQVflE8Nrpu5FV#TcxKG%B+_&W4T|Zs~i2uMe2GAngYG$YkWV^$=Vf%xA2_~bq^6qAfThWKtYkm%HBTNA2M6*<1B?zv)9QNI~hpY zcjSCyp^IhDZKSk5qCe%9Xt{+}mYk)~)XlUKw^F$#f{dhr+&R;v+v)(_ZF zB@YjZ5S$lcC|&jK?=ZqH(= z<>=XohYpkgE|QG5S4%}J8Isgu4>heb;kW`Hs0Wk*vM)=>L#3!#MQ``Z8Fie`oImp< zI#tL2`t~RL`VCK{Kibzn1G@5Qc>AertFklMavVrI*7hc8VgXOHwEB{YX{M0^dgF$} zlA4(Ez>EyaYtzo@v9dNL@tN779xFNf_Zt(hQBL8GHU#iMl^keD4RgQ*YvA`PALoL5 zx18uwP%p8E%ZaTQsqliaFr}Sj9ZAf^P+c8I?)62<@QNha;FsrNqJbv)J`9ur!&80g5|KyCrU7WIK1wO$^)&K;`&OBcSx!{O&C?@(*Sr9 zR&FWG7wtqVJs!%UD+a|vRqCH(>#zPmo4tU%7rY&0{b6ElK=J6JO%gtAnjBr8PMd-s zzkU5d)8+g^`dg}h7t+Y*Io><#I_K8-9GcQ%yo8RG1j>B|9wdMI4fPNQI~i*)+b?!w zLRDwXp1f*AYi-VaAo98?->sAsr&1C;dZ8R^ZfH|;OoDze(Ip9X!b1XzIXeVC*Vyk4 zk3|oCu##b^ZKqsKzXtda*~uUnmbP=?Y`9H@>krVE3~X!b@J?F|HaHO^QXy2V-A6TY zk56Q&;ymC=kdHfMIp_g`(u6Rf=*2KWp|BLbMvBI|7h$w6ZKQv-c6GHrs#HA^5<|wBs3;Ty{&j!#bSH zdfCUaRXN;Jsop$_q(IK?m|PK(W+EcZ{cSbY9R) z!|;g36(j{x z`P0X&ahQ8_@ZlV~=gTxG*f1@2nB!Gcpo4Hm(#?>4 z&xHyLybjm`uH|VeTck5oj|RG`;=*;kY3;hp>aoFr7O+5^p|P%n6u@KP&}~v?vN4RX zcwky7dC5l7ln(MeQ^(zx?>7ML-Q=*+c~8Tu58?rvT$;Jh>;cs(i*k`bm42gKrdzF6 z6VT3ue(eqbogD*kwK}zG%V}_?qh#&eA-#@uCLFGXrCcgD;DAMCxx(eda}{~l(Uo@l z9uA9R1318n__h&9i{?pys3Em=>8uTkm zmZ6K^*P*sbU~aJ-qgQ}HVU=w4kLP<*K($*btG0cl+yxcDzy({2@t(Jk z1}N0))a%ecIc!B{2KTmeK(Id%|9dhhB905*;fKGN)kAa4iisnB+Id7se)$6nljAIN$0=r9crg~+!E!{rM z?b(8E8YS?@hsn^(8buQjNc&l8Lxm|k`R?gmI1tGpSz9ZV%xOOtRaHk;9YmjS;$-jy z2r}rFq-H#7>mZ9+w%F=o-#B(CuZ$_Yy=^pB+$9Ddots4R>>9`5+SX2^kobI{;?PF$ zgIy$v5DH8f9a)C=SRy}|B`rMz9MMir8#0|iXob&&t919{Jlg1blK#~Ovb!{ekKC`G zL&2A6Asz;rm?#qmV#J}r9;*ALL_gy}HB7ZxiO%>%J|~B_+l@#)v4*FUfK1{q=)yev z&%J&5YNOOI34v7sG!~cgK$lx5*GCtYD?I~Wp8NO@DJ*t-RAD^Lo%}#5Kr+Ov>b}5j z#!TT!RtFi}B%w^gs`sie&#%*+72XilmmV%`qLfHm%| zw6-dz%arLZx7yaPq>kqdhwkU4iHW5Db)r-V^HEX4+n58B7d8TGFZ%? zRF+K&zHA+#05*<*1L07ksu(YgU$L?=EWP(Xdi{cB#WRQ-w)PioAr*3mUaVk1 zEm62(fm{%X=hPcWq3pB*OxUo#7zsxhq8n|=PI-3G;~L)feZ`{O7QjuR&gr3EU*jQ# z;R?;dULq*@^YYPbIQ~RMQdmXXgr_0+;EExRA5B*!|5!r^G$FUQL;JgI=|v!KPOrWm zCKewGh>F|{^k8DU=HIKuzf6;D z_ZK;`fzFkMXj<@h7@x};znKv;iO^AK8OC3({48&OW5lMyvYeZ8?n{OPoytoK1c0K!&`V;r(1vojD9C^y zUs$-ON71XiYnOWlFyGZ_dX(G;ClYB6b(YDldmV>dsx8bQQXs}>5h$17tDp+|K=zbO zeQjyOo6nZHWNpT6Z#zk|@+24>t!coLKUOg0_Q6#FCDiTx<^9hjMS*nXCm+d+1+i-beBIcf{A$Pi%H*^PU4SYDhZT&wCT6FBuy0ho8J z$!vQtCn?eM!j!KB+^D{kRnQEZGETtnM(Tw^JYY{6A4DG}7g$t_s}t0I`SxY__8;}J zj(y5~%XAn7l5J6<`rdmPj6PpPzj9RDIDG_3iLImgkt?ii5pq4&2GL>LyiDe42|ZvG zaBTD~cj|7YtTQE@f%AK{JM_l|rUe-nKzL2DdvXfsf%SOb?cN2~n#djwDt6da>ZWB; zPUXpQ2=(2P9W8s9Z+eE)LrXXDbn9BBevgybMpI|UAJoT<8vPhVHIz#_9qpWq?i+gT z!aEZkx@z-mA&Tu9(Wx3IN2u0NZ!)IWoWznPA|3oC$!SYsDJF_eGp}l>?V)qP_lgO? zII^aL!l~SwYA?5$wDF|1AiwTXblSFgl4_B2{Si1VJEi3ku2ewMjNdMNgj9IZo`Bu| z`uZz=4S)H9|1GJte#N5eS5jUDQ(J$*uY_&g!}``LC9lSZ5^jd8cSF9cu?#2c zL7=FX1Z#0Quc&9GJ87k!!`)V`Y?oqs2GgbkiJ?Q|Oksku3}?rGNfowx)dS(2`XU?G z!qk)wj}`gfvlLQtva+feI%ubm&4rj*y6n-)nc0v$i6CSodtE9_=zg6Ufwvn+BR5oo zvN~0yFs(@?#ZPk!R3Kc*mJ@#nL$ra)2u-J02xIML6;~YTdB$Rl1ZHh=l!vmOJ&8lZ zj7wLW$6-~F^yWPPi0(zO4OoH{Q#K()qZlDhReu0ub?Q@uF=`Rov^L-WAK~q@WT9e; z758bYp8!1y*Ln6^UB^m&qe`2lO2m4SymL6zD9m1p;|&Ih@;MWG`?Or-x!l@X0-U+uYeD1T>vFH*JIzfBo18_XBB*unaop;RFXLtsWCyTimbmwv>bXujQ z(n69qF>ZSQY>Q1ehE?+=J(VE&tOfRq+N=RRU&J1>PPcU60@b28r!;gH)xnLk2826I0e?NTFGC6R;1(t7RMD3 z<43cy5Gl}{4;ImL;2LV6cX;yiT^0P&x*hjy?2h6^b&IOSGHDo7Ak+eGrqV+Tfr zt96;8`5*a}o)R|J`)3J?Uj_a0>-5S$L1Pw;DDeGc&ytA>wiSUE%KvAveD9e20YleB zXJ}(_IxdJ!4HGIvb=ulr)q_HI{j)vml8<0Y`sn&F7^Dt$og^!mx!%@Joix#8O^cCq zZ%D>L!D!F|`RB`JXaWrYpCHHQ>Ecj3l`z`}qSYqvuDm%??j_XLHI+g|!Ou2FMx($W zPI5+5S)i&Q~wb-Bh{D*dsg;o_Dw*)fb zX;cPo0O+B!w5Ik%q>_l$OfAKDswcGyL3M%1!ZRB`-}? zqERe00bdBQM*hGt#R60^XYEdH19w}1P$m;Yo0#qWggruOR#H17?hG*KV+(MH+(2l*^Z7CM9);!M?4 zrM586A0Y$nO#DM1PMApmdnEg%lofwj!CfqP_;XOU&g~J#=gSi2hlT0nzAXzL%9o7^ zc-ycDB~!s8J$@W?|FA#Z?iUu7< zGOIvKGWZ*+f%d2tZ`#=c?WywIg26nhJ)}LC^pisaKsRcJUW^2CQKS|0iZm0;m{G1q zZ;d}n!a=il-q*p~>g(N|fV>UbLrPC>LKD+%Dr?odr;hwkE2_7Ccqo;%2(l+l9s#9BwLC3WBL5TJ1@?c{%|o{}9EGUjR9&Q5fa zYnG3TT#Bouma+VY=W zEwx?_l^SsE9863bd3QK3Y8VL&67zbuUImV(@MNh{L5T%ghNa>%l@3V3LOGQ~gVPzH zY&3A@47DsFx>BfZ6oE3b7U}bV%?+bUjp9DypXDXU>Gr4L=C7DH{t6tt&t88VUVnxl z_ouf{!>P-C>~~2FpWsNtczO@fB<|$46*~-Y=>4wQfGoCWWUoBMA!}$;mq!w+u>PUs zA?PM#L`(w|^X7JxQoBzJ1ymrnsak~@nz^FGI%RaPk~*y=F6B4CXOjsAuPP_gOr%0Z z3WLX} z0t6ddxw5qnR}5AQp1eRo+xYAJ^o#KJJIJgGJ=If&aeEd+3 zzudY<>rz^^)6XzfunTkFu}9eB-W`Svo0ttIkW3assgf1Ymf>36G&Ntn1quKTwSk{M za8+7rg-Qc(SZbb6IC^N)n|rrs-4sbAq4QzE6`Bz%2j6q2NEQRZPa039#6%rJg3e?z zwX&<`NEXJvWogL~^u+YYOSeHgpq5o0fb#jEPM-3b^d0{kD7AtOW$Noy ztus@M_PVcy8|12B69w8F)Luv)0pSX&ML1aU>w^>fl!hUfn#bX&I&09 zAd!$oJ|Kk3>5$5M14Snfn{GQFjc}YXG`4&;dF!-s*8pKDGpyL70dq{YiWKw2;d?mg zS8)v#$C3bp!4zROh0?)PC=n)S+Sf|zf^1~9Aw%2aO`gW%15EDc9}L!!i2N=|C~LoE zsP!YIAC|229vC4a2cb$P3@L9wWZJY+E3d0XYEX)kMy#ruoq_0AWGZ2d$#(Kqr^PtW z)EulbSZ#(0yv1XyXHvsEJ%j*D#S#^ERqX4HPqL#o=DUxumbte(+`~Ynm2n4+Jv{+t zmxvA=)AXF|bzDl`Cnif0Z#QbQsZ5(yY)|O#vwsCV)-rj|YD=OeX^9?{8f4tm%7CB7 zqOg>aT*#f0JsSAtY;{JZV~tlqHJ zfZ7pi)u6VF7!A?$3KD|UBa#rlsofUm1(LBtSj)7Crmco_a3IT~4|I0NO0J_z4l3Q+ z6gihhk@&mS=D66Fn3UP|HWoWN#6`yz>=$gkevyVu4~kB12Kclmz{t4%#15h$wI`MG z4`Crjz^;~q4;QX%mF*nZwNo!7kRl`_u>HNl=-l!dN#AG$!lDdxwscXSJ<*kAg6S zpx)Pv$Rq37M%z)=PRKMpNnol9tnQAw0GiUYm@q(55Vo|D^0crZskiuSOSx9$xzvC| zp`G$fr=Z4g1*w-0<2j{%%3~-{-B4?DRROE4&UHgT+o?ZZ;_@=%STKsNCU1|`COld6 znBIG+rPiOB=JVdJOK+E=5986MOW49ta9Wtj9t=;*t`QI@zc|IV~;*bjISNR$+8{F z$;vWs?*a$3Uvvyi8SFJh!&@I6)~bT8CgsNC$p6nr8nE^z*5{My)T0+)eH- z6&s%vyJX!F$;@W-)vlM0sM;abE_I+23%j| z+FY){a#02b$i2lUZScgIx#*|fVNrt%2+3J=kG%~Y!M>6|ZazY$3jkUMt_uuT5IHzW z*#i+Us7sn!$=|(Sw_t4E$A@tci{w~eNaB>$ZRMHL>$w9q6{<+{A!@E-%N-i;l9~M={HIg>`t{qdgZ7Yrc{aGg31`_&RD*(B#|3hSmQZ>W;#GSs z(}Rr`c*q({VhC+cY918hLcPkP2(!$Qwe=QnlI5qIew8SL)Rs^m-4wsHYr!|2Vfn+haG zsrFmyC1!6M@aD2_aq>*bri9p@Bl!Dr%$lmp(1%g^&r+v5by#UWhI_r5>g(h_S<}g- z4Ipc*L0FOjxJ`cBzOtdA4HKum?Lb5jAq_ZQivG92lJjX&Exr}*j*`JNAXZz{j`zBP zQ7o+6x_7GbmSm>)oBvGp&*2mf_HCBS$OT;htsO=K);5rs>CG~<0prKlNK+%d+v(pY zMdEk_v)iymyd1C-yOD7KfKPRl98ZH72-RhPd|ihWk|(Y{+Bh_|E>9j-)eh^Vk&n3= zDwQ6!IF2Kk-NeN|V3~kp4B==b+d|#_s4L*pKAUxO)hdbCi6$4#HB8(>Una1vl^C4S?f-9B8l3CTG)$8 zjxy(|(f{zSB|u>eA>y;D^&KX;Ji^PhwJsg z7bi@kR8TUqMS9g&ii6VNFba`FjCNLihxg9EC-?0RtMz0fnB{oCWB-Nk_ zFDOqg=eB!WV%Vvqqe8gjwG9L5is%?=>{jBK3Yc z6}Xj;ZXuzSAJlLVVcQ50S38zA09yca?ksAnvAISR>cyZI(OQnp%PXsaYJwfi#v|nJ z?IlzUlvCa3#1*xt3;Gw`nxOEIr5?yMjVGL+RL9DC%0f!A_o5^~ckUl3L;_Zno(^H= z(HDW{X1O0#-tGh4Y8N_9;Jg={7za2+ro?ct&!vhpTpA|n8c_@!b_(trWd@-MLs-cs z=V6OBC}t&#)u*W|x=JZTOiJ%zEm>JqYG@1(xsmBuVFe;8B9-+^GNs)(UwSUCd4 zIrs_Nss%aV@GKq{OyFi)(dQfs=s7A9r1D;1J?ajm6 zIDuWrVnUC%1#qct-8ni!YfACC=~)r34^-V#o@(?eTjB5-?6%#3N2$i9Im{OPD)nJ0 zKr)dyRAw^>BGoYOGZe+X`XEs$O?H5?tk@fk&z>|0uPAK^)Zf?cvg?cqV0N zwJQu$0*B24WF6YN?^bo$%^Z?@-A@X)2A01|w$N^$jXPTKL&4k#@X8`X3<0#hMSs|| zlI=%X+IFO@EhoLnU2O4K91CTaf-h90RsZYo`l%cTCq0h`oa6>@v>pk$c;6Eg?gD{; zih!2j9f@rkF`4TYx?_xL4Qb5Yvijz?{|jkc9*kSm_xOhZ3%M1pi5rqt0!UYgb74Ujc|`D+o+zlL>=-q>~14 zd_%p$o>Z1OR?}W=xlf7dz+w*8fHf-RXIQP76td?W@k!0cAzjS;M=$pRZ3eH5e! zJrL^(jqpHsc}t+`4=P&L&+1dFUSCFzi@1Q7*r0sxrEaxpu?uOa75MMnL)jmP^ON*9 z|0TSsuFcPb!NFf7d2GTqAU63QH5=x(GLDD-QuXTC^*p92>S`q5U^rhH}hgzniS9+s@iU z{TD~B{HG@<>oaEp$J6NNT^HIx8?AW91A({GcthQ7A+eFgxfX})pFK1%F2c;x-7qD% zOFeHDLMfj_mh+Y6!2|`NftwPtOU~^qlndrY9ZR=usP<)7+HqPy(SQ?2_%MbmVcJN% zSWIgZ(KT3;4vR^{{49MX3G1PHd<2W3?%)o*12Qs63YL@k4!z79InOQqLM`jSP~x2h zW(14LwC)h5CnCGhh~6btQ-|M`FNWgjvSwj+P!t(H7(LM4-_XBeI<9$Rr8c0J&&=(C z*0HT5TxEiCXQ}L;opvw{lLJo136Lo%CT$1|NwjKO3=lhk%L4c``_s1_)F!J&(Y~@r z;r6H{Vi$5X9+wUQ2rlF%;59&$ObQjCX=J_nzzV0%#zxVCDye4RZsBVY?TBga_Inx( z-JC-M{LZ>5ayEKC?xY+E--*a<{r75VI0+sj5VMNur?!QHDIz6*K?cZ5 z6Ui@TGt83p-mN(Wn;XQKGNaE5c-}$mXz3h9gZ9Bjk{o>e>_;O>+1P50J$^P2ia8Pd zP$2k^jG4(DG(G;&>%U;?kuJQHks~ErkPknQ`_|T!g=7%Uv8IOUw)xwd^G{me&nS!K zy>?#9ZEkpk**Zlu;!VBO?O%n#x;ZKt?Q`R(>dUpm#uZ6Jc+JZTmn|*<`I;I+B&Cr; zQ}U`6PylNA0v)n*p)Uj`BFP@mbxO}lPYx%ys2qWRsJar?8lZnFo&oh+fDI;l60$!U z4vlZvvXTwj34fDHceY1~;x9p-IWu^T|7hVXorU{9Dv50N3|Xu0Mum7iQ;+^R=49T6lA zxP4%qB}c=%y^{<8?`Lh5LAeotmpTFq#qE~V%_m(Fi1N!??BQ9~W7)2%U_KHoIkIi2 zI7txWKhQI!2$!U&>>+{+sqEM3&cRZNuHxvqyoBJVZoG^o6BM^5huo3_!$8KYdkJCy zhh~bS3J)k2hxMQQAcN>m@N&@rrq2OZ7|`K2abHl&QX9#cTAij-ws5^0Ez53(T3zZK zN?l@Iq~-&GQ+1$gV`W*uHMHq)tkWE=!g2_m`gy{&Y zj=s)8TVk1^BI|H!$rt;mLsXmhLD#XGHlV-Za<(A9{S>^G`9%DVpGRkW=y|t=7 zff55;GW>6Vlq3NzEoE;t%*s`guzPn^X*SHH^eoxUJ3>JXgOq8 zg)6!)!2sa8n>zNg{2tyw>K$cslX|3(K+0Wuo49vw?QXsBr^(yGs;W@{i|3F!$@7e0 z-bw_ncuq8%iR8dUqq4#ez3``t`V2P^31hzkWS~1$E+m%K%SoTNM9o$n@-?b}bd!BG z_GO3=(;%B{(%@P43bA0dtu}UWv4f!r`{GM(kvBRpW5*ROZ-kr05VxGgxx<2X^T-L2 zPI4f+4-DZ`AV5cGtxHKNqnd}<%EeNQ`%OoCT&+QF8SHp`brR*HEOfL9s+JS{>q$Ge zhNrdMB?-C%db^Yh0@1Yg$G}8eEf(msH|*dN3^k1CE|7C>c5|^EN(?^lH90<8>q@^` zQk4+yH-PO___6;amyCGU&KrIT5$ zO6_Qfv0H4Flp*9&PuFk$RPtu$T7DwSk!Llp(nMEf21@&omSz>J^(acUDNx6X3a7pcRU z!6N;TbPoPQI~VD|_1YnD1-E}z8zPQ-!7L{h7l09YUzc8e$|W=P>O{pd?NC?0@a()2 z>gP7@7x@6TG;39|7#*W1$E{2IHYmXcH$o1TS!(Sg@CD8vkd&b4P`?GpE7qKkuoDX+ z)+AM;qD+9tNUIa(^+aGvHF}^m-t}P3E;g&Kpd{~YWcjcIbJ}4lmk$g}R3O3hkdw-% zBo$ByWk<4@j#B45>k=(RDFDB|E$p>b^8ausYuFl;q|yNK-^VQeqqjer9m{vZ556P+ zmsj_1UVp~G{0+R~-hO4++`t@n^g`;P6Jhcv6=%El)&ROI^G8B5ybyQUo2FnZ6=RnJ z2vCkESShA1N?GuR*g*B_-90Qf70{6UkA<6ZeeH35y@vWs{0*{{FUn11zZ&*hFsHCH z05Y-gp@GcpgVp^?SpsyzMW>Q59Re0Kb)=99aTrZ_nv0v_1)U~9gmj3Kv0_whk zfiY=&rtko>^$*a$P%N;fZODpxzbr{$ zCoU?NxZf@jE%#qtz8AieH(@rc_|soHSR|tSOSqw7(vtiEKEwo79jI z%<%@>io9$bsSn$#0ON1T*&8TFWu{Yl86|6<1Uc!H)Il7ht#2I@Cv=)lxEJ-HhiHAs z;?hdMmnFOLsRX5t+WVvYM5#=mtUDkP9Jp*{Ij16|cY*jD_!-7&)X{azhed7Zw5LfK zQG_`n5pL~qX-WhV9xMrImGN)O8Fa}+FtVjQCIb|nNgyCFds-&$JBWIs`k~UP+L`8;8R`++tSxV+)Db?+~%J zH{ueg<)*mX#}p@aB`r!4VI`|v7FD$>6okta(QA;Fbty6D*_NmTevazVnd+uZlcWh| z#LSWmrwXlqvJunx(UtP95IIfj?0!<(s?alDbD$;i98>^!rcZJLTLVOXwx#LQ2Yg|S z9l@W>;BZt_nD=a%Nr#4=q3eY<2W`X*v}awqA&-|Apx<@!BcHtMLBs9}Th)?^)zG3} zn7_c5W*P|40?R`_$?Vc8QoY-{Q9L__-81yPGmvFO3#CKJQPmDOgFnpXC$wz&R%HU< zkApdpbtNbIDfTE&vpCh*Wt!UE>{? z&ZCJ za{Vzp%pzEJw48~k%0s*pcMm(&Ow`6ei2?<1fQEBwDgVkc9wc`$*V;`RYP8x1HqzS& zrTC44LDPb3Jk8dQYP>wScF$n`k_mK$o{LADYt&)?C0TSKznQGBPqs{$q05O`k2s3cXQ7&~G3m7_W8NrP%#+H|^IjTU^eVO*zp|_L!7R)F(YVf@a z^pko(f(=|7D9SR7gq`)1j+JWKn(C;)9s_As6U!x+{usgb-e=VKQiMLq&EE)2AG4L% z6S{HyiJDFW82N@%iWonA@#B#`97^qp1Xz<|9>KKGwS zjQy7Qg8GzXR<&NR)Kq)*Bo<~xAGt=}!4+CvWgsC? z%4y<$+QaqX5pP?8|K1>`M(HfMWQ>C=WXh;V)Jighm8qmBo=kHxqRS)A0mdqwi7d|m z?%arZm1}@JpzPdfw9jxishHBg8R5jeNm4P^c;o7ipb{6gPc^0LGPN>bn@+yFuBj{4 z;siccT7zhGrbivz2cc$7yRN8yAspOK*YMn#sxZta29AsZX%~f@X_Cm_LTSgXEGaha zVdmh-5UV1K%Tah+XGPA07<|!qv@pl{J`b&+9|}+o)p1H`}K=!7S$uj z+7kr2B%rg(0q1Uv9+)3CM4Bk-ilKr!J%)nJyXt|Ct;@eXyq8yiuOaV>83cyW@d}5p zQxp!5ya@pAJ@s`9rI~c-jRwcp6bfa_ke9P&+xO(Z@V)Puanb9SbSnDj+rNMP7sCer z=M=R8Gponc4Rxy%D3y&El+M6UWE;D-Zgd`PTL8sYD0aJVtE81SySUPF0wR8D!pm|L z)L%aA&r`Tn6cC<=jf1Z>!UXTGx3!h}A`RTBUu66RGPsD;WG!3Mb?ss%ntZnFR zxZ#k+B^kK7#tIW5Kx-WE=0Q{o;} zj3s>=MwhuAz(SY$h9P!Q!eRPhhRz0{0|8r&+Gu}Ub)gw4)&YG&3O&c5o7+(%41<~zFGV!*~RtOnSCkk4rhg3G`DUx`u|+%wXSym- znh6k8;VVEnENx3v1Ed4?z(U~LpTg@O(z;VAn*(iR_B2|R)L%ixr#;&jXI&!yO43 zCFVljnkb>w&jAtK2kh^KXw7rgC2AmrRdJY|EX1!iltCWK9v`HT`9-V=nsk>JGv(Msw;@7Qm9SYkMYv$!)6!~ty%;3wM7@erhBp$bN)FTX~1>aljA9nOJ zoV!11?qQT0Ioo)&A#HA%FAh>nWqGd1^c}_y1QGa0MvQf&R2qAdG2P__mp@0B+$=YQsrkXakcfQ?}vjGEd#eCA_E`_D)8a{MyP2G!SVz zkMdb+qE^B6o`HVpq>gk6O^MP2L`pbbM2nUIxrJIQ(A*OL4k!qL0K#bqW{DMK4j_?& zBRQ?u1wG8OD|AGxawb^?dxCQ~|M}}zY+?TN{ZyNoUIB##T~hTS2VI@z|1(s|hPGRr<;;a8OT9h`Iqhc^+rbUnfI~cXj_a4*)7E7#(CP*QV9guB1QtOCpp&gUEPG(JLRTlx z&GKePMX_hIH`$BoPh#t44mZ-&(78r6qUeH^dj`XF`?vCL<(FLhy`u>)l8UaJ)VG#= zODIWlnErtApyeY{D6X>k$)Bk=Oxij7>y|7t+)n-WBA>-(Wq`*3f-K>-zS;&s;ci+c zH9#-psdCZJfN`z5YpFPM?K%ar7a;1msG@iq4u?Gbka}gn-qrl*!@DcA_g6eK^LC@(7lD)ZR_3%j9L)GNt z9CC2wy%gJrY~FcAE|H}tpfSnG)?&KmwS)tt+xO%GnUU~r$eu0c2XSRW>Au(l?-b7X@7Z?`T@2<%%Sdo z!5UYO^vV0VL+x&q$oG$4_kq12@7QD=(I!fdrqt*x{W$Dl$1Pckr6fHXAk?@8p)|gb zDFpkY^f2rz9Xb6U>iC{V3KsRm(LI1kNw1<#JBWZ#_zC;a16cFB&hwU9#q*i=)tQ)* z8YaV~$}S^vGXa?*Evm!}%DR%0SuGPL#Mwio#583pC+>iZudHqRvORi!s;3aOC7a*b|>r%NnkGhhh z)&=+h5qPnO^1;}y*(H^gL}YjJ)wW+{OFE&=<(?E5iCtr0-kC4AeYg!_9S}g#*5M+)aLpl32ruKDwW+;u& zcX`f-Ls;xxXV>$~Sd3Em`9)< zx|f&U8;Z0XtueP;VCv{rNm$zxr?NF{ghzfPC_P$9-Mfc*RfB@hvZ9A8>fYl~rbw$# zGQAsBmls+h-pWz4k`;=lp06c;UIGK!72!uB$}!tb`2Kf;X8FJMJs`EhpFix*y#McS zABFe-=j)&4!H+NR|6BO>AEajP-OC-?Ee@$j;Fe*B&mJBQn)miAU3TwN4?Od9x#Mtm zN7TCx?+j}^0*f`PsJ>z-glE(<89kOP4s45QR#{b}B^Ed)bsVC*u#Co6V8_aGRSh6vF`jTL;J zHs@XtpKr>QXx}}4y?*29xauA#=Q?9V z)1aEI>Ufp1xMPi_7P>BH3FL9-e5zV`c3n>{dr_~L3Ui#RLsfem<+pM!`*=Ju^)PPX zHa*BaL6ya81dpw!lK{quw@1Dji+}VZ$Lrt^myX zVY32nZbvqpY^AuGm`~y~uv~S)Z{N@|uV`7VfX#LqI&3=lImA&77%fwV(reL8?*0om zcn_y+yPy+QPSjf}Anj*cVb|TV()R=8tn6wGA&S^c*gtB3$yX6k*3}K{N}mfO4|Iw_ zG7lW1z0n(Ru-4Fk*CPosja*O6xM?QQs^Dg+lHQg^Di7w-)@Pq<8aP}d4DWgu=x74P zMI{F;YD?NxyqkRq_Xh${GrBt#6y{H2X(i@Z-iIqBdKOt1zlcd^G(E{kF^w$jXTAMv zTCQLTev}$jpI%-j?-agB;<(%K6m_7pW%uYifLSNI*ID+8l_Ohy%lybqGJigD`yDws zR-JPYTmTpWXUDRjlJT-d^4UcnwOImVxOxGJ`3ezKqpOUNrU5%O%1R6rsU4>E_JMdX z@(n7f4<$<`R2frA?RdcCP{Mkhs}Py`#9%4n9SAYY`TB@%LF=+4H{AqMPu>(#LP>ae z$3}0>0^3QQzw$`i*!AudsIn6iwz!IJinlH#BgICbRqz$$VgN)rvUpb0H$63MUCE-R zaT0U|X=2dHPDI?!Ls-ZFr!F~RH7z8M!dhKQNm8>7TnTAwR|rPCIXX{2O=njlLE9?b zp3Z_`Ey^qE0|#rdsfg8)E`$p2cnm&&ny8z>7WI-v-r}_f^nASh@Q2}tHoiqq>sP6@ zmD*n~d$76G3v6c(TdSCz#X|!0HT`z&%I?bhL=~cX#Oo~YIm0e#VyM1B#Kp+nO9C3cEDK^k&EYhkpIG0WXpvo~Fu)uvG`q=dJYwG+w(tro~yMht}D6Ba2Vge^%G z(1f9ZMDA;^rWtbo%_QYXdHlVX%So)aia95cBX?ibF%twdxwZ`%)_}bYb!2@kf1y4# zjoX^sKv24B`qQbrjp_j|%sQ`tY-90e>)8+dit2`Q<<`f6tW|YTMZWYdRdVwD@TM# zMi5QB#9fhAx|0pI4z)=nISyp0%Ka@uMwKjeH@dTp!cg3X0!ElAp=@%MDhJvU^>zO+tpm1Lj%F_8KE512*tucazDaYw+mB5CV#7gM_SQ>51hK^GUEw?$P`G@Hc;BAh%E6{*3X)CvRUF3G$Ad!+`+%Dw!t# z89+g6*I%F;m|pOX-g;jp=nM{&TGb@Q4`hUF$Pi|(*xK(OI2Npu8V{VuNhwc>jAaN9 z8_q?_%%(F|idY~-7P!jKEMws*%Z|>hc6j}L65f2Wy*Xd$R$S;s`*&`y1kd`a$f1SE5sYuHheeZGvaY%^mMTzav<~(7Lf)3StoHQArdgWGGipPL!k0xkz*Y_)^veM%?lP zHs}8MDH7rhG(np&#FpNoTBV$-P3^j7vXmq;Kb2GB|JOgm`HB9P*UwZq#CD4s^8i_y zo}m)pXOuJLb_B2Z@AS2mfO|t-&`ftKGXN8`Y4s_Y?~qoaH;aw~!l<(I*r{LtAI9FS zNtWa~6MN5J;TV}@Lo*S4AI^w>L^8-@$%x2|?Z%Q>Q4cZ=Aw5YCdL-Y-?nW=f)>sKN z0K%-g@V|7vf4~!*DAit8U#~+>f8-Tkhy#g6HbT#TcMjJ=(DkXM&KRL^NDm zo>WMk)OA#n&?*-a@o|F2CGOu0w~~!Xy1GjPkNg4}8elbPOW^>xOxShXq@SW4DrLFP znoIRb5;;8@qz=A}5I5>8c&|r?PXeyyV-B@~?$hpwR-*LN!x@~ARAtons{jmwK zG-UlhVb#P=Z4D4i=liLu;fI-aM3QZg;;qQXx5`abr~!E9LNEvdWp_<(qnyAWY->DH zJjGVU!aV99DzdBdX5DT~wEXB?;o&_u_>*6XOiw1OGWSlO+S!4 z^!SR`mIAnxUw70}ly|y=SmG!FO>a~gkVcA5dKr+Fy!*`e(ydwXO=^fi z;k_h$)hC#kWV9EvY48YF#hlZ~ zCtP@|buA&jkbSK|GOziuVXj~-kI4o8mO9}g@QW@3x8=+#-E1?V2FCF;F1YAG#dIi9A*4+42Jp7D^?{)%FZ z?g+hPrxFJt*6g!q2~s`&OLq!%w%x&J^6fwT<%i$? z+8mr;K}}@tVdzt37^ya)8g!%NrAq$2?1P*-wU_GZUl=d4V=bq`SO+%r?tU=F`#vkQ zdm{;;9^@QYA@B+bd(U*R<1lsYZL=y1#rQGt2$h2~B$v1YCqs!erQIKAccNRkrKi)4 zNTHaVwD5WFD&u;#+V-{YbUx7pFpxt@IV3v=q+h{hadgH5I4%2*f`Dar*_#56^Q3g3 zqzms^f9+Oqs6eyH7y2u7-%)`89yZgmWc^RfR$s#{s){vEu_O1&^n-C=4_Y8guae!l!M8M zGGHP6Xxk>lZU9k0uD?ZRXqdGPZ_9o=;9r*Mr>jc0bMOnyunjuad+^+GP2w~(|CKMcQwKNIzle+X2~zo+)XhT*(G{}Z-yf!z+$O5NkR`( z3s(7QgB{5+BBfpe9ksx^N>p`Ro;IlJ1)vH#|K21ZM=1ipf?u)(8(#innwFMR)egLq z5(${QVRqwHl?XgRL0c9LS^5u-qt8j&qflhP$zi^k`YQ2hw_1(9>rA4RfD0hEY%U2K z+z&8BA!=6hhP?d150hiSG+jUsgLb0sjdGefxmL+fsg@ClCUrbwnGjA`n+h;GE##Q7 zsbYbFYGV`VGNQhQksc-`W-xLl+45f?P62@U5bn|N#%S3NJe#2Nqhv2js}5PcL{mnL zf>a@H?8vahey30SbvP}gQvi$m=O z!65l07gzj*y)kSvoZ{1j+$!C?c@9X_6au zQp=vS&mwXjdAaE)zW?t~MPIXc{o1%Uhva>`BsD;fTKH0IssiEUY3?IOc8@Mw)GLcT zLwx8E=&MOWUUO0JNVfo-Rh)z{Vqmx&%mboL!RHJ(f#R-gMM?29U)I9$V~K2(>#+sC zr4=%$h250}?(~*IFO=#2z!U%gf~(Zvo3}oZJ1k&~nO+{Wd53O{X{DQ&tI;o+T-Hlk6p`tk%T-Wlw8a7*M8FjlHjg+%=2pOp`oI*?UNSEfN={ zDoRc`Jkuj?V5f>5&dMvoQwrWWLTe2P^WF9Z1|*JDivVV(C-67nf680ooA=+b(UZ1< zd6S=Ex{#$J%AKE)O^%pu+;oJ^*r_&=+mdU0=YC4Qnf{4+44|>x~ zj{%`_Q$8#b2~|&r-b^R^V!ZG|m6K?bQ=l}q%rHJ3{f8s_DnBhr%q+(;(khSI5=PxN zTPImB#@L9cxv#ECi=u)G#wd3z33+wM>#L-sR)@;FEoHY>A)DjO)QOF~I!R@AbpwIo zjT0RKm>faDC!082H!C`iFh;U!IJ1?iw5)Tsw}OjGz8O;F$%2>EfS~@e#o3sQZTCph zXOMxgo@hz-;k--n_z@UjPJ)3a0YHh-uAYH}D=nwAjJNhf538_eF&%7#V%?p~JhVWq zt_8Y>1ns_?ygCAfz}jVD1Y>rUdxY7Ob` zlZX{H|Bhr&w>>l`Ya94xZ6~K)2!A`0TWxbBe6dUn_1!mxqRr?m8~5hpMsbATHdzC4 z@j-AbI-U60O@Pe!<*&|q%bK?QDbTMWF*3gjcJXzR!vC@2)BZWZ)V}&}K!JYsZs0X_ zp-v%Q3Ni^+P*+7oWuX~r6zVZ~XLcva)`pn@JCndy!v2_y$r0T$D%v2D`&1ES!qEpP zx%j>8=eBcxnJl2OM&fU5EZLAmp?=s^UVO4HkNVk{I_k5n09OUW@=Pc&D0F$pG{xfk zzV-4?q;zuZ;0R?&%GlMtYucm4>}3Zlrap6EHfN&tDxhLXeGQ%r6^mt=0CWa1O;D-o z(ur3+`dNqRMwsgKaJl6i zAOTknO2zJVqDYvJI5%|@3DLerz?CHw=-z72Jmf2VEMffaVm&HYLIYv!uc7E-2Ue!q zz`>q?`hgP3K42cO*r1@m30y&7L!NMt-YBz{L{>`Bj)kHoTYyg^i^ zDpnBV)QA5|_?xsTegYGdl;wQ;MR@<|&(kmKd2e?iBUf-AQW>I&g!hO_Yi(f;1C0%6|$LjQly8&SzKU?EFAm}<-M*`Tin)q zu4DSF8-z6FkeAl%2Pe4zH;o1=0Mllm7MoPjw$%3p+!r||VN+a$7VBMJ=iOJi)dtZK zQa6Q-pK#3(D#+HOCK#4q{pftEdc^ADB3v>QAN2Wp`M1XCyV%M8_Vkwnj!l2|D? zRge)z=2)GSLbYy^F~D)sW@LyO26AYn;*pBQwr~MgA~b+vc(K52D8;J1#VfM>`k^X4Zk1owVUp-fN+={6+ODU=3xw#s;Pv%BH z5$wJuk`U@gNm6m(8G_@FBtYz!dxusJ1emNl2#jI$8mKA>OHx=QxB@DsAE8RO*O+9A)x{xv<%e-@5 z?>b=yYv;s=-POldRsTzui4tQlfA%}{XWg4Y!J8a6q=%%;YIZq!@;%(_FR9a*cGLtQ z94kr~jo6}2X%4|;d%vM|x;TG-h?Ne3R$D!Ae^Q|c3T8H0B_H6M284%k(-y5oba|U? z^a|Y%#4;)SNu=&J6=1T!4QQB3rH~9Ts>nVLGL+V78+D5$X>CEnpcr1QD7b>FyO1c~ z13R8`_^Zu3(kAQYR;BGY>#F5;RoTJLfjxmLub5a+Dja=WdB5Piwo*4}su4o91;o)R zcpNUcf?gLNZ%FtDsE3rnhosyb!NJ;QtuN6<)g@g2&a8qz3-7U>ivBlf!WBtq*^VXL8(CB@PWfCQo^A zXNR>!qjO-pK%U0_qVGj!d7(JN?k<*cZy(6jKL??d;8N**GxD@s4|;@)`Db%dB1# z0b1#CR_Al(Uvqi<{^$4Kzx^?!3w73R_?El|>b-ADEC6N7jtI~)=>fYeQPq-iBU855 zIN__Sr>HPXv-kO9(kyh`X}Aey7+Y)Wc(5ZW;j~bLXN~|`r%6H)oQ-|pQY;gyrMzZ4 zXqoYrMZ%2{NI;S!9b}H&6mo2ADh_XD{dk~LWE9z}S~L!vIiWIe;rcyP4n}y?DTPfE zoJ9>mM4~vA`I8wUikg(S6zE}-umx|by0rU{Jqab0q>b1jt*|BvEdRi(%3A~f=Q(0FRs1yjLr<(0X`iQ-Gp{oTAI$? zNoO9Sq8-Wpat{LmZ|*2EdQA9YNOikTTq$S3me=XmZ(ndC`&(O*(MBaljk@3|;o1)W zXHt<|xBW_d=B_%|PpoN6yPr-tdtl98cBf7Qu4~2a1ha9x0{PG^b?V%mMiOQ~`F3TW z5DvMjtK=!^m9qi7zp;avY4(a>sVqm>;1#ZNxMMpgS92#v5e-)6oPZx*rm=^dR*fOm z@Ey(6QIQwp9R;i{pJ55+4vWcax6mn$(nm;=ymzD`$<8J1q4E%Xaom9?v1(LV{+7Me zFK8mEUZXt#lK0Zh)HNAh_4qc)-!z9gv?hz`s2lRHwp?N+l5W}WDX>eqI+YRJNVva1 zbxZy&w@St|NHd@*IG-v!Ra6leiF)?XFCWZ!Np$&DB}AcZG4y?X!AjTNQzcj3a);r#7;SO)Oi+F^tQ8;4vDypxtNNMD~sfzOXnm^ zh1Q38Ls~Sm6zM9FX)wi67~Pi(mp(ieYl$nvE^pJd`(TOcu&m(oRd$>Win+uSgB_0% zt?I*DLIX7gdif1N0&J6GY@Wx7p9U%qB@%XvB`6^J`UF72MzTT@G_C4D|L3(+&t}^< zH#EkK*S@WoG1Ut3ze`D=Bov}QnqbCSO>(n;Mml1Fu2t~-)6sC63^P9B&6+bU1{{%{ zrdf&FWjAUx?r9ZN%p4SJsMVkt& z!(S2?$l9=w`J(LP7Vb82+ms{Dy(q`blEGwXPqi*X>Y#T>i%M>y&>!u}4ITYGXQ^!^ zu9ZFYjq!kQJoKE7i`pZ~&g>c9$KZ6@c?8O)UM`LHYK@+bZRyF1RLJPncptH>vGCP> z$<`SFm1-607`8e(qgS~oX+=vBM>tuxV$L-x9R<^um9o!p&u(#OAcnh+l@z<(oQK>6 zTFLMebC#tp!6&=>MIpw zJ*Sfl%M)*MmM~U`Jt)X(bw%*yQ<=zVt*SDVg^@=WZWqZ!Z?c?TEJFu71*}n9TQRso z5c-0|OK&Pkw^j`?X^Oos^ZCAZy}F=eQRsRDsMQ^>MpZgqjvcTGrsL3Z$?q+kK}W<= zHYc&t54zySEzW_ekBJpnxxIMN`FII*2{qfX=3|=Q7$$yFR}L}&7fJCSQbkY>8mFv_ zLrWyulb%hR4Mhg?lC+yfr?gk%D|$IRPD(K9x@koWtS}QRTTtI@;Q4Z@s`Ll zhFV*wQhM+~WJjz~Wl?K120DP&TXGyZ`v>V20+TiBe@Y4H|Lgsm@KJF>g9f%iGMvG6{Yp}8n>WrI>Q^k#{=mkMKw4pvKAx@Vt>ZbhJB zmef)N1CDl71A+~Oca3x8p+*22De6jrn8KgZ2imhjiO|QxL1wwg^BnwPz$PdUVN4 z*4BFcNNVWG!`Wg#r?!ArP6U@-16_V5lz^2ra5zxXo{g)UC@z8BoIWcumKd;4$q@+1 zn%+}nXuq)-#w37X1@-;fK{y<0`QeY`b)y_uM_eY19Eo54SlrN^fb{0=UpNx@d4BY( zw{Pt0@4kB<{=a_UyZ7n0X7UR06hD0X+@{_SZGY4a zI3g;MC~^MA3i??pzY`AZm8#ml*bV|LT;4I@;;2arvSiCGgR-}0A7+LBPra=qvOtEJ zG7xQS-Sn*pROFR{e5ucFZ#}qt6BN|0^1{%d%hO5>=|iICrA@a%sAP!Li9oJsed)QL zAlD0$OkWd=1iQ1eH9coml$7nt`jG`kccrA;Ce^v~BwyjFK{7wU?DfVI2t&ze%?b_u zfo=$T97!R5X5!o?h^q2$cMvnjFu}UB+EfO1+HU*)Be5dDOe5h)vaC@jNF7^~w+?VM zpUvW7Ox=vMZ$N-XwH}fPCmyASG0rgfknYDdS$aR4|=4(o@z4&>;)3jp2_?-%fdFd9?qQK;mAipRou z!R)Qh%$8Z+wJkF0&S0$DYKQbCCTD)c4*Q)N!vkU?M+(5TIZ6iXfC2g1l5EMjNuhqF zvJ_P7TvQb=IIFjxAd0|#Y$%zt_exo}UGb_eY`{{iK6}G#L&bNkwFMmlTl5G&oojB& z*|d*v?!_q5s%M~~nw_O{+yR%)@<-Sf_zb7VsZEQmGP_6lRmIjB0%-LCo5XICqPZZt z8u$Ze9-v+X9@Fk5vBcg{Xe3aiEoWx(yZhQYNi#&&qLeWErl zU?y;SQhqxjL8FQ?8rMY=eIlCyS>d9PPqxf+eDHTu!_jrBbS#`h(>hJzwsUMSgv~mo z+HmhmSK*Yt zxq>pg%Sx`8=3gr{IR3321DDn0oG^kc~-#n5yh)Z1siswqWecDf=bfG@=_M^ z(MnOT70KwmHeu#E5$AIC7f+x6}dXMgR4{O$xM%12EL5RHrm*J=QXr0e%8q6lJ>;TrmPL zZsmK}TtqQLm|;;yM~u9W>X91jHH?~>T;5%${0HEC4v=Y-|EWxvwc~JM0MAa2U_UoYRgQBg5`^8Y9knlT7n&_( zEBipJk^{I#qV)^N7TO*I7tGdg(AW-TA+THSU`Qg%A^c={QGM$E^pkMoM&-#3m07)(PEal4&Az z>NYYBCI!4D0Y5DeAPu#|oFm;1G@1*#dT0ix2E5REctIP*sEkvB`Q|471aU-D8LHZN z$B=QOe%Xr=~n+kL>fWKg|`j>Bv8;@~bj=kQ5F;Z;0rD-{6a zx`vaBnYU=FTclsq$-!z~MILdifJ0x~4%6VolqQL<%V{u#dS%*!H{7QK*K2s;WZ^n3 z<=#6SywW~px&(ZvOh3U={6JS4eO!pmuojRt0+iGeDXan*x>fjvMt_9kY-NoX(09si zmmmo43MIfUcDA%O>gMF zKZNf-@ZJ0Tx4wEaYs#TcrTINp7itsofx1z?L=Vrh^EO>50SIc9E2IW)TwD?;5%dN~EY1BpV}f8kme4Qc4S- z=>25vfl+;=+T$%8o*`+I*>;KgbV{OZk*d40uZP6Q>*ac#F+gO=j6G#}R2ZI@By~i9 zqMSSO6v;a{DQh<2SdlnkI%qRCsTV2?&K#BZ5{Ph`!H#F#N zA>!JGX%^LF<$eI^Gt=ysS*Ju?8fC;-y^swo&r6O&n`ZACJ6p9`>#1xib@;tjq?qi} zwEFi-DUy~R#1Fx_n#buSDpLAVKl`tl^-?zQ8cms zHA$~zXTbO0s>UL{1b+DT8-9XMK+Q0{#rWh^D{mFp&U|E9rJ6`hXdBv5b4Y>@=}0T1 zfyySBdm4{~^@J>^VIfyihtr+p%>Wvv8#{wfJhQdNTrKkLLMPjkkrnu85bvz;A2C;3xC(yX}m4?7{K#j!!QqNCa$zq~j!>uEg= zy?MB_;XVVbLDgV?=X5mV7?wK(1uT109&W_(r4G@)wQ&BhJ3MR4OJ$IT&T=D3`^M3i z;|fNKGgM=a^{dL8*%sP3KY-^=soKdpJ!iOr`ZZe*=xE*L3+8RMXC6w1sZPih&&4JH zd9%!mw;!&u)s>AwqQ`()Yo7kgA=A_!CC)=EPQD#3Omk1Jwyt%h=u*2$V>8{o<4&=Q7r0ee}EbX{~zq=Xb z*aMlQ3&_lfrd@^KSNGSfc}as#$zzGc5dZ?xv(*!Q5GDB$@e@d}gncfPqIw5lbbyR=jc#iG)#t;3&1eCt|AO=5iIW-+*Dz zIDe-UCb%e6z6Dzmq2V5~Db;@p|Isi9|M2z&&^n(bhsCWkO@+sF;u@e}^r-#N-FJC} zhr@2lP{#@am-UuVmvT*XohsKD?W11db!0oB$K-UDy>IP{@$fn77&r7;xwSaqjijK#%a`Y?}<;A+NfGs1K!ncq2Y-79!Q+nO!TA&wA{vg-ay_f^=q9sv{uW#a*AW3H+dvI#v*Odh6= zXUNbs&X%YaNxD=8&~Bk$6V_#K3PN8_rl6gq1kP8-L}hjv{CVEc>1M4pgeIpGL$t+a|#)+|X+w{E;clPF3qMd!;Hm3S?c7=|b(jKDYV zUx%}3LH^D!-VG=4i}x@6QJ9AQ3d#qcP#Z7FQ+~ti&wx3QFQ)AZ9s?J{vmOpYNRqZ$ zTF~+{NNQAESQ1)r#akD4UBdpr5mZvQepQiP>YxCsvM4fy&=`)IBwx|;8sb}p=OH(M&fDFAF~2JG3vATR7$P0UAwWn*zZR}C`wem+_*qVfLMtJr7UsN`bt5tY34&)r=vZz+Sqyd>EMaa5_3E5<4;(3Y z6x1t#9`XffCIT?z)7_>*_HE~?eD~amy@RdNm>xj~!-xj51;9~`@LaQYnj+geNqB8U zC@GtnhNz$`0Y92k83qJ6b*b%Av)HDPP0ap%P?P`~u46h~zszU)9x5H8e>FpN=}15v zIpZxBHP&e($%i1KEE%*dB?P!^UOOlsf`08-(fgg;?^5FQv9B$r6KP_YBKE%RgO1;6 z{0!h4ba`7eU;Gg_FaVVS^o3-{WN|jiQE3Cf(vK;*l#?O7`Tr^W^o3}4m(_fa>8jz1xgN+Wsmea#=?01 zULUGR!2PN2lojeJ=GV$?wE+Hbb+%b5T3&W#nK)w|?*UizZ4n!2PsW-Z;#heqne3&| zMp)&#L%m+^J+wXQ<)L{4pT!7GpW2w-`m1czCiCeq}N;omJ<#~X zbgXURbr5)##9cK}Nc3|(0L5#A;FnlSS6H7(9xl)Cgc~VMTMFHPTJs!mTTjBiw+`kf z^l^ihuM6qf1ip%k9Ed9U=uqCoL6!HsJTiw9*fu5m+SWjduYC(uCo@nH`WhIGmw7RV zOdCW1pyL`Stg%whDEVOG$x!D@ju5}JeB-qnhC_M1cJRGQs!BZJJ?sNPw=jPsBSOU@ zT|EV+%7Z&dL2l8i;iG?Gl)co)$VTA`Li*VSO=x13{p7f1 zxt+X)B(F_bpOz01rY^thMwyurjq!Eo-l$!t7l6V>iJsJH!T@t90S=(cro8)Cm+Hd0 zuq?k=A)@b+AUF-u6`BHGWhdi%+3e6P+sKTSH=Xk#SW8Q6l4{R(*P`nk_4E6I*9~IctQeTJIJR5Ty)cil9-6 z<7x6ObN5gnSuEtE4GO=*f7;z3WFKMZ=A=5wvP*yy$C`veSv(uuus~C^Wa<{$o?Ax} z#bMG?)6(*x_cmz_{b8rfR%Bi$tyeW$c9jKeJ3tR6M|<6Zd6D#St>_^N?-{VfsZMbp zL3$y>7JfYsbbr!oQIycA^(5yMXiU-RbAk*O_%28EmMf(k>PNz2))0X;m?5lmcy>Tc z0OtmJB1LT^Dwxk~?)s^tgb3gtb!3bE0B?LF2)j@K+B96^D~7jSxl?#5?kWxFFfU1- zu63S@S4?k^-^hn!1C_t~UiiE3;eUGfH{pNG$H-T2pQo?E@J`QmN~$F3PF6B3ig?$! zP#o0lpyJ0MC<$5^+m_-MB|%V~eRpn5stT%jx?Ish zjA>h5nP&b=oEv6RjiRr3gBMq#k;JAyCPv1hI6<>K#IV2X>+)B zR}!0n!Zv~wL)x`h+9gZzs|p@jiVnK%(_OC61xpuL8TPr=AA+f+)o77lDoCfME`LNB ztC*9Ljn+~r!Y)>>+8`lX2?TUUv0Tb9voEN?=1k*Ta9(#P)M1`t>OvB8F-cTKVf_j! z?$RM=u|)1QG8cU5&?b(f4XU6jSQEir>ge7UAcqnAcnx#JpkUXAAk;z#xF4eCA#rD<7Y)r zsDHP6r=oRYXYjqo++&E%DDm4~@-4d--9YOmYaq$V21gNS0~=(=n)p#rc8vLkLAw-* z@N{-5g=z=8#-^l;wkh)IZw7wA{LlT_LZX0PsEB(7=m5 zU}V$7KD7w96(Rx)sYOZKQt{NEyKJf?A5ws7D>0Ru2WFf6;Y@CSs5T9d;}7|+J@b8w zaw4Y}tDbBd|j7n;|1}3zt#mS`QY7H}JU%$T6X%io3x>{sKEL z5*0S6#xXm*;?&Cnu5MT3C>wC00l;DaHRIsNYdMnU2XnWQXAq=KU26<`-(M73#9{s3?2mz!k6%JiC4T`7u7?TQ!xvAVwK+`Sx2Pkl(2{lI^rzDl%D} z6Em}EnSq|Rp6=i?S3Ds3!@e|>ZgXLYMFPg?r3j|G2V@APV4L^QxM1K6QN^xQVU62P zg~F%@C#)3Q%WMQh0gj4lU22=LQoBDlN*L4w*hPwmti`LbZCL)a#|zS%Ktv55x3GZ9d{-DIo(YzYAv+i!)B#{8p+7)aF-~7l{pw zMxt%cD%|4ir!B@DSII9{CJOS9(x=mn(=rP+Joc?zAk`+?Nkip!=4RLQt2I|$CK@D;4)#)qp{p7Uxv)rIQwtstkP#iPu1vFwEWzB>8QGDNCA((F zb&wc_p?3BU^>KR(9-S;yDd91Gvx=k{d34r_Xpm~SK*yZ9-yVD@Jh4F_XY5eqg{0O< zs4PN4^D$sI`!IMIzC(cMBhsp#dAF%3`?p`beNIu4 zSBR}57NaLQK?M_0ck!_qtnJvzh2SnVBv4b2k~aI~X?r2mZU>#8f;32|s;-eArA+aj zctp&1JFAbSjTQv-}BmRc0pcJPcx!~Ch%rdJizW% zAQ<9+@l0$$f_N-hY7pwm z+ARSa`kQr?U3n0*F-8ZuLm{uD+mm+#TdpH&2D=`(@BsUCr*JvUkEgX6qzvlMPSsVtiM?5ZJA9W2(+{DC|b&KhzQ0StiSoh$N@bp_#=2%P9yGMeo_xM z;31u8Frp(2^F?04Ab*s$NY`g@L1y%$x&^>J5GgY&L)H`IDtv_)nIZIwppef@Pej`+ zWhb>{P&2G2J2TT#xWE$n%mgF%U7QfWv^EtSb)8E%>qNVsHncHajAc)p^ar<~q zIgC)828P5k3V@%u%~a_pC1%{(0NedB5DtNHg-cSP(wIB)y;E=YN;)0T>e~g69rEss zY|^56hHj7Fs=QD`e7Ry_1|mVmL-wy>8EREUQxy~)ajL+f{n|>0TS?UrL&<7-LXC)x z5T~vn{XHYA;8h`SzbUNuJ0uOUo*vT?JeV5BNq)CI%hL7Sirt5)g~}J3F8GU;kGXZvzwr^m$O3S%bQhdo|+(!EjN}rd0 z_qg*=zF}do2u;A!p?)mVPQMlKMVtR|zv61`0E+XCacbw&{Gi%292}z^Z(L1A~lBqB2t8jnZdY zVJouEQg|F{&U^?jlK;y>TIWQ#DOvdf0R_p%R|kTtu%?s?Po69lAQ{_*-A$k^EHj$` zn$C!Tkw7geq#ts^Ad4jg5I6_5{e7}6iM zFz#*)e6Nw|ByroTe1X_NeMbTYF>E8+jt@|$9n@XFv{CyW?%RT~Jrv`Xq$HiTpfWDf z#+yRX$5&>+xa}JFr?XWKVwFw07c~;2O_98sF0%ouq^v4&M~>cBb~pm;*U;18?_fBTAG123?L z|24e*O!jXTb~aoeXim@6Swq{ZqIx1&bTN?xpTI9HdI{Z1D|9!t=s7laoe#_^y4=x{ z^JE2c4w%DfK~q6CAJ7`jKHEPJ#petNL@?WuLXaIYYF0<<-})Mez>s=$_j$95*g>s| z&MC^ZjW4LXdv`cbpwQ{6BDxq8sVan>Ne=Upzi8H{$Rb7@N-L#)N;I{7G7g;=**I7P zX%D5&RkRAEpR^*EFA*p}0CrC!p!*Wxel)Q-S_w~r$|B504Zx1fPPXD5t|vVuW7WCqnYR0+}0)e&F&IMn6jz))ZCjb0ea|q>oT^*rS@G zjuL%6c`sGviU@c4WLk8Uu^ku3V#sG?$<)W4sb9T+kskf=+t;Ab{^b47Z@ICgoBcHK)q+2y|r^DhMF%IQ9Fu$V* z=ynR#n;b1J(~1%ZKy3)cg&Va}mK96W#$ENes>mYAf3Stsb_ca>>p>DfZ6!FmSAq|X z0jloxm7i;k=V(3Eyj_SrOLj0QRuMazT*O0lSjAigy2WmhX8nPl*9$F@rh*I z%6QZ13`>)WO9YMB0?uE_e?k8L-`Kq0y#F{oDjDhf7wONCzSvG2z!;>m*E8TlAoI4% zyxK>w>U&>-EVoDZ5p95k9X_}xB~zmn%GP11u}~ltMLboA%kK=e(8KW23EGIzGC0^? zR;gU(uET)k;MB&xM(cQy#Px+7+*MVuALvFyw5skdi|QWM#A=qUtYY~cA9g~L!8(M` z{WPPeM8U2($?3w_0v%}dFr<`8pOWGyEM4s6GrHmQLwhoxdOcOw`UwqPaA0g>K9I-v zaJ8jL8Wxijbg3lUoYpm zZp1Yz)TUD@VDA(_lcH0DScN>&AU%yRfg(z`l7rUlSr=$-*$%-_;X&7s5tCn@b%0Y~ z9KTDsLgjfheXb5?D7ury$gjfNznIy``yWC&!{8+X(qbOCJ*QA5=O}yI^}3iAZ`C|Q zHQTm9eoYOaofPkV^8;qvVdys=vOgY3m~69{8MuxtX<{#j41JPmCa&raOTD@5HZVXB zJFKJzguvfZ&ZCR!7nhRj;Y!!l4Cp~_0WR<}t4Pu92A})jID>wdy8zG1dcp}cJG*)6 zUCC~0Rg?2@kUex<6yrgVv0G~!q9O|u-gd9x zk(S4~@CQMA6{V0Y8D;_vOm$L91{c@XI@^>2(upiHv1^Z0kSpw}U`pE=+j>B)dUM7J zhB^>skSf?Uv+*Le?{2wS4WCJLG)q5`%Wf)BT@lR#iG~k*T`B?}u4xz@%YJ|{I0Rf} z2bcyOB8*K!t!$B)Gn^jKNV_z5Kb_t<;%%G7U%y3x^-cBUhdFL zk=oW&8tZz7rC-+rdVbb)K@qf)f^^%}0ySOB;( z56&PZ_4cld9BG?T-{hu|6|-;bM8k?vs*qH#Y4&kwo1w{gyCym?4?%sOy|^tA)4-#J zVvZdOJ6OL2w1FAHkXD@B)KH)x?@mtQZAZh=*l*Zl!%mi(^0zDP)qz5L%Vs*?3x9V? zjs6(kf0V9%6W;!0@m}wLNfoYNn%b7m|4rC>^n@cRq}G?GHgD7717~oe0|7Aoqi?(w zelNh%%R9?4X;;eeJuj)--$B`lKu;JkDe4%SO~lOiui3e44Y$es1(zpMf!NVd5QB>8 zi3vOsWR@>I(B&S-!6;Fqv#hMOE5paC{(F)cWLTHC-o}N=CDuh1sL3*{_ozgW!Zyh( zI;`oshWycjW#+YsI__CYq*AFcu^}J=hBb9<#r0C7UYS;cxg@~bB29Xtlp8@AJ+P>T z!rYEdVwCl936RVzn9sm zW|=hQkvBe%3FLu0_!KSENi62wK>@NOlwzo6KU~%iOhY)X+~7=YkgQ%2il8rA%i(Xs z4}S22zfBAKN0QaQeW}@e#nBbUjd!9t9w=vyd|BH&@#qkzn#Q2$JETN8SCv{xK$XB8nNMHrlc*bQAKj-;;dF=x`G}R7lT4Roxs&Q`}sj7=-m4$G_z)_+mnioEB z#7P0%BY>Tq@29Op4g_VKtax42yQ`-c5e}-6*EFPsEO=C#oRZga8K%=Av0tLIonKY< zDV@o%t%2tCorvUEh4z5z)Cz2y#ra)5Hx0+6+ro8d6>2DT(h6kK7B8z>+CCV>VMR(z zvAoZ|dZ9x&HcX{e{R6wJ^wq7lES}O~Hb7EgXr;0Z!)kH8WU!coN$RUdl#cgZ7 zU}#8D-vnZwc1R*7&^`o==IE8JnvpFoR64{~Y3=peJ|jih(MB;yFM1*#X!{+_{DHy0 zp&kH)tT9mFn0}EQEIzX`<9&ioPLv#Hn9ume8(QSDe9lerTZC~#9J#W)V9EfU>pHa$ z*m>Cw@uWj*YILH;uDstC-vcPP?bKPagJy$vI4pQjJ)GR}t`qu$yzcM4>gw9aUy6%r zFD%|%YlXC>YoycLq}FL22Bi;T2r7B1PQcnRNLv;17~QJ`c86k`rWZ+i=lYH$u|tCwsx)i1IN5QTY<@9 zfGUIE)~dM;=+Wso$wF>57B;&0HBCgcm+ps;Z27GIljMFSXw8b*dbP;E@caNyCK$01 zh!_KYPCD9%1i%19W02gjmIPphhu_LQXH5yPP6OkJ>KNXVV-veWv+D)i_b|=2jqa1A z3#DWn-qUTe`tM!6plpDG65FNU@A8?FuwvlJ(c*S;`)z=PHpqF?(cbzh ze}lyIY1d)S*fLO7p1`YN4|4zJQk~vvHEL9?Yp`dU2-zoXz!CreaTOc{3Ios{)Rq2h z9sGW;HN^=Jkk*n&-+Efg@~i5SX%*-t%T{N7LL(M}$MVOZtd_LGzx}7Tp9h0^sSUz+ zJg=WRHcpo<+L>v!q8;Ya#Sg_+dPB77k5c_qeNchoas3ELOJO*~x7Bkle1LYy$cm=& zTdRbvk1;DSx^grmL=DSM*ZwF+6+tT~L1~Z!=_ET(PQ4hoTRF=XlOfBh!fYKQY&MlP zoYswp^*q39j7A`+Xba5zXHVF4zQ~4Z9X{+6?cNq;mh!boRS_{JB=TiU2!j&utDQZE zHo(2-Ce?@HCB|@HYO+#LG@xl{NP4_zc5nu@6ypix%~=oyZGzb5<^nW3B{u-PGHJ1% z(Urz-fKK+x9TeQrwb=&lKyY_?o*;@4tTkBfp04K9GLuC*kc6 zm}7kM_Idg{)BNW_@%?WrGvs@6@7P0qx+iBhMvqe&ra5T_LNGV?!xCopmUm5;)AX=9QuXo5P(9 zcQu_>)C#q6G2ENg5=WV%#1sy)`D>%!O9G};RQKn^N$~Jd)Lmr+T|`%Qip|U=r)nwY zBc}`v-$sS}0J5l#0YtI{q$3y%)+NlFP-j4m5=5)kjnZrbAmia-f33CSjY6LyZjFbw z>cJP_OM@@}ob0 z`zm?dR{me)}2F{HK8Pglz<`SlZX_3`JFEv^E>7_Aup@ z_{%XP!jIXoLEqhiDL%fwmh<0r(4imScV>gMp#imDw#?t&l$~pv0n3;2hLY=}`)LOh ze#)~OW$jtY)gFPL44|`CjmszOR>w1xL(_(t8PBGX`Y)5D!88_;Z2PWXsOr!up37>M zQtcI~4-c*gC6s%3>^vxpB0sgBdI+GvNS&VcOY%ijd&IX-B^#?;Bl_Oc?LyHiZ0rVh z$ZuWtq`#rx`-FXu>&AzQnHL~lEbAI2({soXRUW`5>@b(gsO77Y^XdT~UfQ{J59=$) zB7%psSc{^Xw8>t{Pi~5>f0fIQ_KBwvy0%uH?#2f$HMlJ^sT z^zBD)-vnNyM}PG8tMK;Qv}Ja+A-od~`6O)l2~zHO5uCvms{Nzri{*eitDZf+1>GDoJQ?7ON|g=vGN$7i4B zq26G{0=)5d^cfeXHYC3J(0&=9e2O-19){mJ7+0mnZas|+J7*8hbpvmB$95+f>pGew zo!-J#?bK`DcV5lZw^kUH?d}n5KjiO2ZcIEK$DB}R4L7hlM^LX|V=w>!X1X)W+X431 zW;1axpl><^GdQBA*~6*zyp}QZh*hnUn=Za!Coz~`PHcW&G zuU2%jZ|oR@VCti*v>Q$2Wu-{@D?z7Ktz&=L9M%G?>H@B3 zSOwYDqCQhZXzq>k$|VUzI!ExHoOeZ|Ge$$cp~Db3CsJM3Ok#Zd498NkDM`87G2N%| zy0b|z!Ss;jkere)zQU&=L6>DC_=xW*&#|rD-w%hi3tmXx<&85rjl-2IZ*8I3aw3!| ziHrktDQ?rhX(fGCkDb+-3xt2H;DO3W-RBw=l69w%6S~Q)B;ZA2i3gj{G0sI#o3UjXQP#MLd>r!8B5%ymRzsxEU3 z^(tUwH|Xqeu7Z7+%?i+Go4MvIjzA=s9~|0#@Z(kmrvqX6ii0mG(=D}q<3d}q;&Ggj z+>XWV5p~wyT9+5TJDW+uj$$DcwzJ^lW1DblG<{|(T0Ytom4QcDLC=Hx*VW*PyP-ufZ z(*9cB9UK~mwSdh7!F_ucS!xoeWQQyrz=)VG@@-ceP-If;oo%!oza6p&%p9v4TwNmh z%_$>0BL+wZkoXRyLjz<%TI(2@eAsIxsXsYmyj~U5#x8K>+t5U}zNF~ZuXVgAiy?Qv ztR3)-2r4G00`@n^grl$7O?ALziORq9bT4O#iqm#k>lcXlwNf41I}7LxCnK75x;8%g z*dKOTj(Y}=%056>y(HJ9Mqho1_Y7RxFhJ9)4DO=^Jm*}A@{kID@mJEfYJ2nJ~60&7=p=5T*6YB%0ZIKJt zZIfe^I^{pA>s(r6N2Tl=m*H>2JX-+XLJ1QN9H+r3i0K>pm?gG4!_YpWWib$_9VrD; zOG>*d1laDiiN0l_yBhRDTW(KRQ-qO$7Yy;)pPq0jTNTqxiCm-u!*b7sfH7Bfm$coj zYR7Psm<|js=M4%&d%eI_T>{#1Dx<%8`-y%1;=A|ZyAPzl^^+hc17f$;2CzER@4V;~ zZy(brLsB??4%?#5Pjya2wmx;q#nam<@|iOFD;EW?r+tHPQDFB4K1@UB z+0LL$Q>zyT^hqEWjzKh@k}YMh%Ivhbw~-=8@=2yBecRC&whr1268u-Tc5Xlnaa&@| zU)nB^;m=&1lp&ccZR-U^w^)x%?>AK&2sa(;;mbIb?*tlGP{DAb~7_J5> z2Xit(S)rE&^GyirCfj9OvuE9+QvTJZomQ9qf=!x9B#x3D$Lm70IcTzl^-D^OzFq2b zU!l;NnXd*c=>}32d)trjMsuSI(J2VC19pxQ7* z*{c3Ld_Uj*F1-Ib-+lf5WBdAPunTKKee(W?w;zT7kZ%47{sEs|;CiFhH{>R6?(6|F ziNPDeiJBPrc?tvkABIB`cxCZHl{@VR5W22DDv;yg2p(cpy}9GJ$}UmT_&1Bdi73oa z(`SSB28XeeQm3o>GD6biZv8Q24)Vrdb7aRM0}f^Sq-1;6Wi5+)V)}Ehz5KYvoYmh@ zh{$(LUQAVUq!xB(v6wSO*db(Hx>mMpSjVa8IKgVL^n7nL6Ha8DKk2q3K?hB9DFQCF za;2vEQdQTpQxJGTEYVbfeYkGe|grh*SC9TA) ztSGf$mPJ%MWaVh4GNK(Fj!{Y#Th<*4qmAHNwrG@#@Rp1!o)8&7p{wQifRLhwTdRj% z+w2jxv<&2(17|CGe`9YsKz<31qTluv(bJ}Ei$z6KlA2KY>K93ltT7{R2vQ*q?8ZZ< zaL{~a)-E}xtZFE7E*Awu5!{#6Lcs}KX*i!ax6X!u&1^x@z$6~>q)^RT!n{p#zRf_U zI_d}H+iF(K5+aN=l|MMI8JLTynYqe@@QV+ord9SXg9x1vO9d9J|a}1{>B3jN!f`v*q0c2n>Z;6j2 zAW~GY@>T$`9HELOEl+;rGZR7=I4IP`2SPs?xhvtc6 zgC(!woNUbXTa?4@@cML4PZb)L2JfXaEVK1A%|3L|JtjgdpYG(M^Mn3?E5O33Fm@fR zl;8n~j&YtSyFI#I!jMGl*|1eVaZ*JkPt(z)seH&k9@*AI z`y6_JioPApr>9k9el z*PI#^Doj&nu^5QyAveFXKW+LWPOp-EK8Q zOuKLL1wD>u7TCK@^&oMtSD)pI9Z7j&)!yGDhdCXUT2;0dQr7fH+RVlB(k5$bO`)`b z1FZybj3k4?;{d(Y@EFG+n>f`2x*{a|$Y;>>E@q0{&OWB5B`A(+?{E)v|~kBOD` z_2s3*fI0<&XDi9o<}y>5va1BTjiMfb%WenP|FSESu}aol*;adtPdP0=_lc0 zJRHOJOWlHclxM@L-FNH4EKvd3=>{gcR;0#Y-YApgH1-!Imx5Pi$QZ!{^qG*0yT-(* zzh$Ek`54u9^4ur_3E>$BPKHo5*_xMfw6#8ZXt!dm1L}q|i%9}_+yHbBNlqE+F9(Nkp^o@g60K(uPmf7=p+=?TF*$7rJrq>uI-mgy;r z_Yu7VqjfA90(xw_{LZZHk_(WLm@8P~9HjP(vTD~lvn@u@0-wm7rzver~+fYCua&SDj+G>{@kptu&R7*VzEap@Sgj z_gw3UwN*|&{kY;dwr_@eO0en|opGS8CYL>y^N_+#t^LbOYTj}(1WfQr86E>*Iac6* z3-ypHIwD#=WO;FWhMQu>4N`&Bx9HaE6eWG9S8}L0)X+qQ?JDaDp{ zu#T^&wTFUYRPqQ?=;Ur(uZ`5NrXdA3Q4{@!;TG6c^urx}4J${9riQ4L17@HIRfK?@ z4}8`-`*+u+x?I?FOeIj{-|sKWLq#7f_1fV|lrH5L`FvLg4B4*wP+xR(|WaIDxF zH(jBjAO{hJ3C^P!Z2`^^(uJMLG~j7ud?6B9s3=#E**7AKC}}h z9=sg5O;G-d8_J}jxODM)RRo-*tSS1UuJ+?hsuPvYaU)A$R;}-=q|&uqAYh#~_G3D` zu}fwDG$H83tu_}w)YJxZkoN%fkYie52ukF7q3{vQWDA7m@-9`wv0fz$gI9QZ;Rj$kwlv|l zmjbnEy%8L){NhZ6Zl>y*MPN4&wTasU1Bv2L5$Y1MVDE8sCmZBxN|;Z1T2E7^Sr$B0 zMO{xrNk6-_j8V%>3r+k&*H1bfj=O|zvLfIbW%~skYwnQOS7`hJrMC{Us%r@nsw9@q zMW|ES328+aw38?r^-3vhDSdHr%fI{J0}C_8Q9kxv3K+%dE(hwA5lx1u4g=LrxhSz* z?U08QWOg{oerG4DfW$H-){3qIG}67nz9;{M?|qMD%{MG-z9Gc*8$w)($$S5Ec>gSI z9&}{Ng|N~m3@Ry7BQcBSC)&HGM2$*W_UIl|>g-NXo}42STfL4{(L@pOquz#4df1;F za1uPJ=EMR@cqdapFmVa`hRZItVB8pTmR7|AU|rmzyI|N<(4#Iuli0G~vgHi;Zw=e4 zi*kQRx0C&ib9eM2zB#F>-gj42yUU7_rQddN4l=+gz$3=UxudkQsYNBl)-5cQcv@AS zW0-O`NL40ziJb9j*OGlL!=)vRqS4MYTBZj3xpGoaB?)&a(IEwp(pF!qJy_XJEWmA` zP-9VWAGP9Ay-;r1wia0JJAU^nfZsx?D1s0a)8fq27jd z_yoEDNpJr(5CXe9mv=iB?{aL<1Qty_?QpCF8gg;JWCAzKI-Ew+l}j`v)nJX9VxG{-7VB#3F?fi)HHC;nK>m-v4Z4`e`0L*!IZjFam=X`~J zz=~!NuWO&|xsEg>Q_(uIRgY<`nb1c|!)}3)txi6n1O}{kd+)mnz?HOQ(JzzjdYzev z)}>Z?276Y?WZJADG&hqrgQO5nYreuj-vRF_OlS8PccaF9*==AF+?Dnef%`xOqF6{I zi>BVK;d=>HmgC5ifO6%dOXX=5$r4uwGYX)?zSg4kkVG($Go|%SYK^Iy|I^!-bkTc_ z!PUm^s{KDeza@I>1vJqHBd$=l-HMA^{oqQNCZT&9O9-{h9aN=czw6X?cMO{R^^+3_ z&^>MD?JL0ggv*(CWrNW1E_4s_#-z03!0BUqc%T}#^gcB9u1pf2OwJ$5mc40807L_< zp&G8RAYZj9?CTfCKP=oZyPABCKv~O}H^1bPcZiVR<*0vN?%QaS$9rGTACYNQav7Rh z=JALb;aEwMEpHyM6}92PZ{bFwjjR}&$v0zC7*g^6cmc;!7o1#GP4c0_`>Eq^QE5*V1-7Fb|9<-p%UT}5d^uMpC7srKDzoonhxH;gruP8NXIbtxhA z=C(0v2*3HILER(tG~7<0bP*Ef*j4t#&xNAhS5nHhM<_FbE^kO1cgQDjN#e%o9s+do=QiB^NGt{)`uZXGhixXar}9S3+E`iUkXuGk!3! z&7?FHyanhqJ`r{3axDd1~2tyykw?F*L4?Qe2>`TirR>g{^*a!55=!^!EI7rr66u}Lr`@PU^ zKi?G{me(kO(rsLr+}we1vQtjd6E-O^LMg!&MO9=W0$g1Oek%S1?7N-;B(xoS(Jq95 z+4y#W_zEx~m$s8EFj58=&{3&qc8O~8Ijqr8iH(kFQ#3)gGbrhS=Vkpe!f7`3LL3+$Wt&>Ii2Jj)1Imu9fRV#$Qad8(De@n*e>uS z-76`Z5$Dxw#lb4@-5p8g(~-MZIbZ`n$6E zTTvxq+205M!d*XgMyqTB;_NI1gc=E{~+3m$irGK&ffI`4DklO)uv0+>+o zftsA_Ks1Z;@~MozK$?MiCRa3E_}*M=e**B9P3$)yd0%rSJq*Z>Q>z%5AI|?Ik(Mys zvDuSKlIUo^%EiD7>u1-PhOdTm#L7s#avA`C#dwP zIaEk|UPr^WXNm4~(sYv>JmH+j;C$K_Ck!#vWe$%;B2sKm?fc` zewX+7l`S=N*XG!xyKqMvA<79ebj{+-fp%9ZM$9=CAWnW<3luFL?>2LLCtbFU-iDV$ zSPogG=ncfxaZhNG1-=6+XWP^DtqSqp zdZt$dX0@AZYemLPe)8?Jx6hs02Qb3>&w&hnKhKY(nEbs27q|ew{}y)=Xui69`;W+x|KaURx%l$( z3M@%^xB3CfbO1s!_XPx}ll(vd3|BbX=rs%|wkh*RSV4MD3?r+Iet zD}Yq{#wNP_PyI#NhAHLaAORQYE1NcOF=ABe1IynPKt<*P+WAB9#1)(a8KKm{&tk|V zS=v0I)NQEbx4?lz+p)5=?U1gkr7H?qM}SEHyr{A;+2L&}A&fR+0#~|L;h=v(D*f4Z zbj)O_KEn0Vw$Z&??&|r8%?m^eHG-5jo-XD0S}$CR)q8!pNfDP33PqI72aSQW54+v1 z9hx?iZqj~t1 z_B{BP3|GZ$kK?65p>LGmE!4%?Hfs;`6b%mnBU{jd{N3B1{@3tVf5Tn%dHBnJ)$2ng zU^dtHd8&uiViV~nW|YtZN71h8~`IbFHZ2|2$X~;oJ~6Q(zUWpZL{p5EH792bsxh6t`J1LtG=ST z$Xq+9cW*XJPfohtNta-G#C}s*!v))=iU!=SfVRC#J&Q?`iuY#iUZ5y?I(=7hd3ITt zPHOuVIZ|rxEJW)w^N~IA&PIL93$9 z&7&QLBytcnJAs4y9Fmc6+Dy+7tIFlAA%W0z`QTY5Z~PB=IJ559C-5;HIaOP8cDQ2c zD$$o2uS8q2*)ds;5Y8$2K<~DyP)qfbs?>s^(fJc_1#`sJEXN=D?T1dUux=wy9yAM1 z8Rb$p3H3yL{=E0{dLj6(FfHq1!ZCQg6BwlyH<8qWEJiq@R>(3XgKXO%HJ#lo%*luD zG`AmW#L&n(X;6(B3Li!E1lggL*Z7#0ns*qg0wo03LfBys_p~uj9`}8x#!F~_B|{XW zYV~k|rWsM&x@SrR`nY2=Wz|Ga;!c=ED9Q$G@2z_#BC%sN>9AO8nB;GA_uwDn)Jq7=BQtR9+@O$bVLqF@xHD* ztiiekX2!c`z*4kO-$m+G$+af!v()g3m0%((dB{eOnvoDd6(L1gqSXsQF^&h35K*|Z z)Md-cUpu{s2E?i#C))i4T!GX$B|lkJz6bLfvSN_{_G!=B)i9vfkO&}B+u_YM zlq(W0(H?Qo%X;ssj7sWyJWCe_dju-rtq_pxN|iv)ohk$MP`pBdaXs&ayjP|Hf@BiM zE~h9U1G7Sv?rlP@yiz&Y9lC?v(JbT|icK|IkrB zXInYPiGec!Er!pDEe(}|qIbel1|@+hI%v<;_aJZG71%a;dM%CyYMnuoml=8wx2f1y zS&*$yLQ~e6uN%dJsf*QT09BOTc)4TrZG}}UhmCyiE3V%3!E_@sHfqy!5=QJyC?yxA zb4mWpCD|Qy1ZM#po=OuHk*?wBljYT=mih|4@x|wJ)f|qg@#2LPGaC3BfC3TXL@tVp zvJD}{weg_=x?BXIs=Z?mh9PBE(D5zn5{0_O^RV`*n^CqHNpl>eBQ$7`=b8ud&?e`*hSm z(mq}M^Vt!!p*cG>i1wwJO#XnNyF20<(@QN|;K9TyX!|H4PY~=W=nMpzyCN^96~arI z&m0jvWleRLWtRhRCX=n%jW4R+DVYp817t=K7IaQO@*SSl(TQAtdDYibKQ?*vSVH#y za`rB}vK&{I;5@##(T1x0R zsztbsyXZ4)d_J%%z*0^RO_%fbT0+0Ny*+^b4~U3z!WG=v0eW_hLzSQ53T=FGuX;+xzVJBkoJHrn9a;@&;R`O;KJw>lL5=73lyNjE2qG4@v> zwh}6j-1-oG4sP5Np%?@?S4dZKdmn_Aub?!5{AfMQAN}Y@;UCOg<-f7*_)Pt-vigwH z&^DvgEfki$H|qUTAriv#mdFBiL!Ye6az~; z+3GGxO)^8117y|qICXnQa0lU?mtVQt2*%airgfNrgiXr2rR$?4E7tpOT6qqW<5Q3j zxH}OtGLoU>@p3MwSUIT=(I1JBJwD4RXoJ9;`l}n*D)j74U6T^-8hJo!#sxB=?po zUYqxTs?SKiU~N*_PVd&n2O07*GX$wv37sA7X#i#j=j`b=+$CSJmcHC(b3xLRJsdn= zfCcCqwKXyLS18VkGPpxX;J#(6@28a7RPS*a5fpN`&3z#EXav?>uX^wn*8p~yQaral9 z0mizLXaQvzM8Yam>=de{la1AGVMq95bmtNt@VocJOy&0NU$ie|mzUkINY$cqz0=Te z5Fo~e^EHE-O1!?uN~c{gmcqx{PW}%0*$3eIDRW8glCK#Q2^&!vw~?je4FsI0T~^AJ zytRNvtj=+zMsh@pDW5h_vB|MSo$e?)fRm%dBx-@c{>&%_gVH4xr*bHuu-&UW${;)S zsI;NlGzYWNuuzsmp4d6kjJrM!Ht;nx;EKDX zBWS`leN^?$JhKO1__k_>7h;At_!7o2=y!PmXUpub2zL5#fA>o|YX9c-yF5P1z`fLDX|#$@l=;MH%4B5?z;PSy|`+dE2d1RAP6z?%D1Pr{kJW0}hH$ZIIbg zE76)IHVHDe!~ny4o)ck-HOd3JnIF(Qz#(aIGv;oW&v@~|%vI19n}(K669X+7xE69r z*7F7zKy_x+7O+M()>QQw#V&@XphyJM#!@ySduFj~4q_jj@+NFycG)7Em5>}#mqt=3 zh$yq4lW9YJcGs3e(7NTabf$8xoCDh)C8%!k8AyOtt1pJC>#)m~$>Dv%`Qt)ZP?Z`b z3L%_>43RfRa*s|acrqNUVE};oi0p|Ax@Kr=XAKC}M-UdYTbxu19LJjEkfUPmDP2>m z)S~SQbt!IeL8|tYUgVbqrOl3V*?ULS^%(;b`1)cPZ597rTVR`SEAUEN@G&hR0{@R) z)Bj1`v7dz3pXRF{L*)Bk-+rbFsccl&;roBVTha5uRfW^?Wp|zwa@!5}9W}dvu?)Iq zay9Q7X>D_GDH=`KYkp*hIol0@>NMp*$p~m&8pdwYSWn8`IOrd~8-(VgWw=4UWZ1~s z8b&DUhv$Lbh~`0QL!{xdJEltpYt1sL{4a*C1W6d8Tm|5+T`HTkL({N}EdATCd+R#h z$bfgJ_Ryeil^HNvMb~Dlz1mJesZb<(I^G=J=Bi$H>f9{>CoC1`!a3^=oj?%B>sW2n zg&LiEazh6Oe<-y5bV^^k-YP~jdHo~215Hsy9iT`-=_jUsQa&IRiPsr1IK(Rn4YSS=!E>uADRu1$VCH{)0hXW}xB4Z5IIMbYJgf=J! zPg3;1J9GEIXeV*+l-oh1MIBk7ts&)D!Oeta>U1abxm$*48JZj`)I656ZiL3!?z2m{e7CB9AmLme;m=Y2!|imr~oGFQj%Ka&9TF?{SlfBo?LU&?>~ zz%cZOx1Z<0^jm$AKmVaU!ewGs`+&PVZR@*XXDCevRMJDK^BjKK235^IRxMrDV;Hpd zX9F2%JeN9dl~3hVG|8$Yr^SbcBUy}|_~{u2b>Y4abVYr@-gdDF2Ul^4ZfB<$?tTb% z0LV>$!QQv%CWrh@>JyI9h9}}iQ?PwEL|1n1A9R`O(J9JTuzkj)sg_NyY6g$Mj9k+bWRRC#`i?xeksZ~Qp89f)E#xcZ`VXM_5y zk_q#uS4nlOh5>rEUIGkV8qXqX=<3)pfTktFD*pKdjpmRT?pl{Ws3gZGM&gFwrCe>P zUvL~VSy6d@?_Pm-1&SIV`3eh>oZ%*^kjW4ZN`vz*0NfDTM$wDIZdQtzcry<=ph%9| zsBjG#**1{J^t8QPx$x*YEe}|Vb4z0-Lzy9&< z!~ee@!~f_X_V51t@cP02>Z`X8_%ZzO4aYxyeN=IV9jT3;)u!8vC&1rwa)v`oN(`IZ zERZj_Ko`qFknl~$ zSnSA)ZC1H*ITeZ<^IHiH@@bff+c#4e_^jG&GA;eEu^->pK%3v0vU-D1?uq2ThC1tc zC_~1PLtcm(p1Pq1;GNhEB!a&6C0bV%+xhJd&1&Iq1VwHiAa#gPJ4)jww{P9eYasg+ zH|DK3;93n%m|oDN>WLeMh^jUAFk^x`aY3p~5$Z*D;XSapQb9-$g$X8k5Tnpe3>z^j zB#OQ)BX|iB0LIcMyUu{Er)uw?6*#GOk$Tm}Vw(-*E)ZhR2dnwKF=w~wvdAx8VtXC`%c2%$Kmzc)A#@K`Wx#AZBaFkW>YwL2?h{( zG~my~12gKrceB<&7}AnuZmp@_(92HJO;c3v&)#mBsHiiqD#)T5`17)Ah0qQ@V7)bR zsL0kR<<@9Q)k@4H5)bMQ)o@36yEXd+QO(E{kYdTH1RzK3jB=Xg3yDGmGod@4)$4}J zZHz`GJP$&Y z4dF^9#Z;qOvRzVOsdLB3qi|KOwQ!K%pv@KE9rE{BcMZP7ayZ-$V-Km`V7+8#MCQdy zNU(^OP)h9*&vi=tI*CWKBq?TQ21tWi{gvJek7~o9q7Nm7@;dgw)TV~|EvWKl4n-x; zh{*YNFy9M04Ef7aqhrb?Stu`G*h~k8-oa858s8H=Mc(QoEqP#yC7!VF;2(|%2ytQR zyP&~vRy*k&)YJ*PP1^qhelov1K$wFZ5+JG2#w?AnIZCAnR*AllYr85;?F2x**ls<- zqDeNYaB%O_Ow~Mc!9}?Ng?;5&>azTM!654Y0lMKg;q`OboMmzp@I&s!7)KTVF$B`2 z0M&^(XEhMnm;D6GY&ftRWuQk8xpgE4ai9tHHt&_!80nNlwda}ueYhz>@t$Tv4p`G* zxl_iz0!_JkiG>Wa(Y-HUYh9J0-RwsLLr?FFq&zVTNx)J+ zO3teM&9D0@03nIeS1Jl-boS^->)2aGoIyW-r$|(T#2Y6GRBTc~q1((Z`Bn~h_-za`Wlm9BN)cK2bD`o_&8!9H z;4R-mtrv01XoVS?`=M=FIUZ0#$$7XPX8T2Qw`QP!D)q~CU@dCZBmChEJJ-oeB%tj* zABAZQ0Co~bO&0MSF)~H|%S2V3@sfVrZ5Lx(td8qKb1@J?5LMeuFaKjO39{eo%kO^< z3G6J$m$Ss&Ri3?ZhH-baB@P3-J5@^7>Qm zd!{1Ll(7xo_>`-G{VxSQy8%j?h63mp^ib%sO^7}DZX2LXC3ikY#^ta$`lY4zoF8RTQi~j*f|sy|Wi$c~#@e z{d3Ffu$o|P-j2Da`Z4v6Kl68AKXgY$7>54x?T_K@J9K@1{rYox_0ikMk{*8wnWwi; zmrJQ2e|vgJU9rvsq4zDwu^Y;~4rO6#2_S~h>YTh&3|)*I z&eqDtL~E$))3PQ+tze|Oym<$RqA}R2!O@O}o$*Kug>5BnN4bl#?=T+C`*47?I3MCv zH%}L3mjtDkqd~G7WXbeSfQ13fh8rS7`!HJMEC3WDNK{gnqu^e950m+dCL~%8(!ITx ztYJ>jB@&VE$v_&q1#lk7>d!njj{TntCzBYF>y5U1Y^ZF`v8Gnaif|Xt= zTuo!OoDE-BA~9$GgzH%z7A40pQ3=!{DOLoect@{f4*h!I6xXr6D1g29{y%K^2*izj z282?(3*$Ux+yJT?_)(5_j_HBm;DW9ovM#kvb6n1Dw)3mJ+Jc=yz(s&SPK^KxMY-B?3qfN@}h+GI8P>z!Pt)a$gQO!>dM1H(;m-gL$RTiK&b>>=k{ zts@!8Nsd5Ok>oPV@B%&rbIJ z*Mk`##{W!;JCv_b`aURo$e*UQhx;DMPmfwlv6=s#E85LXS(-W!pIZ_rmg6pgd;>a^IE;uj^*8>lp zKwcBk-1B--PeY`0VD2C%O5bK|Y{_yFx=T<)ook7!lF3M}ax(w}z^4&t zg}ZE!y&*iSqlAyj=IDkD>Qb1+3C5LLF;Hb1EgMJk20SY^&O>E%iB;|u+&JDajP)joz}g$|1Bz;_))c{(V&?7J*N zQiEULLepEDPxewC+9I_Ql{aH`h1wk&0@ZgwY9sdC#_*{9H}LKQUXgfLAD#PuD_mr&d3bF|&3 zNwVxbN5`KvPkT7g0lDbZP}lVnI`e#-rCom)@`sG1_yCit@cL8mpgsZN_80R1Z%*I; zm@<`*Bu|jTW#n)YwJr|BbKd2mP$Lu(BdJ3Ru>5Bp_W%bqE&vPA1xk8ay<%$>s@~xb zdhRG|wokAmk{V3CQ3cak;-k9)DyPy3vv*aG%P-;$*{)tgxdj9?w*rvumWPW+^%j+m z*>mf$3B>0P<2cM&Psz5Js^3$1HFVZ~OJ!gMD?e{h%Lyox%}FAtQNPf6ddOY?V~8U5 z{XML$TB4UpepjPTHKnq|^J?D4?2_x9#d>u?9?6W(+IY40rS{w8V3qYtR4G(ZFyBEr zphe@mm7}B?je%W`yi{)`YfxjR*EZOakAX2u@+2OHa_Rgw5F-KR--JK@OtKxGPx$H`Y6$orMhCE}G`um0 zfHASF9x_3cc9N2h>p0@>jPoY-EC)83IM06u>};YspiUdOJZ*wx)c7yoezm{*+t;r- zaQY&@Dpv^q{q-*x8h`kna^<>Y{nw6JW;T9h>aZ#X!!3)zKen>IM$@g@@vAk+ z2ulW|!kont8s)SVzOhi^cP?o?XF`c0^e72?+xCtU)CBuNA{c(dS)m+xpE*xTGdBzh zHJWu^!Y{x`552>iRx}ojVHC5hQhpK6?FqhghEWG^mwgq8yS6~=0im;aI;LFllI5L* zq^pWTVep&0Y7gaLGD!x(zgVL_@Jrge4| z*X-yQ23fII%H#zseX3)JA6{bVc~ z)vUB#*;LK$qF2W02CZ3FovAaIoHixrtO$S6>9p;jwQbSBJJ{C4H98R*)%aLk0(~fb z+yoGf6)MnjcA<$-vzm-jH>wMkA5fGee_xvX@Wu~6=CAtv?VGpX8U{nvmS4YAiJI46 zpEhK@&wVdRQDqQ|+GYTc^Z+KF)|2v}RXg3#PFWFomsV9lo6avU>JsqSN95RCI_Nyj z_dzmzYAfFw^(>%TA&4DXnAhvF`|ZX_DYv^Cz#PMEmQXf1^W7E~HvF{fLF_EyDIT1N zMtI1X1>@=!T?er^%WBm^ps%PD(^}&PI&vyn3n^#2==v~nSn9xR zp$3*L-)gWnRW^UO%Nyj7Bm+3z;4@4$n5Nt<=p|pU7I{M&hFrxb`1c*5D*Jw@*V*wS zIecq2aJt}#K$}YrA?tEOA#I?Pp<0!l(ppHp#7RQ_CkY+-7cZu!YcQ{dC1vA;)KH776Hpi4lzR|eD{Nh^Ru@PBsRIm|2N?+Q(eFRX^_-#L)0{<3a%_r?AoU3!K0(z>|g2v6Y<49>^wcB}gsB zEh|jSfTQjT6YP+ng-pYlaAS!i@p#j!2mpD%7dy|jeySn*rMDPnv-899bMQcbuHRPTQ3%O z8ucQx?^|{a^1F@kMUf1){M`{r>gb0;!|bR7LE9tV8NL2z@;!ha(d=^jhAoqXV4f}E zi;k@Zdoz}FA(I{7TW?Q-!FL(7@JAx@Brb%vZy`|&{B>S6kLD#R#&NVT-;$EzibD!GIkqsl=ng(h!3%{oBt zaZIj9+ec4Nb*gIXQwg6^pI%7l>jP6MIdMYGkw`&(QY~n_VnbXEP*Lm)min-MJxO7V z-j~yK+NfAf+VDc1ie+`T%PgoLv-h%K%Q3}@%`6N~25_?50rSQZPOb`*QH29rM=%;< zH@r+2jEtNm4)H(A9Gh{(xO;q&*Em$!K`R0h{gBW}>E5CLdroneD1jCM zlbWoQ<>Lqtch1Ohl;m@kLeQIFlMZ%f9K2k!7gTQfy3Jaxch@Edq)ZN7k8rb^BikkY z<)COFTdUoH=D|^}a;FwL`{?x`x+8Nm@I{=tR58@UP>!UT86-;n~u--&?Dv&{Er{l#M z9(Ypy`1lh=gh6u#IdYPcp+RPi%jr5m4VYrM*GTP1s7(&`EoBiS9t{>KI&d^j@WokO z{vPAQxruuRdcl^hs!c^&(N$E6MS4lfm^S^^QlSt`Zs4;3GeFG0nx0fwkg5UwEwqW) z(=SzobFO6{+uKzU0m?8wV9!8w+7FZ+70sDZLD8}($L0~1IVd2Bety~aHDBWt z^~ubjDWP)So$`(oHDWV%T7nW0-Wu_vag6xw2g)N6>in~}1|Tkmyw0NjO)|ExfzQf| z0ABGc^R~y13kN==IW_W~=xfw5)2QJz+w>n6h#i$OQWeDIKH+Idlx_~bWVTuMnYM!*(v8;|8kHgKp#6?Aa>QM zxjk<(0<;k}Zeb-kw!n5g{nI~%e>iN$*FSJGIw|AB@Ynwg%uKZ#!#`4T?!ZG!HB0;2 zy?n-fs%cbTvQ-e`m}e&$d05LHgueiOl<6q_ zi+RiF`xLr%)~be%R<#d5lZk;~ab9v|b6`5$jDsZKTw;PVbI-%BYYizMTX{n!O6C{x ztHV`JAxx)paJ@KyWBF@Iu67`B{OCvjhCh&(o0{XjuZ_AP*yiu}5^8T#KcMpg=cvs( z>>#WTXhJ^lFw4|Xld z3~+JO+M1qukXgCOdm0zByO%enB$}-X<;puiDf6wn6Uzz!Jm1)G z_?FQ@1?komQUO~$vS3Qh3-e;cObd#T)$c>Z}dDJFzZPg84QU z&@^|AuX%%+O3u{pY6DoI2j7OVg>Ypl$5@1f81>2hCS(e6|dxZB+6Lls%iNJ6f#5JkqkwGYkpX z2$R3_Fn0tVb8d-&rkg+ha$pY(E{Wb34 zY5?O)xSy6eyxbXYWT$VkPsd1}IFv6X=p;OHHyOh0YE8o>sCTHHxe|foFwXn}Zr+H2 z6EtyTJ&QMkN1{%UvY>BXg5c=m# z+PYItvdwK;I||LErU?ozKU}ZDP zY>k8sFc=!VK*)`c3OcKKx2~w+9$NUtxWjYsLFXnbtXKVCC-g|&wYMU&S+f-> z5@4{mllg|)C70tl^-n#Eo~rUNH(j@@plAh{RZkQgbwc0L{XnB?tJua4?61L@HStsa zefZx!I=_Ar-u{ej`rYfNYoSs*DtkVuA86kQMGp<3hYBf7c1h z)pjYngzyu|e#}RPGM57+LfBIPP=2;jSLK(bNbK&E+d@lik*Cu^JXo>}$OfY>S<*=n zz-n}Wq*8vGA#?yY%vVXlDg^EvK$f!LD>njdm0jj&kK6Xpv;W|W45i|py3UB0u{(2b zEudK2ZONfeoCzgTs8ci;~9cFy6CP zeNuIT9RXQjnxT$fZf%GriD@SlgDQpuuURtsO-l&ad4_nQz{Cp8zlOX|uzb#&n$mho zjt;_;t-XVyI}piU;RPa#p${PeEZ!O?$%2q42b9gB`)&2Ayn<_n7R1L7M$nkUx+8(sMvfhvryS}UZ_V7qtn#(|z^a5Mz z2PL=~D97zEQ%Q->wpC{Jom%oU!ZO1d8yqu)DS^&^F0i z3(#q9O~HJMRlPdu55~v~g}0z^;q0$bT?=eGtBE6~=sAMIhZcGdNA-$sgOHQ$+<8{k zys3Bq#;P8qG*VN<%z};|{t64Fia%x$UEx<@oCI0-u%qlH|KRut_G;6EyeVK9JQB7V zKZsfFZ`)ZaHd%aR%|Xy6V2sC6CqNHuqe!gnp^pTGV5J1QhOyc^R`!A$`nro@YkLL! z#Wt?qVi~;AxZ3GoCv7D$y{#4B?_CxywoJm6d~TC;S0Xt~vzaJ^dV6lv2WKKIP#FsD z{D@_;oRZQ8t^7`5C6_|}Ng^_>e$egr`JUW|4Q+oL-xr(u+vaO+CRA}(qv&Tv%MhZA z47_1w49TTE%!B{MK{E8Y9n+O@7Z1!2;E!UB|6y%C!b$kw{i-$M%gyi{UgiDl_)zYP zUH8jA4$VotjsA42xdP2gqt+@G?_ulk_Pg-*-SGtZj()1|i&Fgczwl%J*N@N zrm#7l0@+AfE@~BDC))N2t0#%Z`A~l+VUm~&JW_XOZ8y1Fmbo9GfrQm|IQnO1)#;(1 zEcvvK-WIp?$U94$^(~#~Zm8!0=R@Dbe12E;la~5aqEE}!eg(0J+OId#V;aRJD{u@z zM#f?|s9xmPuv1qRAuStjDi{GR1dyu(>ds2aP*tQE++z)ZhPE%Uy$%{gm)1NpFKPhX z$;UQO_w)i6Os%o=o&s!yqOh~tTKc>@BN!?jiGha{lv`&T13aUo{ZP!(oWD_SyR+X} z;vXRy&{RdxXVB~@fF4^|tWuH*V|f~$I{x5?f-6Rj`~3A22&sJj_6tJ#Fth$V53oPy zTK_7%W{to{LothomdAE^b7eEhB5VufU^qc~MndMQ-iJg#%kwt$Z# zYQnKh%nX#;G#r&4W>qMTW1k513nr~UH!W=F;#rEI86t~pV9kYF8iN#4;_PK z%N5kKlfT~`*VzELA5;=0FjDRR9@HLnf!j}<)fF{PvOO<8QiHg@d`{PBTIxuGF1f`~ zr;F58nJ}Um;^Z(ZWd(Y53RE|uo{rVwerQlAh&hcE#;sxgQ}QNhv*5utX(dNvto@Nx z>s7vo?W;+v+oer_04|dr7L|i||H5D~# z)CA#yWwl)cy`;IAl7|;Lk*J;o?Q0Im&wxNdDnj-gyx;As(fgnVr&E<7A*)!EU=t?f zc1UO~*RA?30^Jtxk=7~^fj@PSL}S}S)zBYG=Cl2BPwfD6Cl+P*h-$@-XvtwZ`MJZU z=&0qCsg0129l8Vk8c<|Fg$8#ChTw~wbT>+yX{&qQLdR@&J@^95&5KJM)pEuUEJJ&s zc$*moDWvF$R0ntceTw?nObzwSFkD+(Ekg^k5QD1j6wF$|Qkw6x64VGQyeRC;kRH7< zVId?jK;614G|aeBJ%&H@l^RsC%;2!YEnwvLaQij*k;<3=1~0dKMQpyZ9k1o1l)}shr#3 zY(kih0dtb47zJ9Btl`$Mdj-f*HjGl7x?lIm+UE=y8I%0;x<|Fl`qu8WDvir0fvsw> zXNtSAp8CT$(5j$!Dn<+IDWb^>!l2nkmK?MtS+*B-AEhD=L_8-*o0>ns9ablnHcAe; z66f04h+Co@9kR0u3WpE)%UMqK>g1aMxj-o9!c_FAw-upE)Vtbicv5g5_GSDTF#TlZ z+PTeew}y4iM!9)CK)4qjZdMoSD-b)_O~AmtC%zi-vbQCFi;}7lv2=wPwXKvZDkyd) zHaWj~6=BU@-BMW^52?%j`(tw)-cVb(>c{BPZ?#&h*n|!6^?}&QdY9Qk0cxBFlg{&F z_kzDx{@x21#E-_NJ(5Wc>i2A`quiy@;77FUY(vh@`r7~o&U-jNuZpn@Pm1;cO5`O2 za9i9Q22xd{O;2p@O%{)pj7q+*ZES0?e?WBg=da&}w+~KFuSqv}KiQ-$DQ&PvUu5Qi zEyr<;Jog{9DhXTGeh*b%jmo?`ig2Us^CWXo7acz(bvo|iYx9a3_zp4!c7oi~8Mc>k zH^bHGzbz>Yb%~goz!PhEC{GAegxw{HZ3hh41SqKW_vEf`SQB<|u5#dR9dOx!Mf8X^ z`VuK@59SycHN#S0R;oxw%`NbG3aq|q^FrH2b>`+Sg(}SlGrJEHoMO8u2V+p z-YJe-N=5nRgL?s9WJ&d>C^2gclCjz1hlOr40ed@xy!0NE@Au*L*GHS$Lzgc%`GWF} zzR2vO{5c=IefRbWXYHW)z5VvIL4aeT!3=OQh6jB}{b+qob)63Mo|2q*WbBe>FGm#B zxh+Qifxk;F!k8OiogVO&K+>etN zIe;pi#s*3^5Q-k5YGxC2Vt`GSAzuR|Y|4`INU>X~{G41~Qj!KBl3n(E4p+sNgo;CR z(6G_Pwk{ux;9P_m6YoX|y6902Eh-TgEz*bdOe6C=-yQR_Ef(D|iWe7%JmQP<)BX`QGm3FDll3O4WFyJ%)G-k);mk#J zJYa~hiL4`7mGW#T)qimaZ$`UIC@!el(2bKCLZjg}pmCYEQSQ31k5k4D-|^x`9!KF` z#Jsh4+cjXv)HTtII3nIU`~Hj^ZU-^$ed-uEGCc#A!jl_&YCwMg=ziENO`8)q zM6?L zCYdt+QVca$&z=>{L~8u7wn(27w6lOJppX_?uNDZCt>_ul139N$Slw@{I&-SPKz<2+ zs07a!DsdHne*5o^3EKz;=|n5UwW@&iw}>_kQrrPw=$Ww;^77wX+M8!%Y`Y8;H?&x0 zQIXmTpoqo4&3)bbK`CWB&bp5o3e~Jg=^qW@dK$a8ZFfkbGMO zm~#4XX?pw?Ht?3M4BVUK0gf(A@6>%+?qHd+^-CMGOk_u6W6Ln8uu7_uGa;aEQ?fU#TnT$enBK3Ci((2fRGyz3y2PH zCcvKVfDl9#ST)0GDxFL(F@8AdEnYmnsDSI8E;i_=t=5hh6vq*UhsiSZ68UXa*1@nh zUDkgk6sJRWc8TkY#fDBw%7LAEXt1LF@q*E@7Z0~a4oL-Xw9R5uRv<`$6!W?*p^Jgk zwej(;JksWdHk+lFw}9~H-c4p)HZPuvW4p7-0qR)=YiHLK*VbYuE41BV!YIDHZ``Hn zxhqc>xbsK^IL(CO7Y0E2B?xp$g?{FRmf(^~IUqG6WNjSTq(CiO$sqD4{8RY%|J&(5 zgunlHd3B+r`B>o#xs3TbbQ-hhj4|`jXIc|# z1_S@08mR+f5}!hlN^H zpwU1s>VlTj!Ab2ROY1mw3`GKXj?}%lD0INWqTfOUZa36|?LjKxKyPQ!WH zu`rdaf>uWa(%HD*}~z)-}XL<~_>K%PIw$ z>2JyzQZ;nF?0pj0XWF0YEy%6~38)b!kJW@Q#3_lEXD#l^lnI4r63i0eS-Ve~DVT~?~d z;}aJ~8>FtW>#I%qiaU zuit(zpZfc^KjOcyU**Gi1}+nY>C+y@*4gY@cE3*!Ho{IHT29ZNhe}b3*pOW6<$)z@ z=QoYH#I+=Hm1gbjdFS0|Dk|FmJ=Z(TS&Ux{BxBcMhtJ6SkY528EeI-%w*;DlK2X+3k@60$Tn zN$90o!Yr1JX>^Wzl{}RqQpK&D=>hbV(tPZwIFuur!xMjZc5x&rtbm|irIvGUmhu=B z=l}_8AmsBuXu~eww0{@A|7Y9WdQ5y9jz`E>M&tSl`VK#M;}{{yLw|Ey%x}WmXDa+a z=)Y8LqtRP?za3IX_s~Zv>W0EO3$QB%u)sd%Q;G*0U{KJ^dvOcp9lO+NFml}#)Tx?p zOytma;k*}Z5)!toWS(8~2MUs7_7yu1FmgTmkdLypp+6yu=f*cw!In#5?C3}iu4g>V zhp5++^^zu#E>i!_-<0r0Je>kmxI1A|H9QDV?jriX)VbPvmT?jgt_?K@TX<0Vm>*Kz zL$4sxO%l?jVR3N}Y%ojKfn|cz;|dFgd$J@$`BUzk)UVU5+TZ!#@>qySEO|Of{-@Sr zlyK1cz;;}gdbE*fT4e{RYwTenk4a9w;RCG)lZx2GN^o~=CY8xHkx+71cm;90&-L6B}bC7?I8MY8|-{On3Dq#fvn^(;J~al zUI%p=KM2fys}k;+82+b_iBU&Kh0V>TkN6hw;P_^m!oN!5w6!T|mc9&Nyc=y4AR% z$G~3fcUmIqIH~X0o(l8ob6TwCi^`!c&ElkQl}*|~We^azYbj7sLAM!=T{kp88Qn8R zY9O$c){<=`AS!G=0=CU?>Q@Lo5NrUVEpZ2Oqo2=pvU9DMUwdV+D}nM-jYwd@SFZHg zW`{TRwDlqA*tF{MB9$qJGuL5OAtOR!fh&@V1S-{Z=>sbTG_+~QVJ^F0M?Jto^gxwR zegoiniTnltScolQv`d#r}Dfn#z+3+-Bw zo-Sc9%NfD8Jimvig|Qii#6BXOTy_(2Y(%+{&=aC2uw&%2Ef__&aL);=?ix&R8Sf^w zO#zhp#%PDlENPv5t8L^AHA=?I(o5C2UTjC98M-+&VqUINY9zNv0kVePCJQiD7O-~T zSG6jajJh7i9NGE?n6tRjElDcLo-RUCR@%Lr zF}sG^QKu9F0?|~!mrBQwOet;|X{Iqrc8&ciG20kY3;L31(*>n3T8$Xg%)B?Zl>u2#h#O!^EdD@5?4unFtDLho z<$|g=RoNRQi(80`?E+I7%|^$@l98$jXYS`owS`CtRs-kDs=}oCAO<%oKpWZ;=u290 zB%LmDTRp_7c@WNP3wSN$e_K1eOF(~j2Tkbz%1#@?qs;i}rsKdB0z%C7uwNRm1gBsF zh%72>a*_F+jw%f5soF}mSn720eb18Lz5bpsqn!5rnvD@-{eJ$}e|DO|Pu@PEq&LPe z8BF|aN)|K^RJp0WG?bu_TBDHC~pie!vRT-%n?C* zxF`jI4HPV8t|a(c+Eu@cQRJ_)9X}1Ajb#q6zVU8F?}GY6*b_Ivb}_G>QPYE+Gd!#WCuti zf1i=#G3RvoyrEOFKZi^;I=?3GU9EDe-Rx|w)-X_IZ_=4Qd#@FAdH9=F(51AB41RZ> z>|Y=X#>V*NA{ipwE1OA`E_Kpobv`D#Eu$%frWky%dX`hEO*|tomg(XWhamJh=|~<) z$7rOZPD=}Gh@O(pW4biZWFcC5xVo95S6n!bz4AOO_nV9O~~p1S2{Y>!mr5?8ft`*;M2RZC!N0BnT}yvz?49S1_}vLM;6!LQUGEqMi8pV4aR*$kuCLJw*}DeObMoh%aldFGRf{l zPlf7!iU*d!rp7a+%0;+mpGqU|wBe$~T}{ELD?9|q3@o(mq-K5`E2#d!nYbg+qDX`o zlqO>PJ35dshx>dfL3!a->N#D_EsVSDCL4rltIz(?57_6>z&Duf(WZr{>`KvatpTE~ zYXn8tv%eoyxMeq8xk<9A8^aGaO+j=ElzRG}dq%RJQ|5k1^=9WGh&|@L9yM#w*arQL zp#!-`KcK6iTll2qxWWhX7ASz$I`z+iiH4?xlDt79@erXgX^k|5kpm`Cj|s@PylvKI zI;eDk&T~$+9QnP+#W>s3>+1eg$|$H$cN;3F$@h zMu3ADFSVHSPWJ_m&zdN$=XWI%d?MCBttWN>te@D@^h5zc6;<>gfntSr(GCa|YpTW!oeFUc9%W1i+J=8|YR) z>ChT4B!VLJS%{*#%y09s_?ygi|3ZV{Fh;wZFRUJ3q;fWNs}wnAAOj-`&L$tbFq-6- z?@sGEuyT_c7Is?RTLQqx6y+7$z?OhETkdYGep5#*7|kvNkQs~<3-0bXk}Z!$E@oa9 z{nn}3;zf->Tk`>(r!ZO|8+4K|_eu4Upc-b|y4`Jbp=wXC5GXezWI{m$K_{`f_@99a z(~7%w8V49b;vm(tTf#NxF_1O7KJowqhO^O)r-2N51Gmw$S zCdu2iRljYE7pcF>#wXMfYS(9}vLLOBSV)0d)XvEZPQHQ5Mnf5gX+1G(sj*69y_N|vd)2gOh3+oU4W zbY`#??UFku+}NSd-chhxIAv2?2c1u0b$MG^p(o37R+$Gp)g?CmtR@`Y0|LvaPCSg@FrFm{B z%eJ`W`oI)j;w6>`^`GKPcp)HNvf*tY(Nz*UxV3u1+A2yDlW%*YL<@AC3d**1fp{7@ z%u5Uc#@g+opL@iI7=(EYRLc%C(khbB;7YCJ&@O67ZI}GeovaWHF?KJVFeqPGs0moP z7WO}uI+ipOt`;@XovSoo31nB}EY>BYEEu0%u zk1*bZHcg-hJ@}m8xca~j5xtEjZV7y>oVo98Q>nikn=dF${Q4|OWC5mszWaX{{&wFb zU%k=Q>GgyB?*IGxsr>(U^8ep_|C6`R_nylJPdOXbOKN6E(1zye+MXU{<^suRqb3D4 za!#NQVRENWm@I}D>wMlcgSR>{OJDf>9j!GBZ|9{2P}v3BhcPThU7A}JbfB+O3%3#W zXQY&QG(-eS1?rOPYDzEh-mYV|W45q_fexFlaHcuu{W1=U6y&zUFsfq4t6NVsek@~M zsdd*6_W`Aen@X6x;SP93w^DxX7uz};!jD5%0Yz+AH8mrC3j%}`a%q!oQcw)z%?Xo$ zkl9q@I`k3TF1gQ~K~Mu*s0<3fbD?1HW#T5z2f*k_UM*cX7;N~zQCfOD=5C?{EflKgXx+#Ew+(ufvm zXC%i3Gr4{jK_XYmr+V?4W%TDmNTA8!XWR(iSo85WkU{#yG2olxAM_wsntfjDI8w;O zmFKtE+J%Gzo_Cpu=?W&Og+)9U1LYDVZZw|VtKo*6r)ylOlea(~*|vi+y%6~&0e8!J zuplix?6uVZ*^_-M$WEh5lH5wVmk$86b(qBE*O;pmJSn79yA8Ya(R{!UsXjBt>-2OS zrCQ?NC?KtW0?U^Xp-+#TAwnREx}Up6eTR7}v5{!W8-Agc#a9!Z)v3Vg#XboRLa5r8m8@O)ohPS>++-IlF+)%T3s>56*Av;twtz*epqM=TEn9K$PWh1b}g z!XS&{4b`9`d!YZyLs_5~KrAa@vfZf0O-!>dl1oW0uC~r6(13fUW`k=rmbErTxCbzH zKkt~aI*iJzC}?Fi^v~ob##uzle z0H+Y$i8Lw2({31Erm$}{?O3RE5737*+B}rLTqJLb$*~qHn`76=7(>>oqIeH_d3z+l zc!~2P`90PiYqd#I?R4uj*~xVcx8>A8ET9J3uR)%af893Ep7W}NUBiPZ5wPd3G7EAk z(=BZc9ONV}3UP6RX8AX5sK-^6_IFvv)Pnu0R;L@6?~ub}8FzR?3B@Zr0*c{DQLqBj zH6C?Ely9s(8Zh+~X#@q%n_77u95G$oK%Ul$1vyEAV3Nvcu6P^o+)Vl_TN#4Ch*?t) z+R@^>pao*tuF>CtS#m+NB;=~8)2|9y5kerS_bq~yE>Zk9e`9!z{OaH6s=u$V4u#B* z933Uw=nto7M0ahI-%d`D!FJWV(*ubTe@N!n-cuDJudc4*mT<`f#Q17zY-+B!D2hIG zoL)c*2S;}8My3cdZitB&py9HW56J>oJ4KHlusjPtQuC6OJ+Ga+$V=T01ns03aXN7I zM<1JH!)Xgxm_Ev(YFXE|+k8op-8DFAKDBQ>UM}Q_1NYI{@eZwdylkr00@@&-IJrD( zzfuRIPcNABTDXCFyDR+67zCm}k-!>K{rdO5Wfv>?KDLGcU!>NFWS&yJ!|B1U(ImfG z7eS|Y(}7o@zOa(a*BlCiR9rc*qq$;B7`9$EJasZJml1=Tm1;mhFp#M$r>aZd^^${K zZBwte)jAPi+de}x->6k9n+C{V=jO^`@MP9lBJ3qeeK`?3#4U6VyrUpF>P5NlJ@kQF zWA@_&(u&jeb$CL}@_mM{&X+X_@XdLRbX!9Tdw@XM{taaT?D7ycf;h$&m zE}U^FB+K?`A#tE`c~^KT#ltN6k8j^nqxSdvyWfP@FTIWMm(v5}ZrMmDIo&(mD&U27 z>PrhtONqHGO&(#fVHFyCw&tb!G?@M1Sm0a8*q!_ea{waoAy~ljqfrN`e4QW#B)6fD11H zxOhm)fS`unkm*x4fPxScixfB#9oV||bRH&NQ-K|zW2V-rSzy&stXU3_nUH!67u@Th zN(Y+zYpw zC6#Q3c;&<$mI*fLy{pzBp%^73xvrS`P9-7!AyFCYZ2XTOy)VH_vFzGhcWvn92s0<^YOa;0IE6{OXplnG>7aE%MUw?$HR>KD`(tR`+Y(^A z08qchhAiS>JEB&u{kFgGtYS_DEMg!qIBmNo_yi0NN{+bWEubN$<$Qh(A@drI>v{EI z%qXjlzv!rVZEKmKnGLJl!@vpOuWJ^Jm?BTco*n<}{E-`Q7C4@iD{1ur@qz2jl@v}l zi6|zTI)rP!NPXXECN{{~!V0dDZ?+vwHPt?x!jJW=j_Ks-ZBZ4xYT{};ltedWr&2{3 zF#Fx936LNiDV0*t)`}to-wLOw(yZ2Y&~dA5*aSTBV4cIFS(;~pN0`f06q-6o70J>h z&vNooMhLtSAThu=B;8Q6RJ(C=24Hcqvv3D=0pK?W5=C`^8tjaSXBEG)qv!9!|Mhpr z6aMRe3zvODG{xwEU@qAH*jiiH56tmF4qWz5I^;WhPHXQBu`58{yUUcEsiP5dv?mOi zm~{t8^pKHnW{n{!((6k0f$SqW!tDHz3Llh>n**CcIwpJ%!(q>q0OD)+SLuS;*zUX; zgPe(yXF!J6DcYbBxDMQ;bQ`;d?D$wi?FIg1z9rm5K~;=;T7QsK2GK0D$9N#JwX zQh1*7SwP?mWX?(B!epM(aTpA#m8X%j63*&|`dfhMwh1OVvJAk7v3-QDqKoR>q-dgI z@p+%(fFwKtgx3{gZQT@L;3*0L8S{3Q4=^G_>A{2M8WM;VR|p6>oOc@B#=) z6&O*;HUV0D9Zjl!BbV?I8SQ=;Ep2Q^Xy83XJz1~1-%IX94}1|CK&5}tU~D1V7eO;8l7+#A;?I$(2WHKN~p61$7XQ3!5{6uZ`nINqtwHp zJMs3_U;h(7h9ACR>M7y%7e`^SAHV)u{X%nWmE{Wb-Nd3l8~DyO26OgKVMEPF1eLcK z;=;WssacuKk_W2%c7~xiv7NJOo+YsY5E*%i>fI<>5X$ks1H|#HV_rZrxA4K}j5giT zn0NIrLf7GESq^+A&f$zcv`%;I4g4((0;7%wOIQ3Iv2q95vpNxCk}1W11!)@%SPRQx ziH~*AHXD_6|h zlXF+XJNWC$Nm{F-MRTgd-E@ZGZ*-YVnN|`j#5gA(t4E|!93>})q`L7y6cH{lw6GL7 z!4{}zNC{33N`=(XaKxq{K6J_>e8$}EdMIL%+sOG`t8!4%A4y4>9S!w z`0;`XBfs*J8pwA)!sEex(+vv$>!a;2v^#9dx*m<@(JFGrlkB_P7PdQyE>;bFAg~1U ze$x7L$fwc`g%Ff1`$fBtAU1Ml-SiM4qFR7dTT)HY3FktipQdbvdF$2t72*wqBUWg* z-3d!rC}g3r4GsLl74$pIKxeyO`g_{9P>2Bcq68(|uaF&Zg-Z_05Wh;fV>aa}bWqz8 zyE=s3Un0`|;0#f+;CkB+7f_08xS!$zH4f;1I@3O0$sdxFXBZHaws>%$`Q7U`;Xmlh z%{5N%p?CY*X@xsz!F+29zPbS{1>$nPCw62Z3VTzV_6y~1l?JXx1f22DuiY! z@Nb7+#_X@uRaA~!yH@~55>BfQ>`KfZTHVBC98}2tr@QyqKnh5tM7h zRmw(5jW_bNzB=S~7@*rL^>fGgdYxR)IlZX2F_rEi;_s6vXX+G~x_hXRlV3t7$q@3i z>w(i%Wum!d=|$m-m`F*UyrL7Qz8Jg3D<-Ad#IOKUA8b{e{%hgmH*bcp`RVJ|;PO7B z$Kq}1v~x9Bz6ZVkeMonQ^J@Vjpq<(4PU4r8^AcGvEkIz|Mn@k4uvmF|h>AsI=tw#V zSGonukF`H49D~SPKwT~I5zUG=on&JmPiS0>ULw+I8URe_50us^Z9O_kyIO~uoriv1 zAooofad;j;F8$Drt{`w{LPpr2>U(2neu7jkeiG_nf4jv4@@bF3#3AuNqESRQrQr@P zRN`n2uClgfOeC&Ux2M7u7?)`WVtRgcX`qF2*{zuiN9W&06#R8rn(~jj7>< zJkcq~7f>gvP1qj-js(D^{cxq#;f%MkOYtaoMbty8xBF+GS5%;Dra6qJo-m!0Acm zGz^kmCVlci{Nh_%Fbbw2r@ub_@LUciN`Jr+Kf{*N4D#Tgpb?1uqdLY;A z1S4q*wf!NT1}vQ&x86wEWHq>0b6EDnBx|%&tEW|GWp01yE_Ww+UiRtNVUyizQKZq9 z!+KK9aE!yI#S4OZJwpoZRIQ!VTO5?F>eFXiyB?6Gt4e82gpAaF)=0&+F1p9c@)5Wh>76rccZ+~p-r){Q44w}IUbn2dN+TGFL>_8(^%zHgYe!- zZJs3aUX5QfJ0Vr!O5_|6HlRRbTh^UUVDdGHRaw>CLTeGu=BorTChJ;6KM6)2=#WO0 z<>RB60m_XoHv=Q2^3fFaZf~DG3~w~g(!o$qkQrj+=<4f8R-1Uwd_`^FR@&3IJ93k? zO6_vs`7Wev-S&hE87XO&%B__gP?9=>Pe`pha-TpdsyV^!+11b_V#4TY_w%3&bcIRw zbgEF;(0Qx^m~?Q7VpXYpK&aXBP-Hh~J;`s`JQec7IqXID_9OK!P`KE!bqRyPmD7v* z)9$e{NgRD9qGweqE;Eyj%LuIEU?g7PsR-77@VGEt>2ZA{eO62& zhBaI2wW=I=g5fqpD$*Ren=G&A4GxtoO!Kg>X}vK$cTqJ&>s*FHPHG2=$iZvhM3rH9 zKy2tMZit8#3p!I0RYXH}C2?DfQ47tMsFhJ}#2n($P)%+mbcyT$>zhoaukFl`bk7bA z82kYyLTJ^{%y1xa$wc%oC7FhW+D@!e1PPik%4Oww0g+V3t4=aTTi7u0;*1baaf}Xy zKPMlYwBcq$J8UTUHOw?8@$o*aLDT`+HRR-U$AL@aJC5_(atlDC2HjCP?;)TT)7msCVI ziY@ld&hu_lIsa~5d@hHMikvU-1dxN`yw3X^sf(+7$Y%YGSvMu1b_zVqD;RVDTi7@r z>{`mmc*RDpoZp9Nd9GI=T~whX(%=&*RnK&>RC1)h%otn7b`X{brD%3-_F7KO8{NPF zxeCs_YFibO;|7Ilm0eKYIRmvG0R2-~5t0>6FB=OG-}cbdp{~Luyu3i9jnKkDAFo4# zN&+*0Ka?j01BS{t7GO%TK3g&C&8WmKqVy_iFR`RpmpB5Glgg)+z-|qv2`(5;G?L>| zjksWCQ$cHphFM{YIkQH)6Nx7?Qn-=x3KQ#jc4*Gn+b$Wb%R13|Ovh4=F`TJoBh?ht z*RKZE4V5)U5&4R}BJa``)Vj?!5;nOvRJ?p`dNuZRlTTVVkEF1ZAh878369@~GQ_2C8 zuo=v$w!K89%iIpV)CI$807WBw;@5unfKIOIjEs%GTJpPHh|7r=)d0``@Q?p!rp*tX zL(8ukC$2$>^A1yc)TXnZc^aqn0p1$qKB%Ci4nhTbxqjH?L`fl0w1!)TZE!Id3=qZ> zxcaQ(=MlJn&v5GD(V094MzisG%J~ty{5$mq0@ZQXr2xCz8bSDmwFHLQAaxT|J1n4q zz@15x@7A0%&wNFA+&dn7@08m(VsO2LTTjs;vjdpDk+8C=S|Nh~E;?~CaJxwAlp-gH z&8b4xIJdBY4rW7idB2}T?eGlVQIRmPs7(gEl~^FJUq~vWA!TU^33dt_XeL)+ZDC8S@S4P;#e+V1yQ*cFH zxw+_{c83X9y6sb;4E58QH@4b1ZzwdL^}r|tLo^OdHAxGOJWxrGIzH6Xd9#g{y-RHa z9(%(QX<+_C5hhld$^OSLHjq#-xd}tLkqN;qZB}k~~J}ZrA$!O9TD9 ze+qnQtVBBnzW4#Te9pq0_sKMW9@ZUYepI;`P;O46ka6N;;bK2Imm!2iG^Pg zn;W=(Qm5iluP{Wm!y@UO$E1AG78fO*AR@7sC=jBckfG8D518UEW1l>~LyfG>c>+Yb zu&uX~{;`rSO;BdvZES&rlq|>Ma)J{Yn{X3A^q?$S!&9~fbSSHYJaeqA8k>eOR{LrI zV!1f_I!WCZhM5Qq9VB)kF>;Km%p{qovTAp~Rrw9=1X1rOyjZONi9(VF$&Fev*>wq- zT05g!=vK%Z&S3|l`9=uCwFq~1O}7m0>T3@6aoB+43`@R~0&Q}-mJc&TAuHw7Dlea5 znx#O)rfqcaRqlzn<_EoO6m_STvt`+V1{Zi?@+^}R6Zm7PfK~qY?roS7?QHZXnK=yW z4tJKvat7~$ni(nuZzr!B)uTh|rLj_j50+LX>fV-!V;GUT6TCVtx?t=19G08}!JWPV z53l(I|vGp)n6u9eV=%>wBt z7swwy@rLnH-k>`B&r20%U1>bQVHb~wlfT+&1eQ8)Cz<+6~G)LrH~RXWd%6-D`y)UNMydo&d@-TUA&6cYWtIR=@13-dk9!j~!(7uz;yYTD8O z2FFpzn`8k7eu4G*Ea@ZvNjsZ6i8k}~ZF*tz^4ozZ3bW=J$$v*-*IDfssbmUWKEm4M zAzNfdW45IwnZoH0spXXLEaU<3(1-a1OnI_ZOnwWNr_Ay>l~SX7y^@VRK@zqD*f~6b z)07kc%(1}`e5x4c$zm-0Bu9t8)p5ysvAaA@3o)_iQ5u;$kLGqoTzW9 zYFv_th=T%ldBA`1jvT-FZS z#XC60q)z9Ze9sgsm2j%)7zI^qr?~0XWHbb*{elVlqzpe?_2?n%_b1!Eh)SorSnhpR zC_cub%+67_oiLMtDgc^B1B6#6dK9-RZgk*G7sHCDw@X9BbBPW@Jb_~a4aJ`^5B~!{ zh9ADcj~?a}1(Q2b-+%De|MdD(n@8k8xZ!Are8{FKA;!9q?NekOs}Cf=rpY(+?ig}t zV9fI1T1@7q`M?@rL{ldDCPzl14)_ck);pnh$b~sE1c^YNzwIbl5)v;Tj!>x^4ov1K z#cP|Y#_{q~<9hUyB4o`wH6!7C5es&*I9ef4FKyTQb? zXb@T_Gx6vWYNZR;b(hd}VyO;5I&%Gikd{sziyo@508%wivvw^uNMezGq^hUZAyemA zoBv@iOserSOObVgG9u3><h( zivPCx?(fMILk8QV6?;fyyobn_uRQ>lpu%b;#E-)NsUQDWlY{#k*3Umb?9cG}ZNB<~ zowP3y9rMLUeCMN_w0<1$Z~y%IYsIgy8fcU5#@AOCtDcK7NQ0UZD4Xhw% z_C4fw+iuRzo69y_f*F{s2l?hTa4v+XTdnNBnKI*fHBE!%B6r9PDv-M}QOCeYkI8j} zC?Hk+FZi|?!-HfwE3S-V`g%W@W@X0u(J;1qb$m%db*Y>p(O^IWA32(2wAL?BU9otX zn9Kn6ipr>3Z5WApx2f@GSPrBjHB?S+c(G^AD6X4IS+)agK7ki^uUOgTb$hy{2MRsg zX<$|4%p?~QlKieG7!6vG18^mQEws5RYqeh02{Qpm!=88cH+Iwt8k_wq9&j;es#W$FQbR5)A`>THWg4M>>N|=I^c7a4goK_U&Euyi-=K;cSBiKRM<4MhuS5VwQMw2&6?-xVs$lIlWS`?L(YKR`ql6x3Z$O1 z5(HTz6$BbEOk5$xJY%@nWzD6vCH@)J1myssCL+55(WBlZoGiQcj%vT`5?ejY7Zqe8 z@m&uEBy|=>B&Vg186^JUaq8v=pkzsjXT#d_fLcV&$k+%Oy!wR0l99L?mnCU;Z_IP( zjCl{!j(#uEx&}feidQ}aPh0}@_;cl!S0x6i`cFQqPf z`}FNk-+%J<-CzH+y!X}XuaJHI4B00>sQL5HK)I825*es|$lvQ<5uG+jTGap`G-O`L z8FN0pNS;M~@2EYLwxO=jBktn~49(r293&RoSlgs+v8l5pQrjmMRSrf~DqOm)>~zmS z#dR9hI4Ygd<>T(3Z-|K0gs6uRK}2rvUJ2ICT~=dhv(@?BHq`KzQ~+JahQ-6n)9i*^3avJAuZvsYqD7p2D;cwgsKx@Lle8WIu)%qO@r2WULlU{i-=`BFPicaJ-z1m||^#-?x~ zsB?n{WNDq6&yUR6k0gn{h?D9w+Ugo0q@OPn zc=O;HKpm7LEigIFwidkic*%!5&UPEiqmjNRF@+=u`SZJ6>>I^x4VU7SWe9l|-iBaA z1G#GMkipf?bY4DCaL0iD)JzwJ5iWE&l57V?>${4V#LbnNdiDeayG{Pc(d~q4#SOd5 zYzs+WIX;arJ*5f-xKrE^`EA_y5(;D0w1ev2{n_ZDdx|KyfstzEt^p8DwHFv(jgw!_8FV0*|Y&2*+1V zZ38BYw%q&iQq!~qqHw44Gm5{EhA*8mb9u#fw{e8uhbht~s+;H%ePur(Nd_(uM$ zPt+OkzlOJ8oN&W}r%BI!^r3FklBAi^=>wP{qGg)GI8p9`*Nw@BDw zKU1Ead&Bp^F9S3^PfO~?mQ+Bwxh_^83C^0e+PDIK=$#Mf(kF(dy@8*A5^y^BvQ9_+ z1)Q;7*_gK&6V7*mu65%Yu7(;?`!mxF93|*b6GDZD25n@=ac^$aN;MtHrk(3Wa#YZ= zx;S|SHF16ms^9njVl^zX`K7mS56SR#K7lagS*5ZbK@C@CKtGd~Blm8QpuGb-OHv7o z8>U8mLtw#6P;(x8Rc`P_nh`$pF$8(C6_Y#o*B|ESH`I~1d-ClXN;q8M%V(c(mBY2w z_-F0;1`t;WpY2rh3v4FjTb}al67~YFOmq#MR6zuCg8Z=GSRPpoPs<8Ob{9UA47IYe zs<}2kC`vDQwpN<~Fv%lHYD{)I6jNB*;Z*pkRYny8<~f80&^|1Hx|o~Y%Tmgw)#%n# ztS6Cb#^=n)I3@VpH!jt>?vgIql2A^njg-d-b5zsL3&TzJtL)L&KWe@R%m6+pyYAEQ z_N5w5zkMM8{X=-mh@of3G+E0+R;%FzRQFQCf=aP2HSb1Nj)tB|eu?%3AaP~bWrL!u zX0{*TA!L1d=;9Fr*X-c98i@bh)kP97*P2u|g+*O;7DVAq(%e+2t*OfZO)AxBm&nId z?0Dypju7STA~u|)SEunn7l(jZR#vItIY*WNSi&ZM-@5_2O1I||v=+Ey? zLx|pM99qxyk4Q|8@z^2h)FJfdBzcJ2ark74L>E}VP#PSPwzElFUW)CXlLPZ0Y}qPGNh_@2BwS~=Fcq$RcS4lscKKCgwxdlc2&wA-666# zzM)7{9=Hf#9u^Vm=?79wVYqXP@sc3zl%gpMZk};+zO3vOpA*0z1ubFJ^Fcm9)vrP+ z7`SJlU$Mj8BK*+-7_>hFh)4`rVmy;%q@#9=>g~Rp;u(6xC6Bd#2>*xt?}Xmuhp*q{ z82H{Mv~{JRD>0+8Xirly0@-pjybOa1@8%&^VHl( z1%g{5a~kE?1N0>o1qqf5Dir(Yf=^Ns%PotUTLhj!xSL1h?K{{tp8YJqeYDvCx!HN= zL*V-ks2Y^cOEi3~RXnBRMn>mFKfz@yR;ntE0Qek4#`-?P$DoC--E0rQ3fPhJp+Dmc zAau3gLUortoebpKEup=ix|`}}NeLif*9Db}y@4awN*q3^%Msf9#nAQ+XKn#iAUHP8 zNzWX6)mJNcWK5lIjia(*KS=cdb(qsw?{fha|L^2(4Gg18HkK@yX(=YUJASSi?n#e|e2pT>G6J|>vJQpyXX6qSQUpYGD3wxFcG0)B6aXosi0F8j$9<;yk`%CQ zrZrjL(l_7b|0C_)dSuD2GqLyl6}x4RC5>h3eLN%jfB3=J5wSBeG9zL~$0f6(UBb)=g*wOth^Yr+17^vh=Dhvygoo=FPEv#}UKcEw{JV`j$Dh>W* zcnB&Nj|-p;Q1D~H3&T;HEmTBoVRk#ctN7;A8^GcXGmL>9`&^1NVvRabTz-L7_<3oAOGJwHLRO&2*I19@izgUK4 z_BLVmI)(?;&lQUyH)(Y77$Csf!xR|I7dIs}G`db{(E>@LZ^PhoN9DQK)C5$V%BES~ zaW6}}DO`1iIWa#$HKk?&0`hE@dujz3otRyTTBsuTx|pZamt@=l8v=kgR`4dM(otJV|?Yjxgc1i-k=l?<_h+u$P)7s zJD<9>o9-Q2>}rTP+XCHcpni8)CxWb7W1YQGTm@nEl+)4+TB9zU9fB`Mq_mdK1`zH5eo1nGAWC12s|QW+cYDk_dq~ zjBi~q=siP`%W*Q$<)mb944)cocPF$YVv{x1$}TS;X&@vnxL8yXoF*`j`Pl< zwe+7QTS^tW!^FX>)vMGhXG%+twJM3xbD(=Nl_|*fI&zQssD5_P*Dwu zeluDFbFJ}a^l(hU_Gy5+UGvjC4o6#-2=t*RM2wk|=;7L`hsv~gwaFCleCRkvH^ zj>&F>RD(;q2b+#SKTT@c^nzpGMCoH4^5m?S+C|Y&0PM^9P_ZFb@HD-4W50aOzsk_? zoDu(%KD*0rpKP$PEBu=4%N;0#&>1D;fnah$5NzhJkh@qGR%2!-0<{TCg{l>BEYq=! zLoK__6ot{{Vw@$6veUMKRZEqGkT&rOfngy4w3uB1!%aECyi$99lHOJBHRO`{kY1Yu z*DI>#UQ4CAn2d79GOa`mS`vqiL40D4)&~z$s3mloVs~>G2g`9UcL(%yDX}%Adj#Wz z12piwHcO2oeA9@!=(pvmi_p-vFr;Ue0z4M#gIurj67(Ocm>`=&uDx3i6n~qQ7+9{u zWGN9Uc!al~(Rdxw7Uw`VC142tLz86Z{iNiNJNbwzMs4*|BcG3bD;9RD*7!tKEK70E zNAepgfS>TQy!&{d!l(caD_rqZoh}5}JxboLeN-&Dv8xZYFL?&5bgLxqzWj-Dvb{S0 z5lDUvgek_Pf|l@yE$`ANpFHhQBtE{N^Jn<_6UTRb`TjX$>uEInWqA8G+Q(mncWE^L zHvI9g8DSul*zWL!{$Y>ITVBi6tVkHUKkm6v+bpbUy0h<3@1ZdrTmVAjz{s16j*50h~QWO`5DHZ@+AuX^H#rtbIxPYU2a?9w-USEkCmD}w?O`7^5x2r@hN|!@4x5NE# z0t06xULek@nT*$z$Qjmc9wBTE)65Kc$(pmM0aRP#U#cExNF2FL(3Y^l(x}zl(~w$H zT^i_1I-_)2JVG1EVTVG|ppq31{w|ewkJSXa8Vmg%dn^2DKl3VW-KeBpC#76r;f8Wf zy02f_z6cmznwE4JZA#wc>E59*Gk4=SUhJu18V%3Aw-3^w@%lAp*Y`14K2afRhc za=SST4b0V*XNmn$=aTJHs-I2JP(oVcHg4g3CKmgGw*Wt&mfIMs!7x5-OpEe_Oep7^ zO$zw2OGt^N&89OLc>sWFaImIt&8*kIy=Ey@MtKY{u}z-J~fV= zuypDAm@!Z^VQMWV{U*d1^lWgljmE_1ycwWQ<={c4jK{7Pn^wZS z6(nj12@E{uoAbt`!-HSLddyZp+{ZGZfrxId=cu)HiIQ1bXFD%yV2P2N=#vn^{_uTA zaw=Gj`K&y?S>p!#$d9;|fZ|l9aDcqY;=RI}+X$MeKm1AJBdJrO9R*mz+Ojk*j=K9d z;ZOdgGp88 zk3x2le}aM=CB`lSLET1JQ&B@S|`mj`y7|PHs}f5)%A1zxqFX-N612Uw?f3S6{vTf`8Km>=(yZe?h9WT$E?Oc>9j7 zL_d4~EWG^!;D&DpY7my`BPr8Ge6&e-K9lA~#VQgzn)@xh7)4;+aR68@oy zh-(uRn(7R7!nppA-?IF?xqhsXl_j_*V&p(#wZm8XRFFuHyyqg<2JD&!GzVZ9sHA&Me34SA}~v;*d{bo4>y#E5&$!cL51QO5O0iU^SB*$qPT{r zsv*RD3?Po93c{$!sxc|#msX`JSTLUfo5IKIEX7`$NBeDhEDl~@jV76K46?ypEhpdT zmv)sq>N~2ZU2r4iN!X@5EAqaAT#%`Ao$eSUDU~Y~b8CPUB ztF`Ok2lA2-#^B^hhefGiNMNy|gucn1yg~@IW8ra<&)r1T%em-+Q`ZF#uP!&7oP6@> zCbd7b(K~C*i+}-&z2KlGXb>#`b(~OqO|1UAbv-876YQN!>?SZ9Gv`_*$X&ZjO=~y5 zl+yo%-6e_(6GOrJ)!9ra5b-S_HDGL3stiIQF(h_*#Zel!Csbpf9?B(p5PE@4mmL!> zjv!YRB@KcVUedaixdOmb#N9*w5b*n`#sTvC&9NrWM2cGH6SM$vS+uj~h4Uw}j*pBL zEKk!JM1M3$(K&OEah9f}+T_-F%|pe8@f>fYydzGp9iUCserk4_jY*P-z~WPRynavw zQ7LxmP(@YI@g|=5trY@x`6a3L4{$~-8v3U)rXOiOPmeJWTsg%Kma7$ zjWS@qtn+Bl&ehO{tV(&m2W&Jg(lW#-E&Kr1p=Lqhx@FrpUvp6hAM!o9(#tgt2boiG znDW9YD7Gn`$>C4kadKVaYkG3Il4?Fto6}^4_c+gKQrt+a6KL79A7%>SR zy+{De5sMI4D*)<=3JOi4EsuRoN)m%I$iHR1Y`wDDGTP;oGVe&Wr^XOdlK+D=_7L~M<1c*}ZS8v5Xt+YM7k6&{l|9z;&x zoTv#fwrbYvqks4B!e9NBUVYD$J++#^nMbXtWV>23m2D%Uk9 z2WwP(0*B_YhjL{0!r*+sUf|^s>&_jQ;dF&k8HdGdcS0HNiCZ<#Sj+-;zO%hHdG)p^`=!XRnKz4O=m2k<;SUF_h!YXP$$y zfpQh~s?H8@P?>|q8lYa9fn5Gq9v8g7UDqtBi?w|(h5Sk@`?Z*&dgtAFQ{T>oM$l@5 zMxEtZJ=RR^_N=uN^Dz!GBmAbCQaO!8;;4A(Mn0|*CR>H3*!p&ej8GtGQ%a&em@RB- zh~W}Gfd)x|ck>M;e5ri#g21M&$aSB2BT=@WwZ2(s%vI&C(OfBe1*(G(j)jlJ6*U@c|<9KvFVC~T%Ua( z_JAiwi5akx&8B#>)u-h0*(J?k`iJwYyTMdWnypx`XuO}$MJUZ5xp&WQbU_!Yi^&Z~ z3oU?BwiBeQv3GK-tRpdp)&#s@rMhb1*a4&37eW4QqnE+HCL6sJB{87^MIFBc#+3vF z6r`5-uq9IIG8DNs`yA@jUlcEFWAeIIMDNZ~IA*?}ak~upO`2+O>bjcBBMv+r0{b1+ zeUA>t@1-UKME9I~T8|Z>!G?YOt=L@If_EF89Mmndl&?}%m0Pci7fDlQdeg~UT3NQ0 z1JkJA7x^up@D&)ZU8Fcf_O1v#SDsKU@dOP~>eGT&2_3Y zb)fo4JaSeOyMC7-pk7n0I+1D7K&pWyM&hAi2C|u@vUvmW&axF~=$wuL$X)y1cAs%$ zE@@;B{2-DtY99$*YzwdtUxc?`pFaHW;r+L#{~7e2-<)=6YpU9(eR{YZ-!s0spxjB<;N$Ps1d4d!)e&T z<&?uLIRh4?0^@*6QETh3yvaKS*w0dvP(E@g1@djQLC;Oz;d7DhqGmsU#h@M7qp+9; zyL6ax4;iQiv;Bi)ScE&XKQ1CW8|Ur)!DG2VSLyK8yla9tN0K@UNQeifFIWDv8bk@!jk_SCdqe z=8y@mKsr77TNyD8w-T{?m4CpN$<0;mgA9Ev&A^!^K(Guxy@CZn65p{o-V=2a_9qvC zJ;Gq?1PkEj^W%Y?{}Z|69_wRcb(j2h!pi^5v!stz>JQl>3nX>Z^gVT$Y%i=LDUg+a zl6p|{SC{)o3+>F#C8OeVpDhO&BAN#nS&mqo_}w$hAq+4I=2r3+?!ni3lCsys^4dzkx4Ckxl7^iC4a1U*-4o6>_X(;X%10`M(a0y@BX{XrD{#*^LuF z*9+tgT4;sZLm>4R_Asq#4faq(!Jw;^8;m{dGU15lj!Y*y(#Jkwy^9G@at%H(NV|Kc z03Pz~wB3sE!w4=B*^AhFrMd13>e<3>hH}#5N%#aDB}RaLc=SSscz@mv32 z{|^6ue}FBf=z1r8K$hWGEAJS~zmO{TY0VJdYDp=Z!>i>Y zWmg`2Q{GN3WOR86Z5Gr`?Tk=s_5LbfQswvA#;0-=)o`xD+^CtKOBc8$%BkjKu_oz6 z#RVod4qg1#uTictx>mGYKu|yjnmt>kAd^G%HLp;oX^9yG4aRqns28Qv8n%-HRd$?QN0sWBmQ%ES5JhX1-m3=+rh!ut=7N56Xi3I7gXf1-TX6D8%pVl~GOiET=Ph?@$Ri?NF7mn+bV3+*pCEIxdw?=1B@-n6x5<_^n=$7Ky#fWaD3e z9(=vp1mCCuh!bj853|Z~Lazvg6A8Veth@{xH+u`FX~bfwANCA0kkoT@0*T=Tf06`H z<~pt)W2h=QA`aJdzXl}+V0!Gt-P8VcAh1ri@vqn^gsFw>RQS=GblpyXjYpM&e~ zA-oa8y|Z9+YsJRC$Mgetd$+KJE0*Y{D1$BC%`W9%V<)Yy8jT8ttL4YBgPfP=)? z#3Ub7XBBoU6YWSx~tA5v^~i;gjQH-J@stXTlXpZ&~GmYatE zoC&*@k9w$pm#}S~a>lPV$HbW8*exqX9D2@DrV{9Q|WL8343A6MJsC+s?L2Tv& zq>KeJ=aDLIQstD1oUtrY#yDhBzNtBZP)#WcouS*Myw@%xk)SMXM}T@SpoBibk|C|9 zEH}v2d`>_aJh?cH^iXATId0)aidU#JS|OX}COFqjKFF*GgB6)$9U9+Ytmp$thkzRL z&8N2A=w#I%vLl|s6*Ozf9N3?_^Ntld<=vdo6Iu)0jkw3rNXlXB_c=gEP4~nAzwGim z+a=IE7Q1*sj!No~T&b<%if<6((M{#;5O)fk>ZO;YlM5~}(P<{S);Ayw4vrHmLIg^5 zI;8*lCsK|=9WlVmlhaLmWDamP6#W>9TYx%BsOR`_q$$7yhi_bc*`Br~c&FK8VR5P6 zbFd=2s0Ir`n3qE2FAq{-)jKo*cuM(Y+Uz5wj4f^EK~$;6j-3lFhPEWHs-c-8M=RWN zeX)gd&E5Eb{*3X(=k66FHYpphIZCvH1g`qf!)?^%4d@IxAU&trsqlNsQ5Q<;KZUQW zM16VC?0)ny-R_I`-@SeL;fuG=-+mY5!4KYl`r*g#-=_iR59MdQ{|cpmlYi+4P)V=!mjxbou}zG2Mx60TucTUZ~n9D!{H`LG-Nl0 zYU>VPNIAS6RdGq%5H(xKIsYVqf}3zVT1$murbCQLD&#vEcyRSTN#p9GF)Qe?RD$c9 z#oZq=ZnBv$CY;MqfFToCz68P-ldIg0S9s>kjCtwnZ=NWNP3%E1uGk_ zpi`;%N;!9kL+pQ!k@xpf(|;9BVudd|5D zxB&xP-x9Z>HhSK?0R#6e>3~e$?~=$>Vc1SGsgr8MQ#RcM2X7L7?$VE8eQak+I^*=i zhovG>b}kh8hw%xpkbUM@)}w>`Yi)O4C7I6_ni=%Vtn}N=2EJ1 zDBjYcVS!M-QthcH{%Vy1Kt+5fms#vP409)l#;y*JGDOrf+Z$9O?%!t|>NjUCKwekk zjD+bqUqE_bFhl1bC{2`Wz1uEHy*tseFk=o@;;z^lQlhRA_NSGoHrTeF2`^^1@@%(uma^UDM#nintIPm#ZmAxo#HXgA)OVew z3WVZA@A0d8p2?*h!7%4Kqv$x!nviP>H|W%)UJpDG5O{pq05d#kEz3I<9?>^j#_fem z+o0eg2xbp4_`XGD#>hFkIh`g}l}3b}o~0P4($as1i15YRFT?vUEc|X(c)zHI+6zDv z00@Nxpz=_x(|A%OS_v_!vafl$6q`}2ym3^R$Z2$l*$P$k!F8CBY^;X9QMvcx%_*Ai zkL*^Iy9Fk*+_W%gm%?~(3E$|_*~^pd?p%hLMr#3OrFXnxz9t~j;w*vo@M*?`Hl4`- zQ46e+D$nUfx-C>&HB0J;B-#U=ZO{mX_BbCl4;(s`$9)BqPVKz+!f`hr2kdt@@-3jf zg$mINL^Rd4q$&d?sh||$6Lp#o;yf1m3T`5VI0l~|-!@>L#<=fR0!VF=zz1@xMwpV6 zs{)#_+&xC@Yo>`SRz=TcUz`Gl7}gg?xHQTjOSgHxT~vyEo~90p!Bgx{jS6{Gk(lx(_Yg>?*8{jPmY*fn>9FgXxj%2>#|}lN z#&*apNm|W?nFPlOz>$mAwAJ0xvS(ko);B$DkbfUx1Z*iRJOet&ixVYS$>&!NFcsA` z>VXU1-=viT8>D>qtGxX7^a9m?f+eVcganyXT|*8Cn2g<|w2}TZxK1Eu&I)#b1}Y^` zi<6?F7I3S2Cry1H$)^Weesw&qj;-r_jEnzgn(|Zv> z+PU?ah$J2#0MAG~s~Tb`PK4zv)dILd!|YmPuv@O-5fKUXcZteDXB1Wv@4>_o0r&$! z+g*k+{Gw&jvD}3Nnu3f7*Y61=yM?KHvB;AEt&@u;&rcXgxf7&t=05`QJ2{jA<%bIl zhSYFliR#Tk&j{rOCJDwyZi97^?pV8BvZNab22SJ(&aoZRfv#%QNu4$;f%17xXl4_S zuH}SA?cjjk(8l9h@w-f*K#ug9KbM84B_Om+zjDbPPn8tMi>e2T6!gzhaS98iUR|bW z!!6zHp>z3-@LYH5Q=b%d;%|TS)SvwMku<+%Z2aZh(~SFP;qCjU4?q6nUt>%3#rr?K znbj%OX%=ZEdm;yQKaOSs2!q)*o#o?z!=uzTmM*acf(UGRq>?*O39dVaPA0)_l&1Yo zZE*SLB%GQuykxq2*2kW6rD#q-fK1Ybl&VsL$_-+Xaie5QuFe}wFAfEy#rOatgdi@5 zK*V$*u6A~}n?Zv%sCw}s>ypV#Soj#Th8K*QIz$CaS$Qb$gXPw`4S8#s`T!rq%_qOb znZ0Tq_CT4GZacePVGl7vc5bZ-!Ao#TT}&yNS#cRA z8gR}p&=GS$&{;8;?dcr$zDW=M@KR)8F`+z=L`ohm?bs4V?TcJ@Z&K-PMj?-0Iy zmV>Fc=HR~9DrgR-3=sx^(LER?YeG#Vxwl2O zX+cy7S4Wq$LuI@h@sr9GxV0N7ZOO=nDHg>U_hja)H^ZWEm&mWt7rvKCce&Uoh@_o*v1Y zBrgf-8*Y|X#uA$(Rn_5Qr6BKXs1Kg4qw)a^ZdMVv&Dp2HLS^_!v%{M@(pj?5##%Bj+S(t%ZUy51xaZf2a z6Tk+aB`N<^qm}OktS_^bxttBxtzB?liOZ5YEpI)eO) zQ&~JLyjlosCbs{ofFZZ&N>W?};?2Z)J>)Hn{eWq=#ek9*II4v$L+I?c0b8or4qkK8 ztqv9Q8mKQhYGQK2jCArVurh_TpxhXB`IUnCAl^@?U;_cVaxh5$IVKw^Yul!f;4?wi z@aBD`@I?n(1YNzWf^hAmi%R$QR7b;HiAtes0rpItgM!gA5SBlnM7`ZkuYj5GSAx2r zLHLrAyBdixLzUdYC$#zLT?Jw~BI<$ADoY>LVfLkgyd$PWvcg7Ze!}3csul9&X}x5X zhqhfzC+8iMW#xQbAcLoj7#3nnd8)asoSYASD37*9&h&|YKFfFAs&|l*TfSq791={7y zQv^47gV@GFF^PMLCN1dX_Dt0?5D};qCBINSHBX-D@=>W>);9R#8ko}|9yv;fsjyFA zbBBSu1Dz^N=%^$S8f2w|?I3SJe!*RS{EKn}1qx*AF^bG7bq(gCa=V?dgo4N@aeYmZ z+UQ9u{GaT9Dw18YkwNVK{^UAnPh-c&#&i2{d4+7{` zThqMm^3em#>B^jQyn{&}5f{X_V`WOsYb4n;l~{nj0^tX`$djy1LcXMq1BZp?gG%?( zd4aE`8j&PxW7F5>r_ls-S@S4W-NqK=(@ha=W5vP7G^-dFnY7q!Oola+4`SXmLpij0 ziW7F?Ju{$0Y2DIR(Mc98I{fTYtKJPs3D}Yu zX=S!a@SJXv%=5zvmYa7Zm^WMwNNoY1<2`CSf|9#of=J7g5)2K`;teggi@m%$3r5eJ zS(O*8Q3M3R%b2q!K+AZr`@1kN4e`ZN5k!QKWDaF&wrJQW&;g*%Do-u-p}W~EZd4P& z_hxejU?U<12&4%Nqn?(ylaD5Al~s`=tAc)Mm0y@qwx*+nZd^eHSlw58;V>k6CX^om z?{)ThSsN^Zl~mOeAyTU#KzSCvl_N~x<=-)>3ZRAFzjr{2zIy-eQ}6ehd|A9pp*0`* zDp<9EPaB2Z0GBnYc3V}IF)3V>2yA1_iCTYq)OZUww82v-9QBb(<&3ub$yb~zH|UX!oHE!X4mUFoqD*^Zmo9& zGUkp~ zphyJ!Hfa)xF)9wW1`fo9v6Q82&VB2nfCuJlTmsf;qdV(ew}u7N3M;)1_5{ud8yBt1 zQ*3ba9^*^Epbxtwm6OODfa)&Y4l9^U8I&Ylgd`^j;$D1Z$B>b7{RIMK-6|E?hi|?8 zEO4@)6|6Qu7M+`UWyAv;guAzPpUWXmDCwMAC^uj?>&CtzCm5k?Yxh8Rl0vdz$}xe7 zTc{0&bd6IHbEHOS2OHb?l!=rpRBlkIR-s1?B(P&{igT*3;kkRlJU>5byVk|BHANft zdM&ayYVCB^f90nY9qQ2NnsCqSTVc;cNKiA1z4&y&`Ol;remxeT6Y*m46*=)XVXt$qG z@AfgS9A2f;|fX_r`Q&g&zwKz1WyFUp_Z6l0DC%bV~$QhcFmT`be zaXx;hN)C&IRV6hqT;za~2|Qq;5D&okGo}T}?bB=5nS?5|lebu>1rMHER>sj*3c!*Mu@QakQ zma-jTm^HpK#Wxh#v#KpK@EQ#r#iZjn9R2hNmmBSbr8f>I*xE{GiosyiCHc4!po05A zYO`n-MHh%|C4_`)nY4S@)b)}=(Ab;Va8D8?AtrfSPv`SN&W5;woe)VHDcdxn0+SrW za~Gm~R`NDjGb^|0p4^YBA=9uyO=6d!SQM2zUg^Gm|6_9=JLeUqGdi=pIq*#0mt3a0 zHS8iRobmT8@oC!!DG?@y zq4Y1$s?6)G=GE0ku(->Uuf@T!T*tl7db5*CiwSAf5f-*p^DzzVmQU?REa}rNbdzIN zm!y&q#i-8#L`@Q00X8Xqp*em9Pk+y^KSpBgcMBpTD@#b}~d5@?-hHm#E1SzE~=b|wOJ$26YdC^fd^mOJc0X46h;Hcd5-wQf2T2vSJf zG1w$YFgIR96_}robV942eho;iE{S=U)P+Nbt_SfIu7hh&J?0t(fbGLj@u}}PHeEYO zxOL2-gA>>Q2a%o=T-;vRfLvUQT^n&)ggpBURdP4(uz_YC>u-=S0WlYM0@wEN_VoRJ z?2Bl$s?JoWKM7C6iC@3};-8@~-K+Cg@4x30<*VO$`wIRduf90|PcUFQMqaLd*s124 z;{i(+i#vFbnzrI2w$#fA*Mt%dbm`nN;YBcuE#FB#zPPGg*A|q((Tiy-#+}X@eN3UE z?(DWQvDalRcenTh=?@UDMZLM$n_Yaa3r8?U3vk-jg~|0m0h&1-aLi7VM(M6*q8O*J z55Q>hBpUMuc-1D26xjYeC?Ua@mXg+tmy0%ogk9j=E^!!+A%;9tiaC(lW@Ql^s%1kh zopHI6ccdI^CC0jAsnetDmdq>Jv^Tvti2c|^BP<(*skVX&3zDn}1CeIJipNgV*1iPR`ONkk_chR5?j(QZaJv`d@_)fBp8kUVidP_~e`aVuCa-RQcNH@85m< zA^fP{zJu#P1NOgr`y!YN$twmhCT9Z)D9i`P%o^(fX2@pRf!jE{at%16mfG|_u#ihH zSR>16y0z^={E=Q&(re#YpS*mk_&}S;<3D$;*f3H7HrKigS;qZoJbzQO#G5~ewZx}o z%3dv&0Ts5GF7ta&nDcg1>}?6OUJ)+#b0=^cRw}l`Lmh*_&3>uz_0Gd_%*rl7EcPH$ z#Njkb*LUTLYD7*pVQ4_i3`0GDe9Qs-F{M=9$LzB3Gt_z{C%iHi(Z$+L(SzU*4VBKd z9bdRLzRlh1E3nX=wI2YM$H^j6erN>G;_`&xx_8dlxv9iiiDJpN?5(e1C_|x6Gf%l3 z;5^?Rv>CWF#deblIPZiQLzsMGV56yrSy;Y@f~9{-!s*n4148lXEvzLOC%7}6;WBMb zjFNEW9)-0658b5tb3Vhx=ZulA)z3h95G>e~_QzHT*~QkHRPZd3h)?Viq)o-3Q);$z zJRo2h@(1zYTr`*gSbj$Tgx>_7bU0Qm1wUD=pcs2d5v-(3J@6})#Bc(+27w^9hMz4C^ZgTHg^&{Oot$T~28;es(w&$P{mnEPV zLnVO=(tBarQj&kUClw@?tSC3CB9*)$T`p=3BE1B+Y)!Zq%LO+8T6D6`K}xYNDPbw^ z?tc0-^jxFMCo@H*mrDMHa=cux^q!c;NjkE*!TgUzWa%xzWSrs(@y9y!TQRuhfPE}8 zmoYt5i3qnu?zcmg5b9B+E}}f{czIw>!Yz}qpFo(h4RveUX18t7oLC-=UbHGyYv;{# z!%1sE>2`F&?j;3R%f@tNaOk2seCdSH0L~b!AfD9gOKRyRXJ;K_iLYA@KK3a9RxSBh zqifO6Ms!*5hiwIdX(LE{L+TF8f!RvbMD%Dnz{yQ1?}4K=uotN1hnqAQH4+yaaUF+nIzN;DL=wMZda*6cFIDnm`}rIyH#Iz%;3OL!Vo3a5Mfn&DVu9p*0r-}ec&y%#vD=DP*}8;f5kXHZEgrEXfbUXsAkhDLVCT>krv#eCmYR0%Ch}* zt}Dq8^GF3d>;ZHQ0JS$h2YRO23`qf3IqIUBmBxvAQ3GBO+S!4z40xp5qwHv7I2ek- zx_L=-D7`#ek8UXT=_w+D-QN`{r!$=576j}K1Hf| z8R2KuLo#Z^>K(osz@3$Q?Y{}%D0#66uzzk3cNd9&sq)J)bSvVg`V$84kh}(#wiWr# z#cjYRUsks$dKA9qp%5Td!Eq9=1>S0hhqP(-sjPA;4TnzHvQ;2{n0*3IujM8g;2?z; zY-e?yEbRilVZtN|D{LZRp931O)R6m7%kk&Pl~r9cdN;COf+_`oQ0&J8#sgRPI_R`7 zGB~wPg-RH!dSoJb__2J9o*!`F5T-t)3oJ#3Mt&Gru}_lRSjzzezOL!{iC(_#Rj$t+ zNn1d34%tOKKOFC84jKj@-!8#t3EN(w~*ri?qTsqBp1lMqZ zh$HsZlHY8clz}FAVQL*fWwwyjnkq4VuXF^fN9aDP0}xy2^Bn5aS!oY^MsZnn@kTlb z59f&Vb5Kam$nDZk^M*W!b*JN4(~S@plRGX>4s^i*-7S*nX@dk(D5cV!Enn+z-r_EC zVUWY97SJMFh4dK;Z3c3yR9UegbOO{&u>5c(D zW)H82GEdYB#F4MCcr4%fN%-dJgY>iisAHzLuR{3?9q(svU)qrB^x;3feIHU)^7k+0 z|9=DdWBL1MDqSTPWgz?Ee|!736nG7XRGf7yn_&rZR+~6GD(2xJ2R`J)Cmv)QyL&#D zQ(<=NCAfH>Bs)KLE)`KBK~fUC7&%fX=u-tffl5Gr_}1I64>c@+`>bl7VD-x)0v?98 zDU{fsl2q4hqc6wSMgk20^Jbf=sU~f)x`Ea@qOl_YVyd)rf-e(o7Y1P8MogQmK*qgq zhs?C~50KB`piH$`g%y-bX$g{x>`l@fcgvv7i&yFO+N@* z@!3G`Qs4LS0ns)`MUFeAE=HvD16JN*TXC0)gbKAy z!?Ju}azqcO9-#VC^DhqA2TWkPk+CsKP0`V{4c6%-Y&iZ)!`*YrC5#LDWYu$~p=bmp z+iLRjmS-LJkt}oWHq{E11m7;UGZ4#GT>(cQm$ZkA{Mc?aHxsX8LxE$;lvYMmNyBCu> zi*59lj#rn|0W!?WmBK`6?i5E@>q&Ow*@4D6^Vb%6$qI9OSBc z1MHo15uU3$cm#R4DPJt{v1*}H9{@d!1D5o)Y#v>Jclu{2f9dnD&iZ}nIPHAQT?@O6qcMI!c@o92Q8I$TmZdtq z>}{7uJ6;SLQLd%>XUbV~n^cHOLfV&3tB*0)%e)=@$KtI~{sVhP-Umu?ffv^#n@De3 z;%fO`o&a@86&Fy)OA9UOQZ7L;pRI0O+=f#^8j@P>_j|*J1nw$Ta^e;oGt(R!aJY2# z4cG2mdO7_TL($rQ0DgyxEVUlUQ=0r9nxcxa4b>y9U&S4EkoB!{wZ#9 zrII1hO9dcQ6jSbKHgZg=Hl@E5HHo zoVYcvPbwofDU{B!Itu*JyL*;gighBmME6<{bh5^#8-N^HINJfD&n9wPI7HwNp|FPY zj6;<6bUD9BQI(g3(Sps!G4I~xuR*=_;I^db(G0!#Q}K~3$Bp;8@~VvQ452`Ioj9}Y z^K8&$SJAzZB-ErW1_LO|hZr%HPJNh&RRX}B2^c$5?|`bTj=AL;bQB8J$^mLPzZ9e_ zhCE0a*OcJi(Wjo!E~8yj-{5*ve>5mZDh(47mc4<+z?PPeQodtQ<+VAIhuJ)d?8Gk6 zRx)aH#nR-zdtOBQ3G%D=Cs)N^+7|2yIsX~7e(aF>Pj5dD=m_}e2l@z4BYT(ReK`C) zYT6da0S)n_gV1%yTHgSaE!vE*m z;d|P|rkkaDk6(%0X(?~eubQ1wT`QV(J*jaCP<2o{I8I`?V;c`tZ_N_d$frC8Uer?0 z_tS=t>*5P#lDi(o){CA)@UgQ(!a@*^cauG#yTg-KolN6kPExI11v!fp z0T3@MHcFpbu%XjKP+aR-0KeA4#7%`61mrOL>AHu>7tTC zTVL=&JXGy=0l6smavvUbnPsSg=He&FO~ridQo6kL=4J|o_hTF4bf~mTpT5`*`HJeV z-2sum#7OT2uu)Lw$bF0HIr{gdV~3#Hg$+nVe2gXmw3m5RY@nR|zzv@_7)81uR~SqO z=-gqZOxGrP2cWDeIVip0ClnD;U6YlsE4dvoDGNxzNaaP3#yA_mc81;w4}Tp9sGuuY zn8fTfskYTv=g{NLO^wiE5Q1DQ2{at41~_T8*m#mPuN4+=n-uUsUo4UVR)Ncz(NYwN z>A*_4=PJMq?Ki3R1{l*SZLZ#`s<$c)lqb*<9=1$B ze*3;Fk(@sK=VHI-P4|-ByS(t%N|}& z4;7z>LN;N&Ywn+%an_NyX3U$r`~K5PJ$Bf~io zURyVv204UiUo=7oX|p>9*jd&@z*0Wx=Yi0Z$=!q&=8WCpU~fkcxkzrMTu|fCaDX?q zoB|U6nQG*HLt~Y2$tz^J`b;vK>)c!=Pi_WMxXK+GULggUmN8NvI3#qw1ekN2=Gl1%uj8pntXYE$9l(mm^MDmKH)hLd}EphxR)t% z?~tVd-~@v@DN&$k=g&F~6|l`E&LpAAXW!|cb;qO&%l9~VeHe^ zgRe$d=1{U$zalSqN5wp3NrY0Zr z9M$WY*K+b%=b4paZP7U2p4Ou}YF-9_G3Ce1G^~J{n;irrBmr0Xv>wS_jAmd{3SD%` zGmXfkB&c?&0CVenQmL#$Pt4;Gs7ha=Zu1fKZOn2<+|ps4c#8l5kq>#r=w>2tb@;Jn>@uuWTTG@T5p8PlJd_GGH zQIn`$V;ctXbrK;Gy_T!FYvCqQcCeN);htxM>mGF{Jcp=ki~66Y;}}HsT~Q(dTVmJ6 zawfJ5QVb~O;6+8~NgZ0djR4ZCp14Opd@JJ8KMZfbDbIfP{`+T^xKqYUUz!O_X^-Rvd{w}Y|+p%kFXA>dk>`%+b2r_rWsTY7PwsclX5F9 z>Ly^v|X5`4eUZbrTMOv`eHoB2e&tt_)%drd4pT3eY6ZaxmqJ#`N$5<_|QFF6((6DB;5JB=FT`U!n$deoF&Ekchk8YI?}r5j>4RFS%4oMc4n8gR&~8CbWd)2Vx@Z)WK)7{!hgHSp} z+8IDMER9YbDnJL^Vtz-gSQCzz#cdDm8$dYam#HqDfw3wm14kWE9SxcsnOH2nUHY8a}FwId_U`Z|t=Mz4cOP-#_ zPCkEJk_wu*1jwQzb=J`}^l;0i>VeKr;6NyJ&aD(*%faZMz;0WgCbj7GUo)grc)LlF zt*jOfr{F3e%v}_~iy!V89qh@O;Hv|a^5vao_^p*Uo6@bH? zd)s&L&FOo~%h%YVlXo&gm8^{E);r?}*=an%GqgdVS(~mTDLG&q2zlTj5$kk?kk6;9 z238&+~hTnx&k zUMeioK|hF{vzLPJ3##HyW!HUyTr?aT-=!~Kt?N{Y{9bC7PT`yVZr~Hl1tg!TJ+Pd* zoGjPijFSsBC^mTs?Q~?@-@W}RJdx!;Baq9ak$w+0p{1l9gE=BF(GE#0-o37rI8=lN zSO`9!+Msp=+W50|Fs5@DN7~!34o{VZ{T*-9n)++Gqhq^ypD^MQ>~Xx^wJBj@DJ5E(2PbCaBeENOUc zX;2li+qmW`>gie)dO03S*asQ{8m^U8ib;NAONE;V6CE-Pkn~C1Of5E>4FOJy$q2yevr2pyky7gy}s>?^eC*Py&b!e7~VcjT3$)X(g zh_@q7F~gKXamBXYM!5)5z;uYsh|)gA8*N$SV>qLADi0--5Lbz&S$?4fqFWrugZ|I} ztD!#I##PD^gP~%UQUnG77?h!r`^_DF5vj5EPZ?)0$$Th4LEkCyw)Ify^)D8qHusXA z0KRpF=t&(!964E|MIxagzntY!Ti&|jUu0|x$h-$zA45I2lx_Wn6^zfCGV%SWGdpWd zr21UdvW2BN%$g&kuL_q<|GogPA;sH92boT3Z}eDf_Mm5gp&(E(Niv8CR!= zU5eHpAGTeiWxNwfr1Hh9g4Xz1iBOhXCE3f_N%R!cEcq`fxOm24zSZbZT#A`SsWBlo zcgDOtb6CgMQ1pkFBz38A_(T3l6EBAr@MX#5fx*?UPY)fJTLrv@>o!zuQL0&u@;G!- z*-I<1tE?WY>J{M!r#_l6vv%*b*_F`nmM#RX#!Fc8>3=LS`1b@^6?=zYvNHbMo|Ojn zH?S@J@ZI(AdUY z$*&#6zUM24LBO5A!CY1+P)M7B7a+=i;+5D4=;{c2&Vr;vTT_*3jCUnYa{r zm?i}~Ni-9FER6*i#mVk=2nf9D;$u1Z3$Q#iVqi&WDmfuP2rw>Eb~}0PkPQLN9?h)s z8qz`Ty-Mwcym)scQ%%rvpUeLo&!pQ5J8o_&nv68HIeBn~>>G+>LaxEj3WO-B>s-e| z=AxJoVi(|`yF)e_wu7i)`V^PVSqFV5?}!xfE)EEXKg!d}%NR;}vYJ(Dcd}{2tgOT76NfsvS!KnijIEyRB=@Xdq(3+Fa%w?A@=t1th z^Hs#x3rh^MAFgI0w+PWhI;nr^&m<#c_?7}L{}dJ!lKJiXPYpu!yXUWd5k4sov8(Lu z9C?N1CctBMa=)T*D!;`Z9wn+Dzy(JfqPT>Zz1>KU(G+^*m;}HXj=y=MDXzlYv|f~) zmQb+*omE3W!`%MTb?AR?OS*S{1D3)SXnJ8g3ASbEti*PG-Tc-_HB}G^bx=(V@PX_8x z35;VVshYvcGPOB-o{F0bED-Rz&1|9d{ur;E*WpgQUIshfjM%d^pG2@jGSB~ z?^-Mbp&0|*tjX8X9hRa+PMFZen~L+;A&r3y3Ily36yq>dgeP>+Gqy{NjSBsp3Z9U` zF8Gr!hH`;Js|@%_1fC^bfC9+JQp29vv0nfkYtSKEKRBrJ*9=ogbvZ`*0y=3_` zg0DoAGHDm+z}jOBa)~Eg$|h%**fqCdq(o*)IlDWpOE=^P@R3t+iQ1@gYvmW-an_>Ihq=+MOX{hjtpS6zzp;{f;0&?lN?y};v$z3C+CKH| zl>xo2F#QD)5*)xg)d(*gKB;spPF3dAkAPNHmC$LryZf?R#+SDGyg5Hxjmkn=It-S` z7DOA;yIz|Lr`w_hg`f462`kz)az=|Pq>WD^573oV%5SFSpj@|v2Tq)9sMsN|J80|_ zHeq>YjB?P-n^v+G!Bc|tr=&b$mof+r7O|b4XOSqu6+*gpjmZS(wVz7#TMFyZhFHKt zZKSAd*%P@YTXd>P>@q#HP7QdYwJ z>oYfB^4@=B-uXMJD0$(}N^NPnYkc&Rlf>aaz5TxY8J-^iu<$cL5PovZaN*Y}oudjQ z+Kv2Bl>@heh7^2q7=qk1w`f%jraA-UQc21M#46vo8d31Ht0tz|x2s@7IbTt4N*j(Ew zvx5$mH?$Clr(%s#!%~9-(x_9Y@wK)bWHR-K7jf>1A8cydk} zxv6e9AdirBjavxN*m`j9fQ7i{5n3BNPJ8*V-LD!6*p{-&^L?JJoI~B8&{l@D&#q@v zXUvG9nay)!h84K{l5($Aras$TfajKTqzVbctN+K-s#LU@e-(s|z zB#EaZAF3M;-&gvW46Q$=o8yHo}W0g*Dy(SywQ-iNxDhpjRpWQ zIluA}&fDTMq}Ar#Fcp>WsfZUWnt@i8OWRYBe5;FdX#qUBL~6X3&65NhIz8W(UODiJ znDW8Jm&*jzjA!OX(a)Rt&%(c#z>*t!Img}bML3eccrl!SRI;Y%aZYn<{{qlI4_lPT ziAjkI+}V)C$MI@YRr#`2ibK`% zLuS)3g-9_S1l92-%V$;~w{F|g-IPTa;nur`#hVf-ggYZ}s!I!O1Fr6NGc7wh90(t9 zf;7XobyEtRg%fTWyMlr22<0ij{kTr)E@(@cL2*#nP)QEjhA#Es$T$QCgKhWXg)fIq zl3Za`qGj2rXam}ZF;8!O^ptiB=W?F`3;3c;e~QjY0jl=ol&e?YK&P#M8beed@SYZS zI#i#5Ork?CdItG?ROk)ORL>v-tSSJ}U@dEc&}MTXRCEOx8I4nH0u9e)~Q;+aJCEu$0Ggoyku7X<@NIin^D)%&nlB5-M<2n;* zT=H3NWU{?&nuO03BaAaJTN` za>8zZ-y4fBUii`EC8a z*90MXX?{rElv{@KrTCO#^Ih-WFVcx9dDgf_@7z;=z7rVM(vGyFmI(R zBnY=JGqA%FQ0|o0nP|i0gGZdBlHr|W@-zv>%U^AbA=S+a+*0XFEyIC~ci_#i^_6ht z19!lFV9jD_Px0%$+kZZT6^2dPH4bEFYzGccvUEGnPIbeOf@^XpI0E*7?r0ZJU#?!o zwd@+Ln+aNX5NOi0wknVja!a7Z~9-!~?+$4wau_1dOB< zgPC!`zOC5A1ZY(+}(Jl&nU`e%twOl_L89ks|NgX076%I`;+uC^>roDDjm6Vb?AL1>a!uTrP(5-Muxr5dP zp}R_7fbw1eFWpYrmv(M-pV4Cw!aR0IQiY$p+;>_k_Sqx>h9PjBXeucOg&uOm!?Sob zxFeDpM)p)?*(l}3Q4h{LAs;~t;hlm&g9ID+C-M%Mf)OEi^7;Tqm*f3HRE?Zf@@DOa zL<=32hgfaF`bjx-&goQep_V0Mv%?+E6Ja(!W|u8tLRE$v$uaE!+4v!a(dDuA2OGtq ztpfxE+6aSP+GU^yH| z%Vww=QibRIg4aSfP3Y6n`<<-8!sVp!i5y0_Ip*u;JV+NPE4~Ia(nJ)%$xL!r>~~HF zA!EJx(0J;AQkM74W+E5Z(+y%7lQg5qix<47)sr1D5V2$CDbAeD~B|B!}bvUmXjV<(+vH^?S|_&Jfgz>sFt*L z=%sTwZ>Lm)OGC%wrjS!h9Bo4t=IEHgA?l zrjDQ1l-$%bPu($ymeL_pGei;ZQV>fo<1SBL>JO;f?u55x3~}7yVpP(Ft7_bwT6>$q z*$}9>J7ZHshFq8Ws!76h5dcJ>qa|ReV_xTE7#%76PO2K!VZ$HpF22<2#5B)5h|W=o zkmqDYY*N|QL;;ZG4XU(Lme@7`bQiXT0N7xT+$3q}u|2LFbs9-|h1bj>f?P_89mS}; z?==H(R;dj#TI#Y!wjkQULg8W_3L*x%fEcJ0>P5>aR=N+C&)-WM5w6;uL>JNOjGs?XYVar@RwxyIN7NQ?NHY5U0L0&%#lI(FGD--EItw*{wI4O}uZyZ@$}fNZ{D zQaPE!R08*TF3}08$`V+>u9wfXJkE#^ceD=Bb+VvUojyyKQX*n?5DE5&O-#}4x=^g^*mA@( z*e~@dx?tA73V(XUu4C6K0$kD{+@d{}pZz6j0U)FuPX$f?bG(tRW>gB9e%Hx;8PWVRUjL?u|CeLtuI zV@d*{QZ=C1$Qd^3k;CbvF!_af`9X!<0pHsB3Dh9uja3b3UdJ{{r9Y*oaJ)KBgV;M9 zXuNm#F1Rbrc!;;*K@GwoI|evHN_h>j*dxnJMk?$u{#PjTY}^E)>KVgc1GiKc!f}Da zkW{|aH64HJBDLi64fuj~39Jy5?1Vx|k^q0-qYflyvPZx9&G5}n3ZC|p@aKR2d@}sR zPln^!pX0nR8rYA+`%m9L)2}^Th6k1tYiPDAdgr^%zUSzwP*J-awQzdLbItsKinvdT zu~lPI%y#X2mxt6pKH6Ef@Y*G{?vUdedT`$Sx-f$Dge_P4s_g~Bv)hm>xI7$1^GHn< zWoCsm+$}R}xo**|=7P|~F%e!x)j`rOt5}K6qqwi1jmJN3x;Nx}USfUdAi=AgeGZbw z;DFfGt&|4s1@UL3dLL@vX@Vl})5x|57&LjXVt8{?BkL#ddLj0^?&e~PQ<$%W9a|Bc zSOC~uHYGp9*JrY5gq6m*PcNOE4VJmf4m^7r*JH&VjX}B_^~dDC7RE}us(Ve8(L$1z z*SaaMsVUQcfRHBdPoa}9z3&P0PGVwUyrpnSM zB8!#_5>tQ+NZC9&>_^r-bV2t08|l3rF=w2({;Fwh{G zGCoPnDE~_S3k$EU!U4e%wDKpZmbI!$K)GJRK1$_f&1`|W`UYdsjXQa?MzHLC0=J|p z!g>xiqp4!5t>rrm9JFAlfbF7H%xcBd(l3k9ST0YJ;{QzRMTgC|F0oPv12c@AG6P^Q zFTL{ZfvUkhqEoFW`sbhxv2t6NCp>U+9oEzM8m!foBO6__#RgxG~4_z!}70+Zu`2RLM z**|{&$@1d!_wNJ=qk4%iAu@WPgNk2-$o=1m}H{@O;Hj%VOt6ml;1?`Ry)|@?9jkU z0wW^TEH+ogJ=-O4(G}4n%N|~L%i!tQk>Vh~A6VY*$yjnN?x-D)Bg}+O3yNVZsjz{9 zFz*H2n3XABf{BL;#zG^Hlt68FxdG@JJ#D?txHrpL(vhQ#@7bRN+-m?`Py)=?U<$(( zs3Nx*R#Bu9@)^np{kT zX=J;}XXUx{lD#3gME%7UPEk}JFw=Bg`i{Kys_LJ5`a|fL&4skin4MUkU+2Po0p$Dc z*4IVq2*4o93|1LHZtJjd>Jj0(`>-36e~S0@)h1O`zWW9z`NBNbDi})z&N?jCkxI32 zyTn(mn`=r=J-5bRzW=y9_aDRiZ$JD;Xz1?6u||HzULTAVt#B6|liic9dMVm|KS(pk zo14A;DpJ7Vid1K{;^S}d#gVsa$FO{rb3iJDXGSF^V=bJfJ)+de1yM6Zs@}gm70wz; zU9qv?PJIEYp)!!$a$qPYDU?dKK*CS(dKs@u-#iZcG10eYte{VN7>G(@gsuwV5yP@b zaSFqvt#=55VuC)3P;|PEPFHDHE&sS2|s%ma_X*`Oai2Ukr8 zOn(y(tqu9rA=&XHh0uf3ZyCABgZcm&Y_mG{OwXHR_{{pNu7ZCWRcgUD0)MKfDI_Ss zzSY8a$|tCqyae2+{v6cwYjT;3`YIFjBDTkW8vgWu(2GyPpO(SatDJGKs!_MkiFR z)Cn`ZW~)fy62%?ovOveja?BaS&vF^sQEE@M!j!*T`2w`xS7$It&W4|gTR*@vtjKJE zmQTSD5IKQN;LP|{zGi~dowQ#H|Bjv>)C~Z8EFa^;1n-te^zc*#KUKriU*&8I4Ul%Q zR5P+Ps8>g?Rx=%@m6+(BLMDeE%rUu!}miFmRa2eT20m zMa0^UcP2Qy)&R%BJxjF!bfF?x< z4M7rFdIPow7%W{lik2g~O(cupRqUatuh=t%&?zM)QCt;jhk-Pq3SPK!m|3=z&u+>e zGd(2_e&l%mGiccU0|v!E)g95d!dsaa?F!qooEQLx!mYPnwpLZRpimCjqJD$Chx$5n z8(yACFF@7KlCU0NGPq*Fs0P{Q!8pwdq_hfi0{(5@#-jkmh;7A8b*8S~{K78EB3d_h zFzzsHM7)P@+; zmAXuDy(4eLa8ei}SF^g-p=Wihx`to*I!qT$=RbR@d?$7`pA|jnAMu&Lmv}7Ke+!o< zvt}&mQ~IRkw5RmCgQLT4Qtpsi!ZgyI3ydvrX)V3ZB)Y-qN%IE34-21R$Rqh(5(BLC zR=jO5jPiN-Na9{?S?G76H#pGqYf0QBKP^)INO^zZ$0Y}!%5^T%0$~pu20Cd--#Ez| z>u#;V2wh`)i2g+#L=by1LpW!QOx;u2=$@t(VqHsQGpRIGmw+lHK=@8sC7frN1>aml zXoNao#QN5nzfn!cKC<2{5e|~34J}6LX$_EscV(pgd4H^@)b!l;Nl?o>pV(-HTON3a(Jp^}8XFBAIh637O+LQ-))Y&fqHd{blz1$C6+EYa`qixE_W zpiQf!dpX4O-Qs>$g-@sxTV4j#C@{?fE+Sc23Pw2*9tJ|x|3->d`5ZT!x!f0H~R4r3CH_=`TQ56fFUgUR*^88uXjJ zZ;;(xx>}_c)JM)jrviT6mbuvbd2FNa^^sGHNsf}Ym#1WEJK7Se-;of0|H%m&uH$LN z5F@q}E6DQ`R|qxX;&x>Z_bFL6D(I=8U8tj%y6BMX637P&i183{hbA>f2LxXXxJ$^* zk@K%R>|3Ci2w?@ECxdxL#->{95Gn~PH8L;dSFZ^hOf0;WeP>AE2>E(UX;n*@rf6p# z1$n}!R4$u^%eip}EPb$$E~2ww>&e|>OH|yITXg26oKA7F>oAym-B9rbNi`(pFIm*^ zLjf|Ek+U(O_nG3!x1E&^;7khx>Jj;M`MoV^f+Rw?VAlIjBkI*uZ5x~XtB(tT6H;W` zYQ~2%SoF<2O4N{)Z$7}So7B_tj6_zLE_PsmGseL&x>2iCFY!=DyAZ+;xAgc*XXU|y zOl|58bu8&j-#wOiS=X+Rqy@de`&)HqK z%MA8;Q~{wfn>0h4uOR#E3H@Xw=r=n6u&b*%m2`X7Zl}pNAcF1odt7p(P)`3; z%B*U{4j21C_@}B)l^s7xp2+BEmW?~wITY}k#XS~IauW98rML0XqMP0uJxv$jCz2A@ zIKGwY)4eCUNpEaBL}1vcmxV_DWZ_b-urwWbd8J7*it(iclF$mBNGx^!wBhY9V3 z;|gnC;unEPV4jf-wDp+kk|uyQ;Mnhi_1$_j4M6aQxQ)sC~QQ%-TVce1-jq9UhV@j&<|}>V{^PTa3~; zD@#7ry#Vgh4SreH0cot;h_b z*e^^ZVMR{h8OF?)P6bQJeoaFSS9ALeQitD@P6Kv_7iB@EfL6M5nO+raJcgD~1cU_IysO7Mi0FvXjw8O* zo}{=~@xO8|WgVB*d6vrwP}%>7vNu_lCb`bU_W2Y}ZknPsp*-_+$jFST zV#vIC7qo6t(n1@tcTKGbR29ZTVJ-p%0x-M(#e3;|$Io{>{vz9CDg*u-nRm<#_v2^y zhW?xdoM^WMSsDms5?LZIWif@AzRQxM(4&yD`9Z$y=-y$T-cVo=(FCw;04u|8L)K4r z7%fss3b{?Un0_=`2n?u+_(=v_0 zu#2~Gg2M-_A3JrZTMU&bY0Us5$3^a)Ewan5KXU`yW~6V@MGj!dLg{gDX}&hS3NTbQWLSSvr_ z>JPM&^vVs1by^e`7Yt(z`cm~OX3OTdl1I->l&a#XQ^A%5^*+I0as)v*a!sm7?<>dIBMh&V}rxu|z2RlJhSfJOCh z^QF8McOzRR_%hE$lV{p~gf z$Z87_#(1{H67*@Hoh=3a7OuO4*b|Q6l?VX|VdugL!^o9iyu!(M@LQ~)=bo?7SGh1);eM_d;N~ZQH?*Gy2R}7;ho*0k9KdUr=-_Y0mNHz!+LyrM8rTj! zFz2y=h@EB#oJ*41js}ESZ=n2<@3g8P=1$c5^dOQ)&Ae#8_d;+rxJgu-g*n`q1$3OJ zDtVua3t+-;Oa?U1ke-yKJ5N&G6k*v}w)RFq91N63=rHA7AG^593y}({V>&U%(||gg zB6G0S;6|_HJK1B&^Zng1F7o~o_Ku-kJmUf%!|t#Z2|g#hMZb{+G+yGJ8nNTH*Kqct zm0nV{4p~?CMBWA1&0T+j?t={jT}lT));9K#X&cz&wRG!7{)Qe1PvIbJLcxdO2{M&Hy!7U?Pz_XMy&tX-2TtUxcerK-TbCo@wE zV#_u_H6!+-!hB)NLv?8U`i>4`g?aX5D|PyJiIsMweTpelbjxEBWqZ3^y!0V4D&?`vTl^!w|L?XR2|KwSF9CD zg?$4l!F=R60^zYa;k+guba(JUuU@y3+YPV&xTqn*{gt55Cdi6HU(%(SZXMF}*ihnp zg^T0nuf7YFH8>@^u_hp-aU*ds_u%dXt-OmJl8q2&$Av<2VcJh;%mYoQ6}h)%M9JOB z8cAKf`@ZZ*M4+dbmP$QG`Ucv`c_a8&0rl<0zXk1N1dF4ztu5eOUG zW~L1vnt@^NX2;QKXO_vgY6Ndi@Wj|3vp{r^jO@0c_0XtYwm}M#V-3RDsMW~4Yz0FL zfwlUKvnRF?u7fi|K40}GyV^kp zK)|iA?=}D<;1rA2f5ESq@wdZ(Fu+TI`MK=uMGDzbgJ(5a|E1OG4f}SJ%3jhqw3TQE zFcLP5J(F}Yyhjv6-pkcts1hW@Us>6KW`pt;jP%h~hRBVcCR-D_hTc&B(o=yf4jge0`}Ah4Oh$_&`EE1M*%^?4Y>~Gw!sjwjr++Sw^CZG zr_dAnMvLL^Rz>(bEi}2e?iy=CpJ%XQfC7fPw;kIBn725Se1anig&{}f5-fX-#d~Ip z7ejxzPv-~eIRO(f`!IEoB?bo<@;ZS;8!ZVKU8@G_<%iN4?FIRw)S;Vc5dai+yM(u< zt8_KmGv8MUBX&~;PN}j40}uaUlG?cq>?7YGEo~D?$#$$RuEW!=P_#|HyRn53rku_1JvW7j;`X>N{VDCy^L+OV1XLiJrtU-(5a+J6xdjNN{EC) z72H*{3q6%9gqW)dxdHGTw#zX9)SX3-(R!M0T~bL-#+VutUC$U)t*^eR4pFd?dL6Hz zf2tAuZlfd=)^TOU2&>HjQtyNVXva^2EB9KZULIg`1|xP#8YM*$Mu`y?^zh~@)j!x3 za`p_W2uCrw%-DYanSHb}`O8C^{`MIR7xKmL56`}NTmJX|p4Z<&`8_A~FZ#AVD%$xx zqFbFmoKSWL-LyaL@?Vhudl-=8#)mDt)P$<8{SBv|O=&ENX));F4i`#F!Yr+K6^oZM z*lP3WMx2nGEI3}Lk)jc|oRpXaHNpscvV0ta-q7lsoQH>$PnoO>H&4N^05kkiAvG(R z@!bngsgEm+i4Yjj7q@-C^g-2C4Y@b5zo+``?6E_uv#9Yo$9(AgmBZw`^Cp|@8K$5E zY7@Hrg$FOrHrj*oR&S7-+amFKRQ88Su+!yeWuNqRW9@#6$X1OdwyTb8z8)=rVl*f_ zr=Q?f-x1^+FOn`>Qib_2YF5j)vaXOF^_Pp)MVF-DL632lB(KzD^^3gy zo&dd4Fc!k4BP>om5mdbf$x5WQ1|qr)J!#{G**utKHS+OygnjSM7TraxXt|UuCZBxS8xXTIK?wB)MOB><= z2Cwo_KFDxA;Nn(&}s$iner zTqiI`HG*l~gSyHAe{VPBJnCb^8;`rnoi?ySj5rP#HD`%mGS6!vbp5 zwv}=pbM^)4ERXj-&o(I=(J3~uff|cFk@W~`chbZWe|cuj&hT9A=!DiF`vQ1x^KOJf zve8~|suqG>ZsQgy3<_Nm#;NRw_a>eQkK0*^U&P_}cP0Ol(bC(S*7oW&G!lQ*_AZ*B z&^>_nk(uB`fyAJlspmx!fuZ<;f|k{kYV@4QDo8H?>0^Ug>aW^;ylir$!XO9}LlVm} zw-X?~xG(DQLsTD_P3ehbUn!9zCL0 zC2H?B5{lHzO_OR2LN1`cD~~>Zs#^-x7Dtaaj$(D|pjxw>{wDly=KCaR$X_v({pS65 z8G`(?@{DQ6{6Zgm%IAL(-o8A2`1`j%2K=MX-a~IWL$dQU2PwQO)4)_9L1AtnBFWj& zxMWX04YQr+D>`q1@I_@_M+zkZ4oAxKdiKfyYeg~#exeEEOgETW4YOUv4^8F#Rmwz{ zWpVlhq2EH$J&<<_gug{A$!QTsUOg%yL{oKThKP9agvk0u?*C9rzV7BPX~c-%&Nb{U zM$-P^o&x!Ly7559Wuc=Q*p(}2;8J+Fs1X9upwzd9<1k?TER$EO=}<@7Zw-1wBJi)4;~Y5vXT}il!(F{3J&YQmYLP)4fnlHb`aw7|_!!RDNk4AgGnm?L{L7>BeDWh8asFVg&nW?7pn5w z;(UPx@-H;&Ru_^4Qr=uRgiCrB3_iwXm~7ImWl;kG%PaP(cbTQ^269*FCknbvYmHH0 z^dfXrg)nO{srzB%3mr6ZU`uRJ>sDvo575&^)Qu*{IMfL5#bRyqIoU{v%@Ap$g?>sn zkSNt%P(sXPs2pJQ@|Ci~*HcDT=~IyCuBh&E!#kt>trSV`zonrHK5rj_1zmYH6DR9{ zQn2?gj{vcg_>ir9xv)V{{%Mc@RaEC4!)s54gYEX}HH9eE!AEPczQ%_N-{(^44Bn9ctDPW_yfb}23 zeaf8#S4frU0zn!!21DB>WdiN;OaQf}Y%bj?*6P@iqlkj)fn`<%9_|MdO?`TvhHE9k$! z{US#gaMpK7F42Vk0qd#FS$vhU3ChG^u^jLoZAMxo-$2Bb#8%#$r%IJ;>vb&cRN3X{ zJ{4)y+1^cPO!#!YC?lYLxpy4q^+)ah6~pZU1KJkbKx-ZnIfqEfTNEM)O7=&L51>R!51_BeE8Rh_5WMg4WWAnzc&%VQ79b0i=g8qM0G zu*_MuwFES4Ni3i*C;*Cg5l#2{=lN6-9x6C2#!Q>+d(21ju3x>km!jzxg z9E=abI@D^0QyfDOaHzj5C9=}ca*&{t^FbJ>S};(8RiINJ(gR8m5;(xLR@Hi!Rf1An z^Bkk+j}c;j97_UrF?eV(_{Lv{|0TzX|2w?@5WdT*l*AF}%Zru5FQGYhEr95dwdeB% z`1hbODj$tdtiV7ioR|?mx&+0fwZ4qq_G&ls0Z<@hpsZHCcXAI~IOIuw(x;QI!X3&r zbmz$CI{kF8K0x-SW;@zE-a^*;^}t|ze#3mwr~ZJR6~ylZV(@C(l zjuPagIU-Qg6?&GP^rv?OW5v@d9kn-%JohvrY$gN$fAb|YeWm9odxFiBh;v+mr3HVEsSfst^$CN}`a z<}gzCCazQ(KnXayR`&05ke@?^9(|AxWhhyFqt56dxy0ZM|D_?G7LBqrAxU)MkQ>Af z%T(FWQquj~HAtODTz%(k-LcZjv{aVh7kY~?Dd}tQhcG6x;}oVR;iHJqw{rP)ZyB7 zl5jS##TmEgu!A)% zO+ha;+QT$FT~b+=O=V|bX5FH#UnCZ4d96y$d*NXT{azOA&>@5D)+$C%Db2*$>2AV6xAW!j$axQXKA?y9Xx?k z3kS+^tTq+Yp@^OQC+TWDefVzx0{!FL*QX~;(ydF7B!T1Et9s;;kAqdnso4{UJbP$6 zR3Z517YN5&o*mQ=7RGasUdfJfD4<*<676vBt(BJ6 zlDamyN)Ekn0GDA$jgqXBDj=P~-h(pDX}(Np>|O}#k;AZ4wz0idl_`48t8@1nY*?R| zjG8JDQsAPFM92>NtK12c0u^N(Ax9x+pw#9!iBLW4VHCrPjU1#l*r@+9fK8DdS18Dw z)GSuLAq~{23T)JzDiX*r)|*g8V@24+s8a<~8>VRjOu{a?$rAqH>p^oU9E{Zzx$PEr zF41l0B?`o#@s?t8CZ~_>!NOBVI^r{|28FEUq8hzx5YOf4XY~t*97n9exsU$G7~Bos zA*(jWluwZ72Jh?D5qBW3+iu*`dPuSr^2Lpe_zS%-K>7Cq-9t`_e*KO?VKcZ6Fd4;KCYpBvkdyy*rCY-1 z7;dU6v%}W3b>{PdOVYydw!6k>(>*NrLdUCHv+7O1vx4m* z4m8Ssh93fy)Z_wvtE#fLd5a1Ma2W&d10m-T598mIEaU+XBYFL~mzP`taBO94w^%iT z7&Nh#Wp7!I8mXusc3mgUXl&1V1G?F>Un^|5!Z7Noxwu6Xs#Z72gH7wrwHazy(}Dzf z5Tt5SIihqxiq{PrlST#I`5B<#>e4WWXtfK4)jqwG^Esgj)RL{zLzJU>mR6avUqOC# zpf!NmI$f`(5ou#bLhFRV1ux?rLPq(K%DO^JMG7O5^FT~sIa_6)T7Y%&VsbXm2xSc-Lm=0jJ*?LD`c~+}Nn2R>YR4#LT zu`$P}AtmuR86@L}HmlMiIZRVMF@VOY4w40e=#MsZii}}qu;`q*^`)gLf@TOvxY@*i z7OzcswVD0O)WX*yU#t3$ChCBActWAoTOvB>rkq&2oF#6aZc5m*xd*5=jdgnotl4o2FOZ-nBF6Ya4M-2>|)MXYn6R1KCz0>)O&zOYPJ z6YTZymV<{Qrw02dXPOC~`@MyNk-bu=2p*kp&X95|Ug2j@A|+uN=}Cx^iG*NP1D0LH z?q0y+V#f}K+o1-nK+fOMBchaRQYqNj1o%PETJQkfni^@fq*ljxmq`TB;DZSo@q-sM z7~x@P4+HZNB@Bm!F7pk)LshLU$W-VGQR1gUiU~m~H-B2PDue{Qs+LtHMTSMMO^O*{ zl3+cNpIIucrw$`(&eODr{>j_g8-NvB=co5iDjm~Y*1%tbV*pwZB} z&k<9d;Auy;uMXuPU6G))e$ZvuQW36K6{xuPnQGTF*+tt9B7^88FvDG|k0pIqHEdvF z)jeHhLQdP+e!((rfN~P5u4?tv(#7=VtnJ##dJP?5s_C$CXIYW>^Kc=j1PX0f{!;sK zF3N)%W05S&Rh>-{DcA~$j~dLnX@r*AodN7dMB?S_?l$fb3mrU6j|=)>FKo+N0hr!YjK%snZRI`EzCt1f1DOgSt^$ ztPW9J)Go|5cRM+nr7m<@QOW!N(bw*I) zNWLFY>Zp|ph#!6g(ZTTHi?{E;e^0@U!6>`0(*b$^8sNBkQfmsT5XtEPlP5`UMw+WW z6z4YBHMr0Drrl90f@TB+Ob!e%Vx%{?S`J~hgLu(Z${4^DyfpG9L%Fd*2(@wa*E`G! zb!gA#BjgFTf}2<;wQ+o&);@43*o{Zusg!h7Z5gxNBDHsaMg?`jl3%Pj1^pqo>01=!0@wYhIBTH!R9b zN`wuJu%_uaa*@YSP2eDL**rB!yN5@Oj?=>7;0|2Dww;=7MpMe2y`VoDKO!eA&Xj9p zGk;>mWCIaJ3j&gdFVq670iIfT*&!;_Y7YBDR#qy%?E&S|O&;wGO(^lw5+yii%xrk} ztwaZF?pBb%lM<*>n{`eNv1(Ni7YbZ=QSv1tUSwtg>DU z`dw0=TkG;_oyQp2+|vx?U*3NGZ>@4Z`v%t-mDF!eAAb1uUFH0L4(|W2PA`&|Niq0x zm{+`@TMf3qQyhVz$k*9zo$19RQ|4UL`!44%8UT&S!GM`#&BA-AS9mwioXT(eQ0&lv zc{-mt1MH*Zu=v5+C$=bYdn%jU9t2lDlebw>!W=Jl>iLRZLhA(oC6eGj$R517-`WBh z=%+;g8zYLUZ#iJPlVx*&H<^+#8exeOX0R49YxPqYJ*A>ilXS_f0UZ0m;7B##5=#()G#B%m7J~()L{~mJzl~^j=gWgg!mYCt?{*{Mo@GV=TDEYS}uyP)8w@BE!UdP=sF5dQOKx~mKHX)l7sk4|3R zrpJrZ4&l)bAtjDYQhgbx;u*GLWU>0l4mN}Jv3i(nJiEG7pIQlcfSNBZr<*GQ@3v10 zGuSJ@7%J|c4zi9)8QzLB?2a-N{V#+6CeRrMr~PQWaHOAivv2CUQ9K2%ii>VqPxEgX zy5Ff%G6D8-T6YyJ2Nt#xv>j#}K=K)XE5HGmUmPJY-)%i(M#hgz32$SD}v^# z(#V!R$IQ%#J@vgnc&J={8k!cbukfQ7VMygCqbkyno;%EHRqop=%%isF1ZteTp6p0rGtd!k4Y@GbW~S1PJ&Dc=%TM&&NglyKgwkWI>F#uTFQg zf(%lpQ|KH>0C+)7XAc7DjcDa?6tF$AWQ~g)Z7abh>OnAod0WW%S$P}jav%m*jZ}SX zw}Dau4UA8A80nQ-c*YC!LB|S|IVrd*2aGfAmJWktiD2^_{ASHyMC2~jEdkCV-*&cO zr6V46C2gJWDrAy&C{#JU4!mxg^j(nX&47$KBHG7$*~?hjIq2t%%wC}vOVlogD!{&M z-ou2-rp=NERGvLyy!{?7PjYPTDtHDnbJ(h`+o9U%@h12x#0H0mzwGYG?L(nZ-Zkpu zh#N-O@GabJ5+Qkj4d*v>U-px(IJq0^N!=ofqFdJlPI52%T12PhKsrl)cIn!PA>c{# z$=^WWcT?k;j%uGMhgD!~X8GL9SAIt#Tg&~b5DQbjxg&|7*&BL&HV1R#IRJY)j`2rO z3LtkiL7l%=ds45FAA2a9b$Q|rbO!~_&^R=%>l;;+Dw0=F++Epyufw>@b_SS3XNgV< zsL*(zU`~XOddE8V5gt_XRY+M5(HtYn@?|<0!LF0MDqyeK3jS93_Fqz~>U-ai@0N22 z<3xPOXOAA^w~5fU$s|MX&^&nh?k+6)d#vT;@GMQ`b4R+7tx}`8)-I-ycc^+x$^}=Z z;J~|8*7!6Nb^o%k>Pcd3o*?)_!m|1gIHr!SG$qFhVvqGc^1~Jg2Oe(fWIF==;h5IZxvmnj1~qy2V|GA@+FYv% zqfXvo}Q6){wGED$f|X$C5ASOE)0t21$=9u4QCOwtqLm8!k!ZJ*>C27&9(E z0(Zccbc;oKf)J|*=d-4aR^s;EJbPc^tdg{OUtXlvvt*-D*n{FzyE3{3aqFdpjvRSCX#O$}g^T#t5w)p3lNYiuYor7&p}aTeqI#JSlXeXb_?u^|UYR)R%~p zrf-2O_9?g7AKyM>DVaCm*Z=ObKb2B2Nd)?a@INAWgBoD+d7k$s2?YunN>Y+dKdHIKDtih0`<; zoGfY0OdOm+tIDg`&(&BU!5y7)kF-nLi={c@gyAQYn#`44SanNOg%+vuU_`ikJ~68x zVK-#HJdmjXTXzS!7-)OnQgfPC+1IAUH>m_YSK$PV?D+)fSkVKWDz&kqztwmJ1%}7< zF0qqN7#LAr$%v^DWn5k^5G$9V8WjWmO`E~;VeStmEE3-v3Hn!zN0X(!6B2w=F@P}t zB)fMHue<7Dhe84aDa?lZ_n%AkIFWXL1S=rgpm40iJ}AFyQUe6Z4m zI2NYz0Ht5$=t2LgNLDwUyzT3niUmyrl0D_JkdzT1hq=7r2kW##-U6_6qUWB4)PgB& zBv8AK-Af=fZhh!vYEuamiwD5(R7yhGNhHwAX|HPA3xwn0Ddb~VeKhi18(l!oOcxV>`g0s*( zNb4h7SK@xq$=gSj-6@tfm_qpOy`*fYuEta){Z;lw7z+e-0|w#PCzhHmoYj8}ZaPu!)^QcY&v8z6y;sak^rw(P}lDp?BxSI{fFw-zp5b zr#?cFa)J270x+)~&uBt0;T}g=>-NB&V{WNsn{4oXgV$}b%77N^z9mmpKsg~ER~aYN zw~3~&TFX(menio$7HAk+b`KnE2Nfn1u%oI_A@gGI2FDliBLHDoz7=H)&1+PzR5zUZ z?{H21e<1ewzrTNKQ{orEHfhNGfMywat&Pk4-UDR`^ND+ug+Qn4a`E`Op24C_ z?K8YFvZk{iwrJ6i+@(reBLl~b9ACm7UCDQVjU~7CzR5HPD-c;9j%y5L8jKkHT5K2- z2V+CF-C;kdho~*IL1`r{X`fvwy28sZFhivVAP!Ep2K;Y`;J-qV@(fbO#nWDGRnjhX zJgdP2GujchE>adKbA|RmcvcDKH^YCRPjb>8GhVnCv3w75=l4K)GSn^Rq4s#5f%_fi zNE7pM!LY>&+YHd)^&nX~^XV?6a~7(jU}e`+l3ZTNShC(sD`l%SJe}IEB%S;~H?Gvb zPZCbsq6`98Wfk7Gj6r?giY7^;r*Gbwd!>$kH*Vxk)qW`_1)}j-rdKr(#{k+c6E-Lt zUR#9eH8nAT2T{xK4ICwQ!DbVDuATJ-b-JWnZ7@?PAOUPxj&usw$~Bu@%f>%&p3rfe zCn*pr}FS;AGzNA^!>YZy@7$m+xJc%{!hw1KQvss z;w#wCrZTF`V(6#roD+xM2-+J`@r%7;C~7q(cL(<98r;uDib(dqG{tu-6rSaa?n-LP zLG$#G3}6bdEE5nWJM36Do$mllKyMK+q);-d(1XY6Pk3G!c%NQlaQ1#bOLZ@P7g5uaVV~(qr6^1@t6cz zT=HvGci$BT)#JQfQf`RJADjDT#*|yE#fvOTn;?T#e>a_j`@1$>4&lAo>^ zGj9D<;DK@iPbaOEApLbwp}2kUBXNMHfdemUPkiM>z6Dq6tJPW(_7Jdkb?v0A29?E} z+>Dh|Gw)lOqe6ag3&en>GQ_O{n~=UUOGCK^xSn7TfUALk1%cdlUe7wLQsbgxBAIXi z7q%?6C|6OGgiiR*9?#Dr}LplFdDE+kK;y{y8nB z&=+c~bbFP$+8`Z>&sbztU*Ar5iGb<=y0@3n?!jGc6Hs)^ane&nQa9$=kMvP>M!2~F z2Uzr@Y#2EU+m7P_+3MpKo}*XMaGnCV_zW5JuGgNdR98|Cca2oV?o6lV@4lT;V%Nmd z&#CTIQJr)&$x0+XNO)M>-yRr{ak}_kwScX{6oo9bz*VNs1K8mDE-GB%ssgfqpXr2v zeUm*kUnE0)l|3ez^#r{m2vW)`I2?cq6M;aI?{0Zvw>%$`xE^c5I;R0fuZw{}YR^u` zt)Sju15xcYeIH~s4E#iZ*n;f$7a)1v76vkvmrf2&9P87uohrdmyF$(t?}&GclV#enQ*S^xUfcpg_Eo&00ysJ~USlsAH?=aZ&{I~Le1*~z)BkGTgex_ zJ0sU$Xyn@8A;k zoUBhQwJOG|2g}x7lapgq-W(_coQo{WodnkN6kKTnEG5Z>J1a~jjJsuh*2}q@fFf*V z%-S|TzI9Y+gaPJuaKNk>5IU6`Z4d^^>5TRo#$F7{Dj)@bdAa={i9=;KKcLk1j6=~U z$`XDr`7d!;#x=63Ji(IK?%eo#mt)2H>)j0s2L)MC0bgpn`r&P>enJx(lrSzfXy_(q zaBEjE`77u#ROl1@F0A5)tivg5aWWou;F6+3bdoN>8q=V@m9Sd4KnszXS4*!AP~N;% zu5PP@LZAb4`1w|0+qi0|z(*l28}Lts5za+;L3Y9p_}Y2Sw1lX5Ui?AnWx&n(Bkpg^(Kd1@6PW1AEO;gi%kNU?DI zvs~ovvyc zf?MVtf>D?LqBxN4NuPL(if=9()f)MrS3SXAwzqE1)o0b~h;H}BapM*J`K})n2GVh0 zg|zx4aWHq0GQQtV!qoVn_JUFUqMWy4dE8DjL1!KF#s=we8iRBwwMq1Rwi zv#87Cpi~fT+2tBDZ(xZDq$5jw=EmipT(j{gn@_PC_Q02G9j?2&ws(c0D#3GdUUY?a zH^ZQWK9=SY9b<}uL$eNETq!HNe)nVAsNAP#;DPw)S{0SB9gzys;sM{MEW7VEtdJ98 zs=EU%-*kp*@UD+$8tvFgoU?{C$gr+BqppY*vtEZi*STX29wE(!kPf$MNQIbvLsR*G#1)ja%%GT(BGIVCw)Yt0!>?fVGBOXfAAC0F9V}nbvTxk3p zff&jvw*}CU(nAK7bfWkABCB@ODU@?M&wM7sVt{AUWXg3hx!o&q<06+pstx?GRnMGuko) zBHCCPH*b@Dh@#tCUl`YV&-ff`#YuLCW`;Oq&#`5?OCFH0KP!r@H9o1p$?EbeDNEI| z7Z%0^*{l+($vw?3TCx)eTSUZD9F3y&^G01@qj|7=)*hg{(^X5n48Z2e#^vb>@SLfX zLyhAOiWqBdRX#1Aj?kDSzX*-66$30uxY+WEY7e%{;d%o}V(8qX<$L+Sgu~JMXZiZ? z-+qAq2VUfZ)ALD|(5Rq8JyaG8o>CJ-ubSlZG0Um2@G=^d(mmH56p`-Wy|->9z~(`d zx2}rg+d54S+QI0Sf@mGIzaZeSIE%c6Ydb+kYTUub3`{9^o_#8pbCLwRE7b99sG+$l zx@ts&B{WklC5MfjJr6Cp13hYt>d>~Ya)mi)7{Fy>l))QtvuO@We|#&$=XF=EU@N=h z%J$~vsY=n=!v4;>`LauPa7mt6U-mGWSTTHr$bE!_%h47Y;&8pYBs~u#1fF+j2Qb>V zio>@32V0hd zc!Wtpm?pkp4h)4#8+lcVW3{AEjW&vwDa@VZJ?S4jIAf*C0yy%p(0}*-C4spAk{7v( z0*Cj1p*P77KE^t}PA*uGHN#*BxD~}P%1u9ROQ46Ja({iUyFd?_4I{}ZDL!#W6Y>_@ zBbZfPixz5$0wfNA;ytTIl|1>Ga|wgn7Q)+=9i*Q&ZH-IBT{v6WAi3dI3}3uNH(?Xw(W?` z-m|GTezW1JLW8y+G3El<;?WgIhiT>+)7tSPLtGDb>DNFMmjrWft^&Qeo>UXoPS@_W zaCdJ#e6?*f1LQvR9MEJnk+L+QXte>9{$=2#(ZGBk=1W*;D40}Oo~f;DTK;J*c(0SA z`z0~b161zosqI~yP%T%AX?ZFFJZRk<4pYfcYZTOZ&ljSp;{JTc%UvVxtBH3xQ*Ux) zJ~*|mCubR{nX&w-_K8Y@m4csO2q64iIhXe?gs$6dX&_&C0l?X*oWSUgKkJoll2 zTX)Y*43V8oJ5zkS;Ox_&BKt%s|< z=d687js=w5F}YC|Q2KQBKvPyetPBZPIqL>?urRxIN#1T*vY(XWiIs99rRUmJFef+) z1>6DE_Gf@)kkgaR)kc1)m0{2WuH%gdq0VhPYmHGgzz41^)Ptx>*kaw-Rj5yGTZ{yT zKuUQVwaQs=K0+0;!A|jcN3$f5z0e`4JJP3=`!DwiZE1p<6y@Q5xk}=aT2n1U#=r=T z4Pj_GxL+|z(%Fk0n2^l1vvMC5Bhk;203{#BNQGQz?D7X-UK++HD@Z67J!&M9sYPS` z6eFEdW3YAh?eOQhru?%%Bd+nYvYCGO{#oD!VaY$?*Zt(1AM^Kp`u^FU{vpVR&)+^p zlKQ>y{%h<$2`Io-jq=u$9jPjw2E>6WqpbdsCBK}nx6A3H)-?3`Y3U6&7}{znnNVKZ zaxXGuaOTOQn^03YAET^(e?c({h_~_RW?7c$v|b+aZo)6m&d-Hn^()+BfIuB7wxl{5 ztYwexd|G1U%h;(x)SB)*J0s+ZLAtfPwR1SF{E=sr$18U}+C>&J0@LkD3V!CY>KlBT zoE-s7VczKI^KcWR)mSCknMirWLBW7CB9PfVz)gzeHn5KE5=B_SWDnr-#5?&5z(rYJ zH^{jLa3s+vy+RKXDcim8tQ;5VTO0uhqrr-!QeezNWk4jEc}qm)%Rw(KJ;U>v|Cppo_91JA=Vu@p z+rZm%!U+lq9oz3uoM@84_>>nSRGf~$Xj~El304RUDnboII*Sy*9AV7C2`=&Y)lT?! z1yX*?A}Nk_hj$a{0>M)#rzJUKh>T#%*f02V-{AjtqkoMpt7qw-{!4ilsvg#@bxVOi z!lhR~=rb?QJVtE9it84Nb*c`~W9fL1Y>*#v80ZG?CWX{WjRmK7dsdFM)q>%MlH7Kw z3gQ@UUGb6|?~bUVwsoo?CopTwWkV@Zz+0l}KFE%JdXEtW;zIEs2}RvZ(6Z!< z*8)^N2Op0}6?+D0inFb)8I~Cko>S&9g?!}(vj5)kzSSf z&+>1!TXDM|+=Z)bz5NAFK32T{So2+c%+W!kKte>Dmg7lWx;)ys zt1q1oQ2<1;epol?kl=RSd*>La-jDTLHM8&uZwpwB6HO-w8=g0ZMj)M~h6a8Ffm4`( z>;&&2C5WChoD)*>6{3nHr&fSu9FC7OJP5~=gkQK^9(+;KU8j2J_lBXa0m88yE{$i^ z^J!F=16e>1>kA_d0!d*>au*>iEvYhXZJN{{G2rz**f23aRG}Sr4;k??ZHxCxZsZ(w znyr44UH&XMYPE8T-{EMZS9F=_U3cBD|u#s5xPB*W*a3#w6ylYF( zScj|Q7O;ehZy=&obNbux*M|V{Ztj1-IGS_+5?Vibwqq1p$qC+miA##l{KMPN zWih@&zEBc__Vkb-GM*kvv!c1*DmMpQdGJ4SEC2_;$!b2{uGpseBRfARpeV*qE*mnR zHZ)8Sz)5GkK;^42g_O(b>SI`EuEqieMIi6?S+s%WPT9K)Y5zf4QJXg$*URoUzi3$B z9FaAKo3rqPnpT{aEW5YNvR7TSTaqG)Ca}|iAgmz>@S*|! z0j}NukQ2VkGKlsw&^znYV!$yoSE=hUhj8rZb)p^VH7beEA`xa=`-;xlt91g%m%F(Fr@ zG+`PPgCY?wwp0)UC+1mdZFPABbjcp$v@UWspiEV#dK{13q#B~lnfx|;P`Jp?q4z?K z(a4^qhUe7mwqPpgM><9E8pHKeWvV9l5^_#YS~mGqcZGfVC?B&4o&^9oS0r_6_r8?A zU@T8^Y+dA)JUVL?#Zlt=v-Zpchwkamf&nq!Kg}LpnK^%WkORiQhIi{}|C2*8<;T6S zdELv3g)vcnn8Mjo<+~il_YRgq`C$TGz&x#8 zD6!h#RwKuKhH{P^{M_*v?K;xNj0q_&w_pw%^K(;(&)2e>c5zNFexd`k%(dImKPhM4ZTOxJ>e zx$2NE87z|b_f*%~TOhpZo~UdgE8Y{Jo9f`$-j(&#S}))_RV&0MC2CpUK#uRo&Wwso zBcaYxXJ4W#q1I`F*!H1>Yu<--T~b8U021G#f@A7GKdW*QR8WEZhR{oA} z^CNK=sG=ysC+XtOJx357!~^bxBHSmy5y@)8@!OpCmeSx4BuGac{0(e-bRsCQg~1lu zl(r4434NKd>`Sos(%}@}c}Sye4}i7YGal5C^(_oX4B#5KAXT$IU#6?7#ui27o+O90 z4unL5Ilb0Y*g;Rv96(mvhrpcMO`gF-Y$wX1XdkYty{|u~q0*H}95u=!0x9NbtZg~N zxp$x+*%5g#OxoU1R*^k%lmi8pg1$QdUPjUu`*4%eT+Rh(?>TL0UDc=!(i{013KrZH z@zJx-*N5kv_wadnN~kDjt3e9pMA(YlVdFd~ot{T6(woMLZD?*IqyZ_Fk$sJiSu_zh zNxA$)@8sV`0tVzdaD%uLwc&SxpppE{KfiqsR$Z?cpUcg(jN=Ia zrg?AVw!C%bbj_{9^8~d**(#g*(vz_JU|@bo9%5R0_@T1imc={DYN^9n*CNT3mH4|F zd8>WLO!vUt!CN1a^uF?`0O_!`q(`fQuly0LnK498{aJzptZWvy15nx&<`r7j6FZ%d z#UNv#jqM`$k)q9+Tq&mqxg0ucwp|L^9jjY8X6A&MTs}R~qFbK1FP8DqsP1ibjGdHq zy&MANgczP-wyuT>aoxRLr%Wfi_EtRL(Nf~IqgUn`J8fhUBEZqQ+vSkX6bfZf`1HS5 z5&%bDk78oc!!IT|vJz2hb1_hG9BCBQBjOSngF!E8I5)YkJNb;0RFq~9EaB@01_tg+ z(;W0GVGaykO3M<$N@E@yon7Fo5vdEWLcvm5VCQ1tF3i*~X=g+Vyzq;{mM_77he=@83KO}*1h2q0;jx*HE!=jD+SlAo zuVqDG{&_^N)nKi3MX?WTN*ypXjqyAvHU!C~+X?zvvN+j3l;6-%Pw#6M@xNzG`6`&r zE-Xb2o%)=7lnHYv3{WIp_y+9k4$XNg3nB2@IlZk@JD~`)d;sPF1eqOj`E62>p+He~ zWcJp_%j#9LIt0?G#fZ|8$^@(Y7w`|Pc`+joUbxDu2mf$XUImEz3&w36-1Ua3T+$ht z?a2BZ-N#+x!<_I^bVnv&jMmWvc-X)tmCCQtiwqnOJB8U{54esWQshMoevp2*wUq3Y$`zeasGVu_I z9HT7=mk=^DYN=S%z*W&FJM3o<3@X$LCleRPA+0(B)8KU|WKqL7kxd&PX+>=2R*bm` zQS4=8Q$$G$lXjZ|PSWX70cMaG?C(^Zk>En@>gNQ{y2_48iJY*r+%Qh$oU01w zexj+z%*G{3)!V_&QcG3pd#H1vQ?8@W8xSfl9}RP*$~u#|F9!7r4ol=FZt9%CGYno*%sSN+OJ0>dQZrB{*tn*L z9YVf!r~30#ilRGtN6lW};MTZqPnx(llaiO5R$Pa>Y`@*LxND3FZ2Do2bAT71Rp*o+ zml>^9Sz&dW@V!`RZK(wW&)e`I3ENCdepHYYd&1dDkyWjVIiUkO@=StMTwoLbDqFCF zS&_W}UqGP0;j#yzKl2gbAXm1misj<;;fwblynp%O$M4^l-1v+4pS=I!!;i!Jm+#*_ zX>a=NOCEH8kgswvS$}Z6&d1=#sq{^q-yW);Q?r-zkXj<_vr5P|$*VX#1c20XO$mD# z5ZkN2yJoM^_A~rsV*`o(Is9Wu-i9p)&0@l3Oeu)Y`}Py54m|3cEPZV@Ug5 zv3FhJ1ZN~}F{47>L0P@*U1?WK z(wd{|Ex5?Q7JLu}5U3pyouf56he0a>w5xYcqI=Te<)t=P+u3LXBKYYsOL#N@jL(V9 z=q9}6uRbG{tOKnV&e)z49WxZ=RZu}T2`hBCl;MK~`h|>j0!>L0*OSs6@z-{!yXEBm zzC?scO-gplYW;;tf-{4Je?*S4qt>LNQq)LLwF`=_Lu6oJQ@O?|1Am&>c;YDw96DiS zDIGlT<>j<6E9fkqRyae<_1T`N)qs-vwp9C%80=qJ^NsWKuZ@E!9~ojkd;22%&-uYW zOTJ|2nI{r!Ij21bdAiKt17@c1h#^}0rr6_$lD;wef-WTmI!%VaLPKTA7SaZWDzOIx7Ap@z)l zXZe&!A+fe8YeaZ zh?guFfnmwiyB%Xm+0Z{cOzAN7e)$+R0M%dDnu0WLT-H;n6mnJOX^5>ByznPIB6*jR zNO}GxDPAs#8aW{_F-Q+`y(R@-1jyBqi-~5ckMg%gDI;AOK}*U^d9o_5y&Y z)d8#HD4*q6rC{tP)gDF>tb#Tglu;5$(^Mk~Wl?7ZZ;N6O!J%_w72897Qo+uC2}5OO zKG;tSC5W4Id%1>N56U%1I)*D!g&O}#n4}tI0VB|L*CkHOfPCrBVD_8vo|}>nBnDDb ztLTn5Umw{L)oPMQ>a{FI&2!ojhzv51zBT{=k@#FWF(sqqbaM;CCZXweV;>@?4j$3u zG>J@KKyYW%FsW<2g87ttOZy72NSs3^8FRl!Pu9UJQD24mz>`+4BTTX(I1Vh)w6FYQ zCr}7oq#N{Isj3ehys7F{f1(6gEJp3j%Qk74?<|FEGXNqEd}4V$ zpNz3Sdw+FkRMAn1dbZ0qtyi?oP=uP)0GPtJnB+O=7u|a^;EDBw`m}hIDSOiHEKW)T z7Y$PFsOdTDonh`ZEph%ewU#8omDR*P#84D))Y5EI zH8!Yq@P`G5Z$h@nvx{@s9wz|yyj2&j-lwZQGi`w00v2^Lm>L`-!gE!V!~B`PZTssiSZ748eUW=+vftf~mR8&3FPOk=xVuAsK$zXWSLu+fR!M|M1?ieH33&-)z@ ze;eL@aGW)Kqk#H&zVQG^$7lKS&OOW`JcdtlgBH~6ygGJyWj6D}YUs^!)}V!G`fyAz zozV)hzg2@p3ltELv=T$DjTl3bYg?c7bdV2S_dLi~9Zbmy=AF;WB6bWSP(Jw@BCpQ% zPVnL8ME|ZJz^T3<%3M3Cr`ISa&rL#1I*6SwAe$R`Tcu$nxuVQHnu$8i$4gd~zXCcsyKJQ@_76%9n8V6~|;2FBHPm7R&7 zM;6V9!Mz)h$4)yh5(Fu>0;dm8Kf=uE!4jq#LxGC>@s?h+sBOtdmDDTE-Rvcp{NSff zs^kxC7<}Xnf?`fp8uFTyWl1Oo#_k$6q6skUIc4n(slOf)5r z{_Q2eS`|qq#I%4{M6);!%Bb1cTgebW`x{boOj(uD)OV*wvX`?bea#r|CT847tPBq} zX)y3vR|ynF%}s|^j7urdHb~(DbDXHS9IEkDtA~9KFp_wq4ZnHLhxFx6p}*Rpht)F$ zU@B{uV10u3YS%BE%~U;*GljXMb_*Mjt%O~Jy}&|h>nLOwGmOrJBkbT;TTALiw4__c zssV&OTFGf}!XNu20xcZLFRZ2d>HBBl{SRQj{wkPoYntc4PQ_E|gpT~JP4%ls_x;=? z>CG3HWR^o%CDeY1DYPCn{JyS_gQu|U*iK!`*i#2@cc+B4f2JG5wuP0O0(Bsy#L z<9f8K0*C-pC8eNo#00Qp;M}@0!wjD)$x~e_z0)n~O;xw*d9sc3ZuUW`GA`~^ z9~6*#cuCt*px*KUFV_Q{2E>%5EM1lrW()x+$SqAF9zVLv(G~R991^nqde=cX%{ETg zatPiv*3|9%#JogGDYcN>zmPTnMkfGGOg4HbF|FE{oeYn8R#x-~DuHFG`3xuHIst=h zKtbwvG?PZ&QmA+=Z`3S<40aX$WFdm?2Lveq7B1!mKt#toF;Ad+5oxR*Jq7k~ftEd! zlC20q)atoz!GaT+YFq73g|NlNJtnG(wS9b%yFwC^vfNEDE}{&eDC3|0UY~rOWPO=n zgskI*hFW8%Zs>mM-J#fVi?8${Ue%>)qYuf0cW^_8@McLvH>8h1>|6E^Wl4cDkbTy$ z`Pg(rGt2JFdeCphAp&eR-5xVVn$gx3b)2AugU0oCr&;bOTd^b4(I`*qNRc#+$^VRbn43=K!^9N43HJ_BOVvxmG6;h>+Y!!jP* zUD9k<>Q+Yx#wA|D745|}dp9`?9@)6hsg^iHJdp-k3d2^i*=YvT=H{Zymlrk=M)~&3 zNFf*Y{e zsIfFAcdt`@H#sQ>9L!iA%&_6Da+$bLRExY=cqL~Gz{sGL<8r*mj|2}jqfQ|8J7K6| zZ6PNn`+)L#&paMqRFi$XoYV|5_!wVpaHEIi2Fmgz)Za*j|B~dkc2Bu;aipHC~p|_By-uCsC9PqTVQ`?ftqhFo5WgFY8 zTH}X^gII3LE9=Z!xtf(MvqMuGXDCitHNj5(IU{uJe3c(+ew^X7`w!nt z_VtHvhEx7rV#@m;t!-cv*VA(c=ho5!0?!{(76L9L_m0!mj5{?wk5~qFc>p4D{Kv;EZIn z-ANH`5B3~K2lx#s(R^o6`_hpWy&94YY)bbX+N?X>#^6WE=|VyhsXbwP92XTsW$V0e zXnQGNXuzWzw8tkhf?m*|(J_qcukOtgZfkzlTx%pNanG*@v>*$7>@F))Xr&%OVD^Bl zka!G?L_%}03|H&UPHC1pxv=sXUDPM&tQV-MXTnm|B_bm(dN}d-wo_SGn8SnJ%6t$V zQoAqe-=MZZMWw^tg`sv;lpE9RdWwk!WwX!dCf`4T5_T(z2|x{&=|nbN_W>;CKpzJ; zxev-qMdCoEPjZwc9Sz2nu8-2t=#I0KD3K7FV(X9`hgnIandrfxAdZ^GvvC-ec5ky& zIdj$81en9ggb>sYE?|!(@ST>mtPeTWAPm=c0~O)c zC47=EKH1~r7V6PlvsXZy=ACKCCFk|PUllPK*m^EeNrIJw5hcePSQ~2&5C)GHkkOk6 zMVvt);e+rrN$KgurxWX?1OIrkf??7m0j;*cM584r) zl`}Z1>se)8nnq&s&T2u)MH~ipvzG$e?hMW<3KkJ6Nw7%7RgkG$JXFY+;?uT1P8Kiu zq}H2N25jyD=E~2dR6rB%kYo?x1JF=b1XGA2FoL+YzHLT=%VpU3| zYUC%~$v14((%XWFokDAXdZ@zdNxODfL9(Sz567pgP-_v{-BI!DEEDBa-n<~1E{fAa z2yGS~i5t4zah#z2y8Ad)g}Ee{#Ub+`{YiuIy?YNkvXC+c8Qm@#(kk;=Iu~B zse+d+oK?~8Nq$7CqK@JYkS(oq&1Pw;puPc616w^y_xcL2_KsrmiyTwX$yktjs1nAS z&7tyVF|Ix<-@xStKOrOwo~Ipb2o8pf(DZ05kYLGypFptA+$o_uZj3pydnRQ_Kh=Cj z^?`tn?pn4pTF_+c+Qbot(CU9V(!4^>m|ny^l|e?#sYo;!!CGe50RWkXxUwcF*uW>G zXd09tm2N1e#s*CY_)qw)%M>ZjEegA@hn>Y(tBFn3$GxVR_h7&YXqQL?M|*L*NSL?k zXkB;LoB-%^(0qeJ36PB3c02NNzQM^vS6o(O)d5r^cj>ZY?m|gG$QY}j0{!7AM|uW6 zu5}wN3>u+3+5p%Efg+4w2hKSmePGdQEW9sml!X$mTw_BY)MQFF_97dLQN2k$MZRO3VF~WgfkE{u-aFP$uyRg1ZR4t%o4)y)_AHV-7eE8nmzr6ii3Xsp<|M20{_fOxxlu!KOPyhA9 z=kGs$`xMW-fAQh_Z@+%~^@s1tkNvqmV?3_t?FlRrTYGde}ZM}KfV9(^x+?9 z82$u`wLQHcrM83vqMO@emaCa1A0X~s4Qctje(kNjt2C97rocwp@~&j}UfwRkf>yLK zUIIjvJcGgL67HfatC>M|lf~DyE7}0iGl~w6urBXf1B}R-=0X!h$XC7OnMUlE4~E`pp`eP+QMeiR43IPiF^VsTNY{00L=Yg1reTm)t(~UT&Bx>(zCK z#cpS#lGAm%j6to6-88F%!uZzZOI(G=l6N>n`$o&9CDQ`9(J{hknMzz+-TXwo$a+6J zwZ>UJJRuKb8x+6>S+kHBM?Y-Aj4_iX2+;Dg9ex$)vdV(+EUFLFu7WR;6uBh#P%wmN z2_f|fjqQ%(9tBUA>bjA83*V6Z0Eg`Bt944Dl-4~gziHClw@JPCz+X|ArPl-3nw}El zR-M{jfY(4FYVmEos5_$j+NEq7LkMt$E0yvi<*r&v1-%hoRZ<9&-Q9%eAcc?$WYGib z<_CL(#oq!4O919zoAo#0KX_Ps`<^*MgRHh;AOZp7q{R=V52Y~b57ev( z&!D$o56?Iw#f=x;30Nq`-S6+*L%piQ!G2j&r~doY5Ph2)c?R(F5THS`H%zWg8K z%Q`W~mIqQ_H1ejs6wFaib!YI1ml#!pjD$mH9^jUU!rJ>EFW(LOA{C(iL&g@86~LRGrejW5f_1puCnbD|cEjf1KR;81y211?%k%|T+NNROYT6z`zVly5z9Zi=l{uvWBdP7|T5 zl1|O}fx89nPkt7t0{5LoM%`QpSWpInDg*K{gh1e8m>)}t>{eN*cG;GwBG^WGi*Arm zqkaW0DqWLvPHwKWW&NdA<6vG}?L9<>{a0&l?qQ2{%2LvMn=wgEte8z>R8 zW81V_ASK3{q)`E8I~f{P3G#udyc5x+WN9>7(xG}Rp!=6F~DDp zwmC74V>4G(IL9JCgLWlSWVC^N{#f<9l34;8fUIl*_1yN2@a|9ODOF)jq~+C2HjSE+ zNv_`Z&smN|Y84-D?0){I@U3qhdOU|=&riy;zjW8Ww?AglR!Kw~C9f{Tz1)?v5UJvV z>cPSdut%h*q0cou|+xBSAYK5-X9J`iM@$+6C@lz9Q8WP7c=tVsedf3+Z@J^LZS;muU zva>BR^~JlolI7WUgr3S*(QII^r!^D`YhxU&0XY}Oyo(}o$PfeSiZE|G#Rp?&zU$e>l{Owoa{b#2qn9z_^80p^kNZzDHT>`?+ zMX^$#TBy1GjUv+$l`T1xVrf7V0Tti@e*#HXJjp$&BIrKjfNDho-A&D{17TCRQ?Gzy z%rH6jgf_rzs}~ zZ3%4530HC{Sj~sBdwuohU%X}f!m~FMK#XK(av&Z+b3Nz;`B1I)yKTgg9cjJ9G%?9$Koj3QI1PL@{I#$e=C73ep4V*24qXh)YdWp^SFyOnSzcimqnB>Ug z2b4Nr?T}C{WWQoA4In7XfmJn9?6RUp+Ad*^*ux+e-S2TU%<3WMZv$9+AY50;yh@SDHUFdJD9=8Nk1!FFr8uT^S zie&Ldb_>PSvd)t71*+62s1T4txLH!rK$yBh3^6zz+F$se*QB>P14 zp^o4q7FC2hQfH8~(sD00oA+)7p7v%OnjQL`{eiHtBfV)to|sV#c^{S7wOc!V*EgBo zt+L1Q&Tz+e+IW}Hw_#CRdaCpSAK@y0$o5*l2Ptan#c^*^fJwA;I*@vGkA4@I4&2xL zr=p+U*?^85043UuWI@1q#_}%JLdUrV$@PC@&~7J`92XB@gW7PLXx%#EM^?7MT13{J zC7Y>{L8sh>#O~PSht5u~DSeoEEXua)pQsU_$PiOO?vQ680VM7u6>jL;jp_rz#G->( z{%8|4h&kHO3_3NGoly6uVh5R7=7|PeS@a>E+C~lil8Oq(t`W6Eq5GAK8{5fs z6XawMUjv1M`~aD%L-R91p_k1Y7W|i=J*&RU;(nAV?otjziM`vRV+%3uv-b6fMv%Ni znHsYi$go9HEAP9!cX`YHhU(uRdAR=i?Q4VMeE30l`)T&C{Hm}4{lN*1gn{l{*__*~ z1RyY7oERSJDZQZsWE&hhPqtw1=UzVBpG%P29$+`rlef6m8_T2(aNdT>NRrgTWC9St zHb`y>Y7Iqx=L8NH&s%h`b$kWC<<8GMYwZC1@2cBUyc6^%M@tQ-y0c`R*3?AGWxwJh zDPC5BW2=?p2rBI~%%?GJ=e~P6fQ?w4+D)1%Cn11(x((5-d|BlYQBX zjz8Q!ImezB%2c&5h1pqbHm}O^8KygR$>Ke`tn=ZP;IuODBYRj1vO@<2Gw}(&U3<&w z{)`ZA73T}|M3?kDrK}HU`mL%|D|JuK5~!RKrgFCR3EJpk+a?Uh zS0|5EfSI@%I~qGjdPFAIl_W}yv5Ms~8klwpBjlfLT23q#T(>Cf2b6<5>P_&avj<=% z4XnszBR7$_b{gvak3NR~uP;ymrMF+IjFQ>$sZVo)C?MuH!!uiv*$YB_WhQ;q#7%B^ z!$-WubB_W~{(j0Mg?M_%?J%v;4sTulNxS@nyqh~Ip&*zf?~d==XA$2&s$fEiUsg#? z=78d(oEi{b_Y-UmnQ}sn<_UdJlvouhW@vJ9kPW%BKrr6kt2nXJd?blCiq8aA>WzbM z^97q)(LK3zhs0VhbS^eV0llf#}HUgIjwe(Q&wS(CwA`?dTNQNaN{m!(V(m zuTP{m){@axy;a3`aw?OcEFx1VeY?IXc4|Rx@<}5LP}6O2(&*F^R*}JOBk0bM$5wsBLvqw@nDvo^Ij8|MC7) zUH9^ao~}1}Z4ZZQUnQ-*owAGIKIH6lE#_U_nB9m<&!8L6NE_|*isf3+GY;$NvRE;u z>a{tMCi-iE67}^XO+(->;>}FZlTTh&z%HnYgI?a@Y@9~PvD#CsvNn6yc9OMjl8a-s z$-yPWbI^NGm`*QnBB%CRCeSvPpPC)q`#3ehjCaJo;mjVF%>Z7s=di?Mf zwqs03P#8VJ8vUS}2raRJrUDYT9Gt z-LT_tp;p!0(wcx)=f(~xj1v1Edpp;oQ2PV_pz2<24`-@dh;ELB)j7htBKQ9;lS=dz zejN%-)tdFgvfY>cW0BH!+R!Xd6;j^Dv|;QsW#pXOtP+FN>a}x?EDTR9OIFc8c$4Sd z_kt5LouuGw?EF3WE^E?v=)YqCy<_gl87D;iWi?G_$xo;~hrS>{QBoplktsXf3h4@T zd{^6*P4#pPdT)H6Dz}+AK~dMY-~koW8~LfF)elYKhkH?VVW><1v_Hkky)hw?gXK%f zszC=i`Mb;x<0s(&{xk&|dc^*Q9e1N!4^=i8%`W#2m+j~FO%wnP3~g} z#PH~DR0+%9@ysfr>#Wx$E8Z`jLr9R7-N|U7bXk{ao4YVkcLJu;eYg6fo@ny4d3KVZ zsi^$kGJ~BKJ^$`bU0DcTo?zr@du^(K5y+Vh1_+*vjBFEk;pxEeE2n!ylr!o^_A)SA zfbvu}VwI&xG_LF*Nfe+|(pBuB+(tr?01s%^=?^u?O-sR=;T!#e5 zE3Z*D5@>!O-havI($9~oSU-FJv3>jzjp{!;e)dy7`)PUh z%lDs!48eHqsH^x$)kn$UJ{NKvV5fH4Z5{Z@w&=Gk7Rqtb1!`}xa;=M4@AGMWD$r@| zD20l4=K%z!sy#EcFQ(p;o)rob2TAbab_YMrR)@0~6ET`VJG0Sx`IXY&+X@9GyDz9V zkfhbUOM@d@u){6a%GKnDBM2tYTb(bZCkhEF$!bT5)T1^_uD0i&=<3}Fsn~qzGE6|Y zTLl7F88zBiXTXSDd|&Z74~20SInK7z($tm4V+&tQ#*gBs(x*pg7OT5c7YYLW9*D`8 zIC92x(@o~bDco+19>7fzvviFPZ389=^IQNfZTGJ{JTGa+kgHpL8ql_Z=GH0@plvZI zHG?{BJNb@iS-jzE$nfL`Jv`9KPmxFA<&=s5m=dQ7UaNt#cGLBTVzarRkt|!&;seTL zigRisjbQ+YtP34F>g}!-+^HVc&>DZR#tO+-%7fo7&OkYWgCrq&b?M+hDrzVdDNRF50Lb$S24bZ~owru{HW9_)TzKtfv_Spn1^ z5852D*G@*P552co&k%)!8^K3HS6^B?{a;C*GnDAB(MA8)@cz~5?MLD52d4*8DA}jh za_BS};PeWaV`fRna(5^PC~=c&TrE^{+~9SvIEQtGxHf0PIJoagKC;8R?h-!NOE$~i z@<__Xe>(@r$gg$?=14`16&9uW>Lz7lA_t{7J*^oS!CIz4$Y>EdfXpab92H>F_7|hT z3yXUz&QibBlXl%;4c==u@}$GIeBW*9)NI#8I`V||J?Vu=&dY2ufeuyo{&dgnzS$UnjRGm5x4g-+h9AW5p%@Aw0@GR5-KXo4dtJZFv2z@tv2aoszwTps@YILcHP|b#Ly^zb z2x5B`tSIZ?8D$j!wLwAslKwjoBl0p`{}L0*?8{*jt zk5Q#EI8`7GkOhZiMH9w-LC$uzOzo>#0KO%C(?kF)WrpKg0)@83`B6)RTCGEq2r0Ze zr9&AGHk!Ts@r!&&M}G)|uS1DYwc~2vdrvylW0e959>tRL^d!fhsCylYl~Pl59Kzox z-ln={^D8Mv4?mr0gu?H!f-iel2iA#`e1{e*RtnR>JGVJDmV(%ICK@ zwHaPo^ZGF?RbGWHr9)(CFFn)DwKOP%c8RLZ2w#%DX4EIo6UalpqqYvbpFJjM}h`pBM&dw6sc>m7W~wlLnX>f467vjE0WsD=a~uNb3=&KwT{bB5pLI*fEZ^Q z>}20WXQKwP`rc9(xDl$5x0NbxMSfgCBF-MCOCX!F&_7NVH%+2k06 z25YR)I;|%)r8rO0_&&pIAH2>SV;L*V3`uV-(0%4lF5_Un{&wI+e)h}o_I+SqetqCx zUYNljQSvbhdbz`Et`+a-&G~Zgaql;cxp1)br-C;RcNLqglVV(+Dm044I)!r=Xy98b zj`F|mBbE^zo2Fbo6q1Udu`7u|UX+REDJk1J2e<&9q8t=RdHmK%WvHOmWn)s5ORLYz z*S5k)in6>-3-7R2y^F%I*KV_mJ#x6W(;@z_ro=CKjT=C3;bH%RD(+C?PVPWX0d;Rj zWava>Nz5^oG$vCT|A>9v+urDqzAZFPz`e(Dof>zWG7v zY7C_nq_E)zMsB38-qM9fYx4;8|0;^GBSa2~idPX)fs_51lMBF8=K9N}9^T*!@>|b5{Ak<%} zlIGsYF9TXxD?qZ4x(!Ri74uGQbgnt=pA-c2;GycoGV$2;RG6kfW7*w|;8?<EY0Rk9&<9c7tT@2Jxl#5}{Fb>Kqi;`sw>WzJ2};irL4? zUEh@AHmQ!^{I}ThJ}~{+`)?4Ce)|50_pkJCy@uQ62^0cJJdd_({jBR6BrU4e!A0AB zze`s}+#)c&$LxN4N~-CO?TA!rD%-uYG11!*TCKgp%fnJS9TXf9@<)M7!3K-LKmx}h z(A@@K{G(O0iOB+T2*~EWO_3LskfaTO{2rK=n0VgNo)(McLliaUu`Lx~wM|8m#($&` zgM#sZ+PuKpP;PnZ9iHB)x&eD`Ddk`MB+Ip>7azvM?l3W)W)YUu`1ii zVg~%^B_o(Po7O3-|rP~61jnHg(FSPN>im%|pQ7ZtXnceXGsaYTEj&r;?qD|YmbW34I}!;#|Z zJ4c8Xf^-vW?n%KRl=N;L3j%JEo^lK)`npmn`uI}&nrpDZ1js{)ig1P!0FS#X>N zvmn|C$RB;F0scEQeeKb7ELEWJvJoIKN7we9q@L}C+&BJ3TeJER8V z&NGe!koyvSGWWJONxQ^e^sU}TV1wSNF9=Q4r^k?Kz?N3cW;&lM-m*<^WvYIA=sHr_ zR~nNr_(~_#$l)#<#s8uKH_~0bB)Bace(B?_m!^!aas(V zTjC3pLV&ZxQoWYah^0tF0UpT4@Mt&Dg@X$f!t(1t7HEMR=}_&fxZi+oF;XrVEQ$V$ zeLanz>#NDQ|ws2*4Qo&=K9b2V4FuG^&p;uXggUD{M*uPrm? z43IMn4{dg$I?Oqe<^8Xs-RO~iHF%HQHtUSF&m36#jFTJY=7JU`;YVew^Ual$jCxV5 z5F??(Cu=RtsbUH*8Q!GSo0YZb72%TODk9B4GGeWR!Yw~+5?1-% znyx;>T~%9{bY^faPsV84!@ArWblvyU8(!LN2f+BU$Qv+9N_ufA;U%GTbf4uV!PPF7 zPTj>5U{15!T;g563qzShgDy;k$=iBn`XWirhSdz6>wT+=UIxU~&G5IIp2 zrR-YmN|+vYZH}um^K*m^B_!HdiN?B8{R;H6tCb)9^a}d{0s|ez*zGy%=>sV!>n94H z#xl?i&fX)7%2AqWYa->7ld5b!q57!JUc)GbI2$yqCg&VpOq=8dZm0Mlqth~>ghWzb zwd{j(a3mNGzJ4iTxDI^deDZb}^Tf35!y{)Fooz1DegFsX2Rs45Z7R5F4zgiTBvyKv zCk8X9`dE{AFuJqy)=iQLeeQLKYS&$_x>&1E2Qk}jXp~zZJxCl2-;)37Q?ID=E%LqM zCdzN|IoLn^3>+B&I?Br6q3UI5`Jm*yT)F3}w-N4bk~v?<5~B;H)@SaED|g$h3M7EH zPN!B-tz2qOov7TfsiL5&lo-kfC;yqO>4ScY9q(-SkRNo4ES0(sbZfGw8|ZSOx3ZJp zgjl!<<

p;h0vKEhXpGSKyBfF!Kn-^P=N`qf5vJGtRJ1m9`#4=&3@0#4<>R*h$5k zg?q)E2Mhj#W^9Y=C$(Eqs4JpIZV|)rZmudafuADfm36Em+8SGdspV5#+(kxWY3o|@ z2UP{l_e)+uXMazu@hE9AwHii7d+dt(e&e!2z`VBkdy}{EKMXGREpXB2SAizdHZk6tcJ?x&S z0<8>eeA$V(0P)oMfxu5SQPWjYvt`w zrcfPgiznrW!p&3_BrPNp$XK@%U{ zEw1d-T~Y9%nzquwNQ&nNWhCWM5y5=0kLu=2#*1^ zEnl{BR{+PE2h481Q=o+CpIDxkTps|S*|`9ce0Nc6dij$UW12vkj>?1CjVHCmzdORq zNuBIZ`Pnakko)09_h8@8{|)B{`M)`KNLYQM2~mQY4~AhEcU>aiw;U~~;A5_FS)X#^ z75EA9cn=R?*N&y5XxJ`GDbVSM9q+f6dxI6x%NN_Kn1_ntR4^b8H|^a^@mU>4Pqny< zD7RyoqUx^GYeAw2)-{CUXQL{Pe|umu37=K$4NT?MV=_6LQmH*a)qQMSfUK7ji#y!v zg3SJ#FB3_x;HiSyaZK4I4Bc!VIi^R5Popnm>UtTrdmlBB)Dx{`r88*cUhfljCM~DK z-C=5=PPQ$_C_b+Q)R>~fx2aO>5Afv_MO9iVL9_!$GB>%QFRenfZ1J=#;mVFnqUL;Q z!(*3F)2cQPrR{XB)UKC$IUJ=CJdQ129o5^Lp@e#9(jzFg!~%;P5tg>smW29i+7GU1 zQXLQ0A*rEBeS0!)?33HdA7CW_Wxbz>D)*%h)G&_W2POHY0H45uNIW)8C53tmZCvee z%YiOAe8EIHe~3CaRth4|y2^)4{s<5Nr`T<(AF*Oz#;4>KZFro28Ej&45{3B(dPV)3 zLye!j{SxEfpS=A&1X6#ffSFIf{(r*T-{*s^Tjvu_M!Eng!kOXn*x`x7;41eL?H-51 zt2ecdhRab~0R)Tmn$IRWhExH{0z*k9JK9mlcAEN1s4M9}wI+Ej!_-eTAD7`E)!egN zy*AufRToDGF12Vmoy_5v2=~?!G+2cTceGLmvLc5V8I%O?#~ zn5fuldZxp~B4`E>*BoQ8%)F=@g3W37knWRu+Fh*;fZQ21kF{IZ&zFzWq6&ysjP!*< zeCvi3oKfFE4@$8e_xAO*%|_tH&=$xVk|0%kO7^M;P$dL`c$+x~`lCHY!g zNhbqR+SOVDY{nQR2ww|UlVoigb3tAOewdnhf7cmr3bZx!Bmj5BZxTV z6H@8Q-{LA7K8lhr68kEt>tNz6=Wvo#k6R1&+DE`IrP6~(qyKZL^Ru!Y9a=Gwpnzd> zIJ^P}fw@cBro*{OA=Z~dZb(dP8;S%L>JaYvT7KS6CZ2R+rWeW+yJGD_C~Mt-O~btq zK=3^?V6^{HbvpaII1KjD;!~xN8nzr(eB6=QB&u}sPHDUfxrdFmD?4a-#*ANf7xb|^ zD||$?m5ML*hs$#{vHO?8&`Lx!NSF%SZ^);8%=wgQcgWwZd#-ME6o5`N^YH1mFm2Ku zTS$nMFE6pTI|g?U3AZT&nmL1^OzV2K3zu&gTL28=>A#}OT%utCx@DqP;xoWPRBr;% zzdMLR1upB*T9tV^i87V5p0%;;OPem~UG zkgEqWs#+-VwK;YA@JK-!$PW2YyXpkSel{>v(35@GqYA{4+LWcSu_&2%(DR2QLIq3ACwl<^jx6Zzq>lv?uHv-$n-BPouF&-nEHkKygh%M(K=JDyJnTpR+LS=6HJ_u~Ap znV`P0rNf{pC{NM=grVa|#LTcdI3)3e~7h^+xHTJT`%AmYK3gmLF6r($|a17M63sY+82c)F(nj6M$6C?VoZrOdl!gLnQ-Bxr^&0wgZ-| z`^LBi<+kTVwZ!BTKiSnnY*w1geUmGoj%MW7$ghhUe*1ZTIN20pg+88?M_tM-p4|Hj6~1xe z{Z`hE2fOE5Rjo-+{j>1re=c?N`=8!__x@GL7cdd{!P`#*elg9{SBy@Xm4V=MZI8zc zaQ@(<_&kkSt;c&PUke_y8S#n5xFI^%!$eWq04r7iNv-Jm1QIcjx^w25WM_h)C8e@m0(D5O*%+u>MPXNohXoj3qsmZ7SRV5r3Dnj+y zlY+i&Jw#_zJGy(3w{w@1-$_xL96kLOiQB zosuQqTjZo6yDRy5uZ>h5OmTa3qY3o z$fOvsW4CehQ!9wns-G*sKRj;B zu?7Poo}_>hcY#?FUt?ig>?s_I*HCWju-w^vKD`-R9n+~2^?DhGfv_Dc1$>kM;sriD zCSS!cOQV5(*6xCC613#D8(4k-)+HbM-0)!yG%>c6FhV7U2R11bjgg%C(LU?9;q7Lqc00jVa|^HSP{hJI5s-%B%K>dUzB#tIz+AiCUqJ~6m~8Ev z57IU`3X?B^KE@G+K$xgtL4JHlh-W!O?zJ$8#wx-#5=VBm1>@3Q!*#kK5c!y@pYR>Y zS-MaCehjM;it%={X*FMbK7p(ExPZ?{dt`+o002IV#)BuT?wDIepi-45|&V^1MO=IA5a@RkaonDs3qZb3%)> zptlDEdTog7y|n;QNn0J;#T)x7b#h<}aIH}S45dU1E5R#*XCOBPl@OMj z>nfY<3YDp%CNq2lJQXUim@t{Fr$5p?a16JGST``zEn4jb%%v*%G45Qds98+r){^4t z=rUOB_hGORN8Vhc?uY!uMDI99GdFwfI?Vg^y2HzB<49f76EZCj%rJ%=KqRdoH<8e4 zlaAcMtCdm*(2z+5`{k~$HF8Xr20JJdX9H1bM5S_NUwH!_`eSNVI3H^%cO=?2p_>{u z=BTfr6cH#{rF(TrSah<$-#W(c0139 zD3%WHg!3rIOarw?;KWT_iX)`a6&Y*Fr>a4GBGIqBWCb@@cX{S88MvH;?26_Z%NWkEzBuH~rApVWem+c+-2dRNMa%BG3=5Qf*WVgw7hHd zOr$HJdR}qJx+MZY(yN{eScwq^=I|*2VO0|J2yOUd_FbTMyQn@rV>KYkQcBpLI5wT{ ze+qAwy)hX3m7J){hyO3U|5%@Ug;47!`@~!2HO;D)hG{(mRGU?_IjHi0 zZMdEQj^s<-a|MKm!!lDM)ViIDy(76q?CY|P63U3-``bGHG}O}iQ;C9ZkaeK-pN zPTGI-v9fs6wppK{xhi5sXK9cc;LR#bT(fA&(Rn>A*LT+)Fdt z+(%k+2D%E$-63y%+&5ey5Lu9dzY#5fpOOzL_M)mVLxNLQenN@a%c|~~d`}S|sjt7A zujd8Z{)LrDRy?uww^RrF;(Zo0GD3vBQ)>$fs778bLfyHtr#|F2bt3%I{;DQi5^Joq!GK$mX|T!-WjkSG3F3H*1^Xs}8y|FadeY&%`P9Qq6VRF7L5# zvFnzvjP6AE^bgrTBz+Txgon-J5Sc9xy0juleP&nEU=u)gm8z2$&b{TVN-8#lhY>S; z?;|;CGc-&b&hlK@uuB7^i0DH@N^&`d3V(N*Hf-yxbWq_yRusMa3P3T|XAMLtj0FHZ zDh5uv{Zh2%mA zELb>_uZ#TY454>xKnU2mYoOAdAV9osDfD0JWYb5G^JYv8 z%poh{a)3X0?yPRe>9_ zke4kpYlKLqFKljC1KF88RTi-a&D$R9P8@ggRn2%@@eU%{L`$f-upD7aL)YlPqjiR% za3PCc5@C%Pz7?=BTo1ao#KtBnUfBM| z1EBebsjuXu8%xV|%L0=Z%yGH-n^xKwH=}T$wj>u21o|>vQ||RXVrjglJCD|H$WQ9GD%S#p1y`i0H<)L zfLN=D3DF?yaal;5Gyr)%6g5(A2H+SHhImIL7{b>+g?j87`ai~gvOV0A5S z{+HDw=k}7cL%Z#}5Mgl${;q0fJ4*y@>JrEXJrA;;UIONmaQYVRb zUN2?u()#KdyaB~vYXyJ|3Jm?^gB|u|iL?dBKt>MoPKmtoIF);@NTuRKE6$@+Ogmn} z*q&gsukNy3Bv(KN$ese25!-Pd)oqhha?-{Ij)hE`xORtY>L>2sF8#QD5t-T_Ob6u& z6F__AkEgsyw@F)D?ix28DcVJcbs>;>`kPX|qp4BdqNy?CrmUxsFU!DYA%iO;+}bzI zJ2vK@K8DuX5Mq}|_9CsMJ)C`xrA13;FdyAED&Pxg+eI16!%R3;o_t;GM{PnR+Xh++ zg7KnSbCaEtS+b(^m1H$QhYhk#^jB-4*S8YuG=qv0SIBrwT+Pj~2$biOH(Qb9rPTD6 zeK!jDcJYKu!}dX9_$vpY(rL@jnkIHC7+<{FRcH)PFoZ{M2Ol4&SxZ1S{%Hkz%g?V% zP~D`^BUT-DhM`9fppMaEv-ey+x=Ta~EWt5lu0u^it_eJwEpc4&O<;7L57%h&KN8oo zN9E9#B{e*d>SJ}97y{NSdP8{RUjc>L|OTd#`H{ ze&r68d;4KALpvl(B{o9*`n#78U&8V5m-*RG-~agbBPtgCQ$CV%Gdl$aVHjFh2Tt0kv=SF`t~9+*L|5T3kkUlf$m-R10ERSy{sI;NqwH zjFd^MyK|RvwpWdvHb7PX6~@6Hx<-@+!}h*l{KYK)B%Y!MP(Gb+(>-uBpC0YW-l$K> zESePN)gQ2}UV`hxhZxd*cjnuJOS^&r#(c@cU7FM0zz>u@epBFQy4sUfUIM6W2vCmp z?pnwfpC}zo?10FR$xuLo9Jf{$_mLvjVk6 z7DS1`tO_HNK%Z*Y*^vtWkWq<)wtFQ3w({9-CZCF;>GB`L|Mee_jQZu<@AI$W?N_?i z|N1-s{J$aplK<9!{`%Wtu>k%WuYm>%^0iqD3hjxH%q;K0GSaRXJ7ij%*+VdFKWc3S zy)s-#P@v6AkT>MIgbHS>0hhy{4cj#J#MvXrNqAvC*0rfgSsaIFg*rU&7xqXCQtY=} zgn5fwI0OxygSAe+>0E)WBCkbGEpH#4sy^UfNa8eNLW`|?tvV*uoRst}uS%j|vA`GB zi}Zy!KREcP3=V0jklz}jD_PDe0L@{aw!5L$me#BH`J>`;8l{Mq-!7Ps#`LnuYqb&e zScZbbx(W!-t3#m%^?r5xhY=ol3^x#XsU%5qH_>AZLzlTRudpm_!-v|9DT8Vqah*^B zAbM=iZt7;_9QWs}@ce^>HmN8dAHcSQbom5k8Me%P7=h~APqHobE-x7Qrg!u$UoW!8 z!WoS8ybDb>6a3YvT%+7o0))U)3T${G_#S+B3q8n&DBJNscFWh(V@bWj$+@F{i_EAkb+Nz-bwN{uc)A-S~aO0yBjQo7XoTK6XB2|Y15j(Mr!aBjVFx2 zho6E%`qK|Tktpzgo9n{kHEibb245TaUrblrK3KHn=P?qS9{5#$aRaG`QW<8efiPQ< zuhzh{>l|7K`$?87MoGXPEF|u&P`6;tp3|5BQ=DvmqGbPAU_q zE+<=ZU7^`EOj#{w)EJ?S*vmmLDP?elokaK&&_n?!CEVzb$mvqGWF22SP+$wSqb|K% zEM{;G8N~y;ekcTtAAT+&2NaH@wP?YhYd>J!i@kE5Is}a^Ru;Ni;sU?5F-_5`6GK3y zVhOy!-V4eS=w2iIR~6Dkm`i%eUK$(ov;0&qu(7Se;k2?f$`Jug9@+bU5C6xJwtt^> zWB$3C`TOs}+wa{r=~wyrFW-N!>HWKJUvlsCibg4)NoDC32O&n@O*QqiIXa>)V-RS! zjS#vyTup^06Na~8BA`#Y!^22*sSG$o2(eD;M%0BaPgVlS}Y`h3YV^7eAZ?2?Yw)UEp(+es-js2WTq+%zjV(*;;!29j zOhBbD>_9PbpEbpo&|e;;j&Uvwrn{0WkD%~xj!5w9_dnRqiKvE5wEI2W<$w9Q-IQ+1Pyt2k#3KM|tP96&@Y-sx2PqaKaJw#5d#9)J?-M|nYE>h~ zG2WwbDdy=>srjCPFrdDv$Uz^Df3hDsF>(}ol`fPlo^N&qWS*~ZOJHpSNDeC3r6mqey|vcNadlbq9?7@C?y4n2 z7XC}O(v4B5$#|P^Hj$=o6Yh1XzJ(MoOOjqQi_fhCj;1! z8702)cDX?NDbcL)*-$Y#=M03otywOnC=_(8qS6!%2N6X$1W}<2I%KCNo9sbJb->V| zU{e5#Z$Pjy16+40J22TKQ#2Nsw&nNsm-4^xm-@dWYJ3GN=ySnA>8YPyKK#Go?KhXF zlzzFMd;+s)EP92VuMMTq@1Yo=PRsnSOO(}la!*CG=PyZJnAicx`#7+BfZLk~8`}HX z7pv>u$xTD@JG_>yeTRrGaF8@q0TX@hC+kDkuAQaEdAc~NWP(GaWldzHz!0wNoN*sr zT}n6UetlI{H!6Dot>VIpT1(p5UZy8v=-nPj3b8?DJAvJ6_rWJStlN*ohAGC~S`74l zyp-3%{&!Y*w_$@Jd%=%~0&-Gd*m}ZY?jS^f_%fiJkomU_9Zx1w8I|6pgJvdJ#*OUFbOoPgT1O# zko&nZQ7d5i*UL>lq_#wPvO_7882p=q?UjUD18QS;60ED%cu^H(h>1%abV`4njWY;x zsGZgaotxD(UEm9sD27>n19Jd*%+Xi1X;fp}JK^rBlLp0t4L;sTv*~h~KH2lqP8G*t z5aWMKU0x-x7)}X5{kX7ffWm=)Wd(pckn?cusf}lSZ36E?6{6cMLO{g>*s!B32D0MG z+TxEq@+W_SFDXy;C4J<7_Wom?BdC|#4=x}6=KYKC;jh2`E-pU&wRs!BgmiKx4ejzc z>j%t+nk)c8*AT=RVO<-mSdUyc-WB7lmkMc5>>e5w3aFlknLD0R(=IcCjGI4QmHXHp za6xplyL%?dBLw(x^&t%KqtlploFNacVXH6e0JI!e{!oOKRJtnkix8Fd8eSB2!}291 zfC++UD(wFQnL2H$3S!HILBoq-0U+TmE$RXbqqb(P@d+ef^Pva0&KLL(wQJ)%F@ldz zQzxMKt!e={X@on|QD#BJPP!SiCnxnSq&hB6hXia42M|lE+Byn3#%$mK9N&prjyJVt z%4ZmuY}?>Lw#j6zQrO4UD*q0GKFjmcfp}pR3M9+%AC=j#wA?(a1136BG^i4Qn!$pZmmn*O`D~<+Hb7%=xc*t4^ zSl8XL*lHVD>{d?z*~|Go%-5cZlk2HffP!N68X+Y%+GU)fu?U<^SZ`3HY!0kxkEI)SilnFAc4!LQtgYX^#iAqpZwOh z!pHLbzkf5=qu(1?_`^@%zIgvM=r2Fa&w#x5RsL@{KY-=qFC=aR)8~srm*9^B#&!i`S0p%(Ay`h%+?${MkoR+OqU#FISzKA zjA#!Q*Tq8A`e;=L3n8Kg_?{6117<+p7%nh|u8FWy4JA$@q-AKY&m1SlSYUH`jVg-b zsUGS*?W$aVHIHA_BGQ%|%d|c)E_dg>rJYrY1DV_fJ;2x1X`@LDE%Cv*)(n&BqXMg$j6@Lxie1ZZAzs|q&^Y@=J;GOUg`Df(;>%A?{ zEbAu_XB0}k%Xg=uzZSYAeP&w_c}HNYaVCPBmPmG>jJc89uj@Lt&48E>LI*6EZ z0DGY$n@35&6=)=dT}QCP@_iL0HOvy3*_l(h%8%A+IktPgW&cA*8?c1;L z-|+TDjw-vqzXxRVC9I0vf?4l6DHK*;QiDyg)kMWs9a+ceMEd zI-F@d<{#ioNru<@h2GW}k9L-lps!NwZSSi~c)}~1tSM;|G*u4u9FoG`sX&&EMWp$` z20ds*a7h)piKRdXju|6*3RJu%|Z-^7xEbv21jl7)%lW8OPnZE zB*z0*^MQiBT8lO@3j*h(*n^>U7`Wa+n0cjdPXbB2cZF{Bf0hNV%GfaASXvI!nB@Ih zK7vH;-WXnAxdp1)tRaFEY3CCy3RkZUaOjvu(u6}L>+A&1THz_WAuTkS_O(;dP6HI_ zc}fbb0oQYqmwRjCLB-E7umglqD&pZ(cz-r|qZObDiLI|3hQQ#!&br@DNZ)*$Jwr?3=$lIQp_lV?>-ND~Yn4ahOhXkQE^ECI@Uj+!P(y2UJFI)w$QkPL zoGAGK0WTVK>D15uL|X;I&85elpyCe&O1%#IMtxue2P}-DbB};frULje6`R#s6+lxC zNd3N(l*q<;1f(+;;{&){+`J}9OFQNr0FobMbd?t}jCTJ-$r z)~w!{s@qhkkg&bmN=mesIJnMjc@JKpmYLUBPSKYzz@ag=U@LaqSWq^Z^~E{)Aw&~* zD@!R>)c|O;6?Li7B&109B}fm2>!(Tarwg3Ceyt`4PU-8Z-Pje=v-oN^h=Nt8g{{Wb zN$&qH{GUf$`O-aCfAaOW!`m;VO9)?o`|{!Y;r;iQSI|o>ojj9-DQ=v$M~l(AJ2=CJ z4Eb=}xE5&=^eyE?;Ic+aLw@&QV3g4o)p&jmP-I_6fg#pS`KDi$c9$EG zS&V?a`auu@qQX5LFt~pt)EVw!OcAF*!-bFU(piAK0tJy`1Twmn8Q! z&S$}yMx)9n1Y4n%4$8I4k2Qm;3h0s87sYDOu0pSkbkkl+0fBrxpK*d;!>zoa5gFTSdj%$$jey~VxQ*> z{|hUy-@fECKgD43_uOXu;O(En`>)W)Lqhm}J!N_?!(97&ARg!e5x(VepF?#f9p2le zZnQ~J`H`qRS zZeK#b@F0)sKx6%oJeF>6cTQqDd9I;)CrC(DG2lAe~`t`Q19{t_(N$_95)u z;$fkUi3b225CX4vOOL#H0ElWG8ztX1P)~P-RX3V}Cyh(Yz^Hu+o_kb|q#^d{q)mI3 zX5wa&;F$YJ@s?j}$|N-;`o!&|Diho(6Ot+rIFU|PQYCWbDK8lQ0tv1iV-@`ybah(9fxB0=B>7ESY_#Q>PMq;< z_K4sIv<7?0?FZJt){djDp(vEJjR`V-j4(LDaVYdH7E|vM#VF#Er228~q5q6OrC!oo zjv&8z`#ooeCbsmm_aB9?zjOKUJxCCI@9mHB|6faY@ZmqdexatFKq zd1QL{lr7X3MqqHB6ePQcrz#EBE-Q!|CCf^X-+;+~aVX$p+V_cFMUYk@TLoCWvHNgw3QpdjvU4ab+u-`0t9m_Pn=M1e))mPq#%PjX@1#izzca+M2WnmBy z?e8a~bqP2^>1xKxM3xW0f`?QR5Z$JPs%|poCMnH%v#r+LLQe-8LLO9(j(l3$jk}3y zIWiZd$R)KVBg2h2R1fPI2Kd>;%P^9>G$@MaRpFKrFCj%fCMy*_}LTsBBOdtsUq}3d-CNHf&Z0=No{#)uG#-k{~C+>_o3>!#x*gQVvQDQIh?S zFOz?!-njb*^=fR#fFfzJk`(Ufh)&+gRhaS7!W|Yu+5nPcVG9bmn=L2-l_#$&atBtxxSMeb zg9iqkk3>&^Vt?lPT5ToDv(*ja5Lgv*F+78EgtJ4S1*V9JiVAD7FzRpdHLTK4Nxhl) z9H|?z#f-`jFtJieDo!~*eg8+rX#DNlZ@>O-9vpstd4()nf*e5pI$v9tS9tDSXa{PB z0mGnB5h@casG(Zuy75Tio|GbD((F>;<(nFRj5DxZ8Rb^l;0K(5a~txlD>7Bo?O*pw z*@P_${|PlHWh_Z$iR z#M)9COuiC%qL6-OC(PjHVjb;brOXBMPL$#jr}75Z;t^MGAZ9`RX7t(=toTk-SkMl#M?y2BWTlCafVuCfN6s7J73H??4q6qR{6At zt)NdkaR4j6_fkIcK9vgK<{?!~#z&5<1-5!*p2J^wbiV_oYf0#bsklV|=s!x+)nczO z=>T;F9onlM2vm9%%8Lw*5(u zIL^f=$B2ltxfe*TZ=|fT@#tsL9sPaKUw$Y5{XCnl{1&is{RJ`PetCWp zmdiskuK6<@i0+59zJ>Sh>N*IYvAbFU<~XsrSkVsSP4(q28|jANgn2)xVPy&8?@7s0 zeH6xWi3S8EfL5BJdvIjk+F?Xi<~oMp9>6kGejfTQdl-&3DcTfC2OFu!P?Nj)RY#BZ zM`1*pLkjL>lqP^(DH#OikH2LoYtGz`Ld3xUS^Po)c}cik6S4zZ&xtlr1$B8{lsL!V?6Mw??VS z_-zH0AI(_}U$K0mPz6)Z6d;JDmG+vP2cY{}t4AyOP+-7m573#kcbt`>WhE{-4*v0XpqKBY~-_r z3EVeKuKy8Ipx=A@hw$OQzJGRkIr;QSK7YvHzSdJ+hd_V)W zhyei4CH-~{?t|N_0$XC8y~SIQYLT>{^$7~kN}mxhZ70ezu2{F%u5CPnqj1*1Sog5+ zNI5q&$#WwqCAp3xqPC8t7^K6s|m*LelmXD*ThTP*T)ZXwb}%FI7%Z$2p4R-u6KJ zjghV*Qr^xji2#xq@ZUI6O5lna6C_@2ZG*e)g?D#1YWh zH^uz9gkd|j4h6t2oc3?1KxxL8KoZ6flf`NEfKaLAz^r|+QOVfh!WfM&MB!ziFc(*# zUSA2TON+t)>>$G95sDoWLAh_L5*l&tq|wc$lElPPa}kr5zguZef0sP#)kG3o0cJdZqO=wl2rtSv za{(S>P;p>~c;Q3auxA9&E^!qkNT9@dM?htJ=C^!|?@zIgxR*Wdo| z!}njm{anh-&)z-@`pXYddA|P)HRo5sY_g&EVh!Sxb~BG`Uq6!m@zBMEL0o2_Z!7N7 zR>^)>8W3UC2H6?s8!xB;4)Z_k-QfvbqGq;;q7c)q4u{Gx%Lj-TtZmQ9oMecgKQKR@ zAP1$-=Eq7^YO$%~x_)wRc&zSiycVlQ>NdMBNMS$@NYoI7T&TqIlSqMd(8|SR&)c`^ zJ8X|sR3%?$AEQN=b+)dD2olovjl_$2>YNxb-HGa%vU@JJ)C@dv^Jab0;{^?pTFuF3 zX6y#=9*5sSL5qNN^Sd#-Zv6{NBuX6s zd8Z3_M-ZnT21C-dK7A|oTeOH+Vrch!U~)0J3DBS7%1;`QS6&j#B&G8RZ?`d0T}uK9 zn7R~*DAb{EsW6`}rAhcm2n9Ql_yCS~oVbIh3{Skmy@-s*>($}H|0(>Z%!~dH;lp>{ zKG(}{VbS-8w}1MEe!|=5Z@&z@P&yO5Lx24CtM{LS)TEF3Fuecb{j2;p|MuL92@v3t z{+jsV8A6>1?CY$f5688v>UZZOoE4@$7Wcp^wpf<5e6W898ZJ`WNGN+?Za|LIm=&}a zmpYw+8gh9XP;qyz>gGlY`3uxSkI*?jT2-I11UOE(shr2)15cPq&xf}f43(@ehbYr! zC<8kAzMY++;E*6pUm|o*q-yG)W1vR)7#meYvIae6c{L=Aj?TwjMi@eR6Rbuo8pl|< z*KkrHv6T-1E%W|J-qE0arMsr>D&zzlfR#1U=^kWDHB|$2-fAGVg*~?9*rr*87-j;R zC5-42%5;%>iA+S`RBf$mK7cX~oM)xZIve5%0d}Qg3tet)@fJ+ogr)S+0X=C0Q8lwI zrpP^HLv<8~1|KWJ^$9azskJbU`W$B#nDM~E zFYUf6VGtrphXU7{xTWYx`^mJQFJ)Jf+Jwc9-v&k1!!) zyN-=&L(SzSx>~NB{zZv~>?pu8Oyt&qeI&QeY!6VgI?_$o_e*PqwWbIw0N~GHJGUpI zhAn2LT|jMU=MjCh<@ZraEt~V2*5Wj7i+U~F5tJUainRF{qEsl8R{^iDyjopdM5pM( z)3scC9p2nqiX5va_u{x844^M^gO`v-T$?chOSv^Bv7m3;%7RXs2WwJW`Cn*l3InA| z<0E6`Yv&H|98^OR9vrC$)DC9@xIToI3N$8*)CAb|qVzYFh2-kf3Dt_+5DD^bmh(p( z&68IY7%<$Xsj#z?-lfK`eGgy38$5m7!z5VD6p@un1wvGWDDfJ01H@L)KZf9Gb&5V} zJ~nc!0>DpR6%Y@sCaDn!g7)lDvOdT%DliZ(JI>h^EZ0UG%<7tlBfF_t7<-0|Rn_zeB04}hST9W!mF)F=2 zc~w;xr6uWDeMYql6EjQw5OuSVRJIs$OeH&(38QsR@ut~CQm4Ya^qBPTz`Yxg5V}~# zeLkDVs^U)zuW7b~gT80)KM=`VIuWR>zr`NV_K;&u!la*$zlBDSomwAn*l*|SaE)sG z>s|w)%Cjp_E!u8c8!8|6ETb@~7}6^`j6>BDaxxF)7hY5xaJ;bq!NO@#_N!b*>h-}~ zrsh8BiUp{77@l2PHSVayIaOFBJ|}dFBY?raQo{T@ayJimLW(Puu0LIYlXQsw!7NvO z_c(u&I3Vw4htg}g?l1Cp$!Cz$NyP#9s>nxj3hEHX(lkke!;E=N?9Y)z{V-2|1sVXW!ITeIL4TCgo5pq4X^Uba=@+m4fDKg-|8!#k|YCmjBN7IQ^9k3hZvu z6x`t)3Xg$wNJ$x;G)I(j;VK`5JDT<)nae+7z@*G^x4$e+w92s9_b-=Mn`oel<+EWP zXn6_^Gj6?Moukz?dI~3c%t^rqdg z@$^hF+P!caV%(qvQ!D?-csGRdD|2ogz=E@&fLZeI3}hIOgdP>VzBtm^XwrCK#*^5P!9R z2xMW3>k}U~Rb+RyxU)Q?7#eIw2Gx_D6!_FK>dE1EeL0k))~l6I0H&qeEH|k_HL{t@ zJWM+$PRi^l^$Bk{&2e+9GE%`$zWf!{*RB=~tiGm>%HSFc0a3D;B}2uKM!*H_)K^ z@WuNNgG8hc^4~vZSi%p`4TkrhTwY7pTgUQsRc&}nT91d^XMH=I5RzG`Zp;nC9co;0 zOis0~Ytmn~_SmUxl0Vcxrq)UcBOH4k)Sb1ttPjXHxdb&ZGz-?mz*L^f;5-DLjf)|7 z^$0&+$uopwN?y3L!$bexv!c`4Z#4mBDSgS@a10DGKLK*KS!$8@unaF+7GApXyz>zx z#OXT`U0iCJY6vK{SckHVpOecm%nFNM-JDR`O1YCieE0497WpuQseQ{J_kS67r%<=f zK*?Pdm8jH@gbMq;ge(?W&{xKw9gs|^k*Jjye7q&sc36A7iXSloVP?Y1K#XCB<5W@C zA%KivQ{7-OZaBa080tJyxg&Mlj1B!5!4{>Sk4 zqkMfVZ@&IEbmM2@eo!^rH4`(GL>iw#x|UErVbVJ2sMFRgQCnQX1flk>S~+%XuuCav z#{xW!N)1o|p^2{qKdtJ@bK^BYLPSMNlARBS^?SDksQ48OKpeOa zq|tn+5FjGUD{oI)P3Tl+io=GY;jp764pC|*loiqmVCspx#r03FlCpPK|0tyGT6($n z4#lE~dpnXkh0Tq5NA!w3gJ%2{<*YKa^6w;{dq+rCJh{;NGn~{R`f7+YD^v$3#w7TZEPuX#+5NZ@?e0bGyg~HkOzK_yiTI z)s%j#BYY+?+(Z{FQN>v4M>oEb^?M=8$106yA#7|+;N zVjpH(Lo_u#R-{gsubgFi9J{`so>h1pLrjflm6w=OhU+52Rgr);VWVF?u}m0B`4fX% zpQE_tVmfG_5YKkcRN6&CmKp!)^smYyw)R@JAZUsZBI{i-A zwo82IjAdr0j}&0XS*j5Vih$&Q05h#c|NLM2HT?Jfz(+sD&iO~`(F)2?t)t)NXTS6I z8!T0S1MO(yi5|LksIUxiS;D(Cr3thNgq`47RELuE<@gA(r6rqu%@4AkvqC?=4iwKezRM9>6|Es7 z9p(PQA}CS4HL3-R?-D-=jTOQw7>uJs3IV2>MoPl$|G;U<)2dSdCQOJvpp+V*nw&a*nvPs3Bo3aGGLrJ#(qZyVZ|;PPyh`VqPi zY{Hfrl8QbhNb3;166i5f2D)Nr4C)Yh{7aE)`_>S;^$hW9EGVZF+@y-iaI=&9%MD}% zR@w6Xd30(U^?a77*h=z;GNP3g7#;RWT8jLRn)b$RK%EnySFQS(lK|ChS^4GFs)jOO zYHeUJ|CHO#O2lguuC@Su1x!$meOl*{s#0(oxS(WK%YsX#vaQrklhiiTUTRm_1`tL1 zzO7wk5<~Iav0LDoAYXhkZ~^=a6^X~9*`|(V1!1Z~!WGgguaN-kGHeCKrZe@skRp(T zAk>K`&BQ`IH;aAqssqj^@ql&u8aYbo3elZO4#Z-E3Vbme_AQ6$45k4~I=Y9!r+u*j z#Fq5#>>sAr{}w&Or*Ebo`8|*;zh^j$$1@m8O4|3k??`llE*J6zs02$IE_XnVqx$p? zvEeT2epdC_u_JaH$ZQ%!owX+0+_UdcyWwm-MTo(=cWBWE))s}+OY}}VTTQ{Fy zX-1coW8~bjxKOMbPh~0(h0uwPVHS>R`Ygwea&ULouHDQr$Y? zhL_x8HEVfMgQ>JaX#vf1MzIh2B_h=zjk=W`u)W!wZ>**_ZexYp+OpKN9WsIAB-sik zcWkM~k+4>~=S8V%aSAMLTnxkL)3>Tu*jK)ciUDE!A3Jza!!ydp zms0g54OFcoJfxoL@j)-Cr7l?qC2)))$ZqTsaKQkfLUsS9Q_b-FhzfLz>Q1_}_P%aF z)nM#*7$4k%*#|dIY-AS94FD)KNi(Z^0Je3;g@odv1?Yz0(}Wg<*K*_79ib8sjcxpO zePiQPbJvylr`p1rpelU$FYmtqq7}E|-tU)kD-Ll;Y0;zyzo%CxW-cyRJZTZVguxCJyCm)ol5=C0TZ%~BXOXs1mUOaLru)ut27cOBSvoqBZ9WZ+3B=Yc#Tph15w4aU;_U{}XWI2}{{SWwx*6Lz`B@*a zDs%{!9M1vcjJmzrsG`Q8IYAsEC412|$bHw{vdL9Nda1kEtCFw^S7)Kc&Q5s2s^}W( z!Y&FaTrh*b^ZNnw)_|IF-}n2=MJuh2w9U$f-V{B*^A&!ID)0EOB8j(P|ReJ10qi79l(SEoYrV6 z=Q7Ag&?%~WO_JyvLrP50+Bk7c=c#nCG?tisIuL?0!fb_IF@)V``uZjaEhU3(uxF% zcb#~(^N#(X#lE=dfNpZ;EjDeE4Y(3ibrO#N-lwmb-noS!~S?p(N>y zw@g?i^4Nl%bW3G^34a;>;_~O=-(CKdYpQWI|(ks%w#i z#D0yVn?`Q(G1D_!X)9ON{+6W;qgsC+0Ckgq}tx? zJpp{0y!Brph3Z*+_sw^bIuos_T0SHjSVI{Xzrhk>k!ps>+5vb{iObxYvieNq}LabHx$r7!GPkFv!o}5W*y@_V9U~0=LqEm4L}FJQStsz4K*bsY%&6u$)`hr-QRz?^Kav^iOni! zu4RcYVF&6KC3l{fUMxnnRv|RK`YXal|2_v3JotyV-+Uzh`1UJS_P@A%_^AY*&jQ?c zO%zfgHy}+A3k@Gk6mBY~(qB|6!qfXbsU67EqeQz7F2^ikOUh@I4pGYmmP#8uB0}0Y zc`$EmIf^O_btAYQM438x5~SlZYG8j8+QWzg!=QLpxbL{^=OT_zljSta8d{F zj5*zIs}1;GP4=mEm}_8H`>=+hU0?t-9==#E)X`y4W-x`oETUqtAkh$X)GAh=-kd}a z15Z`&EGl$2;r4x@J}g=5UGe)pQ@C0bTH~_WdC z*dz(0E<6n)QgK?BtXX>^KY<>eJ^MWccVL)Z=Wm7Pk(8Gsal*^AW%BEwr0zB{;Pe1RAW*IARCNk?lhfg?10vAUp5^00-p~XF!sCrS?fbpQNZ47 zdYSb-`b$g-h$S9UYAzoy;PW>qxVmj--ZB@mnO%nYp${Xa)gRIPV)T_T$Fne?@V-OC z3mmdUOZPHsthw|{A~LXqow?ks3?>pN^NT6A^+mFkjT5J$c*3Hm;(QTvaEg`{+6rtc zPEQCM*1NHWH8?EpITYLh564gvN&xs4sp*7iQQSFsohYK02ab_1g0}~kFFDWPhcy% zdIj`PvD;8@tvMzn)i^zH3@_Zf zsx)v=;cCifWGvNdAYL~wWRA#$SuGU}yQy<-ayQy>msB8kvNfQc0$Nt@9#qjbJa!C9 zs3f5vBea9|Q0a8G^TrYuN)uf{U8QEPPSm?bMQWzaiZCqQN(le>R4(=A=!IoxB$tv&}=}=G+4=y zmBZ*UVFqL+1bB-UC9rK7uSu7y@)Nj51q76;$r2Vy2(?EEb@EwhnE1rvftsaA-6OH8 zd&)V7g!zKCX}A$4oggNfLgVa%SRG4DrLBMQ^|!-`fA)hjP8!VE9|!%#uv>rq_Qi+4 zdH*52_kN5WgXR8L`6i+@!4IGe%xbUer^(DO^l_1nu?1_YN6`7VkH7a7JLR2$LaRkw zP#Xs|UMavBvV79N$3C8$w($kDGp)ff$$kqh&`p!?N8B}4=yLzes zL}sOpiSDROYZVt>rYDtmuL)~Y=wQ;k8=+sG^bQ}yKqx-}*Y5K*a^B zztc9I;1X3E0k;?i=dj|7rfM#PMNS}Q>EjF}4RTPi=WT|ka}@yR@dmlx&iW*=7j^bg zAA^uyLL!4GE*$)|bByL8=AnvN4bHh#U(~h0AR4tIwhg{nTvU0W!g7-)BTpehHpNBb;Ykj=Ayp+8oP_jhyNl$VKsn~s@1I+n-I!{ z(a0DtJ9@jr#SVhu9B`@!1?o#5cB>Dse5YF)X7!(Xs_BHs2^GcxYL>@N5@V?X)xmi? z>m+frg3Adp-HC!V(-XWZ*T6tIxX9gGxkF5io^hZBBT6WE-nCwo&gj#b*LCTY(Uc^( z1J4aCX4#=P@^olup$D}hnCXG07YEd2gJW}tdSdHCsRUoLa29-0g?(m zFeW+f14HH64n@6>`37>TR#r{50sv)fzLM9tGyTgCatyQt6jn37C?YJftobz zGkQ4Cfg8u-0s0YXATZ(Y2;nAw<0FILUr?dz7w?~e&hcq@{}ZU7e+Xvp`x>tK$3Eqs zFeZB(;g%|2y{k7v8$=P5`4QkeL3ywe9TkLm=7l|y&X(jpl@g<>(pqI#daKm$AHMtc z10AfWS2*o_vg99tiq>Q3cv_n3O|9w~Z#ET_mwN+yk15QK991gi*_<+xzuv0)+uote zsHF+^Wh_i@xkgb4+s->1YOuw-(#+QEDy><}Kv6)s|V=i!M zGcZ1F8$q3cRFFm`R$G_2XTzC~3YluKV6TDR zue$JBeBsw*IO_%PPC9u=6mTTb=*r~UbDY?yz%IxBm9``RAGDj2Zx_R&n<<<;dwMdj z0$Uy^`Oa2;+@N7dc1gq@>c2u@;o88y&Jt#Ns!t6y6Y!AYZ)nqJyOO|uC!P?9cfu1? zuA+C`g}ednM!nciI$e6IDQr7py(s?_80bCErjG0Eqbs-j*>pffZ?op@0oyHgPuSAY zScPgv4hc7yRqxm9q#`;FMnsoa%=mX#2T)HFRQM0&kU~s9RU6XKpN6;JUnEO@6MfCbM%ezg4Bng8J>0`?P#u2qz#odi8|uILN?5tT;*!U z%+X%R6xe}IhquM}4C{*jMhq5!F0!f|I@acK1vDS!;W6tY7H!08n(|B7P00DjGGaB5 z%CI|?3wskMREJT4jzIlzi3u<{mF%QHCe#mT>HOlMezidxFFvg2k&o3#FkOScpF?#Q ziUkQ@hwqT8dB7*)1^u7zE3QyO!w6E<>HslUIh6xL1&x!}sYk|ldZ*fNNxrVt_HSrS zEPHxAlv}a8u$4y@48Kzs#RP;Bg>h_8Fbx(AQszWf3zriMqF7?&K{2giu4&gp-wdYb zAa&5Hv(gg6;}P8M+btV6*)vdeP_;R$4%C){52EKBmCKqE#b`#zAwjYg@^~LfDVFM3 zih!f&?;J>$^#2p~X3Mf1*OlOVeub-AZGvPH>s@W#RUguAYL5udjK~-fL*|Kml9Byb zW?gzyy-5%Tf&f8^07(EGWOnYsfAwD5_u7${C0T>Udm{4QGiA7M-@_WJ!%0<*Bjg9o zOQFDc*#An6BL-V&MebJmbwOB9A*b4OfaM`uv!Y^NoWy|=*ZCZ>^QE+^OdKox@RJ;T z6zTBpi`QQTN@srb_HVCNS$uE*>LF{lqZFn}ujUxELsZIgiKKH`%2?(?&duzR0p4BK zPy%YW1EXNzlMmOH~!$d=45oue+`Z?G89NX&L<>{X~}(Llz@q@zx|lrZP+wHS0CIAt4IHUvva)s5IY3@24g zaEU#OVq@h5=v)#|j|S)}cfLhS%Ey?UAtMn&*;enBnF|P~ylaG6Dok3^3Rh>z+UfZ+ z!WTYYhWp(VtwK?r+I=L2p#?6N(hERSkxHSt*lIU$&@qD7(xvfy*Xr=hW4W0j>q!mp z{1P5jggG?_6e#lZWqdlRz-xjt*vv@=yi5%YdV%<;3N}Jb##-^0Ay@~rmdgG-kC!96 zKhLmIm;D!87h99eR`#_vk@CHw-mUowiV!jOsk#^q)`q9b8%8^7oca8e+n&yzg1{R^ zV}NENSxe{%^|T#2nfRGNdAFD#vF!v85FE~f+RzYSUEqD9a3n;n2G%BW1R6F1rh#YM z?=jRi?36HJS>JyOKg!}Qk0_x^&MGsc0QOfh2)U5Zd$naEYr%%~cWA)jG$y#~K2i(v zuFfO*5-qyQCV-efsHcQG>FLWi%%G)ERcMrDshhS{)JYpWiX1*B_X3dBavr@zQKT0V ziG>7oICDsVk;A8PAs6^4JuCj`wj_T%1tzhJWCdm&j!vz7S*lXW7loOf3%p2}v$|!I zilAvXbPO;Q#(SEwjwG5}e-e)Ma%R6+3>Xw7b7PmFaEF*7 z<#CRIqh#Ig1a}7ys(n|$5Y~C(ZJ_E%-;h_MgwQ1hsA;>HHn1V>@aZ{5aq8Agnz<@;Hy zUS7gvrZ8WQ#${s~_3z7Mh2hWdmN-)}h-#ZO(ge6ndosw&vo2n#l6T3jQMR726W`rj=?j=_;x5Q$8Yf zFOn+%vL%Fa4r|{r5CK~zD00;{W-U_(n&(41cFpZ-NMhwE?lT;%oyVVU}!wvSJcu3kHmBQ!R?Ph9Zw!Y{yP1 zJi}44AUR}AsnIOA#75S$^+b?c9FCguk373rc0BngdC|_H_ax~rY6Z(MAYQVnu}P5=a{@=bu_>^ZN1|j%rBS6-4~ilcNJ|Q-+*O+9D0~2%$?;;lN<6hu z>Bg3mk_n`GrGH79k6*Dbi3EmQLf$Oes{|I9@M`b8Va5eiNJ6P2G0l<_1X!4GT{pBe z=;$MXRtpt2Rls~B8w-+L&r8tX%(gw&H8aBVw2-pQw2q3`N%Gp zQ)nf1ys(7_48Sh`=#tRi*p*TeV0h@(-a0t6Awik@-o!mX;Ii*k9#gUWmPN>^vVbps zQ>>2RuJY>_QXFC6Mr@QSJeuY5^^%F|zkzdW&|2)V>Chb-K@eU<+V`GbDi z1ET!r6U>S%r+@_idAyrLor;`UCJKyvC0Rvt15bJ-Z@lT@Ui{?2x6XD5UC53?W-yJk zqkvISToEgDHm<*eFd8Z?l5WG7d^{e-cxq7H3kDF_^ZQglqTwxM=H~3^8nE9ZU5V8k@3Y=r>y-08b zZqx=%vRRDj41yV_$5k$+_A$1R_)FxT<4#i$DQ=X>#;GX8!_C7Y8-FDDOGCG16MKcnjJUZumr$7kWd1QRerifr`D~9sR&4JJ~M%3VQ5{v zPJ0?UEm0t9e=4AFXhG$Y@P_M>TWtPFyS4`$Yop^uq9ysf_r$^I=n^aN`8-9e*lC;OO zdL*i=iv(P2o=6s$Uw>)hD4DrV*K!b31ee+$#ydVx`DnMzntIH)U2*r~3EKtpOk|I|~dbgDgo4Hd=I3l;L37j`igFos{*s`sgW5_gx}?-e8$0d`i!=#ca4=L@B5Kdq)*!q;?FSvu zs%RMEw4Fb|0HKbu=Gzn*2YS@ImVftU3DHO}faIqeo*CL0ZTKWgiPB--Al-#S+{-Qn zR>hrPJ9A3X>bX*_B1DcZH_Nd+AL>SGC&@Nfwn*k_wH}(b*mjG&a7zq8DKK50qk1wVxoMW!=>2R71ffBx398s3af% z<54eDv7P z_d%J7N5^D_CNekij;_ct>eYrtz5zvYD`1~E_K@qtyKCXUXvnwCU<`DN^R4Rk?c9^< zfV0gN`=ghGa}xVqGQ|_5VrS5(X0Xi!v?BQ@ zNiROi8AR4xmXq}HKzCIVnEtdU6#*h_8(1v1P?3X?ou1GwThj~AR>;e&koTfe#~lH9 zM`Bg^zQ1s{E4ydo=9lFNKsSQ^3EiU>nttlS?9<@k@hpvJ17398VZke<V zLB0=-OX|i&1TGfce_r=fhn!Sg{r`5JyL5Ui0z|04Abl$shg9;^PQ-qSh zCxdD<<#X2py$JdejXv7x8kpel7wTlQ99Bl^hx#PpCIwNihnD5I_|ln&ZTViIqAbMfP++{comD z&3AFFWOY?|bj$IjObUhuTNNELYE}i zS)NE!|2#*QFJC`{_~(~ze|Yd)8|JJ@WpEtICLuM^8NKPJ z4yrB`4Te5EYgtg`V;8nALsEL=&KZ!y=T`D<;sCB(ya|se@09RdpG(@H$573!~u3d z&NJ+(#iG8ov!FEmk+ycs|f7%39hXy~v@PPl4_0zT=KWiy@NCMfck zi{>`aoP)N%r0SQ0@_3f71DcM@3e^VgLnU3SB@P6L3{} z2w*gWx5=!I9z?A-uEQ?h7+x?+MIroWPF2V$1_IWQB(HCdGk4lL^jnwM&s6mQ z$u1GVD!&V?!vKEwZ3HUqk{G|hzOg8pYp!yfJj<87$!tN#DXT{$TDeJ$MNOcN_ zkEv|d`+$Of@*q1Dpg{5&!uu5vR+O10lh&uGa`2eds$;D)W{S}rDZ0>4My8dZv+-)N z3Q;cGR_d~9kiy~4d`fa`^x@fgZEo&3FU7MHW)^Z^& zBnt^+X#!bgEab^z8ZSrV`OM}@SWI+D3-26OHVl9zEV56mX#R1D+ia_{P=w5Z!vVg< z#C#yQ0qn{aqQzWzu&pdX)R65C`Hx$CkF63HH4i83)}J!sWz{&{2VAm3D_wbmeElj4 zjf72*p9-2T*bn?c_}_A1`h9r&q_|wvD;j$9a=%&>{^vf2#Jdo$Dp256eF9!I3cVCVnD=@Y5fPxV&Aw4l9K*c zMd1M?lQd=8;;eSIlE&GrO42b|Vfa|62xm%!WWf}1J7pr*0hyWoRQyn>x=IGTz|jp6 z2sr6eHhq?FVzr_s?s3+-a5BpII3YVjG}}N7e6nvHtJL3BtBcLuxolvmr1DaLYV~9s zba_IQ?<63Mu@tZ%unw##N3cBTAC-X1%N{yqiiS+}C(RyIg5` z5MxdBfdckMep`hZN-}4w_p%4_sxPBs)lEDkNa;nG8(1%lvd|j6C3i)0-eX!H&Zz;? zXCMPFx`RL}>oE&|KFgq2^v$RgH6R&Kk9oBHW%N#$7L^nei^EPaL&@vH^fZ=|Cp%7y z-{J|d`f3z=JC9zC?Y3^8iUD8X4G(;3ybd#nM)Z2QUDwmKF*Cg{`G-y^w^nDSejdGA}`IlD_1 zVCoe+hSzq;?9Ot&YjNSI5G4jo?$H7nHoDar6K3P#364u}>eQ&nTHeUp;npgt1=V1NjK!!M;@!4>k*Kz6 z#sI34wQyZ^rpGD-Nf(0os!-sGdymjYFEfm7Mz>qBZ$dTmJPETK*^|(3poTeUZX4Ud z;c7GZ7E_4%`RHhoXjo&TGSxvfqSgR`Zq(hDR@1>QV~Re>Qrs(GuN)#Y+zh9SaSK& zB*sQJmxZ1w4}HlJmgPXpVJ6nhj>zw!NvW~vd=8-WmPE(l-LQho%jD8k@C$us2F*(R zFu;v9n}Ed_^-s^z!Hrk44HZoX`7apyK{arxB~+=Hja>&fY_vM)tN&0D1b_e2@Mc~v zU%dV^v`@c$`~B-L6%bP=Y9K?1fe`{2NTkLJyDe#(0O!Vh1^O*0E z1YtI4l3yw70HB4ox=j@-(G*R2ka#I;3d0|1W_Gb`ug>snFOf(M0)&pFp}$4*zLn4JcuD z?C_^ehEyhm`Sx&zi}SF?#egn5#)}tZO%qs%k`p1S+h<`~ zD{m2lOB}A-(Nh7Q-r~l#QmayVVx}Rohh1VcWCurLW7HO%LnM%LItni}kenk3Zb*xw zn4HZ6wsa|B*g)b<0af<;Dd((PFxuSA9>7n_F#yR$*U5H0m{s`-S^=7QU21s`*?dKa zu+W`(qjI*d3=1JL3rP*}men?m1Ju^XAvuyB3b*shu+Wbs8ty>aL88LMB2}m~bI~m( zNB}|K_mCmWLZ_T-6}wWv3k*&dSjEgPMFIfJa+pVBJauLOa2;@HRUIj*R`WxI^Yi#L z62)1}jSe&s?OZ{=MnT%bY|nYXvxDdm&t$WyV((~gG1|J}?KctvB%1&~=Ucgx51+n% zDX+c#`t6T;^Lq&nuipbfs}2U%2zmGahPThuLcVWW@&KW@a#6jW2AUu1ng$gX%YO}| zsr(^3A9(KkS~!>J%p!QZUMRd&)PmU^7*~KXUE@d2vwIEy_)b+pDTBB`8lKG)&^8ZK z!9_K1o{0OkQ`nZ6&12@Vz|_GNV$gq`$7(Ab&5kxHODffG z$^0G57ZmbC6@Wxr*fLEuexPY|^Ee1OH><{nB0gMAkgSCQ)zO?zsAAayL6b|VxWI$}qdYD%Jnodm_Q#KfV;M83LHFa$p&-HX8PHzf~6%6^vtv)|=E^XvbB zumQ5^CIv-p?DYGN0TPtM+U%a04n>dDDxA@trK+4;1~EzabJkKWL*#P-;G}>6#`ktL z_Jz7i)+1X>cw#-;g4;w)KJwe(&{xcmpAaQOv`H<>LLjG4i#!8Y5SQRkZ&>6shyw-z z^gn0}U_r5PoKsb4F3Dhl$xw6Io+gg+O!3pf#iU%b-s$StFcoQc33NGXVb6OetX}ob z9}hxGkmj96Rp#hZvz*4^LMa&J3WHr?93|NUnw$<41HUHH8lgW+w6uC0M#>1*Fv^s( znX2RC#fJ->)D%kXCIna|`hlEB+rQ#mrG^xkSAQx}r)ptnA6%jX#Go2q?m8GrFQ*G= zNU9xPxY^X9KT`&&qrj0jE(!(M06e#|BBKe0>kTQB_kQ zUoS8K#^RlA4i%Ty#l}>6+Y(Fddtp|Y*&gsZ~7PE^>gs-Vr{Nz!^jXT(M@(6lS!#1q3JA7nS0Vvits|0EPCW-l;RZfj_mrV z0Kg^osxka>v;_~tMm2b`QyzO83n(Z5Gm)wSn z3OC#wAl9q%>xCUfc((Rn1iY81&+&fMu=Xg~e7Te^V z_l{vn#PoQAT}9`f1xAi3ZkYw4eOK#%`PlXDmYPsMBvGvg$&-SEa&|tTJ9r5s`C}B^ z;p1f2L{sw%BCoG~|20&HEChp#v$vg{ANQ$SCEwlVQs zmvPJ@^@Nj+RmE~y(uISb4;@iCzb_yT7{*MwXcl|s4>#3QmU9gH9-IYal&R)?HdoR9 zL*qS%i3J_B2jOmeQZHHq9!X?s;OdA_$l*x?hjjqZpjA9KrK*msNfD%IuV;GyphNWn zCcm9EXN$(O+ajSCZ7<`!ujXjL)`*(qq)sa;{KfvGUYpnmR<)ZU<>tZLN8vAz+h4qX z&yRr@`nS70L&J(GQW#m@Y)5&HD96crhm9^9B+v`WT78wfn1KGr>1mAw*U3HFJkVhj zJ>P5feR#@tP-wVX7U*21{dST7%;0SCd>^O4$tkJFiz3az*;5PWp5q4{g7Dhg-=JT? zIiVvm6ae4xjO^eTiB<^}MGRYK@kA2Sy!GWwD4+BOQAjgWL^EQ-Z|2(MDRvz<6{2jXhswl zkI}J^ZBElz?~*f|}jB%z3xH*n1CPJ~D4fnZ_4;Mazk18c}sQQoKv|XB8Oz zQ7a=*x3b-=Z-JivuCB8M(QD|uNN7Ew?_dfYEfCo&A#NXm%@<86ysG)95*gH-Mr z&fg4+B9tUH)nKnfUwwLNU_wx+Y)=<-uol-F%<8D>o|*6AXk7 z_{nLwU?~R21IU+h)1=f}?wWu{%RIAuubPIuW+^EJQ;S|lK!;->nGo}BYlFmnk%hbN zlY`qK0C2!$A$22Z?eJs}i6%qkaUYV$%f@h2xKLq1rwDaWp~{mi4A-f|BH5Ax)FiU? zI$AAh{Sl`nWchK9K6;m~iXG(j!MKJypCZ5V>t}FcZBqKf-v?ggDE8UgFW-Lt?h{Fh zz5wa>m;a6o$v1DmQ*_AdA5ian@%m{FfOmKR)QoZAeF$5Hu_`p6R@Xt_pfEtW62O)z zRwD1`hnS=)Mao_RzAUXiPgqCg;uUFbDU7++v#E5iatd4IGB2l@&Z^#aC{ud*{#n~ke6AsD^QF+A;l!+f$~Lvfkaue`_{qm7F;s+s8k2s%@R;fh*WevF63 z3)#x+te6Q)P+;&HT)MDW-t&yry|iqTqGM;Yix?(WgsuznN(>;aJ+X68C1sNwX%k@_ zTc5HUVBYmQLm#P4sN*WY$xykxCtn0j>)N3>Rmvx9o=DqET{dcJqyl%sX!WEF(4{A{ z1w{xfZ1|RHkqN;?=Fs7wDtj7v!^B`SaYDbb8O zzmmVg=Zf+8=eN(o4?o7trMhVsg~pL6SU81=UAtiJzeblmm2`uR9VyF-0wY-!u91)D z4b51-U2E-rnaH57pd{%E#02?c3OSAl>E{igcbpufo zVi*9mhxybAh+N2M&t&)@BozdrVfBYArn?F`IgJX()DKx=X1E6^R2(X`18k5xFAlYI z4qgXl0fQ`Ofh3CXjoJcYpEif)fbxS;hJ*j*of^F%ixc6nqXJNA2A40nXDF(oBl}eP z^VmvI!~4CG(F|Px3t4ppns&2@MGyMG3=rTDpIJ4Td(Vsq8pF)d>k-v$eN1!jjq(6< zvrSc#NKeoK&eK%)K9UDG_Qd!n%m?e_*0kkn;p}CEl9zfeSr)YD%#~RwB*!|&I?2U( z=|QK$Nj9D##C(kI6~~L=iK{Y}%?vQXlRPU7pn2U-vi#*>CZJ8;@Qq#&^P$U}1x@aZ zXBFW01nZ-mut7^%`XBxkiG!xV1DM2s0x7vB9p5=moQdr|cl z;lJbv1~aLraqmYGt7!e8;*kHQ*DA4Qr@{SY8p4^>K7cLCD0u>D8R!O~Rmb)>#xCgM z-S8#s6=<8Hu7jrE0o@OvN}zFzrsSa#kBFlmixDOPlo``*kqw68C8X0D@{EmP2*<~_ zDBWIMWfxlevc1w%Dr8|wU9PM<6zAgV&N1jk8p1BoZP!F_uG9qcBx?le1Zi^FHazcisM5m3QUY7r6J00J z-04PYq|gp*h&QPPohp2@#%aIl$$LOvdzEXZ8f2)eQ$K8>b&vDD(>XI_ z7r9cCX;rxe;JBWx9Fk3q;lIVDilbGDNkvnjJwyvTjG&R-Ihg?RTD=~YXSCPv^qDy8 z*zA;c=z1zcb9HIvgc;{dk0IFEFvUoHnTQ`s7`Fu<0P93f4pDku4UT3~{eBx&U)(~r zlCXAn$6hJMfa?$El&T|M$-49S)Tw?YyVr^*H`v(>z#zysgvYKXid=MCGVg_apX9)3 z$U+7WK3~$DBrec%xG2L>(!#%b_v6=}hQC5YdHv{+UHPv$&SaADvm@p=Qj|UY z$bIVXk5~T{sQjFtnGc>5kUlj}?U&{T{v4#EEp{pO=yHv_f}bdSf$?^^{dSp2%>*{J1P5hgG5T1)kY zhC-daH6PKzZt<91*R#1C=?cZugNzuNA*)E>9dL~`0ul?rjN5R%Y_7Zaz19}QKx$_By)z)ib`E0hYICjj`!ydz?j3M0%BXA3*jv4=({3=WHX4#GvcSfY?Q zjx7Fk?CG`)5o-Gzk}|6SG107LfiAMpb~~-#J`M~)pT2z`UOzeA!E&+~p#$lIud^+f z;*<{7lZtB^>3fIj!L~bWX_(ZElROiHje}kd4p1+tO~(;fUmPw}84>&78@Rlu1-k&% zNqnrlVF@GXvesGHAv7Vm2dMpgqDv84lumA5gTYn9#BJ8|cp09@))-+qly1=mY@M`V zN=_zR%kfa(g1IwX-12T7YbYC9I0)XAp2kIfRWFa0%<;{)r31y>5f7Vep+z@(q}<*f z^}4MDf;p8V+Q(#agwP7J;ML-hLKu4-28CcBo{ZPASeyuZJxsK( zIzDID_^QH1Ido*VuDGA-eHvvG4a&?ZEt*J;V~Tq9R`?XX9s@In8gvYZ)^TERfmvd{ zk`-$5|FW=IN?yS0w0{bo`K;m$)51d%4b3MXi}W(NW|^=3&8vrW2fCls2?0+Pb)gs`3%JxR#P20du1UJLN32V z93nuzVW{fZ%E7VPueBg4I>^w?vDi_EaW`dD?jd2fG%uRD0E!p8?m*RGo=n}b1@td~ zUl-4aq55IEn{vE*;h&p?PdZKW=;W)~>|GJl zEVbOL8ef?BJB9yKBMOI*eP&oXYXN~)=CNZvJm4e+gj$UyAebI`m7Kh-Qe7MLMt#?Z zvl%QxVks$ZN4xc4L<&ZwqD+?(p^&VbhLH>ry`$IUaZzVfe*&8T&fWJq3 z7?6;WgKZf}uwF3Rr|a^IVuaqy7>9l21aLJI6j z)JYHgS-M9Y)WOL@l8kRUI%F=lHKrx!p!sG+K7ze{k+SKv#4 zW3dwXjI7M3T6zB5l*G4Uox=$U<=CX;KV3iyKm=6)T@`qZ!H%)+L%2 z`7IEb^X;%;Z4SyquxDP6cd1xTYW6x%jZ-_{J?%#UBc>+J*1)w30&@mo0y(sY%jO_ybEL|uogNo4 zBjW7v5~_^PtSCZ&IGunzaBcr(o6nwVfR%xSM$vF=N+IAVC16otap8q*1`h*NwL-BV zhpo}aPIE#g_Jk^cT`>~PBiw2DqdE>Cl-xWj1M4_cn)*}beQ$ee4jaFz*RmG!>--MQ74tU%dhC{z|f%J$eyYje?~a75!ixGHQB0=qghG_l3P5% zxN=7=wk*%OnUa8^eQhvV@F&t-=HiRtL*6jUyJ{G#0{Yh+L$1JdbkBnr@T&IA;Xb=~XQz&a)^W+TuGKD39X}D15 zsBV=iy-WKw9CK(&L34nXM=DXSpikKZD0E6R=ldpwYy%vFLHA~w^P%;mGOCO;N zAqN=4NCy?y674X4+w?k-4CF9dg_FNybZ*FGc`Mx z`z^HTv5pFMTuudmDMs}`)|{{Agk5`Y*4k?}RgG=Z!;?^Dc9f$RZe3LT*i0Qd6&Auz z#3=J;fA%MHvwwR13OtSn1SX`Q%+DJ-G5JgG8#uLHJl(gBUaEJAQpo3cI~ZABG2864 zNFiJ3z>LX(5FZXpDDhAVik@vsy@&S6!% z>hj6kXVv|Jl!upSeVnphch>+Aa2Za^HCQ-l`aT?vvUoOjot@@upb^-bQp09>CcXa~ zAX~<8e(I-#jAEB^5RzHG936~#D(5PY1`fx_mf&zXDDNlaithHD&PrG~bpFci5XW*d zX$^}i>$2iG?pDoI{Cc=Q+t0_nO(FV2BvQYQp zj`tcP0bvx8_k86ab&2#C`;OnF@;CP|9^yvY{3l4H0-7oa+g zx-2pQktAT=G(*2&rj-p!)S0D>*KJVOBMdS5%X}zb!LZ5OQUiJj`QII|>ilZcL8YLV zjfS&CGfUfTD`5lK{wPTSO-#VpJJ=Fp@OK!S7z&JHo>}e~h(Ck_YcY(W zLf-Qox|m~b{@TtnCT^ojsK`AoEvgu=IpnvNr$Q@fyjLT7FiJ%;C18p)N&aQfd=z^i$4)KKkMBU;jDe5BZft65OUqaN6ilMy#7W zaCIU1S@t5yn|s6%xu)dJ9ZG~tP;5=!$%+bGMwFMEyWu;Rng~hh)oa(F~Laxl|EVRm))~kBAgYWrE8Sk-~@vI_if8 z3US%MXo<&HD76FUPOqhI-+|P(S@+zbY$@dv^iW}zRn`ZN&Q#Ro;(kn!D(k!qfgX&0#vE49UptCNC@Ipn26;pFm zG@Mfo+N0X-I_&g}MkCIE$h(|JS#>U6YE(eYqQ*J4zch zw+FPLWgekNA3j_fj>NjKOEdzNDn}c9JvWR+v%!u9%+0OzYH>h-xwW6JJM^yR(^ZM^ z9GK&c@77_dv-Umnko>ddix^E-Mn+?8a2s1c;OKOJ4_8? zX7}1PCR%_8aqt3bt)&51D!N-jEDC5D8aHw$L&vGwg%vrmvMK1nbzH~p0olr1VI4i$^P}suW!Kfbn3Lq9 z-r$q{iiImn`y`Qfv{8pt5?Iw}p^>Z(ZTfmtD^d`F7f<+W7acmsZc(!%PE#QlFku!! zv?^p#^GY5i8``(wvKY>|LS5-=U-I+O+By}i5WS@&B|N&3*0?DpqqC)2)~d5>1$RBF zo8X#y6ysTX=?w~6+ zzNP_oP2D9i11LcGZXjitR$8Jf<%PYyc{oJd;hw%{u%$(s>*P>pjxCqfvFO(;Y%2gyyL>n~Tz`0rJJ?u5kjA z!F=#;VLHgwVArz|jd9_4LmCc@wVcSZZx16=sh)E}e)MXW2()e9rZ-D#P&=zG?6@9% zxh~y_hL?nGh1A?M)0a<9Ml{^YP4THE2!G^uPYp<8o^)eImgPYuSb^?hhvmehM1p`7 z(IdF`sEjWS`WO)MFy!eTDl3X_`1QarJew91lvSMtGC*p`&eG7!`M3klr+5OZ2l^Z2 z9o-Qb5?mu=%5c;hJ>VeAsV~gV84~#DYGFj$qVHq{q6AktZ_8HUA(m@&Dkfm(Aw-c% z%j{K-f$~VR0?wbS5h-|(0D)cz8o1@hVCGzS6n2{dgf3Yp*D`XQ>iDI+dpEm5=?yH* z(ImUz*Oc#QLj|-PlH`dNxX;*f%c)W`1&C0i9SC~|_>Wa{0n}s2?(&fx9XooyX%?DK{n7}wgyZ{LTxUt4nA#p0i z=1{Gc#MHuBR9T+j9yReEnO)0ce)5NjokC_~389#+Q;C>K+4##5VZQ$1$AK6A>g&g^ zpK^Zr$0rfVkDe=#Pu@NYuixbBkKTU&`Uln`{|LLHe*~lPzrX$}$RB@{|9^AZAw2qQ z76Q|zWgjYpdN&yx55s{wtQ6=y2DE%t?Amm-_GE-~MmjV*;U=P%32_+vH9vrD)=mLc zY}EBGL&+`HnH&vg6Enhvv!a$^R2E+cd!a+&cxlIb4bUa^Wx_V`IET@o$rH}#D?AM} zn;w%=SD`)|MLtVWE3;?zQIc#IeMuq)3JobJyv}GhL}=Kw6{I6USMf;8WaT`R_Siu2 z50vUE6>N=9ws`VQa!VD7Y1XCy(}b~hoOD2Kp%4>LH2Z4~Du&oDwaPu%Z8)QpSk#rA z-G?4%j!4jg6dIVrN)b>U_bBA8+L(w1>apK?svxMS1oi4!H-L2_g2WjRD0T)+-lTWxGmQ zMmJQybUP5Aa|XJ(-h*mUda`iFM!#74e}+=2&07HO!q>NGw}Hyc)EpZJIUbZ1o3klw zRlosP%wMaf*shr7Fog@P<6J>Z$bBZh;IldHI%#yuw{kiZZb_o}4Ow^&kZop#b{O6e zX)CUID`wV0_naItUg_;jN^VivuVWoM5_?va}}aWV)4iY{avj($K6ay~>2 z)~3K(EnI{vyG@^#U4^7+H4jzI!-R24Ky0;78oh8(z4*I@cF+wrYyf6B0YQB}p9FH$ z*&JRqSy+pt?XAU8-JA|;>YBkBB znxI5Em+W(39Be3H`Ocdp_LiLOF6#i90c_th6>CbEiYXc}zkvCtpQ_03j{VbSeHn#} z&rH1n^%~j;fFlQz*9~<`so0DfwjMqFp|R2xXPTh!YA7~c{uzs|T__NNu*rbshYoWi zXCqjS50ZfJHLcG9aoS>AxgrpbmP47QgUr8FCEKRyUa!6&hwrpHz%{(?wf}oMZ&x%q z>>bUW*fxtnpVI8u{^{ z6iJE6tEzh9A3)%b+zUBL!SUW!vbs?iR$;jl+%CDg^)VOeNhEd_+-|R*5Z> zT|z&k)cPnC1&cSHvl$5FYu>|(d?A?{q%URQ>!Y_{hu2T+ z`t{4V&-0%lf5@-@ljLi!Ss6zXu@dG~^V|?{ic&^#`%h0$@*uQkW)jZi6J(dctoZlT zR=VwSL`0{S)3``at3l_>{C#h+s=tGUiG zp+a8@x-}Ns7Rn+k-3pK;y8}k;S<^xup%XwX8zeHNnVW5S0rFre4{zGuyebwr<>+u( zQ6}DTcB4dH!jcc(wRPO)vDH<%t&)LE`6ge7d8=sfmYkwHfs+rFz@Eb>Z2OD7({gke z!DPf4PHtuxE6RqlD=bG7*R~o~HZYkE_Y>L}m<0|cq(al-8qsaRt1?rY$k!1)R5L*C zFvhoBt5KYpQ7avHcO7dWbA1Gy7NE+cB)kx|o;{EZ6x@t~U=>+|`zimZO@G4K_mIL( z6#|de7vf_{6(x1V1C^H?SQYe_q|(Hz;M%5Y$I4q6Dv6r$hV{npu0gU*X>u~998#G# z-e6uHZNfwmqouJ>l-4D$L%W?MDeuAK99@+daU761Or-~}P?21m^lSzgwK(RFloxkc zit55TVm2%{og>FvY`R!99mm?}crp7?C`*(A6RH$Xa$Zk<0%#rQ$MB;c{V4ojM-2Mr z^$UI^Rr`oH0ctrgOUptO`&LPUk(Yr{2A%~0<*0z^Y{LWkhdUm#Y8L={Ghu9L z#x!oHA-9sSC1*b@Kmc^}d`7k9?WTkd8n-f7n*@uX+)=fNNIe_*$?%`;_{Zpz;SJUjdTMOSKVt!7wjy zOA<1~)wuCJwdbjhnO&!1HBzNF6eR%akF>qI!M~Q zlQ+qltOgsxt!*C=>_Uf~3+y5<0oB98Zgp>ZfF#3mND8&uA}vGdphR&TcZC~TKN&-`$aliF^rK`6LGPuRW^ z{0RuGy^SxfO^OBtrxucAxABCwPx+pVnxbBVep$W$ui-C_aAoG%zkB`UPsiuKe*Gx$ zf*+s4+?%;Ze*N}!e)Y)^A^Rb~7U65N#g*4T3$H)T*Z=+XSMvXF(e{%6|5|%sIpm?I zD>)DFwU=X}CTCM*M^!=rPk48*996i6~Es{pqbCD^3YKYd7Dh*?T{`INqekkx4 zjvUb?rJq$u;?h9W;d+AcC7IsJ*6gSwEI-S1H1RJ8b9_@_EH97LGO>b_Z_{ySd8Y*- z%vtOr+p{QGNIsl$-`+f+P}_YPe)viLOb7xM5 zLeXVQ1l{zsYR-im(ef?T<1>9zG8Ra`%~s^?C9`vvKegM?!rumw2^AK!wl_F^QrNU}Y!#hm z!3;ePCh4tYMGu|HSkThi1qxlLPYsn2rF=dYj8P++MyWU|vd%S6E}Pn=NUj57xvJf6 zXr`+ngGCuRvfA;!9FjK``vMo2yO8=%zC1%upY+-0J9)Ip^|7ElZOihUy5^zefy&qo zaBTw8!|t@_AZJK=fj``#YEfc%&6NY7_L{7TfC_;8O9@sRjVs_9oP2r-<$!`mZH7+F zZhZ(KfC1$zAiDbA%Fq&0Hluuy12i{JE$9s(w=*BYoKGI&%Q4%;iiB!wLIeIFW&%pO zX+bGZQbNFBQWeFld=-))#uoZ87SqxGQW0yYD%Lz5wXs=n*bnR*g#HOn+B-NUj_Vb*)h5u+6iGTIEHSRxW4{Jw}zp>$RA1PI>Zc}Li zOgt_tNSMwB1KXPiCls>+>QZK5@?#P*fioaqVwF|sw5#jZ5reIcXAH zPX?FPNMQR6KI&Owpr;HpMx2B&A4DLW_mO&T%G<&0FI2{NG<<|XD8Uf*8LWR=SbZSTCaW<69k#N6TPT!VbLf=3ra3RGu&YOyX3{`DA>53}Vi|=N}a22^h zc(STn^bJQBsXo<>;-+JvAmodGCPGQa*a5X#AK>YCJmdpaI^~9jg|Vu}$72uv)DUWB z2I6zLlXZZ;H~@xlzNil{Sf%h0mp7IlQ$^%ZpRNoIon%PBDXjA2dLmSyM_NaV;@$#qR57BR9T$3g2XZlrZV0sgBc zFA_iRkZ$rfQ-Xu669u<26AEf=aO~aRynRXdKrX(%3v77jSHFDyg*w%J8D76Rz5Dcs zzYlNU$w$dwkm!8>_F4WjD5FW7EZh~{;+%Ezjkp*2Bwvx8Gm#8PJQl%T!&P!6b#kl&!1 z?P`o`V|%oQFk!X7Yua=;9;$RsInu?wKxD+%X5)HSpZINX0BF?dO)3uY<$XNG9aI2}HQ z$ucTr)vy|r^O5%3K)Wys-Nx`xB<4Ac0W}A}I{0W`N|~`QPv?qbGNRh6^=D8@MM~XhKkKT>0jP$%;HW zmnNOrHUcy3VXGM}YuP#$q+2=kx3dMD=pgaUez&#^wAR|Xtof4f8uZ=ltiC2x(L|`@ zP7QX{-h--v!GTQ*JUFaSZkvPO-VH^ciOtge))(TagAWo*ccu0c0f=fcVq00v;0t z21p#Bbi_>#uX^k)8_K>?7EM%aj-zr61Bm359}TvHl9?h~Vq57f8O!N^4}V87z^^H( z{Bx;@egm20Z{NOlTN}0O&42&V+aHM5-1XeP+0)oZm5#RZ2Q9S>e9&?K{zSorF$C-l z&}cV#uO?V2pc>0=d$X+)sAY#-UC0N(UIS#Jy^ZqpXl{e)F^_0%?@yMPCewOp3U3=h z#3ss?RcJc?ywaU(mEXv7CIlW=jK^CVEn8pEC*F7+yqh4!ZJQ2NV!$>eF}5!FSpysD z+k7uI;aw8AMtS10CeIW#S%4)vW$l^qW_+=+QVSrJho`&ihZ}IpR?9)Ft2F70X_f@z zggRYf(0SmoJE{2}oda=zlmFF+%SwYlG~h^9LjQ@0(*g_w9X|oyq}F=`OP0rFcMCQ_ zd}@BfKV@|VKIo*Rf!D~gIt5i)K$Dg0CS4bvqAe=@vSt&%Rfl+MOK)=rU0wFJ=b=Ea zg`Md6C|Ge*jGKJCB&10OJ0E3D#TNjZs?m>*OB!MRin+)Weg~i{8@o+Bek#fAID(Nd zBCDNzZwUqmr=`!Rqc~Glv_Tt;2@!tni5WQ%&%iF(%*I(yG_HVL>g<0f$^!jCZ`$KN|yhm>RI7cx_dGtc+*yb5z zE+x%nX1RVlIK3!`XRdy!ujzEUX2)y!*m#n)!bH*iO3~MsfHR|0EyuWIQp#-eW^@$> z)?R8=q`*kmVn&;mZ_}cK`7UlV0q655tHZmjfN+C8FmHwq!wcXJQM$QAat`!3o6BlW zZCG9 z1794(jV9-1gUbk2g05T@kTcDXS~k~{Z(cpFdPF=aKC9nK7j6toVbwovzt#zCsf7PA zHdRm7<|;PtPOVbcz4yP6Kje_4Rupl;%q&n65U|W0I$iJ@OoSD5s%0SWnbN(|%LMnI z!HSl&sb>mVRB~eXr<~4)!>S0_0T^`jhw`8LqHjrxy|hTY<4mGbXZEa}+Qn1ZjL+`e zI!2wy)$8F*3hoq0Etr#y^vuPIcHKerVWi|q>Kk!XQSz=4^N9W*L-F7JUHH2!cl;OO zZ=S~Z-@JWKaASB@0?(xYXX_d7-xq3DTC1?bPCuq*H&68xn%VZ5-6q(JSAK8Un zW+cQY#(K6)fzMVc;&Pl0$Tkjah7y>-$@|PIO;w3WP=V}4+H@*xf87QLJe7!+huTe` zx`R?>+|&<8^%IBv!!1^-n`_Vi!$6DYNw%SJ0H&>#mC!+M4{lg$ctH-|1b!YVe2|c` z>&kW}43-Wz3GSh>fNFO*jMInBVaV!=EGOm=EZx#jrC*2lp>w|!sqA(a%>dI~qSbH^ zxB3R05J>`O-s3#KsQ$l&E);sC3l9sXfTQ!#5ZIzB8nH*E-18lSHS;qBN2R3|>bQq0 z3joHFSONtw%F1ZL>#z!}h05nBnbX!rDT*xyDo@*jU_Ho|zeW`a%&+Ol5Y2D={A{x} zI_L+|uHku6Z(0XVE@M_VgEP+S)K6NX9+*lcuc+JDRIvX&Dn#I76`PctY2X|np*Tzu zu5&lS?7UP*vm_^6?UOGv)C-w@Ctp|?pUp`H!{DbZ#oX2z&Jt{2*Xs$b>o{*vJw6=X zXXwg84UEGK&C6C7^;1qh!RQbMvzc!($HSmUN5fZ7WG+%yss5( z4`)6@!-aX&61EGfy*oQhXwoAgXdo684<9w4id;@q1( zpPQ72ITFHdgvG`>C&(kWruDy$2d)Gd=15Egs9+XVRp%BX4#K}{wH|lQa(BG#5Ij`{ z(r4*=m4T&`VUs~|=)cb>&RQwowgu$}txA_|QYiR}2*6Tu3nM|Laa%MmC}xIi6zeB1I*D@A7H#Gg8L|8f6$QJeeH=7e;SG#7K&0 z6d;(pW&$Kzsa}uh#D;ZzG%oLr69-zdmI}(=I6K@pHg2OHFTtihHt+uhflR+SUi}6W zJ=amj#jnEKN2;Ry_A!|)KY9I(O@#;0%_BF!osyM{o8-WSx#3dpM9U>sM$Wg1@Qcyk)WjXO%pBqsrloqQ-FRv8Z$) zWRV6iv6?rMhI9aF;@HeDL79_LX+pZ)xKA_WaTiF~OVUIGu>{GEv{AFL?x4SWKn#%c zb*&bo=o#q8BNLi;W6;hJyc?nSJl~odv6}Vn)hyW3o?p%J0iL_$AqM)9Dg^Lo!*d>F zS*RQ;{lV^ZRary>tJSemO;#3ORdTH_%NbC1yb}j9-Mati)bA2uhp27+NIo(e;8)&U zInC~|O5|Zy*7H^0F{@`)AK5O8X3Qy?tN{xt4V*tL94SX%LYs=Nc#Eqfl%z$eZ&y`t zyVV&mBA#66^yTcg-l#QOg8>N_`e<#w%eF&dpdQb1=2RpcClc%OoWEqI0P+MJ7%jnq zJU!tD5*)6h1Jr?TsmCKfKI50GEe4>g8MMJ+w^7eupCz1?=hZ9+w+X&srBwVX({7PT zqLhs#FFZ(+eAi?ahX{RawBbn|?YKL#uRHp3FE0?K$Ghg_S76sUv6OF7pQ_3=N->7I zHS*!&lmn#km4~^w-I~LuNynBPVag9{ac-McSqM)Q)?f&8a)WBq9nYUL#Ly zXn4OiE6n()kssl!ny-dKm`Md=)Kk*QH*!J)_?f6_kIccEb(qkd0JpH8?r#E(I$pnd z#z%e3W*H|1W>>9~f;=d|yx_anU*a{$#J$fUl#n^N#3;lY@>_^Wc{;rW8?fZinOkj} z!CoOX~AExJ?J(l@?<=_sxcG znx)Z_4KyICPz|=MkzGCxs)aj|22 zQmB$%N)lF$D3fV@gx0a7Uc<50hfO8FE%>QkW7rw~9OeLLoy*PAnYL~^V73gu6$c+b0;I)3WOW=%@Sin zOq^|i4V>ryI zWaxo`4v5`is8586-l;dn1w@&itvvbF#$luv2v)DbFd{re^CkKk77K>~I>eUAN@#S( z8`y6MQuKw*6Qe^HM@0f%!K74C1dDc3#kQURm)fcQX<2)ugv9~|Dt12{ayO%DO${8a zLYuE`@lg_+rvXPdQbijba5?TR2#y87Wi$H*g-#f4#)1B5UUYUZ3B&9SR0)tK-4C;l zr~?S~E~UT&nJw|MCs!qi8k7Fd58nMahrn-N|L}kR<$uoM&T>l5NuRJ{{~m7a-9Nql zG`!`p1+W@j0!og?93AKbH*mNvL}DnR7dDYn9XM54Rc}3EyM?&BLu8n|Dg|bIflwuK z>d-v0HzYP~vAF@qpkfxRN0HCwODX4VBO^{pUcpglJ%U%w05xShl^j+^)oQ%kO(9Qc zC+7-^mBq+`BcjO&tj6l3nF*k*#uGDO-_ED0l(Z}dAb?bK)!5e<9VrNm2Yp<@k#iaj zz&K&)>FWq>dP1_~%i3kky@&y9K8#_lQ`O4%dcYy*5immgz13%`%g7kRAO+C`Q_zPM zMl-9Aqs1TX*m$UshXFksd8EC{>A}Ka_G#cH59>JZQeK`ukfq=F`9{EgU z)|GE?lwA)Qw!uj+0NUAQeb~-QUXIbOi?&BO8V~b9d6?xmZ|UFNQd}K*TQPsfnzNXAlcY|blBr~Adgv0?g=-Ro z=7Nd9(kwg()Up*-qk8V8k}r4jIC;l z791O(C4Zn07J#;WWe*Z7Ej0oDoLzaHb!Dzz&ggpANYLVI@$P||P0c*OS}lRfT5X!g zZk#p8Fd^Y9S{SibI^C0@gSN@>m>U=Dx}rq&N^)@fhy)3wm zbuPv7fJ}xC677X&8J^2_lu?p9oP#4ZVL^{91LOi?Y0gr~v$uK<7xPM08%1<` zv+%=DplJVHc>VhH*xW7ae&ogXbQs~TU|*5|q1$)WMzeM$yIW&3=M_mIu>b`H-7&yJ z_0e)aBIR4%5C{BOp4EyrJc0797^?j8h-NZOD`1z}E1}=ALAjM(i?bXh`pnZjw%!X> z^O+SY61%pnG2HB36FcHJbjQ>sLg2wzB#`L9NUKX_P0WE0+rU6l%@?my4&{RIaKI8| z!7S&WQ0+ITDI29Ad(SUpWT%pxv6Bx-TP)0~m#SJ-93nE3ijdM9YW9ZZbAVog0(gGq zAj0K-2i>MA-Am__zP!knVFmMeD9LSZ6M8iE5PQY$TZmEaKU%VE@t~k_TvN($pnRj^ zSKLH!DYRBmivlD6n^uh>EJCSDpIs7fepM_kapZ`8hA-Dap45sBL)G1V?9fJrE@E|3 z4XY&Krhq)8g%=J@aE4xG1=nFIfX9T}uRE{8s)Q{Ao!4l?$2E1&ot&Af$ZQ$Ixw#eL z2Gz0MMQqPUQY(4!OszU8@KNfI%A&qN&x+p`WxW0S&ZWFkQ^AR*v4Sgs1TzqU?x|0; zxd}U*3*lu;C2mWn&=-=`w|U?|+9to5k(f$Jerx**lJi_q%+3a0g3{d4-6}>0=^~?{ zW0;C`)?=3r#exe@RuxbgT}>s0hn?n-ijp-TfeSM24QrX_Lr7!5d^j3IT88|$sH!#< zq`M_R)=HIoGHwNibxK}5#S)HxSUOBMb%dj{q{i#3o2rN+p*-eUtMot290<7MoK{TAghu9JLaUWc?pY`u8SQ2Mc~8HP%I=$!Mb z#;8RFFO`rg7*^hQDsdo!AxQ7)5~BGQ1dzfkhw2xA0a7!|+6LMQA{7i9WA$VR zSwNQM1^QhHYStDrnxm;xM4-yor=%zNPY4qQ6`jStqA`mk(r3lpUIXdwB84 z>L6P3;%Zs_xViH^iyrKp6GhGAl{@F2AQiY2-qwWoHCtFJ(=cTF zYsLYSEC(c;a>m8sBC0i}JWMF`#nx>*PzBuH7bxnrbL5Cf)qdpRFSRg^`|iMU$J+7N zrFy(N`FttH`&yf7#V9ReBqutKfZL z!b_yj&IrvWNiAjY#_2iy<}Cau&mZWyYdyttVKs5||@-LsT^g=g-MEMV8-7qOoyA6p|G(m~hp+l5K1)4%C^(&V|ZUi4LFh zF9)DP%#1X@P{z1O3@g2vYp9-PIl|naU_1uM-YHQ12&-C*_3ZXJo7z=({mCX?0ynzA z5^Y(#$#P*I2)*A99}8A#X$$NM!5F=>V2`S-r+$Do<;ikuQ*y_gR?%U0*#>J8wD2!6 zT_&hgC4jM|MC(;A0-3pyn4k-po^j;Bm*vQa9;bZUO3l$AyyBXJb#sZ1e!;@4q>iHt z#YNI9O)T00?JjnZX9ppI3ta6I1h>R7IS}E!b&2qO^7B<<-%y>>0L~FXXz1Y8%Ft5D zxrz-CRSgF|j+Isd%eLio{jL}}P=Y&&W?>|E2F^4&MDC@V(w4iu3FQW)EUaE!imQYK z&l%KlC$ngIwbUt1r$Tl>2NLglI+wxKf6)-SpiaVAMMGxKDbN5o0UIA0-+uA>yFbwm z&=B|bUC6ldhwMGW1OZuZW*s{`5^`XB_6e2)Y3o(#jK0Y!Oo%whk1XCuEZ@oJhh;>G z*n+XB(_}vk^f~UKZ>)R~pV7#P{IE;KPB0N(>L<+lat;uQpv2m)Mr_(zwpWI7MGq-7 zqz!)v$bjYbABM9-Z%U+4sH+B$@)|cHgCP(fJSb>NG~w_kW;midAWEra3t$4-?xezm z_r?oTqymJ%4kMHVcEt2cNNmPW8HM>&rKrHYD-f z!f>oPp~R8rbUs~Eo5D@vmP@Lk{;}>0#t){xT`*99p1{mT-LDm0VcZ}oT!9v^b$)%i zY!Gwc61}8wNZU(xgER$bP{Yt*8&Ks&;Wpq3*=Sm}zXV^FQ}c&gh{Qj48Tc<*z7}oy z#kSf4ezB+Dt6H8K&|t+LR!kVM(_#S5Wl6`x7kkGmB(Vi&y;%b?y*!Z|GimB_bbAU& zW!P2M$(J{}iAo0r?U01C`lY8?oeqNvE8F}AQ4pACh&T4}p_Wezi$we^*3Cd8`1IG| zM?d<}e>%4Fuirj>RtEW+IKi*YxA5KPZ@&vB-1q_Wpi; z9gWX4_-G8HUrb~cGnmA^`W$VE?W*-rDWF?Oci;iop?J*;5xr`2)Q#;{#8U0>zhK-xN)&9Gs z3M2XP@SlAeSBwy}0I8)s*7A4_HHD)~sg*_t#OTC_B>c-UryHQ_oj39h(T5|j^_jP2 ztcu1-Up>6|tV}9``T)53+Kz@X^MU~r*{~9j+-C`6gSEgE!@wzeA77m^!Ta489bYh=3) z$Pi2-yw0rne4Qbk&;_|E`^8Rug|lfwZINQZaLj%yV3jPPK1)2=dH$0UUnPJcOMfJw z$kS;}z9CL3d~9Cqh+gUgH&|wqz5;6x>OqoXt?p%o*|5JmMR7njhC?S`^+CG^kl!BM z1}*NM_wm0H*!!pV;s5U+9AD*^Z~wxx{%23GhPR*RJ9rQM!`nyi{((Hv2PO=&E)lx6fxO&n;&7nZ-=n=7o7ObkuTTKaJLri-Q zQbOPfut@3y#*y_+n#Tk7DJoqkWx7-kS`e7?1|pJe{Bb2oNfn{D<EmAJ)`MF-{2HTbg`@V`8m4l^xsR=8C5&%O=M^z!}u9PF1 zsb$vNXvlMi$}tfkXdI#EN}CKHnBllVs}U|e^z1pSR6TW3Lt!nS7Lz2FH$r?;(up+Qv}xaH-)nNp*Y+<fa&&?AiVkO3xBNI5wDjn~zYX}FH1+b4smq3phq$Yngn(WMiDD3Q%Axa8MeLEE8p4TQybFk=;VV+L4`up=yK zsV!?{L5nxvpecQ&Tb82I4}C>2b;#8#K;f(%vIvcueMhct=~+|_INM;dmS`}%1=SVf z#vCy&hFc>D-6P%NBs}f!JJh^>OCHb1{_5)|0oclqpziQ*`Doo`0o`}YwnJsQeCS!T zxVlC3stu`;ZQmf^sMV1Db40=H*&K3H>O1x2}MGG-A(ewRSglX9&-q|grXo=*IWeyI< zei$)VQmi9az*_Ja1?WDdL)C<@fKof?Ie43A+w|GgiHo@d=$)Cs_>leRia(7a%>hAy zcm*dMSts3Y)B%du#gfsU_|7&7yo_BRvoupfmfj7R2$OA4G~emGk~aZ2;B35M_f45w zso3bSLj{@y&RUmEioX;dyZoUd0I_rdmI?z4N#~(F4&H8lF-f9$#K1}wU~VY+<#8;| zl9edX@X*ehD0YfLAvI0FSjs~_*w7O?Ycz%c44G2%gEzPo^=-YYC-nv;fo;^DJ2wk-QH4Hd&avb z=z2B^tyt&77qAPJ74{O`piA%3O%7Rz7vbbF^EB2Db9IB-Ip*uQn zX&qG;tFtjE;$k_@vXQN_sO4;hsM>+4SW}B1aj?2iele-GF9dlE8<;m%ajb``IgBDo zif2I)g@95}IL4QgdLSzdIjjfTR0VFvtyzFVqs{#EM1+AnF?K=CcO>B=};bfPoy4#xUeaU3h|ByBw5e^`Lm|hIP15AsmqO_37OzK`q zWxXkqIWd{cfn>6hSscvnyZOI#zT@XR9xtn^(=6YOz#RYt!jGTf8z@*)E6m;Q&+eh* zEet0{b+^lpwhGnFKF(@M!*;`UBzpP^1VhWw1F`|<%E)#H_sDAGCA&hSoT#!suORh~ zkevc${>g3Qfw%o;hGRUN1>YMX#KV&4w#Zv~T?aMdA3sLva5tar)8 zl{eGsVBo|SY3I(5r!81ga+=2q3^s}$oHWtwUDgJf*Sf+7q9U{f&J(RV1(Z4RF=cJ} zql5q;O(gr9DairD)Yv5R+XciL(z2Go$TNp+ur6+c7W2+Y2e4JDX2QmP8@yW&`P0$L z7P*PQe?@?;*)BzX7+C5^SR5#&=K(SEVslwmgv$j;4830N^wZDD5obE~49&aOk2&F86UOS)%QbKJ_pj^j) z4*#nJJy=S7b$D*I%5tz1epmiOv0p}Ec3t2}RVRP2hbw^lBHuypo@~N^w`WlIGN4hG^9-DONr-lo5u91U5t_i8aVs&#|K_Ad+Tu5zj1efo8c`2OrF(VLi<4 zlksbA9hCsVu6`;Ml&n@r;$Lr_+7@u909TS7=FPpn&?p7?KgUaCr9j+*nQcK80~(28 z7O~)?ZS9+D8Fj!>2Ri6ONAzu4Rlvqay^`kNTYiXuF#KM%&r!=Xl{}n)4c)!D1zzc@Nn$mRmCWjG+>j*OIYu<#mHOwuUt`ap~PR57ZhdV9|m6R=m~0Z4(p?xm)b zNUR8ZtPaYk4yT*fGf9heR@cqOG^?3o-s32&I=jDlBXzL(5E|uhF)u z1I3b{#dTdy?M)E|Btk1kiQv2jpat1rMw>Gslxk_Jlewjxr3krFjK1v@cbDS+^k_bT zODnrF`XlF!3s364<3s1tHPSsKukP-ps;3skM)NUy z-4Ynl%WG!WA5#@-&l)8Nf)&QBO@&b>`&qS5bG)rOhqa7^o5w`1#PQtWX>3G3o}_%> z9w#sUp}jO!OqpFMOCsa*Nyby*$iWHm(G*?i<7iUNYBIqFGidK{x$2{<(SlrUiII+~ zU~QGp+N(#`4yx1Z&MKr!se!CVeP!Ff0}`FByLc>Q1$-cMV8vEOObkLiOJrB`1&6^T zV?jS(lH{Dn&hEF1no3_l1{^l86qN6F03E3!Dfm3bQxSGPy9BG`g_0N%a4cI>33`OO z;5J8*bGAQqyf~TjC<%-TYVBOYBHqG)U=|X&*UdOhI#89oPp2_0amSE*n(1{f zY2*Z%U1+}gYOQCbb^;d0ekriG<+hW=N)b=PQaA|EkY|Rs1qzJ;?7HNbW?7y3QA?&r z`S~Slujdo|&2&(g0LkNtNQ|K8v@krx5FG{x29QBXBsWe6cwpeJ7Mv8s6dFwLevL$mf8+^m<$K^`B9Tc|)JnQR| zR(lLJkSiJ;h&RB?c0P2wVRR?I%X+d?<&CAzLw9=!$SihLt`ACkUnL1z0LH=clZxe9 zR>dVLk?SJ4lPrIbIap_IkTm9U!>Ft}n3kLURTvb)AuModoT@;;F#Lz)wj-r_)FGaU z-9Qi75OHrdY&)y^UF4g^B1gnB+GA)oit6C7_ehbz=Iku18P(D)AA_kLna#)xai}wF z2PGMHYG(x(UCO;ct}EFF?P-J!xj!$Dx}O#0l6McFZ2RWr%Xc5Xd>&r@lAW$h+z434x_?p}ROXxc0UGT#&KRJ!wR(EL84n37j( zuN-j90RS98H}i^_$0Hgc6$>Z5_qZz2KZfsU+eoFXN}jgPbTY%btEZ0^pcGO@Pq=qw z^UIJ>Tcj8jvAGo=I+ZmLZgl~Qr!9bi;UZ7AQsNTnr;;7(m?_YGOV{9D^AN)y_azI| zX876NOCdVG*>S)?#5VlLup_r)MpjBBh-}EE=VHE6;`Lhc|0{6Ct<~mN_|wF@18F66 z=9~ATJTl7*K()LxDo6zJPDraJR$ZdKGoV-SKE?=;rd;%pKR+meqGXzqz?|V!U5ys= zAkXCb_^O+Pq6if}!4i;F=13jFS8k1U>|m^nB@%nfzK)%gG{{+zoIAKC0;>S;W=(tD zg<{E_af={5Iu4^mh&6?s0D1!eVuvqN1oW=qj#qDGs!_WZeXSBQlUI<&u$HHn&Ae$h z7ps!@9ME^!8R2a38*>NNs#Ez2vXBNg}nb4hzH+wRs>_&^;`3!skRgzir9A zHhE3?qmJEljzs;U*)+0OA7hB_e)BisC;IgVKls7Fk#v0Z`XMF#jKTe@@BZ%Pvv?0qQOPU}(T6ipL{>fZpzVq6eQW zHn!_C%RX2zljf2QdULE zIJuclh8Rx0itEZ6djkN1vGY~>$b#?YGxr6>)lm~EFz^>u>xhS0b=u~{=_GtFt+@pK zT-j;a)|zeinedX%91jd?Jz{AI`o;&TuxHxkRJb?&=0|Xoz1?z5Ds z3Ra1MVIOkIX2W@D!zCZU70<#^wmm~RTT{YeYnZ*A+X<5o$WrA-&^g;V*zvHawK=~P zsP8VD>|EpD>Tr6f-7WZ&=9|-vI~T5#_5vvZ+NsF3=d zTW^(0d^RMGO37@N1ih`123TucClYR6+Vb8{@X?MmO+_tfZ6#0-ijWZUs5P09JOI%w zKO4ZBz!G&k!&!GfyijkpBXm&3IjNsL#h)5X>l^FX*2?5^sS59u)m>7wmQ`5i4V|5` zD%1_qiSv27ET6FbuDt6Fd!dgtu@iNcKvsZ;S>)VShfh^oNavYg3Jj_aReGQ&kg_Y; z-o{=v!r3^B=u)k~OGwG;y?fbW!yATC^o3KqNEDqZ1fXNbKatIC=^?-KZTRkQ5AS{k zE5rwg3Yo2S=WZ@9g}7jt)JRQ~Wlde==N@Q>1n4prFm309RHrLKBdav%0NYEJ{N)(c zUaD!xT1OIi9jrjtOz<&ol2$0nWma$pE{?ccF<7D$8pVAbIBQT<@CYvt>nn-$J0z+}X}BmL;bY{kK9RRgfY==Rk)XiJSb{ z-~y*HGuu2&&hXEmw$|vZBWR@CJ&Wjh^pi&RH%R2eMC|dY)1%YN8 z;9UsK=7o8t%946Rt3jy=BH(BhcLQVs73pgOt!ASg<>4}kOGnJ;uW2q+ry4gfFl82S z<{{(t;t5JQ=&HFaM>PUGNpUUth>-$pZr!>#7YSWL*3ebDA{AU=TEC$I5>;ri8z;rW zbF8n5e}$Q--h8d=H3LU`h|Q+rgE=0VAoGXi?5mgG=E!A2q?vH~Y54DbQ|*4ji;=Z{ z`tm`@FXySkK>4X2BW%8#c73QPg+6wB1Uh;{V;oF75cA?n$9dVO4>y#Dh-QJxaLON@ zg7>gSot@h!|rn0Fxui?WL^8(`hA?U3wF5_?%0@cg0h7Fwa0*AX>_Y=!+P z7{;mKhg*e7w&VD-$^shNqO##-8`eg_k-YccP&f-Ef_jAY*Knh;hK3(*xl=?xGJ?Wp z7>V2-jfE9ju@^q}-V7ZpS-nybTh!4GJ|SN6_m)VeXE-w5>!H<>7khsNb#XDc4_NOu zG3Z-YYsQT_&hjOxTsb%$1)!<@@f#zUY#oykZDhNaSU2Yo)#b+P;d+M;5*Uper+C<8 zCi=kwOfhGPjP5GQO&oeA1eoxlnQP3Au?BVAK5CU@%lOL`_=z38b5Po?PT?f+IS(ql zWZ!~Ju%yM4T+V2d$Ma)?qDfmL_Q_TOV+~LoWgE>;b#A-tg&Nr%hfdqhMko}U!V{!& zC&DJ=zC>~&e_dYENfrI_H`FqL-xhjtdb>hvtJ@i>Xv$)hzNCElQ)nPr zuvwsk04>aTU2;@5-pv+a6X)wSC}|ZYnCpyN2Nl5ayxhyJ|sv~M=MvPh3HV3VkF_?y2D zKgxRY|33WWC;13P?0+h;4Ib71QlkFr@cQd4upyb*%a`&KuYY;{_VCb2S6c6!4|kStmy zj}1(R7VC1flo{2lfhYr?BFTBK@geCEE?&iCNy;PKN_O9NwQMu_2+n=0E4{;fsh5vU zg34V|rOmaz)c;BT`c=in$u^nCo_y4uL43AiouHsKxL$-DZdIYuowFzJ9ex1po2NmF zqFdV*Z)pz~$wZ%lnqN)HGEV^PIiX@W>#B>TWp#wXwkG5jHJmGU97jvEk3&4t+WOc% z3Z&=Q;x@7fqyA)SqK6AI2J*|G7N;T+3jhE@ zyQ7KIL0MaVH*U%Ys@<4JZ%!rj=fla zd_mcJ8i1?JhrMbJ9rlW2a0Fg}^vgfd-Y|ws=!7u)I_vB`A1Bz26aJtW!{DvEC7!o9 zyLbf%)Ip_aIGBuXXEaMXh1Y1DT)ah^Tg>QmKo+L9Q;42v-loR)U9#Iojj-3&)r%mQ z$iD5Av1O}68-TcutSXU@seFz_PLNOg7Kt6?s3?1;QWGUpD;-MklIo3?W>AE-!vQ`Y zjG7B9BpOvtM2a*XdX>ANJ)?dPcI{FdhtiRm#QU9q-mWlk|r?d&sESfKK0e z{xt{;WwRLEeo7yA7n30;#HDtJq`KNV!Ur&6`~VHopl z@&$$^uEhqI*gf}M71~=j;{e*K!w@<(1m{ckxoNW1tJ~QyBwn99Oyu!YhU(ZkVQOO` z>`(j}zW+dpc)ttZ{XHY&*Nli?=kI^^`Wc3zpS}K>ETd0eBoX@!#-e`;uYb-u?|)(0 z`RDvIKYjVeQ0sE|DZ?LHd5uYbJfuc}^R;)ZpbtwKcX)CD(|CqD#O(f$Ev721CS3Bd z+525HfPLDlVlnBS)HMrVKST<~WTd51f#Mvz{C!oJqK$^q-tV{_t789pWug zM`7x@$h9U7DpOk*I6pgH^4K2rvYCqh-rhq*Cug(3iT#D9v}j6X=f)5 zjXN=#4Vd|s%FU1`E26%u6c`mI7zEuX0G2f_Ay81t@xB}K{=8L%E&Sc&0&yR z=tO1MXPAxo;@l$n%nGqc`#})u?9uwmwqjk8Ku`vD54?tg&6xS(vbp+6tOH6R3nBmq zEY^-!dnD5v0cjujOq*fiGgd8{&9$THsih*2OT5WSr)bb^{+K+;VSk$mO2Ni(BQM)C>SV8o8&W!GSF4eor!$(f-5LRrh zN-10!cgb>?+`n)V^SoC#sIqXbMF3R@9T)`UX0dtvC@JovWp}v}Nm4s#4 zTU%xny*TZ;vlpK61@=`^+0b6Z=;_jZ0No7dGB&b+SN4B>|^xFpYd$A3@V+J^41bR;d z8%h!aOk9e)>LYTD)zJ;0Z?z2r!-AR)7`kk*BvmYv-5Yr=rgR7qxarV6z%KzBzyZ*3 zD&1qGqZ_Tsu3kkrAJSWf&dd-XlTZl(4d~P@_7TGWgew)Pmf^+Kyc%{-BQcedZ@s-8 z5(;Tf8Bkxe9U;h1-u&nbOp}xGn;FU}7}&e;jucgriTOwz71B-WgA-Ycjb`Jrgyg7l zZv?baAP5?Z42@DXD0Mozz)kL+ECs{@I#O|@K*AP|TOt<)-7{OaH8bWK4fK#)DG05T zL!EEAZUV;nEw*+dALU9s4%Ob@0MmumXI53$s^E)70bJhA_B-56R|5oqMSL$@BFM6} z@Qb3g-k@@!Z27ADmQAkU^vyAZvRvrF=QshYKK}eY;lN+Leuhc=yHCQ)=Lh)=ABTtJ z8$H`ncMKO#K19xTcd;@_M`)bZapxb}C~nZnUR$qrz}8f`p4wxeTBuwM5>z=jiD*Iz6z?U%urA1|7)eTnx13k&_{xzd z(0E_l3zf)DcU##5#P!HqOWJ9XwXk~sqg&fsX2ce_(b7_XFwjY2EWWpBHBs96EnWB2 zC^Y4~x!=i&DrI=bgp57wXml~)8I;Pu!f3$9}ws9IB@%_C1Dm4ksymahaxeU=| zQ$=KBsg3FZUxDbpK1twfVFicz0}z*bV|Wv&9gga^b7*B($~(A}C!jN8j=xw~Q=ekx zz4M+u>x4iJZBR=dpruZz0%$>yYVkfTAUg{K-*L4hoHYZ(#v_1sE8JJawA{NuZl|P z0~U7;(Lq}U6?uxbNCLARj|WhPfE(tZ z<9b%=t`g3>k-1J6PUBsQ9JwkMsZ^;rA7XjB2pC)mAc5eMR4IZ~a!bPEWDlrAqm$)2 zNZfe1M=zWHH?qG&X~{kHM#-JRMfUms5dPZ6V84C&b9nvw@a~u4g#d_u_u$_^CL<>hH{OvX0p)IinMqK`quW%D0d}b>^mWRz%;7v z0X?jT##(z=7llf`r#dUX^JOmgxZ?vY*vcK>2i9&dx;jJ@)~waLsC61eWFat`11RFb zdF)#LX$h`SB{{iM^DnM@^QNq~n?0B0h!}aZjsol* zV0Xnjy2mJ_TV}9j*WK7op@eo`6TLl*A=;owJ{vgG(=Ov7A&sE+4Os~UUJ-a{xiP5Q zZ`{eoQAecP>h`GYpdqct&SouLt7eM_ohYg*+*Y*q;Jg7%y)%5?wTI%8ma@__a3Y6S zXfRp1)vhbB33o~}%yK(g&~=N<3si(2Now0mQkO;QFUYoyVF+QlEl6JYNZO2hmwfer z3(y9aT9F_#nIu0Aqw*zG`_o0eG2Gw4{0ch^vgxXiR^&h1&)^KulHrR}XhQ?=W#E(rgkPJVfI3*?sYLN?+2Qp3o7EZ-7OU3al zJG=)=-Q@_qG<6Aroy-|@28b>>I1^hMQ0}U&P@%CdRh)efm`na4+5Sy75edx^njWr) z1>8|H9w47ARVD~NorVbBrAVU@`bmERb%W|T+PVhJAaa`>CWZIpW43%Cf@Sfyf9!0= z+GWYCMrc+61ldFDU~ItEIklbkc3S3#;kF#Gi&z{}6HJRcs4*?Y0}I&TxtC2MYtLLy ziq=TXpoO3+G8V6B3s`?^t$oB%|yk zVX1SCt4zbmK=i{A^g+MFkFn4U5%W}}icY2%LxPifH|tFyZ{tiE2Vjn-?JqCjKhy|lTmphlXP|28+t8Sh}+4x>2#!lV*?E|4uFN8XF<9^A8+ zq-qTrD8&!}lFkC9I<{<~mX{!9gSn2?#emo#sdI@Ps1`F+9HIB-P35GHmdX#1WT*)> zzWA3TRZN6Kxkq+c^}x)z*jhY7HoaO53A6LDs&0G>0qHZ(G7V$pxhfv*C6OzD4Y`q2ErvSQ zrXEyiRO)d@Z^*Ml!;+?bvAg-MDL2r#Xf?t8>Omg)p?^!4<8~b1k$p+1$NFLDO=Ei zJDwflVq2C0TSVpmS@JT@@&UKK$_~Kb5CzK70F{`1)$*_ETDDA&L!yqRFJ!G zy?a}&uF=RS8sFiV;^N>2q(lR_dAv@bt3(@hN*qHlgLav!=cxsc%RfPdPGVQJTV%4p zObAbbT<}Mt&HD^d#6hCgQ_W&5PT_V_8jUrxRP7W{M4qF+$8MI2Yg-(fn?Ng?Gujqs zN;qxa>Vv$eim=V8PnhU24Qh*yl1Ia4EHXH7KXqP<6jgv`y6$eRnV$u*cnUig!?eUH zLE;R31oo&<+?bvc)VH_VD5Z7WNh2^UFx+ZEv$@MELl~Rh2~=L;UjF%zfj;5gr!U{U z*w6f7JGk03po1Co zQS!sV_xKfL%b@|xx-PQAE;28z-z;&Wjht9 zA;5JOL%OiJdx?Cq9cM0!@)(!XJl+UbRIiyUCxLPw8}$~ty%uvY4E9+P)DM^!PwGu3 zZ*78OCpr+L6v1vg1}&_p+EaWjLshGjSD9}^QE_&f$Fg$5mj)C*K3?i;MU?C_n4OhJ zSSX{JZtfJ`g|iR7Q-o$3X&x=bC8bo7PZ%xlBaMCPYX(zm_n%_)ay{=h{0`@w4xJSU zu(NJQTN$!$2{c_o5P?FW&OVHBij7(3+u32SGEZ$sk1r_3-_v_GKxYN3mgkcys}Ig& zbLG_&B<>7tQvd=dpTuBIc_w~TOYNl`TT}HI22+N6JE_2?MInqK&_cgqCZG_Rj+U_b z2L{y}Hs_(~{8-vTacKaxH!jGGkw6aN7RlVvL3uFoikNjabfTI{LClx4#l=U6NvcPQ zQ5pz6dcl-gmTRSfc{i2L>69+%e13tUH*PX&iKrK20WIRR8;NIZT$dzfO?Sp#xlxzF zCxdmUXM^KHy&%_G|5QTK*8#kaaqHS^QXT(|?jeIbkm|!7^dMHacl5KY(SkId#zEN~ zu?(4SQWrCJgI+=bR|!W!8TAGFAmy0qSjgqE;LxY{RKwOOXpjNBGRCrOyc7K!vQuZA?-J z+T^LkwcfKP-48Wp7SW}_&k+}Stsblck) zAfMS}i!p}10XVmXc*StNs%`9E?q9u&N{dqh6pT*2Z#lpLB)ta^^8N-0*M?)zIRM#Z z{fGh-J83@cOroGipt_Rh>q2RLT9i9oGu$eWiQj{GGwZ{*#T5yAl8wnaK*0Exua8lR zwB<}jFttFXN|fl36jN*>3R(FgSUQ~D6qRb1n!{yWlt`B&?TShgz`J}3i$3db54Eb_ z-&`hUaBv3FYX}lMr&9-#$R%xyQy&$JsL&v^f+*`GxD-shwJSS!cOPw?aIeeKJe*Et z2zta0hN(HaSh^cpu#{9e&V_yh0b+?t$*Jc_#dxJiT_~I2Qd3d&0Ia4>Dj`Ft2jcg2 zl~VSmj3yw&YqTVs*wx4-oh+u*4@WH25LN98*fRHKiyADVZ15@sDDhyDrFDA)@}Zq4 z*~@L_lJi2-d#I#H=qMAa(@NOgTSNu=Ag*q8JA)olq-07TO%h_mAXU)UhP@qbD3`38 z)yE$7n?0cXdCo5-b2~!k4%(a&Y3R_gpp+eLZwF6rcuMdFS^Ht2jwVjBf`1(T`tZY` zeB$5lT4`T_E%UF+&wLVI|5?%EufGZJK7RS=)!~^R0J5oVG|n>rpYWQy@9>ZFwC~}I zM=5m!t526_0bt!?|G-klqyFrePsSomK%Mk$b6m<&*YNrLWkQypWeA1vH1@U(aLI*{Wi;@Mk-?Vzu!wn>DB;9?um zuox^{w_%aD9hp61Ua(4*rE>#9L#~07%lWFDr7KJDtExy#0eiUCgdzZxZXi=&{tp-A z*yx2yirB6J`kbZ_ug|>ZmY^xzz-Dqp=}axCv(!}F+7&QTZL802&$JlK;>YS1ubXv@0-GDPKa zz{Sq@P)uH0P?SS6%tCPkbb%>@I)q=bAH<-8m!o@%di}Ig7+XBcDR5Xcz>&k4+YdQ#;&;c)BFJFl?FaT^8i*Y z5%~51hCeQ}42&IaK+Z1Jo|7TF;gl6jt)0u(x33@l8)5ZdkQcw=G(t-Bm*3<<{Wlgh z=RVw1BWZuZ+d>J4X`sA&S@uv!h8ziK3k3oaRlb;^81@>5(z;f97v9mi3Osf|j0C^Yc>O#?<1j-->1s3`z> zG$Gx+?+VQ9Xv<@P+<&|}8W`9X>Uzni-a>D=-;gS|odJ2(EeOMVpqCsV(kjivXC8e9 zi|oYrFf)-?QAC*8dYIL46Ms@RxY^=#TA#7QEPn0yh>zf=$2`*%6vd__uzUlPd@hoZ z5Bz4hZU+brTgVump!Ql){6JxiE}*^WVRYTD0hRz9s9-B3+Z&!rJ*@0vX)GWvu8>lc z5U~(0yu!lUj^(j7)i0 zm(MjTY!ONCxTbd(&XJAejlD2P9Su^Gd7jWnsffgr;kh2?X$xc(j8iHGn2;T#t{3J> z1chYD4p#)jY#neA`z0mKbEAPuYdCs?uToQ{bSkdoFdk4%EwC&rrow^Cr&2C1_iV|u zi*Fj66B0>BS{Fh4pXCOa3HH-~D|nYL5>Fc;V<0t^24h8TAc{yx0>oCXiLb>-)!vR-e<*1dUAGeahn%%g8@b$4Tg>170d1*C)gHq)6_LK ztr7cg>@BTQm^q?t-a3^Q5@Zo8(rO->qSyP(9dBBj?5- zk^3!?l`+Gj9z=4JC*?~_*@DI*CN3U{+XECTEFLQI-P)l^CESbYIbxw>qY(+gu4W=u!fTUOS#DT+yql{^)$o`x;K4XEk(AQ=)6 z$o?{Vj4D$u*hftrSEpU$>B*amEpc}nRf}Ic@R1Om7iJlp7}ZF-OFw?4)ev`ePb3adnwh+zl4~u#;^o z5W<0#JAfrE+ncR+0;QN}Ts9AStT8u6nhgNGDH`IlnTofIip-!?;V^dwJvz`xTFy~C zNMMx=ANf*V#u$s4EE$}5Wm&0CUrSU*R`W;zuh&= zlz{%V#SzoO#0bi`;i6`%%xpxS6&|0IxfGI|=mJ%FniRYsmkL1?hO`#b{-45n` zPgS9}L1n_C!DCPZk5$DCGA6gU(yuB+powv7xRWEW^`t6nbqy-S=B7Pcg~{b{W2JD>&@|eWeQJ&)xYM%E^ z6OfkJh<_3-Ef$^;%d3&P)~l)vK1YZ55`fr__n0pLTaNQhE}Qa{mx;D#(*zgQbIHGf zQkl-9WN!=LGG|_N=u`}#jHxszK~6xM2i|kq1$*5WFyBIw-8Dp)5ozt-^fydH8oF$b9+o0VTJ- z$&dc}^^d_s^55*CuCxSX>Xl1_bo-DzS`zr5K6N`us8n>Kb0)RxB?y^(f` zu*VR0Y6X(7Sf2|p5>6<_6`e(nG%D~k9=7n!<#mpaU2H(%@hl5{A%U}2O}0Y^V`nKo zrINRwlDY-re+h_PRDZUlQF_{TFPk_CQBaS{tLD=73e?|Okf^~|Bh_0(1C#X|d;uY* z=$6%Bb6ReL8l*j(w+B4yYI?Yyog{YJFy9S5OK;R|B)FYoAmZ})HdID*f|i*S3S&Wz z96?kx1YGu}hDbMyJ&aMz@i7Mj*u_YxRXu`>&d+iJ`b(-!ey9PpG!Q8Vw7QogjVBmz z9bP6DR%2VIZ04(tKn2=MR+sMRKy7Gd`Cv7ihJy|leV+RCDHC)Jh_i|da8z~(+udQM zc-AyYf>Z5=4SK+Vz>aR*%`0dLljt(i0{stZVpTB(ex>v<| z_u0!Al9&KO^7>JJ1RSN$4Iq1X_xJcM`3L{&_aDJBGtF7LRz+aCQTd%paRnqcFH6mc z-M>}ts)rFcA>k?sl*_)ZbGnt0jjI1H%n4SA>$ct*jYq_c?NDf3IKMdtp*KT*$du)E@FwA zcAl@TScJqWxsRa38qq1iyx0GGh*l?XeUlmR*66n zroK|d+`W2obZvyxl!YB^ngnQOVvvQ6OcaMg*BmLNiwP&<1wgEGs~|Ff?SKWjyV&tr zd&-<%Mz|7UT{_f6+i=7?LD7gAy_W&t=2#E1478YHFAvvh}}H! z+t*L_X~oxJ-@E=Tbv@q$pzS)@e`479@Z}fb2NoJ6CYZ2irqm_KYHLRtNvFh$?5Axn zKXb$T*javg!w|ey0PN|o0XxA2WG-cZ?1NP*A~~y;jf9!0DBsCGRy9kXXucqcPo;f+ z^fKj^QE(g}_E5zIQsYSm&Un}EYc;+t@nIY_kxFX#v@lQ%DpRIp(^-9DEl5Bx3pz!M zpBH-hJSv}r!V|aF1?6Ej!f}*jkXind4yn@^Tox~`5>zDtCT=56K1UwXgvrlZq$Yqt zC?KI8CIy774rpeLlVe(eo6NkO(s@zVfh>(ap77I02@H*@a5GHQS5%}BAKXgMqZDcem?u(O&9A8EXN?pQRC-!Vm$~d$t>4P501W!HHaw5ZeG6BySZW$!) zj5bj`skah%fGCgHM~2Thl!2XLtrp$oLpmn)9U}DnD3R){mOyY>EIXLwX#5jU_J; z!NzzeD~z7ny8OaAx=9D7a3@NIVP&FCydH2vnhNw1?B!EZeUZbQy z79b(IY+azJnII0qwDz`G*#Lj0&XI2$j@NKoYsf z@=Rt?Gme3lr1zkTW~}dy;Z2cXfA~=bjPBfg9@)qq=XEY-5=z%=QaK&9#e@Xz+_L3_-jw~sG$Nsy(l`;Vb%C1i z!(ic{72FD`Ai!S}-6gll!JZGg6~{Y^{P+wX`)kYo5_+SK8j$?Rs+l=AhKTtJrcrCo zs0Fb;&0%4BH-;mne*j{c7`rx%`z@@2QhFGtGbTvRq%s&+&z)k#D1V|-5J=dD$}LW< zYCCc08!3o~r-!V*20x$d1++TS3FZ{4|D2P79&^Biespi`N^MgaX|IDNPjOcU569(G zAuJ)sRvV65$yTfsA>w`}*&fI%?T1G5qk#K(o8;@!SFNh}fcL{G+ky_6$A1hoP`2~C z0m?G@xYH8Tc@Plvrfj@(A3&iq9G6660A|BRh(e!jyh-MS9I27OHz>1Uhcs}P&abQ% zy)ob;7+SF^NwVawmh~LN>KyB4Bru_Yfv+TiH)_3Ma?o+MsyX16eG(p)R^9LJm zN}G`j^dyf!8Ac4eAQADi-=$$&p&~5z}!(C83Sje<et$ThYX3~;hfjUpUn&Mq*2<}B^quU|ifiEMcJ^yQPoQzBJyY|BT#g+7|arG5g1`F^JJH3m-BhX--n?(12BLiw;wWo7`_XC2hO zZ72K%M@8Zb=a`&_JV`1?t3!m@t@rNQOvF;0$d%4%)F^_G-CM%-E5+|S5f}UErTOmq&h*yxhAX%bqqEZ(mdd<%! zseOz!RMiM)IVu{|V#11=ou-4Tfu<5#i+^BEf>;Q;0C}B`J;2H1xYNc`H2HYMB`Em7 z8bhjlbjG0BCMq?|Xj!rOcungv{-V4AcKxe|g>zU(G-I}kxG%N|R=`IoHr3YsSQx5V z`eHZx$v7w-X12~H!T`-TFWL2jr%c!vWmQW2$F9j5@r1FWdRHo-h~N;S?lDmC|^*LomY=4QO2vErjq- z^$3%e;t2n-^K1j?5f{BBU9v%(O%(pqv0}-d776G_MQGA$20m6j_>chg?>(O*^tCKQ zUnJkV$V+W^Wa9;u!%aP!tB3~E(MaKtQ=uqMt0=kVaZoldn$`L7V8E6cTxv*8NX_Y; z_iaX!kG437l(A7I3fKYCZ5U=>#6Gq|Zd`c#3YCOP6XtWZpCUG?wp$PBvMRAV3_{i} z+I0^SsCrrN4~ZgccY?G#H`cygz|3GHqtD88RME-UgN89fN4;1o<48KToxYbvS7 z5NWU#>vP3I3eQ}aKA`M!{(i-}py!y{!o$K4SwgHM_lZlm8<_{HzEojqfhDPn9IO-$ zP)|iS?$BN}C$;jj(GGUW3|eTWo$(yx|FpmfQc$c89ywKR(FdB_CCr{u!F3(DQX5fp znGt^Aw7dadU^pPH zV5o0eibpr9W5yTMAaZ77j2;JQ9ZtFLHDlHQ5%L-ocBu!evC25)G)t;?=-zh43P54tX*k@f9wpUqI;gG6GXXgv#S~0GGAKw_kbwR zHMkwv93G02pd_fI#tp!pS9b9+EIVOanYsiF3==bUNTw`hs9^UwIyeIPW(H7LXH2P& zi`-Xrg2d{T+v-?q1s#TB7SORLAG=CfGU|!hd0>=V5Kf65?ik`Su{&8S3=Di?Adz{6 zc!1_-Yt1N(_G|!;P6ZUlK$o}l&pM+kjr&~@Yk$cfm;DZmOcc#F%NqY-v83IR!Z z5-0gug}XfhQ-`;1pStE95dcj>pp;gqbi?yFE{HPjmE`Hf9U```diCYPkvaWiom1C@Q_wfu;D zV221@7}5;KEcd8qfAb%L1i>5(Io!;%&VNTw9aH7_#p{RRH&%R&2q2wG(tmb3%imevwO%q5>52;mhpp{bXDPm=w?*@QaSbbV-O zX&lxXLVvwV_Y)!U2&xH~PrxmUn`%x{AsVdGMp9ilzyy2pD1;U$k?mJZ8OV+S7s_i< zL`+LX7TLzk>wXN+C%W@DcDJXoYa#oycm*(Z@Gl?8D2E5(gKR!G9vF{)gAH>B_SyPy z?!}N)+Xt7CAvy;5#{2Sf_6cG&(wH-?PkW&SCL+V;Ufk;cr4yqT~|Iu%&ic3Rgli z%X^CYj3I3^bQfiTcSXGnV-NQ5(K2SKs?yf0dK@Bp#x9GRB?6!7sHz9R)m@puRNLYl z!D_=C0R<{cUb%7u&~$d+D*kMhAQhh_jG;WUJpr_q|My^F=d15YuBs}lYTth*KZnrs zQwcpc+u7g!{mbX!M>(PlhLE^Ru9ySKsF7!H_;u4>S0#yz4@B@#*bb2VAh2OOu8Q_o zHHnn~(uXRR*vZyoxjNBK(yO6xInDp(k)AI<4BYbTv55>4UG&q>k6R>4|2 zh2FHoBy5pRTcJxqzI8Fo3_RxCsSwGg8f>vB4Y#~WXm>pWBl7vIK(+Mtfa&C&U4gMn zewV35Qm73EHazx;7=%B)fYo}91*YU;4jqHzY zi>0x=NijEBozyp_;x=$b=dC`gxnbN4SbPq>;VuA?ldE9q((bPuRX&wBXaWK#^U*!I z!WiZRUNTVSu|meQQhXj7H^jJal3BSdytwvSECCh$qEhaYP5@vI$ehz}&7xtA9n9VHeB32(%~s_~q-Duit(2`W0dx zObWj^Ku6I!<&OnsMq4+ntYWa6Q)7OXJs#pViK4vgvxqE=NP(b7rj$p^Uv7|6-R5Ig zAW+*3#vI4yP>nYb*8+IqOkvz@E zJqR}EkwP*OouapNAs$9d)jS>%FjcqKk|UkOSYk01c272LmRES@>9V@q{N#;Sgq3=< zyKTG%8WP&9XOJ)j%)ks!VPak3!(%UWP*e}4VkNI4-u0$cL9fa%7DIfFDV3e%RG5{| zCzf~5r=xN@ZGP1|=@uQ7$sg*~UC@xMQo}5MWX8?(Lp^6Xlza>=#S__qS^T9(`(sG{ z$hC+UK(`3PPDF@G_J-}W&6{Q2N42oJ$$m8wa&@aRmq)5<61|V9y^Id$L;e{c?a;Xw znu<=fH!21sokLU^Ds@Hqs=XN^+p;4ays)3j{h(i=4scjiJk1gm=!sa<`wD(VY2%E}bUDklvQ&Lh znSBcjfoKGsYU`z!qfnfXD^oC-Wr>_1ZplrV590@ouO=vs-SK@K7m2TX1BIF?S~R(dl)LRSG{>-06--| z)H~&X=Jh)&G@H1iiIPt-jO6}n+IpwtW^3thU=1Rw5s0R z5$GnV>@}5vQIl4Hvc|c%<*4~?+MU#D_MTwv)ilgdP*5S6-Uce1NDA1lTS?|6X5JK5 z#OQN|kc}rQfc1GOYFyb1WcXCm!ag>43J(KmS zJ*Dtq4x)LL=tz@5BFec&j$Qvc`&u9QjC09G#(W3{T^S~$-^>qoqe_nx z01lGn1M&iQ@9WgS@j6r$`c^0HI?pKOEOvQ+e1_^Eg-%+f{CT@M_u2Q3uZ=Bxd2{bo zq?6)4-tz7MWdj6>NU>U&8A@QMh_v+~s-v&YZPO)6TH@ie4V7QoTn8E>>)jZtL<0{+r>Y^xU z_;(fxF;Q*nk@ZUpEx!|&Y&)!Id;wreLO`aTM@5V4$)IpUM{I%$wE3*9R_|Oj>^Uj8 zjFvqQINlbLvSg+m@JqA%Y-DMo(8w)^0?SqRK>sZ0y_0gu*}@(r&Pjd+rIn2rHM=jW zY9eH&R!_8mnmTSE{^mzaNieL1bZFu9h}SAH$&{ZKh*wx3l3nx?&xH_}R25}5PidV3 zBTWU(#bEAe9+NT9DA!Rv7Tl0td(3uhJYraSEUpXH&hkTw-6bn%t3ZKb$aIo=jj0bk z)@rFZ;l%NjjjzI(lYtGM4+J<#b{J8RJ(!!RAW5L^w5+A#NQ*X$MXKX5W!d{md2fW_ zn61x;M!6}E{SJ;j-}8|FJkVu+XR7Fm)c^SMQF!_6@PwJR-9b-a0rF*hJT6Fp3CDlH zaGT~G+U%q*ln(w9%;pAy-WPQ9>eN}j4Fel>Zc=ds?Pa4$x@m`ATO>HkLuBap=<>)w#i^zN(YaG>3pK?ya$k+tM;VTWSba*uAwDK=sn;X? zvI&|5mVI@N-x_33^*PU4=Q|llg=8${uf%C{p$-5Noz6to_Y7h6k2 zwH4%YY{Q(T)$Vj4$&$VDu@}M)w#VF<+N&{0YC{S(EQ~Dy#6EjUw;f7BesKc=b}J9H zt^o?T$npU9Y{A<&c{3|1T>{o<`Z_UykaxSNoJ538nx$?Fuzsk;R13yZMF@1z?P;k( zB;9P@j->|C>eeQ9*b;z3@1qK=v(k-Hkx+2q4Ga@4S}Kk$A4}S(Di7U`V>_ur4z<}v zSmfDoSM5~>^uN!o;-D;cZl0SANx^H`q?VcO5Fv*gT>I%^I$jblL7lV+2?e6G%}n%q zwSZ!CypoCt!IE-39YC_A-vES;`j-VdH1BA#jY;n#xK;z^q8A{pz{MK|uX-gI*ebfn z%|y@?ILfEk9~3exx1e>%DVl$lag?ntTP>zBh=AAL^ULql|QL>u$CLlDmNxd&{V5X|g zLLX&`n^Y@)b)4zzAuo(UO0w(D?G<(2t^!dU!9YIdV$n&_=BzunkS5fdkoqeC$4Yjl zQV!lxsCvbCb=@osGp-65l}{2Xb{2R6m}jksrDe>)oHv=D(3h_{sZucbdU%AZ;iPWZ zoATl29n`y&o4JhGkid{bv`y$=c#)m~wMO&$uDK(Ge zQ);zr!!)ha!`?(!9-2b+U}2esV)J)^Y|4KM=u-(}CZ&1x>GjeoH8Dw+74HR5-Up88 zpk{pzi18&#$X)uNjkvY4GMf+Sli{GHCI*6VoJeq)p!7Hchm%iXvjTPsM1Lj2ip7E& z*M`dII`P_>q3BR-g>p;ku1u9c(lO7~_>>iYGX{vfb_o0?DfO-!reb74%MKrCcA?@N z78iPl<6R|0J(!eVVP(qH>1qk|6|cmaXNump%-9Cy$N9-H z-pE95;d19drDFJ<6Cj|sP7f2?L&t_S4HRbBQI)vj{v%S6Y0i)Bo**WzmhD7-va*PR z7WVjHn+mdH43KDAu}oE)psO81EQFpG&DcvqbitJI3{O{*TOb#PM&(1U+r3@glo)e7 zdr3y;`%V5DUjD3)ynOKb+rWbyi!fo>DZQvz!eiXP%#-K4LoTL&NW$YtxQ%i zm<84q8YKHb%cgW}RL|S34`wPD$U<44?!k19V27Dv3smDI2k4U?0!3huALy({Qcj>) zO`oMxTM>x?j|8Wh$mRfTD$^kVPP47I&d0UK_N_M|j$j~Y*O#;J`wHT+P~!5`8clY&1G!w>1s{qJ(HE%YD#}z~<{;HNa<2%7G7>Ci*vb zKqYy`8YEX6Jc@qQAZz@)&GFbV%r%Ou0f z0(fedaSPL|=?I()*y$ND*^cDF$sKiPn1ECP8k=#b*;iZMqRz^P8875RZ8>+#YpJZ@ zxWNpkM{K)TqbJ4e=V@IcAPfTTSxa!_qrNH)$$H%5J-5-Ro|`Cp_GZhlem={zxh=M1l|-#tY5kbi4I27w=da}=*g#CZ152RjP#bRZ$Pcj zyUm4sbq-{)3_?FQ*>8M5S+l(mAi~U8R6hkaV|GTQ!V0yt=*$zi5EP^7J!nOe=b_B` zwkivxmK2Gh5A+l%`AFr39sxW?c_t|=cN>TZn6A~LvM5DHs@Czcee%muc2b+(jc7f% zpcqDdo=`Pzp@ZXEcH_DT?$J4N!T{5XIF88F1mkfShYm4hYoV}Y%HXnn!!vR>my*wn zdKtq^#^10xiMR(J+mgfhuR&?XK++du+jZkO!H z$YyulNcgxWSqA1(HR2iap=@D?1ObIP9?*2jVG%9gOL+Iw@BTiYw+mcOp;=ZZM_ijH zV9Q2whjiDpd=n(!322J4FL--dgXxj;evEHg*A%G1=3p(Q(p-VALy8~J4i2(xh1D8r=7b!#sV{Lhc+6p9foYE3X0+a=( z^B5qcB2j8l)erkPanCrFMv9d+;gOYC+ zHG)aQ!`NkOJ8fN=2y4Yv&zl2DKy8Dj(&j#P$`Z+4!h9~@fHZ*Ab!B!2f_*F=Hwy;( zxp}-b);!*t2RxXbWD6s8w!>g8_@ym~0#ymkC(wWL^6jEvWb00YPvTIDH(}_|N2=Qi z7-5KVzDRBTM^v1F-@Va{jDuljs3`q{IF|F;r#yld0<%SRzGjy}WpkXc1Nk!-qL;ot!T)e%7?$&XM@lJ zQMuy5h|v=!>QqO%CToS}@KV|`viMh7fh$kKN$Is$kk(Xcf_^KAfRs+EgH_8ojF$*L zNa_xt0b8S2XZ2Y-DHgr*X#pK0lF2!Zz=hM?V8ewY7%8pl$~}`FuDvDA2*UXdA3^9F z`TY(MWpX~iRw33(^6s-lp)3t)p&_HP;oh=PE)#z)Uy>ep{MoVmy?o^0&3cAHA zhDdH)3zoQtMjJlh_LSs@dp=50*?g0f@{}>OxTCCd0`h&*(bN4TycG)@>5fQSlaz4^0)MZoC);0D#tZ zSd}9Kc;g_O`i_>Lm&5b60H-)FM+)8bYU1q!wM9us+*C2?FZJvO`3U>Qy!8rl(iV4R zBa#ZhEa%w*>8TDY^9sU1r`>AF!$tzkS;tPY5JncW`N7iI%Y&0cydoNz#C1d~-a@Lf zCRy-e-`F80BUByj2-}Mu{^SRq)%`I1Z~9fL4A`X3#47=Ff*GAnHYB$@=T`@JP)xoW z@^b-(NpCG&Vyt|W%nU;3Xo!*(Cc#i%{ClmQHTDW=F6Ta6SY7J?Bo)XNlcWOv38XkB z7+YkUa$!Qn1WerQf*y|gk1_32yI$yJhxA4N6u5IoTn=*KjG^e7P{IeFR8KY zc0in9elLOLd;o2{MeD|*UJKb@)V-7y?J^cR40Qe1D~ zrpzFep+_reZM(uRNE`lENJ7J*anPUIF;%UEghquAXV@M+n3*WrW$VecMTrO0Pz|1~ zi&RM{Y0fTNi3Ky>W!ToW+7J*VR@nr?GN&)-%D~j>i~V=4fA!r@ z!}lNH%>EB<>yUpBO{;$j*1`JhzxFwpdt|khgHvnT`ygXYdJYlV1^CC7JC2$+n zTZ`0OXj@ZGi>n;yctlI}O%DuS|{-G|JNR^Aycm%P~8XJSW-;08W4E-(t1^i>D zkRGM@12hEYks2p}_^Uba3;>1Ujb!UN;|j+5>I$LxL5Z}L)F$o5nIV8kW2e=n{0bz3 zJB$S06Fj<(5ZD5+Ttd=7`#BwX=2!<3;8GthZm*&X^JLsQsB6S?Mm4?;B&*#;Yh#ikvrJ&#oGL@1VEO*7MbfqOd$)@jybwEq)9ma{IU9_*bQy+)y zyDJ~sM^y-mH6PXdTQ}IgfCnlVAEMdx&odTW8aJ}7l42qrT(yGdu1kiA*Qi? z6WWI{00(41r6SgWv}D^S(6DY6LbM+UQ#(SYBq=16GAVP@FbAEssld?#=c_d48?Djv zq1>T6W&tFF-J^}Z8pB6R%xGF#R20o^6;EsOtenUm)m!7-4ZR;K&u(Bqhtrwtzy)Pk zK3dhW=>|yiIBZwBP*?ue2#i8%$qQT{Mr177#hi}p#Nl_ScxIRVSc*F~a2b#YKvirh z@)AzlOephvelbNKbp|TC(phxtQ!n}1aqxMVT+(`53h!-z=i!XOMfnw-KN0yTbw5XQ zZ#Lz_XY+5ODOsFPw??Qqt2CH2#|EVAiF_n?A= zVE&;_(lFz9v@nj{Tv;v2>xi^;1Fn(Z2$y_tl}yA!%oT0j%`&?yIJ2gm3vE^Mn@>N<)5>O9-Y&qO>nju^ug06CBwWu4W)WYDlgz>z3Pr+ zykE#oA@!Ks)IdB;ThW9uFDjL6K>@@aY87Qw2QqJ(c$2KC+ggJytEo?p0uLy}dqQ19 z*8>WJ79uuftlX1VOtoPJX2=#6zZ8^WbVPx=xsjG@EKf@C&S>|g)eQ#fGdPvA6lhZL zSwnkPx)d#P)qPwSD~>7SUMX*bXvSx7*{iCRc-rWVNJY)6wT#Lgs^oTgq};xvlABtv zFn4Njec32~MvSx$S({l(VuPf{sdRe=Ab$XE7)ix@-vs=3a3=Wh<@50RtHZnhE4+S| zgC2-Q)|k2{mGnQIv;9B|Od}CAH*}9DLM}lOUq@wmoX7F7$$yYUT7bT5dzYL>^Ea!Q zSy;q0&*I|dVz3z+*>5|AD-7dMGkd&Lj?9jmt4IS0hz}?u-CDu{u$vQ#w1TgzAOPU= zDO3Wb3iO}Z`bD!7{67QhWU{*IWRx(7pf^6Va2uH%h=j0evOs{sn?lmcKVEuDlVE6` z59QSd$N?5P3pM{$lPq?~fpZ>JebO50=%7Umd&uhq5(%BxW8lBep><%SW9wB?U zN(5QUFJB>9P}y`@_U|_V^_~hw+T?D|;U9aZZR+ia-Duv9J`a@-aO@m@)Phy@v3!~4 z1JtTbR1(-Cf_|ak9Et*^oJ1*n^0t8hD%tx9vQ3>WV(@VrFB>2<$+eD{I4AjJT|EF( zWfkjMQ)4~jMm_Pkw$Z{KF~gJ_S2f+tkJ7#g_Os>SO@d%4$Nw1kNK(|3G&{;8K-9ar zOfAuWc8MO${KlX)7J-^TZriM{lgq$fUlqGH$GG+z1N@1zu$cKw*g<| zG1>Fx#PJS#;8(NDgV5?yt6>!emSA9zDVn`RLA;O3o3)?`!HtwiNWt9NkW*Jmcpz(t z43R35Ey)$|2zNqlRtXVD+cR_0hz-z!*(3CQS%PGY^H}I>XpaDWZE0o%l$H0jMo-TW)q>C3S`vNHLv`lZ z3^*Pw1tx%wX<4jguH8|SvfeG<9_zZDl#83=AF6@qhi<|!gbQI!8}P5k7LrWup3&LM z=e98zg1oxOc2SLtmtcCJfwaK}6kT?P++IDNgHIIEx$F?z^|aeCb!|pZ58DP68CORK zP`0Fu%pE!803R5%d5fy+vr*3hlbt3KL-u42CgOh1! z9p$q3JZigyB$A*BP<@}a*P@Ld5693O!58@F;@IFBcaq}Vr|l38cIysAXW8^DA61qj z`~rPk7(vssp%1*P9B09Z2cU%%(Y2QU)RaT*vULissN%)5x*2jG9%SW4Uai2xUz6p~ zz-nDB3drfjc*}-(@~YsW01pzM+i`T0L*~m@VF$JP-OHy|&;Bud|AFtH|EqEHSN8SO z{N10w{&RTwIilb<17hcNbqx%J)tUvY%9kErL7MuyrPN{iBEx zWOzgtos+FW0+}i|LNAmN>(Sj*+ZwGUX7LI@4szJ7Y`qb*CXF zHYD$&YwR7;E_ z2aqr#mOX1`p?ohA?vo%J;8>-q_F^K0H;dPqnEA0SNRg6 zIjNo@jONr`*!5WPy0tp`X;E*oZ+PlPc^&AXTMJT|I}G7TrBwkF?hlv;lAi?|pY_np za2+Jn6OQ%}smEVU{0 ze;R=Ai`2l4wmlF=-iCBA+LC9d3dp6E@(j_1GsE6RK8N#r3L;VV3KYeJMz|8o-{jMO zk-P0vHv@C+-S~b6H`0$GnpeRE89fgPXAgy5<-m1@e!qmAqQwWF=hu3)Z zB5i$~vZb_}DI|ECxETRzQ*=y~H%!NZ4V4lxqpgaiIi{%GI zlT-up4*U%)1q&pp7y6!en+YxvFvduSyjaT?1zSctm86a{#m4#PFdw9>gORu8=lCM8G0EWq=E&R$^T2qYlc5T!&B&WvFmd zA}oPP1c9O1X9BZkk;UO^9Nv@fmFHTwUAw54VhkPM;+)bqI(2-QeGJ?cju<8xr^rDR zlFW5Pwfooc%Kx`XyAmCGcP*i>n zXV_)Yc(CAhy%sy~Q_V@^DX!YIPs%KsM@g=_7Va4K6v(wslyXi|By21h(luNq3rncf ziWpSVmJ@(?q!2>Wz=2ngP%5}9*-QQM*AEpGpB(`&b>j13U6J~{0n{S#5a?=0tV#-C zcM*V)s$so30=Q~1_>W7=IEdh~t)mvF^wNoH8k-L*YE8NwyK!cA@Pj@208oTKz5B1P zzm~6mI6UPKsZM@=vL{ADY??~ItYK*(h52FI98<0PDNsl$p*6^GcQSk zQ_KFoGUSgKkF(*Xa~nHOQ-C5u4Ae9Maqs`9>rIxV$F4N7y+6e*N@mrqA$wnxRrQOg z%`OH9;Ew6X;2wyTs@U4dw9}@_w5dumIVPD!CdcGt78&_oI^VhHI~RX;D`|`XJmQZC z2XN0l!#B)6cAc=v{1D+N$z_b#uH1S9lSfM89cku!86Kc#q>DO$O}lv_l~@GCo8D`k z4l*4`y|<#{U~(zpdc7ke)w=@FY$$*d$nzP1|I9B(V~l*fDy>i*PvOrJSBWvvE^s$q zch5dSX~ZM0O7(0AgV<wq#L^HOA)3UpsAF_0~_uhiDHa-q)B5%20k*kxPwq(E-}GP(*CBy{MaKHcQG zM$;*B>zWQN!+grF#gLU@#fmsc#k;tjD83^SY^+^7+tdcEz#hwxG}=rF8mOS~JAn_O zz~YWePzpw${h0dQZfUpj&z*>ddGBd|I|-6krlr zKtny1WVL0&3x>as?k3MavLQ>Y(@qQ?zIb>XTE3)$=hy; zPM5ONfJGKM=frl08K@>Y|6&BJMyq}rwMS8(e-hiCN#5FxNSldI{C2^NzqT`$qToD zyOq5IAV+WUQpmNma8$#CI57_+^nV>nSJXN%O~*9o1IkbycH1`;KZSv0WO$Ot{qmo} z*Z=hPSq@EqeE(tikLO7B1xv-Br&oSO-082r`N#ZyzXU?o*g`Am?1r(Xe4qV*?OM=Y7|@^@`p)DIncvF?&Bn({l(L=nA<~0X&iyJT;ZV3dw}#T zvWj0f6%|5g%ofz>yjmx0;?iBaK9Q=3#DKPF?d|sHkrT4IY#mANCRLO?UBkeL>58ez zj|k&2J8ace_`yQ)!`^ulAEd;!lOo@wmh44W8FGJQ2af>{mTlOP$J=q(4k;QH0U|X* z3ZQ7Whl%<=sUu^@S0Cw&(<5PmF5|UV>#g9P*xJ2{*)y+ueO1lQisumDR;0ase+}0A z^c?*Z?*;1XQXy_r!L~e-TO?0)pgJks%?cV&E@ zT;3&5k*BwD<|AX`z4$ zP;1oKMb#aNglGeBQgQ_wW0ex{Qlr!+j0JV^mH@4?@vGHH%@%8=tuokf_Xj|#Pk^zR zRiPg2F0#JJ`+2D8bBaOeg;L)Jt;!y>l%6ObG}0|2D{8k1l)wBg!Ot?SRm+1c{fl=3 z)LUr2j&%od$g>&30UHgz8Y(rilu^;$() z0#m2CQ}=O~S~>A6SK#jNge^=nMr__8AJ~5YhK34AAgzx?a&3Vn& zQgEU7x1kW*d*!m&x`Lq2;fjK4PHuaFDJRE_x_9LbjDux4r2Lah z$I*2MTMq+M0it^bi6SMAA0)Yf7AgGJR-+1PPui23TD7OQEsx(ISp&U-Lwh9_=+!_5 zKEx+cSum*Ws~tq_HYzflk)LCdBRZBdMMo)t8)I!3=zwbdnq8rcOXJN-L2hm&<*Wrq+bGRWh5Nz-wE zMj*6Xx;A{WbdkrMNfMrZ3ms>DJcNjyA_48Z=K^u8Z4YofRZ`E0kx!IYJHw6@p}=wGDD&vli5u8e=yXb! ze^G}{OkYN-H@K1zte_f`veNb3_4>I#+h0+_dOb!sbLdWV8yU>VfWJ?X8RYH_^-b1{vE%K)- zr&0xHa7S<Wimp*Htao#lfk4xFY|OIcZzN0+h~S2oc3JBRq)?0A{S;<#QF#@zN38XiH7@kVkOI z-h>Vy`lOIt47SD0ZIC}wYyk9IqwFjvb^!!rTDX+YaDU-bq{qCM#~5iUMAH6DEi;kXUjEnc59e_CS@_Qua?ndK z{i?8zr9~Ma@wkBU0+=IKzm~nOZxCSdYcN1zn|puRl&yA`h`F+ z!-!lLxif3Ls_S`btV?<=59{bMy~{2;JPb$+k2EwtURt#Pcg*{Q*mt9^2(SRPLPpH0 zuT_+Ltq>;KX--?VD`3a_Q8$uvOGz<0++@Hk);dfI$5A!RAl+blhy1Uwe zY@3?aF)x5mEp?Omh3NU~M}1cOQIQB}LM5OPv4>xR!8&idwi8*b)tEDs9~rh-TPq^- zBZ{Jgno^JKY=i%w1v7PJOvk_wIQbAIFjPT@i5Xde7OMrMO(F7J;MlCB1a?TW+S)(^ zxME2kRX_lgogp0dO_Ft>=b0576mQ3nS5Zzl`Iv#od{L>bAxEp6tNl5gGr5nx zqCe@c&Cg0jhgZ8}rT}+`3l-Zguv+L(S=4GvaK{weI(nPph#c>LhHkW3CJI2e9c{r= z?`pY?2zBsSTG4nt6Jyq0g>vhfOzC3*Z%4^xA3FxGT`sXPgFS$3mw@HP^V;eJ5lW^c z>B#oyJgOBc>7xo8vk?jUVLJ(g$URSV{0)keR#xsAL8T z>RfGRti7d@gVJf4Fn5+KZp|b$3aFS@mCseJ4H|^1k~%L zL9buMaMH^)9092}2*+Tl6F6vq3n~r!N=t^Ws5-$<>Mk|t7|=7Ith-XNk&IPx6$gc5 zc_j*qOkgv}$0?U?ojGp=J92RiGqo{|o+4|C=yYr~`EjM=vI9gm9pa5~N~CVen;Xjn z-HX!+(kxn;N^HpD5E9~j3{licWg(pe_uGn_vp14^WyRxrM3yE$?G+hC)iFtgMaKYb zar;iWeNzr@$}>Wv{uk#^2m|%sq4Et@8%t&`PnUChdJSZE4%C5oXO*G#Xm*0op*(?M zZEl9eCF5sNeKs~Te?S6gRnxvZ1{~W23ua5~rZKr=wRVv)SUC>3T%kqa=FIY^O2Vm{ zSvobipe+NjK)9GmiYK3t%A=E3Cap4yqeGa91e4V0#2;M2Dx%b=y6{9rN1NH9JLi=u$(Bph13@unE^E)D)*_0snJ55Go=4|;#RS6O>fy4m=?m~ zGMpO!P%-i4Aq81Ek=hLVrbveBC!d7>J%zbX-+%D-x#=)JRTM5aT``snH)xBv(5bQl z`>tj!i}{LWY`cSO!OoVqc&8~1jAelNkRbG;-U9=i=@BIST(O_HE?SPz~&G!y#^4unLc^u|-Q;9l9 zzSl@k}9g=~B~WhdRlt3cnN11IFLH8BJRb(yQuL0kZWUDEaq8g`Z+H@Pqfi zU^MW9xAddrL22S98JAx8zP2LoB`A6+1q%p`LhbD8ilgf@*q{uOIET9JOxKh0C(w^* zLiz$v`hYu)nJ`G)GFxN4c`Cbhk7V&m2)o=^cDAw5P5To}wd>Wv1fv%wh*%DGo|Aaw ztP@;Y{pb{1?-=iC>eFK}s@ykc{%mc@+nBB>mJc?mG!b&19m=YP&~Si~ik)+>eurlY zTHUiLU*V9DaEDkg*?JT)`%+^7FeGRn_ zFB1rms~6kDqBadXC&qt6+V4;8^zZ*ZFX%sqx1anss(bHWeC+M;<@=BLIq<;03TgF^ z=*Z_67!m&6RoVab?YC6kl6Vl)C=?or(^WGH8=1TW6V!Mn_mO_BvwGjWFPEniy)iOF z71&&)IxL5BqDTIdXr3J%uids1!SHYY+6}oWN z8%anKq)wLhJkTt4ZXu{77i>V9O8mkBAH-G;WNkFv1wg>*B8e^P)9NzaAzo>@_J|2Z zpBS7r+rZ34DZmn&TwMmwx+G#2-3B=4A+x2<`dK$U6=3dAszW^DI6KMNw!?y!DqrRP zPsbDp;^$DrW8!#2o3b8BJ-S6nHWxOUA+KvE*{wz^~U|+g;kDLenjI z@}(fR2aC$+1IfmN4PW67%|ba|bqhXx__sjxYVwn*mzcO<=2LIUJ8*LpII@_j?5Erl z>e$q~?kb?RCY`N3Xn^%Vfc^waQw^AjGoOMY+O*VRm%Pdz^Ln0K#kDRC8mwI;iAAiH z5k|G=dTO~M8yLrtlIZa%>2X!DzEVN-RhC}~N!Hjp_jrV&_kysP8$FYvOeZH3YZfEl z8a-gD6NJRNJ1`O+>m==Y)*bW}J5nj)0kt=G8Q#mgmIAxW&QQfV7S)M>^bhu5kpJro ze;59X+eHLBu(ai8Z`nHH{|fJaNf?ISGR!CDiLxFGu&Pr?0oKVvilq1!PdbP_4>tRx z{&1^`O@@KW;$f@YI{b#mN+h`y3txZln|~zA36(x03h{fYg-hj7NKH(mv4A<*!_C;} z%Lnv1#B$lhfDoJfO18J-s%*CxC}zn2}M6p+yg>*c0aY6nE9H)6HD4?IRTLv7`G3$dV$%&2$| zi_If8`uhxq%q)_l%@}9r)$tbVWz5US-wZR!IVIO5iE$$?hy=|1|rpA7QVsI zit@h?gL9}piqtYaFlgzO-u)-wo#O(g$^Xi*4>cr0p;yNgOE!Y)QtfzrH%M0X!A!DH z-&=&xRAtpjVe-Og_Fl?^oh)?oOiruZy}>M-Ks&DR1)KuKoy&;HPpgt{#inNT$v(k* zDbo>-gU32SfS)kDHTsj8U=v)5r6&#>!g?zWnB!}h*e6bdExS|L=?Ws=qU!%iCLI^W zAJ~f$GY`t`sfs7bdqWl(0*+vXovl?>Qm?fPNnu4w)-!kf`crf7`?v7^1+t)2mmkpw zxA45Tz0VAcr>lWi4NP8F7*prTaEedsgr-hS>Yl_J3s#R4%>$c0y)Kn+Zr5d7vxzWf zc#Q4MESlhv6oK`>3CK1QKgg*M33VMxAnI{0vqO1TI8^;zJ=K;upJq>l*!dz zZjz2z+(Ms79Z)$21lhXE^_|4lt9>WD0f0C#?yHO+ODHj1w2bIRCX#(ry;OqV0~nh(?G432_&$KDsk-gor6}Z>2T`H z7;d#^O3O0_6Umh4&(ox2lgvs`-u=KjkSrJAiD;n(ao9Ya!>mCa)>V9%_BARnj2#X~ zft_(xyIeiZf*|%pG`C!;SoyK{OK%hOCI;mh_wiv2n!)}6_`Ta6-O8%2D7n(Yku7M) z!_G0hVtD)mUWgfX#(Yc9~#t}5p>?4MhmfP=%GG9 z>Y04yP5}fx(kn*JVtP8YxXa$8K#g-jqa*RczVv}QaBJl;v!_=AADvc|U1Pma{VjN# zR&Zk|)~hkf3(wVH*1lWyYtD*)E}>dLs2i>sMW1s%fJq0SwH(@`S=Ji8PAm{*qdQ*5 zLK1OOWkH)UZJw`x@&2no358FkHvH7I+AU@ckfX4%!4rUrdWB(MvYdXBru}TYEKBzU z-PkBHp)V|0ssEvk$|fqPVH;HKe)|GQ)$XLu?FSbd^3%+)(6msE_v{^tl0a3boVub4 zFs}0qz!V?_2sL+BYZ$=Of=l(O`3S9Z<(S^}UY|^A*L#r7iGgGRz`a&cQHa+1Xcfo; z=73RZl$09aG3kjNgX_ac>5)Yd*0x7s*eu13&e1TUbw5cY8+!vsctf&xGoH|;h65LB z#(Ib6vW^NVbg%#+U(=Ae#KygK_EZm2O%%7wfIg%|s$G4WQdl`;Us)9ykSv9*(Cq83 zK+b1#Cqx~|C7G0AQ@7shUGXaxWS|z34r{5mmI~^19P-C?P#<_uV^csue?A?Js)LxR zAZYV5MN^dyvSOq#b)&A9QVDJ7*};k>q)L0^4mN0zb^xSToi?kaN`e7wntt&SxPng5 z?pw)bvNE?u)N4BXG;q|kd}I`S)i@5KvZL80_S&X*1(s-tsY=ToooWHJVkPqGhK)q@-&TzIvvDwH zVihSDP&;0cpkZphpOUj-qVAE>`f}P*R44!10@k{gGbzm`9WEhbr$R|tsR0mqkf@OC zKiLhA4Rrg{VFe>cbTl1D8W*YWR~C)mX3TuS827`sPibKaT>JNx1M{Bx-LJA;UzC~T z74uX39;^z%k5xqps)B6$OOR)X0MGy&xTNr}%1z!8oEmkP>Q5ah;e1Y)zD0)#TS~*8hcY{8sNokCjczBO&;4MS8)pVX6sN(BFyL-+~BcZP>YVmq&!8maYl zqjW4ugw_ZKTdSeno}X@1%|T|Rumr^{z%z^XVaPGe-pf1c!Nx)ph;f#zKtoh6QNv(! zF#Aj+FV6?A0Q$ty&0sM6U=SHxwBj0j+~sv~flc`tA1*c8lCZBVfv;nXupWt~E*>J3 zd9HJ;#C-uj8f+Ge81PI}WFy-*n)b3v0Yl(Yna>?#2?={gZlDkt42 zfv>Le3q;AmZ;=DCWcItYPz3i@cLza@=m>^{uLKRIaZWT@Y~g=Mr$2lDd3gWpN#r+t z^M9nZ{Oa8HS18h3P4ogG5&7lNtw|T@G3oTtMB&tBruJF~MHX7umo0UsZM|Z=9x`*b zf~=Kmx`3>!Fxs-GA|<-ID1v-V&!l;+wYO4L=46g@R^A0IJRM?1FHcK}WKjafAb&8k zhQJZqtPTV&(bh@X-cG%z1Zo0o$eirlqh@6M4ycE?`p5Lj8dEZaS4&Bgj9j4e#kk8> znT~X@d>Qt8-nW6bI+^7RbpuknizLPQL`+HSAX(Qh7;_};fSkbe`c;)VmK9uGZ9t7} zTOQtmLw*NE;z4?N>nF->r3hlXL)f1d_ju+iceZ<#`)ETE{~hN&VCiJIyE%q5Yh@y)dTOvH9P8xLxdWvN;9zKj($-)^xvq|4V-L7jIt~ zn*)v>kg~M*bEwBjIt=mkC+_vm?gkjM*Ng& z69AJ(mkz6>?E}xt^mQe_SEzUZ+&7JIc&uOcuy9bY!Ryk8ftwD`jV#g)GfYDp@6bR7 zp3F6QHtl|FO0q8Dz1b%GWgoK@UhVvvR2M;1tI3{sP%ulD=b1KxUKE~4#T?$_9hDE| zqM=oS45Kb1$C;~6@x09fw}q495%Lq}cxz3Op|ya2u`C

brXZX@VYhc!=SFxwhp z35L9L)9~j~4N&#DdIB@B$p?;5#`+0waAk#qv}U0S9KqM*qre1sP(IG#r1_ynOMv9G zQpHjXDzn4dA{|PMnMQz^P2vO(iyi?HZCbYzM&_2v+yT%sBw&gO7>0CXNkNktaHbU7 zP+Xvg7gqvrTJUe5wmuWsCQ<#2)H_y>)iGU|fMtAAyI1~XwUC53jlyIFzh1O8ZPglV zhgIE#J~QzFUB@|6l27GL434ICM z)?xP`e<3Gj$2wirrgnPPH32~M{g7I^KMD9tq}-55E!w`E+b$~%%nk!H5O$q|9|R{s z4^N^6=_QEYNYc15>_VoKP7#PdEye&$)O6Wb4sTc^a83?8vIe0I4RP_OKz8yJh^tJK zJ465iAs28PdD7gX8YShZT12==VhCn^b@Y?jLSIY3%c#w$V>O2<6~rWAOJgqzbnJ70 z|IE+@e+l1y;qvv5-v09T=VT8k$G>_1)z`3m=Zx>u_pjc*?RfgHZ@&s}zq!0Z!EWM| zRlDwZdYPj>)w3sqrJuf8z(uiB8nHVTY*o*J_}h3T;dPn?$$b; zMFJ(iCbjDo!^TqWLGu7Y^0!qY=cr9NqNQ{sWyP`LzA$V+f;a;PGSq=ar43? zJpoKm#Yzj+?Ib?G$~SE!EP?hZzhz(8jbHY=dQc5g=~FaV{=nJ3s<>c^c&gA{LlmuP zKUoSWWi1>jD}BrcNfBqzO1z$eAo(yYbL;%Q84aAX2Qq~EYO`IEz;RM=sh<)l8Gyor z;+#?q#fA(r*@)N6@b&lJeh?On`Fcr_ja_^MQe-j30%MkvcrXV|hb1aNHu7DK0dU`EX74AqQ2U zktOd-c_$RJgWX0Zx}7@rg^r9YUM*4olQSfx7qixW4wii@ zmRj;yNTy&?7!yxwW3++B+8ppR&UTf-9oGjtqQk1i-Jp}sMAcCw*i0U#6ngVzZdlyz36C`KLi zF_ru^ouvXYwcT(M7PiXzz!BS6!M@KimQ$`jk;%9hcM|RmcpBM2mzSg{=yG~i`FMSQrWG5s}Tcr|2<9heUP3*lz8PZhwZA=pc&XEX}^BFjWQuWiI+iVJM6&D?xl*&ok!S(+j|Sl|ol9t*Ce5D~_R_HBttoc`)^blm zQR!>RWIR`hEg)qCT$GS2?=wh1u6XIiA6mN^K`=vY@1nEMl4CzGQZJC$4GF_&@lejG zWQVQ)Qb^K?#FT?IBxX&}mSlQikqr;B<93FtV_yLrC}z73XsftzORpwt)PP3i_RT+i z{p0tap=SH+{YT8crqEiJa6pjOE;CRXA*n?r&)90rMvM{>RTspWQV@?adCg7Ja1cUO zWK(u3zmc1AS}kKjT0~IFrs-u)fi}$eovEhF`J9KZFsITj8*(gF-;VD0$#B$z)2>Knr^kfI`1(L^H>CbtBdVVG*il z4+$k*x9yg96fG_>BiAe}&I@%kfe|8KPM#hD+V@bK>fmiEkOF%o zyvf(7!S^&gCz@Obnss}DRa^9w&Zbi%88$a~m$r^Ou&BH7y1LuK|`Pe2OLAZ%0on! zrBpWox`dZn(WNQoVOO&>tPSPNz$k$=wrHX?Io?6*D^GwBiJ^heZ9aDZ)h#lBsR#i( z+X`PuiFWanO*s;YF4vUqnXp{m!OG=bgPXBb$gez^sm^&Qr>-ZyMuET9uaY!g!UsOl zE_F~JFU|=8w*sQnPI8k0n(9(wOZo=Y=JZkl;SXX**RmK@ZRZ-tD`D8?3iuNj73QM}nZ*58e6 zd}C+Km^vxYSUAd9N0s+Q%wtPzhZ9wfP>r)qt`NPZxDBQRuLRg5K*C6mE+#dNeWbQ@ z@j~OwIP7XydhzB=LVX?;m|{Ul)rRHT-lxUqq3RFm@Tz3C!R%`YTjXO?>@X{0Jep{S zTI8x;V}iAn(AN&{ze>lSzW+YF|M~=OfF~Y4CC`M{ZdP+(WfQl7H@DENBL2)V- z;zuVdSU57dO57zLo88K4{aB#9IX+lB2n3gSa3o#2gO19ARB{+ub+WDxhlj06h|7)x z^>7yjCR3VsL7j@(+qQ3R`GTE~P7cs?$A@N${DVJ)R?Vsu%aa!Ov}(bN10d)hY(Gtp z?vTxL&D#xxUV#tlRv-`4OKS-aMc9N**0NEN@TRqB;Qjw`>ejQV@p$tFdW}YEUC&0B z8H*n3RS>gNG`2dQ%7J{nC?M+L z3%!_%A{@Q-vRyR~`bf6+k=VPk93IKZ=6Yb+fr1iWvSGVKZ=$M{td56%aHoTb^y3P%S9oSjhz?KL%^6tEf~Uk4yF791az5P`Ha# zcan4g70pv1^A>*-(<{t^?u=h@eVj0Xq=Q8(rr1zz&{jIAT)RauxdWvVisk?Ohy5X2 zU+v{~KkZ%Gt0=$uP^%11vd1QNZ`E$LFl6sLs( z{EI~!i3M44y+H%>uyzz^9cFcec9hXFh|;QTF4V+aUSG2Y;59z)nfxc0$&_5La?{2n zmvpJ+-@(=15ep@Yn+o+FtD>sYnNyZ)Lzk(}A}P=?zf$ZMtdq`z7NGY9AdVKdYUps6 zNiz|x2%4Lf@hQ=$l1p4F^^AkrQk%6qnZNLy=!m2(jx)I1EX%@Fz#GlJ12!QR?%-&$ zGwZ329KliZ4kqae#CRR7`&g(F7clliw=Ax(loZvV2!R~eBH-%cj^>`7jz{ka$Np>{ zAF;5(5g&=SBm#SH}&8Z81^6ph$NmHv;xiQgn=6}UF#3WFV7v^|y zqM@or!t2`JE2HHVojT-4libZODwq|*oumq2Jm#2qMotCHkdd4c1J?7?O&wX6SXm%70QzN+P(tep~5 z7CwKi&L>Ne;Ur8l*maQLXJ*40_4-ZexaP>FEF{H`?|T670W0r22y`9F95=&#!oEe8n?B9n zeOPo?XMF={|IHOjFw5H3L=N-LE}~k`EM8gt-hKe13}Unxw31=8A`zuM58l&wdfg;7$kGhTQJU0VP9DrUavp*|8#CiP`WmA0@3w={2ThH~#IzwU zI(b}}HvqS=cI;_L=;w%k4qo9XR}uR4R=|XM;1l91->yG5Mr)kI36zZv-TYalph;q- z$RyEFq6hw@N)?sT%epk^`)%O^+md=HXq2ce5TKVejp@lu%O6x}TS0e3DS{}$J==l9 zv^x&fCj&mF;VGG{voBHY0LV3wYNb+-z6NM#dGR2`mH@C;6so(YCfdUKOfVHffR=HBuBLpnWs~3V=P!e}yX^KVP{Nu@L>HUjf-5ElX z5|{Ste|`HhnAhdk|MLEMkPn7iL~YjhhFCW;%0XLTw526|e8Lh@olc+|GFerzuYrpS zA~_XbG{!En?v7Fboy{Jw;tRT%FY?VLSzmA}DA{h<+9l*hZ?QKCVq`6bt#*TS*=!s9 zUrn*y!f9;ot+#IAz+n}ej>^2>RG!2NpbOJ&dCjd6k2S4FR>|cpK?+yvRmvh@TgN3) zs52h?&0iS?4k?3e>=2< zYboFg(4z=$0-_68xC{$|>iijVDc9%7WgM<7l&vk$A{X#6a#fdrm{b(V1zNV^@y#A0 z zoLQ?un&^7HtZH+|S)S^%u)U)Ut=f$xcPa-;w1Jm`(GTYN1oS`~Ij{wzB?XV=%Bm-1 zI+Y5N&m{hNhg>?bdKQmXmT3b*N*{rP&@zcaYkwIfC`1nIRmd4qWQ0foa0J-$WkeyI zeaUkVb%Y~<-1G#~t{;krl!$WC!ZN_J%fb&Hc&KStAvulM%LpOX{W&Dd@tHc*ZzY!* z=9UHp5bapx-njiuAMO^4ByHzfx{uRSTbE0Ql|f`5>~`y3ODF^LN(##`xdOqmz{*S# zUAmD+fG1w!D01XO|99faNpRtl}9f~DF~s&uWrqWc!Q-12 z1k)(RfDU0gE}3D8_WSogu4({@bPrpq2CPpI~FJ0q`jZvG(V2&}=n8qOFGiCd!%$iDvGH{Y|L5*0VITdB7} zYU3ad>8QpUvkeJd4OLFjK+lTY&xnuuL;PpR-!r2MV|!^TyLt-{&6H&s9NG!~=d_WR zBAE*7S=|5!d?wd&g$)W-mBQ6j9~Na=5~T@0*vO!@NFfy;oWa#3(@LoC6G#bfibHl~ zCMqazB4Zu%M=2C~x%eIipYYaNEfbcgh+UHYoeB_HJk}v#x%S7{hINpF^hTN9MjcmJ zkCHYwbd|X}&{ai+FtctE*o4s?2VU3;RYpqXeJe;SK<_|y%Bh6u0FY(2M1~k|p{pc9 z4lvLvuv6K?)u$?1Dpd)teMUVi<8G;+q-Nch*F)Z_Uk4afJz4Rpjk;7|fS5;>j-+Ty zRq4g8FE{)an}W!3c*)u=1)E1|GHRfuV^$$yMgire-f6KS_qDg21&l%4ni{QMqx*=$ z_b*fW8f_Y;L+_BlE!a)@RBUE6(5j*Y>PkKNY=&>)Hj|v8prsIR$m%I+i{%{BEY`r9 z!8?cxZ8HMb&~TTvt$Hhln^eK3-Sa4I(BSu9P3_4jc98N&=U_R&SBkV4MXGM(O{3** z2=%DCan^E0?(dy$%*9BdM!vr=h9)nSzK+fA_#|2QBSU32UvarBt&Hp<9FIlaM{Jup zV3BNiOw?l|Q_08FZw`r;B^f&C&8@zSx4ltaOkyq7Ecj%Bf_4r~q(IJNliZFtsOW`Yp63G~TM_LORA{ z6L)XChshp<@tCWi2&B?;j&aXL&nSyN(MTlp|jc&DO@+C#f=GF z+_c}e^<)q#3bP^w4+yQ3IL82;kvki1I;y(Bk7IPG-B7AcuG$v($Q&7=lwbO}a#ZaQ zrCtdn!-SP+%ZJD8UX6%r2iD7Zpda6&PFGg2K1kof=CwrakQ%MKGS z@>#CfJ59U}cBTwX7;;hXvrtjZWU4?#;NEpk$!cEw(UnRDJoc%b7~LS*v~_`jPYO(U z>hvBO;Pba3>N&Bpig$t`pq?;RtXe~BWaLG)0=@OOqdB(_<%yn|8baPFa#@0d?(%og zvCTEAYCfv{l=~%AXTkJ|_~Sx5pEf8Ah*~MK4NwG4hloOY^f%!@Quq9|nnt(X09+36ebVS+fo z`pTxV6rJ*}V4O*E4EPif9U#AjATOQvK_WAq?K;3ZDb3+wl23AvtzoBVrMRd4Z@Qwa zlVu~}NFuZZDBE~^Bp@|5XAmRysB|PNGKGh=k}9z@#(@q67==>2@t{;TQe;vrxv#Gq z#(Ik!$um>$S6k~d!saq@{Cbmzgx1fu2!uBi7##)pA4#l6H{QeSph(mq?WLZB}WH) zMpOdAX09kZx`(nAxvDsF$Zfi)G`hoo5faou-hx5i0*ht$c306g4KTz=5F>qP3K-^K zxpy1r!3gr|uOw-xa-P$=-yEj{wI@l8VI~^8JN@N80#rmWQkiAR4i0}wYEW&RruJ~2 zGOCu!Dr8TFLaFNO<-deaK1s~J&)&WaJm6>j=A^f2wdX&-{Rl$<`TV7P{;7QaBG`*& zhkE28Wq;(*J5T{q-2#t2;;=pj;9fT!02}UZrtH;0~WWC63>o4mEb9IvfQq`2$ z`>$X0h7>L$14zfH(XPd)+;LTydxG#M1>~kG@djF;Wt|K5)?wazuj3R&^5O-i{J9I0 zH*LIuxtM|+)InvPk5!(ND#kCJ)E^UQbs!0f9)v87$%0iik?=NxC6S!O>>T}JJA{$% zsgp2*$!g`}zUn00Lfk$&XmyZ8`pJ}b0OyC3QV4BZR#nnhLP|~8iS@4YsdlpRPid2&-@a&grvNgiSernjJ`6DdMICZI#^sp3j6 z&E2|XCGi^1+Zd_fXKH-utjDuvF%kMhbqRrXsc8py!|{f0C4Xeqd6uV6C7E;J|=1LJrYrm7vF05bn1RwubkU1X1UN+E+@ z+4|6>fYi{!^$~Xr!&OQooBJrXjDk_n_Jnu~YVau+muWgI5iq%sr`I400zGA0wtpM` zXZ!p=>gT^9h36yxoxgDA@x}SoAM<;E{O!;AyMFWjr}L=!%jEj}-|>U~GQ538PS77d za)$nY-+zHk#=iGo-oKyEjzm3`MR$3D)yHgG4mc|#y*i#T&l;fQ3`ExsF{nGF!AHAk z`-m{I!tSABgA_vXu(7o%b$IO9voHe2UR4_fgO&btl}G)Bwmxll($bcjGXV@SuqE1O zP9;)y4kyh#4D^2XLW{MlI<^xJ;HiyMGgP@Dk*zi&oL7h&~;*) zLAI-uK`qa4OCfauxL#EbBt5?e6?gG{$+BXAI3vaV;Bv%bV3ESvR?PQP!BRN}Y2r|tpIfOII;v{{v?`xiTu z-C0Eo4z0Fl-Q5ZW!owUNwv(mP+WZ{qZK8e95gK}aHbp4Z-!z{#R;t#MVtL4!Mjy8BFUQ$`fBQk;L4NfoZ-1rxQ26!>04shfaoZ+RpT7U${dYRD zdiyKRzK?&RpY-dmhoN3xlrkevvt)uL(7fiKhP;Jk{MS+EFjE$N=j51nb&P2%pp+83v<_MqsE- zxG44>q8EiIGC)W8;Yjl95*=Dxl*s5{TED7dhhdy27!}!f4HGm{XuZ^`j3ptJl4d<( zb6F%f-jE_WRbCC3gByBD8gI11*=kxpp%TdSOk)OLS@Sfz!0v>~1wYM}w*+W4Xrk=^ z^x7qT7GvqAG#z1J;r2@M9@nzNkew#e1JwEH1v5-k)f}W4eU)8BlJ1<14k~w- z`4;e*9ejQ#@ltg(A#jR0m48=sBd7Zgf~76 z0}S@MP1PrWE)y9h3mBn+oW3r5i5k2~!FHEB6ys1aC3o!5Y3jaouhSS#@3uw5fvw6G zI5mK@<&DwdDUwpsCLM8-Smo_b7d4SE`O3Wum6s4Y^xpAoVk*!V>GT})V5J9T_Q2>=mJ0QNE6j`4m%pr%G@55NHDkjr(w91Ak8cpk6mhm zlmoB=Y{8+T{cp8YO`0PeU!6m%%JwV*0-FImvefh=fizqlg?9A_f zZ+porto4X=g0W`p%j+rSO&VE{%W_73Jf<=hNlUHf29TB&ly^KFK2phKps#%maYk0( zpd5q3%0{`wJv}K443ziJecLH6-D|z=_(BQg;B% zs9FK2lIl%14dh@4Hwz`F8o)qJ(M8Lup zYBF%tFoZ-JZTG*L-$E@L-_&3FtTT4k-HKZXMy&NxOxpS&L71e|o2*#L$&F~&L0=lT zRqv|g)^^#!!rZA(48acPV7F?)yHF_r%Zm@&6#@Vgv*Z^(0oS-w7XY!3;1}f7ZWRDf z%5kZOGF)xPt~*K3`wRHiryK`){?nXoE7Z9Y@zoVTb(qw+(tvulP@ofIuPkFw;peo3v6m3tEWpN9?HgQ*WhvBcuOrb)?!j$6f{6L3mAvK|TGDw8kSVaJl5+I$_DiJS--qs=eEQ}e zH5q^V_w+HGPfl)FUlFzcsbuP43qtEfKNb{}2N$~OJU%?35G(h}5U6Ti;eq`T`yH?< z%-mcP9xj;3tyPqV;bR}KN;}Vq_T8!hDEw&+B}v>!C~K!iMl|n(IFyTnwraTI-IG3Z z5^cmp{Rde#_$krd=n?zmjk!`L+M4w%N1T$ZuZYq#EmFWmQ0grMHuQ}^;BM1(NH42X za_dc-DnQwjdR1$!eG{~QQuLGXDHr=}gN1=%oAI?h3ePqB&CM~1!>^|~D2CJ4bU%=3 zw6K&jh{QC(rE2aGNd+dh)MR72be z=2|Oxu>GzYeKlI{h^AqT+J4u9rWSC=6WHb9Gq&8fV{Kl!>+r zRbKCf96)SD$w^`A5zC!SHwaxZu^i>WR|P^Fgd%(BjgFn*Lq_+HZJ-kG*FO&LKSTul z6Li`26VS512yb7)4-l$Zxd{t3_27yrsE{r4aTFl8KY^vAYm&C=jb6lTs*L;K4kPNL zrCfZbw3ye)Lr55`+(8?4Z1S%pk|CGIC%K9YMq5V0egNE#T&1vCx+%$;W}8eN?+2K$ zXfWA7yXA?>3Xe&-s20#V>`xT=>yp$V^Mh4`SyramI=KO`#s-yXWYGw7+QqU63Er(s zHUk`ssh<4m=GxA~22<+iX;6X0Bp6EA~TW{HP(LGc?)AhPuTYhE^4%CMm@K_^b4&*h`HAe zHH&fyD^;vo2^1@Pm7e-h+J7vnb&-%1A66HmR1Tk*&pMP&37Bg z4jUD-g7Zdt37r7DT@7w5WtNePLgN(pxfCgP_-~IDG_Rl}p)SZ^0F^is9nTpggS zaW6*olHblf->uaanYWf91CsO92_yft1gV7mTx3t}ltq{u$KcC@7PAhpYG#gL$Kh9k zX+F!%+T!2|DdfE?ikQK?PMyZUr^YRS7Q3+ulVL@AU!Qzpv%OC^uR9qLeMOz;ugtaL z^f`amml(mNSHGWM{fVTW`Z>J)HNE;7jHK;5{^k7#U;p#l@A9zj6%}Npxaup$5|mA? zS9#a#QIkM*)lxxQ0!wuCE+#4zt{6$O1~Xm)?+NDS5m*DXM|H#VN}@-tzv&rPL!oaF zld^duDH9||^%d|uGYNsj>ngtc##hP#^6tRL^ z5o!XR*$th$8Oin?a&R7l3jq%6J~pzxq%NdrMvPZDet--}v3limTCtCveVHt;LH_%& zC<|_VoqHOp3RX@S*f8X-?LKSkQsn{HY#%RI?)iK&sKy0ED|$AMVCc(D!Pwb->4sI) z3s?nO;4L~u4ygM4!M^UYd3CRXwNXIk)O6AuzjZ(hEKA3E6slm$x;n6d&C#<1IurgH*vn}Rq`zWNcp60@*86TpCg@Q7t>M9l~gi3oDb~Qr8gvAR(V3j|J=i!L^(=pV*~#WI17^K{r)R z0D**6fGh#Npk)>vhgslW5|;*u0{W%Rta+`TX{S z@b>F7ssOeJJ)mfE*~%&pZ(Al2CxH%F+E;31!}3;x)+m37tBWZFZir1+x?G!N-In2O zwL&1dxxuJ@b&2g{%PNTyWC@`&?o!4Qpy<#A)6>+$YgpJSf>6Y9YZrK zbXma*YjEJSe`@=Xa!SGi%APXwgUWT;NnfaK0^RH%@e1?WQ$U36Q)1F2LgCC@VB4Y9deZ9Z898>iG)cs1?S0QDHw#^wCiY!+Tr(!dH=n4 z316ra4i+Bo0LmIeAgucZE(im(F)3!hwjT!I6Xbs0yi4*mMOz2a zOMH~H68$_Bb~fQrEU)~}Bm?E(%F&WsN~@sJ;fR*EUNwrrf{)?$3bY62JyNIo{gU+r z^+A@hHPq&7DXB3uf?wOnA{#g_i+tS!Jb_2{qvouv>TY+PQCWoC9Ci<^StvcR08{E= zT_{yo+&a>xdZcy$BHLG!x2r1Gr%7CC_ZB?=a4o4cYOiVbLR$`~9dS~m7Gm(BRekV! z?wGp6soMIQ;5wwEcE{s-b{oQ)zo77l)X0cVftQzzE)yZEWX;HuBCcQm6#im=PRH;X zd;ihpd8m4RhK%ZvUbX|)K~LOk8`MkImb(8ER_j{QBCn!173*<`Zh2Sug^$T!b*^r7 zOvw?{=8+R_wICQdp@Nd(-IWY`OlMZfx+fH-VEs#$M>ygFi}#gv$x^$kFc?oO<01qH zL)?3dNL>RHJIOH{=P*6adV&vtCfS)&&O6bd?v62(k$MI4`*+t3>uXHHKZ5s-b%P$q zNXuD?73*P1mb~e5)45e&m871bU$+j2e!g~|&<=G!(ZptOiA9xHM%|e$Yx^$OUpm`C zT=z(hoYx)X;zloT9v91r(>~UOUB0SeIJSzJ@#Cp@*%jZ3T5VQ zLS4^$s6atMV4EQi@NIibz~WDP$lBS7#02GTJfoZ1h?~J=i}oc6O{mzeL@5D6J3(bq z3fSF;3MgdV>=A%y#-1I;mR#|H=Z!jb)8}Vfk8rD{E?5YPCBURw>Zjb6Su&MK)aw?? z9ICbf9**As!=+oGoq@^{<0fim#Aj$u{og8{yd+B`m=>0#R_3T0t-aNu$|d+YGuwg) zW!aQt0=y4;0~old{|XL9)mmxmdmAYn9gzc;96^^c84uDB5+Es9on{R+dC;Tca#CoL zZCs@~)0t+7gNr++^J{eR#ZLJZ87wPFBhhx4ylgbzl+33>O19>DB`&+?B*4c9R}G8v z6tc7j#CMh~)YfkRH&`l)POK5~D`W`!3;&c@s9-X^4J7>Jbe3w{I4Jmzyp8v?X&Ryi*)uc?>|D#{dr<*{B!u` zd-}TEdSL1|b!x&5lpwDqbJHy}2kypkRVmaI-vLY|zABVgYBeF%v8QDZcM92V-2ku; z5_yX}s&)^meS%Rbp>@2-HVl_ui6oCzOTuX>p=*np-~i3+L7xWj_u;|R?l<3kple%Q zR!j$8PvUewJ8vmnyhbRP8JJ26WDF+Lwg5^`A6sH^=cx}PoU3%e4IV1T$mCI^8W7Fh zc4w5sT)W8+E-WA=IU+^E$X6={5-?uFOpK+_aB`;rHNsuTCs<#T5-|Zo!y5tiSV3&x zFkud~49;;y9@~r)=kUpLq%N}b+EC94j69H4svC-x?d4l%*I^Goe5%TD-D%o*WD&&l&Cuyr(v^TkW(X}wu*8x(qAJb z#$=^6#8B82z&2WsF4U{NV?dXbR*=H-b%)001@_d|V+g>@%v$9$=H}Nn3`Rs5&}X zl49^hEut2ZMQSv(sk{C`7Tz9VacKs0tVl-%#n1@-^gp=SW3IzQ@_~h^Yr`${Y;$!z(Gl%={SbhBJ{a1kp z=~YOWd>qVgz9fQkz5a5O)tl$d2f?t|Ch$9YAD>P`1AAoWap2FP@m56J(pQSuVF7 zS}yR(GYsPm_Cvw>LpPw`(h=4@k?|^<3FpFm1EEd2>}kX*m$4f_?rhjgM~b;of6V4D zc0=2kmszvR7m#Yg7dQ59pNksDLYb_5gZnHJC9}lEb*Ya4k0G*NU&3|i1fcKmduCi@yIGTxsS3V65n$+%@z5&jbgqU7*NCM8B1*S3EAn2T-bOo|iRYuhK^px=SwJNi)K@_VpaI$R%1230~^PA{D*PuPt#?^SAkI4LYlaksU(#QtJN;v<}PM zW*oIc<%l&EnbRLWA+FVyn?OysGwmKo8oFBDV9muEv<-9;As@$r9;Pj-lQLEemr91U z2wC10HbK|760V8)kB8Jy>yJeb*?o>1Q+4kO<0_^!p{3YQ7tq^60nnjQjpV<859zE1 z?2j`NMC;2Pw38cXGf1!{QocH27}QN;ALTIqT9wYroo#mukKKNIY|@7TdfPT{A2o2O4)&g zw{7u{ZiQ|EU33%lFzcp0P_*oJ@AeH%sU$vaFNE?!-a1ng^{z}|5@W?toQLsMrDsv``j7-$wdIYiN@du;ud(g<6sOtoJ5#e~OW~GHcZ_r3u0bc3 zxPq#bbuJKoH-=j@04oWw!=R*2@-va$UXRl`Na(VpU6*l|?F}i5okT~-&1wHhaZ<`g zG^6K8z80S6@-j}~Z5cC05~FmO8Ma$i{iZxG_{&A`&)ZHY0q zqrM+(AHWPvt`DWuQKg}Ul%8UuL#H@Y%y z0|v}g%AV$ez)f%xO}z%9L9V5gcX@sYn}w8kTqX3KhY7&6bSChCHgLy~XDo>dcdZWR z?x9qwFa{nt_No*jMD=&r`>w2jN)4MH4iyx%<={A}9kEYAre^FE!i+$==T=~=UV*#Y zvLu?boeaQl^$tW(?}b4r7UOhjHhg=IS@(KEbK3qB+Mdd8ThIOfYgBh58)FNR(b!! z`)|$!_}_-NFD%9qko8n8Tstg);<{S6RK=%-!LabY+=`O7V;Ho}b;C9yl|3TgP_Q!! zkPEEG?PMUqaMO*tp(GUUhIOpBaN951?ysqgv;sLU33m#6l54rkL=7i1LKIa#DIF@m zBiFViBys6yoxGYH&{F40aE-Fk$td4JiaV)7O_O#}79F3sp}}%erkK?$FMC$aSP?Gl zi>z>3r@2*wXA&F%=$wXR&8cC^UPe!m1E8bz zVn>Ltubk2>_t0Dvq7|fQ8Gvw6TLXtI1F5!7*IRsf&K}p+^ATA z=>trqGR!9EGKS8>;2<4AT-c;Po9Mfcq+nF|MFEl2LdG%;i{e5trqC|lK0*7nkgCUa ze(cMq#Q8e40K?M@{#x(KI3*YQD)s4|N!=FQFc@w6?6Xl1=y=`p{jYn-Z!8-DF%qtL z;lN;79dA{|aJxa0am%y|sB)iU0=+}na`!zTu-+CeS<^G&pJGDJ0ue~H*Sc1vW zhUMhK^6VTo@rbI7^I-bBKf((Uc;H%)Dh&V(#`YFY_Ai^xm~IJCwB zy}T@L$fFIx)QRU;R|8wM`)9}DhBU&hHN%U`(M3s%tQKt#Lgy4J>t)zdSD>?oW+@qZ zK3t&j6#&w=e-cJpck=;?MmkJo>xoY~FB7cijD%~!OKo#X9H>OR9Nd+AWmiudy8+fn z7NY8LLKA+PIklEYWtVkGue*5z`wWak3$K%kCL4lJ%7k%wB$7>D0Qc}TRTQbCCmofL8aW2y`{92EQk*T zdny!gBt$SlteMvj5jH3o7NhfFPHXq6dsrHEA1(MnbHqWqHz=1t2M-R0E681ZlDYxN z#EiL7NKLJdS>U(pYcTu-C4=8oE?pv)ZO|tX2q%tTuU5dIZU!QEcEBVFiB#~rF7w0=yx>Fb5faS$Lp3FrCy%mZEZW13JO`wMA?8K z!JG@h7eC2@s(c|emNw5I@7tb5jNv2?45=+!i7pi3D|Ab6g>ajI{MKsfq-aFc;(rbA zf4&@(4r0UIBL5+&oXt8wvAsNtGMH5ngv-dXk-WZ^`w;oaJz^H(+@8Vq8~K}OM;aE| zyR$&MfI0;UnZC~30(zd0&Oy)Jddi~!fYUxxCcteO5QG+b2aV?CuE!um>;q$XiA>6l zW&4|E_9_>6Dq_65ftGSoc9p;BBf$hY&jeSgr4@aHc>4%)Xs_6YhM&e~n? zC@&16gS~`lt*qOp#cfF;D%ttbPv{7oR%9V0CCd8gJZf{IBBwzLr37H5Ep0rLfBl40X!NUvfjqS_ z_Ev7d*Z=1?|EQDZ>KqjYRn{E+cM-43Pt{O*uC5oX!=~NKg#8TKBMjoch zF+Murb5F+4i1@R1pqVx$%-zRXxv@xcwp_dd|W}Qj|e0(cItrYf=nPXE(%Y$A%-r1fwqYw$)Yp zjMO3$d;}5+&BY_DBL>) zc=^+|dX=MYJll7`qH1&*ydLjeoyaV8hR-Mlj|wX@#9D;m9YWV3U`)0r|=(GA~xv7?z))XIsmsF?ch@&cw2{tDEy zHm}fAhU1mCZ3=~&j#D6KC{P=lBz1hr`V%Jm$45e$Dm;fLNkOUK7ah4wikegc|n)wg686OHMHJ=|z^fuDt_hnx&};@L%% z8w#PpJH#c@WYtoO8HNCLMJvUXkqIr?Y@R85^pb7(6t`#Z0&2+advsG^XB!_@ncmbv zow=Ep0o`c~-NEt}@=UT%wFfj!yYRHGNxP{pm?3DUL_$H9N||-nJp65t zU~`y)p`NmP(-}C0a={wKT#$z%(bL$;&~~+e*8%x-xuOW(dt)zS#;kNW!_lZ676T#l zV$+dIedKvVjSU`XBg2JPS~O^`Mtc)kxhYQi21T>83=%}~SY_9&sxBtTiVyOBD0`{c zLw$;>ENoU)aN0wUpNMlw3JN4UmXY~@pq!3C5+Jm>>|rtQY>Q{5)J_=;rTqGEc-K=Z zWplCEuee&&DVsJ-Xja+@g{I+B(%r!4-LNWGvSNV#(UcI0~ddx*e>*j+5f%O z*Q+cR+1nY*?uw9-oG%CTPJ8Dt6}WT~EkIzlPN60RaDG2PG+L=RP60aUai)f zMpN0s+#062ldtRx)n^!SUeI@@I8%ihISdoE)PY8`L9*`myHAP zVsOU~cyfB;q3C->;ci_jXZ&ASTrWq6%ba5ly4(HYx^ljk~Ui0~4O zvZJJB7F7?(jzil~3)`VKL$@s2m^cAy28dI;ZU&yR%`KY&Z6`LqPdcvAOP_Yj*tDqS zt_8}w3T(5~lX9qa?0OI2GgG;22|$Oo#0H6$?X*pt}du>@`CPIuRFVh5x{LRR0+;IM-p`co0lhl1nl8e zMf^tA@GUU|!Z6Xkt@k9qY~`wS5Mex#&SZ_32&`1!TagFbF*+)p4n8TJ0*%<@gy4P# zJ9k|eBE(CfLjfhWh6A2AT|KJRUd3DiJAPN#;}g{!g!9c+l}Xddd`?JV2gtD}77;u1 zF?1G3*|GUn=O*g~)fs*_Eat@sCZa1a}P)FBnH_-Z{2q4e<;=%3UMod zU6QEBD}}Jp>#SWfyKLoY?#kBFCA4q`d{&zpN~OYZt7h`GtZ+3hb$o5%`OzWW9OI!< z25Q_B5AcO4no{SE$SjFV=bf$ks<}}GO0irao74j9F?8cG(UJ+kH+Ax+xxoy!(;<7U z-6~x8lv7)#bPI0A^Msqyvea5O8r--db(!Ruv@ktAJqHHj zIZ>MFIaUTEUWAVwipS6aSqawI?|gPF85dUg=3L;eJH+4sxVV~vv4nryG?W*NL?xZ8 zuPZp*IZUI=^76v+Q4@Tt(4ag)&48znQ{@U6Yg`?7A?%}d-hesrLTWtR5X(_k_mvtQ zFGT9&^!%0I;D;#7ecb??`Y=eR8W#x#JVJ~So4sDy4fPAA} zV>Y6Z^c4nWa)p02vgMVrWcC1j>%BuCJ$i=`lBUok;ft<;t+*GL7lWU1e*2r+zB33G zkW)7{X-6Z#4a44S(0AB@-Qiu;JKlcThir4hQCjW}L160wA#N680HR%)$*8oF>p6kv zuJfKH`jS}U#1sxnK}XcUnzZ6sa)Dx`&njd(FDmZmmW5XXi%n2Nnwkxh;Mtv=QTAH0 zwtXLtI6|F&wM}=}_EFE3WpbGFIwD5?UT>2&S#{3$lu{Zw0vmH$!MH{W6qD6j)6PvV z@sbv(agV6R?ZJww_tB_mN#|_Sc#Ktm+df>k5MU;&upyR!un$lBaG<2KX4ZUgw{Gg; zLhb1%3_IA?hQ*YGQKfU`caHgp-Q@}G?+OenEIJdQM_Z{p+yYxQ6twdum0CS!Tfo)* zU=vjEtw#ada&+qb9*&?cob5-=Rz+@Htsa;|p?T=xr<5gPi~ww+;M?2Xs@gtIkzd@Q z1dETRBFnKVi#aZBr|z$I!_F)P3T*;*v_Xp-P+f*SSlx_M{yIv`jvKF}cN^l;Emm@G zUY%wbt0y(q(FZ>W|KWr7^f#mieEoLfo9n;}`k83a z0a9?69a4+MR#EYdEtp3Zfwh1krR*(9@dhU_DR4mARCxoJ9Uhd<=N#?2ssQ-NvayF-21J4}bY}}%VujBFZjh;84z){w z^?}t7u-afaseJ7qwv?9PN zU=9TKcmW^NZT^Pqs6zBEoz$YsOp`uYmyHR%G!yz0#|$8Ic}X9UtR5^D^uH;?X%b8F z4+NI#7R4(Z?b7O8tGG&)R3hc~n44u!RIxih26C;)M=>zp+#^XT4&k{;fXsJ*Q1-ho#IqrN24_^OW;VH3~ zEvY-;x`X4_!TIIXzR+3uwN1nv7R|Q8jMU@v0^z;W6eYRJ%`rcGRFQk$5`~sJ_&}@-J$$v@XZ~K8hFDpz29Rg z35aRhDV7(`3=fryywP9mF@^_CnIse5mE)>=um$WPdk$I52G*7_Rk6QRi`XbQgQ?+_ zJgXTPgFUO?lcFFO#zaI+uh+x3*Up)Gz)3<5)v7-4Pe88~x|u!e%1Mg66KVks_>;@L zymSkt;T#vm;j=w7Qh8@aNH+2AqJWN* z>C)mOt*KoDMaL!(@e$A^xenv%?i#^csS*UFQXRX!pIU_pR7`>fFr7fFa^8*PW9hjh zi)BdL4SD`=x{jzYcB>G?cALueNu^l_XEG>oV``P4uR5#tyzA9TFgIuWyWwrStx%xk zA%846w{8jK_qUv%>WEA(yE(gJwStkHqdLalY!pHQpES59jaTv~7||>2XmGVgS^z8f zW|Z_@>YkaUqMFaua9ctHL=w9Lo+rV$Xl1*fU2sa3k&Bpad49>D3YaP+sUvgzJY$wp3XDNo}ploDxfrrcqI?E@`tD=kCkyQVwNu4=mL%?4L z_?F^ECl{7W)s ze|9|kwdo|gSkvi=<5ge1eHDIqe)y~J0YD&M`t~WCjQ=dz^6RfHuA;Ebp9rG8Q7dPq zaE%QDa^9*hy zFgpu&K|^V@D$_xPg(hJfQdS(3D=|Vg!HzlUtmO*u7LrKH0&TrpwnHZnGM{$ypc&R| zLrok-OVb@ybK^LBgr-EMP}uGRjD@3NH5?eDAxw9RSinWN*l-KeGua?$=oz0{I37?E z3>a1{GIHy~TB7Ym{bbBAI_tZ(FLbj3ci@_&cr6NrX_0>0Z0_c!JuA8EX4_C3C?{wJ zDCLj68gRy2qUqaoT9UZO4<$q743!_&^peJHWlAKi=Sp?9l`!liwEJTFP()vJq>O&t&KeE51?7 zDRQ;iN`xSS(!sj#OU^%{}!()I~8{!D7(63)O-viz*RmIZ;C zg>NXZwOEftZyuorz;3b54?-zlF_p{>j0v(JR@JuvHTYuQf8O3iKP3%`=PJ{ zCInwS^9>VNKK$Ibxr*K&pK^tt(r*xOGI-X8<;$%wP?I+L$Y*v3xrR)1|iY}fV$%kNZ) z!NDv%5h>Cjcc790G6HBRFc{xbzNzy=`19s)sdP+?k{`icz0eVT87=a*!|kM~f*CuT zs?e7{%g(#IvmsMD3P>%GLg2K6BpTRjJmy_Ny`(0l`BKrW5l>_7TZ_zOMw z0f_=%<(T==+wWd~W0ET82m0L?>_Wt*p$Lb1Qz<@ZBd~+=NKtX2GaqIP zYS>!J-EmYf>L74z_bZsGCI*en@M#0^_QBdpmeAyo$z_zynck9;{VjJG3x(2G*^-hw zfO}2sfl?Bx3nuxGCekN}G&YokvK?0d!>lU2=DN+{ZsBa7k$RTRK*wT9$UC+}0lCjz zTXs6TV3QZ1oze;o5_u1@cJex&BsJa9RF35SvR<1&Bcl|^#IcX8Ifqyb7)kCb{^;>? zX~BJ}$Rq$UV%g@prL75`g2!EDj|hm)bXgC)06}1YTOvVJkdD>Vm<3rrihX2slB{k( zwMO0OI#HPmt1Z|UUdj%ju2f-ubzp?L7V0Z3xaFQhL}?CNF!W*Bc5OqdFW_>x-g~Q7 zyH$>qrQ&}nJ;3BavfB1TjeJ!Dp=zF*+wqo#IF!=0(Vgso>!VoILD8&%eB6M-k&9}d z7xu$xCQG4{r2C4wkwwYvo|J)-A6`Rc`cQy=tp}MRg>Ai5yTPfdQKbx69f9Av?idJ3 zDuQ9|Roft}q1B*G-nQ9X?z}ox^p6TfP$?&!QYG0UOL7oiE$GIVeM!%|62}>COVvbV za8w+~338|YQ5Y<3p@Nerq9cHSkGAtt4Bl*Pz!utGMjl!ccvF-}3Oo7fe&o%C)Kr3| zbt7Le9Nj=l%#XK&>8RB{fDSqi-n%ew1#4^xSa%Bj!K{d2&={gk@cxTocYhfEw;Uj~ z7=HcNa6;OA^u6(ta;i+P?*pM@Gn#+@2}F;rjQ+{n$8JLO(RY6vUVp|w{6%=PHtFBL z{`&pjhu42$@_KlG$OS`Db#ITX8^KE!{R*LWsl~%SUhe9VX>md#r28yxayz8jh40Z_ zvdaqQoE7E@J!Qz~xHnYjlt?iB?Q^DVA!EbHH85feD0cYZGp@ z8i(WudCsD2`dy48V;st(e!!rSg!|sZ;kO4#Fqm47D z3EqKFPsav1p4oEcqnE_Q4#=Vd zQ>a?x$!9Pcit;f~_IdAEJu+fDy5r z1l^$mv!;4JDKkkfhD~qR>DDqS)j&r|`MW5y9d0eP@=PLr>XGLU8_|k#(l(@yg{+U3 z)|24jQPMQV>wxj^s^A<*EaE_=7U#_aoP0=cIVMw=XkQ54>(r5Z;}qYdStv{~snA38 z(73dTyW9jT7eJfVcHKyYm?ZPHvb|H|YI0PY2W-*uapI^DK%i=T{y={!b`n5d$`{MD zba0O;1(rFBym6DIa6svy31q=@1YC)>YbVTBU*`T=?N*fs?NKs`TT3W6u)^EA@u9>? zd(l`m4sn;d2Pn>s*<(Fod{^6qS#mjJ?r&&a8JPX{y;B8GUwP^Vx_+&d-qQ`7xM-=l}<$_XxkPb!eJ1wL4_==J0f*@bSBDPobsS zCVZ=RV!Gues^xgic4jpuf(HFAbEzBp(zH{$L-jdDo#{DPMYD5<^GQ+(K=`Txi~;Fi z4tcmxRv=5jZci3rlI;OB>fK9dl|i^hg{pw}VqJ}?1_m+*o39MDg}6;UlvD;5y^z(d zv-4cr%V@L%?I^fi2Z~ReFij^7s+20lg`27sTAr-i6|A8D%MnrTfzd?3)C`Ix^_s`R zXk9K+Pc5Zty2)Kyw_cJ1>IkWWOMJ4lK`L=c(=PA7c>6Yh9sByFrF8Ja_> zA8M}mRzaDhhTIr zs^*l(FNAVSmiK{tsKOSZtl)LyvV~pqKx&h#F}ZSpFm7&P7q~BK28phTFJk!<_TE6r zz%*#tdzhr{d~!e!k>OVdn05%eUff>|TXG9@Z0ikfa`ei;F1%SsX&%SxLB*JxB)f*h z=Y?i)XjFL=F$k1T;SH@GUHcQ&h1pUEZGyJC zs6&^8Jya0}YZs z?&?jDC?^H*OzREC#;$b(p|n}P*}Cc!@BBt};Y@TCm)meavgM5K5PVg#Fexj2fMEvi zMJtivgd|Bat&fHZEAdK*Gwgm6I*mpqDreUzRyA!%gMm1Sovgf30ikp`+p;KK8W~8c zPPV-B#S?TjB`yKxSi6o2P&!iP6=Oy2 z|7IY_B3my*A*mbX_sV*g-OjD7u_e{Xd1bul1Sd=V#_pk6z0EQ9|hRIN55?StX!+iv>swnypq`!LWp! z9jRn;CbBugQN_rEv>ed66_u$06@b*EAp9nYQU}cSW~f@oZ`sDXXp8~w-vU;tf->Xa zHLa{gR|^F?qBQxvQRQZ>L{j_k)h4Fz;=YI0O4V7vF@xg@Dhe~vNtJ=}q0UsiRXU{# z(x;JSFH9~uLaAsN6CSubziFa&7Eo_^GgeEg-=}2X}`{+``h&K3De0#q$#lw?=!QW-9ky8TWfDg zfG7%|#lXj{X-mu2I}C!D0A@=9qkCx9ca!iAb}fk=fP6_#^3=ks&ybX|0ITiUH8$F1 zj)y{9Ho`;X;W?~GhiryfqLcnf+3`3!Bq|!$F7cOh>^%fQGxI- zFF=VI&|f+G{YqBL;=WeBfy!s@b%Lm_EeMqHqo$JABQ4x8?6J;d)~d|M<1?=K$?*)v zdN&;<-nCrUUHc_WU_qWe(C@8^ z!;L%j1Ue5!5t*+1J-K@M@BgL!7yj}u^)dWIK9p_w8qxRv<8tIeP`_g1G50Dz;a4^< zEl&T_+h_QH-~k-jbIFmua zCEGde&yhSnLhd%?rz9xY2UI&D-0lv+pVXb)CE;`mx&;3?vSs%~(b^NGyh*r5+HdTw z$G3o*#24KlgP@IvThcjxs#FHHYD;<~ElKMl=w7MVCz(C9g5a(fc>DJ1mOij41Qy^b zMGCmK8+EbdRrNKw58b7VQnv zFhHU)AGO1i+%LvhljPR5@Q1@oy~U`!rKc&tnltB?K;NG-n63q<_BrdDScJzl zQhgCc5b`;fM!8V|QyB zZwT#ordLuAN1YAZ!@xOPtz;}&P0xT~R>6I5>V(T~$C6}7Y9=;6iFD zQt@XynhSMYV~(!oBE);r^fbaaxZ27yLaNexm>4OHzIKoM5D>wfRTjM)rO3VaIAXTb z#lNM8=1<=~M;879X-3;O9y_*Ihq6k9RWmabg@}3jZ{-6vlJC#zP#Oz& zFOg5yBc-p5l!oFdb~#}U?kEIg>WlL-=NmZlF5MdET6=qJ=1PIv5_dH~aN;P)Fg7bB zYllR-B*W2>`qRY5E+ldI**eIZm1AFE4}dRjepZSkAQHbOlPh9sH1Lx`)2!U8a~JB? zb~h<0(0Zr2^8%2nK?Jj91!cwp#$47Tkr#u>94n_lozVuK)f4a6K;%bKZj)=} z7!Sx-z3Rl|%PD5!owZKn!cKf9>|FxH0F(40kqVB916w1V3*!QlrL8Fhe@UQy3WWh4 zcUh!1s$q60BM$iV<9Oug%|^8%WI~7NZ>7MVWd+LMmUcq=fRvu2VzYoly_8u-lVGf7 zbb|u;8H8OWve)fWUW?#VD80kABiVL7iz%eMpjUz1q8^_S$X&xF&)6XOVZj^y>DhyR z+yfCAMI83=aAaQ9jC+>goDEtB=a$1STdj5+c7fYhPAN0!kBE`CZ2Ob9pTkk~)3@K4 zNgrAvKKlRY?f0+WhBJ8Jqt`DEO#KU3ji#W8_T9c6{*U_xj!l!jk%tO=r<$WkWZHGu zXnJ27S?msY%s?w-{M5*}4tifZbzZRn(0W%-!$UL?gF#xZz^cs>$z^vmv?P3Lh{Eg| zH3BCentH=4R}y7yIV>v5?B9mJv#d)O6dD^$aV-y(><`%VE7ACHkS8nv1`^D2Z6M~t z)bb}gZk!XYTT9(qklnqVlHn-pJl?#&LiJ=d-)kvtgc@%6e@bXaPXFk)C#62)w%ny(lcJ){L&|KPubiYoVS)ixGUrCy z(3E;m;61}C;8jF5041zLjIKMB6OVa+5erD3(6C?+oLZqc>cT1fvgwS78y>r>*8<(_ z;MYQlkZU^mNEhQF=4h>se+eIQn?8E`xA6A$2SNAko3~HHpXER+G1uC=FR(sGfL%{s zI1j1v+BNa+c|e5`a)ys4v_*!z_VFP7KVZXCZ%kV5hosq-b-i0E?`-N=Pbjj)&Ox^> zX4=RGQBfRSj;Aq!git{cu04|H$pr)CWGVbAmkWzr>luw~urKi{g~u+it@obAZCCSj zN)$=qznUo)_(1LwuRPVyVw1xrh*KHhvUh~bfI(kYnM+=w2$ zv6%s9wI4+sbzvgxTHCW4o>FXE(x(C1Bp@ESV+IiU5Mt<)Vhx||NdWcgBWA)m>$bF% zLV*;awTuDkn|DM?`Td9t@My#?IEa+|4Kh}-aFou)zp@^>ZfoJUrSVgMa}$z-bk1gKW11ENP^?cQaV#T3^ZUV zCYO$n*Dm&eWO*KNO%*hIa=CQXE(0Z3FoB~Pfn+uNc&SD;5wuhpH_f4sdv8z7zAC{j z!h6%08K$FOrB;S%yk?H;eoS&u*@V-exRiIkTSRX*O!eJe9w_#)_MUd?Twy?Vt`;zE z`;}2K-2++u*+(`Xdxt)5$Vv?PAh#jA5sub0`j-y)XRsW-tT^V&<*^-<%RlDdy0*O!m6U{v}{?DCT!U70drlIdLJ*V@(yRu zV6ku;w9H8pz`mhRH{)cf$dT_dtq9~1@% zAlu=Y?F*Jlq+~Fn_=a$O((vAl^a?W6VfqY#^SV8?5S&p*vD~#oMC@a@FPpd4Y@XUvGzzL7az-(P_ zSLslzqOfGol~9wPhDNQSw9d{Cv1k+^Z$Q@X{?-ybfUzU^8T~%_A}&qNY}>o z@*K8==@r(CO+Iql)aF|8q=E2owJ)gg%k2hKy+t7?HObk`-BESTqmMJ5K+Vuc8dq(Y z>blJ{Zd|t$gdp}w{Rx!^VNsit9OVt6_a=EA;vz$u+%;@_&(NQ9fD~MefebZPElm87 z)E44s%a(GkZzT>QC!5`H9MdCLje9;0HI;H*pdK3)2Vh9ZR%!~zLp)10f)7`E z#nCgF1^Y-TH}+E5H7~c+1WGqSpCoYZzizVAeh9!(ApPMahT*7P4UD08=2x=7*|2Oj z7miWUjwL?KsUCC)atCY6x<+;q9Xo}h6YZhvQfr~h3`q;A#iy57SQERRuJrrJCxmAMs5y=2@13UKn+4&91IL2 z)f@z1E=8|`eQR>^xt}eyJE7cwWWDIcuyza#4W-|9|5cKV?|%GtGDZ4zpp@=U-hT4- z(~!Shl-=`lGe&y<53hd+^3NaT|A21#kNjOQA*0>3g!g!p8`-RiAMz11Bm$%ymX@Fs(7@le%dkqDTF`V;#RP)q5PY_)g;s$8;n(vb}-lQ^_Ga>yUUq+Z0%oH(7 z%E}#3D`X<2oOJI(p;S~`lb&)kpts3eMpsU%IIMyG?xG*~!;ACkFig1IjKR=>O3TNfesxMO62np=tHN$i#-)AcUMv=Fn12WuzlY+MClYjB_HDumXO6i z4kr(1H;ZB$ZVyf}f-W*_?s8Q384!di*njKohK0FA*#rcY>pUAKJ=#*LXLhrC%>pc~9zNYbyyddovP^q%`YjoEyd*%;iE zB<%M#=f{ka+P$bPOX_WU*P%CEcauu#CDWp4k-Qus3P9LMfTz6m86yQkkimJhR7Cs8 zt5%<_Lu_%4Y83T1sHNtZCD$EEM8WHSi|dXpRnE;*!t93Db?8albGs`CuIrV{p;0Yk zk2;?0*HFt1Pu5helXam``pOw_1~`1bB;2g&a+O>8a*cOc?20jVfuO5yKTChP$`+AB zPIrTr+MTp;471!Gxj`0PLEv~?ma|xC@?c%XPBYYAaxQBB93&4Ly4jT)- z&Frw#ejL4yq4f~=ov!9EjO!$5Z6D~KE$w;i1KvQC+OQg@6}oZ>1gwjqQSDDcJb(H2asK&V5an)~!v6xOBoYqPnCZY$zz1*j%YrJC zo-o;)8(-VJ^pI9}8ay^SM@EW^!_qsloF2Y*AO z!8W25EobuW79AiDu`yo;Egh}T1aO#bqR1T&LoMY9E8@v@sunbAdj{NFyoHU8h-Fk4 zN@EB~k}Q>cK1N2cxUMB6SBlofj$%>_v%4y6RaiH^0a=ljoCeEWa?Boq$5TF(jhIIV zPh<~SW)qTJ#%BlbOh`RJTi#lTcYtthyLguJNCy*W@ey(h|J>wC9ssl&4^rxalj1m( zCg3Q^o}Yx&lalN3kYsk?2BB*xAH_pJQ}WS-ki9{CV^s0l)i5Z1E)OuySU&I>h9SQ8w(EEjTQ9=_)aum)!-Dmey-n4Hv}FKOK&-!ojqF6C zdV`q*rx;;OqFYFJhNS@x`nivve-Y6S*syK?Kd2(86=f~;sL|-6$E`q5vEx2kjU{^UY>Y_ed83>Mx?>?8+>tyd z)PsDLD&>0~PTBP|A9lG4mY-)gQLd*XA>;99i}nzlE*h8+S;9~t;qh0&e9b}pIW0RN zWQC$UNtS|uyQAOC1v6(OL1zMDuVi>uPo@g-y0WipayTsiK?m=x%%3PE=n5v(tf@$`BMB!Jp*>My>TMlJ-E1YicCs;3u|~AKecX5u zw*%@AF9%+ngB3uAO!ae8iHv**2VDl}0M*&d@P$^u;g{N}FOIqMjy2_kMl_o&NN-AW znJ02U2i#6!G!##dZh(4elddl1$U#De%gqUm)2b_uQa)S5cJ#R4I7-n8+aoTJt#hW5 zY=5e7bIGF$@7{KRRVFpPupGGswoG&9T~34LsJC=i1U-u)n41AaaD%)%EgGLBh#FSp z$y7ZQG#}jfR<=Aqb=(aH>c?z$-rb$CL9Xc&Fx5IP+I)6_6+Y&|1OCJlANT|ei4BDJ zExS?7{G@bD3&ziuMqax>{06k+BgCdum8ogG8pROgbW_S~=CLp8T0hOFu54qa}q}J&DflczDmTF3v$`T4Msn4aX z23eJd3mRZrv@?ZGHWiEI+F#*!)gOo=iIr=lp2+ML^?+nWka^f(PU3g zs_<)36Cl@->?ia;4Cw=x(&Dl{a=~tc!NV~Ef?~05R=!9mv^qM|k-V`U*x>~3_3i#B>uosy~#(jLR{ zVW)*AcVL^M3tOM{L322j#0^7vwqrX=LmloxtHukLTbibDyBm#9-CJd|-wf{Z6dM?! zr^>jCs5#0io0j&_oFLZcenp&yEcVK!hwLF31=bmz#^A#>w?V-lAfo zy#&WS$mU@bPsz1g%!QvuZjtZ5c>63I;Kg5s!=LC=NjZOtyz}$R`~NGveVZYRlYN$b ztH(u=Lar9q*`|hRR3>XaSj#?ii?u`YZthWgf$E2`85I&OJKUl`Faj%x`_W?D#xcJf z6`rJSXPUi^y+JbfX%@UAm+NSbe%NXutUJUbAJyts6I0~xOV+6yYb2vkJoEY0^{RTy z62IxZv4Pk@zet!%@~9&fTg1>crbH-ZIVHNz-NN=@Xoexg66$(ct+T$ z5lPp32BR^4Ivt+kLx#1A8?V~!X;+857F{T8_ zB4P(cmpe80b}Zr@m4!2Lj7N5Zt&i<@w^>1(`8c-_6OlYOY~88mi1^kZx3lnxeePxF z+&zNic|qqw>KJcdwP-xG=rU&);~e}Te2i%kr9RPcYfqylD`7A)9a>j+Yg7R5(v)Et z)l0(#LFX3z4o3;KfICZFw^*yLk=Lt^wF!mQEFObnQ00w8x4Zxjv<6%B@gLm9ER7W>kABU8`y7B(uKOO2{&C!&8)bJB)`M^9{zN8#VNDH`*Tby0Uy4h7P3d5J#6*cLklS z(R#9pi0!QY@yTFk1PneqWr*T=^wJe0_!r9%+0a z^=wQ?e-?g_`l|KT}LwZsxJf?z=v_YP;B?n2QvFZXr@T2CDe!aF<~k0D&4f za(Th^Qo})TqEfMBS*h68jO>u>Q;#d-CKOci&;$y1(>h8(US)?-PCXJOYYV96KSy$l zd7M*0bjlqBf?>383ldyS5CH&<^5KlbqkkYDN_z<`7RWwqd~T11>O+2&DK2m87}~x^nS#G?wO~#9b!@0Rt>e5(EdV$Bm1Q^} zo{K8}=!3rs|LF+V-$;7=zn>p|{Qa-tKOEowGN6I`^S4i6B=W`E@7}&*V3+Uwk;fn7 zyYl5VD?9Ji>?5q_=kVMbzxg@1bvdSbvMg2b{;;#WqaS5?CN_bPtcbt2CAtOeay0KH z4fL7(mYFTq8pgbQv)>4x3<{w>nnDFv+BoM7*0dkrl$k z{>Qsbl7cy+C4sJmqTsR=6s1G~zFPO|>a~L1Bc33gKuHQ??F34cyPf_V04vz!+sVt8a|^=C*TMKIlOGcc8?K?YoEv>% zDe*zBupB$iih3r!qRO&$P}o0A4nY4wJX_2+3T^@FuTBL*y%Y0sI0fcnOE7gv^TF!b z^)0&fpf)V51q^5D2&`L2ysQG-;6CcMOksn<)XmPfL1bUQxV-;=!rNDumls)t2hi2c zzX^kJ-1ehU*1xq;L;uWhCFk>Ix8Bx6-^fB22)QbF0-lbS*s9w+4)S*FCO1E&);9d* z4hAIqE6cX;5Z#)i%Z5NdyTk#$Iu&LC$JFCdhnhYMm41NGk!MDTPub7NvKX(|Q0$eI zmBt~2v%3%1Gq_-f!bIt{r zbqKa;bHl=E)JeYLVxgbSlPuR@JT%BB{1KuJW;G|X@FS-~GE^Lt6LGERkTjO?4GF`e z5#{Ab%6X4_w3l!)N5v2ji@L&6?WR6;lBSJmec`RXS~mvhNA5GXg(6V5bk%-UzMr%1 z@?!V>5S~VG!$&mLYmV<>{+5qW_0?NPZ9nn7;nO%me*n6=wSYVD@%fs+TRid!0lCThdnqd6HKC!vnl0ETutCc4aQ}!XdmrKMxs`Sa ztMckmZvs(mA==9InBl>OPF^17xao>oT%vvC@dx9W>6jQ{7sz;%8QD5`Rk&Xe0#1Mx zSX#+DqfhLFO^GUTz@8XX9vU*mKB7oQoAD6bKof|rZ;-2>+%yp|g z;DsU^q8zOPZSSfTn&aG#(T~*LN5i96sjrnF{afZ7jgWDc4d?2DfZeD=n0(w$%O0$L zS5GoZ&u?H>+9CQ>H?=U&AyCz9IyN9wFJxe>tB7eq54AiXl&$WLbb-Tee;ut2+sGf4 z$oOp9%V4>hOpwD7fs2v=VqzFD|HNDfg&&ceO?=$27~Exe_WQmG_0^*0*+&qHS?lFG z$(1ADXyjSHqWMJ0#q_MGXC)U&>1^p$R;2*|O%1G?(bdk82!WG1ZtjVIF*C`scd&fL>nd1&K`R6?<{&1 z`&l3tLKusLtErvUKq2OS^>hKz9ss<^=|B!q-~BDWhVMUdyvh-&wCp%NaefsQi)b~Z zmTz=^(|_~xfA{(eV+x{LTpXIQANn{tLdEjOSVbS?V^v7gSEw6YkZjYGhX|5bmA_}z zV}mZ=#A8@#DJDshEYy-1rFtPbBO6o=Wc6P6i8$&$J4CnysAxRlua>ctO~d9wl7~yq z=XU2R;~=HLy6ecDkm-2}J!?m)+mRhe6h!}r{ls_M(UOvqa!8kV=x9t^hfNvvqQ%G# z93PX2z+Bhq0T3sr8Kz`GS03Ij!-)RfWq1lLv$2O{D0!JeC10wG9Dw$)?-rOg_56-i z3*okKD6}!n004h7n|Wq#HD`HBgQVAns{<(btO+i!T?0Y2g;NaK){SmZ3z?7xh%gkwx}dYkomi&AAp$gnR6Z>}*jK;?YVZt)dC5{XdNW*7@s-;xQ&Dlx@*L=Q%3c#1D{ zA&VN8WC58;q+}1sli532if}J17C>Cb>I+qyTqvJ5C-^bT=XLU83ePPi9|P;7cbjaf zt5<8dPH?JHZHim#$r`MC1~xM-@6(Myc}J^ciqkk@kU=J+>=QZT%*3E+rKm3gjZZKX z00IeKWBzQ*8NE1r#*J9wY`Pu}XDWit=>xF?R>Z^{~0YuroiG=5m`6 zSyNms`1f#rfVe}~Y8dLGrbxp@Y9bT6kxHDB6S7CgN$EYVIIb1EeN@@lZP2g{P|Q(0 zE1E`NRMTdF_M2D|F0?eRaTyMBkP!roq9xRG^>rZo?0%JqW zeXv0sc06+SfwQ9yV^L-st%I$q0=Wwn@*(ZukQ>cw)8OO_dD(WmsNzp`$T$p2VU7c6 zuwgfw9hj$0k=_Y#SSE0>Zcta)FT`}(8ZkfkLHP505Z?dT=CmfD`#F^%l**Wq-sj`+ z?|maHh<%j*4f%`yrWfq=MeGQ=Q3hC~{J3nMAc^8d{+j#IpV>5-bXTf%Bc=!qGD;e( zGX%!Egm7Eg$3$_bK+WsmNLyN^38)%KkNMUfahYxe|0=l2ug=@IPe$agmJ1#;gb$$UX5! ztRE^BQA4NDmJ*7!{$N_i7uniupH#!fO5zs&j|3{ zHq;zFcKadcw2n8RGh1UeWh&wXRZ9X=df9{?ZZWnrNI4KI_yEU&GeS^Wh&lm~XUQG0 zf<+$m1?~V}T2ol35J(}TORa#Ca`fh*_YDG)1+W8!oVg_p^}M8vJc7WSvIG`;_1Nga zpka~-6itXK70|U5t<7p-hVdJ3I`3G~N|V*#{j&XN)lX8-N_=X@lNi{r^*T(f!S%)< zFo%D2H(s=n|AP79Rq8{!kieB~k({i=Y)bo+7VU6L5N#%D#xA)hI?#(Mb_XynLUW$blN>3UU=qg;Lh!k)4lpdG6RY)NC+SP|GUW%6r<{vOo?@8NLtwqzXSswuglcTeDFDHji7@Pz2;%*D}kD2FXfCZ|i4 zaAXN!8p8|6GQb4oZ%gB(xVf?MjH$A*Ol6xxxj zXtb(U2p^#d*1_ia-2VcHTGFrAk56p8JrC}3gnEQ)`9WI(ypLrB>tn+0mi6~IUwcG2 z0u791%8Um-&SmuOsXnNdAU;nsm9r}aUy@0;QA`DLtpKvD&F1JtIa^mB$0!}70#a|5 ze0`$?m=;R`Hnqw+Sq#8u5m9LkHX+<0@kATQWk*}Bu-%=H@&j1#3}}EopzlL~vJ^M& zt)P-!!;AeYm|aUsJ&%M~KtK!E#epk}_Rr-8r}7~yB{T)+weh)STg$Du(a*M)x(5RW zon;@T^0I86tw9h&a#D9tlwT;Tf%61F5JpN~v~bQ_!qqfgQ@Af|JVWBAU0nzk)AzVQ zw;RiqX{>Bb{Uu`r%%TPze_5dueLn_pdzVPUxE005#$X7$Mx6|gzMAB3?DuEeu@nBRQLzg{Q_JlO zPy~DZnS8}iiAopc4!vs81u=B;0`eZjH(}M?0yvOVq|Ckz&7^^GvKTk-;}2;+#T0m{ zNWm=|0dkUJ2JDz+atXk%2{OhN_}+300Oczzs9g>@ZES!u>2y%JqMj5cmOjc%56Mvj zbTR6qR1U;~7CP=*vwjBP9)!k?t((_Kez@Lw)NE$=P4O3Fm~>v+%6({&6U3IoL8dS~ zZvF#N#V*10%&=^b#+Hb?_$Cvm2`1X_c|M2>!ta$d1 zQrQ0E+sFEv7g#RK72c6IB~>@GOhb*nES#ov!-YO)6%T-j7l@zbfC_lbuXKN~04r74 z%xUL6wkyS^V3sW*)R!V2kK3SbwmvVAeBzQ@de`;nN~i=31PWKxZnfuvo71Fc*u*t$ zC)I@QovUg#Q3|8*1RSvX-OE! zt3xhY!u`ZlQ%=gsgM0=mLpIsYTH|xNR}gTTnYO6-IV8DYA;*0Z1#!#3xrJ$?{DiFF zKE7DPRX$Ip*(M=96O6cr$grl+42KL9~?$snyaH|m@IA%9A$I~B_?7lqG?Z4 zaH+W4gY2NDgAqVw+>-e!f%d$Qqx0);O$2~&Fxe5{j+#KDPE07QvGxRMc4KLWcEt+56B!#R@d_az>V!I zSMB&&a~p{ES<7Ww1+rdZuFz1bw5>(v zsKb_vYLI*=@bjY|Ss1h_=g;}@lt8+b*1z{P{Lfy%uSbOa=IuA(hxs9#a6itzFF(uA z=-)P4i5ke^l8)QV$}yMcqh-#IY|vy8Aj7~!6q55*F-AnsvR}Ica?e;!KkOA8nn(rbVFhl z2HHmqWfPM6bqDsBRFmxGkdL#ESUy&&kA=*zEKbxzT4bJDAjq=v0Bn$!A+7~SAf426)&Sms&uE?g+RG+z3#3)6w*gr~-Bz~Q7~4W!6?{5El>SYp zrj?Z6Qm8Y@&Gofk!Y5RvpIzG7Wg*)^IrXw84(}9Qj=4pWp8$ctJ`mGF5AUy{#NijCdZ9$x)u#T*>$!veFlI=nY21->oi+V#H zWeqKpA#m@IZXOvr(q>+isQ`Wn+REcV#K;rtajoVdCcpv#LJlzaw7w(4I)(MYc5P|5 z(&qN^oqCR#y>I&^cMx)v8=(nrhj5dC0@}K1^c!h(f(+Y2ot#d!6kv*1A>)%rlIh1{ z*=FsgIu|0e)%WMQ8gGv0e*OB(@PFioE`kk#+n>MvmNbXYUw;YTsxRKYc>TTn`$zln zmo~U~;4?63l^wRdq01hU>RCDXQ0bLjbHn6v0JtH;p%Vu>q8G*UPF1L^mz{;l!l87D zobKK(o7@RhC6n*E?3k>p$#f1EG#{7NX1wYT2sP_;cWUo#H)cUGK08cK`-IH#(AOl+ zSQ0c`9jmaxUd&0z{3t_jK?NM}lU(h%B=xS$5H}X}3QT*Y0TqxXEhc~*1grQQ zDqn6IL%dFMhMAnra)p+o^y|S;ZnZRCd8hYdMC_x53e)2*rWx91=zyP4eJu#CM)73Opt%^QJ0ez!4P zVzSTqn8fY8pl(Q(IjO-Zf3aKo7H7<)!(uz_lX}uRzvT%EbdvZbpi#itwybXRK5LD2#mWNWEd zt&oPLao75+4D=NiWXk-NxWe9Ei7nO#v|#r-su1e6@3ur~m#h>C1q6Or?W!b+$aBe5 zaqPeqQklsPCV)T>W9(GzX3ct@H@kbJ6af2yb%AixvapX_z%8cHRwXjwr;&qbB+^+1 zY^m6mQTBLzZe5~bydI?Z_|Bl(5X&0_Sk5FlTMGHJN|;k+1xFw1m<0l;uDh_0a(&%BN&-)_Ep2q; zS`hv$m?Ec#Vu_B6fvPEqOwwmMH89VQ0m#)jixrSA*%QD5Yy*un*9b?$|F#w5%5Nv; z_{iTJPL){{5(N&a7~rH^ng;4T*|oyd0wPS-rG()O5?>60Z8kQ`l`g8WhnLEDKj^75 zWFk0~scXzg<##daW(fw=!sg>7r@GqQ`T&IN&648LD|@AlKj)ho%#X8n!pNjlk$5vv zxkF;|ImDM>(>6ujWD^6EzQtty(3n}9C}H#7f>2j2V47JZg|W@{@0~ zR7sFU8|a2Z%3?v|G~RutV>2p({3O{4&3q)7lI4zf_gfu6V#~8_iikn35pqTFnv$D$ zI8@2>Z?Ohn4oN;(xxC1~l_yCE0@+(#La%BLa`4@eBz{B9=b8?hG}v*XGnn#)r!c#+ z*if}7GJsN!r)NB!2Cx*mIBg&Rvl-z60SHg4`bZ8)kR>`nSHvDcTzcQ|8`ouP zpxm7-h`T32ekc`^rR4Q69v;#)w%wJp-a7Ulm{!-3F5!scyJb>W$&s)5$5SV1`KK7d zIgth9VdINJc(mW4{!2}PN}~1Spb?j|+MlZbMR7?=|SkFcZiSrw`{sN$S$c?e$ z---?PUleDQJOk{GmP7F6#0!bQ&&j2<1bCW2KgEZQlCr4`tMyHLS4sx_Xao*09xDH_ z0Cmr?uz#a1gul__{~Uh!!yg`7z&Ee|gI~ky6 zi@tdK-Rsxk{m|qt z)_GI;gt2P$I3FIOKVWY}=e0b|$Mk50e|zU7Vg&FU>-P%H{MgRO%JWl_yb`uKmTiKV zF#2Rn9v2mzPV*r(mJXRil7a#Mw#{V74Ukb4Bjs~8utb(LJ$M=cKV&l=EQ4xADk%T7 z$zYFm;uox4}+c8?az$K{wp6xtPP9Ar4+=0f#Mxq}2yu^ZQd0?}y z8K+tGtb*%;8z~AGt-LS7X}(U@OEir!Q*bAhUEI3)u zPS|NuRi`5|)^(u2#4tpPSz@3jSr`E263eiVa_p8Uvg@;Bm?p{G0bI=i7QI->b2F8% zMnr}JUM~raj`3-TTtS0|##>vV`;?^NkVasqAt!(hXB%aL70$JF2eC2@w{4dUf^L9| z67#`o={V`axbm*)l0PHqfMs;W1_x!SYybicY)%#_@ji!#HVJ@or*7_*4n1Ci@M91B z|1}FuggfrWz!DqO&n zwG}j9ny*M6&g0dz-EVn2c7wgI{~SAjb>tvD8T!tY&tWib}vRU+f`n`>P4i;K$u z)(Jxc7XyFc%P`5R$=r`%7f|1J2yD+{Mu!dXqD`7h9)8su`*(l-{-d{_Ny@Gax)WvA*?|!8wZk@q1J}b4mR=Kl=Rj_irD)|G8?~y#GQn$glGA>b7I{68|8%;Xg{I zDF?s3ya0A>#l)`ePBx4OWE{O!^-^s+PYVG^NW?(}ir#MXiPpaL6gPpCKf(PFIhv_K zyUyu$C?l^eM2OvVRz1h!B9RZa4P|?WVC*iX(gcE!VQLmkHb~b2sL%q|Rgy1GxRy_L6Us ziJW!SK~%moJ3^2@A!$3*HM0J@eW0IfR$!sey*&q0s7g!wF1W8aTB8xF;O5e40jYBt zDLp1&og&&#h+PtvZd%n_j0#JMh!ip?Q-V^LlsmG=oCs;UbqII0(@_sMkPaNDhTX?n z1!8+*VQTXOpB>0q0iD+IVc1<#yp~+$<{T8HbF$v9I<>abg)^f4Ye}V<7F{t%&cW&) zMv5yWOwIEVf}+*S`1WCNUr9MIc6TM19n$;I3xU7L;j*EAVA}J`$(=eu+KgSQwg}$Y zLQm+4mOd)pjKaL0w{SwW4_6SHy}?tCeOnelHTfqmn-NkEzLgU8BDYGzMw}`Ja8#=% zW7r0>J#Kz3PLRwXLO%AVOIBtk6{r8Iy9)dkJGW!#3*?cxjch&JQArARj7`Tf#BGJO zC7KXX#pEdpM#f@#4w8!WvUY0wRUGfXepqo^pZ44E{U?rB{qpVGvqIQsuU}E`fj&NO ze|q~Sy#6vDT(mU*7fi<7?hLw*KZ7LL@2r;JQO~qIjPjqwU}(+f9#{^)v z1;YnpKEgUB_&WSE%OR@8Y#Cmx^c*%7{E)A+Vzrvfusl?G-@$$ zlrvL1D4}kZPwXVWgS+EM?+FyFi}R-C2W^sb+YUC>ZQO_nx;24n-&KY>TcFJ2qU9D( zT*FOOB=T|Fqj&vsY0E4*X{by2FEshT`~>_KvE99>!z*Z9R4S^+F0*3mE?V=tjzu9` zY{iRs-A+uHYqueR0WH@e9vUfxWtK|fKUFkonW7^0NUwtz!tJ7%%C56KRpN={LU5^- zFo@|zIMf!TfQp^RK3ShY_?^sZ;H$x=LzR3WEIA)^3YXaI5(-sYEeS%`Z z$pO2AsCOBUH;0kaV;@j7w}CNGw-q^Ste4d$m5R>Lo0Z^0HB1D=O1&>Y6^Z~fk$)wz z4+D9&Vifd*eHFGfa4V$aasdar6L2>Bo*95?R)Pu$jIm$h65Cd&g5Zm;(RSS& ze1y?akD5H6wg)It9>J8gkRuq_C-#=_(Cv3aTXf6wA+$9sXQ<=!nrRt`o;iN08u*k( zTHPy;o+>$`lg%<535F>0EE!o@J3Lt$8e}2D9(LorO4sK#-cqNbuBzBZlzkafOq)(D zE^eQV#uAjeqL01MAo2Pak|Xot4;DuYbO1Qk97id2RRSm4X%(7?AT>I19Fk70>!GU= zGPhv~mG8DuGgNwsNp2+fr|hT;cU!QSD%bbgp)911kWlGor8%kf7b0e3#dNq?-%)nz z=VO!wYmSwHlxffqRlqRA7U5b`Dcnx-rm=L$a}VQNH&K8+7zTH}qQe#cuKI~mKa6w5 zxw~A2HWuneBcGc9XT($@YGFoO(-z?>m(Mstq3B@lWj*Z{oTrlNeTXd!mA$fPjr<*` z|K07$0z7emk<>9n&QhcXFT8yRuZ}a5n{lOa?vQMAyJI@LQITE}an-$NMrDk|CbNQ8 z8Vq06kL0TIjTj8kiyL#M*26H|vDK)N(;axWaHmMm=K18Vkbr%7lvb;5YPqYRx7s*B zvtl#nnX*-Ur^i?L$3Vt;fbqykNGQ@0x-+0Pd{}A9T179V-Whs3VA(nnv`S>cRZ>OS z*`xqqNqh2*FS=H(foWt1Bgs*{nd;h~34;v?AexLFzPY$F^-`z`rElmR~V<`@7fA1G)XXYN-*h4q(^-=@`rx4U$GGBpd-}vpfPZ@`!yBq0oDW3Tu*^Q`=u&A+LdIH;7*na3BWTQ52&O@kW3p)<2cGWf6hwsEDlm zlwTwAKIB@qG>~+T}fGQgh*NMrF?s{ITUOYDw5SERJ!{S zECHgjyizCnLNqh<;R&QbejcGJPftL3Z(%6`^g9};}hCH6gqbj<3XP?u*Bf`zT` zzI}Otea;8o3N20`Z{j}hqUn&rz;xRN8IpEZ(QKId`0O4t0V)wZjtrUdcdo4T2i22K z7|T~DF0uS#ejZh*)mfLq-wEG`S?*Yk8UAivMdja^*>?=@E-j#OsHErIS%i>CuI7jA zUWa@sM_&n{&o)NsC@yyNlCl`L(L!>_goQ6i`^%&mpkKy)0hc}BcF&@sIMhm9zcRJd}&vp!HtC9 zp!n)MI#Y=oiV7T=&&f5bQ0Jo9%~2!U_s*c|2Xi!n{@wDiNAFSjtMqcKCNt3{Xvk;ZCixgjLQ zpC~nh!88HJU`|dBVVA9crIL}_Z5^6Ai=0>qs~uXN$SUv3;A{_KD$=|#UN1`>xS>KD zv`1{tkHP_cUJm}lye(3PNN~POF`+$AD?Mh_Y01JFt50AkBRi+FqXy8^Ofls~?)MyA z$(@^;F%9i=(C!hDq`)p8QXi8xk?(9`O>(*O+tA4jsGZD9Mop{oZmizGdF3!N3W8AfK7J>HrS}*TBYj{6ui* z+Yb%zAJXRuO-Y7G)?%FJ9s_!Oo6Js zNR9a zLUxK2tCQ?(#%x$*gr2}5i{=<3bW}?ovX1~8rah}*T~y(+v%d@QsKRM&cR|}jvWQCo z5{FYXfIm`wu*4Nr6!KlptMz0|as%5v67!snTy^DnyNy?0fErQ-cyw{9UC_D&kSB|^ z7=7GG+LUt*f)dQh|Ln}g{4BhFeR=;G3Uh4;I#3=86cd4ka@Rq5lnlu(LGd8g`ToPa znuJM9K#iO3m`k}~rh~)|dUvqV@u~*bhZ|w0tcTK7V6|}UqsBzX085Jc#H>_32zsQa zx2SqSZ2>6&223;{N4jfC`a=DP1?omUQJ^V!>IxU|K`mgwxtOi^$$99SMn=BHakL8B z2tIJ1A-ePgs-%3%)i}0VSA#q!Y4eQD?Q{8JN^kE%+<*;b*A~c}_L^z6`3c#A+~{M< zB9>lRuPVaV$3wqQwV143*~%g#wniNS8v-_0$atOUl6?jg`GWq0CK?Tc6(Cj6 z=jefbV~{dLsVs9Dpuw)|ep=v00%k!UEs5{gyD8l`>(H*p z2!x<0bUhEJZP@^_2ta-)1t1Vp7PkQ6#hm9*YJl-_Q zGzkcfkcY$$W&VT3HL_8Yx~5x0b33}fRXeG#y(dkQKN$d~L_3T_G^B|Ywd-_*4MDp+ zhxq^%S7s}+GS1i?r!~WK2Dc!S5|nC@3cmygg*hXNt1}xNfO^;)7fN+9Fb;6<0F9|f z9}$>C2G4okI3Fm_SVNDk@G9wV{wDmNM|k`8?dO39$FtwCclnKJ*M4)>uKicaa{uD( z6MI(j#@|DiRu3@r{^<3i_kSPWJ~f;pV2+`s^J~Lk@*u_=eM}gfCU*VqkTR9pXbd=M5BVQcksOWwulJy(su{k8YWhJXN z?&d-y5+~u`=3O!a>!L!>*}=~@cL~>v2gGk zayUi`D(_)#CC(lLjzI#!`hj9hrehN~3H)@T!fw=JivXhFI^wefMI=@m(^HZ6*z)_V zLo#LU%T-H_lRkPM?gks$4pJvv32*`%x_xvbg^{~fc@hv+K&0y~o}-DT|deo}TTOYE_0D@7FU9wtZJrMS-L*a_XD z!(?Xx7R83#U>{9OFIez~!_bCddcNG& zKtmP~{DJhriNNYMwDp+ILj0=fCL56RA=O2mm_*r85P;iBh3)6oZLL=|0P+zvoFRIW z$5DOb>VkX2&k4X{jg+^~5TMR-ICaCGHu-uDtFt?5K$1ySyQ=AzdZn5QZx+>%6zlMk zfE+K-%@((w)z3X~Z^DMr(vBc&eVdLdnm!b`Li1nhjiks?qg`sSX1_aW1Id!?YTP8( zlNVp@zNuQ-=b$T4CG8Q~pk1|-j|3C78)=#;iwT?@ib}lgo?V`DJZw1B9)^s}q1HOB z<-@?;1ZAeh*~AM{N-f=QvlRRmcIDo#)tSrw3SjmHdcG1CAsQoJ(W>vW2#&=>M1mZ^ z7Sy@2(d?U%|CX@govE?)gX# z_!(f<5qoOck~XAs*x3sGtMsbL6KfqqV`*{JSf@=aU%#kN`@TOFgm#v z>$19P5r*JSjn}bjH(HM$-GzJyOj1WX3=?xNCBlFiYoBhCjV`aoQJVzvuQ?`Erv|_n z549o5WFk{$t!ggVDg32FDUtGn$;|)@18SHIM0RUbl`CChl07~Fdep??DeoXXdm-Hp z%j`j7Yma)!8Rrtcm`OuKf|2s3@`$0gW~CJ7P@pnM$PEi?Chw)yrpC>N;t3O;o~^AL z9HLE^NUp|V?D^D!tH{8V@!{}BW}CJ}9cR5o1r?;|DISt4+X#>&jHHw|sr4PA-jr=` zG*Q`uZt60A(cMTrRr4EEY0YRCPJ&w^j6;F>2DQZPU1Sq3J5>^-VWANA-e{0RrCgh& z5&;%XQ#NS9h$|RvqEc2sLFu=VxwRUhEsnu#H8V&vn_?9tRFu+561+NuDKDpYM=a#$ z?244#R(xQfj=8sLyDL4i#~c7t1+++v%A>+J8v&JbI7a93a7ZYnnuXjgHyht0Y^o)5)`mDsWJY$OYJAi(H_H*sL}7_^B$f1<-W> z`kB~8yn+j`>^AO^-`-ySCj13ON4_Py@mpr0e+X9Ee+zE>?_757BVe2UaK<)4e(oRN zJ_d;W%gc`Y_W^lN1F};gt#Fr=4&K3W9tY$ODjR)5)4Q(&gT9J-x@ z3ZXZNcqEKvB)(7b*H6YWD{zb;a@)jR;=K*GSG5v8fxFf*T(4|7L9K2%{B4pd{Y`*_ z@flVHhz4w{wqV1p4&+qp;qkIy%nb#i!$@$#fYB@Z3AQA$gAwKFHJJm$3ChxG-LW*> zL|i^>0SBW{*-!Z^)_KMIV}_nou!S26l|K^^aMawCa3?>*xr?;v=BCS%OPWc z&>dMsn6k*(Hwz}6KUv6Z;lByQD>EIa%3E__J3Q{{E$npHp`r;pwb~?Gxi5Gh>DnEF zfmdu))~{8gUJ{G2gR%9J8o*Zb;dO-`N{-E-5!u_w$flxQT+euX6eAqAWEXe)Ls{@9 z77J!O#244rnUZ6Vm8#mLe4Gk9A_HPC${WL%8uGs%(Jq>Ws-#*E*cE8tWUbY@IihQB> zMTs#NTn1}3pq?tguY=<~B5bt$?;&yNZUOq94*j}0voY`CQJq3HWb0iHw1-=v1zbpu zPb8TGSI#sC4Uc06k8TcbZkG#N(8GKIsg-I`Qp2;=aCI~FjTR0ewamR~grP?|843VfK%~EoLw++DvKL+cS;%>w&Bi1= zVufCYL&IMQ-KQ=pMqmR=${y|FDqXre#}OUoEDS$gI$nAMhL9v~FncH}A$c-VFpGe) z130+|nblJ)fqRhTMeb6Xg{?^HcByB^nqz*QZyt19v=Wv_X+aNWiR-1&Yglsjuimf+ zIlN^@0?H@=g-S+>PQ>+;tHK&~rFJjyp+!hk2DS5*`baod;Z^2p9s_OM(l=_67x#qVx`_A&V^#R9fO4 z_xq1y@{fU6L@|Wam(%z0)T}Sl4+$&JY^tuNQa+2s%t_4`g=w8;vcr&2P*jVB+yhwu8 zF|_sP{di~t7c`t1D;2;q{1EeJZYBtEw3+@nPPFq? zs6E{St&B!Nrz>o7 zTMfB~hIr%iQs7hk=n)9>Mx(3-PYn&Uv&Ue?FS|cvl+4qduF*a%+FIRWa$X;`+q_Gz z2i3Pz1nVfx7fZ^1@V|y19^qL2AGnd9{l)8_0Ze-TS$O-zsODec@sHu{8xv1{fZ=r7 zH|kWN6EnL^t(4pfcF(KP4a`~)A@d*OlLY*7Z1#Zay!dXl$#S8pq3Z3pZosbiXiB{@z^k5<(`YeGkC51S zF};t|yl|R{9?)EkXnHP*9*i?)8ZWj9LuvQ@(-cg8`y6|kpC}mKVUtoVU(!l>VMNZO zcaGv#u5~GfXuC8H?L&%j8&~hD;z>Fp(l-TtAcs3!qfl-J^PpE%WLICmwTDBy+@Xp% z0$M%NyPEE3#7rU|pj1FNqA65(W1~ww1ofqsvwchjZMZGz6Zw&d>$}FEV(gqX2`di# z8|{x>0~M4mVd1toXCKNL$YYnN6zL}jJc@yNua@9F2v_{8oAN8>{IXCFSb69+ibFXZyL1R{N zN(-gzffzVDH&j_XU25y*RNbjRU5)C&SThD8yMv#_*ux_o^Frc_pmT|#xLlOHc0lu9 z53PCC;B3?JtxIUL2GAH1ZknRAcsJM#F^`i!{)doIpaxE z(?y+>99g~+HX^ynx#Pq{tzLBNh04;J;~XAvcVPR-yMg0d7@6~A8jid2+`SoEgQ@H6J?h-f8c^3@aHjU`6p&?D^jt+DdtBfY}%?GuOB{aMOux`X? zA5y(JM$NT~I1i{x-ycDCxeMa;`BRE zy|?|;D+V6HY$+Y+P5rJuqH9sP_~i^D{!)3xI#{C*a%6@Uxeii=cj@qfyk=*gyxmIT zb2d3kMQqCTB9V8j)%Kuj6Zzjz(jg8;V`dVHastxv{tIAwNlJS z1x`uhL4THA;tF@LmDMUXM1m^J(NRN43Q)*GXH-VDHL_6na3diA+6-td&(853H@#)I&`D3{bI(=#RBzPmiH;ejpID{0|W-E8O4cza03TNxb$$d0Z z^-$5_yFAEm+Gt^u8bGDfo|Mxt#E2@cj^vv*v1Nv9vVM|OGS-ZHQXt9OUtFo^9SXr| z3)hV*Ww7g&fVFPHaKFXm=^J%`G)&SHmI&1i|>Wxr`_2U;X9 zMRJj)PrN}9F}Pb7Nn(t_Q5&V z&=~=<`$gidB@N|>QZ>+Xq6DsWn*PcwvDCU-haYYP32f7lYl&j>;b0*P(XK{Z z00Z(!xaX zvgO&2IE2pR!ykO_Z-V?^{+FX#cHznV#J6AZQGfQxtwgL};N!qQa@8|sA5^Eyw$$Ds zU~efWwcB+bO)4RldIN4y5O>ndF~=*k71s~a96%|Dt#+7E=yR33sNCm3E{*D{8$!I< zB&|i~AMkI8;d5I1qIOnnNlI`4k0o;m*I2idy_J=*#faE;gURkfsZY*OrL!>Sb>}Cs zvICb#rM1g-!$3gRO)8T~RU)56;{zLjTMgNMvTP7apv?W$5X2QM6{M{&I>iNl(ssem zwHe!Zh1~UN1OmL1#8J_tb(>Yw;7W9K-molPQ+8t~m7DC?vlg^63Cjo>B?Xwc88 z#toQ%1p4jsVUshsK=Ok_q#D{kw?iLWV%y{45+Rz^De2UiGP}j*x|J`q(d7}Ozd@NZ z@>Sju*}YVlz{+h~wXu>U{v2+W=}GxP`5((^R5v3$*$q}!<({e;sL)tMV!h|J4~H45 z9AH3j$I&Kgva)U~(byBgC|PmLQYwhiVkk8=J{#>e38_zlI>(&7XvYbjuPsylLYG1{ z(zeJ0A_YrTmAvNBgbj~PT>ys)J;Y53tBF#Dd*4ki8#l~`fTy9C9lQ+I$1G*3cl0A} zYY7xSr1ef~?9z2}7-@uWU>Q^q~KIH*N%l^?#t%mdK zHfJWF%#{Ud8{AcPR4;X!a`&n)c4M%T7;6?1O69Vk0+g!RC_r<9mfAR0$~wVnr{-Qs zj>f9gz+$ZRBfa9siZD9*a%lN<)p&z_eNFvIZL4pU%!RJWT!wXUZtCbxXPx3 z=qg#JEU6v((Dn-|Go);0yEawO4DS{%Dnl1F5W<##18@2DhUVVql3t}KecRq8x7WaN zz(yj`CBa}}-HCo`cfKcJ5FeN`%xoG1eyGLmNiCDW#@JZZf{g;(?MC9DWV9%W!6QyJ zOI`T+kexh~OxobKJ@9O}msUW$*(eE$F3;gBry01*M8}2&(?6Z`&flq$=_J`MR z-+%i0ad`bre&(aM-vwg}KB7w(s-A)5MJ89)$f>$V6+2pJnAl5&WF1Bf1qlxa!v&gV zyItzHh&j+{Tgp)9dkvemHBCN2+#p3l$=Ypbm2(cQT02g#9so_{&;&w{Y#v*uOs1NIUBfq8jWL04f9=iq^o85+W@qs`RQg(iV){ zGZLmC5@l9XCvpw}WVB7hZBnk)#)^|eDS)DeLaK?6QnYtu5K5fLUdghF^~u`}lk#fh z=~hL(6-^k+{g7WA3S7}0VfFpi_u80$g1adAuau>yrFG--Gyz3`o!fUCSvS{wcS296 zj}RBAClhB>>$IZxy*r1dF62t95gXe+ExidP)v7n1t#4C3>iT6R zxz1j4yp}h*SRZjh8Niz`Nfb6MpKW-C?N%yibJFh*88>?t@;JpvDM>)WMpdtqTeK?J%)uWWeF00cJff3z7%PEkNOrm>>iJvpS36@MG9Gu!9EjqxHJd_*ZDd51!@dE_O;!#Khe1VsC1#W(Z*Vn$RPvkH3g4^3+ z{Z_g(L^;mzb?ErQv3s{68L(&uM|%x$OGC&byFz!@GK@N|sT z6DmN;^aX>#r8pFO;D0-7ArA58d2^uLd77;z!r;C)0j#6Ul3Q2||R3reEl zo!MBZZnT|^|0Vp$Vw&oafkOzdt91J%3lQaWL!KM>(}xpp(`=7#0j z3}NPNIBnN35qSmDu-xZ|B_g+^GA zgdJPgoPEgV6~amkdrCA1-VlTgC&a1`ZRHdax%7^SCJ@joyDSSR3yj~3;jZ!y;5D(W zc8+W+jv_%J90xXtAvWX%f2}$VrpeQc6?6pW(cuYzLIbwo2L%GT>QS$I?>1RKkO%-o zJ#EluEylZLehU=(TAS3MOxze*gCl81d@zf#LsB@s{6;&qU|R;C<{-Wj8UV1B1^H3_ z3#M#@w4G$-VVC258yIZQ=hM)1?(wa2v4O)Ii<+PWj-1<|<2tgIS23ZPv_lmDT_Ho- z@u}J2{TO6h@1_U35N#@ZRjGyvj?A9b3hpUpCrd^FF}L}n_Caf%=ICtAisPYnnc)Y;x*+VK;KfFwq;TACK zt=rfrhEZd7j)zv>Oix7!ni~%hmuQ^fAXV#;!pP$Y-#W`{)UXm*tl1_8XAGKt zCl7K_T7ZU@6b+QC4ZggVdROz7WdiMeC4=9T#KZKfLIZ7JCR!yr&s1{D%ldACJ`~Fd zzOthe^Z+U(F9?1%j;I21wcwwg0P6FAL zP8emqqy#S__;^Mlsb)V`(9e1WXxBotqa=@V_thW(Hg+)s2e)R(o*U@`^~Xzp13>de z`SA(rChD2RCv2Lo0u?|bhO-4+Ajkppo?F!%m9jE163gr4!@Qg$I0AtZLGn~Nj?;k< zf;~A0-N4JBw~p)-H?i9ctYtW>u5V$>?V>3hb%8)Mv&anxa*x*#l03X*WSPA|Op$rv zl7_ZcR<`r>pe9&B_|~3)-=Cb%1rh;aa8Wf(>|Awo!EJ2-p{)R^%B6XrL0&%rz(F-5 zo(=x$Zi92(=nps6mh%isZ^(chPO@j*Oa%rul@h*sdJf82kta5`rFxZgmEggSAVhWI z^Yz=SE@kglxN?nNn2!STJXBACuS)8nqr%Sil-yI6VPsX2G+XuxS0L06)&y;z5PT9x zdR6-9;^V+-ba7M4tl28SboeZ(Ybf)(U!@wAid=pnIZ9gI4LwdSHab~zS52mp@`)tIuDz{Z*B9kqE&k%odKzC4;$fF|&g^=wudt!%Ptg@UXZt7#< zV{qhc3pLG0$p$qx2DK$G$!VUceL9Uw7hw*I?wM~dhS-}D204d*Ft{|BwmYE-9$=WS zakUy7d>d;CFj-dJGgk9BA81!5=+C(ItB+(cO@bCC@kOdYDR(4)+PS)`)=gB3955K&!DPysICvr zF9h0vt~+3&vb_LBnVAT1Ib%W1K)F8!CsK#ULoq)!yD}wo?Gqv@#CYSx)D*mKhnUNm zDXm*7SKJ-wHoGXHFMPIi92{-Ac+1j*W5+j+IzeQQa=9uf3a1=KbF{BYjc<)cy^`7Zwj`F{>;QIX_M+ROB1 z@X5f_uRjQFP^P4OHMlPoGtb=6L}oe3TEWyZg+o+asVu~&O7^m!G>tEb90TjHfLlZ| z?x5Tb_d}l)mmVhR%4z|l3cWPeam)FsDPW#py7MlqC4(1`2Hv91&I{c}F8b7Mxu&3h z5af=sAprz1bp+w2)e1^#2T3Qv3!)fWarm_k&=oih?E^(|5lP!}0Vwb3kk>`TA+J)E za-~#TjM-CG-WrFhG{KTH*s&~p=Y%4G%;~d)#lD5r7vjI=baKt*Wfa1=aI9b&*SSMt;8Fxt zw=i~6Y|}p>>4oe&>5498cvsjHQvdp?uhdq_(knHawoSOtAeogcYnhAzy#C-#L+2ORl`e=6#T+DZEp}1KOgNTtf?#&)q{&6KtYl0SE$(y|vmS zq@Q+#nV`lG7IZ+AFidv>`_2cFu`Cri99Rc^KYZ7%YK$lSZy#AG=MeNSj8W!b^U>SS z{_=O>Z~klE!|dhl_o$X-#bH5w2NA)>ETOjG)XplDS0Z1Ky`g%NyM~Mit1YQbEo;&H z#?RQQ$O<^VQ{yJ7wfGZ(I=#rjlRI`=vYO4|Lb#!fP%{M>f{_LdWnJ?KTxK}Jw)K|! zw69>o)YPKcoVTJPHM6UU$41J&Lxg6QeaT+Np|#2~tAzXFu1fbU6Sw^enZox!{>zV# zY0a&zb4KM9Xp_65rj2Ghc)T|3FRJL-6QWqPd8{xlqT0~r$TT}Td~n^B0X;1uh@dcN zE60$~tfjepzeC1qeO@wpbyld9aV&RSN5J>Bi7F-zF--M4L|&44ea_L_UH}2H`W14M z9u=p?t^o-#R#0E}4LRI6o}fzCkwJ{iPgW$^C{WA6{WVUok&z|vq?0Vue97TW`LwO6 zU<0qMEW9DDPy8{EM=-)pHgjrF;oIzYgd7i`>ZolOW?GPwd8qs&on^4xvPn=!Reef% zFe61u;>kZNk&WviWFOUp+)zZQR1B&;fQte_dP70Vecn-;SG61A)v`Ob2&TKS89BsJ zbpeZ%5W8RHN}L%S)eU0Y)-K*jJO*?G=gEFwLeer0$E3QHmFm3an^_WHn0C!ip0L5i z=uxdgjwpMy#sT9PEVPV;Xa*jgvGsF@+l z+O>tM7}x{NDFSUrsfb?^ll|m;{ngvg8PtBx$K$8J46k3D-v9jVSFgVg+0&4L?~mc_ zTh;sWO!(fY;wG=5nr5PN3VT6!g`Yio+bE7(2vK0u;H9(z(=(f9EducTg(pN=~2T> zjYL@1iy-)&M>*tVq`;ccClVm-yQ3BQx{EP<6dYq-Qy6D;v9@;9RsE1G$Sf=mt{8cl zCT*1Kya?)u;UlX|7*SKlvpkp;;D%w#~zd!lSNS!?>Ov&-o$pWhJ~=hii+C8Bd~mxjyuB&QB#Ln#6XO6(y>V4*@q;TH!O zwwN`nUV>L?TBR!GC>ARNKAOkfDku76XD{HfjA5cK%8+kjQ<1r$GUvtI2 zL*e>XAhi{)h^;!Rry>CAmhXQ^aBnuo1QBro7&PzUil5lY2k4;RhS{547(!?nI2%kN z0%MaW3V(S0^slA}uYabf%%4vWZNud-u!W*H-Q~k~C)J9C43F!%g4d6zXUP$0K(3FA z5x~Q?a4c9E+SFPx)PHId>U3Q@C0EjfmvYT8X*t>m|RBJ{g=pwYGVC%r%9P+PKBA}o^Y{rthZ5WVRa8@l2@XHIp?M7)rP;Rb41COz8Yy{GdH#)`0!Mt3#zo@oVWimyjq6${{$l;tH2l5ik2~3v5s7&?{cXx070E@^oZQn z)x$*Yt<{j#AZre`ffEI|)m0ouQZ8BGCij;6uR>Pl@bUuE&q2`F9V@*QllIwFO1cZ2d!T(hPLy_NL$aZURmYM|f zmQHnOSa5Kjkvy?UCGsrOJx_i^v&VR@nkNT_n+)73SF7B0Ye(j?9ij4zf1P0CR|Mn zHyU_BiCY~T=m!(7>?f|ea+*A=Iv?PHXesqxi}DbWP_v9Vsu)e6&$FzKo>2ohO7u73 z?os{L;m@NQj!NGv-9bhDu`E5;N%pdxV!5g1>l20No40TNnvC=IHHO8u!TSA=;llyR zZ(i*g*)Y+GqsF%t;xk!E-hPYGGAN{n4)l&zF#gMNe=~S247}v-w;(Ci`eDO*Z?x%8 zl{$5;g5$_WGlvDv?OK)6tqsx%xi`E?+)yR4ip=6wa#Wm{kQ|m1BOI0gpaJo!TBgC8HS^Pe~iT1;crD*frUo$Q~dDAm0H6-^Y2; zz-^2Um>&7*9m0xbt)79LAWQAgGLy%dX$cpX z*kd3?b+oQkpW1@+28_ia|_8U6n+=A0kLO*=Otf8)ui$}TyO{Gqjbql zL))&^OrZgxQBAR->4QEwRSpNWNk-=qq09pIJ$KiP>_XY6`tF!{j1Ellphk9j(72&* zW%|9f1aYLa_S>)?vYGHKr{Q6npi7LyNuot4e5!+7!CtG1mQijF`vmdbrj7o* zBSAVmB10(xhrLQ`#zRvsUL-f7q4a;X|AIa0lmF>IJ>zn|cs0S>FTi;G`0bPM`fZMH zBmCL6(~Aox?gKnICku0OJ{MUxUE;QB*X&|LM6Nu89FoC2>)IA5T@9IhYqh2+6-K|< zQzbeMxOwxwoX^W?yHgcPC$B^81HKJ8s1p`Bn7$o@d}OU!8y2Sm1Kq4PLy#Rtfs6Vr&4mJ_O*Q6GNd`npsd%3vE#zofDXI@qihn>sfnB(SH zQOX67^0|JdbKuX|nUr-F1)A#wfWH6CPzMqm2bY2reW1zXcnwWQ{`MgU0s%AhF$aZz zLUL`FZ8aKU@Pkfze5hQ{gu`GVQ{L9v)cruAm>yD-EMAcx0XWtJ>faL$2@So6hfG;3 zPKfiM!C#jrzStG4Njpwg<#)6y_AD8`6b4TYF=v&J%KOlEgqv{Qt9?M&Z2hG0x?_a1 zjt2gNaFzqN!yI>}Hdz#Zs29c6OpzUm&_49vrL)C3n+ZV41|_vC_Q0e=0wD-%I3L!( zskOtDl@@95C9lCBVASh+^v~>%pTk5s3v#t@NFm8Qpr&TD=K z2|HWj*+SR*x)m~L>q9)BjB<`>A;lwy?YAKlG!J4s7E_=)Uu>_R3XQyO^am&4G%DOi zZUj!m<@)PrP>AuR&vimg(34Jc)-g-a7M^-S6rL={*k7KhDe_KqFx04+PGH^Fb`Aa@ zy#Kq`EVA>x92UQK1j29Me#1x3etvWO^fx-)`G>cU-v9mUpUnE@V_3g@BO3-jgpmny z)1SENMZP!H-dWP;n+o4)64$aTBuN}ZP__9OmRO9g#vpoexAd?kyaojU zS(K}(mH>#iqQq@4J;{wD;Eb@yRz5FnSfJ`-!}M9Ts5>fCK(*?c+>B+yhm|YEL|*{x zS>gb^Vscj&*W^Z?Sek3KYEsBmIuTm{=|}b-kW(HUE7k5Eh*^wR@2$bS_1QK6h?%@m zMOXVqAY+FC0=DyLM%SRU9az*J7CaU{p+aW;p6t;Du0Lx38m@ZFsh1xcczdhva-0`9 z$LA-&(+)uQx86I3Q?kU+ZHH4&4x1{<@L;nzPy`I{LzNCm>j8h%!4xDBe7x4K3zz94 z+W4e}oTJ6w6n39hgMmQzt?eANA$IrC__D}?Yn$qvVy%O;8Jry0Id%+;Ui~C;Cgp`o zy45HQi4&J~S6K$jW(P`EP1Sj4qy=nCMOuRr0N4s<>X%+(ndagNGEu>m1I)78A&Cs6 zSX`Vp(?%7YL+;adZu{!?ni4PJhK}N+bHOsSrY#Oa&`$2|zHv2L$eZ?Vo*?A|?Oj#; z?o2Z>mB}zRM_e1Ax1LJTIB9&52l?54Qco_28p_?XwS#$v#1B=fW0^%6{g~U7>L(mm z{p8{)#s964EB` z=-G44$~dJitE8Dsk{z0m*j+nY!^I`8$E##$o1JKY11$_~>WGlG)w4zTrTCH~#o)w# zBvz{#OmRl7nezw`+`(D2olD?&wMPU%{9xwaw-pws{zEyM9_h+CIX5N_K0xS8Eth&# z(6_i27F&$EG}LS3H**&&P$!9dq(9vip40Xlm+h*iI42#DJ&7dX#2Ac8@`E*tEe+b7 zN4QZ_a}y)67$j@jl_*L{^~wg|X-xUfByXxBV}okidX@NM`QX(G5@Y4tr*Iir-ELv$ z4D0CSogoKOKkL(OGb5Gi0X=MNA6_ig>-(6m>Z88p!kJok72Kc*DpwFNUN?s|E|7^! zwWNV-7{Rbc_vs|7KFAJQ_nu^#k>wAFo`(gebk9XXrsc(Z+|@2Mx{w(F5exZeg(_F- z^hlP!?r?hl0At%kcW?>HSCH_3P6^Vuh4!>m$F(OB-I;r<3=(L)sjTEB9%sv%%0EXITL; zhpL5qdyGR_tKW$_k*K9C3EL@;zSj!+RxofJAT$#Ll$0(kN|5bA%p4a!NO%Y|Yuo`; zmy6Fm0;JZ4{i9awTVbVOp0_OYe6WW_vFIaGmR|JF#-aNQArz!7Ka?=*vD(*krYU9 zTOT_mV1%wN)&ubeEL|-zdaP>4Q_HPvWhK0zsGWEX#Q&!W_gH%gkIKfX$}V6bg;Y375S zUa6O&+ND&A2XNRa;myJN8JJI~wsH$Qs&eR$1!WDiV??@+cp>NQQhO7CStFwD9^H)V#awo%>( z@U56$vet2 z>%k8e4=3$9LAN?rSb+a#lnpuYD@GIZfZBEoM-{5_iQy8TLZ5_*LpKjH+}T!)1n?!Q z4rtyERh91=RHVIWNCF&@)+a~kF8D+m+&!r6upUJ%*E5(#1v%X+2vlX((n1@*f3QWCDf- ztO^zN#vu6Aa=3t%5h4cmBMnSL0-y-&g>9hQ{Z?yb@1IPL#tlBF$0#CL4N#^@bu_Gv z7jNOIQv$i#)B#!9E(`ILz>n8tO@>sP_ZyctWg405SEmIl`_Ww#I?!g3_{5=d@gQAxwZVlbD) zB_(9HU?*c8r)~tomlP0!i4;F0_tgsWodNilElljwk5hACF44k>Z7vEU>p!_Xsbo;0 ztwSNM$SLKVoIt5#&}8-1G+TFY8Yi6v<(*Orp&St)aHuAE1~oxKmA9tgQYho0mH|{W zDSgPEcqR7Z?de=lwg3XrHuTqIso&KWvyL!jvStBX;+^yg6jFIo>tSJ{I3oYSJ}O}RL9!%W2!QRci2S8eT#7R8kTn^nw`2a3)$cF#)C z>q-irBmjL_)-0_K2%+)Cmsc_F_Mbj___&~3EPL<1z0t3)+yf;!Iy1L)UzERm1 zv|Pe51STo_y0-&F0|xaVu?{|pUUO3EU?I2g_Q%aBH;^P>-h8j!3{GX_OR)dVzfFa1 zXvaCEC&?Z?vzw|!gJ5P9s0crT=!}<$o}|@u-wS^u|K)h_&#(Xb_GyrZZ{B`(djJ21 z*PrO~FWMIcP;ND9&0Sa2ZRgZbNn))msyFa{Wzn}>9*ei};J4MGU|8(7mXyCu>ehD_ zK}t31*-z^oC>ypN)_Y>Z7b%crN0QqVDf=i@RYMBvn&jZKJOjSxaNCBQ>G`ax(>I5^ zFR4^h1}8yEawJ(L^xw5vjmY!{rmeiZ~)KzSFV^dv| zk?Qo6P``uK&UTu%;i70Bi%*i-hTe(U)2OQ5P_jmiN2QIah$wfKi9Pcfl~^lB2%nl3 zO2{(d++d-sb3ljO*90c_649mPvw31q;%*Po`9ntv^NZLOHtNe3A%HKkyi<3c_DSj( zgjz}it|84V_$m-{ZM#hONMV6)11YHHc13OSO#AmH8ZbV?$Q~64aj^!|mU*MX61;DG z#Q@7a&XKT7z`Fo~%{slEX9~{%fNfpSR#FwXQc@(abU_v@Tlu)j)h8*X`V)|mb^*cA zV&a5;PYF3wbqSm-Jc4dS>C*^nP)U|BP_Y*J77Xr)q8bXI<6&kkdF9RGC8U=I22Y4M zIIIo==9ciDQ?EQ}#!$JjtW=zrgJe`GqQLngx4_2y0(Bzq)3<$YOd#T{lng+XCuwix zo|RR~{^LlcNa-lS+9=bVXJ-n z`o+H^T>T}dn_oUpH-Gv1dp-tkZ9WsjkM7fhE~-Kmhi1p&&xKH zjw93RusX!2Ah$&QfJJG*?pX|K5T=+QggOZ*BjD^8B=8)$U+%~r;XDE3C-J)9B%o>m zY5}}wheTG>ts>0YyP5OYU^p|h@_l5uf@#I(0`Ch%*zbikJZTeG*Bs24>XGD=qP zQgl(wku}xY#>+cl;c(#4TI*xD#w##uk`Q}bQ{^Q9j3#QL$je&x-y{2WSM|ps|D;5g z726iIA3CabOI*^7W@8WMQo@fflAa6^#iup6keyopX@izZ&yFPQOxwfM7oL}A+rlK8 z)9YpoFLaYb>4*usq=KQ~lPQ!PksZApP=+?dy=z;w_F>O(#xsNBEA);Sjd-n?lLaauXsjad*jKv=iXr)|*?1C$ z4KvjJ61Onn+z1C$7MAysN`hVFpP=)5{K3+VYI8L?at?xilZK<#o>eK=DrK?=ITMXO|+?#4+w zL58ocafaod_$fk$0bsP^y{-@857le3@NOttTrHPy_S?pY+6T7j!O8e(Jt4GnLB z-*6V}tlq-;Kq8Mmc~Z0&%}ujHb1QK^5$2|OE`mc{?jsCGU)*swywC)rZNF#(AtU z6TdRTOI8QZ>ec5RYW$?3oP7bEbd2YxBn7(G>tSyo!F)&GOp!KMxjGDK2juJM-d3%` zRV^Y{9z;idSuQt6$&DqdMwRWV$+Tdg2zGe=zo)HKqnBA7>4wszK9n z>RW{m?Mn=6ly`e1Og07?y8}~?-lZfK6UbWjgc9!@i=05jT}@RBsuyi(UZ8Rl=OBh_ zLe6T>o@T8Q?w;+chxkyrb3nM?Rbd7_84H&A4!4L1<4^d0s^w_~Gzx(0`G*k6SWfEF zXfdwBfC#+_#>jIxv)>upTJrPM0sY93gm6j!chm;E=C$pBbQp^rbt3ACgACvpLnrt4 zskk`P891sOntb?NNE+ct&O$!F-S83pC1t*yo%!ZtGpS98LXuVC;XP3G{e;?tlDcba zYRQ*7BWvhKk*lnh*`T({`}$ za$VNOv%tA9VHt>!S+i0Z5Q!rGeS)mNdlssx-pFpVN@S@R0WsZc43w^39o)Cv0aReB z30GU@lV}&u7Hb!X+qV=u9Y2t@T%@!&knqxn4rpR2CZ#9=bYF4lH_38c6Z!(Bh=*Ke zOTUS+m|~Ng)VO>S)38dIh#FZ?;v| zQZjT)^zjfR1SMEu%vx{28P|az#S56>wh774a|R&0#nI((EodS5ZT<7sFSng(B*x=` z0Phxv^u`_g8o5-HGCdF=C7#{9iBMh@@yfIkR=K3ao9HPi7fOQ(%#qIU^{w2z_Y5W` zwNB9uI%d0P9U@xx3#3Y0S@Myxr2B9}^AChJ%O9VKA+kt8u=hM~MnbAuSv)u!mP1ZG z3iaVZo^1smdL38A^GU`h%T|?{j7%nxEP6AkObYetsDxJRBYGTU0dMqxfbOY(vO<$n z`2tq!tNTfJs6|vvZ3|pTl#U2DwgVQ|jz9*!;UUfif+@@uVU`Sgbk`zO6I*)neSE}2 z72{Hv@l%WpZ~vP2K70G>Ret{I>wiC~_|8v)+a`be`fd1r4u<2Hg}9fJK)=B}D!iSm#VdR-pXcWUjwq1ksVfD3aBoDp~}jxDO_Aja!0Cm zvc5@yfbiF~n)XJy&XfY(L{t8_O0p2qQ?_`1O-a6ze6qHT3c2Qr!}^8t+RG9tU$h#a z0=YHpRh}5nu?%BbvR|z22Sxqb6EK!`tsPlES~#sPQ%emhJjJE1!N@2<=*V{4o@pmc z#J54#nBf778Ek-VX;6bv`^Fh0ZmkSVTP*-dK(@cF-X%Tixtd_rJLIS!x(4H{swKcM z9nBYbcbzKjM_CFjD<|X_^3FlPuF!`2))Mj1ucuN?T`L1amQwfC#9fr#G2B5I!ScYt z*Z`OpH5d1wW52`Ur5gFE3*=2yFWSHg@ka9_eSl&D?d7RqAlG5X_h5JtDla#lFZy{|9ySOO{!%$Kk$cN#` z;*qDTMlI^1D<^nYwDCd3xVBG7t1hKW_8a9ho;O@nCgmqo0)WdsBJc$TL73IiWmg=P zaq>3I-ISTdrfpd5CTTF>Bt(1wJi@j+#D1w6*`-yk3{@du#ABisI0NIT4{=a#3|w0+ z+@bpUz`*kyYRjHqSg>Sz(a7yHysaahlwRjJy_ zXJzl5A-+OoMEjVEtaS%ldJ`2_0`E>(5w-}H*%ggF3I~~#Y6&7Y{0;}@g>kV&prTr% zVlDB@*pj=FWL$8f-GR01b_iVBl@3h$Np0v_bRY}`CR?}iDX%UGQC~N}CW7lh{s&8z zzw@2%z_#TGiNvY{TW~!4+qd7ET+Z8{k7vIGWXoIz{#uUhc-^mFzam{Q|FK{3(O>iW z$=h%F7`Tyt`p>UFCsg#Yhg^{Eu>m04#59plk6V2%EDCpLb&4eM5V8$fmMhsf7?Ks) zNG|Wn@}2gRHWs8MCKNlh=u~hrk$Nczd)4~jgu#tYsmS^ikh@&B0W2zqd3z|X^xL*4So467`MWfDy>_^ zo=WK0r9h^lS>A$A z<@)l$MR^5NN{UVH6vcjmWYu1^~>h193QGTWQ(9Eh_Iwu!xKibyXwGMBe%oEl%HU2MFeul8bLIObl5`yz8rDX%V`rponBYLmOM}KXhOK3$WM7r-79A;tnpVzurTNO@%d15CoSS zVKIC!{3qC+0KpT=R;ryz&u(=#YF7;BAdCZquiUt&cPy``4a5=?J)AJZweIDl!es8? z1u>Q_A*`xMsG)f~br{>qE}b9_ZmJp(o`yj;iUFH}?O`CsR;o1#v;C=GSkU!t6E8>+ z9pdoP!j=qfT?nk4#i*Ll2%B#m6Q_j(ww_@BF2X~vCJpK4kj(1^%_Z;<&_jc-fa|CM z$kLXnM4mh&4#JEzs2N0oTovtvoZ0DRXE6}y7M*4{`vlmT0m)!HM>LwGkq1g2Xd4Ae z?ulbbb-a%i&AKo;VB*L*l17J6;_JRD5YEz%k-no=$6|p7; zrJ#gNFtvczzzzXqJ3R+hRZVt~2PLYp&!rt@^q7^~ZDFp1Z4hjdEJp@prj?)-*Q}GA z!<0m~OLFdpgGLUfuKy{Z zZJ+EnhZc<@#q#6C#jFm>et_JykU0QdLGnI(RxM!2#h2t+(erjxaCMj%ON64;hz|50 z!t1x$nfoI+bAJl|LU0&9!@uG6r>FNnCR=ldG_utUnY5`b6XvL@SfP_c)q98M8MseC zw5n(!kqnaGTTnzauUuWYy#dfNsOBG^8b1WY=WfNEfU9CS9K%!@Tb*w9!Sj3a zL1>4Gw|wZH2{V8rMtdCOd$zRk!a8g7X;r0MxM={INsu2491Nxi1h5u{Oaa&F~7A1>!=Ea0@l)I@%XfbQ#XGY{lS>P1VGe z5Gi@v;%YDGoHk>*(sD*slE}yEt_OwS-03L7GWavhr%yUTRBitpE^q4HXrsE#>kR-x za38sHq?Cd{fgR?b5?-%qmW*(kQU{aUPgLELO;#64Ys?fKkbqgsct$FEtc4Pbkbo11Rp^m%Oc!)Nq%3#@4I|cE9Xq#EEXHD# zm1HEqSF;dkbIk4wpl|H}fIaJb%>Zz5hG_J*K`Xa@cdk-cZ!vXDT+r$mj5omC7n(^m5G!jdhxn@6KsGL`ewi0FuPc_FLr24M*Aq!y1D4S+g6fGcd)zi;HGEzX7CIk*n@8lL! z-y1@GmUmLpb7;GC#A7cQwr^}5B(w$CJdksX5he!q$)AJIIy$(ZZ``C7H{NV?Tg(L# zF_d~+n?SYgcU${FVvY_x)+ju&@_0=fCiTqFr>sVfI7iU#s5XT&qVqVTo18GDnAu2_ zgzTOujyVL%JR&79BS&-bkTi<`jk~%yf@3l@QfVJ*NigXqrkCm?Ym$%KMMe*Q9>R@J zF5knGz<^}HH&947!V!S)b?08FHzVtyRmdD3%xwqxP<&d#u*Gxa#U~5^gOk!aP>hs; zcGyW>bv$Js2X;hO`y;cU6D=@XM#hcL`c>_44HTGei(m^|BkP(W&RVH}>rURlAh_UB zA`Qx5Gl#sZGHL6>ZXLDD!9TA$;I+6ud&j;Wd*!fD^LP;d(kCx^FTc05Rt zkFsf??xRZd;KEIczHly3D&*#{mT{i0o~k*kjpQdssN2#J&5S)6-8&FpHYU#{oC47= zR+C#proI2a-@fLmSdMonTG2rmO#sTihsP!{8m3aNNmI;QUr0_9=B=h%QJ3IwaDa)6 zlyktN*^YK~jyZAdT!uS7HFuGNdjhSRkXQCj)V!SxjPNAElt7b`b&$TbVD3|v8Ic?F zO;CO8uL37Ga8CW*@Hap3IQ;gz*H76c_}TI7*MIrjU@!Xo_1A$cvnLU`=j{*F<^GGl z^s!-y%pd46hR1k%0B&QLw>@-K&Z4~+ig0a3yPD~R`%#!=VNQ$8!$IYjj9!6BsZg$(J{FR|Y$P5xa;=-P9YiDgw9@8K z0xKY`E{O$QDEUhBNkV|35VnrcdbQnXhj1)pleX_}z%!t3x57--iK#9X`ua3EMgwXF z3IBpJd=69Mv|`wU3ei*DK!P&SbSg7ljuL9i13iMc+pzIatLOpI>ph@|EH3*|F|A7x z4YsS~;@ZQ5T4(HGL042#P6Eh*IA zr$s9dx#98~U1(p2BAH~IR>3C}J{ecY4=Rd*q&H{x1BE8H1mzIq+BqDj8dWw}ohl7M zO?TkV(pkZsoe)|9IAAcBm35|oU3$j;o=4=^J2*mXg49##33W)6MNk@nJ>5M^BtS55 z2A-L4AAID^$fK#nXpb+gLgi(0g_8fO0X*TeD9!gqkg>uV+1wZoHbb{*{a8?eMT(xQ z$|NLfHYvH*7?zlkf;Lge%lyEtyFn0BM+I(Hul1EQ=q4u#hX3bh?@v&Si(TZ~f z#=IwIXv~{b+B3Aq79y1ux#|QAoxEP1!UiO)0@RPqc3s zuSsS@@rLr1Z$y;(!sj0hzP@ zQ9Cor9x7efrYA6vi*rkrKBz%i+%2UdxKWr-N_VsIl%q(od2KzC5C;wUg4TFwaV>I# z6JMd~ig`N}W_t$+6}5M+Xf|>aeIjetOMV1-W(@z?=s+8uB1unm4NiDmio&#m0MxW8puw@{)s{nRX^+&60 z--U3ulh*qykQAV-Emwr!@azHvi-J&fKaZu5G{) znHx(IFz+Xr))RNub({gubieDOi*-b_)=|W8ei`G$rZsWRADRt6J@KJ%!{@JGgjYjS zd>URqI%zi~_nP0nKpwnD7!)CO8DwJ)?y0^X6VUs338i%>?~pWtTge?cibTF}$ed;+ zGn4{{o?t2zn3DX$xMRq5-a3EDP4Zw|s`1gf`RE{Fu>(($;6Jm%vqrSjDb$t}X4U{W zK@s1;69A^+5rl#+6?Ab1G5LN~0v((?n)a~q7>Jr!M^nz$PH9K=dt{44F`|1wS+(We zhVfF~#)sG_YY+J50ZwkzOVpi9!On6+bg&jrk1)!o1WA-S#x?63(G7Ox@35&FGLB!bkA&XilhNYv`v zE~olDwu+XqL>Vm;OH0oZ-c}eqaD-Qd-I^4Q>gIXNxd=B^k64+4Rbv@^wpFRYpQXKR zQYACpD4de4T?i=a8{Mu^z|O@&Gy<{rKfn=_?AvAx7zIjtJa)R8?oYv5ijj@Bbr`*o zA#8CFt{(Xbg{9FywuG8?dKMZRCvu2ajtvS4TxVj7)gjQH?@(O%@K(K?+oLrCpwj3) zY^;P5?*Rt0?(@SGhNG$@5H##fj6sTa1}IspuA|C6a~Hz9?L==`6%OD_t78b+={hxk zp!RCIuD^Zz#qq3U@ZYdc{WJEXf5ylBx?jBgD@1z!mdAgPoa zSFLr#RK72)sSJXMkMdS^NnW1JOk4(8;S}S%^%AC6EpjU^zmlln8m8pghU;$Wi2sJB z51Lgg!|>+9Kg+rmjqE<_yCPv>`KtzZHP*o3KaOf0Z|T2e#TT$#+FCx_i-mO+Ilr6s zD==^YWSm>40ud-a-hqZ#bZ*vF>C}4{N&Uh zPHz1z%o9WZqPVWSm*y-NxI7`B7u?4qd(pKzw4Q+arEqL;!4Kr*6QR)(cT2f{NiUQv z3--(I0xdB#n@!ms$aW75A6Nci)Z(7TmzdfQ@`wis`bKjMs7GueVFyRKhBilA%#vPDX0r$sHFt?X9S zHK^v-QcXf}jZEy3Y96&Rjfd#nmE_!kvn)0b*h0yN+MR`GmUwwP^tm#Fp~`wn=xPVv zNa@{%2{Qg)6MB{~drLD?`uvjLOBqf2LK??(5L ze8gT5)da>@w0I4MdX%lQF`!{=y&8%*d$ld)-(kPyiDmd?2KtRZD}nm=u0HYa*-!uC z?e}k=<@QW?|MR!6$y@x{>({Tp$p7N`e|h~pKd&OVe>yz^*UI}g114apH}q&FWn(;6 zQCw)E-J2bqznQEP_2WI=wCh8phaB8PCl876(#XR&NjS0yE-zR%sK9SeEEGk3WIl>H zq2wU`cu*KgvFz;=OGOegu!@P8lf*Bw*8_5FIxYK9HnU<;Jhm!b{K?S(L!yAwtb)V# zq(ri(&ZO*1v9d=8lVDM&_BZ&QmefzXb?SX{lmy~ai;Jhu|X0&Uozzv3fJ8Mr5<2YV zRL=53@Pw4mW_wL00a%$upU`f?&1FR8?kr?=>tcDxc}RL}%_FJCBn!7AiNjT5 z7KE;o^^COjkOPsGCm6`eZ97UTyZDfH0!_*6worLPs?KGmRTvt&3#>~}zPtOldV$-T zCaZ8;*DO2G_6d*>vx)__j}MnQ2Z%*hvL+n1ttcWTV6AYTalCS`ZYAnGQwGBBdwGA? z_}pGxBev`NaJE)&hn(8l(sGPQ$COH^vERG`G;E8_h?UJ@jhC?*B%V4-CQT|IY4wVn zuj{ED={JFdUhb7<(|K;=yux9TJlpd+B=PY~JasKe3Af$uxmI5(%78@HP&MS_*j@rf z@|IwiwM1M8>P?7w>QLHb8zj(@<@_1qvl3y>v+{R%otb^CSDyM_0bCw!sJ!Zn# zb@y5+V&{E2_&2H8ND|=!$up5H1v;tjiw^(yQP~N^YmeY&AI+({R+#pc z97)B#S#`0GKC+UvOYPOU3gW{UXe-VFe-yCp7g; zx%?J43}!a#@&Y}AsWP;B*ZaP6h&(xY^BW~umG!$yX9fh5$pFJn&o zZ@Ig0Na8^}$S+r^tMuwUw}&JiTQZX}ej}CVruM};(v!MqLwHT~M5?g6a~Q6pcpBwY z?;Jnpp1evTOI^VZJ$AxkBwD%buMlMJ;aHC9$fu$+yX;6GK@tb)qjtF`pb`^WP8L+v z8HFxjsXq$xzLYd-oUI`56_%mxLeM!aoTfvB5L0oW6dm^0MHb^%z}4)lT>%ev(d0I~ zmxwPce?{5qKNG%4+IfFPbm@yS;i@r zxuCIT3*1*^xdkPWC6#VNmNM_P^bIMLR72`1;$^BOb1ga1%0y3Ybh?w%0k1=Y0&aJ`CC=Z{aL(+cOC+f8eY5d##3fR#z z{~aU9&{U*LbsI*Bin~G7Cb09Nx8~CO)2uRq1|yqBv~MYb4E-)QYdzduk!4J6noH)K zSg^-UQc((sjvG6UquO6uD6JCse~XJzNx-+U?5MW0Ql+m4F<3t6gGg#nFY;!fuCeN1 zK&X!mkOkku+1@k9xsdLpTMqE_c?q91HcTpOEaG^{_r#eiBdsRXcALtMrd%7Z+#NU8aGViESP(HC$yh)YUZ!NnSH*}$_ zbsow=1vF?{S&qY5J4vM)??udQ^A8%y<6!I;=Y~(HWQ-bjLsPAbAOn1K0p|q0r3H z#-JeB{5j~uCu)`!-oF08Gvp5p;y;!De+eaz{F|?zTEvrt`))VJt`bxhzhOOeZ(;vf zJ6is3o<>CO-9u}axgxvanv2L{&$KFKWy%cOd{Z#m98X*61FSU*CCMWcINAdxi0s%i zTb+6i`)RG!>!dgi{cwc}zxsVz@>HL(yZ8XtM9BF#$Q}hsTupOlsGVq_- zkAyIXEc&vx+xtAVm?WbJZ1v9x4N=KAJpjwXWTMNXlBx~?&}LjFmC%`5TA)D-TD~`7 zgxXrlk#-%CoP0?Q=4TE%xGj?7;`%kr$%aX{*+(wHyxay1EDRH8F!8gk&a_rb5dQ5GCMfdyMed*n%gvugrC)}(f604)|N5u!{vX~xmj8bOmGBZT z#4yz4_{(yWKhB8X@D@<=4di~WYy5+30NLp;kDXwk=~iK$m|1JH;w8z~666t+lLHAx{F?BzZ6`G>>wUG?A)(HY$feQo zUY59AX_CBLgV{b}*hDx8MlA+Pr3rQGpJGW`sJrr=lrJmH`}*YLLa6i7kVQLL05CvE ziEMR%Uh`()$Y@^8W>EqYWohT}c#;h=Wc;0XLs}SIx$-}tCRfh(Fif#10Wnc2dgTwp zS3EJT2Dp1!Fh&79 zakT*z^p18hR#jSoAtHle}hLYmF4bX<>wJ<3JlJs?OcVSsw-c9aOY1(Wb!4zK87 zRU?#_R@Et(;pd%y6qSCPL#jrnCi?Ppjq7gL!)1(W0D$I}oRJrMQuoQGEZ=QO13XaJ zs1zUk0VoaRqFq99fyjuwK-GL>!;yRoafaKIQ3R6n#>o-QPHAe z@|wuSZ~I9q+nYq*Jn9STC6oi}tZ7IK6!}rJojF2EI()KJAi*-!{3t-lshPH>l1p&~ z88Qbj!p(+4)(e0q+v0eULjx3I)?2=8b3d}B2c0Q%}QjLZ16z>f!uhA+`Xn*Xg zt!=>?yw`$#6Zl&h(=K*r#b%}>H2(^YdbW|D{bztdevg>^O|ZCg-{jUi-N!7BG&7m) zz^Lm_cW@G{4=tIxdzR?*G6&T`)_J6na^U3Jq-7Pr%QmN7ANW%&7_tw=6MYUeR~4_- z0*gSvF*Jtig}2q!rlU%*Zs%^vd9GAy+P#KLQ~o)Ib@)Ww1rC{EmQ2DCX6UNi5;EOEKZwBzp-@RS5Z4+B{Zck{lIr?U1zE4h z)}>JIq(MbW-PLs7W>uD9$ei0OF3~}Z36Rv$6-6!^aTV$SoytS>4lPPaTuei08+-^p zqzz?7*FG%p4KVFtPhg1d@d=}obn4e3urZC6vTdrwm5=i(9g3R=G*VC>&jIpj2`NT! zBWwZDMqn@p;jvMCUc~$kI0bgF@N$|3;6t=$Ty4urTlOQs16LqA2v=U6rA)v#g7VONt3sw&JP@trv_&Lj3Z#cZ& zbw_4JZRhO?P`^o%TZ}*ev%7&TL9n*$T!|K_l7i@m)+P|;h(4oR!Ih&_y>5Ykj8@jj z9zEtq*zBe)wc_l21}nMMsA_GV$VwV-Q4?LXya{xf+Flqm;T~4t~*OBRDmwjDj;$;hsW&0Dml^JdzW?*N*xBM?BNqRO(Ytmah@ zZ^PmQHo>x-hE{IgyRGdW#VBk9YiqVnA$R#8@A?6Lmy?53nedQ+>sOReaUG(Sa-9nB z<;@5|2io`ol%+nTCE-(7iJOcohn?tUtBz*)WrPh&e)&Z%nt~$Ah(Z!_kV~hDRjMjY zlQjbWNcKQU0f7rsTpMq^*IQCekg?}J)S>gHIvv){s@j!uvDTq5_H7onaJ3?|4-P!U zxof8@gaswegmgZg%UUv~5A!C9b z)$J&^6zG4Yfr$|}E87MP(-tjI=F8^vqwj>_O>Tx^4kZkm1Bn|j;6T1MPJu>vea3Pd%}xhR-LVTt^}Jb5@d-uS zmsj;?bN@P7pzh%UDn}b!JQE%vsx1^tK*M5*H-pu=gpiaBS!=HaC&So%vU2`WB^&du zqB$Gk?T*J$M^s z%>3Z*hrjvm5ng|%7=Y}S_epq87=Q8h=K$;a(|%L0aw$dkgi#$(_SaqK`+!YA@%@%U z1~G6&K_$0!KHcw%Q89T)}jndMppQgNVaURT_MHI`WBW`3(91unL}}^ zBAnIvRxskVY8$Gt7AD6)C|64{xdkFR%qXFh<2}nB8jjSD@6=|QV;z-(45b?&flIw< z`nhh0W15bMUZ5Xjy9+$V-9&!QJ{i`egrW_uC_8Yf|2~h%JSAp$mmi9nmU{ZwY*Z-M zX&karNnT#ZK^tkZr0@tLqApiix6C-ti%?npi8Dk?v0XtAfEF$M)*o?FO|{F~;;gs5 zvEO3jn&5IuZ_vVw;Or4|in(rBt(X8W^lV$bgYB-vNbJ}3saJf3x##JkUZFWI;l7r` z+YYz*)RB^}C-Jrn>vp&-@45BD(Y#z5ImiM%knTI~xPjfQ<; zpbC9s{h~-w14U6P4HTsU4iDeU>sxz$E8?fR08>@}iOe(Q$%t6vH`H?f=7=Vdj2o80 z-8`@*Cizgo)RNMrX~i-)Za%|pBel)|D03t!R3;M?V@qRR zN=AiDfgMkn#e1OZA?mWA&*Zn)E5x5K1Fxa-94I;5b4+5v&%Lk^|7$6kbQuOl69Qw$ zL0tif6jp_W5)5y9IV%OE4F<6xFT$oMen~4B!Z30v?9#l_iIX}bl57-ZpH$G_j-iJg zO-C;R%1Gj6>;OIB^&4AxJDli-Rg@*zyg}^c&ym;3PoLYM!o8|YywY6MIi24P@40$> z?u+>2vmbG5^t=7p&%&EM`o-%X!`qk8#>^b#FTg?m1r#xt@SYyTI;zIDJ#PAQa6%El zY)`lxHUpb&Ns?_`h>cPWQEjo4qG_lRG(VcNGKRq=AYN30pe7N?04JqpQsn{Q`xUEk5S&6|Q*0EbF#Jg6X}rpx`5+1;o7dk6 zc9jw#*=TI|`o}Pf{fS|x#+^+vV48?Y9I3EQl2gO=dYX_zEOtxKl`P5mBA78GGDAtC>RFfebjXsh zeg-r|;+Dnv8a@hCEe3dfk=PDBO2fqh6l8yk6rF|J#$mt3=cR-2QD`|Rn@ZYKbpAR+ zF3WuyQHE>2?b|Q;F?{=pzXCbEuX8C+ zkx~3HX9Qmz7{%|%DE>rB**8`F`7yz;56L_ClfvrcE>@fF99KsS3TwAyMr(hDHl5rC z?+L(z=)br2dC0uvF_;yrm|(>Vtyt!*gKrwZI2JEgH3NVHW9ekw0X|!W6A@C_BzQu` zZvqik`U#skDkADVIdY%{e9;c#GIWz9P}sarQAki7{;(-9s!EA{KM+0kihx#tpZyrT zc$H}HS~~#Uahx%!jfx$@vvW@SQVE0m6+bGDxB)H1D}V`TyA^84*5SYCP>aetaI3dg z8Ta564l*Z$WJqkBe5VDng=8X=jvtn^i}q%P%bkx4BZj>Z>?6W=3#G@}93s$^%Ae#j z0O>Gy;uiKkb4g`NY;bX>z&I9aOpS)_8<#n9n&tK{H~xh!>;ns?bqP*LimZrt$os99 zn@*xD;=9f|JMScKpb)M+Bzr-D6J8s04c^S|UD+sEJRg=R?|Gz>@5tuG_UGW*37J<~ zaA3Lsej;^(C9EtpF{iPB<(8a%35OSpymAI@ZwkwxnI$4<3tgF28Fu-pGg$QLWjG^i zS?81FLXmsW9yD(833aDNRXBs{F}x?oP^AvG#LEov%=d6$fQfP+cY@+V2%?X24vphbfC1>Mr%0~#zYkykr`LbZ)$s=(gnxe+Dt!5BK6hWf z9=1=vdHvjd?)GQDc>RRc^Cuic{4N;b4BUi|l$-F)5A~TRN|cGF&)XWd^|Z|aqX}us zEN;F~aOTlK#f!oZk}~t#eaEyf$LI-zu%D7&&`I`{LdKAIay^!*T{1vsAe>Zpd@P{X zUe!tFF?|PTQkO^`2LCU|L^!wRm-1l%!)ooXF!-8=!2qBzkG+F^ zDn|{}wYXct^-j@%I0j#b1FdKE-_V1VD0$r)Y>Z0>dTP`lYH$}$h4xqu2YL3SJsmyU zwlH5^yuBML(1Bcg0vc%Y_iKsTx!O(t)LYyh)wr!K48jw-*X^!F$>u4M0_9_Gf5~kq zYx#8z2xDACsdNWm$b85<2IJ2Sg1}PFbf;^!tMLVHqxb#^y>=JYYhq80+H_JlV?LcV zBqLnKw3fGbskh`fnp#@dR-z_%RM^jba$f@%o1X$a+XpDG+3a6kbQPu^CkFR;S3frM9nf2K&l!R?q{%@)>fkL zvg9%}J%iovnJ9)LUhKBL~vc98g1ko6yc^+fNGT>`Uufom0-HX zm^l&=3dK`r1N5p6B!$`98ud%gqO?cx#`WoUz7zhp90)&o`z*i}>79hsFT)RV^c&V? zgVBF*QHZ2jSTeN*Wdx!}9*JZCBrbJ2bxRx|~*Rwr%<1Bm!AjHQoSz@dz^*nsI1?c4+9TwdpX?Fl#6rA+8}B zkZkg=UKS-wEDjfy7l9?l;&6a{fZ45cc@Py?cL8O?klr!PjVQPs^4WwUFTf56kjz}t zm6trtKS-BdH;yF`aoLZzYq;?Tw!@0K&6KKJPa!VMq4)=)kZKjMVu8OR?zjb#MP9?{ zwpKLqxYb(b>hTrUo9;gc(08Q&{AGtBA>s`SoK+SIl-BXtrlYA`D5DZ_=S01n3o1T~ zg{|B#JA*Dsy>Yg`Gf|kc!VJSgOof?@CD^K&)MCX#9K1A5NF5#K1AV1b;S7M~u#Uv) z%Q>xW2mqk>w$cDOLYc#&Q3Ivr1GfqOH9@z*7MPwO{HNY2%DTDVVH1U(!5nJjbs7X| z-eDXPs5*PLRo|N#oJ-esYyn7u6Kg}FLsUhAQ@ly~_Rx1bv|9191_SV-(M%`YLLdm( zFO*2V|1XESJW~Ay#UHJJ{Os+E@Ma^&442Sh;< zdU8FM4_5&5a`cmsN>nP2v%1o@1+ZSx;EjR{XwR?q03_B+*+9nbm$Q zDoW+u9KDsLn7Y)ebJfgyKtymfxD;x_A-DGDl}QUaEE1KSFxX+p#_+DeP(H&F4}9U@r>Fd2Rk_h*tV&84RKXTdW)5Ei#@m= z!y|VwSASERSwj6d(qvPvP;T{m0NMEmG#4+R>ePUU0-6U!&}+cd4z+NEa(D1@RIWrR zLDRsQ6ROZEa1wk8V~N(kLfP5nZIZ3Xu}ajGSFCFjpFpY%q7RusM@o|l`s_M+aM_eglOZ*c%C9Wo{O9V{E6dd7^*?Jv zknvKlASx(l>??bKZG&F*`H2F<@0GtrD!7X-M=2TroqtMwNNrC8&56TzI963Ovd5wd zy8{?`QoG+m$qr^w`HFnlCxXA0#&yFNY^Ws@_2hFeP$q9F z1dbK~%H)7W(9LH`X*pvmivrP}L&F>0ojHrwx)O?9@QSjsaF~MOk!Mgv+%bDDC-wF{ zs4SvvU0iZS;#Ubbcdp>|Oig5Ss<{SK1-RDg`+IYZn+g(HhLbzI1NUfIL+9dv5{~l` z2=cS3J764YWeJ!}a6iruu2OM5OuiQGUJIOq2hJ6H$;J;SakddvVrv78ECtxRifE=2 zl~X+L)PCF|Z0i@^Ax0X|QEx+0|1K?YtkIRygIFr}t$DCY>~#XT_9eeQ8`Da^0w?=y z5;HHWscf_$3BIUuEd~VkoMa|LOQDZieLHnt?N7R`E&$W7B^p)8#@g34z*E$XA;KW{ zBJtq_Wr7AeGEFzmj$55PC;;JGc{% z>-~HYrDK1a` zEhPr&`vWO0Y+(q#GrpEfDm52^$oqLmS1l6RYS+jrZz_r-AG;0WKd@9y~GX=GP$Yw_4%#&+w~w`$$XPZ+@6d+n;Hf z`ud|h7X6R;>;C~-x&IANe);R9sm;G}1BHiJ+-(=#ew-!5$e(cMXcWwTHEPM<_oz1S zpV3OK_B<@)moNbq>+F8@_G@ej1(G^dRv|oyTRAziUs?gFx9Wj5HOtgs06?f8hFaBX z>wC~j&uVb^K<&FoUf;4lC5in~}nYp?$&xeCE| zvwC=SDKFp`4jVUhhHIocZY~$;`Zbc0RUj#FfGP}li3jQ;@*&Aj%^i1bTw9KJSNR@e zN&zL{WG*laVtZ##*xiChTAWsvtH49g~|9FDo@@;IwW0VIVj>j zR+TBtT*EF4nsJT!PzkCDFa&^~sYoWZm2z#sS%@47t0&n>YCU6vuI+xMod@N4v1YW( zdFKVnE0>}cdVN40;BOhI+|_w;FV#B+ul*@qr2R3%K@}dGJOkLM)yQ{OUQv|Uk}lJ( zH&baNkPk1Y2$22kQwb*QmOrXgc}Rs|mvoFI(NxiEWr_2!;k0skom}}4lzTe@W|`RX!?qKSdiYN3zFyMKQ3EsCh_rKTgttD^!7V`4Bvj@ z^!3l*K6`ryD~i9oeVM=K-P>20z#t#^%%5QO`A&YpyZj(O4|3N36<)uBJ&|33+qR!m zo&LhY>&}PL9$!;3)`z(now7u(Maj+0T3%)tq@uF0J|R08G0Gd?M=E{Yc006o3y#D_ zO+P?YcIB&E28f5aF4sVdG_$fW$e0w2fpTuB@>j~0&T7?VAv*SOJSf)@$K0Zg@J)lQ z1H=4?R?rQc2PgM}k4p6wiQa($NFF5cRCeg~4AN2Stp6EJEg+Bi5qklKf4T6N6#@m3 ztB^@eh5GY>Za%>a)J2gX$kq=#^Xz>Ws7aynofNWg<5G>l0bw!pEpsO`DNgBklVAhZqy2Ir=NdYeKqF`zoU1aS6 zRD$-{06##$zkjppYu1<_OaD4<;U+gRnt?{nj-}dLvq8A(Nk8YBIG1Ll13Ma?N9+nt zRtChU_N2LUX2_Hy%vBmStaEwe+7)vol3m$V)QC(Cy9q_7QT_{(N6`A@}-vuJu1bG6gJgQa^Np6xW z_duG^ptpnB2PRCmU86_}DxmuSbUva;F!CC9bEOLjZ7>Jm9a*aOv(IJ*{R>FnfSL@* z?I8;+*^_}UKTCzlFD#iSkSMj8n4EX1!e);A06U=YVNtkPUm(4=g{NWw40A|CHA|8v zhz{Cj1kPdIT_;*;sMzT82%%2U=77Ym8Vr-1&mob# zjt0uO0VoC0B;yZ9B&ZTnHDQ=DkAuop7|Z2X^xg2k?5XNk6b$>-E7Q(C@c#evZ}^u! zp)+u31Ig*xYr>cCJgK`u>7|(@k@e_^tF6N-8OK`(&Yd7Ka93JCfOK-HudZOULaj8( zO_xK;y4z_$;WuqA>X{Aj0((3NE+8^y^r}4tRsh}Pvc4bER|N{7+2Td@ShWmpYtr67+J_W^d;QLO^aI zED#u{BClgZ_RBdSQZ5cx(Ty4;b|B53cTSc-mcrouN+5(xXTPU1wI3Nq=BAS5rSjYc zQfd}}yqAL?g~W4s-R{CGVD^O%^SmGV3u;4B$-_4q27m=_PJ5ey?Jg}>VTE1MT3c7_ z98y8o0>CsAv5XOwitT~t#dSELRbPj6^L;m*wI2g@d7u%waaPu<2FM9IY?1VBXqZ;X zwsRlIf8lSxx96nazWwRHqpkMax8H}u7kw7qK839OZ^P>s7;}9dUO&gW<98TI*vWY| zN}O11wf>9{(uI9Teh4cO00T*ldSoH5-Tq156^R1RSlqagZNi6SCaT%nC!i>TOmA6d zG2{=<8azqUvfJ;O*w3NI)m()71IFErbe;%%CZ&(SuNI-`il+uv)VQ+47(Rcs4=}?rQm{K4kVS z31;T*$}K@+bRaCIUQ^)y7?6KEA&RM?8@Ix*cvHiSV|VAApnBwe5v__)v${LsM8Ww< zan=eiBCA|3_ZycdZ5}rqCts@nOBs5k6v+`U=$8qsd8i)}fZU+ALM+GqDf$R%8`r+j zb@Y8g*PwhY+JW5e9&Sv?pY}L#xFdJVO&W(bUDRfE;`aBUo#GByxiuhg+x{XdLXjoX zRgrA@&{eRp1xDLE*I;Nj{lQA8LGe78ZZ7-qy5ZPS&g|on-xAa!%Y#>y^cd-YOGICm z4<%uoHvkXIn*-G^sOxJxPSC5vB)cM190XQCLR1#bcjagvl4_w%^ti)_3!I_U8#XS* zEHQtnU6NDhy+N6W!`!i113g+-&}FL@VAo-)I6|rimrE~I0Y+}P!M0{)LfLV4N+d)g zF~AMf`*p_ma65RJ!Sib-;sacr4fES_o4C4&lVYkI?i~SrAZIaO@%CuM!d%0ud!Sxv zPpLMlKrz@uK=1)FKVr-wT~B6YO$>89p9A3ag72%ayP{XXi9?s#Mv!Iss*b$Dgi2KlJ*sUoMG_6#GKPT1LF`O%` zn1|->!nuO{Gzg^)TOg$XrTE4XQ-{B9pm#0A-?8PD^USY6V+~kR+#GO+set^UDwgJ~ z3Z!B1uvx={=R%39dBF0CWj|_w8q#HFhuNrmweIZf)M_0+8?1gBRQld4?7`^_6W+*s zbCWQa&W`OtQ|}l<>_bu{$tGNq{mj^7_`EFC1ICbATBdO_!0b3oK)XT|2BaBSK3SbP z<_W3;$E9+irpBR4RqhQmElTcNq0o`x_ zf&tiK1xSan%f;6PFaoqgkmJj^SJ|Xf!0Zaz;t~jey6Ix=)W=}^w040)X|nB63&JM; z(f{SAP@LI20+}#sAHhy8^^-eYz+glo(*OyiqEV1}PkhcIeSloJcHQ1k{1KWSw%Hx( zFkJ^5_llNSO7@q)p^*ZTq^bj~d?tjeUiBUBL5*C@A{F%-1ubjk-w?|Pi@A%unNn3G z?u#o6xkDHhFwP;AI-F9ja4+dpsj?p3ljKeA5^e-9eWe+#DI8TLP`~OiKjdp=ceKEw}z7Z^q|jLz+RADvh`%8LI+3w1sJsEv3>SrL{`)4!DgS8&uSt8lv+f zj7XGcbshN5$f;^9(HIr|mt@uad4Ki*p!}7s7@Rig$KhZ41WNCpQQr8WXNmRhBjqgZ zGmb}mK5fkc25F!*<-NJUK3o1|YwQ80HjANqoL9LDxPHD%Vw7^rFiiK*8WJ57oznNo zDzcP?jl46%Z_YSH7#>}873fn!aL^a@)vtq;O$2>!^>bXy8Zb;^3 zy^m-{`Z+}~D)M1CGm`s6Szd?4fRRBRcTB}040NK@4AKI3$7m##tTY?e6R5Osfafcf z8Asq)M%CkVC2x4z$;Cuv5Y7x$1{74>X7p_5eM-apsN;BkA8yhMah!6Ka&{vQ{U#S@xkBST zKTK{Ra|5&sr8sm>_~q9%q=TjsiI>ZwmZ%YVj++{YZQkq%m3@~~bJIyjC5Q{UAxK;W z^bq1T5t1k;{cJ+om}%icA@y=-&%24xMOo@nmKCllbP45T+ILcDf_M>a&5Id~k0Rx2 zk)UE<2`WGdgE+Tv+RK$nUf85c!!;qgszUi3QdA3=4 zmo@4><&5M1e*2W7n{edF{v6Nb`0Z`pP4m!Qo6Cm!lS)q&a^Ya!N80vO@_?l1 zOi((y1dH2v3oA4Nwv4(jyY_^H#g`XMya367LMMoNsdpMAbS@x@mLDfqBAeAr8~vH8 z)n+s1{24IWNrZ%6m%4bYSl(HfJ>dS(+DXAB(e{B&|6%QFV+f_^EFrI~4iY2{b*2orLU8q~>4*?xEtrP+%tHZ+9iCTI);p{lkT=)dqj$X3Von=To7TOa@;(Pn1aP;H5?_Y z3(zYea5$xo(KdYjzkl=hrwD=kJC~nP1-ESB38)fAE>_q|T@VScR5BAM%aA$PI@ZOP zQ2RtAP{dT?l{zfqP4f3B7BkLrBmx-&H!Co|7rysF4zr(x*UwI0|JU$pv>xE)vAnl; z23)1&0XJU*z{{-qpFNxc<8Vl(&HmB^Y~#SA48t6)qv1pu`|yVf8|yu4q4^~kF9Vp$ zhtbmWOdkk#uz#YNmfTSi5HPPiKr2;;GiybJQDyK$&>cmc1<17>0ZsJDF@uP1D={6J z54#mSshvKD84|WbXDOeucB(F_ix0S)a{x6%p_-O?XonLdhxJg8!j<*4`rvUOJV8;f znrx~pk6Pn|!4dCj&JG@pc?V&!2q9pXr#BN4Jyta+6@$_q!wRwylW+6$kOWjZD}I4R zFe~Qn0GYYn311o`LgbGwoFIc4a%?Le~f<9A!HB`mJ<)c(x=vbK1#Xn27Bl*&F8DT?1ojP$BYjke?=O zvz0p??EB;ZOEB@}3O{3h;w~N7rb(upb}u0nhMEV9eBgOf)lUkzro?R9Op{VS!4DiV zb=+#U*mCv0)6CJ(3TarNnU++7v4$@tE>Jh_DXOi2nnDU}cknm^50sD8{WK>Hy>s*7 zD#>-D{)Cip8x^L)e3Q_TFxHS9Pw-_>R&=C0;uc#$-xDk_^2}pUcVtSgt`}_Yv{tMsFK{;2{U$V5`F_pU%)R%9+%FphA_t!5Z z;1VZ#S5KuRS5xjeu!*w@ex21n*P^ML8*2b{@R6EnK*O$ev$ho~N_LsdtG?%Z+yoR1 zn3J8pY?7c&!~(4&$#WV8XfVlnwFo!>aSnrv*vfT^YT6~ii z4v}}pKTIkm8m4`8H$`3J^-|o%sxj+g`wSj4mrrVW3DCF&$3AZbDps^EK7%0xt}OY8 zbbWEzJRkx67?{E?amGKYwKdu8VKGeV0QkX$hf(U|2A)*OMVbI^-}acUyDP%g6ZmGc zoL^d7_6b557cTG=faPPlK6K83zlDMG=$oqCTku>ftVJC)FHv#T36N_RAWov2_o#|e z`QBuf=pmLsWu#3f;F00H1d=E!X-qr%O!Ts7djnk3#};g`+or|9oYDJK#$eaJ0Duf{6!`La`$hfQqerTXdIO2!&K6 ze$Js^to8+pUyuG*jAq}xeyk7vP52*9Uw{1e$ME(Egzf)HF%l|p|4*l{|DW*sqtmmw z$f=dOc8Mq5NkKQa*}df-%2Tki`jLu&1s3PDt*ZI&TS|C-S(sQy-1W*A;8+4CAM=PM zTaKV>cv2Q*4ema%ObB8Yav@E;k6>r@|Bymqq-nWEVeSHPMlZnK>AEJz*d;?$EeZqp z;5Ov*m>_pU__oeZ?dz~~Pf#eWYK2N1exr2Vx7YyCu&?|;;>P>^R{IVv#^X!VFZV z-5=9hsfIf-;458u01b$fb3ZFc2cprF+rsIjqh!!Wyut5T%Igs~id?NaU(hjeJM~k%!7c5 zpvp2tq_@Ej=XkT7D;^d6A_<&hf)O3lKHNv7M0<%CM!3jyhEl9E-0D~WN)-cRURyAL zt8;IvHKW%pO=%MAc^FT%PDJd2tR*1!Rvy*qI-f2> z75pi<_Sq5IG3S1!K}k;%jqjjF8O9DGpVQ7WDu{GFw*%*JXSo#^?^6dQ#)BcG#>wWC zK;f7gED0e44aP5!+?BkOE2T`J698cl?hCE9&A}7RUF&FVcsX$XD?fpeRBdGD%QV!a z?8u+gEG~c7Qn07c3fF~~BscEJz9N(u;9e9SYr_CJ9UK!NRW+yoDg5gr2JQ7%{20Fd z1l>m7QF|`q(SSeG!R{aPv+v&i08WmUqJIb~P-m6v{}JB)e0od+;CYYP=2sex-xHjE zzz}x3Sud=FeYp*aV)uP~q~@s}8+J)aKyDCGgOxrQog8FA#uCQoJ@=uD$^|aFqpAeV z3dz>qMNDIx^QMk+PRW=NPpAS4(2RPXSkEu@l$q^-F0Iaw6vS`zCZsbHJPiiKTx{Bw zO((Nd7(t!x7secM31HN#mm7)nSW>$)ucA20<}eIs7!32Br8Or(!vlJKX+9(~0iq{& zwZ$S0lnjkh#8SJjeDT@?kBf1hkVbNddDj93tS` z?O+uX>_wOoam+a{s)PKRfAE828T$cy`p-PRzJ45D|8UBN+n3>ve%sLb4;M*Q>=`7K zXs_PFUivv=A9Ca!+oY&@5{82W+m=aor9X@uq9!WTkQR*m{9f zQ82S#e>T8-J~)eA=>Xkn-X@hmmt0@bV}4$x*50IcqW1`9zW8}N2wGfQ~$n_gkIHIlw{tLL39MLg#kvy(~^{ z35T8B2#Uzg>5y*(H#{`(XXeax@PWEQ*<#HHQm?{LPIdjIz-^(eZ-sn&DbxWV#WT#o zIIn>ua9SXovOwbB;5#>{chEr;iwkG21IT8^QSnA7h~^CScqLA4P+-c2vFtWX1gx#Z zA72J@6PT?kzYO8_U;#TQe8(2H=ln-a^GORpFF3FrSV4aWF32XUF27N!HQ8-w3wsD} zS$l02H2p22%T0tZ#=&Xgrl*wGTB&h0A4(ZdS3^81)1it7AAM320Gr~gY*gE>2=s3H zL=5__Um~|e=Ub?L`{%bm!5&HvPz3*3hY{~ElrWbQ z1p0UR-*9}OpM7!N!$&T2E<}@Y4i7uMI9>UmRo|m~V1Ki!(R+@!nT3(PjV#~?$C+j( z;NYqm5>H3?C~)B0CN&%9XX64*x6^X8p@%}lE~5$6scxm-b5Tbr6iCxRsiMXngbhQ? zjW{AuhdGOAuo*F+H(0-J4GG!>hQk~`qfM1=U8VRdmdjH5li3a-t%3Xi)okfiWgj7t zYS2J??Q$YTi`g#Tm4+V5d6y;64xLrh(vr;NoC@UV{*h&81S{rC?6pR9|#XeKg6;)LaQ^^Wex$BSC#Gcntf+gI^4H{UDmFk z(Ke{6EWV@f;^aW?Tz4?MVNJv-D$tB=l89~_m+OkY9L{Wqn0Nt@;q=UKA<y)fHsigvRr*x4!E!u{az;Mp>02%wJLGe-P3C1hefFbO<0|KHxoiDyp+tx1d`O0 zIZdNZpx{-NMpa%0l0gD-?W4I0=ku)o#N#1WL{J~0@$WHaF zhk!SXad%rQHLKE$tVUVflcBR|m>s2A0Y%Fp5sK=D*gxZglweL62i%hl zNU8j|i?7T;QY;65&<<7tN$+txaWRCqX(kE3=mC|}@V~1T0Hn-4TeiuIIP$LSN=piUBSYK;^ho?I}uBR20f|TC5A) zH*%HPL7esHGvm^Gu&7i%;7pPFwgKG3EgrgCZvX_ann=P)5Nvc>0dYC`l5*!6zB)YI) zfX`OgS_}WdrN2RUER~2s7pS_a0H~E#j0>`f1DU)vKGk8oOV!#R1V}Op7Y4UC!-oO( z&amv|;~DBnBfPr+m%U^ijwsRC?uK(1xpYbD(1HD#;mrV^vA3H`E-4OSk7bb=#t=J= zS)%h4-R2(E-rYrmN=UbN94wZq7oa!;I5Ai-oput&K+k4v1#Jgc!Kg#=PX@+H;!xDOz=&=2R317M zn55d|x4JhDfQ@hmulCWyZ*$1|L;~I0SNRwL@}K_t-|#Pe!nF4O;q}*F|F^f#3|nTY zciYY4F}9FGQ31)2L!;Ek18l*5A4fct1v#tH zY4R#s;(%$80=Hl*HEH(^^qWBfytdjasPMS*Uk1S zZQM2ZJ11&@1j?Eq)7l7*!vFZe2N^8;9ccah@a>C3zrPK% zM&Bar-wCgJp*_cA02?C!RAf&8k0-GW%4#a(BWXlGNEDZ=6C5u3f~-*Xv%rK|XX=&J zD{;m!p?DOX4LqRB$%i+Ngi!>_EnjaH0baN&nmma$=49`a}w6oW=HpEtI;8rGB&fV@YwqW6u%D-mK9-YX@Xqv(%Pb*&gV`B{cc0CTKsl~3K>smvO;W8_hq6u~Ua_a64#N#6SlUkui1m>A=7lTg5s>dnmv9r? zhYTJocRSWi>W#x~GVY^&Z0w{|uqnj=XG&))pS2F*974iqx01uB!gdm6qcwqj8dT}t z!IOPrN|mGAFrMTr(=9|<7NrBkJ7|Vh-0pW+rn}}{H!~Q|^81apoZz!aDOJ4r#`5Z- zE_#nLcyQ7_wJWH&I>6_?4+>|{rOgkKw-u`eMlvB_m>@+(rICQFh7KlAc9R=X{vY-M z7;P(zF^6N->{H__g-xr}X@*5fWniSX68NE{Z!XabH*l`=u~Hf$)f{1Zb*bTvZAw8> zR@ibAK2&SDhf-xR3@13YUWPMF1Dn|?%<|i)Ox>s^j|381I#cBR;d?*KgBhXDDcN8Y zB{g;)=V0TA1d??YxRa*BpjZ$Vx)gUy5D5;}>EMKs8fWlS4OoXO*&N6vw-HH|0}+Lk z(D?;BV{U}XLP1k>-gC!Zp==vmBJW|M!HNz}uD*= zO1KhP^$tj1v=X`4)&pL>Sl2*Xm;prl+fZExN?h~~kC&7)V>C@7o@DqZtSM2Hvzkz< zw1gtHHL%MDV3EE7*Tm)*P`Q&gpxfZF4c$pr>X#azJxnt&K|O(im(Qi~nSafX^xFP) z{><-RzobL#Pxi0>b$I*Jd$VeL4&tl7eEa9{_0L~FdHrer94L9e2R|>o{sfi(@7`2+ zRX#|j!>d6BUkn>ol2Rm~hCf3`0GBMN;x{uxNiDE^yY(3=x~2 zNPAeP);Q5w1P>Z`VdF?rj%f#DWy-3cbf5Uk<#mAHFK`NWdeAa7?<15K?M$=gCZ}tl zTmgfRI@F(_swk!^@Ws{H3vPg!Spbhy#RuR*LqQMMfF&rrZDDpz3`ieMD&T5-Fi1VP zND=DMVW5#XpuM#pR>~=qup|G^R0#)j=y5lOBbtHy8!QZ9eR+V6&1HQciOsMcd|2#P z9D}_;2~Y)5ACuGaq^aaM8(_VWaQUO5=<)a(78Q5) z6~eZrV3;7s_IPk^Jp@`hL-INxw|meJK!2*PshlXZ4>JmO{uW4$)8v~X1I4<9WuQD6 z_!Y*q!5ez;L@bixZL4@vjVe0VL~JedOXMp=Y_D9l9CBF()xqq==^j|EyKl`cRK}*Z z*=sou24#u3Ggc)MS`{UyA8e0riJ0sro{^OL3Vc(Dkq z;M08E@vVQPO2QrR<44Gk-0+JkyIPa5_Gd*-F3ufP=aZVp3NmGeTjbL8djpqoo`yde?-*gnVlIoGPjK!5 znW87BPa`UNVvYxNWA^omQ`qgj)Mv{=BUD?H+%S$tMq6MT|7`Rfu=0`P3c8R$(>SMX zR5x|{goS8PXLt!@62oakIy8H?hWWvE|66*C{m?qyw{PNw&I9NY=3(U?Q@;Idhj7-J zHpCM41aMP40_@e{kmbA7Ju`XmEyjJWI;VR{*ZsMvI-Zs9H3n#BE3&UiZpLZTMsjj) zN18BgM_t7<*PukLJLwRMNL|lMjS@GmRb#9ycMevsYzJ^FV}%#J7W4R*KTM9S z@wu$17MvaejOYO(dKpl$BR<<(4v|nG@_e#)QQu@1@bE2^^E)yM+d2h&`ofOXsI%qP zCIRD`Bl3zIdZAbm1mYA{Q75{E4dnv9KW9D7<~MAW)kfW@7Mk}12yxtZrgPv|;&N*# zWgS`6mUAF&MA}JePhlS9jD&J1OZDX9)JNX9hb|f086qPVB!M1WISGP*8EtN3Hx^h~ zzzf+!{8oWs__EKtpq$SqHRgi&=*Nt#y7m}2Hm`yL#Ir}AdGhrsHh6WOoqG2y=Vk$Oe_ z(iP^v_NOji|M2yzV9S(6YSzlvB?`pD8g6k_p-Fv%XZX{E83dCBcg?6?xNc3OgHb!Y z$T??Ov`C3*i2z{1vbk#wV=5S{Y9DgE4Q1gGs5%_t9%asu9`JH_H)qKLj$@p)+@zEl zoXfzewYpkOqvXR4o+H<$BccQrxW2-~SREz~J8_YtBWO9;Ay~+m3GKFyGo=10Q#4^- zF46kw6QgN>u^@QN7x>t~>5%xlagh4}v_9hdB&GUNHH!33 zX(BsCXG5;V)i&6ARVpy;rWiNHew&^sGHO1O3(Zc?b%I5WSxOFde^6?^#tlNYs9X#v z9y@72%$PE#oGF}7&A0XoSz8^>D-k&&P#9d zNsyrq78b#@i*u6;dpL}vg|LXL>7?YaXfZ+LGj4+!4n@3ofrF6}*&cxmWK!C$IlY7f zA0|npo5B?cM3TFK2I-m#E2G)7k@ODMEND@NJsZ_tD{wtxX?xssXAG?(u7*p!`uu;L zoPL0+E-U2OLxmMaHVi&U0SiEG==88hSSprNd;p}ApQ`hwo)17Cc$dF(vef&x-wWT<|Mu+j z8yY5j{`M0aAptdW7%Tna?T>H2k$-<0-ab1$LyFmPU8xuuzz*REpwz28t<`UPK*+|L zl=4U*Q8Az_GJCpXMPtHvKr1!-Av{C#BXCKe;yDn5)AEwPhua{R`pquV^(Cy+riqHv z@dX}0tmF`wJM*eo$_($YenXc7d7=Yl-jdH2VPNwU&C?y%y(>NKh?ylqDc>6DyxlD) zN(9U)xN9rcE`;YuGD=v~HoY%uA$D(v05elf+Pz+;QUd!f!aZU6MPXDZ>^s>~D#`)u z$qlb@I;pAk?rAcnd=?-B$9YX7HAiH^uuEvbbiL(7UJ5(}+=JM3s0axM^6m*Xx~bD; zCEWhh-2$~au((BfbFB9ix*gvr)#;)lr?Aaa7va#E{pE0>uw0&;b8e(c9TRohZw;nM z5G%!A)DVrU>jqy3&>hopH+)6=c6Lgn^s1$Vd6-6UU(%qRg~&*Lw3CGpFF|07<>q9e z{tP=eD&+MQe3_$);03E-9nsg|?^C}y+U9fvT8BWVTg;3e@FK=rbh@Y#{Icv^Wp#1i zxxw&%4wQz2AfSpD<={VQ8|WsR=iveEx$(l`Pzj%*#zImm2f%`%=XBxQB-h@EipSCB zQ2ZS!5S7k|*@oDF=rS4TnEp8YM$H+N(GttSHvl#1l5i(=ba`;%DN?TmUrxZ`PE=piOsCGn*J|x9&cFn^52!Is?+M6n6#WMg&j~ie% z?S}O-F; z#-n#{|NQz9RZQ_ke|Y_f&;HfF;jf>{zeUMO;e)@)k5unkE#TiWW9c~nl&gH$4gJ<> zOT(@w0f*{s%ctvw4EGl}vgHV`OP(F+t^%Mt?j6JdE0G>aSrP6~fMCTRd~cfrMCHEk z006v%?Km463E9?s0KwQuKLU+;2{oBg-^N|$P+T0F=E} zI)J_bC-l@S{Y2i~Isv|poHuc4i(>r&IM?D*dmu;JZ6MJc?h7t%-O2wcM0{>`Ve1ap z5-^YJsEW0id3EwOtgP~(%*0pQF5x^CmI3BvC&)@Z!2NG^xf+#lau1U%fL3}CLl=S= zv0}yujfR-$2`-#P-c%PZAIb%2m&$ceb(!lxOU-LA2c~9*Eds4G(XX|8NXJw&KPojt zoRsN8E)J~?^-Xq-xc%1Rb?1kIsrzo>ksz2j%tYWL7M zAGkj`D}zryOx$ptqekGqk|PP)7i@|pRw{Pe@j0o##DfP7c4DU#IJ-;XYAhqvS##u{ z4;U{P4A4Sj5~~0T3|)CN*fuNti{^nMMRicH z_5o7c?t)do1HlDA(BL~rSPe235K6HmlFGCsZ#x17kdLZW$MySpwN&vrKZb8Vk-y@1 zFwe|;;+r zDN===hBZ#l_;kSu2)iPx!Y#g+Lbq70mg{TyMh(Otv1jikVh_7+78Yk#PNE8K*Bnzi zY^w<^0*$pd0`goFxNn_$nZTo)F^e-N^2yYOb~KbT?l{+*mOn$V*N& zd25|-Hd?rYVj$<=MqJQ-03OSW_YS9mYX^Yr$!)@#SPS+#qD=9s2h>XWCbKwDf(w+e zp|L*PxLW{IY@#^dG(6xuV(-gE{ply&{KgsVrr2**SDcmhOtd{p|8peyAiY36WA>#y z9O9E3-NV*yUkG0&{dX7pN>Z}R6}noGPI8A65(Ir=P%n2G@k)jN^I?M39MM5##3n2r z1PFRLS9?uXWhE)p-V`&=r14)$EoF2yD`g3Mb5!QL<%qMF>lhrhd|WF9e11fB z7BygKa}99O)Z&_*NIfaxlPvwfMe@Lt8;^KIPuZVw5W^{er@kd1hDdxYQmf1=cM&Pn zE7jVP2z{KJa@UwQ;JC*&;z{_Jy5#7n=Wa6)X*M#_>wgaa?jX(KUd3gH` zyu>~URA_nk_LsNMj!lCkk^C9RxcoSm{(shhzY_nt1qO5Y?_vqjtH8>mZf1CucN^dJ zdvk#q)8Hyv)qpWg%V$=)VrBD5n%e-EjCGs@YpF(Rdeoze8k^B)EWN635B=m38^hL9 zHe(=K73u(({-*v$v?Y`_L$#X4CF&}0k?084A9xm0(t?l)D@DV>z(Lw!^uA}7A3!h3 z9#DpI52;eUxQ;6*{>lL2$R_1AbI~5Y9;Qc!W$|_ioiCW7%Y-C0&I1AJP$wuIPi0T3 zzgU=2uGlldOc>=FQw}usUy!71r-0nnB^#iO!1~YpfxtGXFVotRn5Py|U(Dokl5(?5@CQh>ns8bE7k&{e^%Y3{-+zIvWfq z_TJUByD5!w=0cQ@#fG)#;>IU17L%$=3j3Pur>2*FT`D#S`CFN~9U%opZi2+G14nz; zRD-TpOHu&dIL68M1QS$B%yv@FkEGGjI99caDq2=R#*K{qRq#>#xN#o^iJz!YlvA~x&n^Rt_5fj#!Vy&! z3W@!X3sTo&6CtJ8gwjbS@-;1Fze`m?bol|af@d-dCJbo{SD>Nxu38}@$(C|q$$3|m z83Ykds`aZ!f(6c_c=PF~MTismpMO@`CYROi{{w}3^+$G}zCEdGp2 z%zjQK9qX(Rp-F;!3BfyE9omKQZ^FN|vHZucpNF?Us++>w?-jZEDUQGSVaNsxIh_B( zb-eO-{o~umLH_w9$L!%Mf5FY-Hz=6At5tRjB4&0k=EqLzyMt8nh^G~FIrD~u@a^P^ zGi8dd>8wh5d*cY*j+R6Pa2>Q6Jz<5s7f&h-lggdVw8VP=g=r*+45OE7-|s+Mz~jse zoE}FuH`qhk3K@ceYQ&2q~)7IRsZECA@$R zjxo3nWNeS66dt~EMZR*6t0yriYhT- zU6S27hye|^!5^-J*M8XPU8wy9ykDOMESI{Tm=zaWn@?v0C+IPAS!Fn z85Y0gTxM<;v6r9St@w;_hWzL^)3}qoDwU z3jyn=z7xLxeZ#1}d;9A3&+pHTo`a&Y^RWU)jOvT&!#cxW7?Hu@c8`2j?Ews`9Z*u2 zi?(5>0Ii!I8fL&K-G^Z!(bvW)OV(eQlNy`LB2ijdrDE~w>d#q32&0m}h#SNb344HFED8fb}jitN~+B=)#2R}1yc z!HtsQ7mn5|7v%`+Dlp@VfK{T-dUQe@=2F-09PbRlyxpn!BCUv_2!`US5;_*nu@k`Z zgdzXoDq*G{h8>1VMb-%D&=qG()s0|lu=-kyh2fhdlG}h}*XxEr3t5ZUmHb(@2#6PTUdi`2K)wc3 zZQX8IZWgOTYsGAqr+RoSgIe$@cA}c%g~(GhQ_^U_0qRz-6WfG+h<+JHpgyqLsA;-+ z0Uw9>(n-zGxIR)jv4t3#^Kfu)Iyb8MWQBT%P-zhzyEco_FmKX%BKN_y^2kUfh-f*z zdaR^X1@)geA5cn@nmaVDRZXZ6rGz_UF`%2+Nuu(oJVO_rSshJ=Ly705VboNop;(`$ zGd9JuTo7FRl$aD;R@^+iWlFHicS)=g6GsiK2dDb;IZ>On#7UzKCt`4~2@N25wi04&f@LUkC7@?}z%mJ}BDMTG`{CJ%=S2}LG= zbFlr2=d)62Srg~6|Lb4)G4Npj?5D54`1bhUpE!N}^KbrM7tCOd9Z6&F-hRqez}Nrh z>+gg7^SPvgK*`r9Tp7|sGQuqHM}8k)I6%sa-h3XkHO&b3JEmx0U~#bv-GdcFqoHl^ zp;m=Uw&d&CT;CVzN1U*rXn>u+1)uVR3~-c4Y{^eTy~LE$5^nj#Ev^(RZHOw0wqldVAI^PNz5EF^&K!%$Rlp zmMb*?O|dse_!jr`!$zy2)}*2&(yUtRr5f$D{IZC=dzuam$PWWNh_e1!J>YU(c1?$y zRLYbLZg3VXsf;?(10^BuUdf|`DUccL0VZnmNjk5Z;*yKn6~o6hd%w-IQ4xTF%||V? zh~+g7SVLDPzEifiF>~T5%IXZZOLWmn&n45^qf>V!N=is{EAQzJw^ECIBTe9`L*OS; z6+%8c0RZZga<8o|_uF{kj#QP?3!WL?MEea=-Wlo$kOTG!*t zS!d5JSPO;guB5ba9+`)L&C~d^70*;sD%5!8Z zCXl7GZzXLtmcn8+ph*YW)SiH}k}J7YYf0ue7uNRi$3&t!Na>H^?H4@$!|Ts?^Jagb z?Z_n@6y$eM+=Ec;tS@x)8IS%gdu-$~m)AtC%o=0Cn>G(4{|X7{SZ&s;Pc26XF58P8 z4{l+@&X0fs1)nYa&rxa59HZd`Cno@dMrVh?j`ZNO5$93`uG0MApuCR=trpxtT{g&( zG^N-Uq!Hai*>YP9anki7G58*O4rL_!blwbLHe<2&MN-iXlr&T_yL3d;Nvcov<}5YM z^7xxeu9V|hP9Vh8B#b0iR%2^=O_kgsu?_`q1zi^m@&WqewlwI^K{^_YcoJqhTw!4- zRHYABs8HY%#(XEg;Cg5~xqb(V30-!lz8d#>B!>+E2WVr^7)a_>J4ZN5E>JJmNFFI% z;8$dT#xv}epD8=PEu4I5|IiN3H-Jsl=HV376!?Notme+x$-#QlLaTIl+wSst4sNv! z-Fl=$x}~K%b@{Q`?-%^o&J;!A7thFwPKPj|bRn#%>cTUN7_GY3K$G*5~XXcV(UQy1K~(e?rpexa5Z|U_*tMHK>VQg zM74!t%TA=_KrmYYha!e`Ike%Iv3l^^*@HUcc-ua%j*|k|CeAp zhbOFw4V&|fV?7w|d&2^a-b5G`cdW9MJx~Q?i+vUPkn72Cqz8u(i|6N38i-7u9jGI5 z>3t1@G(3RGRuBq}<1{hTEj2t^@?mU70B1m$zn`?sE3QO`|G+T3qyrN+(}?uFhWozc zSg1=c@P6!l3M5ra10m;YapWiBmlFb9vTBaAnvU9oj)$;DtR(ms z02Az@ZZ+h2=+~T=2eYqcMit;93vJNp%LspjUM=q&?SpiA8ZS04l^4}me?Sge#auNi zE{pkh?Uoj2Z$)V{Gt@u# zLmCToxc!G-n!8fbNSGZqV|JSN|hgYQZ-e`Is zn6>GyOF=ofsPxNy7wMF0jiSu(3h0^mTKrP{3oz|1Yoq3rF*r0r0ZY=Z+<;fK0$xtM z(aUd;)H3;0RPYiHYN^g=IeQlvWYRTyrumPO7occqu%m4aHzPsTT{zrj>QBT`Pz@(G z?vizS^uqK|e4iKKf>bx?;;XB2YC5Lu*c-2f?8mzh9P2lse9U>VBh8LWyfrWIQR9JoxL)P#(Cn!Sjw02a0qA0v za9dmZg5XNg@g8;~PNli4@r8kZR25ZK>_Lvsaroo6KZn;ZPFri3vKO$t_MjT(ei%5W zK}mJ&uUDymBKc9vzybj0RqbQ)BXqW{&)DUK+kjs8OZo5|mNofi3A2?2rLtl&)j+`Y zaHNKm(B#Uc4q?PR413MoylQKW8v(7Ab({`5z3HyfE3GHV!J1LC1mIpP5ojMI$ok(uPT zb&6cD`TP`~8yLQ*Wsbl{tTOD+9nq=kFF0dJ3^EqW@acA#dyhEpoUsll+}Dz3l7m_{ zjpK$nJj~>|Z$*x@z`MwGICOBVvmUJH+^d5_1xM$ux6(nyd<_h0%C+GHrBwCu>{&;d zHmMHLG+nqmkW6=WD`o7~EYd-0e;2B`<$1^^h3;DF6yf3=|3-RXG)s}IB>9_fapQ0S zgIYE{7pzl&ul9%qk`eYBmjlT*VWiC{h0DqX8CIYXM-Ix)%?p+%Kt`JXCT!rXhLr1J za-}oq=2(gZ5FUTasY0BR=kaU-brxoUOu-=9wk4>wa3bwl7M|mCDx|C_LTYxB8ssf!oKb*&U zdpU9s)KNJfjoHfA%FQ13%md)0_N`JNY-F)w&Q%gpo)LlyHDH{Mh0^=pN5X&g_U=fI z`jP}-}C+)s@n*gDXT{pZkUCKRS>>y`C6+>K0EZCJi-_IdiE9Zx6(J6$( zMRg_!m<9q;v8!xSxLQbcSW5Oi$}%#CXPjm)&4{!@xQ$i5#iH=4&Fv&d(n8KGi{@Hw zXHMFKDf7aj>mZf%Ji7U4#@^;*xwm#_5D7BfCKc<5MWESlV{FmD;|9b-@(w>-V>Ruo z8i~UekVF5%5Zc(4jaddXbbyzQ+&7OAUJ4D6O((?X#Gy38!{vmo?(m+dgJ`gjFi4J4 zRb|YS?HSd^ajMeL#xr0XlY9XY>`>sM>2iF!Eo3j}9ZD{6jk9WVgNo&JGEF87t@HEf zByC<%s!$8DZCBq^*uOQIDU-$Yf2z#E-Nt<;{zB7C?4d9DWEeQ)5e2-%!y;Dq zzy3N5U;pQC{@%*$C&}X599rl%hdUsV2G)F}aMK-RhrZK7ybeZ8Vj%7)_7UVf0#^DZ zYz)*;bhq=g>^hGsft`;AGodUOSDjRNWW(>m?0FwUE9f1>9((GHxr!YlJHmud1+`SN zz+Jv)sO_Jr@XWGaWnj==oZn9l(sps(SwgJZI%g@%N6xexCG;t@GFF}+4gl!+fYve_ zy?v?yC*@jcOb@5IN*QOOI#BEw?8QRfpxQN@u{+?5LpLP6@FivJIG}OJ)zv}?de!lr z4%&)i9cXL>xdUuu;9N#z11v*SRm>fuFr|+4&Uw&pL_Qzal}X^KeF`cw{%RJ zXDwY|%e1hd0{7i5KaU z$dI80m-e-&Qzl^< zn8i_8#o-CdJydhi(Uo>Vjb*{^=p+Roc+bmQ-o1?faG`5FLro}c0_B3%z^AXTOye%P zTMiHd!747^o4Ydl=ahw7E|`W{uv4$&ZXA4sJ4p-5;qDaXi!I+AMXqm&{2;A&2h-?9 z9kXPaFbq0vb^%7&Zb#=VVqMEw`0Bxcw7>@YouQR`K;ouxFtb6g6NDo4u&GHkuFpWi z-MID;1;D6hTp7v70e}Xs7S;7=;FzF<5?LHFk{eejW7KW|2M|U@*;|KE^y@Nd`Fk+X zSk-uqM9ej8#g1<61}rb2WahwZR2eQ`l5IMqOm}u%htkRlTTs1O+fJ?t?aD9i?uiz~ zkg=*Id2xRcWG{Kobcg9+iw||h=i9zmWg&QLU4bUJ5`Kfy_r_pt^|Am^H zT}U~V28B3uE!eSNSnSGII5#Jcs3Ro)DvpMr7`0*O=?{BPo#%tiV|s!5zWiIS@?kn) zInz0~hL*e?1X@p9E=eq!ZgS)BK{G3?Y43R@4*~G$I+F{A;1rJ0o};A18uo2&o(sr? z{H$hNe5%`aXJ2avsI3{qkb1NcJjJ zZ}ove?#}YYJcfZAqkodo;(T+>KzQ4;kVLN`G2o=$c&ChSMx=@z!~ieq7*Z;XZzAlX zU6dhjzXT20r8z~6`Sa)~KVPj*e*4aMTt$W-EdfZL_~i9R9E<#EfA*tq{@y)K^RvHr z`{~qV^yhoodD~o8Zh^4(N1E^)8ci5F6UsRKNwRI1$x!`wmlZNnrxu{Bv{9u;^ZnvHy z0_`YG^hS)`qO`U7q~wZHZh5v4wrh)kam$VOJl!M%u2M!?k9AXfYzoTVvRo?_V1T_k z-5|Zt07A!s*|iDJr(K>`e23F;dgv`mh~%;ZREc5n(7$TUbx`z`P@gYAaQvk?)!7F0 z)0E|p7`Pki0k=*K_-4W%b3Ns45a!sk)n{ky?3|XUkPYab6A!0Vvc1RWW_ilnhLyT~ zTDO8FU>CL)1APZXw^?=L61vu$+g%zyi*Xsq0;C#~1%MyUL1V6pK!04gNrqF8u7#wJ zps@#rbhB^nlwPTkez6?T4q9duE(wXHJr{X$iW%}p)L6rWavhYVUIoLX!Wn?TkZAHD zrzjJVadJ6_r!#y2Ot-jyrP!nNUh|H&AU5EMDY;zo8>=BApe5@%;fA}IKqkyo;q4fk}-C#ecE4PwL| zFuypiEwxhKEHF1<$!LY`(pn`VpgNP<69J1)egnL!q~*Oiikd1=U5macnNo6Gz}sRQ#HA^kI|4YmsB zNGW^xo9n=O-{Vd2&8Z#CU4c_F0h=wS7G(YgRm|cp6eFs0<{X zU4eeI$vA%2YWeRfEk^}Bh6LeE;)G$1yy}?%CBLw*?=R9H||J#8fIPAWmniUE|EP@K9!{bj6ki?Kv_FLOGBmj?KuFZ ztw~rf063oDxNG3O%Mf;5lnUL#G)O0a9!XJnn+r#RpXr*AuzXw!W`cg%sKr@gYer#S zbOse>b^Yw#ghMyN+7{|nmbD$c@BOgI^mIQuLo4y z0Bn!^s$wXL4R2Jw%CpvF>i6BMQP0T-QkfilFrfyiCzS(dpbyAU5VkiGuZ<0?L9b_3 zJ2Hk-oE=jL^uZ)~E~5a;j!)Vt!1*@xAFOZl_k2J6t3AVfNyUIKP2({S+2203_Ta1V z?I-eAL2}?XP$3A!0IG}Bk8*w)_A%xIU{XR(U~nzfgIYtmykiPJYEsEtC5AnQ2%Mk2dF z?zaqTWWf-RsFR37sd1&NcEgUYa~{9)pX~jI8j%ZJK(LqsY&Qs&8T=$pZBREcd)V|5 zf-o*^aYb<FR7bw5nlNN>Yhd%f4y_P0Ha6wO!W3{vi!!v8P=yuk* zEz?1VF7;prk=ueAU*hT5l(aIC@v6{H3D`=__1KX^GRvhNMDi2V?B5Q)#gNACNjqW9d`T$7HS_DK2b&(qh_dr0R|I} zbDP$?7(lI^xDB0a3-u+MgtmEF0MM}eM~STY=nvub*WY&c`dKO`WX0jf@b+wOTKPu%4EuV~7xuDa`HaYrAm zBe-OrT7>}VHp4SM0vVFnO~l<`dzqAzwMv=iKSk1rTsNmhZ3gVia07SRn6wF6c*FTA z^*eVJA#QuBK{vZnQlL|^!SH|peQc|*fB4N0u|w#Fdhq!Z2%JZW8*ifLfrPyIO2vR$ zZRPsBNR9NGo7Chvw!4IwMdQs&xe*>GTyd(ChkZ!`-e%!abMZy>7=urMg5MFkQ;-7M z1p+2#_A6)$0Ix)b&jKuo)I@>4!+k?F|6VS$;bi8*8sl^qx{Ew@@ZNqT3b;tXT9tI< z(2Y(l;n_#DYWIuGp~N(T!ck^d^d0L!eQJ0CcJTttFTKS;6~bh~2NSK@;PlCL)NsdR z6Jccmd?BbeADTOaB~jckk!(OyG|Vy!{IQ0%vy%a>HCreEQE5)WVxoin_k;v%2Y)}lt>`)Oj z9D`$SCvl3?xwDF5aj}XCP*ea-E2pLRNf6XF$V`#~b(Jb>j?DC>}yWt zr0Dzpa#D>Qh_K>PolRV$L>JUj#ZmR>QO=|KNOTyN%XgwzY_>Cjs7RB@%GVuj=q=U) z8fn@r(yCnX?*&d#ZT7KPP&sjz+rYk6UfW*LFAb)`bvzYCiQ7^6upSga!IB2gO+MzW z3vgR7#tm?EFieZPCrA$^LFHKKSzO*Yptl zITRc}J7Ja|UVodPd-wLU@b+7kcYl2s^us6FWa=N^K9-L^4PXDmH$Q~Ul=X^IuJ3Tt zM?>Vx1H}MHmZ_vE$8ZgI>2&Ye3V^C#2-D=kV}rb!%i1MKSqYQ~7dFyK4pp8Ld{K8h(ph!%PLupnVAl+5vK9c7 ztuGc^LH$wjtNX-oD|d)G@K6~Fc3{q&9pzUSUR)Q$1CpJL$dmM%a_$d|oM<6&9Du|K znI31)1a}k+q@Kx5ii)`8fJH4XjT||c_vD@PnlPGYp9)?S4g+_unSQ4mbl82uI5a+b z;zyt)UNc@wB^;^n-e=2K;PXa46=vH17*w{oI_*|NREkde33dQqwwZulHP z+d!hEPT&uo-Uu(45G4prL}cU;l~ZKpT#=YMIhefHX9q&k4OPMZ6@ZUec;H567k zS>26g#-eD&TU;3vcbmb-shQPtuLXK0JR4%nhd>j)&^-|>rT%W=!(kCKjN>I9799pu z{25I(a(q-No|9uygWFX_f1q*;>Jf&tB$lgLjkO(8fI;`hl?}91B47{`OLr)WYETUY z+#2)qB6f$n5ZFhh6rl@bD`_#awri(W?8vzj*P-RHbY9cj3Z5@%<1ik&j^(!a9uxB< zmCE5cZs&P-Pu5USzz`cbt4_f+%~B3@?ONIj(pMBU!!V;x6ikti5^IRsg;BtzLWi{~ zcwEY9un%3)e?esdEFhx!0j9B{R~5<2jBEd7=xp995jE>fotY3h7%8{is$H#9UFNns z{5I74h$@D_&9su1rM90?7OgL-&0PZ}&REZZQOj2gNfR5Gt4d-MtMPeK&r-aNwa;UB zJrvAGx%-qkn1gOBzb3ZIcFzyMU9}+APfd7}We_M-UR|j~v5YekE_Dw#V1|ln@e4J{i4op_7N;3LPX`f72WME{+hIEFdyJ z91||r4k6%3SC%iNgKNv9ZMn`PRG*joD$l8+Y)Y0zpIcW!lq+R?Y6W^#wUg>{g$P!D zR%u=KpcnD^8di_iIr#64jUW!It{(=Hr5m%3b6(7IpH$vmGzswZ z%}IbZRw={mt6I3MTcEELmm{s-Nh?FbK85uZ*oK!gH7>#qRC(lxr+CJY;ZFH93ld_E5p9u08Z1>nC5D5US+`dQi77&P%y9Eyu=6_sp+jqQ2>_NpB+}`y z!_LCXtX`$9m6!{X^epj$MjZnzbl6;@QG=jLA2yPhcDz|sK5+o*{~*=(Po&b88eB4t zp8UY{eWBR?>+nDSr+jt@u>biVE-wHb?T&n@jm=wdR3m(qTE|I0%kYGdNf$RaXdMxd*DH~UxgZo-yqx6)je~Pz=X_=5<5mH;Rh0aJ zGD0)C&!gazS3wJ_rJo)Ia&l}3vD2uPBk1(!xt(-w3%0bZktWCkbMP^#bsUlvK?qYi z<&3<x-~e%Eryt+2 zYQC^kF$46lY_H8la0`ewUe+!Jm=311f;5{@!!NJPRW|D%lb&(Ws zpx`svN$S|a{>L0$qP4oG`>Y*VrE^LWbUH_(xSQaf-M}?(b2O=S^c~B=Z>{APv7Cfq zrlb&f^fpI-b?p=xcqb6Etv84SkWg?1Y|VmN(q3hR!77v!EdDnJMF)=?!xDLa5aUhd zo;%XviZ!ytYEoMf^oRC5^_1=*)*Cd`aZ?ABxR|G7hyRx2ep)I(8z>Hw9|OwXULqI+ zq%G;_jf_;u=f<P=fM4`eC~}?MW^&RpO3U4cOr=D>+Gql&k>m#|dyOab&;X#v#2?;?#%&bL0{=DJ&}i zW~rn0dcUk?=3=yt7F@HltsT2a*)q4cRvD;KvbW)Lddj~n-NPkKba0ktrwrXg`9SYb z2l;(Eyz#Xtrjv;9!Kbn_E_4oV;I_&w-y9!umHQ5~#b%H!e9&PaDL@^R&aLg0U*5M0 zfkgRg@BX+42F+3WBjnIuScIP46a;bGv~WB9B$5ql)KeyZqmXE{sl6WV)N$_l=}G*S z7GXBci9s>ZIc)C`KdvtQCbepJ*r<+}NUnG91WzBL+VfpC8=@i;egm%Ya&rX?rpT)D)r>5xy&vRiLKlYlBp}2Z!E5E zBWz))+tQ+iRkVAy(2ExLB^dVVTMwDnWj!#KDrrtmQK)9>h}973ph6&$Z@~^Btg1I! zS30q_K#mlN@Z4j{Hy?_v=}l@zDe$F`;3E>zN1b_EpzhrqBvm!`(6+mQH8y^)Z@O{w z655P=>_EoPN&r-jLVhI03OjW=)|A`aWmd&NU*~c=S*Xg}(@$L{;oD=_*8^&%k^weC z0FJ$`iC)3wLN%j83TufG&(lx_`#qm9V$`jZ?f~LM5wl$I5oHVbD?`5-E(yjEefT0T zO3p5t_|W+bM>#{2wnfzv7Y17xd0S5f)O!s_w3mVMvJ9kRUE*Gp?7ca+xb9v%JBb05~Sh_6}X0@c%Ey#X@?IfL$p?q>^rda_G z?dT`*F0diH5gXI!t<3QfN-$LrkUPp=*esz#ZoGXM$)yKQ@Z=yc7d5tKRK|^05R-3| zv76)ZiG2b+FDRp9FC@1~w-d}Fo!i`w0qikHMP|HvAf9rhS1nfcfY3vTTG>{r`c3@+ zCDyh?ii}&)9Ri0aUf_&6Iy(kJv%KA*l@vG>1h%Ec*ro}IN+|rjKa!ARbHLV%&Jflk~G=1*I?(7YsF z$#e3mqP0@Zt`Uw^@)nFv(_oNmH#LAJfB-k?u+-I(9PrCaruHd9(PO#eaG-+S zt^9d6D9eUgf~qYmN`=L>6al9(eBp#@)q;B+q}{?7|9f3}3-;YkdGz@h;35m~@MAhc z`R_3uv6$|UzJK=dYc4kb`TbYn;|I_hUue@Sb+x6io$R<=MpI}5B{V)If~}tiHRmyc zKd}(|@Mxe!ZLw=x%W4s@@?3yH zUn#Ha3m_6e-0tIpC=$TM={B*GA}i5)T!Vx37Xb4lTn{7gvvkE;bgzU#iTzX?`cfnH zh$X4KV;kc$&;=5nC6%G|q~7d6!2newH>zs;dW{nOT8VI|zf+Pg*c+Nno;poh1Tlb> zg6d6bU_u)`9t+Tur^>W}PUT@5*hfIDEV5uM!(FL7UFhd!XKT~IGD`}Kre+H^K&&6y zvC@vDE9NM7EH1BHjY_Rj#avQ@na-9Ew3YJiG^Mdyv}zw`&gm=MfxHzIdE&Z)H)LkY z|H&s((%rEew{`)9HP)uK+C_jT!zb7QRix*1)G)n4nsT>ry}bn~F_Ov3`nzUQ+~>6b zc-Gp!F_(gSVc)WWwe2}kw8qXT`BFDHAs_Aw^sO5YDf$M|jy9MFj0)_vPqHX;r||S*{Dp z7nSNe>u%k}Mhaq~+$l~%RP)uv42ruAcHlBS*^r@V&E=2aq#@ds*0nMA^%clTFm9ofB>KvZKqYq8I&pP)1X?7XlK0 zz^~yi9{?uh%kciI%Qv6D|1rFOt#ncyO8?5ru$L4d0QMN=2|Z*q=~>myIwXAnx#Yk^ z8tcle*j1T}(kn2G!}bT)h(-u2wjtq~FFcG$bV70(|I3A8Ji`q^V{mn02xDO4^Gq&d zpnJ-!BJA1*XeC|M8f6kCT`;^N_8beJjTR@^kwJuBit`iA2*AYsTXaaJGMO^L9XsBc z%ha~-!+|!3z^tc=1mvv!lPV#;T$V$SIlllflafOO0l?zmb?UZWHCywUT(;6)JAP3A z?(D-5iOh(^0l(9JHVbR%d9g5BsZsBmKv=SNQtd7+cB)nJZIJOsPMTK0}P4Hq>DoH(KZ=fssU~qB5QTfbxrwOYKOeEzN>o)>7+B=A;2uP5H9f=NEv^1H!K0A1jR;G7sNS6y9`e| ze6q>e>}+LSD(+gfcfhGr2cZQn`GQ(;)R-PAF#wE;m)c#af-jAvEAt|R$Ed|!>8~DR zOP1*(t&zMtH#<+OqFt6d1z!O!wRntG>tX$*Q*T_RPlmgUb#b7aR@|-iLKyF8`Cw=5 zd}8z`iK}v>T~w?jKY~%<;8PW}Hp8Woy!6;@T^e)7$UguR1t^8@oSp0?nlGsdN~w_z zWhifUzCq)Uf@_cLSKq!R4Euh4(*PzWEWxDf0D;@bRS-+;MHK+AbvRR~53a zgJcH!DLxxDS(_#W(kP}b2U*mtRn1yz!@9yKJ~|}nxJB3C(fb;1eM+SY%Kst-in(B{ z3Nw960M~#XmAfL z+l&i&`IhaVgm1ZU6wg@Esa&O%7HfM{T_E_jWSIiUq3&cViT_xo$n{{Xu8hj*M|eoA ztn(`+eotJucGsYiNOmeUOLov@fB>N!Ey$u2J{n&4q4#C$9rx{nY?meUhpYRXsstdg zR{yKq0CxAz5z}9~Qp8r(E&#D-r9U73ty1dO1JIAC%Hy&XQVE)vjeK4}#w6<8N|>EM zH60)4A?Kjmq;^07uP9;M+{`CK>BuN4+|%K#*C*+2&B0o|@6w`QmmQ$RbXQXy`))^c zFm%GlJPUU}QD9&5F=^y|xZQZrLR*V*OS4hCs!O%KIcSEuKm&yiM15{r6Uoew!i5LR zc6h_zToVGQns(i6=i72Q22esNCB9tziUeh|(%vyMeC6Rwu9zFh5s|onqbVXeb{SjuMb7 zrsx8^%)&{|Tgd(?N8ae6fazR}0q&2tul(mn8>O1{|TpYF3RMj7$GggoZPC{qsmBzxen*zlOhjApgV< z!^f}l&;Q{4U&Fh}`F{E#spc~tfBx~~?0fxVl{ZsI>`x&=`RT`JA3st2O!)W|$eGRy zgjZk`*cW(v%57uHH4$jwnYZKH-nj?d6EMEUZL(D}ee4VN9~lAP0%4OMfiqKt5tI_1 z?2>p$8MCk*DWQYl^K?K#ZCLdPTkU-F2TkfX$qzQE(CwH_4Iq`nHV7KSK!kHBzmCqn zT~QP5*&P)i;UnQaVQvt8&7t}W30nnV@8FTP#_leEeX`uJbyIV2RTh9w3~rCPJ{1yB zj#7EO>3k+UZ$;tLYAG>kWew+!`9Q5s;CDG)X$=nMTuxF_(}*j(b@hV;0weU26B(*{ zqf+apnPc4_%7W7C9X88T!UwV;LTr&@-de~#9t#vX9#`^d;n1s332JFAIF?cu zP%U8vJ05VK%Y7?4au@DX?Fhcz6)~6TvXrLs_ z9R|`U_ZGMgkjYS{Y6ql@0Qh6-7rP{ih^{Jg1zJ}vUJ|qzAg>F37;YYVO#U1#60xSp zM|l{=8X;nutI$`cDp}RW@4QwA|I}%#Pdv<3!fkFqHnPuULBr&whJ;-XoLe8RmIdHg2gwC_U#Xi3Vr-}!v3W%{%J+m13QubXn51}C|48pLdd>Dv!*ZD z#z+J62iqrXC|QYnA8Ys&b6O->(k-qE9eB-DC_<98BlM?ROUX(Pg>!izcaTM` zNvLC>%`|GB1U`|Qen@<{L~rv5-1r0B9XZyTl-=uxI;P?rX$0ak z^S{)<8aFrS0hM)fX_+0J|*{?p)hnAj9nAv>n_>ZC6wvkyfv(`8-nM@6wta>6T&@2-Yg-&(2LRYWmCE}CmzwR5 zVZ}uGn@xfx!~P7{6NLgbL;-<2T2UIOQwud}W};A{JTf*rcD;l9mfy8SdjawsTkEuk0zz{vCb?;m|EK&19QU$dx;rO zhjdk4(iKc1-0K5E+RIJIv{5WDW=NFc{r7(x{`N>2zsK(QFGfedl0;&bPe1thnz`hg z&))xtC4_3<|CHE!$K3z+{U@eeY|tUNxxFk4zEU%|&^lJl)PjG*O8X5^(5IyyRRvps zk7T%#t0=gJnG;MOl7=LaSr~kz;m~<{;6^_pFwh5JXTi_MJ*cJWhZ-_GJoYfp-~(e; zNFMN*yTX%-zQo+exMSyhX92i^RWLZR2sf~edDM$kwI{*TaPcux9CI2dVoMQA`J3A^ zC+ZZV9GxOp1Xrw;S84*yFc7|88Oi1S*yfWnm@b)*1-q7XUoog-*od_LN$72?vvuEA zjhzq{NFJOZYXaWX;Mygq*$su?b;>l{B~YJLWyjD+jDoC;L@BDYtKmj0Y}o__GFLk9 zHw^NyAKN3f@S$*w=QWRHR}FG++8x=CIxn}Oj6_esqx!b0P;u9;aaoeN*q89EF2eQ6 z{XvDbK_1+5j}2OHX7z?;CQ++9@RE?Pl*9^ned3VjK0c9@Jr`hSXaRqA)k^6-fVD(j zau4-})dF0tT5vfQP<^F)DpcV<9hn8qC6S?FC4y&$naARc3`|RPa$#riYT39CfHAe? z_Df9}gc?E$Emy}06Gl^KL7A!4xE8@Uf%519+9>_$4el&Ux+EPrQLZUTox{St+e&OW zSF&}FwH_e)n3$7*+b$|V3-IfK#YcB}y-E+7yq=e^h#dmlwG0K6lEO5siGd_sSQO-` zjEj~*w|Xk}f^1pfoM)X#jmv~tmpu&70o5uauqKpJK%+}XwNgn71|W^9UZVa^IhrS3 zHY=hqc65Be;0>WB^^aRQ$K$ufB7R&Oc{;FHtwV|C*uo zNAmt&Ua)_4oq`wGjKyUi5obn=i~9&=5L$r0p%}C#AnSA-+ZjOE6vLY^f5I<#cK5I&p-0X3wM7c@3o!`7c1oL34utSAXM z3pbDsB!T%zaCu^_?oMT}Wa6$<-E@n{;LSQy7NGLWa$lsnxxlDiQIKiMx^a)27qXdt8)1q2Q8w zJf=f+tQ@p|#e^mwsc1Ln$4z-jsy(+^(N=A0d(Dv`5L}es#fXUygGXyYOzN0QUAB+dN#Cs$ZJf7Q#)krd&FH>Fh*hjVV$|G@uvJE7Yu99cuVhobqvz5hZE zz6f&gYZV&6?o#nQ29lp$?+Y56q@DuL7jC3qJyZJ%9A#%{&l9A%9Hte(YBq@vok!U; zJCx0)$azG31PD%RHfWPS66Q9NMi12*NmLJo&7-eGq0+G4TJl2F^#`V;8gwo+pk^T+ z8Bu8150-LC`%O}`bxl7u#1hrwy zC-a!;HQy4ifoC{bPE*ER+sHy;cfh(AG|N$iMzE3KuEU4an{}e+(YOPkFdC9ak&uj{ z3FbaP+*nE6L%v-Jh$qieDOoWkJX042bi7ia&ut8BMZjV0Q}5Ksp{<&cBQ4a`Plcfr zmwqh{@PEH5*kX5!C3zETm9#*6bsfzcw%6OmA)j}cwo0(CXZrjhtAa|_4vgrSz?3|Z z61w0Xwbhmw!&yi;N~H<}sOf=sNkx`m79w%Vh-~*~_(W$VYtw=-{UEan6SmH`iFdfm z&UVq?!_$;~-)t+R3NTg!j~QRvKoI?+TEC&&Y@1MTxOyzBNuwVIA1~BuFegvLg(ZN4 zaq}kRGY-D0R_TUd|EraYJ(|$>gF~TvuV>4?r_#Qi((FJhKbd+fHPM0cI=YM;#vzfb zYu)5pF|d~HS&QzDY=LIXaH`(Q*iVYf%xBUqsSmZvPaXG#V%(viQt15iK2xwUVaH;j z8z9D^C5>~vx zI^PJyT2{Wze(d6xt1{^8vyu^dMP;1;+% zLOAyf%{cv#VzST+jVX(U zAWP>%7#fvi)Kl^{rvlQH>_Oiz$phorg|U}T)i#SuP(pC0ZhH%i!N$Rm7Z^Is38o?3 zX+jqOuQ^KsNEAV!#7*Uzj#62{?axl3Qnnn+$=2r(kF@#H&&0+M6)q|sA!TNH_cups zH)?ry(oWoof=qCTBV7n{i~6Fncc}G}K_0g*z#PC9lgbRGW&oD+BVqDkHT?U-*4XVT zWp-hKcQh<_+h>FiR=gJs-}A5IZqQn-N%HK1rOIH4euLgra)ji_n5nb9s>P2oOSuAUvuwe-c zFd{SfgU4ThezZE3ONpI`YHy?%k^WkFNYHPoNj+0sdJiIlDwfu~aF@a;Gw{CSB`GoX z(E?)rNV;5b)c>s1;zJn>krOoY3#9EAm)LY;DjJNe(8sTwk#8gLP76MXWlbxKgOFLQJt>`^}@rLV>aM{!a|JSq{etT4#O?ewt^EQ8tzoSU;y52MR*@! zyTJkkUdk0TTig#%hhX_w>7vJ-++cFqoq*`Q5-^DZ*}6l^q8=5JQ>!ZLaD-;4gwVbq_U`f_0^wgZ{4;)@eYLY4vV8ZeoE^&i$4;oj0 zJLK1T?E%$mm++1iHsZs6iSn9_FZnm&Z~o?pum2X_zn{HSB6k@vp_1LEzEaTq|w z9lk{!MXd?HJc)VF2DS>85lRzKE@3Hll}oHTkH&%e=Nn9yS(js` ztmU~C<_m<3H_O~Q-*}9!EG9+K%TZ;BzfeAMa*cchG$MlMwGt2Xchl8CIxv^JybX#GnFJIv8*+G!Y5iihJ#5|)* z6-^xOAhbrHt&6tv-Qi6>Kl_asQ^#&|%95T}Bob}X)qzT6rz^C-5dsMNgTM7b$I6xR zwR1#A!REWsrn|pn^d})7QF^-*Q3&&FS`$6Po3DLp4Gf%uco7LF3YAhj1@mWnWug6$ z$b!8*P#p&Y>6$g%NE%%+C*ry#O$r@eS1+koN~3D2$!Ym~rkYhi&GuAG?`RfU)!M9B z{70-|yk1Erl^{XGd1Qkq-zinx(H`RZ0DA7pQ$Y`B07^i$zZ~kl$j9@%sECtXl)N2E z#kI>_DpyiZA)yk?N@V=@Xo6MdULo3jdWnyMK4&g&%>c`u&eTLVMB9^J%bC8N4vnVmwcc)A(;o$5ek1z%PBd_T?>Hn+EP=dl(Lo?9tJFdIu00QmQt!$ z1=JETK<`j+0X32eMPDK0Q3Vo!Mu&AMo^f{T*HyAU6lv0d^}r33D*?0*)Sg3sS~5Ew|$!l^u8o=g)QA6X2-DNn9qOWfld2H2c* zLIKi{DU_wjOl@lmU`b(z_i>dAy0Anu+t{4?6OvmnTZ36BQ%e_~vpdxGa=TFH$Q17Qy_19~3inYXbfOv-5AApJt=j}Qj(y7YJb&8Ae@hyL% z5o5SFXwA5ab0O~|0I&I^+mdR2QzE8Nr-9Mycwn+@M)F{AmM1xOSDTAW*vTNI+X^o~ zisoz{|H9$O;`{&yuDiVcSz`X04GW%wlMtbLMgOF+DRp6uCudWzxg8k`5zIg ze;+=+zHo>6GjMO9F|f_%Ixw4u!YAyFqlS~j~&p&&pBfC(Q|J}zPYd+bW({dLcCmGYHXxvg%@LW1w>zT&t%o7ag@mf2>`5P3yjSH;viTcn^Rk;emG?2 zzN?t-K-qmzcI-QIgu41{RF^xpXKv~-=$Yl*`ynKpX_;2l1JopUVJl^27FBAtd0}K# z2-XnG%wCjJ%u8kpvtg=^JEQTqsK)3P%Lf9GRB8YzI~RRJJts*5 zkpu5~1R!$&4jiH(SL|$PVs-7XSG?PCe5m8nP!r|-fX+e3A-w8PTvUbfcsP}J{LWQc zcm{az?o^$3)nWR|n%}LH6f6bspRRJTMs0f#dEn+c(=|n|=mHa4ih^z7ekm8Yf?2Q! zKmbq1WCb?&w07x&EX@vO_QSUv@M#!d5$aSztz7OA8WooT#1JQkXz6ZOh|-08!d%R% z^}Y}R4kY9?B}HulF`J|AMi*wKCv*>n=m0Req=j z7m8W=)5I7=`70X`wUv$8Z*Lo7gy?VE9) z)lb^aDmOiRs0}A|^Z+rfXg#MuG!6uC+hbq^F)+)KD(_f1?|uvuMnJQYj4cZQ(Ji5x zzD-!I$C)f5`G+E?mRl9PIzv;CC!9P@x-pET8ZS@`=nrTMIw$gimmWKuLo%j=LaU?* zU%+O=bBSo9fm{~l2h3QoqIKjv3fv9Wh>Nu5?C@1{*Ym{czEANAAluQ5%o(`MdC-Vo z;};whh;PvkYYg?V?>CC5TzO+hq#cJKsnnoef*p2-5zH97pZiI!@<&R;tsN+BB3H>LTcGe+ zuPzK!uI)1p(2fK9hrENuRH(`yuO*3L_Y9`mj7joDdbW$n4roeX$CQWs(9Kl|2YY{^ zQ?E#Lj_7Cq{r3zG)?;$i5k+!|=17|V0XQ*)@JF3#VXvEBmiZQkm_Nj+`H;NH;! zp^;po?IRqkbq*K_an1%m4V`|-yoYDgCtLIouWvjl&NUR_6Hr0!O6o4@HAW*Y-&&`! z1YCo;0;3$oN~Y}6B;nFvV|7$1|3J8j(L|jonyU1MJKfF`8t~5ikb!uS^z-7Jf0kT$ z2;f#}E_P+POJ;~tJ`+9JE4l4d7*$e4b3iYdU@*jI351ayf%oJyeI5C`sdA~-;QUrL z;~<*{#Qa3JLEyqACD?``4&&tO1~@U=Ohulv)MXuM`q;=aX-Izq;TJpc9YdiGYeh@R zN;N5qGj{>Hv0c2g&~;fFC%JkH%$A}f%8Qcr;)QlGNqw0{XjTH}j8;Sch&1h+wfGz^ z8q^MgQTIB1U>HZhN5x_YHmiNQM6XI>1$INQTV1O?7lk!q(I0{x{4PKGU&6;%!1IJx zV?)_J_6o?c5AjWFpvxPk4F=!Q&DXXbCzaPDNE<0x9!D;!d3d7ns*3yui5N*M-I1K! z&HWLcs~wPEv_9cFQC-$eN~s-NiNUW7X~Ol5;S4A%Ro>kS8w6K*>wpG2_GNNu%bgF= z=@aE~*{&>Pq5ML7;YB@q*r8}-KS64M(dU z?GC#&$q9q5H~H?|qDo5UV`Ok92}y?)s5k`6W}b#uf=ztJR_dj~&am?tM#|sd3R_wq z@>m`Kt3OEnmd`MaiVXRMJ9YpnL*VjnG7hrNhu++eXpjHF!)hVbNmgqf@Mo zwGUVjjK~#BQ1cJfsl>8_F?@tj2t7d3Q5_db*j(jn-2^w&!^EMIW)%@y>VCrJrMZb1 z=>tQN11cg`Viyu0PBV%?ss;DAMgWiUkI_Ym<8Ms(^JAFk8`dDVOGrq z46_q@L#=~Rjottg0mLi2&o^!4C}ax9xmH?iewr92p{O{{=Hy{|)m4sE`NfG91MLcV zDU8+NEDnA=%~okFdxff__ihe$9&>t0lx=`p;G=88#lU_dDad4*!`<{smZ=>~+2125 z5Y`q$Q<~KKSURZ7ax;BY)tpR9j$^OkdJ)-j?Zk3AEx2Ppsz#9Sq>BJ0O(4e%&xwSO z(Q5nRP^pI^zVuP_)Keu%%#+qr_?y6cL`y7GS6Vj>qkf=Mz5@m+ z2NqX(8;IrYcObuM%e`YXN&+k3RqfG*$P+jr>mlpyEgCu=!s|gK@2-|LW)Fc`ktU}H z6-n)wD>gOSy4*7>sNn|-kxH17U^~!t`_X?$D0|tf(7E^uDSPhIZ%I8VI&Nxi@FbPJ8pL!X8z-tTa5h} z2O@>s)4pKt1o#YItTd6%N~y5ds$k=L0XtBv2CyTs#|+>82}v`D7k7dAVG)QM8g2@fW#Yjt zEB}6Sg{t^qoP-ihFNs6BGzp_8WH5O<3eNrF5VI5ym1*3IucFf>%tV8Q7kL&HIj}aP z`ihHRocs~0URg5W567eb8a{rR&wc_Z=Pxhc{5W8x{OQMM@4v{xli%0H@y9QNFNlBp z@dtHm{V>JK|MKU5uonAO!Hw?D!4iy*tbTt}cx}!@Kr#R^H_o#a*hYqJVz)YU^bR?` zqG6_jHZ9dBPz4|JmHq43f(xTQbTS#M({nUaIZ?uan&p} zjHT=NhB#l6Wtw%z;1Ya4Qj=w%T|KI?b3T^C>jv30Pf{RDGaU_%3S9tkp@L1{M!?rC zv7oNUB*7=j*ayM~w)I6gR3$Bi%%i4APac3)ahHcsP&S)uNGc===%2w%$kUoL^-@69 zh8v4Y8x7v3l3pl`3=u|Y7NJDE*i1=TK1xA%VRYR_A};3(eNdP<_A46Y8KI$F>+u|N zg_XPhEjq)?Cne;uyjM`c*JV^LRd@k9HalptkEexckBck1d#t{_n=};c1R)WJeZ`Ya z#2Bo^@7g};AhYbKPX=&ZOiW^a>JsmUe;g;0Y zDoDZ9Y8+WwUqkd0z|qZCNQ{;jwZ7bUS*lQTZBK_ue384b%Deq zU_0TYGMR-7sP*WeM>UsPP7J6k`mn>@Sl83VXsdv0Z01(dd3ux-vkCSIrnh*~c}N@P z9rj7Xs)!3}SEx(v>@T+(;UdwR8)c>HEyqs2Y8PPt7avW5GE%lD_DdD<+4bYvK8^^X zd;tPkx7@5+O0l`Bejwsr{=E)8zJB z8nfEwJ4LHr%(mG89fGM@=`1dSs_o)gG4kOgU{8C9Fv~?tVtGETOl9YI%3R+*njd;SGy>%)Ih4LUoIOh?MeaMk2j`nNtQe zSzhR&?2Ubek*WyyP>_}jpI%t3QH1jerDH~7_mN>FpsnMxAg}>2S$*`|4@&cia!EzkAi6PN zhwWkwI;XmgsTd1B1YX}E#fDYtiVyVW>+$)xsid!IG8L_|<-yYSkTC_Rk%IZnrZP!( z0@+f-Ff~4OUF32aAqz$*>*iL_^QekbCW$asV>dNc?SKV-XIxMXvI=Tur1WA+Hs;=C zS&s3^G{TSzi;UI6j|!BTE?ibfC_93(r000Lu311L9u;Nodb+ z39i|Lh#$67hCu+?XcGCx(l>!abV8Jl1eM?Hgx)PQwpGWw8#*%RK|O;4_KGnby=6LsqJ)*jg?a9(!Yw)KZq)=TB6)l2c4qsrN`9E6 z%UB#vaEmG2*hMUEm(ljPcQ0)P?Vg3Eg$Hq0HG(n6OJvp3aTV8KzvCLJ z@{;z$<0V192D~w#2yeER;Q@bC2mz(u1fzqROE zW3}-@d;d`h4A4@Pprac;S4!yxaVP;bN zcg_ZqY&fmp088VVwITQ(_4`$dqJDEkb-#2mK>X-%I6=so0K~K~JU~rQUWUcpLJeV6 z?8^f2+PaSwHVCFaxq;6Y7d3FS%TjLt1Sb?J`fJsXzci_} z5|@fyBk^1s$8Gu09zr`9*#dFK01l&FcGN0p13wr!icm`-1QZqC;I~Wl7D`~1PKa3S zEY<_rU-f&S+&0*SS-4gz)3G8>=>cuDH!bb2EJezBpWHwK0Hr%XHFR` zG(lWQXB|OsHw_EBa})#+)UxiBlgQ+T!;S!Rs*}n-ve})I6lz~zd7IIUPe~lWVcPW> zrv_Zu$=01wssL{&bg86$!wK995fFKp{e4seY0DC)yC2xk3T=zUl>g2C3;Jiy8(9wM zcl;Xu@`2;0e)aJi^I)V%8zeD*9P$^(&3+|)1_Tz>x8x4Se9kDUygj2`uy*93!%RD@ z(#X*)1njL#fnn~pHb%9~52-!LeCX(HJw91UN+VQ$qyqptb8}>aC(c*Fe_#wrX@@E6k&Q|+J zz@P3?5cb?sU_wC*7wQSQ>MxL3ekd_OT9Vq=75Gt!i#k!a^%ta1$IFQ5ctO1=Z~o1w z1J`hZ`3`vN8cJWv764 zw=aQ?2dszrKp$@4BQzuDwtYLl;>0y*uLKJnA<@L-P=eT0`KxsaiLe~Z>+URhneS0v zfC|8;esQO+h^yVZsQT{X(}7MS@Gbnj?vfpxwW~6EKC8Jyj z$k|gw{yNBE3`m6!7q3$#|mo~J6#x^IU5mT;wRK_axVVC#tKZO7B zuk^9M3g7wbBRK!z<6pRZ_#=fiKjQ}cXYxq+_}9xfKT>$?=kGs-Xq$YI5dP=CfB)x< zp_M@X{^iFP-)66U{qbx2?qBnvKZN%$@b!1^e>6E{Xuo}txoqG2_!0tfNCx`zJ64zW z()UsB;&$Sq?D+^CAxpx%@U);E$$hc4x5V1pNDD=n zwNaf2&z^^vnY*PkJWyJxd)5BLcJQS}M2FHsFeJidl)LZJk^0LCcL0nmT0ToK*rrF9 zjl(2e>f^gaD&J)k9bvw6>WgsnGLkE$Nt;HlOC+@v(xns-#4A>GkS6tI#BBW~? zX-kM5P+D6eWa$Pu`XXk4R}3ZN;a}V^p-WMCY?=nF`=}!XR8Gq!SHHPZKtBTZ;{NGy z@gaP+Yt<;3Es}Jn4_%M01pGrEPO2>Xb}7Xx!L-sHO4FQ%@d`o*x7rmP_cnGmSQaa~ z?C5M1gJFlb-q&L%fs6#GH0X=@0bCHr@cRyFt<(7RK2U)2wn^3*B!$$_syY-1Z@N+g zY~@CD%q`R=u{?6NpLc&)^7wqag>Fqdc(#$~S!QJvdmwkUKG{cshGuP}c7GM_m$r<6 z0b^RXz%?W18#QuST!&Du=qggr**s^b6J3UZXm1-+iza6wzf6usP7YEM5;a)BhCy z&;OlgM6&ENT__usz%bI>op)IUuH^}FxCmH+<` z9eQnR0RU^4Nkmz3ML<=cD=?B+=u?)~Q z%McIR0A`0`$fmhRu~t@fdJ1EKD|La=YK#z&o>)MSrIPoAsvE_-^|O1)mglqT*< z6^D3CjwI2o$3;7D(CFAcvD{XYb~dL?r;<~v18Y8rNTYE5*)#2&DkDveJ-E{)nZB=tr#FjblwmAXEJJjSq^y|3yQ05RBW=9PCwy7LMH zO70JPm1`e#D7GdS9z83QLR+upH>Bvb;Q_EyU1+aR9L2OGdD{aNevw=f4@{7LUhnL?<1_n-FaKtr1%3Z!6NPd zA=UN72+Zs92h>DXwy0A5LxrSl>~2yS@gX^!sYfontox+WG!{T5I*<2ayx-~kK5i%A z1;$Dk^JhW5h#tePLEy*W2z0D8GHn~s+Li+U5);%iQ5wJ2p|w&@%b&$2ox{_Yq6<`k zF$A|;bZL9tFLiQZdc<4cFrN{&{(vfijPBWmgYHfQJo-fU)E*B2+7FpiJY`sg)9dAyBA>{jv5~#I#aA=lPx-Dd`QLi4O6?8Mc zR#!i<>QL{+-hOe#C}o7@oUn)T4*iW+G*ZBztyV_M+5?jG6@F!F$3yXLNYWn3&k|S# zWpiU|n1pM0D0A$(C2torJ*8QMNd^KE5{byheZ9Ph)e88&DyQWn0Nu;y(76y4EP;>I zbRxG(f*RBIIM%+se(c=u+|wezR1z4~3@qzgN~?wcdTjqZ_OmRgMyy7~bCrl+TF%RabU*`Uv#nv(ZC&i-vcW(UE5=ZJkGrAn8_i58KcSOjR3jKYh*-Zhe%H!l0pBE<} z+yTt7j({#wT((gugl>GgQc0?+-BeH3xI-2H2~`JMvBb9^@t&UstZ;Zos}znD7t>a_ z`;E$iD@69}7OC@_%aXkVsq#8@tqWvJlEmJSHpvUT*Avzca)B{rN>Kw(Udd=B)6c{7 zOlIu%B{sRSaMJ?lTVv)(G(dvt7L-o5lD$Y33Y%%o5>vw<7!7B&b%7#diVqKW9oHuRcb^o%mC&Y=3YSi5`Z_Yc1149^4c?6CM(Rm0y zv8=zz#zi;m_-7q~J6EOrT?H}Rx0Cl6$i}7QL%NoQ=bUtfBPBGsVVPW2+%aVVsziiN>u`X$IZ~9CK>Aatsv%L;>F}hyn$V#FF7x@z9lYV~oSNeiI z6_ie1j<#Mgc;T=Rf_ee?lfmW5v5b%9Wi6DM8Oc)IszurtSA-b+1LF>- zABdPw+l+x*0NFEVh0W5F^ds0HEiD%>z>&pryn`vXGO)vw6=2$WGb)~9K*IlwPxdg(x4JRRhw4E1Vs+0OXsXk-iKM`)r2vwuS@F3k5Brf+3BjM)q$UkY&=K zL;}a0wQqr~$^aa3T<&C?sNR*7tT(bpP|(cr8ol|Di`OIxF>u1NMN zamrv@W0Bl46G^q?*2C%wYC!%PVo6YM8;ESsy@eDVJC@WFn+OnwFvvOC1k@;)kNF4Q z<_L7K{WH!)x^AJW2_?%dLq3taKa>fBGR|DDu`3S;IOyCOL1e&)Lluk(nN7Wm7^OSb zE(##?t%#y}X(|lxjc@bku^Ci`+6#BE>p1Hgg8ie?4ybxkF*0tbgo(ro-UFa5QA*@S81o)}5Rb#fzB-DRq6kkF9f!ECEtoJZkf$wyTpK)I3~J#sXk{MW zKhNzVS}9#XbAA_O8qGSbLYd~`-wj>AL-6s8VjhjBy9pmJaq?F{t*GnCDCNj8HUqXJU!K^%}%^Ek; zQae87E!X1PM(hPGfN}LsFo`Dx4|APBA@F$xSl;bfr!F{Q`;oNzZdJb^(vxwD!NnSJ zocyqfWMHpP$PZsY2wp7cjaWLE%@O%q^TCTk^e1b zLJiLTNpue-g#y*SMm>M20$xkByiFDx_kh>(vNP!fdD3(wSp+oPrOuL1~IJ~C0%9G_yn?M{xVx4{9gd9Se)P>nZr{93~82q5n6rKD~< zoNxj%h)-r~?Av*(LcaCzIH+66ZzFct64^+gsU?lMa|GbR(wISh`v@e!L)t(IYzyXP zDfr|vc}VaqTk>0BC*&k0bS*V~hNOYq$0azp3ydzgS}?a~uLt8{{yTCP?-VqFqy08h z3te6e92v{|rGjAKsMZ%i_Nl~`4UFb2U<$_3hH-G7I9rsL2d7s41#JXI=L`-&*e{Sn zDaTIv4@?E+h^oBG7DQMv0VynXXtk00o^507r!_;LnvfE-;>;%WP6x}L&{2l``WJ*Ei_HuDtIg(#Jp&$$&f~!56Y9 zPGIknONT~@qc+}xeYQz5;zzkFk~{3aK}WKt9AYfXansp=p8ikrUy%QE+RMuy6-W0) z`|+KxK7Pip;V&QH*ZkA}^6~k{*FnDg-mEsh`TYH7fxe=?qz~_A$)O^=zKoZ!_HAP1 z?#6hK7U~nU(-WJwr}T~i}T8a2n!neVe2F50nt(y&o_u`hyjj|72gXFkUVTuCZavpuQ3=*kC- zBHg4`T*T;eD(xaV>3y6%zm&FhU4Xpc*lbk!D`@McV-vDS@U!lwfuj1u7xsxmjTwlZ z{h}bteK!c$rttY6afvdbPanC*lp>=%nLWp66E;@UmDWQ-lXt6O3 z-zC{xPTV5Nymn)T2l|&3e34Q$+w6;IUFi>!W;ZC+GFwPhje*1=PS!z%Us5c@Y3S+dbh6L0Byl?%pK8>*pT88__4 zeNnLGdPo2Rk4kyoRKbStG^GO01m!=f|61x?iXztvCN8-LLWWxw;*QV_9gZYd`6pgv zroT-}GewOg#jKnjXRNVO2SF`)`@Qc^pxWEwH&v2&RNjp_6uzIh?Jw01VY7_|GZxR- zn^a1aRRu;9eW{Y_zT1^+%Y11zwg_?0uI01U`5)*hE!i#7{uYS5j!G+)P_qxirI6Z_ zV6FDtjsQQThHjQYb{0-Wf>l~>Rl;+YknYIls9QaQ2E;bpT9Yn>^0##H7Z8$-PyR&R zo)5JYLg#Pdh*)V?Nm-6Dg%Lx({mrt&ZL3tBo;FuVp`$JRZ5a3wLjNw1;Br1DO7iH-}_N z5D0xJvW{x5laF;ew4c!ykj2uiS&t9%co6c-%#(|hD-g^*$yrI+`~+-MVSC2%ubQ4-0Rouo7t& z0ctoF#3XMLQi1!vmay~|Y&zFSDMbc*4etobbYOB0^B5M^VX@Xthl<1=H)$qOIdr>atq@si|cl>w8l66dd+n`B`NOqx2iK_PtT zDbd)Cf#L`iOy+e!H4+%o4My+o`D1C?V0!tu8A~NaS{d7@MjPhtC95Wg1w(LOLMk6n zk%_RAw}z{ND^~cQ5|)>_662r@2`Pl(&dTTnDUpE|C{X`1$yQ(}L%E}7ZJ9FVE)2~U zIfhB0uBA>@UT!(J?ok$D5B9u7n7d#G^V1KfA%Hs-UKaZ*SqPeOUMazn_W} z3PD<-jV{qP69LM|u4gSVRH=!HURC!u-^Oy|?Hrf5#o7w*A)X+q%QeTza(TbE)k&pc zL1|E-$VvyFNRs~69V8UpTJ{qDAUSN0KzP4rXbIe-0B@rmDv>q|h;wu47)c;rNPLqs zlpTkBzAk{YHum$ZsbFy@v}8)iV;H^A&3oEm=XUIBB_7=sZ@g~Crab^RECoB*&J&d| zDKhB-$v_BHjxWS|tpKM{-U`R%Nq2rM6#>jtVLuYd2i*up6%7K-6=IxnXP{Yb><1<^ z`=!@`s+9{FRJq>elYbI$j|KXC!p*5aq~kq-zex&{U;N7IPf}hJZ zzs0D!9-olb;kmke=+ZMs+Fr_i4j(a*HWYqBFI^i9=EOzwhVP1w)x;?vSme{`nG7wt zwMsZK$W2b}@-+n>Dl>@3+nY`wTuWjHSl_oXrMkEw)&gfuV+Co0oPw(!#_j6tpt3of zJ)qeF@nlS?;g&*~FI=o#ZUWS)10##I)LrL4Xub4F9?B3&!KYP zW(fRAvlF*fa{JrlepD*yN}*MiTDQ0>znT2A8yli5RV1Y#3c(e_aO}dQ5TurbVLyM& zmj9>6qhDcE@U6!Gi}3#2%Qv3}5XZhR-TxQ=|33+y!O8cXp7!yl_s>rAh8IxPBkk(n z+TbfqcqT5Fr(9aOCVL_P+$BXlp}EnKXsoPbKr!;EN}G{~`;a#=U&0%lY?Mc2q~rlH zk1ns-;YR5oLc<6_#BiZ)WPxNE*LUvgCDpf_$kMi&a-T!SCpswX{{`ycjh~BceZ^EFS9c z7%s~-!1r06FGcja2QZl2o)&O1pnqDff^8v6g9l4D-VV*^qH*`il`r?AA#$>!etzPg zAU?SFr(~AXEjOwCrF^Lq=KnQk28y`=M9jGyBZPKZ(l7^X$(U&L7|PnfOeLGn4P&bk zIvnDY`3kCL_(bKjp-^KKv5jVgnmuBPD%s{Qu-<46@o)Lu<$h{hKI5KDR{#hEpD=`k zaaRrSj)GyBOiDOM=VPb>ChiS7%x!EV3SDa(Ufhx9Z6x1Fp=R@!o7M`Ja4@C9z7z!k z1_6gAw>+tvqz2<@$t^TOsM)1nKoAbTaKT_o3ie~}+=Ncv|4$w)`0Gu5PV5A%{E7@^ zxL-)|%pGY9W&{D10RJiw2M%YgD_*D~vqgWUYME>{dI4DS{m5?IG)F+A@my^J{Xoy| z!0HNjwpp_sbHeI|d&fn$buf5%Hn?#RQiNgdN@({IPb1aS_~4KL{gFq1NxKy&D{_}f z&2K-iW|pPZa;wA&(I~$cAiMTQ9{K&p?=1xw_%gizTmG&Rk23?=NXNjFhS!S8KSqAAkK07%?KegG2Sw1x5apB*Fs;>1~mPo4vm2j+VV z^1LqaxI3DnRUMJ3oCL$;doRG+N2>IwF}71%q0 zyQ0gDF9l)gNTMYsuM$boOdsTa9mneRWn`+;5NaAIlra`e&;?F zZce2*@^s;mxRyIP0#+G)CmD4}lvc=&f+)hV268L}774YwwoZeB*#S3*v@E`ca=o0k zByu%MrkQUci|JTEMH%dL#!45VtMZ@t6KxFw0e10~jzo}liC2`Kq;kHyI{Bz;uf1q_ zAgWF&g6xU%T26s8SSi2)7saKDns$eBbsM}MK%9M12t%$wxfl*9Fr9lG%`r-I4rq1o zL4A>;*;JyB7MSp;*Qs)LYlWPl|08h=R~PWa3e&1A0Hlro49)zCVOmECR+MMOxg>2h zRjljO=^AokLk~Y3s)f=jj+zjE`PIl=fBwh6{F?vPPXeIo`S^?XufqEuR5KzV3jfpl zZ^DORVg4Ix|L=WJaa1Q0tO6YBt)^a89dVU0TqFlY;BJv@OGu}Pye zHRWovtxYW|)*W{u!|3FCoofM?VNh5u%Trq5jfA7x}fieT< z7oL|X|0E1CMV57FEHFK#m|4YWNy;Su96p%$-G6*Kzg8LhQRD>Q5>JBWBCDFby zuJ+DCh1Xdc>Vr^)ISqY?W8IvB*bI7&#M=iqVbc=eJc0(WgaU-S6-XgR{{eXuCaMrg z`h1y0^(`2}c51@Lt)0B4Wxqfs*@DCrhMW9RTF%z8J8#$X`IIzYEHvvKuhJ3N&pKv8 zQ5j`p<*VWg?HgtWtyPSRO26WugES_|Jf&7!AdB}EcHWeUC;&K2tCPyHI)X61lAtsr zt%{IbPM*l1qdzgt!2q={Bn?QE&jBCxi|tSD;LJ$$H$GE4+#y^?UM&n?c^Tg^URh3A zW5%S2()(aH_0szh#t5+*`wif?_LeFj`cQQA7H(DDY;l+`#_;pmFthvCln&SB*eG#n zHCT78o660KZuM*Umhd#B+obfn#}~p9Wr9$KHXKV`qpp*sDI4qIAkV2gvV>A_{4cK zT*`#*54gCiMC8SI7FDV@y;%5UzVCe=J%Z9$WU1G65B0P-T<+&=mS(_|9|;TB;p|#zJ1) zQ?|*7xJ#)oErm=YRXA7}@|)}#MDtc#E^1`iU-nH3y8Jixgxa0lowr`$M-Of@RXJD1 zNGv!{n6Jo7v%xx$(a9zZ&=MZWAOL8b<^bE_6$S$hvX?M}9p~ftq;k+MnTKo2&c@w2 z$vMwsjS<&TC#QMNZjC%w0gPPbqNa|`CSMOpUrh1ggG1Z-s8=C#fWigZ)`5_v^!FPK z0SEI_Lwu1MzVN~SaPZ`Ss9^U8s%!9nH-YQO(mMh5l@Fn_QM39+NjZ??1Yes5p$qYR zgU15o4~CQO%ABqnl>4QWZ>^?)hO~lFEJa{U;$+&P0(F&c^)o;;5AY9hjA|aHILd!n z7H?jpjK|wM5t1M|R0Y*nKt5E#^wa^sYh)qbQZ9H!CvXuEF%OsY@yyi<056+eq;7jZ zEgZ*4wPuTKIes490~i{RJC$c{6PE3;$B}zU-sNMB-NRLUR-vD1oTheIhd z_Eto6Sgxbo6N*2wDb3M&sa=8Uw%Mu8!F^IAmxSf&I|jz^gdoQ? z`2P8Zma>D~Ps3n=!$G|_ZS1X3N@_#FWk(_hsH_dx$Tk{oB_Q;(XzZK`1R1;QbM|(NK{RPuOM;$hy*xMDX9{R=3JoUPWd2aWXw13W-G zCJ9{iNK9ZIyugc(P^yKcO-$yKND8V`N)$>g0CpdCHv_thZ{BtKE?+L+{8womz6(04iRQRw4!`r4-@s3r z1=~Nqf67_jF2x7UYOq?+(!Yl;pyiWJ*~Ss#4p2&k66Ho0-AAN#lnLj^U(MIVM(;5~ zLZp5CR=tHJ(Zk4CkDyg$X#x6_Eb2FP`yIQIvr{SlD`=>AOm|U(CBuUdwIu^$ZUWfA zAQ$E~u-1pi@S>BHg8C1rz2sF(Lp)SE&TGvf8=J5>oL05cr`CguB!o|FW&$doTni2( z#(ijayu@jJccjsg`0T~Y)Vjwo6b)iG(pD04ZkTkq=o+H0DHuzYj?ur>@N#J;hTUo- zy!|QRP@XlVa^l*x1)%FI&vWGtY)+X@UH~w)H=gH^6%96yP_vIlo}kN>iOI-~U1G00 zTe-6`Y{b!HeW~UjR@#^0-oiSHQ}ovh^5%9jqc;a__^_wRY(>O&g}ca`o5Qrc78Q|Q zsV91M4gXI0YZlEVWV|RC3Lvf>R*PCnJ`Nn%J#_60LIst=xsMSMIQaGDh9bG(94X#O z3cg|bHdhe@Bnf&jX0)-;w-^MHq->E37`vjG9P*A5{^VZTWN`xv{VGsoGx#mQw&PM4 zVY*Eu6-~K3K`#KSVYxRzD)QK$Qnv(v*}Yhv0U3w;H&(FIrRuom0kdY0^T{oS^B#QO zXB9Na`q>%?%1RvDSET(^!5!^kDI@XSqquZ}Fq*UNta-db_)skcsLckYq=EDJc^s@! zI(E1-BE1yCORW9p9QRu)Pl`~!1dy&SXwfRl6>%vF@2!gnc~_2@G!&?As3ZnngGE-M z=D&xT6o=>#*Oqn%uEsM)>nFk{Hu|`bte_vH_=$Jci7-eU!D^M;+c^ekWo_>qyJGVJ zRz7jZrjypB(NK+d`b%tYp=$7XAaMI9?_Y!ugK5jr4>1q=DQEJQM!x(0M@bQ%%h%ro zIrtYCZnh_wAfDvpP}8?;4U&I9nvJL0WY`=3Ozk0GjxmwSUoa*=fOIn;rpiV4XO(;m zNy_^$KD*>=zg3!*$$$Z?v=H4W#V|K*E5ruq(Fn<6(q!^xb_$RA=uoP|fDs9XEf63^ zOL(F(2G`=gWXAbHr9|3xnS^^%eLM^gAyo#36@}K`LQ4pe+|D{bKDgLR4`#ckrf!5X zCmFEV)|@s?i$d@Y38DBLvhtM9EOlsgix4M`FkNI*xRem9)}KHj1Ry4nNsok25!^ne zI4EfHL&A*(+ey7hNc5ov?!N@ z6oY&$iC(_mM}XN96RfvHi&7sHb7IN152NiqfN)Pvv}@71cq z(k?Eum%Z_lgrCH^t6yA23}mm4nWIkL$mNAlMKpk&Qhc}CDQDA0G(5z(XVYtuyO)GVFiAGyrwhap0ov_w-PDo* zNf?}XV5+v+bFXTFT_8(9J*8&j&b?UxMruZRksQOh^LNwsz1&NeMxm2cG*t?4;~T$& z8el0Qb9~8n@ea>>W4B48gA~3lhvXn`;Ek%Mpq;LS|giB83n^a0p z6wXqpPZtB9Q#y@Tv5F6m6O!M%xGSt+@{wfN(elVO7+$MFIG&Hx2m1(6Xy)Xgl}ajp zxi@3CFKp*d+p`j%=57n0y@YpNbiGxi>#gI?9Tu<781-!>_>uB}t_v!S-l98}VV`BdHyy3Tbi zh`m+SX5CS_mv(OGG0Zd+zJ%c(a8`T6r8e-*+=`hCpsO=olvWjpuzU?J3c$(vY#T5E zgw&iAh9gkK3;pDDr6if)(4K`-c+?frlr@?w=G=Gy^%v;8rj6+sPV>$|kSzDQEUv?> z`yaP20v-WhTdqn~^%~luIc+JW6(Zkvrp0+t)e2LpKnZO}Di+Z8_V0kCw@Rly&UEZn z4?M{r7dR%uw=d@=bu6yo7N>LpcPNs3WtkkBJG*N&X2K(tBXT~{KG*)9ZdhDQr&s5j zoISv(VTIX2SaxmMzp0gy9S3f40l%^6qg@@E+WbRz9V4jDMBBGm)R<7Bv}{RL6e&N^ z0%7FTDiouz8ZSKw$h!vP4AnMDL|YAE-V@?_RpHO*Oo9dw*h5=eN*-&&8+mdBS1F+y z7+eeax}m((@}C4?>+vvRJU0KB=4Yq%{0LfGi}4+F8J!21799x|94|_`I^k_^#B_jo ziAvO>qg2y&uu(EtjsVV;Vh39qZmzZAlb8*pZhJNdhVvAi;!+q3>}o*o#D+#*9hWi@ za%77$j-+~#FboH5p6aItwiXO`Fn)EPQF&L*aAIn`)l+S*d~BeyVq1ZdFl<1c-5g-C z0{gE)rTOu*(4l0=lE!d$pGZ0BRL_@aqcmxRy){>xykqKSJtamG5vbsH;bLzb%!Zm9ex@h3AnCe*f_m z1z=5g=*REB`}qDhU%r0<9M+c~e|$F;yYIpv;=Au(fAihTH~%+<^IpU>>>Epj-Jk2; ztKW}GzbZedrdbPvFK)pbAL1I2K6G(;s|Izhk zyV6`&n%I3l#jdg&s&c#P0fcr{zlV)(?1_YB%m+`pZyY3>#b{V@#mdVs>op2Pi|*MX>RJR5=}|ukIq$E%yRE`h$QCAPs7;ofadB z%`R5dB~_ciDDGu{R?q{IYjtHv*F}Sk=vD_Nw*ydEYhyKcE3f#J$p$VS3Nmb@B3&7t zr&|pfRaT>!$+QVWm;f^HW4d-vdeWeHUWUz9?Y5iZh8DOG-; z<5D7WVmxj=dr$%?v~Aq`WYydsblzD)Mj3MliHnbOXR z6D~n=+a%CE@sETCDTLBV=W&ihr5si))jA?SpMQr9$orJ>bPWWP#6CXyvtZh8KY#n` z^#er2-@Sb#|9->j`J=aQ!t00fF}!|>^~(Eizf@bDxA*hsfAspR@K<{Hf|?os^>#rt;=3xEg(STv4oYn!$X>J8(-KXBRH~l9DLoNN*zFfx=FJ%0vQRM_{*TtKTN|r zoC(QC#0LN1!Q`@!Ln!z$hui>Vm; zWJYlg=XE2`xrP3y19E3TCtL(ELmfNF(Ze7zhiMe^j=a_J+~k9_4(>-&E#V#tk_U$# zAQmaf5SK-*PMj|Rfj+qipO_2~wy&D$JMHd5&*2ubUz4+~+8RzrCZm9DoqNWGu~T!= zwP9_Kc{yzX0S&IXg8?grq)QO)$^kYzRCiJ-IAZ*?sJD1}1!WOp(U>R>(0A>kv)Zny z9pwfo)}3#+48Dok$dZ6^*U(Ba574$%JW|=qRi+38mYJ8-qZpCO_!7ag$#=+kQin+Q z3|$mmq!t`Bl2*kSE^}1YG&tiWL1osiB9$qNh7(i=&YUuaOoFkK-AAJu6hV_W^S-5* z;=Qm#MX2OsY&$ECae!!;!Qs#6HuE@2*TX|JwV0zNQu5%KYy~@nA3WEWL#2BE&XPuZ z0*J1pv$Y8>Iz5m(r)`dY8g;e{(dlGj*-tL1lGcD;KW08@P=R8FU?lNdYXx3Xmc;aw zCAr@wLq#Yj`B?>0DH#^f=hE~gWeZpR(r;p;^N3E5hve=I0xuV&a%)bE8c{h}sP*xN zL+2DWb5#O9-uC~s(*>_xgbpgLBA|gEAV|Pg+MMQoaa1S$)!S$G(a3+lG7zv%fj)Tq z%3SHbriSTXC}3v+Y%5DQJlkA1zKqZp%gO8xXNqvnm&`*=1@>X1B7=APMhP*vPo<{G zE3^APV!lhvkvn6>QdT}pcK}sDo0FH%a-USlKwMazrm{%VUOJp0QBOi$3oW^+6b_~M zQ2Jn+iQco=H$iIsAz4ff9XzWhI9%GXyv@{1S>)$A40@Jo7#Kv3jsTl8p&J|ng9o}f z_;rd>R^8J>Yl7gIO0I+UPqfKlOtZHIbE0zzb~F&}PlO_brtv*Yy2Fkk(A01OwINRQ zX($SSIdal`Put4Dw%DWYa41WP4jkj8^RPRQ=>~;31>9h}N_JbD93D=jt~IcN+Wjqb z!jbsfLM7PYuR~bY9>C&GF6C2yZq<~6cF#Q~A3M4qzNWE5B2!Ht2@{t!Uc8v?0MfMl zl{ST-*v|nxvZ_aBq-i&;i>*Qi4qE&eHTm$f-5~feQ2%F4PiQ>EYM`-CAR$Cuvf0?k zv+jx8(&CM|Ytt8_KQ(tZ*l8f0&Yout&Dx%tIphsweo$Jd0{%Y`oJo~VO>)8;Rtl5c z(gTxZ?~)=)sR&$|q(OOMLBuq~+3atiiusi(xH&omGr~K>pc-Nt6zm(PdW(G{DX~D% zvwR3e0fUTQDNA_S;6QpY_{im$e9UVhd%RtC<-!YGZm|ro*Yk|AaBArv1g@q};Lbw} z9bBq>qq$J@M^1W}S1f9ykld76+UXV@j7NXqx}3Hx#p}iLdy@Ocv?Efys4y6XMF1?w zCXf zO`f3RBSnDa9m&VeRF(@J1yiTn3YuciSSwnt16i{?#j!?tJSTf)Aq)Iu9@E>AhzPtZ zN;C}Z9ZE*(nvg&Dzx`*L%>DfJH{tEi@MQS$+i$|RpM3XE(9X7tf0IHi-CY@WOR$5t zy#_b}geBRo*!h>@$&Fj3NwoQCRN>1Km>)#SIo4noYEgtC#~WhVu4jUdJAwf4+_ zq+}fs!eRoB#~1vRm4FN@NiFz0GRcq+EUHh5R8p#bWfqg?!a*gr?Kr?n#Uj2mid+Yv z(!JL<*&LO6I1*G$nc#6~0RBa_eDS^dnZ#XRt3SMP(S~Xd_by_z7{PzIYX2c0<`@sl z@W0T-z;tPM`#c}y+I2yVmgnM_v8e>ay?1>h_|w=?gg^gW1;u^J} zJ~VP)blV9^odK#O(gZ|0B!KShwCstB^dODYtcx3|(ZG_%fwH9^)a|P0HLyv;OsZeQ zu2k)_fci>&yf4;CPF=JDC zym=Ti;8ldVwET%@2E}r~Xdlo#G6N;0>2OP$4vl<(64A8)-H}|P3yu=|{@A$N)Bha) zj~op1RO?Uwrt8~J^Y|)%?hmg&^Up~^|MmrjTVK9?n*R;Qlhad;xXqqM0$h%d+H1*; zv?#*s;+i)=aV08l0HXiyniU(z;F(zc1NM2c7IMRUS}uVe(34KCQqPFK#CB`ty|wr# z$2u@O&dcUUema{JZ$3gDqky%>;_^>l&6hIv-wHava=R;c#;5v)9n1YZz46$tZ zd*qWkVhRrS5;qGHzleA$$sy_1X@cSkC^h!T;2NWye4V)kbZRTJxU_nw#?z7rUUs_( z43;oo<9H3Be+at+TF(T~Mu_%ACyqnvissJ4W#2Fd zmlo>Oz@=~Ff=th9H7}?qZYDS2I1pDXPvOoS)WSA{Xxj>|^H0N=Lp~LYEJ-|ep-P5qvo{VGE#MR>PmB*_zB_&? zA4z}`0*0uwu#r~dm39Ve|BzzM`H2mYNE0t_%*8-|a8as$Ru2oppAO^G60&0rG8fc= z*~z6yM1rc6L#jYq(sE)qnBOn&#?>E4KTI^tj zxHRtf9bxnWW1Z*-vv?llYDU&QMfA}5_xf(i zU;3zt^QpIQ-hT7;tB?;)-+mI_ehv$VkH7oTU;Z18C;9u|fBX9N!|-2t;%e9LT1@}{ zd;)ZrFM-j@_l2B&YW`RMCFoDic?osLT+Z*#wY{2&{@~yRPPLbIS?ozzlfaQlZ*+32u#4Ji3K{& zN4t5<%(uN z#YJpa99qeeNse<-l&nNGt8p0G1hu`+32dDdNgx;33X57g{Xme3IUCJa5BEZ)-& zsMH0ZFM!@#Az5kjFO?4Tn2{>ok@TjR4Z&n4KUFKWYzA(E>H^3y!hShqmmf~x%0VG` zuzF|*wQb)uPD-h*T;2m|3{#48nO-hFp31X~A62=F4PS2B3ANPZa| zmXWo!Fm-X10^Wa#O@;tjM`VqP!C`GS+XgLvnEVQPOrZ__!a|n+on^mGR-}C zrFDO{&QZn7tZ`eftl05_sc>W&}7qz#$eu z@45lir?I?t!D8SHOV#l_9j(}!DRn5zp=42${jVJ+B`BH*PY7VeR`TO(A} z0ME1G3KS&2svsYe3bqMg*#X%L^5&Hj)N|^ODIo084?xz0*x41aco;)-p%ie1x)Szi zweLzRl}@ok%novhfFKuL+H{6iuH2tvrFep#GQ&ift@#H|*uUiQ zr}X`NN?5B;&xjRDOcJprsTr`=fJ=|}2=&eiTOE2vH-Wp$6|V*JGJtIlho=1G*BJ_< z%`uLzJ=*MEQgmF$nCjy z(xj?qK&EB!u&A21+~zFWrr3lIv?SH)kvPt-0Emm)7i@F4%B{!RaE2~xZ(sv>)s<>{ zVG(;=pdm=F987z60SDAI=uoHCJZgP6CXLGZ>~^3Ur$;}g^A4)4*dFx?ffIk$58m=R zhTD}wm8Ce*NE-Y@s4zRb1yZ+wW9HX#c(h)OWF>Vha4eEuRK*(8Hu5&1vzYwYf?$R8 zFzqs1!+`_W4WI)mBfr`*3%~bR-j%HinBE=C8(+e0kXMt^it>IuRdQwTRJ&~V$ZA5~ zK-EGi73N#-`_3+^{gK4gj##gd8VRnT%a9(ZK6zw#D7b={V{Dwh3`A!&L;nP9>KbVt zT4P9?l;;6u5s4g49{Jjf*{D!1*@I}*Vyl}OW2fFA?^FgNqW~+;5BVcdOvNm^kPAeD z&<&m@uHjOgPq-%}X{X2ThdrOw4O=J1IjpPHuWn89c`X@0!yAFc8vuBA-1ihux`y*= zoTW=r@k`F!Flsf@9=dX?vCgX7*i*Cxmez7r`I1HuXl?iHz223e!3|@d;)AE{~m@dS3sLews_cUXJerrR02`XBOZuWGcrY;<#$`@VM6t;CPp%JiaCGD&OTH78XEO^GOr%*8;GE3TamgrTgV--`9f{_l^8VVV>W{Qa-B&`I8ZQ8P7 z=>w=Nv>|6=y;c0N7~0b?x{}l2hA4fi0f+A8098?0TKw#`>@_EUNB3gh6y17wuRAQi zA>$`GW+je6a?f}jvf*dV@f7mkN>MM6%JX3jPKNyzR0hsu^_w)6?m-=?olU+8fe~G5 z3lMZ12M(nfZXK}(T86!BQ`GZ8FGgN~!jcZWb)0(!*up5u5IAlKtzI^QcwvVs;eo!V z@&_9Z@G_|Fishpz3q@2u+d|$okk(XJs_t9bEqHD>;8Se$)LI*uAnKw6+*3kYwKinv zfPwC*UsMgsJ27!ZOD6NK=YpZC)E#mWK`m^z^aig$jm+~IC`S1RlB(9)faa34uCw!A z!;dGOwUVpQkjc;iC(H!|^=YVxS?{8e@)G|&Gz8&O7BA83%`WM>F!QD5w?`#pC zS35XIIE}1bpH%|9CIGhPy2^*j?M*Qsc6H+`nlEfnRfYE;RtnvC+LFfxGfmPHCnVL? zTP|t2&B{*I|NN?zR;0*R?LUUU{o$TfztX)>)|Ed#`pfSLA`|cM>Fcl6wgfrz!;tMs z^Jo6wV0rkd?_NHP3g!WbykRdkTB?J()?ohMbKwA!N1=W*?a(txJy5^RcGca7y#~M6 zm#~|8fYZ2jke*JQ7lN|jZ;wjgtfME+6>qw6bm}_*^H8!uO|_iNm~AH1teglHQaH7gY$~waaw64A{R`}%vN_D7vuA&UU%0xV|s>(osl%>F#(&%bO`1r3^^r^=Y7tT ziy>$jaM*Um=7gVsAbnXU@FQ z8$P^;sQ~rWvWa>EzcP#?@*&8#4G1(Ba4uZcacEOB*Q~Gmtjn5@Lrob-Qhaqfp&#Q zr%JdIupl9eB8jc`{J~-tR4rWruUYqQvcYTj?SFmy#8Mad4vB4Sqf0+&W_DB!q*{m- zz5y}=WlKq)L>X_+aYXZkSJ`F?t#vyiiSn`lF#ex zAUN|ZaEfwCppDy(M)ItJ*(LL>Y9u7lmpmS*d#v)T(u>Mw1Ck6s85<2NJ_yaVoyyBU zEF7InM1LB*FkPLbUajB`+3>W2puOw#!*-7+=QEm6GV{9uVWJL)TA`A(W2!D#T|&*J zf<0_uW+rPpzLR0|su8?-!WhEVs#2RL&{ky~C@)n4oKPVz!cu~Y&Lx!Z?W!(TADR?W zU$CLflzq%43wXU+NhGgmUxVdDwzIT?_68K~QST9%kbxJ;NN)Ct;8_46oTGnPeWDRz zc|aX>D2<1^b&GOA@5qNXYeE8aQB#r)^9SQDM>Suuas#5B7(pWO?b+*-!2a(iuV04m zeuQlGQFt?%mLI=^{WKtSxSb&G*u%u8iTUCsz!mSqmRn?a4*?z_J$YP8+$bB=RpTukMj z_do8QI1k4h0G-z9keH^30hW9_DqfuhVovd-*a}F{>$2?I8h7Iw&5wZSy9qJ`*eqkr z&c0VE|83+5cZ8P2aLOv*fDK>4@83;h|(rH&Py@|;6?YeUFpeiB;X!NP*b2C>)6T<@mq;!v`Pjq#tGAY+Eht#h%FW2v zO8dCzIj@0lA0Eg}-y+9?1YKmzF&+LTGY9h>Ao+>h@yusi}H~Sz_RXh2O9UQJ5yF zjACN1R=NiEp0xInimBptg9#&F!wRqzx_?*cEX6{H-YtRAU@!#WEURc9UCM=+py%AXEXDX7IDgYAploP;1Nc5s?O zxdrr39xx`D$gtD8>-^0U52gT;)+RfYm&}cpaFNU32)&MXqz(`nnT{}@pU4dLhESea zaD?1J)ensW_Fm!A?*!7FyoeLv8`90=2JYsLLI?o$-t0?5w7PlLO$YpxX4UC%oI=dF z-DE{Q{J&Hd*UfCQXY^_A!Zzzl?4iJE?!@}+zA&c}X3>WmWQG>XL9YxK25-a(t_M)Y zvGz(aaRf3**N!pzqzuw~jgK%q$Jh~4V#sy`DGb9Izg!NaNDW}mBRf7FUo4l`BDd{h zaKY=OBE_ScwO@BVkWuMiC$M1$#{GtN= z4>gUqpHPpX9Ia0R_437bQFWVzEbRnk63t}JE$&;H)w`k_@uKuf}4%09^V< zbT=2dQ(^nq722(EJJrG+`xu?__R8&Z3go(QU(NebF4O$5bl;?DmXV6Wam^Mv{Rsm6 zA=8C0#dr_?jn!0x&*t;;2!AZ8bp7J_yT1#6vq$ki%B#N1-Mk&Gd^vObH%4;5c>RVS z0}t|N55hVji|zcS*3PG|pNAdJ4IRpSjK+ximH+Max6mp38ZFXKS}DJ6ofYnqo*$2J zv(5)n2=a2ZOeZ$&dgz?o@`!F0b-sQ_422)Tpjt%U#BddZq!C*e7KjSVl9bVehT4*0 zv0{IL41uk(pef*YXzT=S2lcBUT!qM?Kq@Aj4G zg%G{%dXt~J&ZH_qn%IP>WWoVTEM((VMTv&ej`LVT6oDN^zDcpstz?W$0dT0hl*#h{1g)s$JLLrD#r(XItm zwn8NTH4gEV>cT~e2Qc`pL;{D2h%rySY)A%8q$*yE1Dkl0%rY*~tW z+NlQ6fFaPWg{Yy^_Mxi8l?kTsa3ga19yq2WwgoV7Kg*kb_Vg{$TFrJHKPO?(?3(9Y z`$aB=hKrOL^)NwgNv)AN1%q6OV{@itRqxrpGgg2U?cnWkg;)(>2i4kB0Bzmn%YgJU zsKf{~95wb~JBA9mXZ52__omQ1#$6UprEn^X>GCvl_!(5w~aOrkN4wU7w4^;+fsjarF5sFuUNXQj#Fb!# zZItYZv8q8DCP*pjo97%KpxjuI!Da<&J2pn!4C#XISOUn$VW1q%d1!YS(OGiFB`e;N zo^(cACe4GiG&ks0Qw=6{qv~IulA2z_=N|Z9_@>b|qk;#TUMZ()q!pb!Tfjgx1(d@q zcMydVq?L&Gla9gQMo<5q0GBf?SKLzvy5T-T0@@C&hMinn_9kz}TBdAkg?1iHhf4LM zn=tpf5;3Ht5Cv)5KuyXi`GenEVdrC+Gu&s0E8}XaEm9UbDNK+^8*n*c^jeo3A{ANq zpJ%9cDi^I;GWDcM(_oY@q(6n#lE?~!g)S|W_lF{+wO{~Rdk>5k&u#DVQ%M8DJRvV1 zhz11M)KzFwbKNn3B}_qQ<17A6_}}+D_{Z@23#Yd-#r=ZzJFh>rwD|U=Z+;X!Xq?q& znB{+8=;mny!NHqS^K*vGSOf{V14`?Qp6AbCca@KjY=FnRKm#j21}byhp%-jw`YrT_ zG0G?H6E$!?f^13Y84}pNb9VhqSm97@9Lt+t8X1VcxX;$2wyH073>La2JV-z?qvuG>@If&&JG0ZSoyui3RJEi=DMFsilG#Pea->}Rl|#nm za>{v8(thIJMXhcQ)0;85_&p9Q5>1tIQ#1Q52g*8jA13mun>FP#UadDAia?S$YjwC9qrF@iT0J@zHDAih?+#K_^m9j(u{)dQ>J)Ns*wZ6${IY;w0 z-20kAx7bOJyeOA%hp(%^bYT%TKO|57I1X1Qxx3jAOCu$hhFV6D`2&Sk&hK6Vc)2+t zu7oDFYoRD$`}5Tr`6xY#6=7A+-g>t{zRXfvo)p?Y5Q7fg*=QOa4M_HpO9$*d+Lifs zR){=zN9rT&VAtFFg1cn!xP42()vcfMrde)=%}^X1UJ*);1{Gftv2HU(6s(;}fEvP; zvp%WL2rO@mG#koVvSlB^s#QrTOQ%SWoDf}xMegQ^t!3(1KVS@q+uekQP&NW9%ml2k zs2vUw-aEL{%va?%*wucHQ|~vt$_;^xeq0-3Sa?y_MXa(crK5#Tk^t8hg0bA1RETT4 zUn}|>DvM6!2bRMQk&uD}QV%-ub2z@*J%l~`;U=$DJ80dgGm6%`F-u_p#s=uhu>C70 z_ooAP$G!)V6eB>1fDC|u^f_~;kY{ll?loFGy3nNQpu~oaAjg5oo7t)kfM@1A=Smg< zD@jsjGuw5%Zj#`n$+fv37^q$`#ZoeNfa$iMGHOOm(Z1-h6!-Q!cZrdn?t|BF!s|~k zi~AX~!WOZ6-q@r`?|pT>&N*QuN7R6X@|j6?f!hkS)g`8|3zNv81b;JgP^W2|8KHt` z01Tyy5J@G=bp?iN_U0`@XRS5%vGiw!^m!gymIxDrgOgh{KhaF;akA+_>U>5zG!Vj) z&Jiwzu_)Z^c|k?)+Cjiwo>enwauBJU@n->2#AH@gVK*ZHMwh8ZxAN6#0z8L;KXtg& z@(`qoySN;O81i<`p*}E30Yj=1GtK~0f!TrM5c7wpy0u(zLslPYj2*5_QotJ2bW|iE z^irP}rYiWbgO6+Z>JfZ!HYy~`Pzew*t=$oLz$SHeqI91Wh+&-?`z?8~rDf};8MCNI zKcBkGd=HEHh)KnUC0H+kehVDtbs5UZllNA*A}ka-=*fvxA?n(1l~%rr{LdLM_^Cq)l8p%|)JXpoD?fI?n(s2S-?fRWIYz$U5-B@1ysqNG!{ z?%=Lg(+L+f89`97+_1LUw$tU2yFSNc1CSHXbgI7$cU%-pk?u7C+=6<>%W!B}DvSyTHbNC|dGtO6rolPW`XA*v*A76NF4?D%=VNMB4@h3d z!Kub7<^VIxVdOXs+#wf{21m%95#;A1wGKv%k_f*W%d8GwmB!}*_8>P21#EA7;?`6e zL@K<=x_pTr2OiKmWM(vW0d6)n83y$`(&Gh@62Y#I&{mFO#6yEas<|(a_w6UaNDxF9tn!OXu zv4=TNwL~-M4(yf(=v)BURL#vc?ds4#Mf!ps9C=cLhJFLprE<+?H9kD)XgCMaM*?6- zJ|dCQMlMJ9F5Y(d8y_k?*t2U`r4~!jYhE_UFK?>gd><$vqR>a6jL| zd_yqbi3u5sR)hE* zx2%-UY%g$I6N}ZWZem?t7vi9|aDG@>F9FBZ>RhgdrvVmtx)Zr@BGz-G0WsX;BBGJ| z&0Lln7)NA!n*@F}D(AKx&fr!VZz_j}?QeUa)2JERut)?3G|v|zQOCa*)fZ<8te&R} zCt4R=wQ0wO!)Ez8fKzj?UBZ(Pe@OPl#j9&|aO^1QCl^|wU>HhxLiTtb&ewsd?_A$% z=+C)dkxII85;c%UpB)n{0=H6eYk+y^NGU&9N}iSyTVg}AGC22*N}-ix=REohQLMlb znA98$nu7WLt1dc6tkQjuOAq_a`g;K65&+}fOu9{n&{L^L2bcWlqogu z>?9t&8_$*ry73^b42vHEz^-ct;tCO8Nm)lLw=`0(K~O0`TVFxPyf_Om#aOW8PR+{I zjN>*`C{&p`A6~U_pA1i1s2c&Xx9Rd*#;NZ{3tpj>G%?=`<0toXpdO=7#+Hlm;0|I-n{;bANS9G{`L!g z4BvmighgLJqL9s>4rqe+sk&zV0^j{8$aj7QC+d&GxBuhqr>AGy;A#>JNh`hYs-D=0 zZF_o=vXE#!%(xsbZ8I`h!i_t^tWzg?x>9Euwp+lSZhwdaG#!iQSMsjNaqklEbeOqk zFwtpkN(Hgt;u(ozU!`s8!&zzz=M1f3*iOr$YJALS`o;r1ATc^yR0AcGRZt6EIjQ)h zG$-EB&JQUdsBDT~0jTtXr;gjv@n4HZBxyEa(>!xTI76pNr}&IV*}-zx<&b>Ug8o;# z91h|nlTy26B_J zXCT9_6J`P(nm!5}V8a}C-EBFK{etRqbRU8P!6${?_ns=&_Kjh8X>RMgGKEt`?Y0)Q z5$jceI`b{hnVXyezzj=z3N=rp^1v7SDj(&3QDm?_4D+FM&Q{7$O zQ3k2Y0VMh4{&bmMBZ1X=6iF~cMfEkgq+p>F9(LPYun)lcddmo=^WXv6q;AHrOXdVnCne(9)+k~ z-&o%4o5pkvgiL}S0ng6*l)~90iX=fifN6<4wz;q61DSW~+ol*bwk+@p06??^3*1m> z=xS4jhWn-_z|T+*dY92JQJWKUpjxwX4Qwz70KF7L2Y?M6oYw2gZMOZ$LivXR%0;Q2 zRe_JWMD5(%yb=XFZ`wjfqq}82b}_gMB%}dS;4~X8{MEvk$*S1NI!DnT)xg%+qjGC6 zlAQ*(z6@zS{oP-niNAjPAn<@6^Jm|G`$lp{#uNNceCX@fpM<~W$?sl&6Y_`r2y}Sf zva{v4|EK)i;k1GE8em^U{J}L->~oldKx>+gFlBAt%+|OD9Nm%v5L5l4-fdwmVRMYJ z^)cIcBCIy0Qt=EPUTubwsC4RX} zuE|zxq&-e`5$G~4{SSrP1_}G657wmGwVGD5 zQCmB15SFxfk4y!0)VDLb0MN8-!DnR>-Zv-zYm-s3UKqxZLzabr++ywHkX{N|U0L!A zfOsGUvmdbGsC}T89kF zKw!>lqC;v|USlj5&eA}(8P!C6}ZRH@7I801c|8pvl;^ifQMVKB9~ z6)psXwdwQJ9lFld#TH($cn84ERKl-WtA`qsE9$Og0)XZox+-}C!+2NL& z)u1r|g}#hsvo;UDN@;hC$J7HuJLxW*>wRv4U@1U<&F2Ujhk=J`!RiDY2snTXfS!@g zp3U7wMcjH$*U)zFq)v#yS`4mk;TE4y$woSjCln3{T1CXQc(d@mAtkCFjAkQTPNNhJ zJqJdJh-({Mu^NC@CazZb33nJyS@Q;dD#vjU>)&d6^0_X@WPsKMYyx=imJW?Ai|4f_=^e`04(2 zzkT~-u!G<4kACs?bx@q$pO0|ue|`I1c>M%ALm$3=f`8wBAN=Hl*AMbTmKG&{8d(%e zZlp<5e#cZowWE%+=7&_J7u!)jB6gdD;YrtCCGI9DQJAzrc+5y{atXHwY=MgZRFOKM z%D^JL4(Wnzk=>Kp8*%Cf!8^sRaHLnvb#;Ko$c?XRrG;CFqJF}C z4+TBVQZGYKDFnGro8DU%U>q5G~!(hXSsxq~3UchL`{XDX278m6cwG!ig7rS{uH zz@p8uFMzl@ZQGMnI_#6rDLgEm@>QB2oV#+Ao=jm`SH(Q ze}&=Y&tE@QlF?UhhQIst^>g?~d?t^7dQv^T_ror+N8H_N^JZwQ0&;OzQNlQ*ZNtlu z6A+|mylD$BmbLQc$xsEu%K(Ki7Sw2nrkd~Df`+9@7^B00VIG;{pq2plK4?y64}Dj-EgofkZMU~ zc?lflon0kR0v51W(f94DdN5Pp+PVBwtPL~q-l~DhMs+Lq3yKS>N9b7k&PoO1K(iVL zDd}8Z6vvxcVC00RfP4{a~-yRo?i`AW+w&nl^of$s9K#kfc~k zlR}~qLU=xD^8+%#mEItidQwn!nxN8SmhKmL1UR@LRu{zAJp;ItwWLCiVp8BQYA4z` z6FDgtmUDL1$;anT3Ur>_g|5X)%w~6GwzXFdP@1422cPIt0cw0g)qo+ZZH#V`fckz@ zvmYt2l3zQyPKSlZdQirxU6a+!fTZBT1ZJj)fwn6CGg6x_XuF}NBNv4Y0_CYmcl1Ev zL7ak`G8_he(+aD)8XF>eO{MP{InBGPr^|fBq)(?WiZ7EFK|e;Df)}gy>h3;L44al8 z_G1dw-;%dJKG3r*5x5NRb>L|}RFuGhZY$Jqr1(36^G1L2*OXU3D;Vp}w zZc@qYWAsf0#PjdiVl&(&X`4rN(1i+Sd`a)r9%>eLmB3;NQiyl5L#6VHdLgR_hHZho zZIJ><+CK?101O|rk+90~=njQ4mhCl3#Z4A0U`NQg7K6-ot z(a0r5l{uPEAht2XFAmiHP9ydLhYbu#;QxaS4hGeX@TK}i)OX&P?Zp(8l}O3@ykA4b zx22K06pBOyeSsOTg)J?cV~C>^@OXF9PR)j_w&amzwR^L^E4#@u4}fr2_$(Rx3sPE6 z`2Zls0(I6aw;9#|@ati0hKT<3A=WCnbC~1md?RUyHC^(F!dKSTh!^DKiGZieu;|>& z{`$*+V%|5L-o<<1Y{E+>+fTbtc$&MJh@K8sH6T7BHFmwHryOVJz#;ftYDCr_PArl?-=wCE4mFeO4J9j!_0ifL%Ml!mz9M&&5Qh; zr_I<^+h@(1+a-l-b=$YITMH@uAxD7mI2Q5T0-Xn9TQfvX3YBVgQYh?G33-<0uPXFo z1t)mxsxuV2*g66Y5gxXZjesN!uSm$PZB^*x7rPyZV`IQ1UUrP8ij7t6(T!xzJ|1^x?FjwT{}34 zyU*`6b?9Xms%B%YF|BqoO^^23PbbgulJD;Au z{U3nl{qx($Ihln=i9E){r6H1dIC)1cRV8#jDnlSod9c^#jy=O}{4` zR8c7aH2d%k$AD`|Eyh~2CB=C(4;bIBAV-X}(FQw+eRW+|-L$+j%yOEr zIvUbKTbdgC`({<|VY;b&jW?|YDW^1d<6@@9?M<(3@K`U@QvgCccOZnOtwpO~kkoCG zH)fQ8mP6(l^R0m}Y~1}cZ|i9=s;Ok&sE-POfL!w%mMRqc1gNcAnOUmPd76S^NjibI zN{qGqtcN242HLRQcx_8y0-qZSG9yeNAW6ft0`WYXl&wH1=0l9sW}2?mxJm1c3z)E$ zoa}+4868KYqcq*zG9}3E&`943kM5o529CF)GRWA}HN7cxDgWMp1L>MQ+ALE50%I)9 z;n@y%Ogk$}B2ORLHCfKO?wt&P?hOMIS_Y{hm22co1{P>=L4ni*X=H8ewEN#FR<|KM zx6>`06ZSB}9b>dGpRykj2l4W2vm64jmxhkPdny;=$T{5^&d|;Vkdo+fLAieb)&po> zpMe;EMoLku&{zI}^7Ta96|BxKkiwRKyLv&Yz~m<@_)y9XBAygJO!s;QJk(n{KoDRo z*hj?qcnIHXC<o5T}^F?q$VIF!Vggb>)c2#1yIF8F2JEQ29>7( zE}#nLM8FRUG#ywh%ZHJMovQL+-IZ!6ay%GSnNbzbIV$+8@PohCgSU@e69>`yHxvi> z4ebhkA?=5S=x=}i_R;I_!?!>G?ngwbef;*d>gQlpk`GYg!EMqrAP$U4 zic&3W(n*+PsN}Tr1=^#5&On&ynSi7{AhGdGkNVJ zGgtGqBR@2Htei(&O@s=-)U6=6cn12VA-day490=yfeQ(FR-?ta8L#dP2SxjVz{nF= z7h&Ept4+8yOR8)T>j|z)=>$gW@Dze`V6ol8 zn0*E;Eh$-*%Z)JP9Nloqkc<^6XIT_cz6G9CzY*UnsA{T)q#%VPe#!dMl zOSVt2<-X1gAtjn7^FnBADPnDSR%4p2S0h;T_7HaQ1PIp3Wgo2n$gHQTmVVlmMz6C0 zssR9259fC0J*f(_v_GwR5JeDAP8W$4_F7=Y7^~gsT#<5;e6HR?T(E~{WIaQy*bc!? zlIA1btcg=kY>ZqmDXbNEYz@u13gg8u#xrCZ22K)#SrMNRrKNf!#9LnDilin$D|`h9 z)`K&M!t$4$A=_7X@4NRkdgwuA|uR7(X{LMxzCaL)@~SVUjO zqP30VDHE>CcAYtNjVkgiHSfsmT2bB_=mzqJBV2gZBi1-d;9GHX1(a`3->?4|{%+5+ zUlBR}l@U~}hx!vBa^ILAYaSwo*WYBm(nsO&wXYv&-qqDpc>6tfP@lbi5#BzsQQ|&H z46l}z^@ksI?!JHu9;ALgXEUc=nPlYCxBpN0?w?=^E4MxE9cJlf^PTV_HS{p@l6xU6 z^^p_=M-^Rp*HxAfnD5ggJbFpCCFu_6+W;^#DpOFvmdz9Ak$cQl)9Z|H*~PO<7|-&w z#C$r%mc9+Z6R9G@=A=Y8_K7tEFI2vi>Oo?GY*3oGUhjFx0aI3X_<#-8&}21FS96 z=_QMaFZIIUJ`E)#e?qoJG9X?V#@!WSU(^97>HBps&;YhRh+W4O_bL&1OY(F)0y`Q3 zyE?(p86-=5q^Qw=OQVyNNL^5=foY!o-~vzS*4#4c^siIrSobYLS&r1`BBr>Uv}STq z2Nmv_b|>a8huwXmClUEQra$XwAtUWWxMrR9RUvFU*rC;$D4KAggF=$aV2f~AMSScA z$@}C8++v6Qam@J*5L=zPF~Qa8lJ!pS_Lo2+Pa0G!OzS4Z#|d-6#qwLZ8VvWkc9N*z zr`JNy(>Es9p#mwL75uf~u=JYn3c!5G+WgB}U!;m-TL#?#aPf5y>yLRZRQXmCn?iNV z^`SHnY9WJ@=Nj^t0aZ%=9_o({9%tmvFgemRE6ZQUI#PL%B4 zn^arE`oRvdu{U&EeXo@iFqM2@hA+Jex$ka#b(~e*&US1NRDh)}iWK{bGCT~;aJSh* z2{9z|51$k_Pq7`mL_BVltC^WjC|a_Ekh?TsIhU;GEyFnvqKb73+=EFTy4jKZ8S<0R zHa-U$eJhQ6!}xC6!eirYiHw%80F#T8?-ppZ;4&}vY67b`Txy!(K~8wi+c2!Y-3lgl zO5?I|-^?_)PtZ`uL8lO!dzR$XzaDeW2zQ2=2=Y>GFYw-5GWpQZabJJ`JbeFwJ;VJ* za+G~!@A(^MD|Io?yR^^qV?TcV5aIm^aT%8x-iGX|eZp2S(|(3^k+XMf2{!25S}#~D zgSYmY>4EA%elD!U)s<~xM~P{2g5}UMwCeA0r_tD2agd=#Sv>>TH4QkPkwT)fJT`3tu+C;paVrJU1NT#N?mr28}AyK zHn4!Oml>X}JzQtfOntY9lu6RqS$DK4d|V1!=b;Y1dFOcInz@)M~_ae-XZkAY#^y(TlWT;>!6M&)nD)`wt;<7 z&Jn;$r?cdWQT@YD_2J9ZI?j~RdUbvR){=j=6{83|?3z04MxPXFu6NsLoj6Ko;sA?r z+|>Dl&}oR+m69D;q+WrY-H5R3-$^Ur23+uNxcp;s=r3Bpma=j;K^nfmsTQEQ;u5k$UB=ssk zi_CJMj+AmQn|TA80M-B{S}}T^%G0v9pqSPaF4P)QB!$ygwIkwZ^iFEmGuP^{U6`fF zdBjOm-|k%&u`jG=bJJ-(^h=`*XE@wROe~$`$|5bQuspM=2?M?2q-w>a$drqsbe8oV zx)mvXXjndb{rvR{8Y#R3e%`Uq|3(Y)_3^>{RsZt(!RsG_e)xqx@&uWm_4spO;!-UJ zDcGfNb{k>9aDsIno*pFNb($WsGROwZ$jsX6am9P8z(=~%rK(cXcT5WnrTDV z1sDi^Ud9W$l0nzYtDpH!CN8?`L3bI3f6)84X`h0bC2 zS;2(JuPklret`aMrJE}y%wE)1(NZa-pq*@bg+sEmQSzVT%ylP6&9bY)w5=YxVlYHq za7??UL0~S7P>6sFIh@Di+=3Mk0ydX4n7T=dx2c}4aT$*e;piOcL7rZKj|W09%D?iH z7JxI`0E-aYF(i1kI07P@z$mN+YDi$mTW)+977(R8K?`UX-GE#&BxOmR9wBmtm#vA5gkjG8TBzOnTCk3IK{68DjkfZF+`6#n;%c!}5FpRH@B&KAdE9TbO6sj%Vo}(sl+6=rtbkW>FPwCg9iJ{l@P!NTz&&0Kwf80u=u(* z@{e!gtlBv_UawWH0>vgD3W0N}o($S1#b}*w^7*oHr33k7Xg8`2qVAa}6s?|5wmWKF z`A%Vz!{k;TKxk2ObU4cK3@!@|-5p8r4zN0-mhdrF-9xS`TGI|+gk8>AW%8C&f-p`( zxT_Vpmcy+SRPQitcu4}5y6*U~0^SFK_?z;Xi7@#D;*S(yhC!--)x`P_vlMJ&Q1U0& z)#j|c?qiu$PA#@z=M+1{B3ef7$S z``wR^kAB8DeAtcrHoSf5XRjZ>{W<)lj$8ixhp*p+w?F7a>Fv{Zb$NdB_H%W({%^1b z{co?o%Er|4E}ZMiBh%v=)bb>U-qo!W?;vy6C)9XOc7VL)WsMshe*#C2YlDRq*@7!- zl6BV)?WN>jox=mqH>lOSFpeTVr-pbnoju<{#Kb(cbo)1GZ(C?p5NO@|;$T77e?GXe zNsu^f`8n{yEJg}oyC`R@Qui%?doFRO%&TkWOUv+p1heae!os%Q*dEMOgNLjDLD@)M ztpeG=`N+W?7-VWIpa{z^#CuSRGyPA~_|GOD2@I6FL#=0UY}cVVhbP{#yTn;`sQvINB zmf{&G3*Wb^1MH3-({;No{Aw74t7M`@^9clb`%Nn8FU``#Nbf;8Yh3CM$uj5#Ja6nL zFp&<$ZkupM9Yq<_ceW4Oo|3MkJKzhk9jR4)v@?*!)^1CKQ3vb7`CuJ~IFGtx*Y}5-@bYKDkxVUN6O;I0f1{CzI_vPFlD@bB!XXr|HzZCUcY*GBxRU5fYd(1zv1<# zr*Ho+&o@7Q{lbQ#n>6gCK|H!XTuDxQq`KOhQdmV_Pme-+g!`Z_YKA>iqquyC7o7TQ z?e4ZCX~c)nYcD-yS$l!DY~Cs@_uv@+MS8EkLG4Tejt-vNk=X`vm#XbK+bycTNzSs* zo^kDdEZwimheEC!9gNM19#T6}t44=i*ktm&kgFG(Ha@VDICTV#&U$BB>Oi3v)VG|8 zs0#yYI+H#Mg^1+Pv)(|AU%oo6_T5?D>UG(&hQ=8*~K;%@LDXq z1Vis5O|ZdGM`=)`la)f-;AAbta*s6IQ2{HFYZ7SPE?l>#LA5q^jXJDR>Jk7o!lJQF z!A;#QS5R_D($eG)Z%I1?V{{?h%#hNnGK4sA>EUr&z>kbQiDVjJ%#?sy)1zj|J`1}B z=*8WoK+NJFqUmILhh>WfM1p-c_*sbH(p=;hoQ(ntWJU|{8MZ}|B<1}#V_B4$L1Vx4 zDB0gQKb|0+<@RvFw*E+4Xds}5lvC5KR(xd_uaT~xD$2CDRH#~X?i&@zi80vM>hdM8 z_3@pn>)=B}Ih<_2zDc8UNqsmk6NiJmAzi-{gF|bmD zvbH>>(G{!#k3X+>>qNPdI6r3B$@z%9CfzC zu-jQzt4;x0No6ZsjhuekhN;}SsUWT)r`fGn!cUri1Ui}7Ey+s=B#e-HY>$8wtjsfV z(ej?$F|$(xAq+Gd#kQ1R#~!Kf6|rMCd09w(2R_581c>Kz`(6hK6!H_TA3C%{Qixyc zW!A0-)50)!i>*@HA$1BqqD(ew?Nf0DP|>nu6==5w2^(GgsFsagPembrz0@Y_zF42V zXv8?{0c`@$t0Tia7^%Tm@xg&)V5oA!3)=babPwDOb#B_TWuMYs;1)V`zI z**lm3N`SB*9wh-62Wslq-g^BxeE$Jv~c>VneU2BTSsYf@*yNs(Dnt2 z`a`!N!s`x>yeRtA!cNN38Avq{*>awgJH%2cdX|FfgtJ^eHycpT#)F!(n6Bm5dr}R& z3hKD_&;;eVU57hj&<6(SjE*1K*_iIrJQmnp%^h*ElM1HE&3yK)5XPkN=MGxFQm7PN zl$rv;g>%yxxQ|8w?ST|6*-M%Th@e;hTuI9OLGrd63OoXOK#Ly}8b7JE-yI)f2jurm zRsG@YV#9SQ)yD60w;l* zet8)2cXp(7Zu75*z%sbVTj)*+c$a)CR~L+{q3zIho7~VVEK}>S5}430g(TJj5QU@Q zPEYz)1%%#ZsMrubOj=g%D!>D{e%Z>bq{i)xYSK{_5vMSgJ$Ubw_>;?(2H~MTxIjwP z5bkarbRA%-=*dCO^-s^9anYO4GG0uXf-NTSOQ|L4tyF!#m7tGeJwq+eUP7}3PflTi z3S2cIv#v{hUMeYaxyguUeOnq{6MN~cfvL4w@O4_9)h2QS)YQ%kh)O!2kyMN-xz=OkQ-!jnc_2bu{ z1Fz7+ceyKd+IsA> zS13BnF6jV;HU$z8M}TMtMN0N~>s;lXfDI>$8XX0rzT}NdyMb@Vs|`yu;1%{Sxk~jI z&YTNqa*{Rz&Z=k4Jc!7yw~%(@vl;rxMjn`@dv3M>mu~yYYjkXi{52pI`e>2UFl86n z(IY_K$%csFuTPRm&Pv~tR8n9KTW89(rJJDgnMaekB>flgo^r)W*9ZYp_I3({lX90x zHVER;4Se+%Te=8t(E&B66+SRxGJ+A8V-T``_p-N~FyEn|2xgG}QV!LcwUuokSwJ7L zWJ#}1>NY4u2I~=t)QR-s`+m9ewuT8o@%Il-54&K)d%zrd#p})p@^Wa^Kn0ff|IFP# zN-c}BVB?m^55PmeL;pk@ybLrt@+ED9(!Z~p;Z8b{)Z9{)N%X(7C2xW&CP)QpCqeTd-wc;-8Z##qCC{h;w!YUa;}<{_D_v z?P#A1=)#tCXfS)0KX+mcbsk=H5P6u3tMHPJ=a794WFeQ-I%DY0-TN7GEHyyVfY+k8 zYq{P^5JcUrS^&(@wLb?<@F%+LzIJj4$k#vXjoIuHOv+j^k_yQ|-heOxP;=}Z#O`W$ zo13!li+(gHo7NmWv>6;y$-}YFlQe!3zs_z}T~5SqhiNcBwnaGp!@M6bN!w)mc|z zg*x={a>k6(3Izof(r>%AS~6bUps3iu^`mLMB=l=N+jaU6|G*I=vcvDtCLNbjZ{LKs z4=`l>Z7?b-Da(BZk0b|42i!zBB*L8xuT|Vuk zp@u6%WpjRv1fdPEtH`OsOg6J?BF#yb4*U+J4Zb1>`}iVE5M5v`%kI=%JgLx<>L=vJ z27Sg58V3A?o$qDs^C6BxFK;=~X&}VXz8&)vY<}5ybSjRUBRg6Rc%i!bw3>y^UEMJB zR}kd1W5_An9VPc?wP7>H3;{~PR7+=nK%`Z0b?2+|-a3FvdlbwE0CaO;+8Of=SJ+uw zrN21=H9RS5-L3HYkwVQNHN#|KO3(TS7BfbF;5$kyS`idodqylVT zgAvNEB|XmSR*V7K?z1qW&|>Exx29SqIrLh>wwvX42_SEIWwbrnZAKwH1(>~!`@0hR zdjb|pm}*dlR+@Qmp`EC6kxH7Yeb6ddH{$lDx4cyAqqJpMV7YW*BQIx;NR2MvOcbF; z3)m~ntli{8;li3Xg$a`Nc#A-Jkd>nqwjW+7S#6Y()hCN(TiXE8=Z9FcXJlE=x>No< z__G;C0VoVDL@g0b%hO$Qfi~4my7NU>741g`P}ZP@bBrb)t^|i|vb@3RkPJdvq%Bc{ zY6_2b1gv7gL;X^TN~a3rjE*WA)dZ&@o5n)ysbeR?>mRkfqO2`~qq1u$P%bUJ1nb=v z3hoP_q?s{DO(qSNo`VkzuUcM68nE=Cs%m!F`fyY=sgr_Rd-oQ;~)8)35YZuCpDq7*YocB5u7>-WgR^(wd_9Zch96;olzwd%k-6ip#Fw5oF;so!{+Ww~JbTK-D@^ zxBdv?4<-}w;p+zhI(Mq-kcA+!6sj(EgKB$bV^w(*J4BpiV(^+=*cVB zyN22c)Ol(yw)#qinYTqU=vbVeMEAmo3@&wQ$BfA6;(T&BF3n^>A}3?a~cAbKS4vQPJPz}Eyo|U;p(q* zr%o?}^Fmdvz_uLuF>L&%?9$r%ehPLP%kbhT=~|5?T4pb~%c=SX2bkcde9%a+%c4V_ zU)zAIouqnOJPRFsf8e0TR%z7{5K>d>r9JA1%GCi#gciS=b1wrv?BkjSYGzEm(!R_t zE`$rL8anV5l&ybHlc)Gbw_KS-(8I|)oh7+#3BSm$v?fyND`PtpHpq_cHf%7&t>Fk^ zZ>eJSBKimWE{xoJ!ZhVf%DWR@%EGv=P-f$sB_E}jp-_VcRgmt9dBy6IG7i_>)%p}4qJBxc@$BlNayq!? ztgR)>PHoDW78i<|p-g*M0aki66&$9@wuXEF`jy?`!#Oaw_Y%K^EL;{|fM6_{NfIn< zM>Z4?Z}jP0PsPiuuwaK!&ZtqdSwjYL>r!jiWo1C2*r?hQEarihh9ChNxCX)c(~lst znvdsO1j*qkFSPoWSXRY;wSqpGZLF~R1)A5ss~9*I`(J*jBebs}CI_P-kVHS;)797e z-s+dfM?W~K(|!K>N3OAcy+8WvH#3y|;`L|yqo2I~I{c6c?+>pZLcZ>&ufI^$gtsph zarkPxFl4nSN z{or>`sq=QPPt2pR(2Omjm$iZGBmtV61y~;2q|iJfvK3OJNL%;(lQfOcUNf^UDa(ke z`Cxt!+aBMp&8RMMcdR}pg!ZCzmX|AOOc^94sD!=(rLrON~e`-$jzB`Cl~!j+;%#3lG<6WuWlqtrc-Qne#~Y>Ed;)5FVM zu!ispATU|`W1;jlm*Px#f-xQYgb_xlG;zV$k{S)8V%~dQX2_Lvft?b2E!K(>-e2gO zB`Ny`W2FI-c=-`ka46fgDEOR#LB{qAvELH$#+sp1JGHvS8VqDgZ@0R1i8}e`Dcb86 zRoG6tgdTcH_(@w+lBiR3lqX}!Y{x`Bt3ah?69CPCB7d<2-9M2Y6IHOAaTxcM+?_+! z{bkZ67Ny2yO(vc1AG(-;!Bm#iriaBY&@>Ko-1-45Og_}HW>jN3Cpw+$7U~v` zAFMk_{U3}jF6;0vuey`_>JUjpC_@WY%e z~KVA`>ybM++u`P!^a1kL> z)xk}RlCgETS-&_1YcV8SLoLHP&I@J%Ge`xvh^(s04Qu3}_V2&Bw_?h zJ41^|9lk*D90DRsg0<`(`R9iO!>d}5)=-8RX2bEXF!r@Qr?je)6+(Tm-5^9tN<+Yr z23F$I2XVzQt6cb(ClzWlX*Q;{S(@Rer9RZ_7@M*;nxINawGk;3O7`nhZg1XOeO5R= zyn)6}t)hnpbntxe3Ad@Ezq|5xiOAClfU;Oep1d>7410>ldB*= zdSKYS2PJboI3x|59Z9*~IA${JnDcHjO_pv@NSy0UxY#6mDm7+V;crC=zS@h6E5J>w_aTvSg{P#g;4VbY|u*WYsIpYNZ3Pc!R;B{$>tDLF;>fe$yu9=w6V?;F*gC z695_8t*K~rK1{9O@<1xq(j=RwC}Jjr-M)eh_HN?zdS8dmA2 zw9FeuXx-{^FiAs`wQdt&d6ur)E+}b1@=2@G{%MDYRr~x6UP)AmsFGR9Ke;lyfGlCa z4yd%BD)67nm1G^*K*+mJ%I#EfWe9@T9r%cyd8^vx?D-r$Np0d16X}+KNQa5;?O>(m zip)i>Z&FJ6r?TMbC3;_9s+g|r3Q8%jE&E_0*KtD$y$QMg*)T!_p4q21HhfVJps)vk z8<~yXm6?{F5x(G^Bqt>Jbvx-ba&^oH#w5&ML#H#_ewe&rFLZ{fCby2shTlp=#|XRC z#rGwu-%nzK>i-h}BDYp`QmPzhsB*VL^vHGXu^h4~U#z6znAo@|Ca1#0QR3uMB+1u} zwFkyq`z4dsSNYMOy?q|uK9i5(?YBrkpGoS;pZTxSJsP$Va$q(Ng?rm_ZE4&NXtJbt zn-kp!h?~}@JC^N>6V24}iLD!J4k<gbu1-2!->) z{5Z{98}d)JjoVt>pE<-QCl8Wi^Mv#-5JrNo(!nLGf z2Zc?Lan(khm%<9gZPN#cYGYz`%K6u&XP13vF5e+9VR0|)4AyjZ7{==<13yg;%CZ;b zYGCej&(7q`Ycr8?*bqEw`ennb#kBNRkbx|*DQQ<5@_{%rRj0^Gx9H9wVrt`AQ0gCc z1i9aV$PzpuTFy$YeDd(pJIA9-i_1zNQUoubJE?GY-}PH8F>jJ5W%!T*w{0$+4s$@L z&+Rf3kadYCMI~Y8Udh=3o)10t){m?pZyq4CB`W)cg2_;-tmn|mD{A6?SMZ4});CcX ze{wnTYHF~ro>cM=ihuIw`m+Kh-c>46Xe3WI3a(!Ky}n6c#bT;n=1x&ir48C^AaRS~ zVQWO^`l^JT{ACen;)_){*Y%Puq^`p}Vslr5Ua;6@Acyw4V_Yra?P-o5sU5?4ZBJL} z5o_gx)!Z@4u_fb(?iHz}p!J^w>9qEzONJ2S%nYc|lO^(5x84A)%uA+k<%iL=xl`f` zOfOS)O6Xt%d^l8a_5_`?Y?9!+OF%~ru~M$@t}($tXz5!8^Ea5e*r_x`<#knTb5$|c zm%t2Q?gZs^Bfo*pFg(b0gNnZ$N$SRg$uWo6vNVvWXr&7b9(y2qJ&XtE*aFOH7)W0T zM#;=xGiGGYY>x1P-LleTFt{5OXmp3x%_w!J!xV& zKuEo^F$r6c*Qya5}uYH&!9#gXm|e*{`Qd6I1>H!>(_?r z53k=4&Houu{F3B;`TB=Ic;mmke(L)1|NZp~RdP35k30c=0`GOH8<;#@?Iqft>{+0@ zghIkaA|KkjPf=F`RALGMO3RHwMT|6Ard$`(>sobW0uOCzk;P!BXbzGtG+$d8-C2gfn6{Cm5twNb<3G-W`fV|A?)~ z%c{)mysX@Lsp{+}O19tp0pc440we)~AV7c;1%gmSqw!y7j=AQTSsOflIS6uhX7#nI zGUs(%mTqgoGl#Xn6N`G}R4Qdeh;?!YhO-mq0>7|+w}f|BrCJl z9U40a9B~&#g0SA7q(FKJEj8BhT3*I|>mHkE@W=|9ek92q5~z1-RE*sVWX(On>6Q#h zVd}X*tZ1Jj$?V-8Gt&OWlG=(YHKXc@vuv6UH|Cwo&S8IsozA^rx*jB^PX^J>4!lHF z!f{)Yt>Y?3>HFhu>FpjQ?Amx?P-;-;WqGgdg=IN(F>I9-p6@%(9%_2bi!l6N9)y_8 z4X6h=@s6QoKrS+6+tdP{+28lHliDp6Wn^WX}bc00#5!1hj%Gz6pvSQ=Dq z*k;)=4#RxsxS)fk`e+#lawv=i?JUo8km~!9cZWZe%1x<8PJ>>ab)TKhD{tTWgLBPFuz@m1?SzJJ81&uRbGgk7a5{M&D z&_+aZ2OfDOcKh_3riuRb4cXHb(Gv&mv%OeIukev2vq`G zz_)|yudIk>m2sD=&*zqR7&2HAl`o<%Oo`X1^i7}?*t29ha6Xb<-MY-vU7i#H&&R+p zS&Y&QKCbWN_vNFX*na{4oZ08AH_JYMeAGVw9M*?65M;jjoity6pHoY);qU=Tq6jfZ zQ-g)Zle7)eYy~pl?ihQO-fU~jg^Bp1r0HGBoJ;Js%e`oWQ@(VVP(rvNKTv~ca#Mdp z=gq3El$j_>4|XenSh4L_r{x(^4%q)t)wS*mGz`ln;ekN2B1&1DUuSi;y>?(_&4X)o ztq8xm_}WYg4As_L%#N`S#hjoz-eWLkqeLuoBT`Y|@LvvVdRi6ITPtEo8?S+G?Fxz> znOw3RtDPZLyX)eq9qTK=d6N3fp`z%BUKBY`Dg9X$)+p1MS)%!{3bzX&SoY*5)!ns2 z7&H5xsfEL{g#Co8E!dD|gwUdU){c-yzjnSsgvuUC%N>eUh)EZ9Qj-dHBC5NIFda_J zFlHc*;EO>A4DGlX?>ds4mwbFf53O7O`u2nWCPFJJXOMjvc7zBB2t!^1xI;O=j=?G4K z7UzYS3P~Fy*GR$O?YLg&=G6Omh3_q_-sD7rCdt=zhaQ5MpSnEJ=egMOPGwzvVZ_+2>HL4bCkq&|VV$ zp+sxB>(N2!7}27?GkxG`A@>mRmeQCPTaoocR$3Iw!)0hH~gS5E{=-Z`97 zLw5j6P5wg_&WLY-gyqmllXMgsYuyHzn;F!Ix+QMCQ#zZb0lq`|x+*$FYXiSuA27t) zAK3g4)cJE&rJ5j*kA29M)Wf5nzx|2WkY8a0XcD)-c>5KgB>Ex$n-kWly8BYVv&jG< znC<7ph2bmj<^zx?IXTXhrSgEq!a2Np#VdBNIIZI0Wg%T(}D~N?0gGFnUhsp zcyok~^u>6N59Khlzuy}D2d?A+;4vKN#DGqhrhvznT7Ca=o@2)XES=bSM_3QVcxs~?x4BfEPoo?)%Q z)?>BcZ~=3lD-DQR(99j9$Y~3wXaa004XPy#6yyQ@{+{=6BnW;)*kw-fG9!f8)DAK!>F zfiKCi8+ZXGR_3#|<+L;$$YYhXBu}J$ik4W1h*NGWhS-D?_dUR}aMztxnECf>9;BRa ze`g2VV>4^f_UTEzW)1z+jbx=*vmo!DVv1+FLJyJsTkqs@U|P zf38;xhhTVOr;-oGW93Dia%}Om2j`c;H>86p` zHTSfWiOeNQ6Em7e^Lf`lZ=yjHs3P7;6vGabt5q$~l-X4H!m>j+L4`52oR6uPzFgQB z`I~G4wLf=RmyIEMk=*bIc7aUBuJbL(%vu=VImP@j;dvkBIQ#S0&%@iVvQ7Fwh1bs{ zthx+~#I2P)TFHFJMMvoA3WG`VWfy`@??6xKcHF`w9E^A?K!H^^na~5YF9>6P(RL{v zUhGJ_#hVKlY>B?VS>xMTvJ*qome-6{59I+9E3yP>i71 zyS(}Lc{R$nj-5YH02Fdi*@po#dKNH;;O>0|h)j_4eh}&Fk#}>{JCrwcfzDS(oMPbu zZZ6l4*u0Qhb(Pnu^_okf6NoO5hPu3y{>t1W7D$=t#?y_7)a9+FQc{?Qq>%GN4JC>( zvC%-iW0Q*?*2EE2cdm~8^rZzO`8l6wb*3dcQkFL@Q>5Wb5->4B+FCVZc7xge!7O9M*izm;Nm+AboF0O&M;0LV;5h@W zH;=P}Ljx++fYD`k{y?5!56Ll``0N}z^=e*|4;49Zc}gm(yF@kF${|>)NDGV|WE+h@ zgOy2rTK%Fe^{E{|0=KSK=^yf`Fd9;j+R8A7@r?~5+wO_CK?ZAkk5C!>vQZDN(I@3t zM{L~3T_X%vAyW+vGc9v-6n)-6lbP|1C{$j^e0Gv+TKlF*(UV=;i_eN?R43f9Ggyz0;+ISF*&Q_5_RzYptq z)mY_BW`a#EO6<3A-Z`YF zD8hID>-&GmLFhk+zxt~j)^ol63+~vzJs>o5TkI`!3=fiZcQsYDix24Q zn<@waw6!=mch{}h)Sr4m(7;*V^XJ_##+49?EHW1_NE_-wkLjpuz($pvcX(L5l?aKb$*Z)R@J_g#}#YWK;+F} z0Ifut+7C;eHASfIM0JmK4~eQBA7KQQ?QvG!UfQ9~y}9`BdAPu-LAv9mWe!+ksxxb-O+o;Wu+?HdW6u=E(2mmtV&bJ9e&>ctq8q^j( zhtEdo(j*kaL7^yH{@+`ZTi&Z^-mw%1%nhv;01H@m zWm;7M^}jAnAVa5ezMYTN=1y{;dRtKJ9Pm*KzUWyh|1O)gRRS7hS?bjl|$y>=YSh_e(?I{*;K()Zt9ll^!Le4$< zGC`gP-&~dVn-pse1bj|a67ZftR)X7?L9T%-Qw#bVcQs8+c9~zH9g-is!kkH3PXnl7 z#gzBDaSVsesG0-PHYgdW_y7V877SJX+PZ60=}>O^x(hFzqN54$RT9#9@4{fQicod{ z5SqDbfk;M${h!(oQ9WO(C^$)(I^O_9mdel3F$>~-Qg=b3%h1*UHh6ad$RG9Xq|yuQ zE#$_Kze0z}lB}&Mu5`0t?`bJvPOo>Kk(#ZsR%PUQ3Q2d%PgxHiuCmZC>*d0YoMk~T z)DoJMPuxYyeaw+@ag#O%kg*+%t<4xol1>Yi@t4c>g58xBC&v6(V-|`a;|U%mm@%33 zE$*7jkA9RnN)MExuiw7?!CvDLAuR_F2MsXz6w~ z2q^=>TyJ|Cuo(3j`*a;@$nPl)!ldiei4{Bd?!A4cbVYqzTt*ez(6q2_Wh}CuSGc;O zGX_!6Tsp~LW0H&G`Ai`4zj>AyyQA9gi0T$I>TcrnU@Wiz^68blyX5=mjjg+P++oZo zK=NHw*R#+CAOn@eDWE$P>1z*6!5s&C1a4E3I3?P8&?QQBsTdHo77{2W-@V&USqNoU z>V2mkt0s~jI>R<2bG&$}h>MmHB)O`XBv-=9h^^B_oBTumLR)EFf!lP4y#;HWG7Yt< z1P$oa+*2F{sx7R$1}p?z5679F@aCoMS%k!*-{vD~5iAc@^uLr69TjD(5SJBK*`uY-3p*U#Vn6$*2| zg^PuDJ?xQk=X8X9%h%~$8kfr*%!ub^x5-xrA%lIceZ;CF4Sp5fwd9?NOn$nh+C5D$ z9)*LI&dZvPD+aXb`K^Mi10W;oST)wHVvcBa`}Pb7WL#%@ngY8F#p{(5H0aj?8ke^Z z>&Xa3DBm6omz9;e1Tspc?npCLARv}NFT7iD$YBh91O<-pP)lwgrsCJrC>)UFg+rIM2puy@ zW9rXK1Yl~zE<)Q?e85EX)FYjqLhHxSqG`B+Rv=4a z8c=S$Z6Xe!HsWy^^1cMSdzGi-;C29E; zu&IM%H<(akiL`(z8ufn~q^?sQd<%(=+({MTLMC%sa){0cz5?GeM%_$UhP!4wmV79f zgSA1FgyS|hv1vkOVA6O+o8stQ`1zdrs`Y^ewv43C6tL_-DNMmr%=9pO&@J{&yN;eP zCP*QGWOXqbCJG^2Ypb?~vt<+nE+IU!MSwuYkr~M9@_fn6AtgTBq-=T=FOil7Lrdlv zaA-Jt(ve(u<*_^)oyHXv-bv2ntE>v-@?YD-mspKVCXb`zGVdqTHppLQ9! zQfU{Ga8&ullhhW-hAVM@5#<6}W}SFkt3JE^e5}{YM7thorslwu3k1*Tl6C{+;NIVB z|3#L0U}%2%_T{6Q>+9zxRtJ351UJ*6NfcYVV<0`9Ru}5|XVRlkVz&txK-$-?I&Voh zN?8ED<>_wD3K)_NLwBldk45hu07XE$zZZ+D>-k1{z;Kh46|7KTe&AnR979@0=mc%t zk8RS^*`nhGhU(rht}nbOv8QgGF}GqN;;^Mv-D491yH@QTX(FnY%`m67Nknhs`{nA? z0vnWUR^kZwb>{*E`WjNShg?LAtSc9`RZ+5?dOlOcaIbjjSiwO*QZ6f-JFRR)Ro1lN z=m|~yKCQ*JFDIczu^5!0Tdnxa=|Qq5BYkQCXJML^8ox4y((E~UaW{u4-cUL1gB##! zHJW31)NvB2To42p!S!gC%P>hoEIL}%LH_BYj1~3p9f|mW-j|UX!Kx`pY*ej0((x7V z%Hs(1C)gAhh;*Du-x`BAwq;%{0)*~p$a)Eb8&_PrTZwjEwRXbi*$f*v$20^MCPf9m)+dIlcLx6-RS zTs;C-NHt7M73Rwa*DS@lyZ#KqLU843$$QdG&@BQOw$o`7gCj0NAmYKu?juG3pc-D; zWveAmK9*N~*V_G%R{r6-W3iUv zzlI-YHPQbR{+oXMtMDHze*fnCpN7|uO@_@;NFTiYHslZak$=K0>1Q@a0x4#)jp}ol zHrw^K1_wm zUUw?XD9qhLHZDx9%5@s2^>L&|j5~zaAR)M_Gw)NelH3e6 zHQf>bDctTT-Xzf0fH5Ha>Q#z^Y`4I*wmf0#zs#_0yINRL?;fdIC@3%kh=iT>NrNvy zd^=Erw}7@9O)izl04(2$^D)Oj@RbvMPyKf+k-7T-hn zAYvJy7BB9)Z}#Usso?LFi*esaW3Y_-OL4BCD73{(=m;9xXXul(Q=6^~)Y%{b2L!CD zLQe~yXdL1QUt^^Q!VCnC@=3-B8&nmgX6L3AP?J#KoXFFr^NsNplZ%>!iE9!1ez%|= zVA|}432{>WWD^99;GXGWRPrAuXSFXnfHCU8zC#2%6(npfgm?M8F*X12X5=K~m@a<71jORZszuAbR2$!}BSDeYHpeQEuy%=X~ zucpK`L2$elg7_1_NC$pXlszv^?!pPjOu55g+H3$MSws14p%;k)0wefIXjcfWo6mWWo#6yfbxOckFfi4V$U zABFrZ0aPV^)xl?I4zNR$9C9V(6!tur0N4mgGDj^J#txYQOD=eQ3ey#bgcx}|)_&hZ zRa;uPslJxA37CfDU#lHMx%mbig?32|%Zz9}Nu(-LB(=$Mwh+ea!EOP7)F$-=;hK-Z zp$AVYfmYnHyRdHtn2EC`KykRc+X|_j;>DKz0ErF{O0+sklEku)JAn~v9%HiZ*A@i3 z^1?HTs{NgAS}Pw6k((1mdXez~)|MF*TP{?eA1W@dsMu(rHzcsK>~|7CyWB$IFa@dR zr4PmqL=Ds>8W~n~*+&O^z~W%zfNBCLGXnv10Az`?yIuoi3oMN`z`6P6egap~p|yx{ zD_Dz2EUCAs0^YK{U+<)L$1rfT;ebv7U@>Xsg?xTJaf{jpB^ON0(xxObN}*>^G~i`c zgBZ^3Aw6_)YMe^{M!{t1lPD$(t7d}Ha1A90DPSNWAzKX-<>Ms*RAx^#Wr-mZ83O4Z z4i%7SX9ERxm3+hGg}k&gq`3ePuoCb(CjIH7%|Y5jof?XOH(64N3p=MPbq>Au8@6)g@!vrV`tx|+;Yh!$b#<) zwQe`TeW<%(Ai{Z>g!nXE^s3qPlaZe&s!ID-3Z%Vf(xF_YhI*I9!d8-K*(49(7w$)C;`@%^j9AmRN@QLZg>g>Vw29Arng?dwdTUx1VNe{dPkAhfry zR0;I;S6K=4pOHfUXnVRNHRyY}X{ptzc+M;XdrbYc%`@W;QW(!&8%I_3O-U>)Nb?&u^9un@Y2=9c){=PqCXTm8%$y6K-Ca2X zSmGS$BhhfcvP7uodtTd2VGRzJ;OIWtWiBt&K#x0hpjeA@f(H`g;bpKqa0NnON$kFW zQIq@jGD9xN4UL9Ee^Aa`mF_vzM%LnYTF{{==AKNGqgV#eRg)A0`4M;#b<{?fc8EL6 z8+IdDKp|(gB{1Ellbnf}2^sohL6r5aGZA$XYos#T)b|T^Mr-!D;06?Kn96lbZkD5>1s;UQZYYO|#_2uM|B1vSF1No)91UWXbL*P{8 zNxptU5`U5xj2KU8BBal43&OR5tGqm^vXDALksAu`97cy!XX}+=UZhd)fb3B6?X4%msH&rOoE;`3Q5!0x!+^1-tN-T{B zYVspsu%9U<?RWZDYHnz4UdSMsEFrFZl8Nx{qIT`}#3Z z+b@o0w?0uKPVT{v=kL8^xW9yM%tgi8q zQ#`^cIl8@2LsHFVQ;xn3@6J&pp#)HS>ZqS0$){)E^R(x=v8p`BrQ+&XqH-%uOSjzMt;vxh?zEYQ$pQe}2;3Z{szyqi7^knGuUe9+ z)!J(z+8MJQ3E(3ZmL+6)F4fFpNMbhlvo6&M3j%AMI!GhZL!;_KB9{!U2xdU?3b_ch z>u$E0T(o&tRdk{E71WBw|CZANhSQZN1>Zzf@XJ+QGY{h?Yi8{ea*mfONDB))sR))e z8Jd#yF}|Vbv(D2?x;^-N1t*7+7z3%mCN99$4Ogxh@b3?&@u=`MrvhM)GzN^6hU5q? zG6pW}cEkM61;D|1H;R0DGbR$Fi1e)pTVKiFdH1ygIp*lZ;LjH?PC=D>7xq3b554MCKoZWPHHo}V?Aowq8xyAV95G;Mz?%jv z3w3mDK!<%~V=u~v-YGp(p@c4%i=t}j(YpHx0XlcpX z5NbKBlk4-~{0+lU;*CZGag83p#yuzt4%h)oM%y&R45?o+OJjDsF}EmZ-=>(VI(GW* zDKmr}j&YZJAaPaynNng47(gvWgJ8j@SPeLL*lVNsMT1uL5$iSpGSJ42T-KoVQC4qp z5&)le)I7>+dV;BE6%vPlU=Y$yvg?r=HaLY3j)Up0B(--n079HhfiOVW1*$sd@T~1a z-kj$n-27Ygy~@RBvyVz{u@egQHE=CODU#9Ki+!i5Nu!sv<)9QLmXJfef%XHg=~c}q zB@MdW_#BQ)e2~no535CB+5{i#M~90VK#{fBkq%2xeN^p&*1vM?Z%S?>`zK;V7*z|v z%>6Je8x@q#aifHLDha^q2?lF+8al{Z6D+KjE}lN?z}Vp5xKb@oHpL zfGj*{lY@O=xzyQf{=rGKlqlEPcp4T6QXAf)rYqO%lZ4gxOjrYC$Fan7mo;6&O>AUZ zwQ)nD!jz=IhG~hAga#9D4N80_XLUmJ7$ak%TJ#WLH-K-xr6yv~uL%xZci+drhbvI{ z_`J9OTgdWee-r-h%x}L7Z|IHQ{{8Lu;q4Ppcqn9j$Pd}4%QF^`#c;VFkhz?g&lFxd z>{guIJLtMGt*Ich_pB;vkY7Xf0I%aH2WjC96!9WT$~$@D`-&D=&F3wN;kwF)fL*wP zrrZj9uTwwl>?J2XEX<1fCP@r}mfJN;ODql0sy|Aj`T` zIfoYL$x$Y-8dpuFcsprTVM9T01SukW$u#fYIZ6T$yK$$EnRLyglS^Tnk#ol$Qm} zv{Y_p8@eDzm!Pd$8iKU6Q{m^%v1YS6c_1NJ{G0Jd1@4~HstCD!j5=IW6;>@d6CDr( znxw!nF=*qG(r9Mf2iU!nTR(0$6=AxJ%c>S80D2zWP+`u#N={19qL|E0p?i+#PZr4_ zg9}$+3bqafoLE*Du7PW6dl|DQ(@M~W{LCg@_eQj@2%-6y6(BdS;Ac9iS%_oP6kyL5)#>)I%@E z4OM1HIQU@Po-a&t}K}_B#0YD}73E@UJJabTm?G@TrfJKjZa(#fo#_gL!{IP&$GT}f6 zRB~BCyNI(a$pE*jbuXAY$a}e37J$Fo5q2W3k5Tb}J55p#%$CsvxwPH7mwA-xa>@`v zygOEW)mkDA1ZQ6#8A{-?1&UqD6Ig7%pb9rm|5Uxa({{DNEnvwYP3NR<0pc}G1YgU2 zQ+3Q;s*OGm>F`kwD7VV@e2Jh>O%6i97Iy83exAEr&F2&RC3yyD!F%GqDM<&=6f+tL z`Ac0}5vut4AZ9-tYbs(1D@)rtPe6!3^#7)0bxLS95QEGN{%%sJK)_hdLiNPv7KZ6} z)U`m-+Z_&)f3d2gHG_zai`Os!CssG{e==VH6c#YbHReC zDrZe{R+yxJ!Xmj^c4p62aCi#Ibh*#9qVd~7k6zDjogo4!*pMiBh1HS}QE%YH$`YV!kzWXe^{mWmf-@N_d z?HlHle?Mn$|B@g3-{Cdm4`G*PHOc`QQ@5zW-1iRat9vXT(uxke(y2XJ)1&bouEPbG zp5V-%=q8&tX|Z>gP1{X?ZhMBy1bK3s>TB?%&0Cs#8g9Nn8P!dN;4C?Z5Kj*2cWS?_ z`;s*;*>WiBQwoxLuUvEvMQt`{#Nq`jE_)p2*b#=@&&WEE(I8F$>SC6F`hDsj1q-?| z>%1r8=vt`pNR<&+ju=)Q=VPV@JzgsGqFGVIyq#$soKwq@d=LjM0acxaOeIi6mbjwo zis6Z38n&Mb5O@a9Fmtrt0p0@nNM~YUJs#n5^A12l0isfgw%exOb1Q{qL*oFbiyIfIyz^7sZ7r)a{0T5f>PZQAy{eb2406@Qc_CrWk40&VPkpvUL>?3#?B$v8# z@d#*k;S!sY<@BA-`f_YMmayx;ql;FK1#pfhhJArppS;%7(zyxgB3&HoPN@YCb{o6; zt?{f3zSvijigR4HK?N}`lA|I!OGK|#w>MjBZ*s2^Zgx1rn8=_wPb%z9LfDfuASHh* z#4=%=O8+(oc|pe@K=cEM_pJRO^`n)g(j|=src>+b2kSMtFu@F16bCO|S)PVjCTI&d zH64oAsz{Iu#x0j5_YNDTBTTz{w{?Sa?g0XgbYi$d1hFHWU0$FkiekzoSk$g^CV%+J z;Q?AI#2M;06+0RA6q-}#{$jo1 z98zQDR}IsuDuE-aYj77Y4pb<AEiNL4XD{lQXl3TvQRCuQf+YzWbow-wEH564#kTE13CbmIC zA%CgE1YB$s0}j-vr*%#?x^{PpcRK`h=3QQyo;gN(P-*G0t4 zP>E;PqM68-oxCr33Z0phbbyY^mv=fFfC(su5f{ueGpNh9+w#mM1ptfOPbPo>?_C>^ zHNZP-C6!OnH&=EaHtjwDQr!mSS*e9sDI~D6a`c-U~QV%PZuFgl-~Au#UhSu`E^VP`N-lccU&8DUWi{)tZ4n zr@l}HlOtvn?WrUgf$#eA;?!4_lbGERZ68-(SVJKvY-@XG^PAz_&~}>nfKnxiKVWXI zR9pX2!geO(Z6!hJT9-{$33N=Ok_9?*EW>Oa3Vh8jl270zg9PnLpWUefx@ZG66>crf z{GxJdQi2fgS&X1JbgU+U*j%Y9TEj%<^8bXt|NG02P5k*!1Y7_7^&`+*fByR6TNW&M z2}_P&hq{;NEOQ5#IF?=GORalHf^TNAmc)Nxb@CuKAqic|T1B=by8PaODfdN+e5WNL zu$e9p!RJJK13?N%>yvXdg%b%N7YXQNQdw;TPHtIn&OyrBwY9P027Q}(h(*;+;X5!x(BBT#A@zoa>9@^t}wnVSV`+2k;$U zB$t`tb0t5g2`*AOg3^#=Q@RJvf1zNeBt!%nx12XW5LBoG-;f3KBSvzO7F+Tg zJI3cqfsdVZV%S8`(WwGt)O32(B`QRhSl6KKg8E5q#~GYMS%GhJU%hmwRCCRv?%GlC za)$4aB0ag(m|UW4F%ij9Qnn&GN-%EkZa=BO@e(@kWV;3uhVpr#J{H`K6$+TQ4TVJh z)}rw;DZzijo*ep{lw>f@O&@5js*W1C$JkJ)g6HbGa)nA@<-=~tuEK|(V&bAA0QLq* z)dV#?7|~bUn>2Dy=Ft9V!t$34n}2!zNsn3|7m{o z7jKd}z5daeGAg8e$Y|a@4(pk7(vFIn^nVDI*>R?^}LBl9IRD5>1e3|Vk3pLB!~ zscW~(>$I*%j~PfAPK|Bw2hWXtyakfpr83cAyLFCEU(tB&nxqos8=zze7aCK>iRuMC zc=MrgPco7{P&T;usLUbH4tH7pUGI#nHQ$LXoKuJ2W~OE;CswFmfi&ULb8IQQIhmIW zczl%NG+!5xPxx}995i&!1dGZcOi3r&`Jqm?HuBZ>*G#9==Y%HB>0dyrCh%igmr@-o zdGVIHWkQm~{^XM_oe*R}wa%dg&}v`~N=Z{mDF%cg*gvC6S zG31JBw$Z!lZ=V2u=B_(>PinyT|+_yp|4E0CJH$qmxL zFKt!UnIbTf29ncJI&8gOd1r=0_|AEfIZ+<9z@E0HRcm4C*N8$CC*)`^8Z@-lPe;o9{9?-9PN$wtUsNhU! zj>-Lkq=#tiZbpGIMsC${CDr?Em(M^t0s`;|PspOh&Ri0sfkKcNUoO%-8&PqT7l`550_zgYtz{~nXn3fg zC+Tk_0JCf#cU6)mb`__sOBOFpr*c&50~-a!Q(#EOOW_l;@${6D8wR3??kyQZI@br+ z9hh(np^Lk>bV}Ik^;!0$qX5G{TeJTJbS%lePlZ%~b$C)4j@dZ9fsq}|<}ENzKvezuflj|zuZ?3VE_-`hA%H_3|Fx619!sE( zik0Xqc~Jox2S5@n7||2tBSbH^u&$>{c@JLj#}VqRR0*wz=}3*UY8_UG3>=QyeIYxyk%9#Yl6 z^z1n?aor`aP%89}YZCwDfY~j{<+X1eG@2wO-*g#B4avB<3fv77PK&ftbvjP&*nbq~ z%ng7c+vx1ICq}3^y6_lK2%O9u7MD8$ zZ60Os%th)9AT$Ou5BnFK)u+>8l@CL_?#tA<>$l|H9Ygp=t9c95cO|niYS&6I29d%| zCnY8izJVTxlF4v9mGq!456$2-swGzuw5WG$M1>&wk1G}}!cJ}=E{}(cWQd)Qa^zCf z(SV(e!PSWI4sjyb18(X@Tfr>`Ov zVA}+ukvp~#Yx5s8kb023hwAy9k9X?Spq7T*qd*9Fh9k+eDnp7_ zGoYm1mr`QQc@vaUB*g}$HtdYy$yFt^o^0w$sf}7z z(%VT4L}bj@K>-&)7x2LN9k(FxQFgna7{F*B7Gka_IV$yCp89imV0RWhu7V9IWi5OR zbGGB~vgGXGZ^BH`R>=Rp9E&7 z58gfvZ-2_kN&@sptdUuho$Q~_ufj%1q10c;1 zxfSjl#lx}M#%5Ro5tqdXh6dAAc-c|3c6LS_ zF#iF?L}aDB%eLctk`VVS{}Oiu6Z<)+N^8zxn{>I`s>=G%#~J!6cM$H`$R6meKw z+M{05^8tH4OM9WBDgBlHyKR;`u;Zu>57whBc;ctVP18!tb+rfxnqEBRlyS9q&*Gl& zU;x9etEdT610FFQ*h$AJUbzB8VE_OCAxs^#2w_-BEf-j}K)`D`m|Fp+d!jhlq*3-R&0upB@<$_RW@-_B@n?9LY-lx5AoOyh>gKfbSgjSLxIckenFWg?QfT zy$c6+!P&<0bmf}5Nj^H$qs&e_mIzhd3!zy8Pm_OUb_E86L$@-9&6O9dMv}Jxp~eQ% z2Nc`6u14m{igl}8Vr%1iB~_&!=mats5EY_P@YiqIbn8FKe*ypGEc5BxFVXUR`u5H1 zSNW0OeE*N(^+V*JFT?8x`LX|@ya%qBp-o_9^ndZOZlW4rC5Zd1ivmh|bX9Lus9D_)dW9;e-Bg zZwVEWrymP9(ZV(^kAcRTX3Lry1I17djV!hnS2`r2+@js z1qg=fTwHp{h_$ed!bYy59$G(E^8VMx?noFvNtS_$mPE-LIw{BjsNxFnspmfgh6EFap&Q1aR zxKJ@SLsrFbPobD~5sri*w|!Exgq&Wc%{WWDCnZ&?ST1@ws+zfpuRyC6#>YznTnyYk z+#Oxtli!zyQhJVUBx_I?iKnR?U{6zkYFE$PUt?W#T1VAIEpJjCk{KjaikG&MqDuEN z9pPHq*??zzzVZ|MFiRCv{)EeG>lbC$H68Xq`nU_o>h1 zrUV5$FYTnIQl}n|T&nBnx+oImF%FXe>{!qZTk=WeoH-1YUq4EhTE^i@xmPtrE+_>J zKSvC@hNQ-Mm+cYITZi77tb2Eb0=lXAIMm zvEi=3MPIvqAC;0%j)zoYtsioLi5p`jhPIG^vEExX#f6VE^dlpsA>>3Ii=jQv+1(gs zX=>6I9G{{RC!odN4}-u-|yMHWUHr_R(#ty)dGo46z>_dnU5 zMXSq#x9DMZboBPN}Tewf%L9MUgwqclE%2h50`Y|L^+lNB$$n3+aq?blLZ6!Va?!*kfIOor^S#6x0e^g9T zCr)&RsTEC8yXNsG&s43(EpbeEgXUszn}Hc)C;xh=R0l&v=CW1-^2qJ=4y6CYAq(jFZ3mBWa;tv;6=pD^(3S=N*hv znYdqy)^)9RQIoaWC%1oVclE^v%8jXGIy>l4_{8P;qgjg6F!j@tp{^-T;@VF61eX0`p%I zN@y>##WomVPPLK|$!KtMgoP_1cu%+RxLGpDh-nGBKzJQiP*Tcc#c+;D)KwXX1ZTBN zyswWw0BtvC^LSN}EC!;obcNJmALR)jg*5)OfoG4J7}EFsK=lh$Wz{pZWYxhk0{z^I zWeqbJM7SmFAl215OMyvh*sC2q8dpwGeuCcJWllYqSk&hl!mj_Ojg&-r`%cDvp*qQr z32vtQa-Qy?@8TE({uRtra_J15xJ#;o^1#yrb41rx#h3`MknCum1_HOk2$@!CQ@jJE z=k(M`GH^uiXEYC@44f$vs+|}CoG7u`zE;}gLY^$55ObS#a-i@o_1ffZAbZIGSw|Q ze`xN&65bMDxTQ-YJr#xHbFH*TZQMSK{LkD85bmvcw04r|R zQ`HW(El{P&UAyu}|92b9J>Y~hF@%e#Kb^ViOUqT#A%!14fOhGF*RMnVkiX~Wub-T~ z(WokujMpz61u~8!`0VmfZJh;EyjwJi?mbeB>9$Hy_H23MJ@C=~kfrwUU=1Qa?CL7K zkRj4g&AHx0aji{*r*Ej>vj%kH)f!7s!&Z!HyCEOzVYuHN)}XdG{aE>ML>`mYr+xp= zlm{~{t0}hC$B3DCh3)TUE1)|LFT!<)#^kf3gXPBFcD$wV_43#(kE7H+b+hH3$EEzh zgjo}jpCH@PEqd*t3b7zfEvLR0mT=8wd65hC<+5l{qL7O^H+1vt5HuLj$2!|>uE;IT zxd6zcNGMGf+`YVmKJ%PL8W(6!h1#1!$a1&qaK+}3e(&Or^EENFjn~Vx21|)k5AiObmQ&CxJ)|Hb`{)9YLL*!;~7-Bp8L@#(>VT+Dy zX-U%P8wwXXRMa-_oEzWnHNdI&j55v-rQ0d|3zdX*i^PPr`UVz?X{g;O^L}`9-9R+B zw()thAH-WUdBI^iQ}$4>Mz9H#fw;;mK^K?-e2MK&ExK#BNHA=ca~fBL3|!z$uCFgj zE+hg%$6%1!;&QKs!c9+mzKxfzXS8Je(xd*!B@st@?MddSXer+B>-4Wq@HQt3SfF~w=G z+pM^6=WthoeZqMPHZMOLxGVx{g$)yylE_EFH$o+7_w_|8@fKiWB5aGL&q%64I-m*l zm$%-y?!GnUmKA4yI;Tk7Tcx|U%z?#2B70l0XF_s)_ydAu}XSa zb$)>1D*g6qD<8e;3yb>qvJB(71gOMCK*yT@!<|;Wwg*u(L3eIHKk5V7&kJ07{7{v@On$l1M5ANrL01 z#DYS~5A(d&;M{^LCB-HahZ0NJ)5!f}2<9H!DP)EE^s<6JJHIk6O$U|tr6SW^s+60x z4QpsRz?Ns;Pp1E6IYGWoS`+mYI~`2H8pgFmeYFJ&t60%fRU0b-G=}ox*#Zj;db{A4 z0^|15j-~IFjtA3Bh!yL8gRq5#TIe%c2kY2p5Q}T2k~%#;qmOMo2jwpxd?d`?7w_d# za7@XxLtMw83&oZFkF+N(8zpRuZWpa5UtYL0f)_Oq&A@MSFNIP~(~q|k12f9dmGGdD z%u!q|2Q7^@bavL&4)X?m%vLstUqwMy36zlGVbxzD`<>Gcu0|5bF@~XfLkr}ikF)lG zJBv3Krd^UXHncA9$rd#VHC{8p!z!)De4#yIT!)=wt;{s{i!HCjZ7?;-<#vEe#TOmG zxO9oVRFN0CP;`Arin)}=E+e5{d^V8kR#jP1tkZC*8$8A1y|N4vCKLxiGP%VH#`JbB z@5s`5Dyl%pRkM<4%Re=uP%~e9wwN2G7ua%!L~(z)b?+wz3L3tuspiQDx-cghG4;-N zEagU(|7#StK^Hhq2PllK3N1-HQTg6iHG6G$k6DL_j!X_0LbO>r5783TPuR^*LPjjV z{mbR=Qcct@ zW`9$I?xg?Sj1i6oiuvszr)Q9^KEVfkhXCV)J3;GN;Ezd%_tQOt_Fc%hE+qEq5t$U0cl@@!R;o!oCAxv5R7jNy~| zq1uup;y~cASygVrW-CwUb{}jxDg&VO*`iuZky_bf%x0Sism+UCZmvOEA@^BqPJ0z> z^VO?#cPe;LK&{;l9dHz?n2(libnSFi+W{k=*mD%q@w9(JB0hs~%w!5`6-nQ7l}ptK z+*^mdZMt1HdXX318clPgM>XcqC~1I;8JszQ(WzYsq-&GhWU>a?&p^Q2jaH$jW4vlI zVdBz3XO;nZPwfQUZhT6D$Fzluy2g0eu5`@q$ z%+hmks4sW<>g)|*WFa)ezHz;W?o@n&caoRDzyTnv8^Z(&VOsO*sK$zDz+A0_ zHO8sFp+p!%*UF#&Ogf&jrS;#LBYP;!ZZ=cXxjdXRi`QKxnj09 zE6)dCU15l{adQp1GNz8M^Vt}LZB5Eni`nJUsVFo=|2PwB4|n!UAQccptTmAqdoa7t zmFj*X$)s$UwOEECQ?}EcyJwR8lWh0d>e?=j6lPR|SSpEw?{_&3<(!%R60}p=q zF@M#Eum2X_KKlOPJuVQqeo_1fR29?nFk@u z;a1dla2Zx*720ir9wNWbQo+j|iOF_Ewb)G5MBtd(<^ z(q)IBcYLOfQ`!fNmq+2h=u0ItuAda(aQ0)>d$N ziRH)6MZ&7LjC2a>8I`y%M#7#h@TM`7VM|b}Ng093URe2qKBlHXdw76nO4>5fC9GMe zqmfs?JEg5Cf%61Rcz4mot8tdPNf{m+n;F!F@>;r+d=tZYUK*E@>`;w{2~bv}VtwO{0aR zpDoBfDP^p8wi=I^AaN%F*oh#MSiU$RW+YgcN%`mFr zGy}n6!M6}~cfDd=VCS>G-|JQ~D@yLaR$IFdwlS2r-FDlm);xS599;dEsB}-bK#B0Q z?U-6al6N?C;Mbk^RH=hwkXEEtunxD>iJl);JwRQj%d`rcQ6PSEz7U4+O!wJRWL59l zS$f-J@CwhU#I{_}T?9oEv(y*S$HS~(e(U-&HwG0%J}<#_Tw8C4q@}FE`NgFkxxSkGR+ z#J}O~*9t|JpQa!3_rDaOX}Q-tMiU4;sxY0*jOU^R1V`#?+kIH1RH_V%=o_ZggIfQB zc(bBCuw;$kE^qmXK$g-c4d6DqdN2Y^*2Crla!a{ZFmi@NktgPHsU)?;wo@IHUKbM9 zm6R|%7}F!!qlJ%#R365x77Uv-`vOzr7KfA z1>1dX_t6mrs-+9@0IV<|2e_(va5qB7#R@M>-%_6Wo?mvEDm{Gh55 zfsiAgvsR0`*c#&DRJ}XumAS;3uU$tVGNkT zYKK>fI~__-wOxAZZ|7Ze?_TJ7cn8K2g7u-?2@YOB-9#X~bzBd<$R+Y(-*QuGvMxlZ zWrK#!AjEQqS5c`P(KVjE8<@I79OoC6S4rT%VA>33TvaH6@o-IPR?4>1_)>JzFZ zw-{;5a;8^pc4u5L!<0(42RLAYN&&u>P2ydOrB)rnIE`!r*Y*YFge9F?BwkT_NG4X{ z;baBMnt-axa>SAXPR%i>Wfj#zr{Zp$-4bT)nn~9YHoR1O88<;yTl=Gs{1rE;9$A)W z>9MH0Bb8>Rlb9Ow*dGHIJUh}@k#m&fMq3iOIT~(Pm{O@!F?60KcLB&}+ad{aOo|fG z8X|OO-Beb?eoiuz2{>t*0@Ny>?c4hhX+&;$pAxg!4$Iw3QqyQE31Y@YmtkzCFOV|E zh+#V9dl{6bl(Wa;Hm;K@XswjCpH3R*L6Io1NbB&ZdrXzT5rw+Fl%uYP3-`wX&t>*D z)U{Y}%;~_Db$noLq54O_@$+;-LDZOMgoK4B_5G))7EhaA`tg z?R|UDoeh%I14uG==g0&Lt$?TjV-9!5!{J{ldY%@esWoa7PZ-z=MM_Q`m)MYH1Rs@?!+e2$14gnoV}r;2O|#l!uLl;ux=xXIf)b@l#&pO~g=nBh<#JT0 zjiq*fuV2#@#uU$RSSC!L?6AZ_UNMxGxoGpuXgr;{+Le&bQ9zal+zM)`E{U_XTTG1NAnW91u`t9 zQJW0PvO~PsK@+H?HQm8&7@#T$<+AFOcLK(?c2Y{il6zlJ200l$>}5n#l~A|1<07|1Nidhw}~v~O=I1lyd; zIH^PxoqjQbeU@yaiyby&&w11v3liN%l`R`Ex-4#iuDSAZT$w%gV8ci##UZoltuC*t zbYUaVw+rW%!FOg0d44^{@B=*)`d+G5xqFM3TYRZ0U32rH+!N+&8X5AbwM>dlSgljXmuV_^LVL*pjnX%^ z=F|-vEU;93lioV8i~`?)Q77KK{l;R z%A_-pE8p=f#fiz@DOkL<7`V&p$;5ynjWt<`&0hl*8CTMOd65VYSNp6Hbb(ez;iJt$ z`I3X$_eh!UPU3*exDJgJd08bYzsmpdKZgIT2R3l~oxvugzk!9;4+t#bFS(TJ3;g{* z@MGY?`Pq+Ozo6*axB1ae-@bnRHH2=y{r(^GBOl7oW;*!r_3PKKgFR{ag&)2CLVoY} zKed6}QTX=q8369}Gyu%fG*=eZcX{cK+}2cC!aT?$OqW!-cf0|OM=><3<9G60vo86T}}ZJ%^RDMI5i}tq%|Us z5r&Z~cKHR$2iH>qG@fFGMc`BF9qQJE(+~{IUlJ+-cj^h>2z}0I@4~*6T#ZQ&M$`p{ z1x{$$e4T{lTJC>TGDpIC&%6YbLa#EPa)g5b4J!MbbQ$J34Dg#q{?TI0R5LkEnmVV* z8~~pkAnMYC>GvqbxKvlRFB{FAW|aCf2R_RHTN_U6MkzWZR=Qk0lxg63wr`Hb#wzSR z@zrEl7#iPw&k znv{;D(hRVRQ)Gvvuq2(ft-ImB@Ic*caMe9U#q)8|HQL+>w3_QcsnTXh=MB(k|23Vu zHV-tG>!3~m#dgu2gZN1FF%-bYafHY~tjYVA#!4RBA-blP^*MD-x^lEPCE`n*%^2%( zmqt=@?b#31s`X@=w6;8p3rtSnOlC8@iv2_l$(6)BNoq2=51mewU`jT`Ae}cu) zPbCGV5v-w}XIyJR@Lw|aKa+&BbSn~4V~b?0!0y0bOJM?+qpW6QeO#_fnpQ`4^J#r7 z_gzP>Cafb@q_NgkR@l8;idvyQ1I5pCU8g9Y88rgDH##p?3hLE$~W zbG^c{IGmdvlp*ddFpM^$lOj}-1$Fx2WtE8f!1lvJro={z)O#h-7@lAGEWnOU9$au? z&(>l|H_)_R1#K-(w=A6-?GJ*@Nbv19h%S~Dj+cW{hU-0s@k;Se^g8-Mo&V6GJg_)W z-Mr73+@eHEEN;2~pox(_#FCUtxIju;y$cQ|5$OdkrZeLm z#u8UmcEL6zKAOfNclaT&xN`AtoSGpo+Gq@xLUQ9*v3LOPtuxDrG{aNFd>Q47)Vp9O zOY%B0O~e3gh!eNBk2ZxJBkZf?!|qPg(hBSu2~iW$AzegY>=%^d<9jyk*g;39s1LAQ zo+P065wH~E>vYOFNi>H9L66ell-rk{#8RBbbo8ug*tm&VRw%cn1HHnLv?btocH`{w z@aQA$?~fVTE#I=K=)OZju%N zl4B=O!KmGD;iv*nAzRI@B_);QsW-$Ygeya_yfADyYxNPaAeyGk#*g_BN76LI(=C7g zNzHN%o6rSGi=?=q#W2=XU0kWvFSjdMED0N9wj1+7F9tbz7Mm1>+$ z9D{)cFcc+ujWF}*Jdk6N&V@}m>=0?fP$~46vV(4wJn3%I9glrY6HwMP#(OC%XkKkf zW@9LpHv8~}30wl10OjH6y7SO*-a3Fm(vn9+4Ffb%HwpDq(}#f!Ihf4O7dSg%9@$@t zHq6j_v3T~QABDd?gRnLRc5puW6-~9idVSdXe<>mR{awHI9)$Y+9%d>T3jUF!zcc7t z{{7Qm8hCvM4&?ify?*%m@el9@pGpVx)pws}H+!H83}^l`tb~5{_6bb7zL^{ndu-u) zy&S0rX2Yhy8Ykf9x+S(U5Rlo*l+y6{?>jIP=G(+(_x%-N`FPwWe$3NNo(5AyAaB)e)%YxT*~mA%duz zcZjy2T*!4~x1yU#V0IHku?S zX1b126t#K)@vW^Fpg*M!0C~UI@K)8iUO9I#Xd7+BRsmp}u&5su1c7!SOSwoh0CQeK zW2ZcBrsm@17GU?{=El5b_HD$q6nORiW~N2uNBv*@4vLXabB<6S;wdc?QkQ zinFawRKVYk;BR0zy4`0{wy_xQksX*uC?AWYpk!V7f;{j%^< zuov$v$hpVbHTTK5b#AyY61PJkdPCnm6kVMuA0vX(!?FqvwcD)?YLj%?@s!D_7t(WM zuZ}Ja1jWPJGa2Iwnjf(0E%!OtmjmZTHS_~ zT!kSq41ngDbSgr@>WXDaB@HMQwX!Dxn(yfCn?l97VNwYLB*cRSM%C%HZy69K_A{Px z^`P^tIvuo%EB66DPAYvS>CY`d%Hc+aU>VVr%il$PPI(sZ>@cIl2V^*SCCSTYD|blk zQ_`$k_8OX=OmV0mBD{B+T^)Ezl{lNAEenjc!NJuA(0!HdKS^)-$NU&OnSYcfO8-5R z*6&`wA|LnDw_gS>cs_=Gn{{+QfBob4|M(#K{QXZaFNK@Qz5pmu=!U=M7T{h;m>~M; zE>|*FIYTxx;$+|k->xMc>Wvd-*70i9bjYQwiZb+5OJkBWwzyt1-h(ThbWpUe=w4v= zBpG$yc8K%2OiWUJxq)>LlE))}NtcK6XXO(tkZ#ZjgWYd_Xbv51$5*JMN(Lif4N`}c zA6qSFtRv8o?#2X?R0Y8>!pS~sjD%XvU2dzA2$!Pn_&SN^e%e5b;ODa#%T*lB>W@n=6-aJJdX*K~F%IZDg&(BwmGDVa1 z9Nn62Njkvf-y5A`bF^)biJ=25t6sRbIRKQO4apXP_XHtV3W5Zt$l!F*%v>@+fbt>3 z=)Eg8N&}!<9pir`UHc&2*MW=Q27!(0VRP{#;S1W=C-_710XP0QwES_6sy=0?wX56@ z#GYSaR8tcb2OPXLTsOJ`Nz6lU8c)1coHf}|g(qq$#{R|RAl4{hxIV2G>V%EW?g(sX z=ip^q+;7g3PwXmLF)aIuN1Ac6z!ExD}LxvS6pO?Fl#&@8EiQwfTK4I(ARNnd)$ z0MQ$z66Fk->Utn?uh24kH9t5>cO(z(y@YGp6~HmI*&{YIKD#L@tbbMQ%aRgIC@(+x z$xp&h{==Dc9;Bb&7vKE)?du9<%2j`<-apETj=cAv${ed58=lqA9u3(KS zkx)+#RCoC=e|`?f@$B7}b2_tdT0*}hDSBrUbvqf9>gOhX{A?lemURW~cmgzQCB_pY z1yfa%YuW(Udw8Ze&!RsV&d%=ZW0186?A8YK>k}oPZ%PTJRa`&iVV0djE2dk4Ww^=P z00(olZ{AtmeR`i;F1a9Q<{HS;0O@2&Z!clEvw8kpb|x3iohOvvoDM?qut1uzr~FW| zBCc8aQ$Thg<`2G(Yq6^&XGgr?8sF^_qbRRdg;J8=jxptfJrMv86s1T2T=vCH`XzFR zRpSJ56}Td;I|2y6`zEOf)aS+eD`Y%L5tg>vLtf^&)ghuSJ%P`*1P(nkly&k^J1G-) zp5j?pPKw{AMf5$xD4^|YWf7Kf^cRBM8ihTxh~tRv*}(^JsoO5Yq0qE5%nb>?UhSjX z3&wvFV-bXLA&u6}fT8r3kq+13!8REeS2kZuYPu$GOVvvUvtBO{{ozUqMUGu6PZ>%# zNz##b38*DESp!NNgQ>1A&bc%=S+zX(CrdEsvMo96(64Mc>cgLNaypt?wF0fxkl&b~ ztocl3O}wx4gI4#L;Kkf^Va<4jYu{a2aW;z5tclLBkc7PvCQ`$r7BGrMUQUMly(~I) zOr(Tnwjhn5+yo9y>LMF4;9gly&MH7-J33wIg&;a?@HNcqAO!oc&9D7a6R+<40Pd8s z>s@rGisg=&V~tG!t2Po;EuR`46I()Q#gBaO*1@No(6nNgCJ5P}@!XLgL(rGQ{&6fJ zZA(&+3Ec<4yjo7>H7qj+4p{WmW-CyGu&$;ISN1mwea{<{{J>7A1nip(vaG0B$JSx_ z%PAoIAW@g;huTz!0i&b*Gs={u?%esjs3k;0J^-1Djv+Gj`&{PTsRk`7QFlUkHMD96J?QtVohpm@LE^>rrVt7HAI5;8c^kb+ zRjONGs;gC{?p9T+8_1LOzr4P+*S8p_Gy?1{^huH#nHj;$UbpWe@fDb5Y=C!QM*|%~ zw?2znsqqN|#kiOuh+Ej8U#0lx7JiCZuo;WBeVc%Q(^^q%aV_qF0Nhm`UG${LQG?h6&n5{M$h+)^Qy(RRZzB{y7&tnWg_MOqCb@WI^Au=4 z+NO$t8QEqFk4I0`ng*Q}vYLvYTwGLBZY2zt9@<36$AViXO~~Y}gEobJIZf(t%J!H< zoY|v8P)P|+l2C|p&NIa)jiD(b<1&a_1fLM0@UX_6~j;^C6W;EdCTL)Dxz?8D2=ymK| zQk2?u38O?CX2GIhxl=5%kr%CW3y`oaZ`6vGvvQ$ocxi{EGrhP__*Tl}gjPMJvtqw{ zu~YBX!Ki1Qy0lW~0C`l>fm|w`DvM_E%+@Mb*gcID>ZtmTGvI2RP$R}+B(@^V*%63V z5#3Rx@WL>MsP23pYS>i3pv)*)32s9>KRQiRifbtDg#u!2I)S=-h}n=N5zs9=60Lw; zE3Po_!cd-Mh!X0D)|KnPlZ`JYbul0gLZj8BF3A$23_D+jrBUaBkva*BWFDp{I-{^& zJ-3x#2IXKfRHamdOE2#=o2Vs8sZ>3PqkIXdAh70bfIk)>z1buGcN8Esw8Srf$k%~sg_5E2f;hg9T?$Hu16 z*1ZZT5Q3Qj5=Y}u7779))cgpJKlG%>SZ)aqI-i4k4Lj}lvWF-2&m}j#!8fq|Ng>qM zUyKn0nF5RIKr7WWgWaoMSv(Rf*Z~9>X_DH(wDL4VeG-)r?!~R&s5gxTf?(z|{AK+zrgr){SYZi-PRO!5pvfmIS6mxCfL73#gnj%{J648MJ# zq$^w>f+fIY^jVD5LG2c5j&!OB6Q?*^ErSkFb%K5uM}a*Cb#jAwU+%y(!}2pYU=LHy zZgzQstCE#Y*FHY!Cg8^{2yKhn70d%IYdSbPk8I?fuK@hMBRXP(CYA-JcEmh=I$D!D z2&w>x;SF_xT9X>W&9l#kmMQz&XsfZY4xc<9k8L1~TYd*iTfhLH)@7*xiLHeqgTqxi zF!zfIb01jUmxOeyue4dpb=2Sba- zmoq-F%MryFJeA!*?4nf1_Cm~G3Fp9w{@H&RG9)ws0M?^hCBkk4G-jW8pAvNI6XVu}=ooWz;Dj z6uRZDZunAIL^X^dsBjFC2!_syhenp9+E&UTF9Q=If7m|_|LcFq(dUcs_WkMoXHew+ zy}|mvMqK+f$g27UW2=7*KYU~n>V;y!FLIac#x_-#yL;O$AXWUxO&d{pVS}&g(2)gk zX~f;!P4OgmLu38AZTPX*O{mI+b1ESH7eYEf{GGcj$3r28;s(f#O}^x%S2WvJRku43 z5a91;#KR$-y@Z()DXF{+em4-|3_Iv)Vn~@u&n>tFKBk zU$xq{5fko7Ssh4n(10N;$D!L-^p*1PKhOY^3);-d4Sgj{+O#FZ-e6h_s|KJKwM27d z+XOUErLJrkfLpv#3K+W&X)TzCq%{~%9{PFP$aEa}azL+jbnoFjTIYR)_R3{DV+veN#>vQ zdhq?M3oFk`Wl;r8`scbsYNlj2qimkfY#3#zI)2>FL(}gJeof@*Z9wB9rQwW3Coie} z33e@MbvQy`f_4VP!;`9Wk?~n{GSETPRlVC_MPuP28?h!}*eSjTW2&*H!~)m*=c1wR zf(OA`C9iCAa1v;>sj@R9U;$8sfg5@i2X1e486$Wrma0&>(aoi*=nh(;c25WXRN_Jp zuhjV#T{;1}%%}2cAS6j`MFoW|TP~zSf?jPJR<|xI_b|#rP`E``AYZe}k9QS7p`X$93vlRBI|sQw6(keXEQ%;TboJmXvYZr% zB58Fz0DdKUfG(F>``&&Q-hcYTN3Wl~|MKm7b}#?_?eic0I^-{>U1}C~ zpn(_6X0Jzx0sbE)(Nk1>G9|usvz+NTB-7QrNmhXzgCn(@>TDX)Y$^}KZ4Y2z!axoM-USkT5Vlo= zZNTa5cnk79qYFk-vwUd7KuY3&4$cRcs9`Xw1+tX(l49oL45?#y8L{Mr&oSU~o(#$| zv@cSnoiS}RFhQfNAx3xPy~CyaO!gcKPRQ3S8P9s=J~Y6MKXsiomj{tVSF)t$IP zS^ajcerOx@f(GRagmEp~YLB6+w@aWS+?)q=rkWWFECC|y5C@l3pB1#^yNeXjm{?il z#j^V(8G+8STX1jlv&(?0n5BHB*~1*!+1IPa0Eh&`ZvXmd!Pgjy-pQ^V)S094hUAdZ zu|}1YMMDy|iERGrhAy1Klc*_+?mA;5;1E(!?WlpsgU2imP#wzIwwv4&esLuBR`Bsf z!A!LZZK}Y!03{elbaHEWSe+d?3i%5T8WKz7S2v2Ni3)hByB8ZPn>zv2aVI0ovxZIQnPYJ;r7c2$3b@A&S2XaLUe`1)-=`hNw3CO#sZh^@UCD)@O@3-R7{ z&qFUnC_KL24!(ygeU>m@83@<_y8l>pu%zXCWm6|`C_T(1*shAW^AVW}L*$(ZU&`dp zZW&)u+~`|}teJQC3iUFy#BEPyuxYfhs=9m4n9{@02%^Vnw0Htq_}$I2vmAzstaj(^ zs6OVjs6VdlsO20dWUVTw&asRYSc_ZZ+NT|?6N=ho%G#tU6I%Mf2{f=ly!YD*G@W>dj zY|#0tz0+X;B6=S++-M|3 z)e1+Kb##}F8ADWu(n;8q!o_-ydP_(tbJ1oYYD2T zxt3>!H@^~-*EuAyMVoDOse1s_7T!6nj-y!1xw;TEB287QE$$HnQf6gXj;Y$o12ybe zZVXQF{*>ozTva4Qpfx^Ly9Ap0$ci9>gw*cPDT4medQv#06p#Rc6rF^d zdmwqOlsEXKXa^d1xz!)wK*}A1vQXp+S?!HT9nzc%cvG(^;JQ@`t%W!&xyV_8i}u}^ zTrkEK;|{Y_nCwt~y#D|P(xcHP%PGUdZ&*G3hF_n8$Lr6-ALm`ps~|k|pYoxPrQrG0 zrdmI-C<0!TZYs+P*xl1zThr)TJLjrRC@V=Tzeg7o<6Me;6jJ0YN6Qd^ zt1E@=a2sqyVvL0(MK;F21bO%Yq3|-NC)P`D-rZq&EtIO~wt!rmhX;8lPqUO(p~&tW z1-l0+ijS8M6W@YP=X!<_oh8}$X#<{JGHl+ksC?X*uK{BUSgpGkJ2M;`2B6;~?chvy`aM)`yj%$AOZv2n46a=kJkb0;&N(T704`gOL{M@j)(E!5aP$l^8Mv@bpP;EBo!xTaff+k{}Z$N`wmrMtuiJ z^FdQDrFt5HBuoTnOcWHtT)dYcl(aC}oIs`AziM~$!Ud&Tjb+?|(h6fHN~!`+h}NKl z%dwz5D%TWssVbx-Dmak*$xp(MYMb0C{G%WJFW{dXjXsk|_WB9PzhAxmA-w=_E#35w%TED~rL>Wr4?L*MF!_oyS*R z9jxi9PQ$FPpofCF1zUZRZAImXlK>WbRX#ecxswM&DxEgBk>cSJrzFRfH*b+g9ycui zjxt!LBj7J%5e_020uIAc_YziuHM(Is?7orw_E{Qyrm28bYFM2uf})5yB2>0YvoKin zD=fJoE)E?C@{Hl6OBIZ;L@Nm9l))KjcPu(V)3Mxs0^E<))%0Y@IH8qgQLD#9Lp`0X z5tT(pfZyx)XLIkRKm!A3*v<*Ch&UJY(Kwn_3fBLErij~$*iwS2@`0LNnn(58SP8+? z`A(W`NS)*cfLV#;rX|&L6cw;i*+6m^DQ!XCq$)>+AvY~%5rG0pUSlS7~Wu6q^DrI}|c#!TTr9pA%-waW^TFK-(iaUOU^Een7Mi0BaoW@~1 zDvpd|%u!Tsh|yN{KB>5ug;(T0b5viCpmH3lJx?SG8tOJJ#vlV~4t;SBPWONkP2M;g zIUJ~wYFpW(xP)s@`B->?3{(H)5Z#S8;6G+yM377!|h&BDGpfnx4(SZTq3%7c<#w7g$d#6K92l%l*b48ZGq$k8|MBGB*}_Yxfpzw|p6<`VJ7d<38RChF+}5c+PLh zspsH40qU;m?lWb|3mAWz;*$#g(9==wnB+NGHhMxd1gkoGj^^4f%}VZ)d-CQ5TPPY9 zvkHEeKhoQs4obz^x$p(_ie`ckCHc`et?CXI5s~{9Xh0U{v#YWJIU@N~GpEf30Bdse_Nuu?nb86iHq3>`ySzSdXMPT|;rrP5R{ac$lFZ_7JKV z#T{QHR1_{4B<~zFZ>lnZlH>K;2q;yc2+N>$mL9VtktyWXx)dF^Wi#lVmtRm}#o%ON z&|js)qZ~B0kao&?^r?C>t?zXLn}bIOWh2yW!K6$sKx`Vz_%5X#M|7CaK?~d9jllL( z7*_339X}i+9Lla3r=gI2F*@wn2hD_I@ne6nhd<2@h=sZ8H=5lff#_?oEGG966WfdK{{_HzYA$0Xpo)qA&M3tzK@Z;XiK3dZw%S8NVjd1~A+_!3EY7!~c z&8}7@*?beTEd`Zk(=udQ=|a9rbUcU|U z<OAnSUVKfL3gzw>m%guEqA%6OeJGQsVnsO#O;T1E`3`vULRn7 z!+XHff@o`)Bg$=BS|q$e4fYmmTMHx#K*cyb-qDyH{Jkrz5pPl}Y80~GX3~;kg_NRBdo*xjSHfbfz*#xF<}HR5$4_2xhO6M&lbxhexA`*oQda8 zpz>H)yvVyd-II z;wm0fm(>jjnNA>pa-&s%a@9ap zIJMwNN-YQsc6#cq+GcaW5s?ha$42z>yRcC$J1UKhC@I@jU z(N?hHh(n2oU~Ofyg$26BFmAoQ%;e-W}+$saNJescu>@59^Il%4-A^&X$}jDPv|HIss`os#z% z!}@Q-YyMri0(CPVj6vn>QV8UJ=F^x9P0EMJI=&;PYvZn?RVySLy^2I<|pCy)sf?AO5TbowZV%!)@$KI#qNCxL6G&usyY3XB&(QdcX8L1rL*=84TwO#GhQX zk`h;?>iw-wtqa?1=eG}Ii+@;xj!;@3PS9#Aij~kwi7qDHpw;P~iE-12H1t`hVdAnmJc6rHf_5LDOO#RB~`rC?FuF@ z?FL#5oDHd7toJ)e0WNFT#_Fm}uzPp);U)4mz}>TZ@dpHQDUBCS9vZ-HM`bElhoZ@J zwHB6K+RujA=W=S)q9VTniFhIL^yX>_(B0w!tp%)0q7=2;XaM&i3;7AX82Lo@@>p*b zVa4pbmV^g^J><-V_;O76H5M)^g_Zg<>qZd7*?O&!Bg);rOAM$;QtQzihxn8Sp(i^{ zm@*n-NovInNVKbaYc0IrVW$Y>!A5WkhAwl05dLnLPs>ON(?#bkJ8)$nt7zN+=sU3a z38w_7sY%2$NTuFO?$I@dhy01wGu%Q#vpp?Epbvm9|Gx{bKV?;@?6lvhto@Jv^;i5` zFJK+{t3S)X+S;C=Wq+Yj~_Tte=b}zYUa_6VJEGiY^4qy_>uU<~K zzTond;gf0`D3_KBB{*e!cY?4uo$fa-@M{PB@3B2IWJ7}%^ECJ`B9|-(BVW~?uTpU- zrO9aQKsajI;Ft1iO2CYe=-fholvA{Io1g4PwGjz(B8w5)|&ck067w=YE2!GOewEE5%TXzP^xfBg6~3m_7kXgFLSQSqUM5qM!L%V7KO98dRcviqmq~04GOPD18F# zy-KAQzLx7mCUt~`tm}q;0PrEf4@#xzl(Mmci%rkG@v8hOb6Qn&?ri*bgEFo&5$v z@*x(|q_X3DALhUz=f<-NM{zxan0z3B@(hvUvLA{Chk}UU7ZPk$h zece;Ibapjrc`43WjV7HE&1WjUmmwM9Ps)J{EJoUR>*j_KjT^Bem84zglvYQtK?fup zf*NwSwT;pNvLJlz+;26D((LORch(VM+6-Y1F%c3L;m$j7ZY0Yy8+J8OHCS8+?X6*z z^^hqGtgb_w0@DE&l=`s8zXj(?GpwH^qi^Q~H$S;;2svMY3Ry`L8)=_7?4jPM>wqe9 z-5{kQ$tNYbRk0zsXul45ZAC*%cRWy%04P`q0Ys+c`hWgMmcjq&-#y|1uFQEp9^U+}cO+$YTOo%}5X)E@do}A&G~%Jtg9k+~^nVXHlFO4P*?3=Ifxwk{?67=~>D={h z3*RA0S5adRP%VSTD8WH$ZOHmlz6zC0a1NN<9a%z|(Mo4)oL}K8L!|UTH_9C-Nr4q3 z!=O~3$d(h3VTUm~_7<{&bM%r>+{av%EH9lk&2+v!Sj?(-*|}4~R~`3QptQN`f8EgA zn>NNU5bhUM=mpNQK3!qJEVlq8sNjcnEsAOK2HW*Wb}k$3buJQ%3Y=JoklWvr^byJY z+;RA?Wu2>ZWxzNee0)!e0QT#~_>xqniQlc^AFF*I5)C>?vKK1z!Je1|gL7bfP_RUf zlTfxrzutDY0SV%{tDe}`h*nk0GDo61ltQWl^}&iLlF5LPAMsJmrb?D{6IOcvM2$Bo za=g09kaosgbSKo>F)!8mFgWYm_1G?xTXy4|R0q=npNTGH(}YC?&`Vmh07{=@><+XQ zBXQbFa4U!gs+9+}KJAcghbf>`W1w$KJ+fGzC2O(-1!LHO8KpPsL2o>vCrE~29V-ke zMi&p3H5ouDSOgqBytLD*EDbtI>p%rqq{gaTl%?uPJFPnS@wi^5>iHHgj_Qm+>>R$u zl~S$s%b@D*RWWti_OYa<1nI}ye(CB-oa_w~dZ=Yr?KB&Z>+wuKKpg<92!2rnDOvj)(0iSVuclL{J78 zFwktmKKmb8jQs=ku0H&Z^}-w6FM#9`zwu9S7TFZXcM=q_)z*b&nM zg=(ezZG5eQ9;B>Y_=+X0yRuflA*En+M`>0g#u<$uoh4utXsLM^M{6D30)=AY`Z+%u zU1eFr*sWR<{E?(cn}RAnV^z=D=h~^|(IF;@9BtW7xj-Wv&qxLq-=)NmCqoBpJFzMj z>AUcvT9J@St??2l`{eH}Q7Le`B<;j+LQ4@UVN4Fj@niz5=o8x_tI%F|djU<^QUdrR zWQAaI6^bczEFAlcsOiR|c65id1yBW}aLZleNM%HCf4%nB3#ltPf4lAq+dPzbkt~er zgUEb*j%Rs}qtua`HenlV>4rpmZ)d31BSfPkd9&|a3w^>sWOC}@1d3rx4m`XNkNg6t zC(yZVu#kW_w1TvkEWti&YWv{gnec%zhMX)u@_)$!rq1O_B?Z8PUz8>FOE$J+v|Z(l z?qYnPIG!YpTe;#4D#l<9N=)E@isZ>u=NKOuNa_ps;G*knQ?^2@V*rcaB_WqrNTZP# zkGhjA$Ey;I4K`V*$0ope_!knpqlD=NT06V7%Pwk0X&|Z#d}`0iDdZ*S)@4x6+3e$S zIRu5`aRWt!VIF1kY}*K zHg|5_0~r*s+1<0O4nAMh*%IyvlO=HqTRqDnqljzUPYTetAJe>;kqu_|iRjcCgo9xt zeguLb7Q!GCOYLJ=m$*#H{QjfYpVFcM(5O*e(Jl6?QsdK95BzBdMXK+8fT}tgj_enP z8!=Sn0$Q~Nr7c`k0&-I+#WDdJG_zH>9!LaKu;_+DOM*u*-%zfbyo#d+jI9h>u9X+> zE0rzJjTb0Cs+*GoPoTSyH!(Pk=%W&|EhjvhhMp8W!wF^5%=WF^&yX|5C9$Q}Lds{1 zF+V?!{!@7UL*A2W6oo339X~yRG!S5B`FF4X!g15%L1()M-~p1ozT|nowV@eIT8UG{ zVyJ{iQw-ShIU00t(g6QS`cFx+FR#g_Ul5`uARY8g32_q53aVkj?}GCts3W-L@r+=9 zk$aCIj#hI9$sJffDuUyx;B)%CpyAr}ETGq7e7bX&he6MlT`uOljjRvvu|8k`a>WK` z<}cR-4kGo47sY+D;8e6Wi?T%}(+U?;kbN}LR5@#o6-!6?t?86ND$M)HJ*?>L)l5RZ7H5o!Wij>mp~8-U-aTxZ;K4Gz zsIJap5^bI6L6&QFY7xuxxEms5kQ{5QLHp#CJR(rn?Fq1kJq!>z zlx(1IG;uATWN;Vty7NXjA}P_9aV~e2X8?0g#c22qJY2H}$YmLF1&|NmmOX44wUH3! zjo);<;II{mWZtlypsw?2F5 zTnbY~F1yBak`fIKv?pCg6#k#eGPFI&(j_YHVU)K-s)xb;a+ospeD_dX#~KX4rR`=o z103Z!L~$Y3VIAIiS93JvJn0Ofh{Uj60Zd&-UfB>d;hF#qH5?`#hD4IDkcV#xkEzk29?(mHuUbshozx9lQ+`({JHZwxE? ztJm*yZOU%+6AI-kVo$!Jv*<^!-`MJT2i93t*ITK65&W_VMgAtjjJ1&N-r3J3C0YP9 zW>ZJTa7!#+ZpG5|@rDP>UQ&!|sTIcN@U|)5nQiN)o$YN@`MW?MyX*(xNM)5i%29=p zt`OAh)d)_-nDVz~pJ&62#fiC4{-Gj^!x^*s3hQX7ei7@6lq4>cWr61Bf)pbYk4gfQ zmsMd0i)y?gOPIixie_}c-j3{59HoO!aU}_2gaQ1#I?frI(PL&RV(fUZ~Bz-phJSe#%#bv`OsgM zMf?IFrwcMde$57ibMlK`q{#ys=v z3kkfFOVMc%20jKeM`ynpNnWKbWe0YFg?75~ch#P)*iXG`20HE?RX@>}QZXct)V(Qo zTw!KO;(W@2n0EbX< zbXM4ts^`$n2%ki5(w$NO6FYBJFd5=!>44)eumnhl6zkBd$vuGSb-o{k}QCKaU~ihN&rFAwF&jW6#xr+`n- z?5=i+XQC(}Q7Mo9gp?>B`}ZODiFN0Xw152e)sMrzROw&-NCxfOAO7n2{x{&3eAsyo zZ@ROoG?Wc}AELUylM`);?9T$BxvP+DhIbryZ4kMO`&T zh{qQT*`*S6w-F_ndb|#YP1mAxCKtZNZru^-v0#mn&v%Q;&&bCxkhPzM6$`^E=o|3l z!QIfIAB@Ek&Ox$`Y_vGdJBsIRRFj1UoQoG=n$UHnGX9(;oo5AB*derh--Ua20Dc!1 z3%%-Lghh4Yz7(Fc`o6ms@038xfFo|+1+wVSS(7W14%#koNci)UBsY?3*=jg}&+NE2 zSbpl;lLKeBJCY~gd|4}a1v0<`ru2;IAJYx~Wu)E%z=*ac8T+%O%@>z@lo<4A9n2&v zw28Gr^_Rd?sV2h))%S-xvg*vFqeJ1D% zTFwhA0ApJm*ffYJ<2s$160AwUoeq{3^gCtMj;Hgc%%@{|0gr_Z7_`Y0Y&{z$`k#VJ(|k~^eq+N-DLjww zeg(N`+c>@d+3VMDzj^=jw_o7sFXTsmpI`ZDc>Q|>reBl7_>cf%4;ReBFI13yk)ULQ z+JI+}r3<>os3N{QT6y;{wMOf=>`>KR<%!km z8#OmexE?Oix7er2?|7X}O6jCwMSgZ{Si7PF(-Bn*_^Qg(a?q&73+V7kyQ2r^Z%Ry- zvzpEV;zC~DHw{843mexqga6N5z_#|f5YoD=kR8yc(q7d`SvjGTuD{;mi3CuK8_}nx zleQaX)s;DTgaCZY&u(j!+EJE<+N~WFy##um$_?g26JWxISdw6mT5ddz8yzKB{*RYn z5vOx|`!T+(auS;(kCw;h$#bau5GXmKzZ>OCAdq0#(JIfI31mtZok5m5YaQk{Y9wwqZogHS2!rgu zdQqC^cC2b8@`2c9kp{&rM6VL}98lIvBv|!6;=EPvY*e;4^%+bKlaeB#;tA^^a+y^v zdJrH;mb-4F3Ncylx>t(FN!eaKrIN3$+^`Uim%E95SqNp5&M|<8P^HpEceB@#&C9x2 zA{8C&d4Ss^3)tll?UXbsG^vI-&9lz0EZ%$<4aQ#FDjXvWc?n*!L$Ag{XO1F>ruH|X zSaXz;HyRRc+HMu45|ucHRTI3X^FC@2un|EXvYQ0SjD3|#X((l?QnlsPob@E zff2)rg_

B0o?DtF!VT!YjrDC^S2?RV?P>**rUM?tSk)et zMFAb(!zQv+s5=>il;$rbcShA_T?iz1b7B)$XCoFoujmv@X$Ba%-@E$Px9V>d;4in*8ShS{{H>n=>D-AUVp_` zeMY6X@Zn4NijQ7DXTy63W5Dju9UWD3D}vq|@>^x%=LSfh#@Zpln)@Ej4O4(iD{)wN z*eTaP@;SP7;lbNqw#(Bk%z1B3Eh#j;W@X*7 zx(*M5e?j@vVF6f6MmBEOH;!Y|(EYC)!Kx#WH$%!xVs5zvP z1|iYeC6R^Vcvl;@im16!(b^a$Tet%lzKBkGpSgr(>X~gy48^PzAqqO>z?4mkK`{}w zx;%1r;7@T3t580(6jW6jZ-r;n?$U81Qv3zXlt*j5ELE%HoChqEGe)BeoQqOmyy@Wd zJH#8TgzZQ$K@%z8db!*D>RJ0H=MIkGN-8gDO zN(y*~DHIy?$W98*MU|e}Ff6z5r<8TNs2R^%m+z9TN=KiZh-BvcfnjLytHZ4r&plBP z!0Owx(nNQ)Y;?2=2~sWH(m4zVnhiSG8zgNoGlsWFv^C%i>4pUjQQ+`>6*z}!%@0g` z#49{C2KlXq8+ws@-Ws8!t3ZL1AFCGRdD7;0f@?QG#u{RcHuTL-s=k?(_<*+!hiN?2 zNMSNzI|o*$8Y!Ka74QeBjl!PLIV>tYnz!Y4T2AG5JtQp4wkT9-06q!eICT|V70@+4 ze9cFkLiQ4i3)+y4Y@i=Gklg~!W2XkrNTgI@lzxyHfzfybV{kAVUbex_$*pdMu?^*7J z`?pS}v<;GqWzDNx&yAqfps5Z!ge`0}X$_=)(f!$BMw)k7Ucc%Xu2I+@M}s@Y=nW;a zBqzIdH*`!k3nmbNTH!3=jzUGXKL^_d71bzT=0a8A^1=QVC}9Mh(HWX2_6x3^(i$Z* zr!ld0T7Q@{&1{9md5PHv1_7R!4}@t0hkpfPvhWLm+wS(mJxbJ3+I59&D$_3 z^0n(%CmieCzm-Ii5N~A*GZB@Grp~HInb{N%MIFf>feM3zjqXAH5p6Hr@7zM=nY0N+ zP68wxp1NOC58@atW;-d9!bYvysSC_erxqrRu+BDo@}&K_i~G>_KEFv1cF}YQX{aU` zBqYlbnK(22ACVR5%fYbSdiWrJ7rylsIGmi%$Btski<*) zBqm2$^<|o=Fay8%RY#C^b3$pRAw&*9*J3%fDmk}UGS+tT7f;Zmgql~gK~T^`lj^Oq3PAOuVkdNikrmgrN+*vtmg~cqdKVsr7Npd3;bL~_ zkkOEg)`~C;d)93Lzm!+H%zWs)EzeoW!n}-m-T<^M;9qHT&7@*2L9~&Snnf!n%hODh z35q~J(~3Yi6%agFPK6ISkDjFt){bMpdi&H#9RS3B8(x2hp5#~I?PsXleiPpR?b~Ok zhx{+#AN|P}bY>*|os3g^-y{W%WMgXIM!Ozrg@;0RCSqpAm@=5CS+GSWtA~!;I(L3! zz}rEp;$Az;IRr@>arTi6){L_3v?~ddlG6(Q7Af*D0gxDFP9+?AG4WA~m9FSk`%Drd zeE7AZZAZW=>I4Ik^dAc8E!W8PQem!gRr!Y$d}0mDN-;GL1|!T?*vc%CcS$HgX9La2 zzH89DlZP3)oqfl)w*+`R6$3>T*uE}geJ~Q3t%gf0piw5E!pwg7n(JtgNC zUNaQ6_hnty+Kbe&XRt~x$+DhHE$NbZiKD3mMK4=_)hJQEOdUj>LvvEU*f5`LL?chz zd6gx&cAV!zBA%SM$?;YoJKO=rbA=OFCOi92QGJwkUe|C)f0h1OFn%)l%{e)5|6Dwx zw>8fadbX}tzL6bJuEZP<9YU>8Y*nqJp81BtC6Y-QG-6kc6;vWp@1b=;xWyP%1Vv|Z z$3u(AZLo#udP&f#avXMqkY~_%(m`tGAB>)w^KB@FpeDKS=5Hn)`Rz3Wy?HJ2*C& z=b>>wvn>XzBwLMN&yc?T8;z!>m9<@(Cvc7PU{stztnlcl)BOt$R4H1aSZpwJz!+ zZcVN1aSorO6@CpaJq+?5i1H|LSc`%AFTqWbk>uHLmreh!XQvdQodtNN-13Oh9rrg30guaTauB&pFxUruv!lji1GsJ zz>U$hp^Vrb+>QY%YR(rljD@Zb=XQPQFh#==Fz9-;(JEls!ENtUrgJo5?X%ojttx0YM#D(GYFihy*HaqBlW)6JRZ5Kjmazqb+2INQA1@ddOM8kEPY>vL9jbcx7Aln1E%sp{Y~jpfai zbYP+?7n@;ZGLSlJ(|Ej=d>mAGP!&HI&OtE~IYPyJTqQI)?@E}7+>3)=F)ELp zg!%_4K~|R`5q2Y3IQ1Q%ow9^m2L0-b4PsZ-0el2K{sVSAqzOGoDU?>#rV~6)!2Ibd zOwy$6J4rDq1*a6G3x-gq{~Z3ypXP}A<=c0#WBBy-cdx&VMw#_E|O23I((kB-|+ zf-vh+Q4-thE$u|KksEn`R>g!Nu#%5ynyw@?hMjP?j$CF3%-e`*7W2JEbpy}f1$0@! zx9T_t8x)9nI&VFjB4@cVtPqw>M<+_`Qh&(2GlX}>4nSggSi)B8lI^bSyul9ko+~r- z-||MG$k$}}D%6$(3d=yO1=gAB8Aw%UGze=;;O~d%7EculySrP9%Niv&3<1Ovd`#3x zN45l4ARD&eF_cigusD+%N63_D-Pg5>XTog7j&=ZeD4yE(Ay7v7W`*J)$xVzt=vb>> zD}&CO1^D`>bwzIXkreq2-3qJxAi=nz`*U>rJ&_*P3jB&>JEP(Kh7+t`y&60b;Eul!|DHQP4R0Bp4~#}0f!%j7W~73H zB_8{KN*t?Bx3Jl{Q$aK6uQJ#`31_Pt3bBlC@rI=eqPVo(%mHK@j)~S5mc#DH7JA?& zj^>n9aV*u)JfygCdKRX9OuMGx3UjAbz64sMwM zkD44IwLfzwOfF3wh6qHM7+;9>9NI*N`~YqCl*b}gUL$ZyF*IlY^ACES5*&t1t^(5D z*~Wtoloaa`6@N?fDu{#2nV$$(gl|N_D7mf~br0}o--p}4n5okbJCi-S14E}^nwIzu zlu+!A_Ugh+$eV;w=RN2)^Wmp=m5*a}SE2CjSxIyOL^|iuVS%+JF}q{BjuChU zeNOUVbx;FHi1_Xp;#O@b*n(?uIZnCNfKnOc7q?Db)<;{ngdTtWViV6AQ?dY}EQRRUS)Ziw`{b8~v zZz<9@53}P251NaANIfPiyd?%z53ID>iXm6Bh=-HyUIudi8a^MxNDqq9r}!08TdS@% zmFOV68gnbIyr`z+|1>^;i=ej%q?%IM!2?BHf*?mKfIJ@d`y|D_*;bt!D23wrTtPt2 zLUm- zWc3+nX$+1fk~622WOhQ-23P z=^V^h%E=(Wj+uONL|J5Zhpv{Xo*s^E%T``s+RYHRV!<&f3JHnfdZ0q)4?vy^fGPNl z$47)1LL5lRlD(#tfG82?sZ5hXG7%#vl_zol+iq#Ywq(-eY1aIrv4?1GZozWjIS!$H zXPY&8dN?DIf@`QWp(N+x@aj%YVw$?zs-QpcdX6nATE_^yo8a~|ffK}$-y#vnPRgXi zZf}XA2J}6-dCdC95Fi#2J6%AU0`3gzpcrkH(6$W1hS|NQ8n#v+$mb34{oecNie{^n zqsW?BRzic~3^tA`Y|8^BU(u+&Q)(MV8}7rXEc6DHG@LXksVJ=7L0lR9s~+%Fq#(T% zSs|$r>?Z&AlF8(khLU12Om!4wzb#A0F=2m{RsdJs8P619&TaYqKqt;tSEeW_QE@*& zDN<=-tesn>jh(U!NM6yI=rgSs6lu_~z6A6&QLGdQZW?a4GbIyX;s+*#>$^)#JkWo* z_xesXyji9-60Paat^z_Pu>-4EIt%s3yh3-naZ@SLLh+-s1WaXJpYa5`cDKVa7PL@R zf1zUVqo}6ZqWdTjNSP;p$=DA{ge6D3!LPNS>zU;NlhdE-tHA-$Y9&>)j;IafZ&$0! zbb@?SZQx}m5Txrv3^WH!OlO{|;;PraWF2f=&S^Q+T!NE3E2tR`7#?=&L7}Zr3yc&< zFK5I^7-eu!m`Z@UYd=pV%&$R>wdi+k*UrUW%L3yPB5zA@r8%R3a%ZO|?Os*^Cg~o2 z14Isr+Uh>=U^eP?*WvEi!>>(kD~$_uoD}dBH-78j4cie!)eJGA! zYQ}821huT_9sy=E>(q&Lhj{C=!Fpcj!?F+Hvv@@)50FM6@655^yTB=)Jo*J{EOkoM z$(6EVlQ#*s8QQQfs~UJO+zH(zUqUG%NUn*mh0Ea}ut?e9NNeoCXc~|a=Hm+-L9%wZ zcU@3?7*ccIref=t00Balm!Lw;(BSE?nYZNb*a%LX{4GjRsf!AWwu$W?#GbRta|7XD zVM%oByC;T}2AA;!uW-3q9i{Lma5%bFdE9^ zL53U>Sd*#kH$ubvEFf&>0ZplqZW1{6EGn*txH^C>YjL{VgKD~PF}b8*l9(4rg4PH| z>8i7|<)oakPHQ?V@7lDgL>psI&S2$1E?DUG7?Ct{!B($Y+9EO2Ugq88Z(2xzLCUY$ zRG3T_fcXSB82RaTv(ScmW+vARPJ?iiZ90^5`b44P5XC-oZk3;rgVy*%Q2ggWC?*+`RrmQkp=$O<`#YD3oHggWM;v zBT(a1&KQ_gH;nZg`j$vkkd>x#=Caftm?U4-t6_fD<-u$w98B~D1!U5C1eit-c2HZE zzfKLy4&G5)&qAYfwMigcHfx2=YM0q7jah1>v*D9uPvTm7GAEuuNGse+0V>nZQN9Pd zg9DF!m+b9%n1wrz>Q^W@p!e&ZrD~serxmR1Bj#8HP>8&@2~-!0?UxifwgGV35><>x zS-i3GP&;FZ*$`~EeaWTw+{5c;rQ0@C-H0pnWik38Tm_OEw)`&~rVnsy{9pn-Xp^uc z%L^0z1a)d##VcGlkDS0vswyYCMEx-=gNW(;=yJIuDX-x(ptl8t+aW97N4TQR?g<3h zG9=R$jISLQj2NCE>fLzVQM9fknCV{tvoM1mNgul^_apPTyo$rXEgqU%#a(KaQ0y#C z&Wh9C7L0(891H~;2HG7On6Q7O&G|g14}41$1WBuemgx94l%=J8D!5S{-8_velxPA} z3;Kf8wnBg4fNM9}_*yu*0^+J6BHahcfS}i@M_DsCx&Ex0m&G}*J8B%2)q$~7IQY+~ zZU!Z50l>||B~VQX{J3dCl#r;iW)TiM%TT*T>4F5s z3eYJ;^)=8lw;yPOt5Cw4ezGhCdb#x+&0;hzif#0|Be-1vhN2R^XYQAKuZ-5h*GjO3 zEvnqzph#WEECkIEo~utvrLoy&@s8NsF_RY+*;i z7*|%>Fq8SjntSGLQGVMiO++^XABD}pbC#1^(m7d3X?Qhiz< zAc9zcT8z}TBA4!z3pw%tRInu|B{~MK3A!(M7rqjyvB23j;g74T4Pm)QgfLmApk`co zNJGof!q<2-V|5tC^%8)`ybvs449z+60M4AX73l}MRG}uMV&ApbDq9lmwi$)WHJzk# z&esB{FUU^0HJm!j&fVk5Svx8`cjhakuz?2~N-K>Y(Q zJ(8!!1IkVV*-IhG=#?!f7(d>*UR?rOFL}X+l;=K}VH7$C*%yGPQq7}nX-CDYsU|g< zw8vJ|)x71Kw*~ZHa<9d$qe&7J^H$kNZIqENh-V2ttmE0@QZS1&QR!LGF)`yiU0V7z@ zk^&1asuYrxRA{0l;0`ymCu}8}u=S|~iC$5>`KZF_7&}Ty0AIYNSE~FW+dy*iQ0YJD zU0{X*E@O+Pmpn6Qca>5Bt&&W}VPX%i*ucht)$x_y)LWI2WUKn)<<+o&Bo8Hvk>|8- zl?NUWoO+7BmehThb^p))H2j5r^FM{3{KXMmo@@i2>AObm{gS%D-?MajLhU_+_QLy5 z-~Po=@>(7JMvEjK`Rnld>FFVlX=Mztho{{8hVc%?yzWTM@(G1BTb)1sO%7O^v#-etz(-z2~UkbHNZ>4TYzG4EFB1?F7)p&AqoR(cJ-qYYA z4N8AtIQDdMdQ5H#91;2%2ANBMhBFHenLSs!zJJx9I0!7zn$vaI5C5j^KM3T>N_&V-Cg zJjE5`$1<&j_0*)&csMf(e65~D7Fe1u1Yye(4=+t<3Z3&ZX}Ur9j4%bjXwdx3x<&&p zpn1`cgmPb_BVTKIACUY$cv8^BKY>qnNv79_WQkX?Rt_~6X8@zms#2&3@>!YLM4tf0 zLP;SIxFsU9KOp&uoITDt+6Ws&g9s=Ty0<7Iw~tx4>1M^u77=B2xuOn!X(Y7DgCh4k z+NF6PH%-UUzpP993E=6yKqXPqva7_5Bw1Y8~*uu#s7?!(Lcp1|J(5Tv8xx!+WjP4 zvp)h23RSS-aqQ7*_AV=tEO4f`e20e5z=9l@;1}BplRCeq6Ao7 zw6B8)mhqaP9$Oc~(5cn8PKB5c?Z5J0`YiGmqLE{5Mq~_t|;W`GSxP~$%!YE#UhJL zp?~m0(vDM1W*C zTUcod#FXurhNvE2Tc~sdizUfK=BLUA$(D^WCaCr1MG}UjRv#w}f7cVpFc&E!WZkz_ zf0s*mLx5f*q+G8qtEPOO-rcHGe!8RYk!dqz+BiVlQ0#)s&6ri(0ZU_tBzK+ab~Akg zhiWVE43pl4PM-klS zb=M>rC;B^i&&@clP>eBdkgCDf9dCyVFi|HAvaIU_jOT8JfTR$`I4077aQCCcNeuzs z9g&<}V5NMNW}&+$&P<~|c@1azO}8~igqwRP zFi4`>v=9!*5ITP+u5#}kGMSiwKrqRopMol5ap*3@ti@&Fuo$nMI&!9mrPK(Kj@wqb zcMF$=wwB`Vt|@WNeJ9&-%15@L!+gY$HnB0ejA%nI8=3^@XIfMYL)U1?lSQzDpawrr zHf_oGf(6Y29rJ)o;a9@QQfJ_dkk;5ioig$Xk|o6y9UL5oj-of#dMh=!7hI`bqVd+r z{XiikPFjKgM%@4{5=Vrq;A5e>e)g)+tm@_2KpeTuJy>26bn+UvcR??)If|tiUDXJm z6dF!!x?Q2~l!FpVHX^+P^>m=yd8Q)LyA45XWBi*WSzoP&!N?X|qazG9aBws=4-7R| zVx@}`C+|r+sZj;PNj{;tA$Oei|<|EOZ|Pn1(VCV!)WHn zY;GH!g&-JFqGF&j@-1)$zA1ZAH#f|T4pew-jGPqSZHd%iXElP>`=GXZ#SUFQsn8no7)n4yb4bIJt=} zPz7x!JYiKHa}l!W9N^Gbf#w7f-@_UO<_pJO7cO1#I4!VBYDOv`#bTUP7yXJ^)aV_) z=+OWo!GJjM-74!L0xk|T@QsyWfs9@Cb7!xy=Gk&`IH?pRWp~%j48Ea;y2vSCT30-} zM$*mZWBs1C1Ina?VP>)j_i!BM$ZF<@4o=`VY9GlOPo)gNB5G1NRD!p13&Lg z;8eV(%IfTR?#E6pF4pFPO&K&%wF6G^+&jT3xhQ<5PJ*(Ce|iE8ZmRS<#>n=UB!X+` z*`>*%M{@V{_k!(3q%wIEnrBJ5y&$2YmLKH3$O4;r;N)m!wgX2|D}3gCdoAwV8AFVQ zc$4DN0{V4_akYizZC-D3L)zpBnnabldSBhz^Qtx(Q6l(M8MXit_D@Qh;O7kmI9Wk5 zGl&90wVUML8@rS+TgV~!B{)9|L&VN#)#~T{LLqo$niY4NFzibDt-?kt?-5NtV$d-{ zru&NAAp==i#uG(&zeUKFtFsdIIv@hlfF4K}?)VG_&so61XlSyU8Rt^j-s1_Q-5}=n zoND6zDrn=rBayOwcAm@44At3(-vO)|HuyKZPzr!NHKeesH=B?|8 zfnwnmD`1Q=4k6s&k=0 z1dKaX4#VtAOEDt!jp##A{sox6qDd#P6_Tsd%e{6?&^T=^R1WA=NF{E8)XLYd-+sog zIV4+&`=Qd{kL5rzvR$J2Cjn9Y{|UzVdL+3pl=R-AaA9$52RHN1?fHn+vH=&V`<312 z9Lrl6ZEMMk5yCtw(wX<99+r%YcjdhewR@`s61r~*0o-89w=RKBMPfGG0~N@{y?(2% z96YajtImtts{(|2#|(Spfn#`#GCEh$K#-3PcLxnkQ-FtoiLnjMdVDQ7F@ggNXKQN} z?rNJRDWj5@S-UKgruCl2FM}-SHc*qa^{`yUM7hz}Jxw}}i`_M}TW+gPhh;0wa8>JY zd{R+bly(6)0(lWLxU5viU)2F*g`5cRShby3D5rK<61+fxcdFVkk`7%BlRWJfumS2k zV2ba^s-MsVTU^hhnbp$rS@&4S>+&Gl>my`Tq=sW5FX!|$Rl$k3le)?j+ni27AaE9f z-_cR6H=V760!0m!2{$&q$A{wa^Y$HzYuoj{S=g4`XW~5uuVfDR_H4&P-JoGZ;m{f= za1KNVLMuHHSy*b`2JsC^d3t(b51l@^2m%BV!U9*3E9?Y2?{=tEliXcXXC>VizKhoL zK!m)yv_{ha_EwZyw7~cqaidqNZ$7P=E@p@dQ2ZXmd|wjFKSbtkkx;xWkS^Syn%MF$ zVm4^3FIj*dC*{gX(1q@kaiwW=+Q}83pmZg_!`3gr0XtdT_h%-UE%C}t-fVLSZoANI zprYr^DO9$VLbLJ0K!en+-&A75SRDWjTDS2GI&|+&X39h%lmte@5^bzUDG&IABg7hN zhW5*9kblWThWKtTWd%@z^jlE{w!8@>)|GQTw15VBnH5bD*u1RJ1&KsQpq+{#f~lri z*eeEvt8@l(5Wb=&U$LQU2hLOEe#k$e)v3Gl8M(CK{r#o%BN1E&CmDhL-urs!i@xG_rA3cv1c$ z{0IH|lYga1_%(%gzcx3p_g{v$Z>4aAsl;i|NE{~RU>;A*V($G@Dt7Objz|m#sEwO# zpUd)}VHdqbmDEYvVxT?R}h?3?nS0Y2Iq=1i?p?0PP(RJsHEmMEiK%VE)C-euIJpp*JOS8YYf zQckYbL@eP3V#Zn=EGcC+ng&$bB|w3wWDx;!7y$@6+wYMQ%}+aex(=PGhO%ssD!gne zhDXU;IX(G3&f${R@poJ2O{!e)$wwnQO~T$N_f=9(JcMq$aNazq0NW1pm>dRnpLglF z4<2bY>cbE%o)XY1HuA$*M%IM=N~L#rl%S|X563V5aHFZxpx$m4DpsCH^lT&4SXk7R zoxBIwraSsip7`_xE(3j|7hpj0I02$TyaLQ*&VvVY!0S;cnq|zpV zF{ko2CX7HF+l}8#HEcgC!4ySUG0_0DFC-m5#GR0Nrj6W(E3yYG6s~Q;%6CmSI%`4$ zK8`FH;Y+d+ha&Gq$?7WMn-5jtv74Lb0)j*eIgpURh*yQ3+iL znFf7b>IS8f0~S$qIFVrP)G``w(w*bgL8z7Widwsh!LBziZLlI*yjswswe6Cew?w5^ zsik=cY6`L_T62EfF%L+t;xt}#@?@b)K8to=JoiCwvhyuT0^sFUplSe@D%}GiRuak1 z&VeesIvhS-#SB45x=TwPGRjKxZab!n&7Go_{XVNHS%0R8PQN|Cld)i{IAHrEz5Ee4 zbaAirfY7UI<_R(eU~X7Y0tEs?52(8}>C|JQUNjtIUC}}7Bmf~}P~RR;hA+VV%FXT1 zJ9IDbIWT@<$*n<%67}$bTArAq@=oto{Di$A{&8%8r}j~K3*R%AJ0*HIhI6mI-w4(V zFw;jRnp4x+0=^^lC{_-mY4yyweNpNie>TEY9l$Qk9iV zoqHD{pDuO@E_c>`K&~(#%zMI&_Nh~V-eXdfBY=hsKnIGR;)DsdHMJB{>%2j6^3H%0 zO<%lfGjbdJNge?GvQVW#EH(2&^Y04nx$&9*E47reFaa22*)^1q+c5fWuOK`}BqRPq zW~(^5imE!)#w%q9AT?N}8{$(5yuSQ0&gORDuknZvLEX!+;eetjH$QXl?xKJv@gp9XID>t6rCekV5a z(Vs(_!z8M{c>8Ji;je(T{35*m_O!b+_FX-3Mz#HdQbE)56hd?3Dz~hMyLeRv%al*R zHkUvuS_5V4(M-%7!yJheO>dbV#(m&_J;l7T^KDtjkbfZn!rdJ1x4rMQUZC55=yWwj~x%-jRzAs;MERjc;c+7s?L?kms0#LL_Pok9#yKC}QSe9W%!) zf=q&PjYU(6)eNuEgYTSiCTo3eByvA^Lw)LE6_1h^e#;w#w1_B&^(&x5a5E($ENO?7 z^t4fy2DblFFrkt$DX?@z?!I|VI~LxS8l-Sd@iYLSgm%q6^&G|z13Ok|@L3Hf6(1^f z$y(WU1Z~Vo=R*O3?4j7y^tc#l1SU^+p&lV=t%#Dzrk6m%b_8QXiZNO%PnPeZ2V03!{J$rt4k(26z#}_aHdd{vd$jgmqTvX6M zICV?5%{>Avym`28W7N}j;mQ$Y9+e%%Vwa5qMZ>fH$U>CAARXZ5~IB|9X28oWtfuTzVbmk~40g%a0 ze1W9cNY$1IS!Ii^^8=P*g9XHcnwfEUQ20G=QD^}qra z$e0c|*?6e;Vp@F4bWz4p)i0cPRknbcOhnil(TE->m5r8=@dWS-$m#?)VSqOn3^`IJ zL4rFp%nHPBO5K3Z5FYYsvkEKg0`D|!#JBixQ^UvSQmN%a47!GIA3qbJzj*zZ!139q zuV20W;r-|G6W?U$%U6o&|Cjt-v?_o3uVfN`AAlD9NMaE4W0lAsii<=a5}v251m@T> zwWh4;C3w$TAj5{q!AWhF!yVv*{M{Cz1b)>7kLH&4F<8DM49{c_DAvH@8}$2NqdXT^ zwCHkJo5H%;wcarB#W>CzoGqx-E2Kf!cAH&IQuTn4JANqc%LhYw(&l$*kpgXM`cBG9 ztlkTUJ(%R@1B(FXwyThBnj zhC4HNkh`(TIjbTq*bFXKI^kyLsv^(-6xU~GBz2MY@-tw*WML7Lvz-Ew%E>l(Hpn#h z&XKg(C5ZtuHlL45Ihxmm)VmQd3Q&j098ct!g7XcaWG{a^!!`!AyNEx5$jys(KA#Gw zK~;SykumRwv?OTMM_*F@7WlnYXj^4Sz(jNaRt4<1g>@oyRiZaQaRU+08k<8XtuHEB zc%%$)Q0FzlOM+6(k{1SBq!6IwQfx0qm9D7KV$re;+x2vnkYsQdectT@UqB12yNV>b z@rH3p?Tb4As>jp^01eX%>uNOo>_vzpQg06Oj^cAAx$l$)-b&?`Q1vN=M`wL$*@iPT zA*LAtVK5WeuSTO?uuqx#KHYWEQqM_tFH@${f*xX(>073L}yB7jHO=eMk(0 zR|(ON?%8evylM(RArXnxs(`(MwF`BACXuHCR`Gz5OMq+Q(R~8bBjonx=ncq9^}7yR z<+hOQ$&$KCbv4t(sD~4xz87FH%n+@URfda9rNn#^>Lu8{fS6~IF{v$lT%Q*V$RWtv znVD_FSf)E?C1GkNLJVc2pG*A6YgO^>%5Y5HfVRQNBQT*A6F=b1Zm`+tCyRZUE3*JCDo7RSlsF zB3W7I!iHLFE&9h#82J;!fe#Ez8z#%B&{BWOC=99XY*YsdmjO8>_;fW@bvKykr2#NX zr5H^%F`P!=rgY{2Q$Vc0?RZLAp3)?bsNpyyxp;VUQvweV8?uB=FyJgMb3QWS(I7}KA| zf#-BAh;kqHGoIyxm?8NNrKEJK*Cc~wF04&tH&nd~MPY@8N#&Ylfi0@(JWp;~rwI&I z1Add2dw73EB{58%XS*Muo4-NX)Ot%GHCj;*I-{&qChh^!T5q+ncCdZZT$+!c17~YV z5~A)fJA;%)M74G~UEnHz2}2LKN1^=-u)^)?m=z^8KtgWifARQ1?VYS`74G!^{z zE0p%Ue3RJ9?u5!v5Xi3R7Zt8rJP^@DK|Pw+lWEk4ipY)hVo9BW=X0P!GIs7|otcP` zI2R>OL4vJW)x)dI&9>qM6=$dr7~mu6d@b{R&aH|d05URV-$u9 z1b^tF1Bq`eZgy-@4R~ff*zcx3TUAlR9#iHq)=-qSa0jQ3g=i7f!S+e(0?^d9xFu>! z4G}72oB*i(>aq}8g20zI)mH(a9}@f&p>SyCDG7r35vd1@x`5LxWPEZ-Ujl){$c6-f z_!`)iMx>+%%D0q{_hP{cjpbotjEitg(LRDsgDrwB-j3Ad9oSAFC?UY+-j?IqK{Bia z%47t$YFE%n>fJCpp#f&KWDgw%$j)%}hYTBgmpw|DSdubQT;#Xd--iatnDC$%hgr&B z{$==+BSij+V>b_xx)a{M`>~4FS8oPck&S%x%h&G$yrr#R)YtzR<18ZT`;UM4YYGgf zO)imjbpaB!`(b}ZS;~z=0)IwWs=GY*oyl}pU!yxa1^06>{y=VoqGw=j(D?ND-J=VW z-BCrmI=~$S{;O=13*MZ zy2B67zOBpAIKPE?J#FO?U@@NlfRAC<^A%;R_!Z<`Om|R#b=tS+sj)vPh4@Aj89db_ zFJfbHTuhxI+uU*&B$E^8hgs2HcBso-Um2ez$A(#&PM*LuUsuJ=;jrqCID@?iW<-Tc zL{5<7NTVOSPZ>I1G#p#BkM$&y6^R0q8;z=Iu%Qbk5EiF8^a6wBpr9U1tdKF%lWlTeOr)bAlU)7O4I%Y?$8IYD9SqSA%L-T zmBT7}q_^J628M+r%U&|ijYZyOTf9zY<-_gW9S6xm6-MdU}Q~`u>=vNzL$Cpo`nPu zVV)Og@G?97pvV&vi)R=P0zFOMz+B{{5D?4NSce!2E6{Sa>`oFQsp>&2*urh0+!h$Q zW*I8C@!|{unoUDZW9isn%!;{o+=3l!VNF|fdi*^qn*8MmR9{lq@yoYA99Mt$_7Q*9 z=mP2k{fPyn{+JJeqeUf-eBtO(?dSetaLo#Im01Rh`4Smm!fdE*4YNI4*1ywtaro#^hFwU!v zFYGf%op&Z0RGz~P(0>=A2QjH(8Cj|mowqH=#e02AZpP{HoD|~foO@7hC<3g%0b{mq z?iA6wxK(EjP=2#@Jw>_jl_f%=I%e6WtO*mBuWJC?Wt8&KJ zT>*T*1Mrm}@U}azp`d1|>?9X3rRX!X*dil6vU{7-sO!^P|6v+zDte{rc)Ll|;-BZF{N~m>C zrwYR84v4Ih`+`X%P|Z|~rR4ZLZ-nQ8GzQ{><0-0IWhU(S46S`P`KuHSXn(On@(CG7 zt)J#@;z+kbQAEBaTnz>%l7k<{w~RN1mxbNuC0u z!yIdh*Z>I$INcL0($IkVGB}ihnb;YVNGfJMSx(P&qra0i(i9fMlHl>RxC1CNdI_<| z$O$5*08J`W&i(~JOeB|#K$_$$4sI}*$k*XNJ)ORO7IohL)zYAqxijw=*W0d$GD`1`s85oB# zE{Kzw4H8YcVNz|!HKH(i7eL|dFm%ah63}LT2Lf&MzV5=1Di3S2htTMHsoOvneHqv) zTi|QXHTjg;=92OvVY!wMV$_1gOB( zf}OG{O!04R<4ZLKw=;9Rtkt1D*@lH`?`Xt~azELFBcAc5o3s3*@UQ=X zq2Y$C9Z}8$=2r}ro5Tb3jRW-EfTHY9{rzYifXUX7F4O}fXT2uG^JscA*L2m}$VoBy z;~oaD5;HlBQBi=rQZLyG%l-zmh$TtBz~>M**rdC=c~%ZBAdQC89G6Wh@~V6O+j23U zJ0Bdwp&c%Y#wtc;H!kR3uE#L5ReU|4IOx|W?aQzk1_?%@O=LO5N)2X5>KfP2F`2Zv zOc#H)MMg=8;emzW1VpQ)GmX?9+4CY==xNkyivhc;=~cEpTp$nu>j{gkO>MRw&Uh3{ zPV+L|I6m7rI95Vjnp$%^O}5Ek2(-u8GWQ;Q$~uP0$e)D*8cca46UJaY>!j{P>t7eg^OSmN;bA)>mfybjty~{+C97ws{(jDhSPBZ zbE3BAK8L5)FR}K+JE$>yPty ze)RT<{QuJ+fBej4UmmWA{Bl50QV%4utodV$x({K!YaJ*xUn>V!lnz5C>iI`?SBWx< zw=g;DG2pA@$*b*m-|EJcKM^7N(|QYw#=^eFfI$yiK;2h(ruM{BXrqlJJ#{#t#ECpG z=bCEC>yDXapJ>+!ZHQ;rG2n*P4IrN{N9=Uc9b0vlr=mI_?OS>zQ! zvB>h6H^T2173Pzyvh5v&iGCFPHg9TlZjr2>Fjz*Elk5HF_~<#px=HqTL=Z9=B=#_- z_4S|@n)gT}zbTX>Wchc{X-2#fl%X7sEoisEx6RJcSR$M;ZS;D;#N zfNW!g?gg5M$!iJ3BiZ}cvUI@>l;aZZFfOZau*qE1ZTCz?w2SPb>P=kq)aHbhCfbN7 z)NT@^yfe{FbGJj_VNq|>L*hggN8vPL!KHKHKGY8p2N;Mn+AOkxJ|bDq05WnCB*BKO zrkN7}5Ze^Abl|lOMQM4QIc!GG!2g9m@Dd$y1I3foH@`;BaXfUbDVN-K0o`zlf7VDz z>?alBsOWKDR~cy|fw-Me5OxNA|E=iT4@5k}_ab*w0_TMmzGC zQn>wD{`|(&I!$>jlg1y(ySb24epvMBJ1g3D_3^SX6`m%*KQKt#@~Z1oI$_EQ7a6ur z*QA15t2e{p4XraxICQRkpucnr9>0ne6E>oHB2eM%YjlV1UTf7)QVMIBXk-V@Ti{_Gjmx)Hcp`d7zg=osl~Og!D`EAx1P9DtI9>0utbr?y zDPDsuX7%Qi1RjbD>C{0HrS4B%Aw>@KfGjr8RHkZGrR-k2t@Yr`uZ84{NlN5s`tai` zx{@AfW!3Mp22Q!!l05W~7d~7~mt}<>BO%#v{gsb*bkEI{t3(6E=j40vz*bY z@2LZZ$=WVo8_c8H+R>P@QP6m`kX(aOT@YtlPikG_K$Llfb*j9EbPnT^v$3e+v#`Pe z8n%r`?blFwbBKq6ajZawnd7Zv1f7W&2X^Yo|K`irUx(*D=JB21zJ0;3fd~1!KYjZ* z(Bj^I`u0ny;ZE;=DD~lNGluv747JXW-hTe}(dhwp;F32|*m&YUo6yO&x+-I2?4(lD z20cq}6H;L^aLcwf{eFVpYf>$z*+MV`!xWdfQ@=|Uj272blOoRCr#CoO%W`I0bAi+y zAcL|;T3|+YO>HlLe!YvObc9sWKYeYogr-F{Aipz7K(-UdWD=0FD7l3EfOy@bO4M15 zoPfBo$F+chvVsst-PhsH z!-8DhY*3JGz;^Atno!}^2i_k}X(Sq!eYo$HRAd+*lOSHBTj*#Hc=T`x2N(OJb5YDF z4$2-BiZNw)G`@ zhLG|R)f=~DXn-knQy&UjNwar99f65oWw&6}HD2(@-0~h1`x`tJ2!0&YGK*p+A%X>P zl{-7-q~*T^HVXChKZn10jxfJxE%tk>0pBpX$ajME0JFxVwCtM`de4&o^P*(l(+MkeRL*}%KZl^Mp$dN- zNW(R6p29nfAd*uQ1=1wF`nyqvcDaUag8eiM!cj&r&V{p2aNeK4ekR@DX0F2#;z+9BY~^-K#)?bCE|NHMbMEGhm%T2Cy^cNBCv$K~M@cC5(I|9fE7g7e&~xz3J4iaKuvo*s zV5{&(JM0gBMgtZ$r+62209mC_n}=)(=@UM5IoQ~g8}ed(&sIuE1#G&?K!cC%kgRKt zft+jzmCEgI2j2nS^)s!lU$B?k@#2z~3YvF$#Lm|dq-8x=d-EZm7SkcsaF(b4q}niyv0&)f81EpkmP#A9 zxk`blR#a{2|e(OH?85AQAuoS8h?T%ns)XUd@M&_xWAYG0{+mm zzxkW+y(7B1h}V~I|MqnC^*8()ct9(nzvQps^|$`>uOGvT?%$!Ye+Pl@Ymd%vf5e~R z&CTh48xEtoPu_lx*!{7|i#?#yYP5k}ZD@=eFgvUtJqBCcgto9c>C7CMqc5ez{H63wMjD%|)!mxp;UCBLwuQ)(#%SdV6xMa_sQSw0L+ zVJ@gDpvnel*Uw4EmpLTKGhKCu0@jo!c?bzb>6Na1P-a!{(uv(ShtGh!-9J&^$Fr0l zxt*BL>$`5%P%cA_M@Xdv-@bB`$HM&+{2NL_=;K|RMYU|dI`>0A#*GHbYbVtohkw}X zENWbl7`X1pbzo+5RWrPN*dEI4*SePX7gX|-gSUZ0u&W0V#Y{pg=K@m&SbPup)#WVm z9J%pdS-!WxN>R8@Qk-i<2?h-C;+yy4tGdDaOLrnJFtDLb=ytfmL4n?`%JO-)atpWV z!8tjKMM5SJ9C_zOo^edCRz#D;PF=2pxThoe%f|zpEja!Hv+j^Cma2gk9QD=6YQO{9 z57%5}wW=YyV|8#G#+-Wv7H=vfPpWEsP}F26)%)!-$8|X0885P@ohrINnbs9R4O`^6 zNdbSZ=lQU#t7V6d7TI*Ol%`DP=3Guy zueAX)9;7yja^0fX@e=0NwMv;_uTds;92-eOyNM7vP=yG&FR~#>#WS=|w%tz-tbYl~ zj1xYOkgh&y8*vmCiOCj&W-ab42w`Bs(Y>Vp3Sf|rY2(BQDVKzs7mGXU__K1g#pc8xm;w9z>I68yC=90sZ9#Sujugy(*ays;JYTdUlokMHYBOW3Ugiy6#94LYu1v z2BpL@ZtKw=OmYM45C|q~mM*oLL8vYJQd%Pb4m!1~nZ%nmrFN;b23`ryLIX1(M-BPM zuF115xbmv77jciEctR_xTTZh>H1RO!kN4dM%RSPWF*HMa(&Ej0Wq(`6ca4+{2s=eX zVDxGq$#@UTT`Hf5LJ@89&Ut4u`&l60*hI^f42CXKV}^}J3(Aa^mvW&>g37ptSna@j zOnh%Bs;_lc1nG|)Yyd-|W8D+#1;eN2D0$==q`+iqL4KQE@#^Ny_Pz$A1PzrFyt1 zwq}z&vC1Byz55IIC-)XRA+<3QoW2wY|^1E8Q^rG7)EuV z%MoN-_G1@=Qm2~V(OM*5zYY zREx5q+kTGD$1Go-^djBT<_kg_fByPqc>5iXzmQmWdY~l99sz9a zz?;?Zhw_oVvm*%KaX1A$!PO2INF3_~3(!MLL2lrhjL@v;OkHxDoo~O%T{*+$*UArN zno&Cj2!7eqt!c4#$IDVPu$R?gV(18B&$2ldHdm{KkdF9qrouWx1yxSRq6VciUcF=T z`%WF5hs40Uq{C+5LX+C1Q;;|V+k`RaQon>Lc`q&_D^yN|Ds6ICACJVtt>sbEbc{eN zl*Mw)fxcq}uQ-!LR^_%FYHo?WlQCVpZ^4(wVhKuX?U^DxA=i(heGKocUeTDbx{3#& z8?wph3WQgGus%Q%*5|~H4l>BoLj{j=B>Vxc^>WPvGefIm*uTSHm2EXdagQ&i@9&3L5F9%VavL8NA< z098sBo&D0*Y&Ew~K@hgy-qJN|%` zP)fD-uTbT4$O23`|jMsHS$_mg7ixk{mI8V7DSMN)nq3 z`^yD1kEkxWNWj?UG{<&>x&ZlRswZlP0d%xEY*(KF#Bn2dM>g>R$!f=88R8zCRWU(r zYiLGpjfa~L!_L!%Z+|_4)bHMYr5KH8`QzWXSg{HGTi5LuuRle|k{^eKz;hq(zrX%U z>1;m&ZvRJy_U&ovO%?)B?+5@L8Jf{kd+j zaE667DU8giZ9621>+xnrQtP;C2hV~UB);nC8;`nSyM|WLZ`ea@>(IH^4CWe^eu2@J z>w%yzWKHDd9yXBA#?=|0NSn}tO%(b^SuJZpvK*T+p|G1FH^-_kE#L%GcWjZpy`qr= z)KiCeMNx;xo#1{fM!7!=WhvqRnOvp|1pGO6CH!qD@-x>JoWD5p0zass2L8JZS{YL4 z$#zLpqHOv%2T?#TB^wXRYfOTw5yb1}jO+JxayC-jCfiwG;u__+gJ3 z4_LY>8d#@rq#hNSRchS^6Y}m6ww1kCH5(lw)UCjgaOT4Rb8%A-8=^CF2kIpb*fVlu zMCuFG;U`QhsxWWa!1IcG9rSnW^>n>s)aJ;1Ele$@UXdd?K#*GdD$ju~2Add=``5vd zMNsUQ78O_ZsJ5^uwXGIUh&aF?oq*o$oZHr_5=tTkEDQtfW!z{c&N>;p=NS~6j4s;W z0&GgOV1x^Nh67p*18tJ?7s(pcmceKJaF|hol10B6!#hSo3`Z?2Vxb%2Kimne1Y!F! zemGm2tej*p1h9T@{Wa$ya?jW&Wryi{T$<-u^o z8uhrhvb(H`|B?w11p-2}JfdD?fv0TpS+bolBP>C%kPHD~*DJU%luvW2Ze5>G^y|br zE$fS+{3>k&E6{!#q2GvR`e-Qs*`+cH;G%%)M}A@Ij`B|c$y2{%IzqlEfg2(-E~+&* zNE-iyQCO>EFGk5q6~EvkAfY-(H%!Ksc6KFZ@C2|qYr4hA>1N?0xCJ%TxYTHl0W-`> z^j4mCn2v1;mFz&%(_TJr`wK8bgOfp(We|zHkX;Baq3D_B4dL(p;UB_3{QVIZzj^z0 zFjH~LhA`Tx=w4?%&U-w%1&{-=t@PG?C~Jd~mRiS1l5e$Zhe9GED^$@ke1qbLGn-d9 z*O7EBcjbs&pcF?1ZAe^Ff2uoWmKXU{ej?9U+zb$l`QeswnDvE%qeH(5%k#Uj3Rkcm{AW0$=e7KwGTn&OMK4VHM_ zR1(t88kQefzW-2Xl*KH+agb0wOw0;qfNw`ev)f4DmDp#XbqyGiWp$1J#b5+PBp6k)r!z2XiS{qD+zl&yV7vS`1hYizG6*S=> zZtTt-NU0WRSAfiVZGT=jn$F=Vn~5EPjj=@EDy^RKf(>Fv-MB~~Zc-%?VQ0j3PBs?e zWTACzmZJu{J{x9&mdz+zJ5uHn5tI6!Md?<#y0PIbLcDb!5V9pb4Mg5Iu=Qhs0ui-S zr)9H6;kB0VK1{?=Y?xU^22H57`7xEE0Pao{%tE)&1g^j}^eRrt(#^JelnmPlS*&i7 z$Eza_0gfl##AA63An#=!qjj%X3xiDViY!s+q?Cfz{fuhtE}vShlpIQ~)zq1(10UFG zhcU=JQBD;o{e>G*m70U*EQQyoRyJg^L6%NRAP6Q)`O{$5H+mBf;*ns6$gXu?6uy6t z502L6;ItbFtJov*aW`W)wGA6BI??)^CH9_WFP-C=y-&z8P=qpOhHfFLI$8ogQ!O(0 zVWD|LINV6%4*yR z(RU)D&Yf9Hf~Z}^MJ1)J7?jOofS5T8e5enw5Al8bFMQvE*E4wjZ^QRbR4bwXTX+Uz zc$9nn>FbaAHSi#R_tV!ugx8;-8vJ8;{mb*;`{CG2x@On>MJDVBsGZyU$}u6V$mLB7o>uBk=RDd?ee z#n+)$JR0qELent#NpyGXvjMz|TkQkGRx%Cp2%0fvt-xNlIA^R~0fC&1&8DC^z#tE; z$s6+GSU_eHLXlJQs?~A8*BJsaTC;XbHb%Vxy<*7`l-^$~j9%~}7*w&nsmLgYdxJbW zE&?Yt`Dj?5cAuczkxuOv?==*4Tr{(ljXhg|SlI0SwL?4)Ye?33_!#P( zK#g*o&>0Opoi|1=)3f6i_%}qpV27y-Uw{^Ce~M?|SLM1*5vvWO0}hK6$$*{eThqbcy?yS16^&O5y%aM! zF65v3=vTnuBzI=q}v*D0FgkYd(3KaUIT#wv~V$UiYs0r2bzF{#YD zC9=ng$*xoX`W`g5w#bT^bET5bngKIbj^HxbF?zeZyx7|jN3YvZ7`kQ$>=LT`XY1nk z=@y>mK)rm>J`|N@0T64wo-o&$quTT+?qRp)Z-Qr2>2~L?w*@`_TZhoPwz8`-Gr1xT z(9_^*!as^4wb*k7XlCG@yW+;JJVxu0-|)%dRr2PVM?KAfFPj7Nq!_Gy;GC;lh^Qqx z=yYTIv_h48U@-kZPs{@8{2GZIX;-hMuVZ6xy&W^Bv9U;gF_qDkUG-D z^EQ^>F$G8ew{oU9=quow^ar0@>GmIr;GVmJ_LfRB#*WrUhJ|Q{B z9`EeG3PDP@Ups}up#yUI9#diUdn7&K$;JTqNcXWVHU+~u+z0Am28S<@`AHz1tISEO zRWq!p)tY>z#4ai^)t9#NH5(%XiM^10-gaZ9N)jcJcCa?DoJ?IvPFYVhOHlgYlfAa& z3zm4p!5lam$r}JYMIXX`1op3(=1Pbi6ogad`|=+{mQwkTdiK5Vg}?v75l8>W+rLw~ zzJ2!kX|RKD@>liB3vh4!m$zSsPX5daE|0vc?eU$IUHP-!75%fEUP`rYl+14@K=z)V zbk^@uJv`_Ir0@eN^zW_p?C)W-K0dg^JBm*YppuCXZgvG0!D*HM0{+Mm47&VByp&Ku z%nclTPpjgckHGhCL-%yUU{$8)19DfTZbFw*ciQVre= z)T5iu5D}Kp#d-1$9Q7AFu1DU2fqo!8WP?Uz3>e8)safbWHl$r`Ai-Lw1GP_PbaKL2 zl*c(dk({)k3@_`qb_!nY(@DEVt`wwd;Ozb97n&`eA(~|gms)yBJjHm^)sg!eQ$7U_ zava%*xs=jym&cKNcoZv2}|8d;-wmk4{jYP8Mn?Z zC8o6fQ{%M+oKk|v;}B0OlWzL6-O>VD*|PkLdBdE$n5j#QIfQ*Qg^r|AImu&t#mo)U zy>4Xp5$F;d=qb2A>GW-u_ue>(OtzU0nGlnhI7^&&)ev+h2(W}oc0L@p2?^n(wl|1& z+{b;|@$LHON#gMfUj5?j7rE8=3H(bx5PkeKy#AO_luurNA6`F!V)9SJ+fUVW##PDX zb4sQKa!+cxM*0^dcMcCy%w1RSBR;|bSHD3zgL?$v*S69CYIoNfsWKPFYWY~Kc2(oV zrP*AJcdI1u<-K{Xi|q2mQ-w%BkqlSW)pqEvEJIkIF779D4wcEYtwc+&TH~_eh<`m& zOk{xs;!Q(pgaSWzXbi1}?6KoF15|5Rz9AH>@KJ<7GMazEVvsV;RzNEyksd60S)g*@ zJHKoN!@w3M!0j$f(y4AM>zZtVjn=*^E=fq6RIA^oeQ?Jk^*gGWqU8m1jou;J-yGzf zH_-2iU2a zRHzR1PN)t33Hzmm8L1Rl^&}O-(WzdM6y-9q;62}9@L@aD8PJrJ-{Lu`b>Uf=c4wQ? zSwAx$k4H`^)l70?IQmKwC3`7eR+qy9`P<7IpaZE}fPUIU4$p)BAv=OC_JP1_Sa)o2n>ZXjA)Wn%?WSS^YBT@ZHH4wAUvB>QN zB1J$|H{8E&!VGq3?X{rXSeTp8?ZEqVl^=PaZAPy>Mdfynw26x93T4}xgq4}@i)dV; zu7O)2e-UOr>?ylZe{P1=ujke-+Z^Fyz4iRdGv~ayk zB+DY!s!YvI5-G3ASwJ+>_3I#w3bUCuQ&HVT1~Xy|W=Ijhilj^kl-24d%}IHYFmWoS z2w9HTC{O3zv5^Qd78&jtWU`^PbHEoQj6s)mR_RDIi<8rxw{?WJXh;Inm& zgK7|kd={r>JWm_w(l}gifusF(@v{-H{OEx%)pLxNP;=AV(OzqmG%N92P-TN60rMs) zS9ZpwNNK<+!SN&aGN(>0R9vk|cC8%U>}-_C*eS^=hZJP{_KwhFyQsaf$v~4JYU-!KADU}t;^TqdG)Rctvkfunc%rf>^2ift9H9m=u%y(5Yt*Q0SrW!o1^$qP>#N=Z;bm_s4P4{SQ|3m(riOV7&lAFk|nW*1FUADp-vDj(W%D=D%e$&HHMm~X(T>{nnTO$-ab)9`rs<_4UjS`S)FtPBOkIGT{$ z)KjAVq48YI8iq^iDZ-7UaP9n+JB);hl~&oj0&EFHIApbg-lV=DD;NaNaCk|3OlCtBM2EQy51i)5m1gbjKPx?~5_dZvmOgg>H7 zX;p#tdT}VQOC9u$*g>B!ouEL6p;QC1H=|GmEYsm{6E2eCvmH$A2eq?)eq8mQz-xj%dT8HGRoVz807Z~k4;53Tj&XaARc`pdVk!mD|Z{sN@9uipOx z5%CYI1peznLr!s{LSpf8h0uRezv)~!V(d0 z?-mJ3^p-6&?2+X3xjUbI*&<=v3WiE$Dbd3XH(_>htm<$!K>|He zKSXNI5|wJ$CU=pV(!EmUuxGvHr2Xi)SvwFh(vTtNehW3B01!*AbP_qm>kV8fYLOU~ zGLf*C&ju`slhh+}$6J?~8281uZ?F*LX@}sOox8sDs7a^<(}o10VS~pd>3kAUt#HQP z_)d`^T~)Ch4nu_GAGBu0bDvPNV6mdz+?4;CnW11OA zQ|3o)lB_{ODDwo6@4y_}A#zfOjoQQV^kU=1V9G=$H(4ScKRf8D0ioL#7h?o$I`+(u zkisG#G<%ux`B|j};C7^TRs90+xam%feLP$->tR;(MYuvMnw)~3udmwWX&kNjSD~;_ z|HDQ7;3V5y5m6~XY$78o8MakD^#@O=l4ni=u=Qr_5{AP$;wcAOa*3IRBh1-u`X~M8 zVNzMEYXte(lCVd~K$d+#gM$n@_(O+c?9r+BLj~9DINW{mBOkcxjzHl%U&1DFj}_4uF6<(UGZkJf1;(<;eV5D_)IwE@C26Q*K-Z) zmvC3og)0NA{)-~-WsO3xwMcun(0Nm}YNhT6)!FV21e}1*EIWrAC}j(+&KAf5(Htfpz7oXb35%+sx^Vt;ti1GWHa z=3r-#nCuLvF|=Wl7$9Z7?2c3nmN5Il*auqgtMjqsreyzG0_iI-NjF+$4z6S@VF27` z>s$AVWXXpLW+1FZjj{%3c=S+ubR{Jn(BR(j*2#P2V=Q|TD3?yVy>1v?T%ieRw6_EW zx|+w5X{d^p1VAh4fa{7K!P{4ag=&AssDgg(yO7j*?I4NUxpyx4CAGxCO6Ftuy-xd3 zoMQtSbB$Eak8nq;I)eO_G7$m)Z}4X9DoWLr1IKQFI3_x7j;h8TdRp+xu=C;)T3}Mx zNi70-u|sH4KC@1JXs#r^Ayds!E0e5putMfy6`ec|Qss?-*wu5C{mO#a1XOa6!U_#f z4y2TiKnjEWUaLfv#%&bs?iP00W>z}?u)bY1Y^8Or!mjzt4 z7yU7hKYsn0N-n;*;2?>Ivl9{T1ofW6_%PNHEfel_b@G|8^}4MVuW zR8@IBSZ~MHu;uA3YZpnF2K+(%(~3+x9)~c;hF+}v9SO?(POU>JI}R5*lLmlea&*Kv zwv?Le>I7-bYDZYH*clqlZoep@U42_=~@TK^LE zDTNnhVQ_lehBz`Zk6z#oZ>k@_4mNu&UnLW;w!w@kXgOfSPVieC+#wxRKg;29u&K&J~s7y%b%8q>3a#6500TctS0xVcm72+wf#Hu12!z3N!2v;y`sACaiO54)+uwt{!ajBH4F ztcGS-c`9q~@nC^Am=_JIG?WBc(F@c<9LeK7K)y~g2ipS&B`FcF4}GjtzpL{3z)-6# zOgljrHb*uX6pY@*y`pHgnA&B%3W{b zELK`jX%rAr$4$bU`YqLt{D&nW{JCa}m#8N_ z5Ve~sSM{+SyCa}s^B5S&RH({lU7HI!m5>a9;^PKi^8z=s@vi4lVia-@;Z$US4NU7B z@d!mrbtEa^N8FAN?oc6*llCB;N9_Y0Nos+5wfs;C*GU3Ve?0h6MZN5}amO`9xsMl6 zq~#%DQ}Gji4d1@N*5N1o`rJbN;_Vmz-q-N|_XBJ~eoeUF*MN)sOhQ^#`Ty~g%KxDz z{Bbay5_EA(laJjo@W?yT)A2YWFs^HMr z-5s+IQ7oUG0RsZaM|M+_PtwFLAr5%}0Bdb)$A&2}D*4eV+0fOzcfA8O&gR#F4$Qc! zvD%XWJf=FZ@S%gxG^c7Sfi#sHlqMgjf)S=8{hnj2sjK0jv$!_aR3kY=mxWYp9UZUQ z@EfpMI&LGN#VZF;;4~hXa)rW~Z&JbwSc>+l#%q#5`XJbDRLi9KgbXdd(;-=@Wi4UJ z2o&q4q%R$RcXBA(JFPNQheXm}%9;)Gl+G~uEU!@tpzKhPg92W~kB_K8@}_L~Agauq z4_WWNTL1wY(+YUZ;36XOxI^!u};#{=@4H8Yq;z=9Z@Jm&0|p4@?ndoEADV9pCv$e)FnOu&cHeBu{C=b%zPm$UrKqBL%>7s&J{R{Yor=ue1v*(w@pCh zw>}De38|c6xgpF;RG;cUP@)Qf!43nT}4g8O9ABQJcHqvXEsFkVYB_-_5?aDcHHRPoL zLqNR0(7wPn043p8m4v-uSfrdsd$Q9m+yU!r9B2UbF8Yg=N`@qQ0x;ZN>z51Ddknd< zi}FdO(|ZGio(ka%axQm8)Afyre_#mEh}?|s?`Uys?W8Oa2gy2hpx-7kzZCt z1uJ___kAV1x zl|0M#Y%C4fL=RMAA<1PVDP^r;WOyg)XstP>UZFWhD5H*P2u)aX1@6qwHKHpM&6qR7 zQ&|Nq;AQRoz7o~e;!u8-n9WpR)>v{h!_A6AyIGCf-FI-Aphb}?52#R{7~DT;!H$zV zWDJ~fo}O%j0X%6tE1}@_4kL5M&Kp~Ny+Yzn^Hw0)le&pg`iYJsbAqMpx}4??4(!Pr zdq60%0xN?t2(prWSYJGD0%cEu^9kza5=XBb`b9V^$X4viRWbE>DmooGY&xFZm-QMc zH=SbYWeG|Iv_hbZ1K<&5n`|3{RI0+7Y+&OYr&XIUD*>PGNz-MUh-9OY2D*t|{`-w;rc=#Je#rlgL&@~4OsF$tSwSHK z^Obk+tfU1vAKK6iia-SgTF-!_ZYT6hIaI6X`S`txmo0f*6mtYv5-Yi*w&59N_|N6b zdZ%@nWa9K2#Y1BHqzJusG_IC^)@L;lt|_VfBxq7~lX6Jbr>quq4}fmZe5@)7b#gy| zDI0hNc?hdf)Eri8j^22Lq9-slX>&kGRIj<6!50a3?N$Q7(qC(WvA_=QBb$m@e`g_* zw1CRXe5i64#gis-qmCQ2les|8HXjG$ki@M(i|hkc%y@0(pUb1PSly_kQM7J_`U64^ zfBo&RM~wU`JhR8XeES2ZSk4do0|1SmzWv$eS}@|;iKE;Dtwc)z^gbhlhKM(6Dj~fO$A1HyE zk7ppFQSmDywKC*`bw8UIJqyXN=}f2Vnu4Q1RDr2DP5T|qyzlB55NgPAKSq@ zlN-&6tWLnL5%iJuk-S`#kJ~4Ps3c*^;_8mG>$&PX%YR9w@)}50Ee%@i)a8JKt1>i* zH+cz)JmBeCwr7=AzHz_o6)W%50xe&9s1@6{1OL*~-$5fkN*UTF0NY4Z>mkZW=!yIy zLLgrtt&}(bzNBzTO9$~t?37;eBMU}r%<*|MHe?rDz?eG8v#>`JfFfKZ}ld_dtq(^?o-P2&fXSG_|R{JBekOe(z45F4@rs zO%L=oo4}}^zx+N9uH*F%)rW;8EyzcKC=g(VAp8%~+bQaNq)MZp^R+;Nuey22AzYssA4Pm^K!q(DU8k=t5HIIpce;Yw36gHG!p_Lv1$^ZP>ZS9uthq# zsTQEXT{=4!9s=r4kIruN7LPO=(m14z0|v6#bV~KiXFzPqmTd!{x!o$Ly^IVa5Ve{O z^Um?r{jiirM0kQMK)c8GKZvT0C+zK# zcf)4T2kf~ODPq7z$}Zcj+UR1FP*ChZbwQP+iMA#>5P5YwS1Z`&GP?2_Tt0@r0D<>l#NF|L*|>3*jPcOhJkhL zt(&+}lI|=If!v@|M)#o6wvsajx}KYkoYTt=!NGij!KIX0vh=CUD4SrjfoOmg#;ySH zx~LU)2?f)3s$Zgai4}ktaQpr4*BHJM9$P~j(tfl|vdXx*RS6F*n~fWMz}1zlz9x?3 zP>pXRA&L=#3O;;m)glvsFzS|K8rqE?APeQ`k}|b-%LA`CB`t$p;$|nH0Je5)mqM)+sb>5fJuD0tJX!b_%zN|&~do#gr}T|H5`bWZ$~hkvA1C_FmR!lE`rsJ&3BUWbl%)U1>HWX{ z^@rj8zrOzF^azDEQdO^4O9TtLea73#QE>j`z3rwcsmqBi^t%q{?XKMGt{qj8s^;Vp zJ&XdLknpR~Yq!m!X&z7>qj_ZeQh(e|+w&)*Jh#OeS~?+Nk5vf{M7h*T%6Hr(CnvJY zr0p8K%wK_>Thla$$qK{`I)EsTfmfdqQWxR?l;<5;lP_6^Pz~V1B+2$Ngxx}|+&IZz z>FlmfP?9ViHk(V0$r$v9c>!!w^#9r3Rhf;hl&B2?m1+9J>1Np=*uZ2Rrrl%Gp5GB8 zG*nBP;lssS)QJgC!!0goh(f0dQWeYsr+8RrKuIL_nm6BZ0wY<}r54)dmQt*^thXs) zix_GJbx0lQbrw3Uk^`)IAbB->SiI{RTVzzDLlj0-5rm^aNeO}>l2)K{QYsqD$pO;j z6#)To6Q|9c>i2scSGkwN5G!QI*o0M*n39U1rZ(PEyDC=HYAd)|HK*&yZirI47c)D) zD%PQ+GNS4=)92!f8Pt#-G@;Y^drl=>_i?`Y07Y#R@q;l@&^3V|eaM_kuQUvLl&I`F_!TfkOW z=k9H27ZyneV;Y2mqGRt%Dktr+co$19)a4dvxjiV93#59~pU+2jw&k`%|eZO zbyY9kTyUN9Ektvch@YF5ceJS3AgIP*IB(}Ou`QC9?E%R)=ao@K2`P^P5jH&4y_?3# zvzsyUv};XrY&5~?}9#86SvkcXWB2Yyal88>?C;P#8dB476^F( zr8E-9bGXH_qZ(EzR4sXdJeNf98tiUh1O}45fnM4Uo&c&+NZE!*Vdrc92v)N4#@baG z#t0=0^yYGSR6?=bvk_GAHBsyl{1q$9C3J04W8)KXEtR@+i7l`X+71rm5jFS*=BY>L zTE#=-QIlW0YAJl0FRQjP%C{8h!P_R#KL!+|SCLo>eAV!7XEbQJouO?(&vGc}xaWY}pe**}&4(HeR7m^1LGTyGMf)Li#IG4@Is`J`Nq$SoPnmUZ%2 zpO4{?bVKyUzMM|7^N=~AX(8vCsxY<9)&eUa1T(5>jCE*l#tbRu-Cu5zdZ4+i&x;mL z>uP=l)O1`txm&6yGGifSeHq?uZ1{rY<(5BjMzod>j%ZtSyY3Eej`Jw*ev#dz=nwHs zS;YOW;94mHVDeC#hE42uFe0m33gPRAetfZ&(!wxE<=Pp}E6S3$ZTkIB-aZL$-{9-V z5-jCRf~ow8!6;5LhzL-A>uc<8hkS?dEjx1e=H=@^~=R#MmjnPKge z%&nMrJ%D_~iXdaZ5t#3KdbmM3aQrm(DccWd_IKHY0Y~F-QEKrUMh>i8vz8#OJ5>Y* zvdMM4;zh@+_ne`@!!S*P*CIhoTPf{<7`iGleEDF|2PnwZ2ca0XojFombfjRMQQb@{hxUDf57vWK5^i}S!G42VrFQctzD)S1L&DO0T}kVUbBV_E zq81AUZ{Y|9PQyTgKq^61-sEKSu|a)4F>f4Q?t197&yP@hV{C;5Ogf-iLtMHegdxJl z5e4xrc791#1_W0&b>3NOM9~l*KB62ZS8s#648;boX?z4i8u1xG)4O?BBR#f}gd)*F`>nz5*ZKg{hI88tFq9V1~|667x)05!gzS zKuH+fEjmE-kmeo`%|sq*Cs5rhT>1=HKK86-TaGt*Sn2rLU>!GG@3Q`=g{bVH&>h$* zD^3>WKMwkBIsp%(y0x4_0=47~2MGcBmFRWl%A?}0w2R$A-UUJKe#mZ0 zv{PcwsE+9#qe@w^vNzLEsMyNZy%P$o6iJx}E8Eozdv!pWGKz8+Ssv{=eQ35-xDvU9 zjjl$<$$wJ{=L-*%IOG^22t`=FU&!5wPqSvY`JldCwO6><1F0iH^5*9mCLdS{7~0yk zDllpR*e<^UPf$(94jOYaC@%?=<)Ln=)CuBapKBlILN0+K#&|>}r$--80(M7I4dioe z)GO;akuZ6NW)~`R`6C=T^WTT>$$vR~=W_e=@2IfpFNX)B0JTbnf4NAOI5XJkW@$Y z+L`xgoe+U5&qQ-n#S*d3es+Df?Ov|(N{(_85^1wh3zjZhLbaWrV>`FwQENDt*pZaE zp>Qkskwxa|yNC0Nm@hA;cpa5DmVkdV<9o zM$aawmgQdE170?N3k2Z!J&)tZjJr3TG&7bB4w^(M{LVdfd^CZH|W?7t3rG1wT~k0040uYt>X}sjXe( zO%O78fuh*);B;uO;!(7O3fP=xeDcoew0|z)TC$^4r`8WSYd~qszB@KS`BK(_Sbsb_ zY|AS-lhbzyq}#*PVgW0(xI8rpGKliNM}n7NB2{ysE_tglaDZ~N1=}=~kdqA^^fu_+ zk3RQ?#B5z>P%*v(A)eGXDxP~lUC#FEfG933z^FvGthtjCZLGr9Q4a39W)|`zAmV6y z&1gB2SgEy;B^n^#tgQw;EyWvT6Huzp;dn=np_~BqQlYZUR?wMU2#hAAYJN} zb;_Enl*nT(c0l5woei_@i4Rc$>3G1M7_w1MEO({oTo2qvp;2}5Bn9PinlzP}*TXRv z5T!Hb#y9&%i@33AQK*zuPa<6bwSZBLf51@PB$Cef{F@_A%f4mf<^gpOWZ}>iC}tg^ zSYXBDGNZrda4Q%e(?AFxDZHnnZmqNW@<9Np&M^^&p^`&(CFPf(Twn!PmYVxcMY$th z|319_#LvFV68G&7uU~+cs=@=m4X>Y`w5|QG;q`YpfD@U7p5Z$l!i4}t#l?d76=KRa zpb+x=dXc@woki8{ZzKjwo(uzONt$Tx6}6-&PyEuN#;TCw(|bhgT)%j>i%L5|0=!Ny zsvI}a7g0f|mNF>a!J&>T0C7@-OXi*fOF)-?QKT)MOy&*OawkRW15ft z5PIe$C@hfA)>+eVkj55yLLph)xoJEqc37|a{2jw>xYKXFTeQuZy`8iSs8_)c{Pi4 zi3J5CHjJBMUnC0U$y!?|pipH&t z8;ThP;ohg0eB+MlUkZku?3chIxL8pA z92`{DbtLdXBFBBS>d-Fa?vCsu7!X^i!*Gz*ZoFOrTC)wLxY&wExhrd|rc4~{3_Q*O z-2;sksaK_x`8I4L&PXcjO72Q_zDtW_gtq$RQQbjMkgWOYx^VCawP2S`KFF@j~oL}+~b?)IVW(l?ZI%T&|1-=5xo65hW0K+^5&{1ZP4Z(pDQ{UpdAKRG=h z4IK-FD1GG?uPWES2FsLi?v{4+}PHVY+iZe z9O{CqCwuzY8%+@L?$F>|)17tWJ`^CHS&-O9kYD5rXFzI$I27rms0qoV5WH%|vC0wD z?ZHT}us3XU^jcI2jDV(2YA%aXNi+JY4P= zguyN5fPYHyXk~4}&9|}BD|#&WKyfJN)stTw_%qNJMD26G-kCo2DtiN|L#q}gz99de zIj_DZ6*@8Ys12y$44v46p2HZM*7b)bNbXXpH7cP!2f;MxCRabXB3^3DvZE4U5G|o2 zX9XdY0-u~fTG{4X7*MvV&JV!@#>E}^ge9IWVC1{cQL{f&6@4wXYH4&>HHBycTnrmr zIakhrw2)7ucf$_=x2Y7TF|;D$BkMpY_RHdEuLdLb-A+D7{+d>8Qwh)3fJY{Qd0W$bp#YMTkMtKv=eXwVk#i`sTtfR-n>qwNRS zK21980P+PlF19YU5(~%8*!AVPG<;o2qMK;UHoK}hPL&1@5?<0buZrn|%Q0;%bh-f(jCLqa$Bx=WxAK_Xyy14aLsmijQ z*esUS3A^>Nt6F<-r0n864=kg*XFjobCvTNJz8^UK^$UyBZ-06F?He%5I5@rkg(=y6 zN}r592AkKuP*W6!1`5i&%f5WJuqx>mJ9Rghj_K?+c{f0UWv%)unAKjTo>Tpy!>sU- z(MP<}-@djphYf6aRJDL?q8?)eRjju-Y%V+5Q|Y85mb`=d0JiR7;vUYMD=H1zm{Ruw zi0AF}6A6zAAU%1RB*is{2dOU{9l6$Mf-&gQrn6qNmd(Rr1HaVuI^AzY)Q7!CCUO1u3BLzI}mT zkDvbP^~-04*Duw0{qwg^-u|MDn?Hs3pTB-kLcPlCHliz(o0B>L*P~jBI&-$kZnODp-Kc0U z5mM@ryP1<>_+ki37$V6^gg9VT+w5TgT(7u56 zJp7TbBd7+vU1&BhG-|if5dJ5NN|Vnl_%_$YzF<|_{kQ-PvGTYII{{0D?C3dAcQb&O zp3!w9&|H-l zoERDrd9Big96dR*^5LW6=^R>BC9npdhXzOzOx0IXcdGgpT-g_3+;X#phWX$MNV>%; zba5n~aj#RzRaXb3w~ekYMCujlr_Dh}D5)C#(>X*KJ>!%ORG$_UJ%n|4#muTrj!GpU zkz1dDaSEVihxLPgZN&UK0Aj=Q@FHQbIzyu-@8=lsa7;LE1tis_0%#q=gDl>5kqG%r z0(DWTvG}S674^0hA2b?C=Z%Sav=#sE2U3^){eL*(*B@R#rsUAGlI`m!-!ixV#p`dw z+s|QM|MpWdN&i#+7WBtIRa(qXpCrj&e|&muPA1z^6Yl|CwjDyE%-&!`pa(CZa1?JX zN&dXi1@m67PgoO)d=m&-oc`M1UsD2J)>_&XgBs-RVEiBKNtbzYmoG2leMd9qB}!{lX#+X{Qw&d z0*$#%O>TJr|G+vV`@2pwI92I!x_J>&fkUw;)=w=6saJO>5zSw*%DlJdKWRhXD(_dcG? z+)}X0|9PD((<$lt7w&^3IHCA$b~;k`~0 zpIfMJNLk-N8P2OENba%kiinm5ic-|U0W*D7CWzx>9FZ@zYVDi@&?dLiVi8(~4GAit zk$O*?kVi}Atjb(LN^U2PL3w%`IQo+}crnz=yG^~eR<7E*R7F);Xa|N!Dig!>;zO!7 z70w_Fyi(QUeAw#TOcpu;x9S&A9~SI-B_xz}m)czwwJ&ckuAF5hFSV0NKj7giRc&-k zjpUUO7g;!%M0MoG9^e`U|51nxt#YrpuV$(#3rYOvTCb`h4* zD#{8J%ClhO6B6yvG;|cN{Mt$Oq?H|SbWOW6BPdjUWi!7?NZ+i=fxchat~%T7#&;X2 zF#5`v#1;w7)oVvoQ1T8i#Dx}GBdcGwl&Y!>fgtVxwjx3!a2vg5Ef6%+D=ASYHtJZ{ zJEwDfNA)xFwn|vhM$rb0BFA;A}_^`*`{nB%jqA(KmMbBpAa2J-mfWtn_WMC zM-O5fcYgl%OPCpd{`RNWFW_tSZ#wi;nfU*2mH6=fr?0<*zy!P}Kl-2l%%+q%+&^UZ zEzvTsPy2RLN=qEC&|fs$@Ewc8LbxnmL*Qz``sA*rMe8Duyo*HO7a5baO_-1FCZ(2j zWo4DyU&ZROtq{Z|t5}1H32vc%XYqE_Q6mt&OPjq*)+{(?0k~%JzN$XtT`4;6HXY#S z>!52?$$J0mh^n+xrd9;;srRO^!c-5h%&NoaRGFA8U$2l!wNT!|c06k6;gey9W2y#}@SyMi;3JF0U+*Y~twmI^F zjAnNoM6@G~BnTy9P~7*bprr%{HS-D;vd#YeOS1Iz(haQL zF9k+s#4}ywWjsEhaa|%@AwXS)VuoXc>V_2tptQl&=po9BF@YNH0wOs)^@VAwHLs7O z-~#+{1s1xj%^B7-1QUTIZKivkTJS%Z9LPug;>kg?qso0K*@^Q})fWrAJB`$IGewuQ z0$#nAY9jFZ>@9=vx+eYmRxhizq~#HSl|_jJJM)ji|CZ9AutRACTQrg$i8MlBwzsP%8i6?~Yjf4dt4?d42Mj{6m1XOV*qC zg@^99zr6iXJHH6+KY8|W{>c**_a`4}E&Wld?!Wbu@b)oqwi360^!9m<$`At~XC}^- zN*&4rpCu20wLWRLPQf%*AEQ%@cA*4VSevYDzX4<$Z9g-3QAtG21{lNMq12`H3W8=9 zllS)0nq(Pb|4+BBe&*22H$a8~1h?)LUbL&~V6yOahew|Kt=t1aYnh*VVHXLDpJ5zq zvu7`ujAF4U*=ecFUM=L@S=BE?(w->#ypy8ffspNho^ucqC3;(!-wcd~_XFlNuh1Cu z_!bwHfVju2`|-_HE%^|P)EU~~CZKpo>O{aF%bEalq`J_%tj+-KgKc&gGN7EYQJvm} zDL*0;YNZl>)eEilAl(nxcUH`{OOjS>R>|jhstieoCN-UAuJoRs4sPeC==l{+)S5b*cJ#5fZ%{m^+ct}+1Q{%Pw|GK+x25KW=tOH z4y7V{>~Eo^xGEku4OxU=HTa*PO9T3WcgtEbdI+J%4Z-_P_WYCj@2(#DS2Fzjg39FlR_=-UIzK>ZwP2Xdp-V_;l{5mA&vlL}1#a)M zQ#$_Ht&%CYD6~n9j*P>V952xRzl6P6uPoP5Im$pagxlDZAJVZilRRemX54iX2EVu=(bY68wZ{9j(*+Ur{p zmsLU&;LV80GvtY3ujw1&j!&!M@?{Bh-Hl3`s#~0Zky5vi_EdC^MZ+^l-r7m2ZtUGq zcYQxY=cG7mQ=f{E;b-QB?x2f{oa52TFg?Qgl$4qVx~R(lBuR=A2Cz#!CAr2eEug9q z^|Na~DRW3x;DYVyG)ax>G*}%RTUAs};G$NH!7#;i+RFl77ijtl*!Bbj5G40p>k%GfCGJ%-xTU)l%&-p`6{?gBeA^?vSR6y8 zVBjL{!&)pj^2DApwa}s;_&c^$cvImDZ}8(d6|&4MQt>HIt%9aoDk$M@ulBn@+XF7B zJXGod>wRqHaQC~D84yXqr>ebFF(XwYYAu_s!N2CVvT`J#oMZl60`Mu4A4S~wG+BGc``Y925y7|BkV^D>7B585eU71Lp z8k)Ea7_N?>gQwDge^t9E1{KXL0z<0ZB)duqs^oS+q+|dDiNoMUay5y;C~-ZC(Ite@ zo^ohzITkKSRCd|0#omz=Rt+Vf63O5QWGw)PBPtbZk(8=d$u6t+jkxU zDOTl?#EYC=mw*`6aT~(Jt3>8@S4omb{&6bcvS+PlBrsQiXx)BXDNyJec%UnZdRI6T zWgDQO;J#28g*|!gjq$YA?CRxpVV@HMhr4*Ngi6}E9X$cnwpbIx8 z;B`M)G?YrBJ8i1l=e)ReRtE)?iR6XGaAi)q!jbdbQMs_a;S$?}1gJNlI%F%t5z8NG zg#&KTg8nw!Sw-GpX!>zaf7EqFATRp90ysIb@&kJoJ_v-M8Nu9Us* zQZ0WI2&22pK`?oCpo^XPcinpau7cQg(3F z7^VdS>gsUH<+{LwD-rrrP3rDxlOtt#g6EXd!=N zP219K7PK~X*{U*TKge#4BzCxEaY(3;eX>`;~K1K`D_L|CUdowH4J3dTK>|) zirFH(w~us76c@|$)e?YRB}zWQ0j=D~2VglnO~CB4r;NDH0v3&_k(T1fV?9y^=M$fg{RTZ}^m!y8 z1LaD6|64m}O-u&yI1!4s%>a&IhOQ!PHaG z8g87>15eeRw63c98K;0lNSn?>q~Q=~*=2Qi`O1TJT1{DBj@z<+z( zATM#YaEz)-tybla)*f(#E8Kw!t8R8V*Xy@%ZAK_5g28EY>>h?Rz`OPydX)*>c$GfdhwdW1!0bAP`VGU{w!%fZ+B^#od$VwdyU1g#NLE$N5eL{K!)QSb^E;Z<) zunrDO_f7?KeOHJZciOU9zwN3nV)9b3S85@gLuY&Is6jCo%AFun zXu=4tg_gx2xyta|Mwd@Szv844Kyow4`Hz_BNTQhE?i_j{^*Sqh_1&_74jbzqh5z~V zZ^DoDztg`CZ+~)-TYCMLb_QR(e6=6_>hJyDuNSd>*)A zqD|0j3g7(|!~2)v<=eas8K+lc-71Y_pQqkY3PToz4Qxmo;byoiHqN5_pyJgMCoCx3 zv@JNFHp$rXmD*}*B5!56i_y|L1d&+Q%rl@{O}M!1BHD8nks*~>lK%sgmxW&SHlYxO z3IaG4Kco3ZZbzwX`Is%EN@PHwVnZ3Rbm|grxBa3bNcI~VTYq=#mEyKB7rsh1L*@@; zk|HtHpesnKYc+n^^y(37g}Dk930lP7hs-zVM|5mV*Si7=`W;e{ zuxA}7S-4ZToZbULnM~dSdcF-rDA=q3;i=%5Sk5n9IV4VFDA)QN7%-|n`wvhHMb;3^ zWn3FMjHj`b<)b2Gb$Ad7I3NN`8p0;KBxtZdS!Y()N$SM7F2vb_v2kSK&eUY;TVnM~hIYj&IKwF+&+Y73#{EUu{m9+vETe*zG^iD( zSTRB=VHzi>QvhGmp@3Xz@CxlQySng^lUPTuS0wEgwjc7#9i0ukWw{Z6v|v(kMHEX! zaSiJRKt(Zj>aJvGfUTSJ#=&L+T27cfdaH5d#?I53tl zsKIi_$^CgY+gMbBvX0c4ewDV4*AYvUd>sh9vzmBudb}z1K$5ug9EQy0)z-&Bp5xpO zgTuj)r?zw<1W>JzGRAe4vkt&+9gvi$R9;VNCfq}7Sw6^eeJqC=OSM7#kStx$fUFs$ zl2Of8pQ;PQ5G$O^y2b;|S$x&(!v0mGj~}Ef@H2=IFVl3e2aMGhVFv~UAdnd~ zKPJB|U_hWv9$ERQav^8S=JXi#gvqegI$Wl5suI~T^P%nf>SQ?j{zX|sxPxto@G}*V z>-QutWr&ikgd1tXxl>PuT>-UHOr?&`L!pEQ{6q zUkc5}YNU4`=G7ZFDKZgn2PF4~>=D5d zz5F_0sBA}dq^6@1@B4|<({z*VYF)O>VDco6?F zv!Tbl+##D^8&&#PrcURu_61PFTELQHeTtNm0xW99Zso;Vgm)bdR`u_>M*DjfZEU*I zAaa5=c)DOYE{h7mCtRo{BAy3hJ2AXf#PB_ow!mI-Z-`2g4S>r9oe_*w2 zb6efn`Z_?8GwyB;5D8~0ab<|Pv{Vea$P>G*Bmsjf9A|1fw747k(Z#CdL9Z!>Mb{#t zy!X(N-3g~i~k?Ws&p<6IsJ@FbbDECuufMjEJE$ytEA+zuiiUBuiSw6A1DJ&8F| zj+lAi7@oX@s1DlFmFX&zd?o2Xe1=zXj_ zyDMb~v@eoGv*cQ25~#ocu*egX+KP>y19p|paAC!*;Peig+6zYHVjNo46gO39a8Fsh zqgY*1M+%2KI7)Nq@d65z{a7^`IS3Shc!aK`A-3Ej$Gzo8Ne?%)kbojr&0!p{tO}`zLWVMDtki@I z(msckf~yX)@Swc&f>M^iE*aP~j}e3Ndf5^NG0!$<$ic4BLrSZ%5%Qtybn)xa^(|RYXd!OVV{lQ9vxRxy=(C*B_kJ&3SIw5#FOcD*ftP& zp?TD8a+e`UNA5p0uJ}XJ!9NU5ZE$=oM8;jqOTz3lJx*B{(ypr{viD&_#8k+*gEo)5rQA+ za!XE9IRUvvZ(_4}sggw~J*9eX4M_sZG017LOnF;3ta&x?lruzANJ?L*uql!DDP>V*E*$6wO?&l*BjBJ7U0Ur3@a9(9wcyX7uPiCb1J-Z^?#cI95!`A2EN@C4gJ{ij zb(IqG!AL8KDoKX}-TMHLdYD$j<5!nZ(l!Hq6pn6F&+CksvQm|&N^++tiG8<_t#Ixo<6TO6 z$}4A=bJiJl#W1KvVHc_7u_*@L{oHl#i|H4av2swyyLx35oVRWV=PKrURkq1vKL7^; z_J&dAI&2GhA?=6Nfsd$b%#3PQn5dG=jkKaCZM$ERKe)ws(4;CbonUV?>vJeTUzQG5 ztULAzd?v{NX_2dekg8k7gCw*?}$~tzMsL|pC6793U(wWzkKlW{$F|x-#?JQ>!a^}8eZPd-n$>D6R-L0 z%J%!{9m|VZ*+1mJ@X-G(Bug%9D8G9vH_zR0;}CF%3!l0~X0C7!!K1p?ZIimPGGkdc zMOS!7cHV%?M$Ekh3A-d7OATQ8)Y|qvA4sJ*wRKJGqvE(F9a|qtLJmZFK?Gs};_I@j zMs|6weC|AELYb1@J`p8T&wN;Q-=xY1(cCzc7^x8$1Fgx%en=;)8`cSXM;S=2$t6oq zd~6g9NlyyYpjzaDK|uG&VOmwV>_(ACYa&Z&!2N0ASW@#1;3!tNrCQu_QVf}p{MRT_ z6b)?!WwSvmv3?At#yL9x`THj-J!_Mobh~afI$)ALNl`cw;e{xJx_%1%YDV^JnkM@> z>cwVN*YHeXmO;@+z1G^y|NC)4>#0&-iF0Jufm*oY&{!6!N?wE_@w^!O`L&oQx`H7je@ZS>(pO?9mdY zuFhy}#%9Og!KPec^l+x2mHpkYI7JOipgr5oAJWhFObHC8e2> zV7#lF6?!FYr}Jj(_Ezc^nC^*iG(1||qNrTe?7s{++0aNL;Xv;=Ys=uEkycemfi3wd zAJCe{f~osZBHJbvU@qgr3cXjQL!Lq(yD zzo89=<{qnu1deuPc2VlW#qZu)^VInAIW}(`Bza&}DAi*gp0!JcT|m({-T45yKf; zw*shvUH%y|9;|>@Z4f&?E6wLE^j`axrFqwHGe*o`Qr2EJqr=7@2=oLuv(Q$v8!2GOd6Nt0vah}B zbI7|6!J6UP1_2s^tO0ep+nU~oy9p<$U+vIV6;(0;C)%dUdEBU=F-qsvK%z1=Byx7) zskF#D!7ns#%bmNe&wyyb-?k^s;TmTt{i6iiodkZBJJgUH@i~BUI|5p`Q8 zK0u))Zer!r1=XH|8r00lSeY2*>m+elmRZcaEwH9x7m`m;;{;qoLZdloPs-kiGxX2^ z&~k_p;y#OF2*BO? z(DH6M%U#)kd~oy-2B&O{bSVx}grz%0P-NYLc7vS|Uet;eA|Tt*DG4mPwE#Paw(TPQD(E0IhsPYh;QuK#e~OTN2WT~zW)C!m{V ziXIuj3VMLv%t^9*>&QS1uS$ZVvgHI;+SO4>YmYTw!YU)VWP(x}YRnE!`og1ilT4^Y zlRFFt8)cNw6|qZrbG2oA$p&r~PTTIfvq)tx?Anvf`ivn8V zV?}~7cu^6O#aDSYtp#0qvaRLsd7MwPLKM%jI$P$dpykw@1~j<=onfmPnu`Ot zsQq?SDwJ4^IjMW~9nhLmrnmJyo%+V_JawT17iriTGav!?8-UNV2^urfI+NO3)Nbr? zZ6aYz=p-{=zQ}E1)nnWDk3844+9z|6W=?tcad50bt%z(`(8cQ5)RE8EsKW)(E!ua6cKI$+*R*hO*v#3C znju?`A-T}ZhcGN4Sy&#WWjs`#J+nz=FqNls)hj-fW<~d4v~j6GmHKI9vW)G!Q>9H32Rus0*h+;5R+jU!6PD;3D zHjWy1XssUuL21ale>pOM-kf@!0a8#JV3(*+_dV!^Ku=9l#Rm&Yz%f^Jstc9uV#zrp z1*U9ByRRD&>P)hTjX)nPhCT!j3U|0?_&`R{vS@Asw^Y2oZQNAT1a z;pI1Z@3ZfIg8A*IufKf#Bp-S6`sVdF|McIGU-H-dEWCaN?$9s7>o=!oaO~tmpDh{! zq7P|b}(<=Dv*$hL%Y^A>Xmm%t$M_WfW`$A){mw2qo?c z!-od4_x1=uY*iu}BW!AbK#0%A3qr^TMk@|i?J4s!sLN~W2oLtba$Ew99?qeZNUWJj z?mlnMO;Tw$>VU*&NI7x<4c4XUSArmpVGFwf6MCBRuum{ZZBoUq*wpr|;yvWjw~8dv&mV)=-n>Mpz8gMUIVx_k@Ez3G$f>~vYN4b9eRsZeWrLR zv$%??^8wNFqpgt?#%e%n7uSR)(Jp23({&lltxmfuZ!4gM_<1DHs8`O9IU~7_v#fgf zMII3W@JnSwtskpnQrTDowDd(WHYl}g+0T(S=Gkt21 zdNtw7lKFxad4ItV_*2} zSwRK{#*)h5eo9%E45+T;nK_>M*3eo8DAOJD2h1^cKA`zPG(z``m}3Z3T2QJ~(a-`V zz#BwONdkNKQn$RKtxO10iKGcU1l#LI%wi;8cW3%l71?Y@5)`HX#1e2Rz@!;(Q{a5N z7#rMa@`zdN`9vvCktb;#9djYb!8&u_W-;s)Z?da zB0*RddI2pPF& z#UCDE&^p$ZiuN217SsRkUxpw4@Q1qj`pG*eXW8Y(_h0v~`aHaRe5Cq(`tob#>wNg~ zZFv1K3rc^Q3*?V2D9>_zWl^zy!2>fsIWLv5*Peo1_&X}H$Z0OTOlBwebnWiI3J^LV z%{80T36A0QiJIj{l9J8>C7#~MbJ?bVA+T4bc<2|8-S;6lx_!;9P1~NRu_3=&S5*tw zx@w$s>Jg+`Jb+A4*{wQ#;!3@OY)9DYitapp37^{F!5Uoi_SQ{@2>s6epTjc0d<0xi zKG6{d-N^@^$SH#%lPvXwI?FkhGiOzA6Yqn9Pvov*Xio6VH9<`TP+Qj&sYTG%aP(0J zaI1iDRK;c#V6V`>_bVpFU(s4EIyXtD10|#R3S=A7qd1vxNP2H`_S-BA69nzx9Nd~f zvE=&TO zoH2YbwZA@Wczso6aMjO}7?8)mxw~|cYqi7RFHi+jI(*A04e!rBX>7(dFW4Q)C~VSy zb)4)qyG=`U5vUo=TNe4UFwBVFh+3wT)1dJp$rgh(=9le8qL4(J&Ai1djxSr^w;sNc z4&)JsDtzQ25oQvrpSc=Ne^w!HomLzS%@EKvmRQb=cf;S^E#TZ?_^+@Oj%jBMA4f#- zRA~ZkKd;1UHYn9OAILUznFzXuZ3qDA&@^{p<*dGiK6vDm?$9u!OTfaiHf z>Y+wX#5`Au_b&U`uq8bxc&I*?f2eBHAHDn`uuy*g^-Zuy4JV~_w2A72x(2G22}%ev z!n=eomB!3_$S3Bb0o$#;=x8Z*#U=j;I2gJCvee;4=#2ok4XUKmLJK2O_-gAAV(*l; zUsuIU5M~tz2~|KLm$Y!uKtY2f*oYQHLc=nvultpubgRfUWEJUV z&Spt21cRtC#K|tBN^35ZZjdlUrz3d2T7;Apc!S-qs(-jkB9PSbgkAS$bo72aCN*m~ z^w8wMv}fh&@<3#k{1kIkib&8lB?^&ctZH1=H8Z9Mo@y8#p4pGSjdB9XGpg&|?ID$F zk7&=uT!tG*!#6CmL`h3X&-Jhbpou092oh5Vf<`_7YMyHPSV-LootbhwF67$|t~>{f zv=zHq?Au~&I?Nh?l0NwSqJJ?AV9a7610wojnb=SQIc8xI-;NB--Dvtzf($?a74-mn zlynYmm27i%o-Jfhq;@*>Wi6Qy)409}M9}v8_!Od+)_~|^3p;ZAg%I=nwfZjYke_aY zJc$LF4iJ701v{A1FIkNGFdF-oNn8YFkEE>^*gBjgAD^@-|VbqZPX)FSq* zR$Jr6cIA=iwdh_Vy&mxq*;0o@imQP=1B7JkD>W^)wEEmqHyRMHMcsS7Jp`ZE{OHXy zoe1irLtlCXo~7Erl>qD>a+}FmG8tk8Nj0|Vl6JnRYYu2k8h3F3sjy+VWs_8}T5V`o z0f10NsX2+^?&Z44LYJ2B?av%rgY~8fg+hSsAba`cjA56f12CFS^DRqF9LSLw(gNv*eNe#s-$4S+V1Ebc~9ML^nMrN)2 zG9TQ>l?g^%;H5fIb|Ee<5uBNBW5+TJcp8G8;rD%ab?cT~CMbPNt}$~p_(Av~nML2& zRQJ1|<`Dby@BTWxddSX!jbP_unIb!O|3 z6!{6r?u2`DsEAvZNU<@C2f|ctBIby43F?H_bU#+DyJf(V!9i3|gpjO6E;}p>3)2Gt z3m5)N0|PE301-N2d#YKYi#Z?l@N3RnlL?kM>uWFC{nydEMH zMAY<|yO%X1(FIMb4{J4n@MTzGPVG$b$aM*ol7&=EO_BBa9W>8dNHiCk*k8f+ir|y& z5onpbtqb46J-Xm#vDM>(o*W-zx!f=ql#IZ~vQQ_t4fup6 z?{eM>Cckwt;nKCBVUUgMEQp}YYX_|v`xRPJcdIESPuHIExHu3A%Q$7i&yfZwK*!9Z z)Oa_*(qZSNg&g!$&pzWV$&0X$YVZ9zjLJR$5g%TEqO z*8^nbed##dBFR+;Mx>M>A9+ovYf7^flLHN%YG1wnem{BuF8vcE(_cn5 z!SeS&p#AdoSI5@y$3PT+p;KPWZr}dw<*Q)tJ)z{tLF6getX<2~g=VaGU|}rW!OG^L zRN5PvcPK>Vgf-kjrbT4&)b9~+Vxw{0R0?iYQN?5fIP8IdcTz>i1GWfWH8&M{M697J z0&onh-7tEF_=Y5O?HTR6xF65P35qv@;)=z%Rlo+u=q@35Ul^INR3K{Mf>U zlFRLF^XophlY-rk87d@_I#Ru7IZ2i~0~6f)VAQ3A;q+&*;Jt94EEvKm({28eYHZ6N zej`!GS-sigubypUJB`X?;&K5L&j|YqhSOz*pAohoe>CZO#bg*>L*q!k4qP3r6Dz+M z@J`8a?1_d+-_nny)ePf4?rhiQfoMrt;{mx*)y8KFs&`CbCx$o>Y@>06`|)}A>6Oo| z9aS(~b~z464`I6BvXX?3lbrjFBUIG0L_hWDUMQ*3zFE#VtrDQ)Qbudnf}tDR6Ogx= z?~nn;Zlxo4c`Ok|wX4ATE`cCoUcB0wMK4(6B%t}8yk=*jdM7>NZ;F`N$|v7-6l=`l zIC{c@U&-g&3$O&vssTVS#xPBBM*>$MJor)uXz=Rgmz;mto=})cMKY?m&}=qqG8c6H ztkqVDuDK9qU?qloCGAuflvNTb`z({8Ly-JNL(Pn{tgrW6sGil5!&;nZgizx`wYyIU zY8|JY>8aFi&Pr$8=xvm0gZ|J8iRGGF6s;xzZn+Er7Z+B9Q9)T!IvE;?P?kJtn?SyU z-O&wqY@}MmMmZ{}${^?M;Su1wM3=pT)Kod{w>uopB=@^<8u}nN5W(e0k{z>p1T>|T zmODx!%=Dmu1`~f1j144U`qA4@PjCP3_2+N@zt_*h z+rOs<^4|vgegB7q#ovY3-<_T};7{^;^$hXA{Fgt2$NfrVqDX|W@t2(~--p~>65~JtLyXF=s61Cms8BOm(RI`3B zo45c46MYW05wT2weiBp_wGlL)At|N4OY->K#xh#x8x9lC__yILj=84@x?G7ruZjK*B1R1#71R(UTx0rvDvaSNcP*wr1~Qw8R9%VGdxfQ~KXpdE{TM(3`9 zKrIeBKy5F!W>3%>9~ZE{o+!wPwW^Y0m%}qj-_Hkun6avWgBwC~f zYX;rlJ6MRNYdrg1(Z>Zu9H$Qn3bHw3$)kT4peE`NEL3Pf{z7a~3+Kd&07! z)nJ@$XmsS?DJg|BpHw=-i(*-kDViz^UMpog0?|%NMJ2a@9h6Y~I_U_Q&GJ6u$69>e z<^qazkkn8eWVBR`Hzb)ErajIGk}sIYgC6pB4ZLpZA_^>}{nRs)`4VCSbKF@##qQfw z>bh>?j*Z_JDt@3NwCQH0gOd3m?7nsHsQKI*C0JP7{tkYuZMlyAJ+9aGorPG19_1ga zcO@Uzd(&=$o3caIwbu3nHQuE7*|jh>cw#K6V4Aqe<3|^?_3m1*D$Y30dFE<89o4*; z{Q*_bvRp5nullE4Q`tzRRzK*hPzM_|K^$@*ZW--p8@8_Fk(0W-w*igEJ&2P)Qoy3F zjI9D{0$qlzhd?ze)z-1?3I$-x=nlXdd)Lh)3{rA;Z4H@lJGW!o9ZWSO2ZLc! z4zFsl3~pKXn7Q~9@Q5{0`kA1up58?}e^38S_;=9LJ>s{U>V)z$+d z8FKyDx5fx;IdyvTkcb(7l%{3G61-O@JTqsY$0)Ei10K8D7^l=Z04~ z2b+b`+0QE+k>nB^TJZ`B;v^AuF^}@o1<9K)lR!>bDTs*L6V7zTy6X5u$v7o5+FiUA zIEXa+oTQcK?WSsv|z{f2Yu zQNjbGU`04?04n6C3G!WFx7+?zvRz1KF*c9*Tb?XVFUaO7b}X0V0m}nG%$f&{j*>di zTPvwbkQxSb&=l$90L1pG7CFPgv$nzpyCte~&A}y2 zh>-xUqWF!lnZRp_B!6>jZ>b?iXW}nVW771@I@XfwKPc!wq=>a}86;v`79jU+a-iaJ z1#ivBJ4jdXcOGcBk$}!c733L_$2(9};l5+5;2K-I$-oetp$pN=wUM&Pp~D-xa8?8- zsl!3|(FIkRx|dNNtHR!ew2!Js()=iP6I60a$*c{uOo2@cv?+Am-VhJ)9p{jEg{15n zTmgAPlvFJz&j~UzYGI8&#f9m_6mHc$(5&of zLKqorD0>C(DdsDBl{;#(;stPI{ylQhJ5~5uEJcv=d<3S(mBl5E_yxesupdQN4CdZa-|CKFz=vDFUD1>{)H+UorXoXeQdl$ZB#LtbyvM9_n0Qt zxi`Ld=`e4;(Fa(a2P7UVL)HetUHc@#z@jQjfUua<6Wri(=KvyM5@85HdiMSqa?|A8 zpaF%*qjv~#XjdouNCmNrG!M9gBp7g90qd>mplT{Hxk9OVHe{H}ZK#f+{17VON{o(Y zuzS%K+egpPqq1%J{VYE#;DRKrhL*EdON>NPQ57CeNukuaa#r^Xz!{_KErEDq^StjR zC({^I=0eyIi1Dg&4HnrK z(8}Z0m%FGMOcw2Rl9g|OABX>4U;o$eum86_lz;vD2fhYw?C<_sV!yqH?;rRlij=NE zi5~sWz(rO{G82MtUw@JR4ac4QFTdu^%SR!<{OCvfu{Ur3pYZyAP9`LuLR$z6Xg;@~ z@aA*$6sGQUmpcgtoi3rJB`k`OydOFfAGo0o#B5uqNKvZy^>*5p5q((F!J+mcHz_TR zufRKAmwRLcT{n;{;i&2HYn3u!4X$R7NiQkI@|9My0FDQO#*V5k9AXXFbeT*$dD$+z zzyd1xSqclnq%XMpNIPy1{A3*gYV*quWCbIR*%ff?b9VT*=WXCxq4$^fdPy?!7KkAY zPl9A3D|De$DlQ+v%s-ygaMmE+X+-?76D_Gj5!$Oa^uwdo4ggBWX3Wid&*B#hQ!98# z_AM207HCVuM1zR6-9b#Eh`L)GxJo*|F_xpz= z9uU@29pFxKj?KK|`!O3Y*a^iFOM~*hozaXn@*gxr(2aJ#Oq|5k^=Of@l;g5NyK9yk zFtO*Jq|V&kV|z(F+0IWmz5|HhaEhE2*jMQ=-H*ij(6gmY|bXv1y;%dKnSqTa;~ z_z8(So0~4m&5q(W@2C;Q4An}_o2)MY;Ho45#$xUQ+XZ2Ar3n<3q^w`!^K+<>0GfQJ z-26nnX&c`JtmRX1z@EVObtNwO6E)eI$Um0cZX^N?fR=}(3+oEL(TYxbG2R`9Stpe8 zHW;ZD6|i%f_y|FI63Uay&O?HzXiR6gL#V|Z?jYW&Cs z!@z38z-a3*E2q6>vB|Z$wtKNXP(DOXVuNw0%SZ3b?yMd?-Ur6j+OV|^hx=8MTXw85E$trYJM{%UA>x#Mnk-^pA3(6nZA@fzuOj%iy(_=u zxw^N|Iat7EGtPNg#YI*{#XZ`7EA{sGUc>*gzx^wkHvH=KQ+wS_hhIMU?yn3c_VOnU zw=b?e`42C@Qe&k5B0tZN(`dGF>hwULO6qPTo(Iw(=78hDFj!K=d#Z88d)2v;bF(Xa zl+UCVhd!qv5(N)9K=nw4VB1xTaCXnPnuM|~6jqljn%cBlbz;5E@J$L1R#_JyT#EjP z1C&MI8g?2@$v0UQsRN9WEnw)Oy9Vrn@_2R^kB7mBg+z3I~=KUpPAceGd>ypSdmGL(P8HRNeFgp zXDCp>VgUXvmPHNCP6LDL+HKrUa0k#hYQYjNJPgQvSwpg|6`&gD>p0Z|I;XdTo4CRClV8<8~t*mxeM-gok(OfV}P$#vTv9 zM4pT5RTcDZQj$Ud6Ws%@~SG#~E)S@M-8Kexm7SFqlEsof&%Al<65Ekulf<)A!?QXPq1Y8@Z|s={}yBMcSh##S~$J_oJZcUJf(MCQDq=}-keujPZVu%SsEOK6y~&ld zT022Mi)4#!V3Tkiak5*JFD>E3>h&A0SMDWjYk}lWu$A@ z#toCk4Rl-3o1NXfwCm;s3<thjM)H9%7g0+ zRNldBy@xVL>A@j6Pq_EA0*qJ~Pe|!#jeqdvS_bduky~xeEeL+fGUlI4b-AtR&_=uS za4>2Hx<6seO_6i3DxS4!ws;JEkE7oC1n@NG`E06phw5d@Hr)iRL0S*DfT?{+axo$2 zrg5@Fb9ovbhaNH%H6?{OL)A-Gs``X3ppJIg-yLU^a|uGndA|xnVJW~Zo`&_Nn%Dz} z=yE&78n01@*gPDP;dX~I%4%V11w-V}M@nwRU*#Pvr?PO{jngZV3q$g8Q557T#k1Vd z9SBOZ7r@%_+e#O>2BBrAJu8WgmQOH-YS-s0N9z!WEbIfqeOTqpFw~Od;29mRm4YMk z+0T38002zuXf_z?S>_-=z#91)N5bL>;kAX;NF+-+$^AcDd45$>F9=^-(gyT~r0H;k z#-?sb$ve|=4iYLMOK!fJ>&B^`*?Ay%u3O)BU<}tE#+{mB-zr9EXs$<)mZka%mPUkVK4Q7NZzz? zL_RDEhj!f%FoHN0S4d#&_iSO-NfbbDm5P8k2(E)2qdPpJld5jYiE4bM%Iy2!R)!~L z5vzf>U@YaHE|NANNMqTZsV)YSXX_XgFiye05gtRsN>q({Mp0T@kuFvZVoby_`wh+Z zppAA}jBk_#M^*o4HMFx3Beeerem`V~ugg|r(6UuD}&R2MST6?0Fd$DynYM$l8;`#lz;#5 z@>TxMH?Mzw{fG>*H?M!>j=b~oS$O@^ajgG0FMoRbH{s<=%;ss330TYH^zh!^LkD)J zr(%2x?hA#49)LP{Cf>n6Rc|PHrkE5YmGH@tf8FcpZ9oCFk7(Ad=R*VWX=;|h2gjP` zn6}`dPV;?aEs2ADyPWA9f;^y>tO0;+1GJ-f{&e30Lb1$XLxq&C@{xlMUXHL1oVSp z9o({U9g(TN{poixO&vL7E2ed#6=jt)76GE#_hZ4~srOKYzvQGzZf z{2EoCiVM2rwcNBsvbWU`r@(nD=xO1Z-;XCW z*qhC~ffZXS_4TC%p{yK9u|BFKRPd|8^}|0RFX!+;LtJj%#T)1vYWpb<%iEgNxl*;Ll?A;AfA|&`@T4g=-b2NPLaaR% z>w>W-8lsXAocEp%BB;qZ6rIw1-3kQKy?6@l4q-!Km9K;H9Qk3uwuS{Y#6IM=AsE7Y zfVH#Q#*D2idR;fRx+grP?zuRk+>m(p9H6=6U~?2L*HgBMhkLG^5g(Dp?m0sl(N0?u zou<@|Q5OG!gUhJ%_q-|hNAn&x&y=9Sf`X4;0`wal;rnCxFUbF=A5cy^^R<8A_46KR zfA2i(KZfrgV3kdZ+w0eS&EGGPH@tj>*Wc;u8;Qi9?BUmUG9d1o42b(YfA9YtUbD^P z^Dz^AMx4qw=>uLFG;WZ3%EsF&H*_Ef0OS5Zqkb>9?@Cm#r5P_z+9?`e4F+#iDt{i!W#WD+S2xW=)SlR&G0$+5|u68q{xr4$}t-P#@;K_8D^JtV8b)4Q))E^_Y2wb^uL$e>c=MOHoOtG)8c$bePIm3+_Mp>oWcVzp@8Wa+k)mW?5@uvLxc{R*P zoh@b=&bl@C)wu7bhOo2?HQQ@y#DK{u_sn7?YmX4C-Jx!g8|wsE6am}N`5~K=c9Ycz zjeUoV4X*7{;VN@Got3gfR5X?zgT9q_CzEAr!RoPWo5L>dp^p#4S)+C)8|YN4ws44* zLe;1~^(0?wQY9r|)(0?3^1xw_r?{cKh@8iQHL-gH4r>F=+H#{?Jg6+FUObb11yDcB%I zim=I+Zz%|32a(3*y^WoywS}+DURpJ?oIp3TQE$MofY+p|ih!D!r<=tKh(kustyaLF zgX5-wSL)lxBT_qZ*t@cTdqwL74{;bcoCSaXq=G&NS2e(!nD{I@AmBD+17Y+>w3Do@ z#PBbW2XuJ((%xEmObJCo#lmheM736K%MH;_BrqpUaR`r+1RuuTY%6CSi{;(6@(@uh z-raL;DId7P7WDw6AQXG69-(eGADV_@5qi~HUNp=hZk_rg*#+?Jaa z$H2`-RLHC_kSy(F2UKx|m1bWU$O^U~>@9EIZiA>Tqnf7Ct6z+YTYA3& zKi7}df$ePZY|OsujC}G(5kj7~(*y#QExkZ@m%x+f9_#7Hxm zQ-6`-CDBJlqG?u9Jy26+HIRZaR_|!(x>Uu2QvaT1)$fLK&BHm-b?MrOj3Z%;W6bHS;6f@rG0<#KrK!|gHI>SulT*6##aq3cbiB=DU zq{g-bjC$Rm4{EHGKbGnm42ow~SCAB>`4gteojV(MxnV3b`1 z0*fulSq0u{@rRuIrVa+3o5ex$quU53c9@B*ksvVjWidY}T7?!p7J6(PoFL>`s$s2q!M?XmBG$E%~#15?1ffJ(0LTAg{!{ zg0saZK&S2TMS|oG;j&m47F2E!_agCUniPIyrx#&vXxLrAUTw{2@Nu6Eh%_F`@>M6e z6LTF*00T{k;K8QRSgz;OMD@okqqxe4@J=M|fnM8_c&0-Ib6iV;6?*j8fk(*d-L#(G z(~CR_vQ)Q2ZcPG-X1F4KDoGXEtEH?`;w9bE_Ea)7mB@~gbs#jOjAY1~VMxM&1(2M} z8l&~lCgs!EKCDZRWZrqK$2*HOrG6qWNDNj!6PqECBT)|FM=lR@hv~)u0RwwQZ!6}X z$7;3WBE$jOT9eavrDCI8@|@8Tm5w(}&9Zf(FYYD>9m~l)x8C)Zy>gp&qW{#XUAsC2 zuB`5qn{$a!+3HjV*If$=pkB`E{ABvd@=+mVB?)CWT5U7Pm6%O1LDIR0Q)`EG1N_-K z%LDLsWouJ}p`iZ}PC%3lHcu_xJ-HtTmDdVv4E2)oP_%hj7C5wd9E0~n$os|+C?@-{17^bU=^1_fOnen!ZB}0$f z8k$i4qOYzLhyjw04|Nx{F{5OtQI$Xy$l@39gmWXVE>t!i{ApszKqd`b>fCj_j$Sn*2UQ)`O?b7IAguFPX zm&#~I^Ml}F;J>Nd<(Ui;?`Zvn^DO!Aksh3$gZ!HHOpipleZVV`o3{hS(psYn=%J@H zDbFoIFj2>Zev#|{35O0yMC1Qh}_ zERINm8!uXyz(8Bj1-44N;8uHrv@7@U8HFV96C89(T0LO=3RO>a3rtFXofo&|h4#oh zzJN$PVN2*<@@15|<$+Re@HQ+U?JS(pO08=jMn=V97Ip1lBN)%Ww@KmE0>s^O{5aPK zd{cy1GF(69fqh7sIq#uABBh?3=>}}M1uRhtu0%y#Dg#%eNoA`~ifXU%Y($VgtUPzkC{Ae~GT-pI(2vcO`u%f7MT3J~q>$ zhf*$a7h8P^=-E|YjBEPzga&O#Z(CKY2=`RUjkODKgh^tu+*QN@-+Ej!mAJs)TWrqzJ z?d@Y#wMlz3CPONj1171Y`7YiOQ%TB_qmE9wEG$SQBOV?m?3{1eYh~f%lGfeI_Y!z2 zTio9_gYM$nh@my8)=U#zL_!>p3sP*$4)<%(tAlYL?m|_#*#&NzQR2RP?&5Y=vG0^M z?RR8vygguIQ#UZuo#YnEP`KE+A8#C#gUZo;1JMGLyujZgPdfOwxlNYNq)qmZMg!CCInhY6PESu0j!N35qOiT>?!G!jcH5Z?LJ5b?|t zSe1Pa7e-E5q~`G*e=W@A=jsy1j;VnZw7rDg!WlJKq|AG6a-v+aH?=UfWYQ=o)^ z0L$O-L}KoFJ(ZiRzIdE-5R(eW&F&;9>uR*Oc1Q3nZbT>@xMy$4A{>p~7NERE7wXfl)_a%l4(JdN8oV4#lL|?w1K1tb-(UoBbuC7A<&`1qoW(*ixOP<4VJoAN!g2&rz~8E;`@xRCj*3o&B&%F- z2IH(~$Wck0`$F<{Hyc2&nB)sIx*zBc-^lAlW7BIcNNZZnB|&`7L(7cVdHdPxpI^R$ zWAC3|{*ZU%jn7_wo4@84uOEfik56wuk^=izL0-PW=pqF(XMZmyGj`>g-%bhH{ z&TU?fAhThe#ce6WHtnNvxHL1BlC)jK!S-MYJoz*e51DlvF)VhQUA?Nd4YwhS z?db_hVB@3#zl)&5dim<|pgm|KJ6H$Tj#wP1OBO}TJ@j(-`qlC^d5~e4Ou&v5t&`;B z7L|3J#Y?7scx>Vh?7_$;s#~lpc^?QK%j>QZBuc4I*f~%Oz;Z;S^#iekXR9PGZ~yCe zf1MvL2u@$aMxS0Z`&~Bb8fSEq4c;?0RCbes7aTat3KqG&(gL|^6jJ$MEJG_fLT^>> zf~3#%tLIcpzoN*5d29QuYeXH_3AAtvd%bao18dxA$|ThOe%r z87dSR?S!A9?Xiq!a#6DwmB-dT4u|%-RIYNzUfZdJHBk=y#Swt#X*tej@NJM3Us`du(7UE|_NURT&OrLT= zT>&`49YBT59W(G1?3nWzBETFFf)Mi*4moOp&w)%O8rr!Sw=NKuQD7)x>8-@RL2=N< zSmUp-tT_{7yI81tG}eTIuwTeZug;Oxu$Y%hHYkdMh^hj7nhLX0M}oU5#$>ht`U$^0KKy)f8s~=3zcX6%=ik*7~IJ97cP;44O~m9mx?a zZb$j^+uBE$vTLJF`L&f5!r%S$FTDnCuw?$0uMV^QXW+K~Y}5M-`UZYM!y@c_92l@a zhkNfYU|;m>@b>Rs--nM;e&=srK9T>w#?epY|Icvb=d?M(hWQE>l4CTm>{~gEe3tV= zhoj90+t`e|kj-P1rOxEEl1hWHZT3+3NyF{v>>fo89c*vm2)tVW%Pm}ucLv&fbA;gB z;e!mpCs)h67qV=sk_HAe4C_16SBJq1TpOwU4)B899axFEUsB&p)i0B3-sm(El zFW3!92YwTEs<$xdj2O3_+>f%Ew*n(so)(u8uJYbERLr(#XB1jiQoXa|y@8}|C9guP zK->kiHNo^(o=j7ln$Swf6WX}SQfxC?xMSPcS>pV-Sa}YUgQZmdO^~17jOCTw7*(`* zZ)3v?awt*7Efdft6||w3u?I;PYqXJapzJ_KsQ!N7c-o#oV>v&NC^V6bn47>*ziiEx zu8%-;K_41K>J^$=vYMyIa>9tMp$K57o_H4SOFlGEmeo%+wL5WFt_)?PAM&}?KQLV6 zZ?(ui0>S4yl%K_nIj{wBMTJ0+$u(SLF^BiB-sEYC&f0CF1o3{i#?8;Lq-$>RtKCZa z_Cj0*{!O^YPi^7U;|43tB-LW;_5Fh^+-B^F{%F8Nmhw-{{|JG?G9Y;+d*4wOi4oKr zlBm(NS71!ull56DGaC7#rB$}FAt$7QCPd^+=ZvcF0m2QKAf>5F0~ZwPaj`D(Id!Pm z-mUCsB?WWHZPmSG7*f>(h_K7TWGl~Srv%9wCZ#rF$|=QM?s#cFM+Zk%j|IjM<2*OC z4TNTx`#wQ_R_f>z%KZ)K;-IMDBWJLJi_$p3K3>j@%3TjTe7u}tY?}@W%Pz05Du<`avJ$&eI$SUZz8Im?U z1F|EfkL1TzOe2lOG8rX(2xH+Bym;1jC%fur*j+;}?i8yHO@(~8Qr)#kp6w5Q$Pu16c59FCR#O{~@%r zK6&}(<+pD?{qC>G#{KLCpy9mz{_C5UU$I4h*vZZNPmaxdhZG}^_`BDS@f(QDzW{e1!&*(H>*MvY}n&X}cY^q~%?4UMg*j`BpSJ%q3!ddV<~3 z2qWS|2=Q|w`N#slJiI1lg<1M$As;Nr8<1aj3dt?agl+^I@37`@ssvnGUCL`Y%Y$Kq zaPuVO09=-^^Z5k)rhS@HyX~&3DUTQDeZWYzj#-_96o#KdYhxsQY8v51m9$)60aBrU z1`N?rT{q*zHq?aC9pgFl?bv|I22e+r4<+2@a=@n1j~(bRY}(*-SmB_PX35AnxR#}C zGuce3o?FOR+1O-=r3>j|{7^mA8)9_n>IEW8AYK;8>`Zt%hgR@{aM>P)7rKn`D%JHc zS~aAAtR}4olzsaQ`i&84+XvO5TUE0v)1y>hCbC=M+6sq6r_PKpe~l7A(MV{O%j{)0 z;x^sJYAA;0t$Ez0u!~7coSnw|tdf?MrvzC#ZEw{`iLM=~W?Xl%j4*!hKT2i*?$@T< zPNJ=Y0-f_-?W*cEhF{8zclW3a09-hu1_j-f3(sBlG?UyQ@8@PZ0AjObfv0SHLODyh zi{~^MT@KBZaamv#HBynR8Z!*O($pp&l3ynYZ52`Rqr1WAtv0=Duu-G3Sx^&Lw;k&O zo9E%-m@gGZGZk_)2wVj#n6kkxdFcQ$Xa+9cEry|D+;a_WmjLS3-n^rr{Qq5Y;|BO( zBdd|b?Hdpd5BCiy(Q7W-aU;W4^{F4+Q%fFivJZG90f2J$&ov#XgM~J745+T)8vq6D zK~S``#Ae6Z6ma()8R*p#zK{(}n{H7J6}Ju;v=J(B;0>`k4*Xf(>^fpoqwpil1^Z{O ze|-JNAR+l%9(n)u{qXun#LDMqM$Idr)ly)e?oaXoO=<6b$5K>NJ|o;ohXpF#r{C(E ziuxHM_9r|BOqFk75OAz~iz-@Yac8T{cTsK56K#PX(3t@!Thd93nzzUhJFd!(I+wQJ z%(8TtfL$)4kpO#A3J*m&)pDcR*CR@D8)h(M*8(YcTJ9)wypydlRZ2BB#y44)4$fcz zTx2}w0pYx+78G}vj$7a%yqgziqV2nO6AEy1GLh`J9d6j%`hx4(hJPy$))4Yq7^+eI zUq<#}vjMWCEqReukaU_yvUkg4R}RKfR+U3}*B%9S-Btfu)`!iGYMUacYomp9jQNcw zg0r;3gaS2%4SuKXi~@is3sM{~$nHE`K>VO!6Y z&g`irGlb0I-TDpTU-huioY>6zlcLvAYG{9tLrXnNNf|JtzwZ89eTzdi zmbJW}8u*L#s?*1&JjA)+yCJJa)f!m{E>I&B!RT$6MFs+wJ2hlpA_Y3mY0=Shnq@~G zfU}t*Nc9@-j=AmP4eI>xW}Yic6)nk-2!9i^xUd6Be&r4~rNWq#NyNje^Eb6mzH z;litf^S~qplbO>cozGf5RqO%KeR4TS*Q>&N*a&`ugL1U;wox;cnV2?6phAzum9~R`uvL5E5~~hJ|qk@%q3`Jo_7J0bVhnD%d`Q>LB7LTz*Yh7f{NmiB0Tn)^*}IN zzDo9{dS=1hLY`n(x=a6{I7p?nF*8G%IhmjXp-+OgC9~<(;9TpqE4f zS*n`BrwSGNCOwt62N1V+YZ1k-r|?9bjt(=>MAlZ9C6w|`lewX}*xoq2hrl3RFya8{ z0y7KMDzN-S9{6q_awNr0Yahdzj%6GrNhZ`?P6S3CBdkk1W>3)h(#JfcCyv+(Xon$G zS@%J!7H>^Jn49y7G9#Ps*%3V-l%jzOX3*qT%744aHdakpYz!n6pE)4_8aZzveQ9Z- zdDS_r1l;m}1c>{GWRfb@3>h1#5_6<4lV0ZG?xqREEjIpS-_pQCkf}t6N z#8-o!=+Hf#a);B)46q8%q4cC84)7_cu+>WtnDPjICD&k8)ej^M=g8FHT~7%NcL8_l zp$$i-lZ1I4r6bg$?^wOe^jzoj*MbgUDr#Gom;5`y$vXT%jCWnbNfI#JTHy1sa$f4pfCF}T$hdL zR28(P`+T}=1qfkLuK9!J7ZYjoM*MP!9YiIfZ?ckt84=ffNrGWO z>6kp-WA{D*fZ^6v+PGB}rLuj;Gp}xOZYh_kJeQ%C2VS<%;L^Hq4(to~i{D+a?`ltbnFh$ZrGimPDk>%`1t3J#N(l7HK2hGBz~mm`f-T zT50H&WHojS$VNUoRf70N0ejb;h@%Q5b>t%mwRrUR0EhHOrMhkRn2VQP#DaB(i#P|< zrMfjN7zFJmkqx^2eTlDk9vO)FBX=PEZO!C$q)?&bH8M`)4BLo7lBj1>=;S^g1d4Qy&af&plTL1zp(av0%eIJt z5jv_IV7gfOzbS2Mw1$K1Y8R|`nd}8K;gbT7u0RqDYb)haDJPKT#z;65oBV@fYpGfv zdoYVycx7aN&3FM9h9tRjm<{!*9_d}QoH<5w>dt#1*)q4Y-QK+Z`Q?NB@BYqjUOxOw zui?M<1$^Cq+Q%>75Ik^j+kkym#s>Z=y#4g$ccxSF_OsXD1kMTmTX@Oryyv6OyVTm_ z?n5i-g*_rDDs26F3eDP^ofcX=5S*mXg`zbZ@RUxLZ%KWYW7J&-u}M`#T%Zby-z&R} zko^P>6TS=amX3I1U;`}&}U-E+DleNn4sOCkVvr_|2^Gj}iU)G~8m8X}14qia zlnx{bLg;KW#@z%?9rZ*Z4W$T#2QwxW8e5J{4p~D8LPS2sdeRtqQF|Y3X(S}+qi>fI z_bze1xoo&BO}hG9vH>W8H5TO8D2Z>9k5t{rVVV>bfv`rNIPxHNG-NT7AGu1Md`n)- zXfr5Tv;Ywg$V%#ymEj4geco%@PO4fYc@oh!*C}h*#?5m6_Qi3~vR!wEWw(ix->vfz z3*19vDwF7lpdsQo4*3Z1^+<199d=^pIZkyA`+#nYj_kk>?NJthEqp3 z;0`K$6e-rY1g_AED~ zmpRQiNmUcF*=9ZxyYs=bwcc8Y+o30IgPFO*_yvM3##2z8wamgrW8{3$F(1({!qEa$ zqWog-IK|JOnOcQmAG{?%)mh;PI*<2k{3(kS0bS>b%zOoaI$1#$x)E|{6aH!K#9@}Q znQmzjY>7epLkb;0quAWI!l;#UX*xS(36~E6`bGQ$1lX!%UZE)qjFPz!iU#P0B|>^i zesx{2MKR4(|a( zn1}kmmjAyA?+o-Y@(*wS-iT_?cMUCFvS!0F@l@W+Fx@RucW_e7*`LnxfdXr#IE#Z#U#h#u-~Bi(gaX%nb^foa%zYih#2sn(^Kmm|7)<^a0=B1 ze16#ZgjfjSbLjmR!0#nocV4gu2@(AxoGZFTkMQc5N7k%4n4R71N>x%cJ9T2R>}T#v z-_Xz+JT9+lM0(~?ve&NKgNZ##n9Ki9*PAU%Z(V1C z_xTjtj_$55m#qhIMVBANu>tG^kco*HG7mC36lKeG(U*1Sin=LNA}LZ7C6TlSN-`r3 zkKU`-xAyuL@=)bp;(vfV`R9OPujw09+3a*t$H&woa^2IMqtq@DYHCmI5+kJX9&@yF z0&+vc*rPMU9yeh@q@M)oYto{hHkV^?n?aZu6;{J&|H2u&O;WvlBTFLtC2$Wm%r}NQ zNnvLC1lP<1B%lG`Ip`(K1wTi*dULeF8Q|oV7MhTx1i{qYHrw+GB0yspBXm{<_-_Qa z#M%IowQUtBKjl7Ucb1S>$=*SzJB6U`7ISRYQJMLfg&}H0f&XWC^D)?dt;D5ACeZTr=BhnK56clU&C2sX#SoD_e07L>b1q zJ{kyM3_F)049?>l0-eFe!7GlUhp{r?k9ij~hfGafpN@W!l%(Nw2B-O{;4SAS+~lt$3TB`t{}-f zHN-J3W2)eSHGju`!}lz<-QMGCBM0P^;q}Y#{~o(vy?sHz!_SXLzXV;-Hu9sNzy1U{ z#?R$>*+JwX^{7uH9+HodBe0jxV+u$kUi0#Chq7oom}+;akVw3OU*jL-bmTF$%i<{(gk4=nyGRJONVjRpOOkzkfMX79y5*=f<1bCERJhuGSr>TxR$MW zZYS!@3K=!%f~eQe1bxY>d>`eyNGB*gQXgFINPu1sM=q4_oNlNwCQ%81;`nx!=$*Im zde8v3z6e}{=27KK28sbl;&;>UOyFVLDGJ!04*N3HzZgVMTR%ahtVD@VSFc%{${R5Y za;{YZBkzt#DSSr?oPp)_d}yRAW{S$BP~4hN^5Nkt$R5hD1-D)s)a~51^%An@z?;IH zC?q^%-f~=#7&=JuO`O6FC?s1ehS*?*&fB4{q%L1b=p#l!&lq&)Fr6e>5ZXf4>7d zJ{%5eTBJHJXD?AwoPAsxPiR&mw0rHz)XY!R>0MR}>iS4UtS+%s|T>Bbe3H=q#8k+s@96oup{H{~DbBN#6algk5a zi(ZURivTERI|f$*;36qh4UG5;_y61#jV|Fcy((4!A5yilY0XNKy}01J(3CtLi$K8 zJ(l*cwM{cx8hzRw+aKx!MhLyMb#)#gaD-s|(+6|&7A0_`J--OFQrEB?dr)>*f$_(M zyAXy_j!2s@Hq5&i8CVCVOlRQg#v8}?Xl%8;gUVdRJhf^rafd3PCSF2JHS^}zsWC2&5} zCsR`EJ<^LXZt4#MNo2k$hV>H(jM~V8{U#C?67`3yR!?l9+%n5DbEg|izy^B*Dn-R< z*x;a&g9SUBJ=#KoHD0co|MFjGk(sSGtd%btr|&*_`*C>vS^h0xfv=y!Bts(We}DV% zyZ5(cc4!-P;IqBplrV#q|TH2uwroyWkq}K!Nb0G!U+eJ49!(s zAs$X7UpoOO$l)iDQucf)gdvq?J6>6UFLbc=8k=XbOqbh+L3M2xOA=(KY!+2^+1S=z z6u^9v3w$HGZ6Ip*HaP^(i_@Jg^{eWOcv>7D@0vgRiM}t;qL6OU*4-F$V0=hLV5u+=Y zwSzNN?>He7?vd4DmUaA!u*?V!h~Z4jcQ64Hz&_7lmpU_UN83?O!I}V9W8elMs|HLy zJVuS+6-I_~iP*Y%MzLh|emg@2&>4b~{`9Q9&QSUzuMZ;)5yzo$&fpWC}Ck&L#}O-+~cXdN5w9&edDAN zz`ib$eISPuWP^LqYt2Cfas$=wNeyjUeq^u;D));nM@-$|y)ET?K-tv;4C>gwHl4BT zgp!(iu#pXggmBPm%fKkA-b6^fp2qnb8Rx3Men0ec&`q*!eYv$~IxvHonViH`Ns4nP8zBl|n_B0*N92mmyLR&JIXba)_Pm><#Hpad#F!V-~xAROo) z+g0f_w*9+G^6QtR8vwQ=%yk=7^>FMELp!i08*rXtP?|72AlybC*(0rFbmtV?m<+ZRK5J$sIb=zSXiO zKf28-h`qD3u2N0#*nUdYvhlX8UnZ}-p>lbD&B4aCXX3S8b&icW*7|@n&Xp?cci7nF zO=$RpqhGu#Qw}Tf;*%r{p|-Ue;nL)mB289|*Nr7Y9bQMXB(|^V5!i`THv@nPF_&er z9(6dq#&ZmJK7`h5K~@5SP2tG?t-$(*V!7o5*^n?AX&OV4PQf?EY?l1+F^Bxecy{XC+@JV=62 zOI&zRwNfI7&(7u2y`mzokUf@9o}D_&3(obK+CaU6DKCtNOSiiD>W?&BS*`0uVCx*P zPo@)^_u~s_2?K+?ynR$e0|LJH__b^|$-cI9P542DoR{Td1-+bl8w&UPd3?#r`BVe% zpF30iC?R9h62Ky~>er13$scU|7x3Xm?T-3@o&l(`pIx%iLXZ2Y50`i?EPd`KpiAD3 zwMP}dIwrrMZbHZtF0#y2x~TJ9IBt%|j6iL%i2zKy&aDhBbH&-dGQP`#8w{PoAb-`x zvXQctGJBmjL$Po}zZl-x;Zhx7K318HTquO>D?Fd3TyhCX;ULR8O|O>*X<0;<9TM|s zT1h&cpN-D1ZFL0hhh>+)sEvM>OhZa&Qftppg|vh}y+n1ee7cPikTj7fgWLveFod@I zHic(7wT1MS%`!3GZ}|hx`|S zYh79$OAnoG6yQY*|7`gi!JOT4iIT>}2PX)Eb*0?%r(zk*);fnU0B>D1O5vQDcSkgq z{9`&-4=P_tG@DCH0L^e^j6$yJb$a%Swr92L(Uh)?Gi1RD@wFgx;|JldpNQ>Wy_uop zSC}Y6t^Lcl&qCffefR0xhpHNjK=qXh$w{2rfvbx>2x}TYWdllsk_y}@_IXcaIo)Hh zV(hkc@cpx(GRL5>a|=}y(wgd+9gk;Kc3~tN@`{^yUbDl&2^QgK$4Z{rxp&AtNwT$^ z)?4PMo-(MMH_STr4ol7UOLN8e0t7pdz?+AdY);bQY0Kt=XVmhSxJ&L=bG+QC&Nem@ zq={G1z+_=q5V4`!>}A7!FPkRNlbQrlw1RTkdlXJ*^Gz@V;Jp(X{sy(XBW%vNumUV08 zfLojToMo#c1`B5ZEde+y!kkSTs7{%?6HG&{Ttxp9(jH*|(8rx# zT-jV&PWxHjIp@qhM3+dX2h6L|Nw+&u)>2z62PYkN)0Dmo2K3EGsoOeuy2yJU6HQfdfMy)Fn3GbugSUC*Qj#ASIXJclLfgx z1+QvB4y(60--T!cbNqw>scj7vRueXRDpKolOR97E z=AnJ~5F5?r<(L~7OFq3w_&(KruwiJO(6(o2sZ}%8l}f>Q&rdrenFLoMx{0);G`KTW zwW0NTHZ&MK%eBPb6_`-9`h{vYo)s;w7}JJrA&W5(8dhN(f0a{5FX*gW-1=f8m**H* zOhFoH-3}%0QtJAXGGQJb3e|xu`8`?UQq5k`faWZdeRm0D3wt3z{5X}Q#PC!uS~-=D z+5(za^10UG=u)Psmaes}!?X`xXCAUK7`U#a1c5HwA@ra9V4*_|cSi@Zs}Z!?m$8zR zHG83?T^(G!uJYg?Av$DZSs%e+OhF?`)gG4nf-6Ft6$OOvb3jCt1{`jOXnTA-m}tlB zy+B-K4(7y%wR5parpo#G_Ne-|yndYb^hG#R_Q$??{f445`4#^y|K^|ZTwv1v z*?emsDLHxkC6wn5&~k}Oqbx1=_S&MM(K~RwEuM13n^OKyunU3f$2hn(8JgT{Lxl*$ z_a)Ul^)X zp@Kfo(1KG_s?h~ua%o$&uz7ZuXL%8{G0G>)%5iA{;X{5=HfSuv!Gr^Cbv8p);P$=hgvn9jHPE+@2Z!lkl{2h%fkSBkoFzbR)#0GrjbNm4 zd#D}vjSNd73>POT%2`6usavRR>QvV&^iCZgSKm9YSynX*PuqiGN~^@SE6AHjqOMRw z&sP}CHGMh1Hc`EsZ3n|)!&!qf-KvT#gSN`z#d;(V8{FO;iBYrBN%MT@KehuX*Soqs zS6*kfy&@wzl%y?su0f(8ddsTIK-^WM74yJ;@~q;@tYy(*I~0?#8}?1d!zKdOgyoJA zvDKounkquX=C~CwX86Ov(*VW0c-F>qWyPZ;MT#WNI~~5OsoU0C%7DRTW9CS4>ssz~ z3+r;5hw<3V*jCxBWySYg^$a@dv*P@qDiCFK_@|23%>X&14QKhdCFBxK<>&eske1+q@2t*2UoSD7_MSMtnr-5Cg?pcl0-n!Cs1u3lYcW% zOQ0!ANvcoq`WkhftIwlA7zZjJR4}%5vUWCsk-P%DpKE%u2$k$=n`=6{s`FdlKZ*R} z5!|lTQ@=n0gZhAYM*{6`S&k&TN83I>6s8SI@;eZ3ZjB9#8XayoiFzu99L*=4z@i1} zp-44U9xrTJgL8R?TOkyioOF&dAN3syYPnoYm>0_Jv>`RQZ6e8LAd*q1x662nHQtKf z33}jT&%TH~Haiwc%2TO7|5X&ESn_) zJ(c@WA@!yLlOKYV{vwBldW#r1nT{8b=LC-#Gre@6xe_jH3mgX{smBY@aFZk#>dj}Z z;~{MlgC#q+Gyw!4P)>lePlG#vB5dAO0)wtH zI!l^arjUOX;HS&-z+RIJeZJgrx+m~<#5Ebko8bBJaLlGOyF z^zsQ8?h_y zSW*$^E%k>t0x(@0`x82&_lBzV!*~nP)TOE!MpexT4xM39QP`_TrmBH|nT?*6jvkaN zVGjVgW}$X{vRJGz#p>8slD)E_SQx%#+^w*ept&2%LUkh~!n(_;+Lz+OqMU4_l`+{% z#ilM%6$)+Dte2dF&MWX(Sxo;HHP#NO=;~0g8PGebyU6Oe$`2^|1d19;SOo`fW8EKT z0P$2q@W6?6262O|Tx%WjLjpc`SX|>;1uahM1JUv}kSw?HSw2b$*6{0sOU+(r!rT&? znwh42=+w!_*%ht*IQ_t6;>=P-hrIZcLnnUq`!}nRWrIJD-+se7`5oo^o7d07(@T8u z`YqMyzRi#R^zFy5Uju6P_A&l`{WxzUe*c6e{D*(~(c70+ivO)W^!EGLkL)38)X2ws z{p|E;@ogvK4B?R#B^p!yeWAxl*68V3hC@`^HcKo@c^hQUL?rE@7aDP!`jl&N4C8edO< zj3U!x@L8H|T^)9<#@~lkREB@si=+W2pwU6COKM>})+eWosUvmZ&^g6Cva@s;J@>LD zY#h>yCybmAr*qI32uv$^A?0)L@l5R&|nun(Cz>fALmtqP|@i3?D(1!AEC%SDwT+>hU5hQX~$Q&+ONtLXv zFm?y2tGNa$-UF%mPMbhOO7gw};EEO<8s#6&bXC2feyiJlKwH7O_wAvBQ-c%5#04Gr zCpGdq^oE(mY=kd)-V|JYhRE5-c0Mxi!G-6Cqcf9U%ERIqQ@z=EOqnf^HxF(=P7^wM zwN$kg3=-CIQA^<20&?2~h1+6Br2^;~EQpOk79p`~v3`b(SLMbl<(zK7n?AMq<;d8D zR${=zVUH{ufc#Oinq7WyA*n{&!z+&(>NF8lR82c7A}9 zR|7Ci>%6B`q(3J8)T0>o&LJo__`l?%K3OmU6iIL#)ZPO$mUjMLDlnTb0D&!u*}xr1;EBeb z!^S7crH9+P-k_Jo(R{22RVJDm#@RliI9`E~wOIWi{2tn7r~$`2s%o{Kujv4{0<=fu zSYmS1=@ouvK<6w2<-4UB*HIZ8?9PM!EQL12ymI_i->r*ngAy+(rEJlc_@de$R*^r# zXpIOc(rO>-2&t;g#@0G!;3_ubt#$`_E5C}_bd6WnmKfKr+mSnpBq1cMZlMQ10324443B7ON;8M>Tm^m0Xa5F3$1Ec( zVFpN@HdPFh%(83|>$Z2w?GSF4>VL4~S1Rouo)o1N>PJgK3Du1Hg_@w1G;5pDVxtBs zkcKwpPAY!oS1#6A)TsSfX{p*!TV2v!b5q0Yj>(73YJd66ar*T2rwm+XRPxE&mw~h7 zPozeDvw-&T+aDdx{G-=jKk5`}OkZaEK9APbiFatXPo{ReE3Ek?81*8Pb;4m0s$H?D zt{n4|OuDQcCxA{4LCTvP>qMn{zVQ8>{(#^n;}!vXzqs=5ko{pmM}Y>9G-`5`_Y@4_r1FEE9?>1#5u;bY&tWd`~4_ z=+vnr>X;9_Xm^MZjh-I*#*6M=YDUkF|$*y_=B6E~nIE0To#k ziWoGlWDRd?cC$E`!{K|;agrrS4H$P=lJ;OsO7W;i#i!Hr)OdQ2vjek|nRhrKs)1rA zpv+q5HrA>@n?nP@Pl*y*aN>mE5w#w#N_(}+PqJFM;_kKsYd(t==*oMR15xQP*!?4+ z1%9u9*8_l6qo=!!BY#=zs&n}4T>xW~zoou!XO)Y;!df?Rl+%J%CW)52je)A+C@#f9 z&*LOn*qRQLab>?t;DR=cB)e>TLX-Rf?$Qjk5FcbWY7r-Y_ZHDs%}3<+=~xhAe4JvV z{3c$*P27{ok2Vm-l`Az(S3(6Kdpg$ITs;QX5Dk@r&(z+|Blx&U$GXe2D46Q@yEZvm zm`Wwis$V&r-Ow*1wI)g0Z9XP)F}r(Dn%YAJPNjbA6zLcPGfIkj!I;P*S`UsETD7Hlr#bkmGih|S-#oH1F6VF3SN(wh;V4z5s+ii8K*QUbiIYjOd*@=gfcy=l2(P~sMB(=I^rKE^Z zo~X)id@Q;t*&KzP-RE$QhyMr8w0BSSevp&_cI>e0>(j`mXo7iq>CDap#j^o8xj1)UYDcgP|r3xqR>!_J_HE;DbPIcZVsBVJIm z%VzAs`@N>sak26Zk!IR^qOE#hlhIo>2Tnps}QoO-4%CYI$jxNy`!-moS!6%973_ zmFbgnR-Ugqj0^GrX3=>IhYVz{4Hr10m+9$|+P$4}Mdm1B10+;PLBHJUotfyX_vx&#-z<190kAS8j-$fBUT&91Rs$pxr3 z;E^NKpbB7 zhV&r^0T9TNINwK!6uf9}T5(+1@s$*brXb+Jhcp3VHIsx2kIY02^$mRi`3b9gIomK9 zvtYb=V@T?tp)xPASeDG&5w52OnyGyb-Fa%u&aH0K_fy#l1XnLBtPgGav23b(16BPa z8Z4`7_Ahi9#D3^|M^#OLnBqJ)^awjs(lWb*aM^;|1+oEX);qo`2D`zbq~v4P=BU-B zPEJJEqE6m=0<+gAv+vlgAxoOb_65T~ownNQDdofn;Bk(^v-rKjqnZnCgskxv?>IUwYqZihyv| zEPb}*vcTS`q?1*z3U2PmQ!$Iq@hrEpSG#cem4(>aL1$>x7&Z#HnH3p*-tF`PKc$wv z@>FWO4?@0fss)#ygTW_xd3X4fR4zE7GfPbS>CT}E@pxdIDcvrqQ#`khWTuYxQ(vb7 z8=PIg3N7t_JOcl^nL1{lItsCraxW5k%*a-bJv!$ccb47ZZmqf-Knq)k7+`!CwFbx7 zwmU@}Jb|Cp5d@0Ys9>n&rRgAd(2fFeD(ZXCEx>+RcaTn^l5qj|oK+F77Es}o)FvlV zwF{g(6J7~>ka8O;)zhw2YIRv$QyUFVQkuh!!*4}@;cYA_0CT-L0dM&{l^wD_2v}If zXbgUb0ixUk@8Na_$5Xj(PEi}6 zKC}EA`xEfj5#J@)e~;bdQUA&C<7aO_fBi}L?sIwMYp8d89Nx^P!)&(IUK@H~->M!M zI^>`DRBa!(TdK!Z;dc2E+~*!=_oUic=XBa*Ru76^*uDgt0l#GOn_GjaC>|H+d)pI| zjB{&ogu-QH$@@&Hc-6o9+P1N(*Imc-CveYgE z(v#yNm=l#eY*fSs5r9oQY9L8Lkqti)j*n?BUjwcQ7*igPAkTMdChfRp=KFKhDVt4@ z}g@0K05i?~Rk12wBoJ zHi1kcDZOBJN=Z!YQhj1*C8$b${vz#+LJ zz(sb#b#uD)1?eHY#z7mNPc2%_2NY|zk%iua#b8nlm^SJ3XklkTHfy=AE@3SrWEBTg1^D3M(~R*7s)K^YApFX zSoo;4YQqNf@FoHbR>zkx%og-Y`WG2BS}WWcO*j4E!3j%5fc& zhOO$OMy={(ZBwe2!jx2CMJLo*B=qo%R%ee>E>oB~WdHEjpS=CJknb>F$khBVX2GsCJIiJiE(B`L0#M1U#_ij9~$OmXLPaC?Y5_ctvp5S37A#Qb4 znUSriFA0|B=xSlI2n0sam zRgN8|;0sN_r?JHRQldOzVWm?bGR>`A{Q1wa&lYR+6&>{caA(m3?JAi zLM}}Tb&u~l^ZkxBSiTy7PLa(Fqz|M>_9KKpBx_jRjUF>cx%f8Hz!hXCTy&f z*m=ctt+PY|6!PIIgTOL6TSa{ZOyvpGU6?}1Wy4I24L=?D%Wc@yM!dO23I!FA-ofEUs@)!vk$Vbcb|a4gGZc9oWYCQ>%10 zmAl_f*g?p9CyoY;83OfqI#Z?(B(9Fm>}gL8?gpl$KuOP(3)Du14XCmk03_{D_6})v z;pVFSGx#!k2jKX|bZuR(bHr3(Lc!GfSt?cR#@qeywTBc}EOa|>y5@-14lCdmtFz^Mjdu0kA*z*7-0#t>L9Ycxx{u_H^ojrOvUaUYK zTgXMn^bwWz6$q))lK<|RXwhaBQg0U_jrs6hEbhZLfN{K0Nosh8(UdKs0sj9O2kNiFGhgeM zufGo8H}w4C^-BhB3(lXtejVQaEo-5Dt+cDxe*u~5*Ka@m^S{Ht_Y3q3J_@ftL9gI< z5Jy3;;1@Zt=Ng3Kd*p;Sk%U) zm=F6ceBcaflm5UKB!7ksYI2is3C^LhzCcCV^afIfkLy9VRlIj;arwn=#bxh~=zP}! zs0CZdxKwUR3+Ol0cL?o+$$+d3i-vHv_+9B%TS>BTK5S2}9+i(%b~SqWWrC)-Tw~V9 z*ZhvF3r1;aYSI7K8J3f=X80!^v0t(q{kt}>bkGBlEBhP*rDki`hML3LHtQg(_-3IaE+~thFm2m!78yft_CjilzW~QFc@Q z>2jSZe%pn5(=d6q5Q(mB!wEdTyu;<>Y8xUh7)P&PWA)uXz5Xg(0c|zu?G1(sM~!Zo zIS?M+jnDLDn8C-B3RAcxQnQuUgM8AA$_ATlN*{Z0K;StTi8;GSoXk-*gm8w zq)JwoOBe2hjN{T`Kpzh2f}~=DmJ6gwVoyE?sDKaoYyfcbW;)}vqYEdc?bPuKuOvI2 zocN?hrq?|)nb^0-3_KnY5>?5QAhtK`p%DDSiEl1h`&_aTuC{#bG@-72~}HBOibt+EH$j_8}g(K1|=xGJ=+(8)I~E zxyE8+5ms)`I7(o>1?9b2m{o%-R~C)hbk~z_n3O_|q;l|EAEB2r&O&N=6w< zInz_6SRml~kXEXYVddKm8-8@fxnff8fr)y?tR5_}_>3yL`qsuiucd zmBTIWZK*^p&)Zc^+@^Fdq07L)`^ZL@I#NMo!y@Bt?6koxZN@>WuK$Ej*TtH{2U6d?Kz#h`pay>Ocz5m?$FB?qv zEoymFPt-t)3~e4k{%B15Suw{| zDqK!#LUNqneJVrGx%o_sxhYQShge>-0JhZp0|drSgWN^a3{8+hR}ST#C1Sua`@Wv~ zH5^6Xj3BtF2Nal|(avI@pg=KU&S3kM<{#RK4r*?RqJNvc$V9O{Q_~PrFU0A%u{|AH zl8(a)?P@s$R_9=_TPj^i!PafLvaINUFRsvy;eMbLJZj#jkR8qho5R8&`gXOMh{jby zv%6HxuFrf8{Ui|*hac-$4w&*W?xRJeOH^g?7yIz4kDF%eKua}==5af~a}Rf1+xu9& zB7m+{W9_bEoRg4yg+(}b5oeZ@di!}xdT?98CY((_OnsY!mAJJEkl1Dw4iATn_+~aH zpKEyP18Q@Ju61XC#uo3r5d-5yJUG{|ZPSY@1Ps2pKM zK*22#IW*Lbzar#i2z1#+#Dt&yiflx==1$wMrg~HG!Z&j!s4AM}l zc~eQ?I3&vk)|MBgk(b<+-*EVB?B8dtEs)iogP6owh$A~D4FQ~}vRaKR;3gFg--yF+ zA}ZNen>y|b1@M@yfJJn3nD~&CpIqJ>#(EYMp%=xX6U&z=|s<>P$e$5E>?d#X__vf#_gRkNr-^`@(AQcCYV!4S z*gX;Ka|fkMR#sV9cb7@Qu|TH@UCy5E^t)E}c{9A2cvhMfToE8(!;AP9)|`(?c6vqE z$qvUh`^}xLAfUbmYei2Y*A1PoC#9(j+g4RLDryZxi$OqZb@>dX1EXgFn})-6K~n$T z*+~)u{l39*wmS zmIf_}yZwwe)}X*ikSmIb96cbQY9|>SwY*dm&tefYx_LQH^9Z~MlO@@8bCO9V-ty)+ zuZW&H$(1w5;jI*!n}?~;u{}GPbRzeWf=}TtrC{hA%w*-(IgJmS?u~cI)JVZOS|pO- zaSgW2Lgl{oW-Y)t{b?-K{B+oX0;NpGJ24EDi!u`n=QywxgLO9Gc)A_|%SV;qt6rY+c6G)P=8aZShjhiPGCm_(L(uJZK?GGyOEbo$?6tI zC5m1FB^%3Ab`;pIcT>&Q)+ywnDT-YNlImJC5qO4A-ij(5jfSgjxZ}~tfY zU9)^_D21h}gM)9&_oUb)gg79|+cTo(29>*9)V5A2u#ARG7l@lv=JG6;TfWzI+Nx>7 zlf;W+LF4XnFtGrn1YYpzegtC)u>bn(miz@QEIuf~{k*dq5#R9Htq~>MyStuG9KLFNSI|97PkPHHM4v zhVLi>Pm5e;wP!-vrbZ(I_me8IGd$C@Zh`$+o3!pcpO!N;U)QoZdtE4%m^>X#)6HDj zVT&=YpbF|P)E=M`Jtxg_v&|ILGEiZ;b_Tr~r#-yb&6a1O8U8E*4_74>6DBoFQRQif zNCGqsbd{Y~B}FBpeo91@I&R$7VN-(;`6LP;Vva61xpAl9*|(jvCg?S;O_s6tJ50#> z4Y0bD+#?uonJTJHK`|>lOkWzzbEzzQAlxisrAtfSmp=PzStJ`E_M;+8tt(Zun2*KY z3r5Maf$ni33x!T4x+6ts(XKvl+)8S-WERv@1KawwY3J|5VVc%OSU^}L1O__UIQuGB zW4`zPBH+Nlc%m!+K=!)oPSb2Du1GH=yfCRQ%T(`=AKW-E1u zYsttJQ)MJ)k7dC;E}EVKx*8A)234y=Pu2PJRpWy5kc?_1rfO7gCTi2nL#QC%*QNK z8`rmpY|yLBlfiX1DGWL~?G;cJst5?$V1|pzPaPpSA}G`Yvz9Ut96F93AuoweOXXEy z)?^07c_-tEGR;?hNLhNqQ8squ;m4QYL&gL|8$}>ppj`1aSNyO!i{#VevcaqY&Hma_ zNI>B7#qb}(|8+#7Z{B|L@BIwlf4~Y!7&TZ$nP2Dgw?8<^_tV!OhqphTzWeFxhvD^S zC?MtMzvQSC&r{qa zE7@RIIII}bX3?l~yf2Uz?P=?Dkt!rH$d87~Vk5xn31ZA!f+Ph6e^og#8!e3h*^n*V zdYyr{p3*Svz6a;O1dCZtM4*3B`Mm&dD9LH%XDF$!EGcgxA%K;nV*SYM9VP#jnxca9 zDT0DM+_kW53;Rg}&;dxsXiLJw0!oA3a_V{1tJY*hM-}8@SPx1Z+n}0J(Bc=~WpwQu z^{V6!MurQtG!!)J)%KiVnL^FQ>HrTxUM8eP(yzR&o2YU~Edpm_olPK8MWza3Lh-dQ zn^G2${97~d-Dcc=n8bL00C^>r|`he&G9pr+Ld zx*42!)4NezueQSO$k%M#lEc|ce6ql$ryANidAH^G0>FO)EW4CNMc-e>XmOT_ajZuD z?*-iCB29%&^saNdYqZ#(CXnzovUq=m>ZqJup4_Vn`@s88yNx@>jIsh_jV3ndV8dV4 zjC`OGk~V^Y(0MXIxWuxQvT>US!b&gULQpSG(^{yIetty#7A!uZA(t!!4rA^K+HQSR z*G3|iLqq^cHu%kKHhVx;x{0be8NhQ^$d5guGNlZOun&`40PaVeu1XE2`51Aku!5Fs zXnSIs!|1od^mU}beR|0p0mdlBj7>AgacQ97FI%eFzWoHH0*k2C?pl?VvR-GbiBjuM zDw^t=V&?pNym$rfQ+uFqfg?~YW(bGbz%qhq>GUKdoGW#iWw{u%Q7e~h1@KpiqKu@V zHJrJW#!r3$W{P+7PU(oih1L=&yRj)qr*QuD`OoG|Ni;mulUNJzJ6mr?X@I2zx_J@9WuiR^|Zuf z_F=#~QP=E_roST`bIefYj!br8Xa=h)z-MYDMn+;Ztkn-XqFj?LG)KYkcZM85yDfjO z<8iwWZ`xcz{O*z)O>QVXM-S$Fw3eJp?$~SR&4LXh4Jh*-(r7rt&cgs`o}atxS#7`4KM)ifrSJEUnT6`cjO*1OV|y~DU{L+j|ytlf+OEg8T}`4_oo z*cM){6trDZxoL|%XzFRPJ=E>ZVLTX8_8y3pn87fh@!HWtGc>JX%Zs*qO|=0iB)9AL zDMZCC@%k~&m^6mMEXh>Rsv>d^ZCgrApkAeXR(rT4$aY1M0nm!&jcv9G7C+l!sN0{^ zH6-j$2^yH4Z60WeDfJMY>)OZG$NZUcdF&1C2$Z(0h2zUv12CjPt<5|gE{ebgorWF6 znW6Ufv0PY}F~91dBXV|-(_Ky1Wdpg3GTJKdoPZD}0ZGjmI#Q1tB&?Pq$mKk=PC{mX zsc-j#wbKsj9G7=W9HvB}E!Ad{oF;?RsauJZpLxeMc=e5_LFUgO%khv0PbIUBGh{Fp z_fu#rtxz`wN&0#ZI9JuJx=Y1#g>}M}a@Oi)`#cImHt}$fQX+LqZjc6w4wtq!t0y@` zSVgBv`9kZdT{`Mwn>q;4a|TyZffGra>q|3dRj*g`|N=O95!>qqP9P>mLd35YZjO3op^3zT*2Zfca|9pKGn z!_gnt6YUzN@W2SJV02C(96(*Nrv2~>c)otp(@U6)^@B`9qTG}4deWlA#Yd*LioqQX zWw*qdl)O8xP$v5rsR@#yv9gDjm1m-Gn9r9Pq$;K2uD2%*J;^t8KrlFixg0n8zTnb>#%i^`9ljz2~!KH^DDHMsNKR6k8OA^){*%SjvE&&oDM=gMUm_(Jdl1K%b+&D;t(jzfH8 zQzl3WDEGm73`ME6og`VK7yC)SFVYpcO67;FtZYi}f%e{#vUF?^#BEW}dqSc@?SQ6P z)>*U!*5R;Y8sHHFA07u|$PL(+lCJ?^nU4$=1Ivp|$2xr>mGD$_?2(SrB<>*7{Z0bmM06GfW)fGq< z$YJXCxKTP+8N*lss68?yV7Zpf#$}^cPh%tZblz8qvSX@^72q_$NR=H=g=WbUB#{V3 z3j|haJmBmg+Ktpw=*JC362dGgKT=6gV|VH=@=qTs&M9Rgdh&hG28CL#b4PBr-Mjm7 zm1_rLu(o?edFIUrtnEeH9pJex4+2N$`Jgnl(9)^WB%g=TJTi#`6^gXN8V$I`u1pNh zcC%lSE=;p4M?W6V{*tmTm284Sz6%EBehNMwkTA}P?mZFeQL9xLlrhyV z0n-pG=~R6e#i~^@wW?UoR`t|RNGxn8J{$-LJGkXQEUi0h7_%sQ&XQqyyS=3d zwCbIZtge?MKPwzKKa$jVg~T>^SLr>b#N>?&=%dbM3}XDKb|MT{i$fRaaw7PNxptknm= zxp$FY^a8m`sCZaG$<7AmYDw1PvIv*lK&=pYFNOiIj=IVo!rzIgt& zz%wwS-$Ug>ByrAChO>4fDhr%Q93TPV`tcFuXkxh5)-mJo!O9E{LP7s!G72f5h=t=k#Tw5geI=M3u-hPp{eiz=pwypsPN49Z1^UK$d0yk*9 zjLE=|16G_1@{0Aq0EdOatVE_Q8F*gDyL@#Je^-3ZWeh->?RxK~xN!t0{@AfJ7g`+fIM z06Q&2YU7WBXDp$EB32VX4#Sh$lpJsbq0{(sfXBwny@f+#wB*nS4-gN0(H(cFfS&48 zjnVIiXFz|K&tGsDkKQcW2pZPdF@Sr9iGh?g4LWOo+;E2D5&4jZfbvL%&7AOH4^BLR~VB7X| zQP(8HUZ)0nP1cdn#x?$aCZ#|(&~DatyyGIhUlWy*)a|)IOt)Nt&Q%Z$+tkGIY51NL zo?smVi9@TR#4uI3w0-NR2>QpNah#Z39=8NKlS4u45li{0ZilFfR|7F&mBBFT@T5q0 z2Ir(*p5W_e%(UBdN;la4L>Iq@o*F?^X^3FH`FKNe{;4@sF99lH_e;ukY7l|NRCH3d z4={RE9+N~r)abX7geK5j38W1xBDLPv*07h-fo*v+(Ugr6#@q3Zw*5IQ?im6_RK|FW zHwL0P$_Vv4|6Zkjm38Ev;>K{3NvMSv8_RI4uM#Gofm$xy#c@l~st7&2jB!^d53mYy zfXDD-lU$Ob*Yf?P_y(0Xw!l%#f@lanAgEA^bC^D)Y#L*`U}8D+6F5#&a*N$av2E}j ztirCaM%Y_Q(tM@7%MZZ!`SA6_BaVJ^h;)8-Jo@$PXC~75Y{vM@w|`|j|MRy`0{KWE zzx@#$-;dvZOSHBW-r<$pqd)!Q+lPPtclh&%?D-PPzX& zzYMS6zEcqUgeqdcl>dGw|H&uHJAc%F^N5n6Ys@Ep@-BsejR!#DKEx5A00Neqtzd}P zNZ%|$P+txA3WOaafb}?2HdR2^4fcb{0{XDSN5S)noAwUr1i2j!RIBQZJN5!{lUZAx z{eY>G+Et~&%F<&uvi@Q_ihh-^^Bw}KeYqG+mIfBeE_QDspfKr3hm40haX<&x2%Qcq#dJictxJbomQ8`WF zg;fs@%?7z)*6^hx&S4rD8LF?~pm?2T(af-K$T(i9)n+Z);=xg4FZpjI~ z3rsB*m}^J|YB+V+Q^-Sd^`)+fHkC}TYyw~j}$Z6w;2zeQA`r3 zhK*&0E$5*CcPn_oJ`{+2*0lp9N>=0h)ia7i;~6kMEY1Dat*sW14&j54R4YF_2#`|Y zTm{Ib0Ez<>8Q|3)hdf4~bUeqM3W0{x1;|m`=DHT)$tD_Ok@(`xqCSSpW{{B{>^I2( zGhVgZd$slk_v`E?6Ib+PrTDv!3R5(f$QBowbFLJe-jZ&tdof)`Uj13jyvx}1-X7{u z#`OdzBI}T(0xOZEx-D=hbf=W`byL(qkvJ?s25C+I?V{BD7Q=uYbMP>EKmhcvT2v&= z06Awgnj|7?D_~JsQkJo2_(8083!YV-V^>M9846Q}BvE=%aKzF1S2aSnb)ICUlhx@Y z1(Vq#`W)Ob57Id7!cg35WV4Sq($j#W?cf)yZ*?ocU}y_zwz zgHdV=Z}mD~2{8!8gBvZ5BWs6pluSb|)>;x2J_4%lQabowJN)>t7-CV2sB9H#OxaP@ z`qZCY32&;QYAcuM-lSA9*gq^A1LSB<#hN?s?`~EQxJ;R$==#7cJwE_~a^0TSgAI*7 zLw5e)KCVlb_!`fN00Yo&ux?NY1TFsr;2uV@R(k^^hF!}j`mj-^K0@gopqS&yl4Puu z2I+9!*`ge;jhqX666|v#eKBNBsi1=*m#_W01Yy(bIiyPvWy?3o-@zC9FLR3WgCB(N z;}Q7tNJah-Ob^R&1izyb*VoJtzIN%be}a|dj(Pn+yGZybz)WDZFg!DF+%PP5YOe$V zqp8S}CQJHbRQ{GTTGzIFvRDJFRxxF#?DtC6ABcg6k^8bCAQBp8Kbs!Qq!#H>Y1S355hVFJFeXn%4;fz_JH|LfN3K><|#U1>9T$UZlYqe;5DA*=`Z%A;fxG!AUt3w z!=3V41!hxZ51{pOxA3vmMCZ!=H%@5S94+zhe)Re;+`|-`w@N?iv^Rp9WYsm~j2Se? z5GU5rYJ|)k<#lBusGD^#Vdzt-O?V2a_9gJe$#S(mqV|&G^kB(7z`jO)qUH;J3nGISP)lf}JbELBz*|$|D zYo)>asaJKK8kgdT;a9ap!CjP>GDY+ydD2+{e*%YIeV}7DbWzz!GN+S@GF(7h zoGiu8rjSq+pCcT9BTTfL)K+%_gS4B3D-_;jL&X|E>iQH8S2)>4)#n&|32Vuli7+xP z=T<_y3ZuoVvCKlzN(IvF)2O|To+!gzS&ZX2K^4VQclC#`c0Wu}+5MADtHxl02l6IkVB@k7D@~5e*KtjhEKxlFR~cP zC*iO2Lm$eUfA~Fe`2TwS2|5(`k&FKa##dH-KLR=|yQ(GGEiTo8oj<4@Y4m~!X5|m5 zfcDEvc(GzX8$i`jO1TxRvq=ZE$9pD*~M7oUEF{k`d;Bi z?Geo4QRi{Cu52zhf$k#5dJusm<{8^rCEDrW%Jv!amV^duoU@VxQVza&6Q?7sX=2m5 zA18oKGy3=N_mtO|*c)i2^a`7|IlZC35SzWIz`bok7Nr|E>W51~Z2TxG=ZD|~0BF1_ zprf$l9WZ&>cj-gSiiVYTIQ0cG%|UH#sXlOj1! z@s!;pB}7ORS<$8klRXjz&{1j#aPx$jz8v-*Jn~%AvFSR*85N-9^61M$vnEIIU5=YB@ZfOERcm?!ih=$qbRrUcUCDOwHnF$?YuxupoTnW zi|@6al>Udl0h{r&6R=YMM2*9Qu#{D=W9fmmyw#;}1{rAJ3E!A|3kl|8wtR;_Ij+lIp9nXqNZ`Ox;N*A^7;hZ@gt={;Lt3#kiPHo+$Cz?ZC za}dyBtzEqm2Ci_*KsWPUQIFvqFhKy%%H4fofi3IpnJsxVI;u3ei{q0h7Rukh{Ojj% z{0n0BKRO=$^7TVbzpZWl(d#$iz`cD0lP$pCKI9`me*3*X^7eDa+MkBEZ*)G6*ODJ^ zpQ54u(}0e;GP)~Ud-p`lm25R5$Z!HB1umSOwRpyXhR&@ojz56~wmxjiH62+k5I6FGG*C{qo z?Tr@RYZ{1KlO^nIaTpd@;NDa)(?ZY8JBLzALz83nqM(mEIID%nwz-wtT{5>2flFhF zJ*b-|ubV!)QY<(qGfL{Mf-1H}yez9b-=jm*pq@yHD>DqqM31fZ7MAnD5{+-Xz8)T9=F zmu%a@WKS7$23yAfaKW&`QXDu~7}QABV#e)M4f9OkSOtpqGa#x0!b(=dp#GJ7(vVa; zM81`+Y#5=(3mX}l^Ifl~l;v6?C8$cxhRf6OrR5yYiuT@yvhD2bVh`+`422I5XRE8C zF)h^5W%7T}_rPr)zFX?9>n`sSw_gaL3o|J1D*lO!-s1ESsEpQ=beIR}IyZgtvd&Fo zlP7~7U!GEKUJ^$a$i|5R|77-=J5C|(QVJb`L-5?7sLCL6+^<|I?Al5oui3%IN-=V> zFNqC!2g3;h>w#GA*amNCOXfSBV)1}>i)94`v^{Qi_+ydvg=NW%dB~{`|KEQT{vM8* zfA{QR{mt7){~I$c*Wr|nj?H&A~^o5P_@ zhUA(QkQF1gTfv7(7 z0eOFkZwS9mlgb9!Y(T2zY#3Kqpjk!yP_t83F-yPVkqvM#i$Q*7+>Cg?O<8juP_Llrls3+Wh9FL2J?2I}Mj?6RC= zCNa|cJ9f%h^gXn$skw?t{3uVQl2c9*T&ibo(IPm_XGrYGiJ)9}1v3X|mFD9yM`)7D zEiB)ok;BG%WrBqa^AV&xim5CeBR?a#8P$V(W@BT*tn1KU97poRB%o!GRJ-_iQ78RX zJ5v8oSN3=UMyh1s9$FPBt-LAI@4N(bZVhnSi(7G;LrDw7+(5r=%{TgZu{~dWRowgj!YB^3BdBk1C$2a2XWj533&pL}6@^FAx~pzCd)VWgjkw`* zWsmgQ*&)vjzDV*qYe%#@C|BG8cf`tX=xwDPF`nTaohG!a&ojgN+UOLyrqEfaZ4Ik# zODHa;B(njtvtS-P5N}^8!RJ(sRj79f+=u5x)t1nw?*mT*uBT|cwaByqKz5fMl~qGB zsx!Pc?|O1x5Smwf;1Z*NBPI`6#aLJOz`Nyb2zsvyRF#F)df~WB0k6z5r^J$}!iN%-!c|Ma8NL(Zk6YaS}HTc0F>vJuE5G*T<=5ZR0&&=iD z{T?VZ)8V3@i8b#C2!OW?1{88&@1TGK4P%h;3k>k`rYsRQIJg~%zb)J*51dO-7$dZ& zH94FQ;cB&#y0%9tEDNIqQ~CUI|7%n&x{;dO>SD*r7hW)qF>BITfy#V<&^pXOEWC&B z{^{+<^5dmFWkpJh!)VlmrqHwrw>mtj`%#^#R+iCP(#nghv@}BPAg4oqJ}IdJSf&CRU8^pZRR4t^&E00I zA8eY6IudMikl3dFbMkWPKslp5ZFTbqpjFu)I)co+AnS2qrRgt z@C6xRZ<`?b=S}!3%E6Y9EFa4}q|}P4y+LtxaeqzBhk*c~O0Kd7rfv6WlaU9=}b6_@C)Rhfmw(b~XOv%}>& zQ@eeprtM~rlWfyNib8HG6&T}dLbu;gL>07)G5>})xv{k_)_9lWk!KU$S;l?hWosox zsYF3Z+F=7J?dwupM=++GP-^NggJg>8z}@$^K6ReAeXZBl2w<@Vk1;t7I%Eq$SEsA-bpXY z?Z3-~099OM=uEn9?Jz1n(#9QfTPmo*llYqwW{r=a!U-L;UNFHti2t`NA(l_4T$<>+ z*=+X^2H7S}ho#Czp; zD9AUodN2dHi}d8&+V`AU8@xI_9g@;SMm(Q8mHy4pb~^Gd)1Hhwo#1a)S?ye>im} z#Di$Kv_`H`AYOhcSsNcGS(+Feqne25Q1RAsulgPe!6 z1pE93YogidfiW6 z%w4GfbDNCHbvsbnL^70ixsEs1dDpOI+rmQ(;xek{M2TRfOGOSi$b813eV3`rdu-Zx zL9U~)2_BF(Yk)$@)x;0liU>t$bVCW=LKINyb7nRbTWgkL4OTjPYgrMyQo4E6OP&4@}85KRjO0{7efKLSy0D^W=9lqW^1NB;^H>?SQ* zLh3G=E$~c;j@y$9N2Ln*kS#SbPo)r5s6DD=HlK#(7KgMWuy4$|K~aY|a^8tMa2z$b z-ghcOK=$M)E5}~tpkjp>X$x7YR70YmQ-8>=mz~K@4iX-Kh3*0|Qjj`q$OAxs0szMa z4d8CXPJN^XuFYj(dj{~qEiztFHRR1jOLdiH* z;KpAWh`0V^AR4y;j%uoIn;1jQTUDu!8(zwkRl<`TkUsJk-}@8v@8>Z53wDi7t4%|$ zgx`-|VXOG3|4N0oA4A#OY&brIeU$q;{fxFA4{)`$h@CSmYEd0~7@bB{^<>R|PhmGd z% zbw$LK@5TmlNE>QdMe;V3GC?tKu$LJuRBpYv(_*DbCQ9kFQi81tWvV>#hgOcEWS-Dl zJ0rVfKWL5$?^zpoEL*$ogKhM41)!NNMbIh%%mIb)0?qMpRW(_KXvwMqI<(trPC&9a z7E9I%n4{)2hZ#d-1$G&Fn>?#}kzF`IFk3H6g`3LF3MEVrdy~u<(*2AunjHvX#Bpbk zm-~Afsp-@M=%-~d{B=o1T2VCt4M>&Ly`Q8uGom%BYxSx2A$9kT2GdEBj}QrPk>xZO zr1Tqv77j4hC8Aa4JAf2ek9Aq%A*-zw1W@8ONG<7z+5m!K5n8TQxmwQbFTWp`%8k<~ z+}vq_xwQ_Vd3P$7lpEOZCkk;r&vVA4Q_--Vj=4J8{_@HNgEr`e3f-vVlQxXCyhoT9P5SL&6I4xQJ$-|3}hrG%uk7{U$UzDw5`VxE_PZgx@C~u_@WqCz=hE%W%#7f&Ig`XM!zxA1*)Bln zip}oER;mMd!PqKyMyX-7)GV`3hhjJ&rT9{WLZ#W0-m;K~+jZ41%=xM;2Rou~1te4# zPe{Wmz$|p1F?MElSu8^beFv;n_Sv95R(TPNXG)NKxB=rF8`R8XN&@0+ePM_S5^4n< z2FRUQ1Xf2*MBm5A$WcHEfId_buP67(xDo~~S4$HaK0gSPh1UTtXJG++c~(ip`50iJ zKaMV$(?sJLKJ}})UC`{}xk~-;dsXV&S8t#Gdq2bXA2|NiuVB;o^hy9R%x zb~TP#;lctOadyV&oNkyBYwZ**igZa70Rb@CwMpb7!!&hubNl7GTishz33vgsqRXYO zN~ClX)jCwYIM9?>-3+W=TWUG}56)5NTWFm%H7v6DkfN|uu5Ggb^;EKH0Ld{zI3Xr7 z(~cR2Ja*IEm>@p z6JW9-^X||d$coVQWP+8R+?mk1wXk{#x3dLNXf|2oZN?;b!$CIR0QP3sYN+8(einm(08=m;2^$EKD$Cwx$}2HX-fbrs~ivAC)d>J2AP9 z@x{O@l&yw^$3P-*d$aBkkVM;jYSFr!pKhV7Km=nP$>4X@P!t9CYV z3$2{3k5b$(k-US};r-2cSKSxhWeq$@CL~*KxzxyF0I4xAe&yJ&5Bn5gKeVO#VU2d1 zHLBwkwI@)SRmeEPMnEdm8sa25832YFddg|#{C9-g)~c9NBo3kQdj&I!p_Vk^8je_` zI$Y(bxdHq_5&a}5=Wow}eC4D9l&q&07vP6=h?J!iBWoq?F5HW~gbFgOt-Rr0j(U>3 zRjuRd=&CQ6m`@tBKnJnMnvE3C636urn}EIuTz^)v%#JwuGb+&>WrEUh&4oib;Nyn~2Nj~!Q!f)B~hz?qC zkP4!+E);gHqAxk>iA4j5c3MwS+oKs!^n?G6ZRPL6+gHclZ^GM`R2_T$?0wb!f99us z5?()qht?-%Kk_ta&X&th$-@6f-txW_JE_P@@gL78t!CFa5nYXQ!a7`Tv#`3b2!Qni z$D215s!d96UYgTQF0mZP<&Zp-#%#Ffu||W{@XPJ0ooR?Y+XJvPu$eT1d2K)0~ zk-Hf{XQ?!{+3RP-5j!o|Nej*Imc5h9hRWp_U#b_#3icx%urx|)hrr29tC#Qtck^CY z?tIP+N*{Lyy|;IV)<_clP>~7CBrtBl%(-l!O<}yE76XKg;IRi(2MzKdmUjaYw1y|? zZS@*DB*7$YY7b7GPK?KG;xM_AuK?o*>w(KHprs8IL|X--k$nUq%o5l3=0oBYXkPE7 zOOYq{qb^glF_ZK(J5$>+n!oveT)r&y#Z{V7}lu0}e-3@(tBmILmu& zgl)?ah}TSeR&Jd=EH9vP-d#8sCmlNk$#<`^+UCXf+V-%sJlqPP8d6fS{t8K1qX=L2 z`HHA40fM(UatGYigHDlCp~KIji*}!6@^IblW$Igshzt&KXtu&z>d?j;)Y0os1+p-8 zQp!v2;@3(&s&xW8>5>geM6+4*IaG$sN@ICQ)SWj>*JI(DFXwIp>Tqz9>scLdyu6p% z)Q!DvOjNbv&s$Y+Hh3!g@a(NsjSJ{s_U+_&$O6|t#cRi4YlhJ{H3-NR5CXyB$N>|2 zV8B!%8kGsWCh(o+WqOP3mU%4c03H^n&2$DCm%N{4t zlNh6sjXI#*-715;^~}+Au|3?9d4_IShZ1}Rh(C+8@+cPQ)!P$6-a5!i5Cn(ZvI~4K zx@s)khtOPAwWJZ_kBc(Gg$_OLp8l0`c#CdFsa_tVP-sxgnqwNDOV}2gy{LW>fzlWg z@^K*hBB4AQ+B<5K^y<82uPmi(XiHx_;l0QawiIG_u%q7n3HCFGZ3>3~NdM$WyKy#)@tqW2qEtO&rGz|cw8-Hx4uF(O5LY1s1SmE|Y$zoHvrt>HVPLQV)TVL*qa)3cOwKI?&E-0M zoUToD2`!-dKoo_Z*ue}7?gDEhu2J=;ZJGca!qVJXuA)#^?;hxu?(*hi>DJaWrd>AC zM;*aJzYKGpY0T*L6dq%-fnXIw3&OI^!#;OZ+NmL>EEW*06253jc%Un2;)XjeYj zP^z~H+ZoB_1G@PqDSZ-g)e1?~IoZ+As?e;6!wTAwJpf9Rx{H<8HYkD90`Q!X9CQKL zgLT2@;pcNoxzuJA?&|KU7jCSm#CErix}Vy!vV<;@2EABx#vMhE7SjwJiPXybgf2nx zn|if*+rl{J&bCy?dzkQ-CA#vP|DUvX>zU@d&cyEfS8T->iIExmK0yHgkMY>3!|tl; zI_RlTR~ zI_!0N4u$o*A=Cxr^b(32<1yTAWT}Ek3&ud~8zItCKeR&?ZE+f;tx@VYe{% z>Yaa}e5Kc~m9O+_Q*YR;+MV~5Jh$$E$_AyqvbOFn317O4_OS)hwZH6xf^ilL#85%( zR~2qZ9%6#W;(1CE!VNhL(AamObH3XjE*BqG*^|*Ibqw%cwDw z)`oR6=g~)uD&l$6+Y^nF6f1`E-V!1eHp$krWtgPK+({H+i_wU3^bkXyYc`h{ar;P0 zg}>K_RptAz6itP12c<1yF8;Z(Q>RYtXdu1-1jbMUhTI2$e& z_I0>q%k#U`8bsNyM^Ql6+(o6Ps0)Gyk`?BoEa~X6R)>Y6iipaye2VCMzoMSMha~S^ z7XDzS>>lkzuijB1Ihv5mHXIkLh@rB`&qqLEh3K{CIU0& zri|r~5Ot4>3F7aJ*G&ms)iX$Ig!cAH#RHHY$Q)Skoxy(N{V{5PFA4nYYR@fque=so z=OQ|R@t(fb>DiP0ox!WT#gLku2OSqzA}+?h^D}8Er#YbgDLd zL(**ALN*kROIDYCRCyW-rybBE2zG7r(HTf$wI@oS<^mKxM!W$52?8Y5pjMuavz8DJ z2^Qd+Z69-^&iPqa&8KeTn>eXae>k4q7*B)piRdS|ABcXOs@%*teg-bOK#t_WFdD8{*q0v@`BDe)g!f2tPcoX zP|(#S{6%SAFp92#>#HOzPsHlU^JPJ&lG|*2=jN{Dsa+FpKkY~G8KjJ;lnz93^duOU zyP8UT34UW=m0Mbn)^ODkB|6#}{nMpjfX#3-uR>k)ai z8`Fp*N)*$HH7<;M0P6;)Mkg*7mU9cIP*$wDgL$)|R>Sp0UM-S{A0#MLYF7XA% zmz(~8G@!~VNDz;qLM*7KLUu}yN7Ui%TUmnV+jU0+0*nf!f5pLcO7VQz@6=I?{FNH6 zCX%~%;l4;7G@MKnbBt$Pk44iUds6dwmSV_N>RQ&M-mr)ui2?jmkCP(c6Y{;zu9r+7 z#*$)YW!Ry$0+=Jx|4Fa0_Ybb{$3sS*4ZAFa0FW#kFcesDY;z1G?`5#4BYitRYrg$e z_#gF^JTU_APQ>hQ-adJkoA&X)kqv$JuYToINx6O=!%yD2a|C0`eY6qyILf z7yZgJP^aqw-37XesUVA?2sC9OC`$GMgB`T|#*>|~1TZN-?uuU21KWTf1#oCXnB%d6 zUtjmBh6}6PU$2h>7gVxI%TSd5Gj{gX5w$5$1riYQhyrSc{W$u>c+$t!xJkQL*)BCO!yXBD#) zsH6hl3r7AUb()qe)23EK;6lg$hrQQXIw;>Pb51k=&*DN8{uDTAZng>OfDiiBrZ-KTz4_`0(Qwx7uQ||3F$Hg zI--NAR!6p(VFb+-Wb!6C*wt5Ly(4ct^azG*vZO-6>IbfCkox>GEJdJCNpU>?LuaG8 zp=n!qA=+{yy8(lauCei##J|c;xU2(_V&t=`?x!bskjk9X0qw?n3m*uA7Qj~9yGa11 z*vm@Uz<$JdfrX($yR0jLylHb$8H{x(h=v*BEUywg02xHx&m2Q;DoF@RH$zcntKJLT zc&pXBl%Xt)aA_9|M|82F)4Htu$a4n6fq_lSMW+rAGd_jo9u*9e*Sb2(R3q8}1|hGY z`&&l`i&qfw(tlyvj*Q|Ou9C*WguRB&8k(l0)4iNZcEuT}p>|JlokKp5LIh6Iu5cRh zON7bC^Y~ITC$;t3o42y&(p@$Vh(~TF52ea$myu;&I*z5p0Jk9@U^5;uawkb!Uq+XL z0qiPmW<3kJ67jlb6AQQ*3lnON+BpKjQ6dE@P=XJHYk~hkcgHLlWu|Q) z|K-;@4G!-=Cp6$0GV7A5I)4MSpv0h!@!vlEzYE|0nC2y_fC~9=_dq{MqkjJSZTO3G zOgAk4XK!Cnr{xcnCI5~`-1wXdE}z=#N9i{KF!*6IQ29ktMAe8dFX`X(UGKkr{rYK0 zFAVwR_`vFKyIsdYmim`S!A|DT15SLK&0-$1c0Db$2Otehx->Mk#P6-2PS7#fI;fh> z36!;tpbA^{s*Q%pLpu7U7F-{hTW~HqRdeJ#)zfg(nsjp_nG^ z5yTnVq#-+0NC8?;+i)e71-@n^Z{|Zx6bn4TC3p&s(g)!`DBI3@0zld%@Sa*= zje@*JLj#bpTusSuns;r*AQEA35=rT1y@F!o!seJK!;9ZUf40!xW4F7(Q3k zduqJz)T_w5MdYWfi!~!Pl#PdV9tk>_T^prGDyRX2AsI6m^;&i`LMwsX(G6-DWDyzp z#5GX=rrQ>Eg&^PnIL?Lg5M9XY^x34azaqdw7Gku|+bX93fOrQ0wg9LT0}6tGeWz5+ zhop3?E>F678wcPB3_2i@xpL}!vq~Xq&NhwQcNSPT#66bmI(D`A3g{Co+F8wm0+0Y6 zr}&!qRmz9E z9c)Acy)9Jlbic&1M32IvsPd^8AEgkK$93yY4&hsW#Rm_EuA{0Lg~c*iMfp$OmQcoB z2?ZC4Ea?bV1rqB^7zueqg$9Sb8NQcdzp8Z1l`(do+%pskOD`67%N=8g+opz+_Vqps zcmlJ+QN~5*L?3y;Kn$Liw~5*wo58U ztT=p2rD(2?#z3_|2yI|rV9ZMO9#y{k7PaQz2rZPmWUAwd`L5CjP~)`QEeGOdRA027 zMxiUj0U^qjcCmmiKkyC3qytOSB|}U6u+x_0a0AvX9xhf&>ogrZ9jlRB(CvpTrrf>j zSiwDgc9gtQiIixr>Hz6jTOR^(H@QHv{LsS$Gc|q$o%5#69Efz=sze z^bWpL!rs44OYn}vw{M?P;Kn865{Vuf?BS0;#(?Bk;q9jv$z#3<|6afJj9GY*`n4w4 z0IlQqHc1yR(7fCX@$uM$H@_Yc2*Mo6bVmr?BN9f4y127z146-^QNk6vx?{6|PoNFh z6N!F%geoN{>n4RDHBzyLQonWFAzX0F21zXzG^gwf(7?2DhPs^1E~<)MH55;~*-N1I zrUZYvVmISXE&HsggYA@#-dCuEFHx!EU~Bp^qt(s!Ub67ih3t}Do?@I8** z$X0+vH7@z^bfu81xI^Ir#cBD~ltLe|FwB?v9;had*@Yq;m&rcR+)K29KTTvzmP$_jQoLFkGnOT!sxeYjKP>IHkX-0}JX$KSme9D0y zrE*g2EkOT3S^83^>Z=)(U_DBHO1Z5FAxNpYpM~T$ zXZxUabMV&38f}EMjiGbriG!-#C2U{=Ktkot=JFRRki*<+t&8Z;TG`s6>w74|WqN4_ z-z((_p{#0`A@)i2Z5C#VVyxMrZJQFK2?G9FoeJ9YLaM@iyxBG$u2crJK?OV|Fy)?S zfb0khqT|-Th2?Q+6gtGA5QZcV8ltEOeA@>a-`3b~(kGezOxWj(p(NHf0@KuKJZa=K5yj zK!PJM$zmed>%b4X7`i&FvxO)aLfk4)3v_}z@t3Pv34~c_zPJfzn^M4DHniI>{6x? z7fCY;43Ee$gkqnpRn3^p(MLtEY>WG<0?INg&~e-x!uSlN6`&bQH&wJ&>|5lQmWTCu z?X3!2P^~W|O-oiNt)~${Pxd}~h^VdZ))>gP8gN?8<6lwbdRif#pOO$+Pb9)IPP^TpbXe&@l6YKfZVt8kW*D9G{~7Z zrCZ*kBNf>A1U*k}%Sx3uM;mwDC*uF$E#;deBd+lIsn8r>7f1esx%_A@X^4qBo+TEd zl(~~UBn5C#-WF;rMG(kPSYGF`$K$$4wWDZ&l5>5ukti0eqf&_JkYhI{k0^&E05)TP zLu%wYN?sOcKKfV&+?fO|d?KQis<&U3pkp!;<2MW#(q>$AU@dk1?JS%FN7dGT;RGD+ z>@&(q#k{yiz$~=9C=oqQjHEDrh&KzJQtqK`XWyQ!u!vZj0x?xi?%q#$q&b+Ld|;)Q!+k=n*~S=q7Q`|xI|3yDivP8=`gj+&;hP3KN*w(&7nI4H|x#i z-o~LtG~|QUXHPX#Ho2P&meDSt-egKN;j^yV>5aa$l>Y|VP}bj;KLd?h*JGDooK?W< zh1sX}=t27gU#<~r^HBxm<&80J0`I!G)k_CZL)CO>r0*C*_TE@8>cf^Bv^WpS$m6qP z(;_t(Urs3NGAYn1srHGQZ&jDbf+<9ztT1eqoWgDRYHHl2_h*}FTgbMV8sA3kOqjY{ z(}!kW>?+>0rFH>wvA@*&1C8Y}yPzBou);V-`PN>lV~eY^(==Qo=3MQV!mpc>32F3I zL1!i>DjPa7F11mqC#eO-R3u_xKJfrxN1Qo8W|gD>6h#rja*I4l9l{>voh4}t9LJX% zA7prdvDZXUe}_=%{p~s~9EER_B&0eLuNw0b&s<+#etkH(~%B>W=^K>T>Tat z`8le#;(_spAuAbqD(=-azBBKma_!6nDOcb@?It8}t8w>EP`8Z)jX66DXE^r|8@NcS zVc#LO)HQG}2Eh_M8zqZjIa_y@)73C4poh(1knP{|ttr``BTLs8$}aytW-zFmWlh>aGQZ1grA+Jw+4;c7Y!9`^x z3g67}eGgaTzE54St$vln@oq6$sdK3AQvB^v)!dt<(8b%H5hN8%(V?X@v6(^_ZfH0w ze16_x4TKr@6;5B_#&8H;pUrEQ?Rp)%7Fu8BNhMXo9>?OLw{i?nDTTe*SD>L%$#wPc z=#CVNJV6kc<6hqbh96h;iSl->mi&>&~lJ+b44ML{Z3 zmnJoFQOk>D_03aR)x*x?__lsYyxnRXo*A{|K>H1F=z<#$DqIaq3J@ zW*lUf0a{0XGg@YevtLov9g_Jf3hig7)8c_4ZK$@RwXLJK(fh-oyHUXf5OuaLl>U~j z+yVJ*W9zk*GiM-m6*aMo0Q-cYX*XAAmHeq>Zg)c;+SKY4M(6YE8NTZhM2UE^O|vr3wosmg?j5%Xn!HXJ;TI+4F)N70E8(k>xCO6~h}q9x_1 z{J{*aKBclrT}lTbE)uI&DeRyE1FgqIdZ3)cRhFaV?rD|fO9U&Oku4L7z=zo@mtgUJptQWC z0rJrn^*CVI?*dCrAfzR+DpE&Gmi6Ldo@#&qMw0y|l^)_49PrCQUo)oJFguwhjpDBV zl&h33E7U;+=50q-wHw1b{nwInF#aeDm<+dvWKu6FQ?X-mZ3Y12lmmI?qoo2l5ROP& zvH@ojPQW*#lx4ZfE}!UqS>ZM+fBBc;FE2kLt?nPs@%xJ(7ix%ZRxBvfJZIlh3~lfhJTJ@9@yxt8}k zYz15W3$R?SXQRqf#92cnc#yQ9LsA>CepyD*bS*F*Y>C6QK-Hqx$X_a-<7t0V?sNH& zXPr*8ClCE}xzpC8x?b1IoO0sf0s#p48X|9vyq(n$=1T3lB_?xL+pP{Y4RB3?tV8Aj zwufw9BlI!t&mxv&gkn#R!5N1W5-;$Bn+n2oD!n8!dS~wl~ zPPEw$VEt;;K2lgG7V79}zeG;%h|sYgEp!B8Ijf`-z_V>m1N>{}-zE#0{c?KkbYGxL~(Ptga=G29jfv|-C;D_2Rw!Dq}klQ;D0y%pJK(9cux?ZW5w8H{_mNwMIrc*o+n1vg~lti6R6 z&sBZV^jp#L-G~W0sqI zNahs}{I$YChz(}pz5F^i4;^U1*<7iJ+?3fn?lJXNqK~!Y*$z=Y2%(YwvG0(5X)D zZ3}KDO-9t43T)6EwvW+L-dhQ zQH0XWz*Q)pqyaRw4_EN4Q&RSzTav=raI`pS1m*}eGCE7`u! zcFMo^_=OyY1HF=*#4o7}$Bsc4U(}`0l7$xPwN=)_{fxkCU{7WnUe-utce)Bv1<_8@Db3wK2;Ge?}4;kg#ZC0hWHsB$R}*pe@iv zfbFcpgVIt9!7M}B&8jl8YsvjSD7#v}YpFLF^a65A3ZSeIut5ckUp4w| zgtH|6uWiffpz`NotjTSLbvW=R{Vb7)48o?=DQV4i`jVA33}X@|!roKh6cW^uUDB3# z$Ha|k%9XxUY9fxN<5p0qcEgmWwI%|F*oeF%GY3pkiOZkSKsHG|NhCr`mvFhL1Pl&n zyEX1Bo&-UdIh4TdE8RdoxJo%0gnxj*{z8QxoHJ{BNI_Ae%fWlz;tgIS}Rr%F}`nv=*mE)j5a!3hBc$F6vwk~^+`W)&=Y-AjbS z5|y5|ceN>H92*C`oj07e6zFa$e zfT6rV>!3`cE64o4%XCBnWeY+Lk(+r1CT9-K61fXt_EuZ}uaG1|+k(aTBJU8=MzZ)2 zt%%kNc!!V#KU>F1E<2W%g%^zuQRJz}A+maM@4$GYi6CP%1Lp&n{4cA^5cU(qKqw6b z{7u&L8?juCBQ(TXrU^6 zi;w6k>$0Cc;zG#_Ng2I>%kJ)ivvx?;oj#e(s?sRqJRh9MHr~PJAB-2<2d>m*#n;&EAaJaY{r-a z{QGaer$_8pZ+`5%*WX*W<$p+r{_geb@Bc2m{*&%KgCRK7b!klcgA1!dq$W|xY+{6^yfI**hzH}R!LFre9YDj8d+&` zZgOaur5)VlRC8a)GoEyXzP)?0H;eo~wGcS@U7_FM$TqZ6C^ETh>htDGen2Q>1owgJ zD6wX;I~L??WJB8pK_R#VCAv-~TLgFO>7`3n3C6=wA032mA$U4P9BX#U*emvuH0K{jsg4W<@h9WFP3PMW4tMQpe z^OMxr)~K4KifL`8Kf=R~Lr|~^a%JsNrd#-I-K#=FT65V+UNl8u0(C0l)&WU z*pd3zR+8&RUk;#z&;(~M2-v$)79$Dw!$C(+-aKLNjC-KoD%qaA?3T=Z@nYX+=#s43 zWk6rhgY@|D(FG#prM!llh3lC;c|`6_@pc}op`h1W2%HsN>fx3-d{Xx(l7BAXcPY`R zIz?CHOJHb_q=o|rJHMz8Q85k9(6`#72IUB;y=}T+xg4xq%2Ce~JDj6`Wdwe83X$h6 z!^{C`A+Zk_dPj5;kRDQYf4~JvoBaeFmF1&YW!N2%Jhr)HHT7~*W&ip!Ej@*xk3;7pQ#+a#K7;*b0v}^?Klu_Z;ehzA&1t7&WHzAZ5N8w`Nco zlgJiEyJ_xF4N9>MUAh!;z}f{Z4dOQ7;xr(`$79|Ij5(|7Myj8yMllPDb?kTeQt%t< zh*DT?dhf3*#K7?h*n@1t__(YJl1xXTy0fx!pH+m}{y-*0rYS(c64{h{wj35_)XG)+ zL-cG}*vnmA6o@@i9m@Fvm_V7H7E)AkPcjFIQWJV<2llRKmm9;1kS}BQL>N>BFgp$h z5-yi&^J!rUZt<=SKkL(}FS!H?TdAZZsC^!=u)YKmob|RU^3JP2SsEyA*c3_WDV&ywf!i88U*Y6k=iy@!qd3}{106)rPSX|HFzAI z)&v6$h*qt{5UOdRPK?rlQ@USgm2$Ku8uHYD2UlZ`D%cj%YQP-j9%Vyc!-I`5xcN!M zvTwt9QT{Ch=I-o9R4BQAGhePdG7(n(a|0Pdfb?_P1YoU|ux41|{cWSvbb+a^T2(_y7-%JDsLF@LeCAGNec%=x zbCYBejx1RAA?c72o(M`D=tDX`v|~yc@~jhez&$$E9w7L!)1urp2-M06Eiu;Np`~{Z z2B&FDrFl9x>&qpVdl18wNA#_z+M{J|+J>NS(D5Jl194W8Wner>{DlG)Px#^-Ub9fD zN9K?xtwf0l*@nh8#0W8xK*W}J z<(B6`f9(%`Yqk0GEGwP&rSlBJnxJjnQ;|jW=A>kOw{|~XIo2>?LKP5z?az;2Pi8@% z{qb+ZY1HxA>vw!*9dF{ppGs~2Rl-C<7wAK3CjRv8{nvj!Cq~3nJQZJ-He;tkeb&Kz zW^Ksa_~|L(a4QkXi*yUfBVMcB?!s&R7~zdVx1Wau64NQhig$R?@>q7|?4ky8FK(*jTGC_);s_@Y`68FeZdDEQ35iF@26SpepSwX(;Wocfv0AdE z&KsXrNN*rYN$zyWGiFx>E?BL&XlsNiR&XVQSOP46SdOcIggi1QD+9tZv>ir?MCj7+ z@fRG*0T+<={fNUieYq&N1ol-B}nYhfdf#sl$g{O#LfE-^1#7r#p6n^E~aXCzmLg#2);vd(k1QabLw=$ zwkbGrR6-G8%$HXCK5K33cMDNP>M*yU6!~VP(*W+@v zlX%I2m2A^1V3A%vNasr0RVsFp(#kcAmL**=)}1^f7SKlpz8x$($*rYuCBpy%%++oJ z2nA~ewwz`ma!`GCEbX|e3>^~y_dB>MCqg1gT!Jm?QV^vQJ|g{Q9F=FNqv&pVSENwo zJ%B-F8UbuXqS*!r@2R;3>G8--?fWCvI|30-Y=p$%WSr$`gBK z{~mX#9j7#TU`}xI%Feo8mPAQAzf^>TNwDL@^%JxLPpCjB2Qp(QSdwIlzx?mRpB~}< z^&^!u{^i?m-ah;OlOPfPJ9Ik!IlTVr^8NoN8AN(pkY_{9WE~9k7cValTy&T2LBi#2 z+(#@UruBPTq8?ezYzXq}=vhcYj6w3{9#v4I%q&}z{U8?wPWJHB>=-Dejtz%nuJVjq z?u;;$gl3+_%z4g^RT)?z^TSR?xKIot6%lvh#3y!*S+Pw=%>zL{1N5#%$nAH?W$UyN zYOKP&9HN{N2_M;khg0`*)Fb)Mz?)hw7FPjND;u}~Ia+I(q`ugDsm7Ijh?Joqh z=!C>PsTv0mhpgc-hFb<&#v*Bb%g7Bs0usGuE&4CB>6z2BS4FR(`2z?6=432BL74z? z+AawMJWFnos4#3ZdZ6`kx5$cT;-kw@%bRSfhElmbM(zV%Sk>>yY%cvH*ct2LqT@(C zkUu50**qA-DZLKzk%Bc%Rh;~>e%4?!9~`GjlUj!er`&n%q5mv z@vcG_WDZIxZ?nFn=I>4Y=%Z6O(P06Vo442yksB%g_vU^GbhmOJHw?S5N>AIx94a#w zzm4s|!i4#stb4bJQ3^qc7%(li*-i3CB!b$w-<^z_C2S>3{*t(zRQ8JXN?$92YW;_U zD33hwu$_U>5BV-9Wq(XQjS}t zikuwSE4&K^FP=hUg>90 z9Cle~w~7`6lHF>Me8+hHL~BD*XwcoXe+6=;My>^%hp{nGoFHN=@8l9%7~OHMmnG8C5OZGDz0{wnBW?1~%lf7_9?}UUJKleE~=s*nMeFy9#x4_54N>TuY1q z*rjxl%1brwc^DdN<1U*lg8BG>zP3gAH9~VIZ3F1H7+DLL$gy>@MhCbvbr>NZQ~@dg zPlR+N^2U@@Z3B1RJmAx@Y*+Icus7#Eb2AFHyCoJu(tD6PA1)WC`94ts=)*%h(ajAb zFt9FMT*j#zcM2TLKnPAhAb3g`zZ0w29ZCt3^}sA&@;ID=&1vWfphn7HrTEVr zF69md5Vo|2mLFTuDw!;KDGr+3FapsJJe;eDspY_B$S8W*&#QdHegYzlSd?2UMb(Gk zqUMNHMCq}lEfnuvl}2|EBNW0{)D!@cPe!ukmV70Lr^^Md)p$n(z!H>BCoeXENHvse z5=5-gZk-?@R?bs(vaOOMfbB<3PuRokvIlf%4xb?@11OCUo`yo0UE#ik@cUy!|7UO& z!e(weSa}!lC7OfF7t9#?ZY8CJV6tsAiw({YHlP40eWRw;Edzn2W0`n^y%c1HAvjJ{ zgEH>!u0DgQZ0b1z>iz=bVOWl9uA)p&SxS6Y4*AZqu#GsqqKfDQzJ+MpzQ51&JLau8vXweqgc)jQUi5m;F|r3f!a zEGN=XoedQeted(OmMa;NV1`}^NtXHtZQ|hEc#HgQ6`4avr&CcvOs*X!n#(Q35mTOr zLOTue<;@nuY&$H6RbFkhGDz<6>d;5P9Zr5E7{=OG7$7QK$42Evnb&K_01bn1r)pq# zSTkhF{l2;64R!e|Y;cynO}W#Xr6MKDiJ4?(+T5U;i<@C1Bw9AH06{`dRq?=Widr{o-AU z=C{;CHem*6HhgNi0h)iSFRVMPYH_QW%!CvkZHxty30gD-se5f1dB7#Ftea$h+_;hO zL!S0`(gsx+d3r{0H-NvyeR*i^`t;ci4?<*-Rg&6!g}LPtEpX#l_?89QwqSVg&Zihl zMHRG)62Be^yC5CUjTv&efZVee~MiMW+$~?LfXKx zeOBa6K2K>=egiQh75V2OGJ4B9Z~UCggxHQrppccbW20E z^ChaOwl!h^s6BwhvWpQD;Tnfsk^-k+JjMCww_H z&vJ4kVyQ+%Q%5%gt+j?`^+pKbF&H^Sh%6pz#z0;Aw(}%{+zF}>F~P+F&^aRKI&f~5 zU;`w8}7@IdhODGa0CaN6#Z+9Gwm%nM0%E z9zN1QeKRSHVy(_bNj3Ph6qc*kkOwL97xiZxJtk!1h{MsGyD#>YV^0SX_~ zE_Ey+$w0o@`YuVne72Tn4D5Q8E7dT{dFzjWSb~0FDZqGWmX-+tR2};zA;yqde!HgO0 z7*ez$5VaEFFMo6&e0z|@)jR>9IB1jrdB=F?hn9B^Y>b7^rBIECcIpS9$N?*Yw8_Y_Db z!mxrAlT4k@DaftCkLb1Z!OA$cyL zbu9OAYq=X%Q!wv~t7==Tw$dVTa%1o;Y9P-cJ`jB7UW%5@l1@0D>v`XAXI%y?(=F>FUyk6}QZy%sy8$X*-bb}TFVLL6ZzoiJR z4g|?J1Rj{sM2RPuKD4SxH9N9iDtlmAT7PzKvE4(bbrmcI41|dDLquXTBaR(1eGQCg zB0C}~{gk!}PEWx{$R3K>8~d8vta@~f!MafeWa=Tr?MV0~``u>fGokKJ!_RO{>-D>~ z#M7MRwF47-8rD?vo@3(NW+!E)!7)Y{aL6sFyfecbj_RQ_9NhzjDcZKmDiG`daVA&I zyxv3My%&7Yo()dzDYWu^&{sHG*_d5eVjsa3aLHgDW;@ghVg%hKX%mh2W~OanhwdU| z04|`D7*#=WCmoCr3b!Sk;eUn^gk%hGrFHF6Ss)I%CrB+|MfawHEDk-~28lB&%WI-p z!LcA6NeO7FC`5B5N)3qR07Jlv;2tm90Xb6HGWl=lcCm*Ny$A&Fxf=<=K$zn}c$sLm{rDf2| zyDgaPT;700M%U)d^uQagi%=@xPt2WcgIfjb94J&2&Qns zx$IqUmJCu3oWtRR&>b4!6CFzrA+^2sEn*A-Yr2-rtewaHaQ$``>{ly zsLd>){HyRk>FePNothC}du!qU>udP``wM=cGxd&e#Fykue#wc(r>|dx*Uv8BeEPlM@M5x7L%i0vYKc zWQDTx3b`uo;(os@kQYvA%eE|ygw{Kl@a5LdZkjqTM$w)#i_g``eNttG23y=1+X;H2r}frm*Q1-BGjEZUa#21+JGwDB#MCen?k6c6Qwp-d3ba`ak0_VdWD(?TwD=eB#Y$FY z*v?|~g$|Z0Nv`o^OVugguZT%JvbT^YpSsd%1lSZ!d6czn-Dpj2X$xl0NRF+~)v6Wn z?gEq$a?d(YX`l{3re&AyEGTYU4hvL!YqwDX7zC)9%dE~BX)9|+~(Shsbl2{n&Kx!tzjqinm3X?c&m^G;TS}ysOJ3Ga3-%D(+!Hfp{BmpYjRqk{1zXls4JHIAbeVoff!Y zd2nt(5gw8sg_E)eP#F)&g&??>kGrdqNVY9$%?kDEY1!dHm1^qrMLa)KQ@Cn|4rcJN zZ8uK_usL!1Y6AU^g#&a+YvMnlJ3AAugn1XTS4)Mq!}b)TvOdS%mv(1lP+I6qa!>fi z4027NXi+v{MwC>uZdsV(jd`0|SxR!XL1{G|>XUO0_tGE;gI>~P1C`LSge=KcA$_MUO)6X&DQ{q{uJJipS=C-?Hk)mI{`bA&%m+rXE1;I z1hkV+^f&E0EqeAW)cfV-B+K%scUe?t7DNw}Mp$wQtSI+P-GIq=ott<_0D~7;SsH(r zdUyuJj^K+%6~=I5xxywyTSu3kl@eo;n_#jFv31IkyKK2szb4)QiQPCDLmsV6wLl~Z zZ=J(riBcUYHKp6vS>kxD$W(w0=3O^2!lg?^>?bJ@6psom?m;(oD^wkuzAFSe$IEhe z*agVFDnQ)Kr_sl{m5GPc%r4UjvCHUC4#;%T0eV>u!pPKcRMS*Twkgck;HmN~D<+az z{-R(O2ZBhQzF(|;6_Q?U`jWawJiKirk4kV84%EU)YlaObbl`0h17Z?uC2>T5iPN01 z4})QPXLY&Qmy1^Z#ECTF$haU4K1a-LGQ4a9ysaLO%n;y`clBGR)^`ph$-|L_Wvlh)vW3E6{GEZTFC#1rQpMF>F-+t}-Z?25Ns_mG##~YF23zfZeEA11ddX8=N9hW6aqH4v z(ISNck)$K*n(pNIq8KH4~5=xr`MfZ@8MW?x-8zP{= zkl|if?~+OT+_?mnLH?2@A~1}y*$%$d8c%?Vf`{V0`x4N2&ri@wF*GRdKP)E_)zbmF zaw(7_{qq!LRlbqRY?GaWtX%$x%3Z6*HWurRK+sOde4HGiaopMOMN&5Nq!o!7U`-T> zj~UjDU!8|RCz>%lp<4HyL@NwZ@XkR2J<7on`Sb%5NK~Ej8Dyd4Y-qs)K959mU|7@+ zqhmiZmoLllL9g;jnWpAw=l41@vZUZawOv#wv;OPBTgqEXVk{Exrj^+RJnq$F95XVc z5NVA;cc#)A=Bp5eK&oC3TVZ^(>;3$8<&#(hvT$)2RnB3LC4 z?L`GN!;gNXM_gg^+qVz(fbD!1k~q|H>|c;q4_nHVeSBnSkk2mPzyHS{zrFwe{@?I# zeIfn+pZxL120MHn$=JRffMQt1rxW-RR?=GL9*Lz~M!lSS%m@|jIv4qP$O$PZ%(*BY zot*;+b=DcvuzM!y4LCY0)r2-6wk2(|1s*h3hTpBF-O5%sIwI`BRMhsJ1Bju^nP8NV6w7HAD{LWas^LgGbuYD{0Z&j`^V|Gh|(*WfzF zY8h!^1$tL#K=itFD%pazMaz~Wxl#aEK&ZdbfOKG0T`xBoSv44PC#YGKjf@ve@fSm3 zFOzzFq;0GqlA@sIcZ6#L%0$|%(GG&Y1=E|(@!E?9Wr-^dcOePj`r@HWx5JE9i!3fs z|JF9XvQ}|EBny#s1#w3TxFz`;>yH3?%V9TIIg)9rhvhEstCe4XZSW`*M?z@~_5T}I zG<;4Ho3hkBpUE}5r(5JWY(e6{1v2Y4G6ST~IzWX=Y0)i_kv8FnVQ^OH`<+(be!NN9f2Sf=fgZrjoI>iPtFmuV_h2;3<`004 z+`a*Pb%AMNBw416r;HQ~nUlP&%4MJ^x+oEX;8#_ruml49ALy=FLn!S)*j?wlMz@l^m_d0Z@+u1{yr6QWTsZht$_cfov4%NLQ)Wkn3Lj0=B8ES>Xd50eu|tG+&CGO<`Xu=aVu9z z8!T^_8!jv;k->(!M8MCjx3ST5SIMabH7`L&B{Q|T15k%&Qn__>t)8%Uq48rG1RlOP zyZ2hs(3YDu*;F?Q0$me~Qt||-|8AI)Fd^vpU~4miZW>8m*S3RuZfJMLl7J1D#I_}6 z!_1BP+RFLbio^8^s(GFF0OS(L8#H=T4xQNXk{=8$tiU}zvYNS6bfp_tH_79M?$>#P z0my=mACJU9k=|ShHu1W3m%KPv4S<|569)@*$n5FJ?t#E{tiMM~{KyK1Dys!qBEMVCWN?Uq6{=A{7}l|lU*H{+k#C(jJWXT#`)}WxF~^VI72ZlykvG%H{tcxg zQh(tC0yovi^6=w${aN^T-1+A1w`VlzuQ@pR2Y7${!`qiBas!cJeS}-69iXD7Q8|O| z12zf}CbEDAV;nh=M5UkvaKDHLhU6}^F6+X0O&Fg?W3`DvO?C;q*}D)*S%}soOmE{7 zSalTimX=k0FNjsZqvC2@;R;UB3^MbN#{fLK|b55Gm5DA0tu=15YB@fPz;B}7C*9DtJEeM zF=(D;aSyE*8*(T=E0~1q8M< zh}Es}auS=_?uXgkxS<^|8X~S)KZmkM-AE@Yrk=`5&*&2(jb3-NB4R;lB-e!tH zrTRl&m)77{NTj^q10CmjyVQ&7{aE0WTmXfaTptS^XyqQGi0cc|h_ns)$VYY_Qh+YA z?pmg2*G(m%u19~VhTE5cF90=h9Y(N4(Wd1L=NCm>qT@4#(3bM zuS8Co4QCvqVm2?umWB=~(n@&`)eI(Ds#LiLHw3`GBQ-F-?=sUa;heWY6F%jV8fpWFzmIR8D6T8J+b2 z1B-&yV{keBA){P8Dx;7`M!u@wI%oJB8>i2W6S z78;*__?0i-KC#!I+VB8g7OFGx_Uph6|Nhqx-hN@P2__*MX+!|HsuDn6zW^-ar*9wN z=K+WKQg=Q>)FKU*0kkPjVYVO4;h&wY{ zE>?wRe}krsgzadZ0Xzp9{kub-34k6_5LRV`=!$4D8<%Y3cmSeT6q}atG@{r8B%&O9 z5<}R!AGX<*B(_k`zM1FDmy^T<<`40*VALg7TVbT5F0e3oVK-@MUCz0lVInC%#ARZs zAvR&}thsg;}S zJB@zdYE*~CCbipPYEALX;L1_cJl@iHdvF&Eaw*0MV-x%$wmYY82cAlM_O{ASD&j!3 zCpJp8VovBx%O9j#=;@}4Ndq_B*wQ=w&Dt}aXzv$o{#sE2izFR`*lvRs$xgDSgcD#> z3)_(ewd7_M@o&7#3$Sw5NP&Rd_D*`Kx|M)sZt})CQ-Hn`eYIz6zV|byMg6z}hkhkN zw;xlV!gdBs=qWS}^N+Mur25|xuF#a~i_;yXCV*(4IGv-04(5a7h79oI>~>L~0whF; z?fRuIySs7{bWOhhUyUEGU3^;m!kM}u&AZLe7B)m_(4MxzCnS}SWt7MYIotH~tbtc2 zjq?^)K%CdjP9xx>Bd`{^WM%_l6u5TYd}@Y-ZF0r5CfTc`9Fso+Cgi#r9vlfzgFwJB zlBR09Rc~__@{QNq?V;3kqM}9q)GDqyfqFfPKKT{J$9?wIVBkTmrPY~e@OX! zk+;@duWSLl1WHyYE}+{LO@UE8-|RK(3iS}Sf+D_5V4Fw~F7Ssf<#@S{&{`uTAfn+Q z58TioFOiik_AX6Z?wzuum=GYRms3a;8CY|Awj`esc@92v<2eTA1S4--JY@DJ3OSW` zg;lO$2iyP(`Wb-*;1u)`_71f{GxHgmYtT#f_^K{M+I=LPa)i*SMgL09Ag}_fc9POT zG`q85oQclK^N>@|dP8xIVdG1c0Fm3MJ2c1yo6$ahgM~eP&ylo50GqKuK`zU z*p*?aCT!a}<^&nb!5bK1`N+NiU<7K%cu8(I;5#uBkZ{6kWdUAdf@Tz}eAsR?sMk#f z_n~*&0CgPtEr#0Q09Sb@T}$TM5_{Z=g@nl5k^!{lfy-0`n0s&nt1cys_wz8o->D&0 z1h<`sl9XBS$%?ZbCg!t7k(}G38C^nVhc;L6o`tLfFb{ylF-ZX0+iINmHU*-k?ND%} z53M5~@Q<_nU2nR>`PTi3CgnO%QX6Jha#4J@Lj~ZVMpcj)ZrXpq1OxL%{eo0dm?ac7 zRI6gQUB+Bn==L{;31liW)5Of+21KO&5fzby*;TYoIdTH)R6s$@94SChE-yWr&om_i zioq>BIUo-b&WrpT5%@d$4>P-F$>P4`%NJ6$Tmju0{)~YY769x)rHx? znsUPqmkydMsD=C-gnHVai*$nx(hI z;Ovr^2a<|+(GzY1Y-;=W(iA71D0%)unxPaB4z>W#+pb~gY21|H`jIEU=5MiJ@J;$_XV@sF05Z6`xCN z+}{wsO7Sd>2@tB=eUFe!f#;Xa7cgZbO|?PUwz!@_nI@W3W=UnKV8F9ZMGP(r2jIe? zTvCiGwd+!s08b7y`6>VjP)Q-kT*Vh%-HuitlB#%7J>HZ39P*LPo*xtpz+GN#4~*3l z$pp^df!GFE%3V8#2Xp)GwasDuUWnXdJf_?qpE?}weX0ULW^0nUmH;sUjj$-wcyLjX z3^-f5Ok@jisP>GZWmY72GAtoHrU2B7a!9@N1)gk2vA@==Iw`C#?@8^LqU$x)@)-{SIA>uV25Uki}1t zFc~uQKgq}VyVu`C{0a(KU&w#IlmEW5?PNQ;k6Sy8k2F2FN62F7ag)5NRX-c44H~=i zhG83<<*JS?Ilgz#w>DJp5MOwUt~+##sJp%$gbFZb^#-f#w=^%XmN? zCyY@we{2(AZ`Za~XOfg(Y*oGow@ZC=E1L^`JDYKrEi&F_I8HAq}EzRo6?n#hQE>m3u4!SXLQ(`#Jyw z3P7Gpt34$1oQ%znBs8K60#(j2(JNI|5R_u#%Es3Hl*XG%_c4nd0cKj^!lk-+!voBX zLD{#NtoG4*_`?+~o=nXMJWm3%zcT%xA2A*rDuqzanZ zIvFSkws+H7h-2kRgaTt$=f)OjU#stCCm9iH1C_tl7@*G4o}-jwG4@cgvgZd3zj2mw zl3+lbt3zB>Ex0;&?=x6-lP4MRc+mo4#jWS%v!iDBkam!K= zfI9vW^whi4f~)ZW(m~?N8|`w5Lf0|Zi0+?RDfHJibDK0>w{UA*67)J_Mse6|VIjc; z)(%{QD@j}<5DuK3tgFh)T0BoYxIoHjyvGhJ7}TI_GNztfCGLF7NH)^&n_;j?le$z| zrV+I`A;Ts@ab0pKiRw0`izP-<+7YuFRPw*6;pVNWQMQk9@-a^x@2#2FiFtCgyrDmOe#fq@b)V6G5H*D5IFM&A#I z5aesFs|AFR+=S>2K_TcMYeGjPGAEJChq}Ukot!)Cwcx>lkOoRDVk%>JW?dpvEDC05 z3iL^&49V_3s>~j6sj|Q>fAp>zpjk=9eHr#pU~7y!}C~yDb8LjClMRzy`YY3ATQAdF~xm@At)sXgdtC zW+-R`vrhrf!9LKVM(<7vDHpPs4lAYy27hcsjMnXdn&h_B?I9>>(04fNK^w7SuR^Yt z1VS4JRD|FM~KPf*$Lb?W7r_cKE`CKa>iBz$jt0P zjA|WkV**eW*Sp1NP)`gwH(p&`Vvv+TIf9*!DZm+1WoT8b7!LPwDeAO!N332Z=UNdG z+=qy@taJbrNG{>hlIRGhZ4CG@KD5UI`D=nuaICFbv~bh9sDda0ZOXzmL6zGy=}^qE zXx%P5&cKy~6OvX@u<(WfJWm!1$oEE`iAh&oIgp)8kUdlU}$e7EJt;s1-eIQNYhXo3Le?^Jy7vjK?rlz3W?&f7IC(4pb~L!gHX2etHU_`{;HQ4V~T%L+krk8yJDRt;JW z#`_MU%9WU_Ia`ABD~kIt6wAjvN6&U7;y(buZ9j|RT5ewnb81mF5?PRhhhPki@q^s( zm>)RSLN%i@)Yypk?EXKMp`=|*SAQDHLr@`^A6>G(R7g)c*yr}JLVN-3m_r&1g^X(; z%WZornLAShx;cq{})8;e~#Gs zPLzH9JpAy$h4I%^9ieydJN@@_9rM5aR(C#1Ur68c{@eSnABI0quYaz`p3h(~2q|{u z3@j4On7-`2q(*kG9{b?z^Hc>(X7x~VH2o^%MD&Qihc70q;a&Xsj$Q*d0j`}ccLl;o zvX?wv?vi2~BoKN4DG&lffJkFIa_Jdwp!4dp1QmUC-9|W_OEJA>1LCCwJ*XL{uQhVf zXRokTqp=4O^upc!)~ofCS&%6iTp3$0ZmjkLYnIOD>9HlGV&I4EY`n z$OdhQX|Pa|A|T&>O_kdO1yQ-=k$?tJwB|-~6kxQVu1C{O+~Vl-TUvsI1ZsKaiAf$P z+%{6dzsV}dbr)I*$MYd{9rZfCSW2jN5>G~o9g8`xvrlK=xp zjm1Yg-8Lxi?TWS44gu;cr?{vkm1u#SK2`Lcv+#zYefj|p6?Sb}hN){09bP2~A)|TiH)s_v_)IkTdVmWyrVKzQZG`grm#dKr5 z%ZdP)oy60OC3iL-LSq$BFOo}09;-S~>NOYnRcKI_@|;4%LESBKdnbu3P?Ba1TMG2r zt(_nNQ%et6QO->dpBBRr4vl^wbg}M>x8ko?rUZ8^K`dyO@dTVwL4$RCvD+DQr|Gb! zl)H5z48zeAm>@W9$J zAaUehZ7kS$e_Ir*aEieB=F^cpffqb$P)PHlJw?kHmNm)hcmlEVVaa9Tkbi1dNqS1U zTV*q4p|=jAtMvs+hryY{8T9Se!%-sZY0;ZV)oHU)1#54rNiLAfV@>Sezx5jaYu|uC z{cSLW|K9`+*YDfTf8((lJo*)ta%au8m(W{o`qP(OCt{FmUJWX$z`zZ! z^MlYgvppbnMb@BAAb}4r`M4rbLmz<82TFe?$|@?*6m1fBlAnl?UgS`PzWY|Bl%;Ai z5uev#R*`!PAXMFWK}L?{IvtejIb`j!GjOY4P9wJ|ksEa*x72We-s)=^)EKs;*)Yn-1>MbtFuq17(J*yn zFrUujcey3qPPOW=QuQtxeGTg!!*;Zjr3~ngu|HBCEZ}~#;{a|Wp2q|glC$rVq zgY^T3QWY@Qi)wOOy%S+dmr0&2&k{*Jc&w-lfXdV6<;|i%J7WITB!`v}$$<^JAtwg` zsZHeFxd{Zl`(SjK8K16{0A$ELR818(Av>nv|E|%RmNz>j^Z{LNdYV5>lFQH{q6jvu zgYMCuNTQ7C-2`_XqVzzubqe0ROF|~8k2y?Zs4bUHLb&9&9Ywry=#PNx#l05ZmT~nj z19h^HCD2rdqf0K8%!CFw;0?RH0D>Ek5R``dO19Hd*;tC0t%shRTBYtgS^Tng?s#da z3vkuuI+*$0Avu&y@U>QM-ZyXWpC;1({=f3S@WTU~dH;?Syx;5Z`To@J?Os|Z45*rTXj5&2Y62e(DhSy2?t8dF=oZ!v)?h)|kCLqck&J9# z@+{S~UVPkP=9#9Ae;j`7ek z!KjDSd~_zg89pn)$*BWoo(98)@iIeuLSnL-D5h`Gfw5J-8&+N@@KHliV*h@m##3iQ z8>vz>k+Yx-jAIuG3Y4$B7_{%+?0}$~h~tQ1Bh#|cwNnP@@*ER)E%iw(``N&Me$#of9fF=P-v+0n;K`Cjy zo@&$)^5x84RFI2^wBUmM%?So0h{eWR*SJs*x zA8!|Cl`F^N3cDb>1G4Po}TT;hGk zG}n9e8)T2IA*$$DBw$e?I;`A-;}epd(*mW#CG%1rx`)gX(i|IrRClTdzT5`c5Z=*T zk7|gj%Vs0=(C+3lYO+J&G&q4QjZ+Vo{y+fBsu`*pJpyfLrDM=HaM7WbGD8vycW!rB z`Yl~3C9blrhj}a~R`6ci28^)|QM96i$gAZoNvjZ2h2c;$$CH7#?QH}pj3NR`p*G`8 zAO^#*z)*@@@f=EX;QXXX!MR%?nJT#i_-lN>c|vg$s0WynBn%j6QeX%v?orGnNkVcB zARwfUgt9&1e7o>~n$Dz6C?2M?0MhZNF8mS8P#sw@D=C*O(l6#((fN2c zSwLQ?-~9lZl}s^NQPke(irHv7Pm(vhTV8KPzH+HtA7CveLp*R16g-EXqPB~5z4lk6^T zfQ^7HZ#saIzNZytY2_Z3h_BXKy5W<*rBF(d+|0VETRDAn-8}B{jAPN4^XQU*u%fPXxZ|yZW2)tnc$qY@0PYb9ixuBW z9Xu}00G+1A3-_i)OI_-(JNu=BRBp4ymL3MRoUm_Cxhk!a0XkR$q~`iUFAzfK)ay0+ zF$mo>SDrno@~vHqjy!<^4MNSOFH|LXS9~4ndsS3ErujEcg}^g8D1x|=w}pKGXjIwX zmIufHcX-M`0k=*(MqTM%=pyXq!!jV?knMnxesgKxgCh^8*D65>a{xZp;1ODqpk8D0 zB-;3(l{eY}S6A5yy-Dg*nk3+mqHob04Mp?<%J|-fCX=NZat~8@K;GTFzt~Q;p8CK^ z0Nj~+=vPz@29O`KRpYd1R7#h;9&q|64X-mOWp0c+5FW6Bqb|Hh`m3D|_8V-_6|RR} z?X}xLps-W|;48^JuF%EO$=W-4#!TMg749i1xZeX44#?+OY7itXgw^0LoZMJGL*HLY zz>p;omI4=bMzKkFe`#>bcu65iK!FUsVRwNxpk;(0JK(a1+JIW0UnS}n;UG{z4}gA6 z1)%+9y=Rk>DNS*>#vB$z!FXr@<4ztV8tF_;DzJ%(fZDEUgSt36Q&2yKboEJfIqRom zh+pUgId^mUe1<^Qpu-n8ftJ$h8BdN5K;?{t<0DUylK_H^9RQr=K;5PNek3~)vR3Z8 zlQ#wQWPH)gn><3FP;wHE8Rkm9`@8UzYdp>_ML37#Qz?n##tDS-a?`eg^CBP$fbMTd zdv>@+9I6CsKQ2?9M5s_q6FLUj1u_Qat;3u`Zl;V1Nw|6dChQLfcx1psyLj<5B`*CT zQ#d%{8KyJM0_f7fdL`?U=aa+HrS!L+3Nk^Kj~O0F2X}q{!P`HBx%lDRZz&t_!Q0Q@ zKL7rsx8MBne+lW!=db?c^*3q#B)(g3d7@#y|4DfL!{s^3na2#lgvhWsvpu@Ys<_EA zWZY5Q3Em1;KmwR42e%s9L~(IB3V1ghG6mq0u1yjf9H~%p*M~A~0pjF{juCK&C3 zqTL)tBn4H$B;$(asUj#ksTF6S01}==D|u1@t-^ zqHda|zJ^osBw2570EId!eoG++#U>vJKz4d2TTd3BHS1^=30{BS49E)>Qx!*)#IKQX zzeC@HHr$BQuxW||CNWlngI^fWhQD#p+RPjEk}a56707dvMoR#F?34{Efi!{5gzHp* zpPU>c&TP02rAJ1=OB{o7lKfTf17R*}xi#2#X!mvs#M{m@_z_Cw$qorOJn3(vBdb(X zwqq2=G=GT>W6QTHJS~)s;J({~lEXSpp0q~REh-q~om^NvCc z*ypx~A%JT?*M+nTJ(Fz1tHl98vp zqbdLunREGak-rS>DT|XyHSg`S*At!W8yEroYlX0X^)HUyuiif3Yxv;-zNYW~@a?C8 ztg@fIej7mC2m9<#Ea>*ZjI3%~-sJbsJvJJj5(Tw!NS>cDZ#3}HUSa$4$PTdAg6Rvz>Q?2lQdf2jw=v@7unbb>FST=K$hgeJ zxeq%yzZV6y%<|go5MQ&;ys01b}}piO^aw17^&=M;ngsQlb{k z)3_P3jLwV_;#MQl%SRa@At8Cv;GQ|w4@xfaETV9CD4;vdcK$(?R3)O9XHGyeL?}n zo;B<#-6a)^5MUS1CCLEY?~575Xnr?s^!A)Wj9DLLY=nUrkTVs zxiD4Zr##KZ<(aL4LBx7{#p2HC3jNwc;=S8O)ii~2CO zt&zge^rvppjc&no9uV0N?z_%9K)D8_&yS*z_2Chk^uRAVf~A6OsJb)*?>c3r<){d~ zcdg4SOqN`ivKqS*byAh(X;A@c|AofO>JojqHXy|s(BT?Oqesv`;Ur6lCx9tSs(Ukam_S1#7cEqI;u>EFv_S4gudP*8x6bx*xViLM ziMAC6I8f}OoNS2}t?Th=-^bpXqWC2P;uIcBtTxmE*F-hT6NSlhb0A<;jDME0azHrG zAugGYBb@f9fqb93+H{X7P|8V7-V)p^(6yz5tQ{c1O6V?l~#JzkQ;_yArj=#6GN33k0JKTQuqlO-t2H}CPOlT-pgnY^d6mM zwrA#f_t@Vtdee0M5YA~Zv(auhg{&Tuu3(|S#9V4g027hX7=V4D{iHn1PX`{rQDr{# za5cGG7}XVu==1N1OFGn_Ce=EXR98n4U7~`euPVaAT9&}MtJA5}Jf>iQ?s%)94()L7 zoyPeQ`1Tr@+|hnb*12=*s*p1*aL}}u@?9lhA;8xiZ(d5yvP6t8=FtXm%0UkcLGSYj zg;jnyH$Abb%=Ll|4 z3FJtU!ZDc~$locKWdhuY0bUmUa=fBi#pt9kqFQ1vGGsr;OJ9W^aa+wofK-DZ2W<1w z_Y_hngw927_M!4m4@;skWbsjVlj1lE3sG)^ZKG@vB~U3wc? z7TE+Eibg6t-Au#=H!=-KDlq3)!rP#aPs8LP zWd~YN54I*&IGuS`v{GX~&InXlOAAH5%R1M%Uor}B_wdn)w+ryT6zD6WBc37qwCkxv z(cuF9i%QmHm&lhDv#@}^$+hXALo;wTt3J`L6<%g4%}B4m)dCuOLj2kUsFZXmWDI@Xd1nKB)C;74b?%V7J=pdf*~Q%Z=JK2ib?sG7U+ zpo?dnI;!$1%D3w^8d4{hVv#~KXizyG4r96zO*pNeoUowpbfo7> z!mH&4ljQvD0!Zqcev=wX(HU@19G3S1!0uWyIUxfDZpsa8^3nzZmOFgSB;sqnp1=Cl zS)1>70eX8$wC~en1pfZ(m*G#3o%h4vq@ABg>S3$NbM!^vi9}HTMPX=7sVBzyhLHn1 zGGx?-F{WVCcz$0k=po^CVc#Z_fb$_3Os_}E|6PV5Chz2T^6lmRfDCY5VaoT@HJpkjUC8Ggc%d!&;$Jr}b0+a3>NF|9zfi1bq>T3yLQK6i< zjL*q;=qP(I*YDU3Nf3TuzpwuFSRE!vbA)zj?~f}c`B^z0*uNH3%(Y}(mF#bqs5LLO zmpX~<&zaRUs^N@v+3S56f#;z9&Rn2{Af?slEqPm*ry#cgR6u46U}HPlaCT5>%S*pi z)ggS}gI6}gQb00r4&65x4)>$W<0h276xzdIA20QO#Zh6c8Z_3_mS$gC;7rVz( zBo$%D(TN}*K*v7vgE&Hw0I~|G!qgb5HujY)`P?}izO!WCNIh|CvN?#Px?3b8c5l9y z*SB(g3;3H-*lq^@4OH!+3YEw;eS-`4DR;B%81=e{^j!XZst*s9j_(8bW&9lPhp2_* zD0|`$-z!Tj)n&(_1vfQ(!0hm7^xaNPKTHOvv1aQ6J)3+eX|cKqkZvzI1YC2dUDv{h zfivRY(QxaU=%I zyDMAwtDDh`P{0PqhP8{~BXaG0rh-~$tNnp= zGH~v6h}Dd{MM1PZsSGD+h2g6tgof6znD;hF?O*{kO`)<@>b+DUIeFVdUcYx8_|EKS zNbxU0v9>h-b_>~LA^(9}8ydRif^{Lkd2ttA41S#6b%Ts!^5_glZgmjSrryb*K<@Du zdBkKAfrflhgkn5`Bj~st(PFlvDD9f=?ZpAv6V|Q!NQY#``8np zcU56DYT*KI+(AzPk;F-SlIuN>6Veh5i#OU|y0mkW&*g+F1o3syR+@$*gF{?e04pxY ztMWO#4P^z(K0J1tudWNK<_d2l=N>O=I+a|rJM+47duxjhT8&nH!gQo9P0a0Eko#Pubt z5B2~`4FPMUSP$fs4u&;;)vX|u2g1T`d>|>w8clf@L#K|9hDQD^rQ$;fHAlz@^FZt3 z0-WffIbJ#qtGkmyW4fw^qMg)1iboE=(6hF8EWx0W|9EV}t^Xl>|G(;i;S0VAC$#-< zT(LH1D}VS-w(_w&^6rC;-(axuqv93w1xrs~v1pPD=GiANA5Mw|+P9Xp?}UIp(O?3q zigL`)!KRkaMmuDwc&74{J3rBRmxz?t+cv4C#xb4Mc7kzp8Zd>X<6*5~9jbpX+t<)} zs=9$vYPrU4i(6`=-Zo>X>KJhE0M5xZuQrwH@6D6~;m2OuDs`-RkYj8im1czyV5!0e zy)$E&E?cQUw*$BDbh{NjU}h7kBeP6RXM?=W=h`&UopI6cI}igC1o*&I<}c_Ww}$q{ zvQafx(yk3$zA&ziJ&cIacBr$z zy}6P)V`0DWqb=-%O%wKmDm`slWfChmZK{K*_5E-^yU|RO&b9M#hhU`7619*rSDAeo zP=>q}A<5`>6u1ZZVafHm1L4QA3eZVN5K=ex^Px;y;J1Cz_g?3>I$2@rAhA*v!+QvT z9x217e`o?ut^$0IkT?AZqeJE7W{N77pCrmHuFt1pZ%@|b_w5b~6f!ICxS#R|e5cFL zUH6lG2>UaG7epU5-o|?hA9$AEpfM`(r*@|5E!2`uwuiN1n^mXUK_VCoaJbUc0awCx zaC@AxSIZoFFg06uk188!m;vBawa=DM0eL*I1GsS+df>kj0so_=PBpSLY@#|b+VNax z5vO<|YybfoeEc4R#bYy7=H7D1<=2a zKQXWa@F_PWxcPV9Ly+b(a6#%NS*D#IuqV)m0!=?k2_Gd0+oDLd%8A%FMm6?@Os9r% zN!ft|+-CLsn>a)yPoEzr#3MsA&y6~vB6oFsNho#LX^~#??%jV(E~;7(Y>V##b!5^E z{NKXH#Js66Fo8!E%Ifpbtb!FrydH4DS#CaqKtL0}+fIhb)d=eInHf+Wx=a=1C0?Mv zdHixfj}CrYB{^#QAh7=uE{T&Dc_VV$TAu+N&kSx29N(7mDhx+3Z$vAi4v~*U_J4E% zq^PXuXi#?X<;4H*B_xRR)v0!v+IKndXPk4i&NS4o@+ zbsPfqD>GxzKHp3ilx$d)SnQ$D-iv4GZ6+>>q76sJ?IgP?N&R-njpje|P%)}}7#x`; z`73(sKKs}foh!(Ve@W?ZGz=H(Sim}{1f_ItvsIr6-$?Y+anmLQpH~Imj5@KNJ z5vwwhbzI;pzC% z;yn)%#*4(ALVZWAeIZ-Oh+W*E{824ea7){{)KPU?^qaQ9Ex(Z8wCzMX4yrJ;0-yk* zXAkk-?le~ITkpd300h|)M05auw5+BCTE54OGy-^)W2c;BFQmWESgFO?+WKr@1t)Vj z4A%kZptR3P|KKha6(r@QMrW~jZvl|-o(JA?cWT7l#&W?82+Kb?T$t93KGSk3@SN53Ev$6Y}3q%%Ksex>VwGt zXBoih+4rA+_tE!1zJDF)iSx<(C-0v_0r->R!&!zV0;EO!)7w`_4&ajW&*(FJjXuM# z=$G?(u!A2$6)4S;AGn<$bbv0*WcM*NCce23f#!h=fJYK+A_e;83dM^BUghJ-hxMXB z$rdd+#(lXrWQTTY=TqH&Nb05Pua!~#UfyfCQO zIx#T+efG z;8T6-W+_ji*RBMh!HJndpb>!r*0a7M+Z?g!4rB&Yn5j54f;7*!1(R4;9P(b*+4de9 z@)FCepP_{8khD^dux;6q_NxZR%t$c_ zKLWYz+?mwo(q=N?doL~p0-aJRSE^(dK5Cbbh6(-NVrd|l`oyn zI$8`#?A2o5j*jWZE1Xj`7MXc!Nl|A7OT1E5t(KpPIwvF^f#vSUI*8C2pt@9{e%pU3|y38DQV)&6Hue=7=9A)A3zF5 zwg*rw$#z*t!4OdjgbHO6wsZ~GbTB=Dh6T>GoH4&}6d!Qti>GHOLDht8^- zQIB%7CcJ%JeEU;Lnf~;5`O(iMsrp&?_D65Oc>7&`iT4hoCxjx*_H*-OFIlo|{Goyh-e&TJw}p&HjTko%kH4?|hLhL(Z@Bcx(o z?ofWM6x^>i7g?b=R4QhJ@m`M=ewi|qjqT1=rIOoW+9Nz@@?&TsY!x*LTmwzvl6tgk zRj8<^yoHzH)WU$23-OQWBu|^%^Y*l6>(+f=y3kJs?Pw4IAeAHwTRzya=Ao2u_mN7< z*T-@3Oa@1@d`>_huzd5PqJ0_IPJM?jv)j)$(2Q#`MYDg^+CP3$&kBz=qCgORG| zsFJ(h<-jt`F&M@MuDgP{E^0o>ELMzUI#9gnvb-hSlcn4(tMg56Fre^6W|-j6Cq<2m zD082hTI3eAu~S-!llx(20QoCsLv@V_n`B5e=O>cfaK(;;+EUxe9k?!&Wg;16SnX3p zPkojYs8SKol?|AMvfsmNP(vS^{frM*nDQ4;QWn}GLzI9Wi}g7emVd4z>SM94D9 zrTb`Wvp18Z_(hKqdWZFCNmV<@i^_wH&G;*6jW1MWl4G=T46V~2S~Y!qt?~IEeoXR1 znA)O1^DYPyXcQCdHw7kn_u2}bb zLO)A#6BVehpf^v*h`azwO)#qgih#LG5At$zmYlpQVp;o%`5ZdQ4q(2v zDC{KHK%A2Z-(F9WjYooh0W)#}M?_D7dokXp{PJ7-q{1S^L1ja*c&|;nZMN1@?#F2H z#)P0n+7BFzOBhTcLy<{~c3+y1) z6RH6XH_rJad9C)0)7Vrol!Fy1cE$tmCgt%eFSIBe&qVC9jI!_rgoA^R#o>WPGr z-7CgYwMMN|(qTwtJC8)^wN+(h@LvW7^7>FT+-8Vm$W39Vb$ignQ5l!81Co@bF5Ib>`owufpT8rxdn+)Yi1OoL4StiwCf-IMEq~ha$(b)c9 z^!R(>zds_n+7X{&oc~Uv8E+$Vd zkbzI^jC9)y0@qxCGeZgnFxZwxAkVolkwZl^YCf?BpTf>fXb2^h+m<2|*tXd&K~QqX z^N%Dre^gA6%!LnwrRzYu8M1MbACNrH`uGz}aw;Hq9V#<*Ckcv+RW+^Bf8F7@-Q)+F@KQw;OgSWuq&cPq)Dwk_1t&)@^~KFz>0P^vx4NGDS^RlpJeP7gUe7dj_9blz(h^ zG+x<3s@n&o^_o$EEmAU92d!4!=MQkoO!G~1qbOSKr}v@iv(#xbjm z!pt&1(u|c_SG9#L>C-jkBTM2rLfT0}GOJF@`;$!Pfal~x z*;#?@!NJjvk?4)kxRP#%q#vN#(YlFf=z?w4^ao8goqAqa&m$A29!7G8S?wn6#}VGz z^#F&tI2Tf@ZE48Qk=LvG9N09vLu=)G@?ZGg_fBlte|!7UfAlr{zkLI{7TI+VMYD%`|mJdlP_;S zFTVY6;q5n)q=mL-*0L*O*Dxjkxr=w+ z{bX#>q(nm}6i5(K!>ZhwF7zb*tTlCIKs%ci>GPl=q6kpO@MijhSV2EQ;K;+gY?pG5>7Q zjM+L`zoz*Rx0anc^-QyJTxR7u?a=-JpTfE-Tc;_|D>1aeosFOc0x>o+GA9WJH`&2a zDNC3KTj!Fh72VE?>Rqyk7IGlmeuotUT%;)LO!e{`>5o?Ax=7;s^dYW-Rg{_8<5mYIuo>Kz$zlA zmV%r>@kTAL@?oi6{f$y}_c2g}0s&}I9;p>+_a+8QEHGC(yi#DWUeT1{uA{sI#|0zH zo|s=m9&+_=BedM(;g4|xkWg;18z48s75PpKH%Yh-?};|sH;yy&o0WnTtvYIw7A83k zG%Nl6!-q=J5deIXduTzH#z1-)Jzx)7PO37yDzbwd>fhb5GXZk0@VaP+ zJHRrEyPIdCZ57^1d{Z9mbltdX65_KROv0ukR~TXCNid9}ue~XS8!2nl5&m-H6H#75 zPZ{ip7Ncbsv(|R4$#_-@xRxCx17hu`LvNs(aL9+1S#SP|Y0Pj~nPD~q9Jw>0ODTB| zscT4<9oTxPa+-c;Ho>agy%Jf96FAD;o5Z}Nvj9IVlhb{XQ5;e>09iK)asY}}l}(Zi z;F38X=-wm(pLKyK*!7{q_2~g)ynxeU2l?kdfB!vLFrUAFMa|4VYqWe#0PDvRyFUs4 zT|W8yx8DZB7$kI0Mg`yTcC0t@Je#i=gI4$0L(Z!Yi7gjO0ji!htJo**ny8+x)NXmS z!`|tX(<6O%NS8cXjK*#Mcqoi1726s?=|j->@E;`uwtaC!zfJBmDhqCy1+nD~CWEzw zSM-I}R$}#5qJEIjY;iwt-jwxJH83pgbu2mgc>*W5Qm%` z`&kGA*4~KZ`6{`geUcZI3{#Cnf>rxIv=xhF)h&@L1j~SI(FSh~_tTuSbV|+ga_R>>6zfblaDp?n#F%__XYmHqd2Ho*XFvH79w1xRtw_ z?~u`^qS&|`9^q7JiqWy(wI zvZ&a77^h3;ZIcQqsO)*ka(PKQup!Dm4(3pY)o3hGdph_i2hX|esG_9QU&BEb5>(~k zLsx7bfXRh^c<-QGNHbE3dl{*!ct<0kVqyVn<(x$*)*#Gd>wn|6A>VF{9E#qHtj?XB zVqH>){lQHG<6wnp3(A)i&uw&t=oU!u!+%Wb$LC(4fOtSf^l<20ZXwlv=B$w>fr`q# zN>`gJh|WOtB${|gK+=XK#I`NX=pB};l5&@>ox+7#!ljkZ@B>?oAyixjxnUKYl9skf z|F+p`NfKy-B2^l-N2PY)3$5G7)_Fed}h8 z%o8&BHK6n(nj=@m+YhAu$h~OIh-z2VL*;D~Wy?}56mZl2#ZEfOQW2I%&uE~G$1MmB zT%p@0&uM^lx@6(dc8xxGid)?v3+%}yLffPTXS9+^u~U2=JvsDTUxhyqC90m2q%g88+zs&it*p?;qd(<=daV|LpA-;oC3XK7ap7e)g01Pr~~j zKg@9q{QJ+6&k$d7nkfAn&VCo(t()=pZ@&)k{l12>&CTRJtohw$ZPI7U`|K&%DW$_q zqEx#SvTfTpz{Nck4_RLMdTxu3a#xoQYY$W+Myc>Vg4@d>M@sDhOmDp4c(KEXL^>)u)UTE&0fR z#kaOLl8{?`LjAl7O`^{zERrN&nvqS|Z-KW}4FF64AFB9BmagPSJrl%f21nJ&K2Vl+ zjPIcRh2*xF@;kxrZOJs?+6oPML+lYqnnVhi4zrdPg3OopL{UB*#EWsseYv(iK)+Tu zLs>Ri93So~R8h0ff<48WBMN9iMpkHzM*l7eBgAL+V|`@5y=uu1z^$}>phmh%vCcdR zhng8Y93C)5g`VoVD~N}EpsL1B=YZQ*Cyz(Non77*;k z)al7pe}yh>J39aEs++hS2Kt=J0+O_?<_xN%#PkJCzWlx=;SGR-=My#2!;R<&`%9?o z)z+_4gckKKZ(4Ecv_Tmlq;_%jRagy;^DrL$E6JNKaAWpy(%_UC1@(l1tfsLZ=YxI; zrnFCcYTV_f^iW5-*g&+^T_UTk1a@FsiPgmvXWWLB@IFU(9Vj{ zcjRrWCZm1^7-miIEp!%%uUV1Kx_GPF*#ch!o%M9UY@soC(oGplsCd=Aw`SUz(rl@F zjKMXgOJ$tUa1__hT18;}D|LB>6)qK0f=i-;X$Vm56V01G-XL?*YO5GcDElUibfU%I zSks$Oj;ww81NraFLHg$XWA<-sECXGVw|_oykfG2t7W?M7NU0PzbX+RSLm;rZCW#K# zX=%gl#0*|2uBej8u+f#$7jjmuTZ48;`Qs}C!ZVcl=K*g?JPc9}+Oa~UPaU#{TBhnD z~oYdLX?JB<05g2=vBMiU@hAie6?*@)7MXrdhCW8^z+Gw>8aXqNW@%1TDuKlw~Zu7UQ^4R_4F;Gg=1XrR%!z1+MhfbTHHldi!sYiVW+kRFur`XP>nXC9gmV5TG-ZH z?aI*6w1k18_BH`A$dgmy1o|lEeggBFcr^o4sBGtlWsA3a6NeF`W;;!?7VMj%(#F@# z0z1~?9inC6o}dOIg}I}M&LwsjDlAjB|JBD5Jmw5}^0H#aInJ`c7&JkmmcK)hcCcC` zohuNxjk#8*2U>A<+^ga@%~jOGaztMaP?3_Cz6P>^)0)uUKvm{o9P%rJ36*SzlU=z*UC~Xi54R-!C)YIfs-cOw8TJG$bT$*`p4qIs;u_T)SMxQ^AW*h#! zUcEQ6Nxejf>w3Z;#|3^=>@r66qZ{~UF}ad#;gy!Eh!t{E?vmNsPYw;yKBlKfg;!K%xj72vcNJA!Zkl8@-uYFE;|9Won!KFwA5$yE6{t0A*{ zftG6Jnr$&GXQ{%akd5EQByeD>)4)wx;k2?Dw`Z8TY~-UMC}7Z%{aIAOWMi8{yZ$R$ z8V4_@LGg~hTU#>$!q3@=L<$NNdng3FJ(1$#aBQR*)+2aIaRWv%jCmeoSGf=f#tqgh zF!_+fheeSK2CC?_+#=&dL3*@gA zVVfO`+;l}gMeq$SK6TmMrfN9rGWj|@wk0O++A!jFdS#cAPSTN=;27v1+$B-QnTnBR>9xB zM*Vt?+9}^UOYkI*t4(OV10%YpiQ4GiCiEWbk_k#_V(ItjAQ)2g{?IHG}cblbJng~fEfUR8BMu4}tT1t?T^ z&6702libE07-y-Y`o8#ulH1z)57|vxlD_K(m%&-X{wssaRojcm&MXO#ViXt*_#&l9 zp)|09yf&6B7H&c9g=Y{0Q8g2KkjGZrqvYsA$w7k{`7h~yG*ZBq13_bf{Xk~a z!tEU%;?PKkK4*@-fL6(8xVmQQc(sNc^o#JIY@3e)e80w8U=eWA;;+6R{?dS)U%Y?y z_Qkhf{ONDse}o_0aD{oP#ph)iU^1)x{j%13nFS5H{Ia5c*IoBkU(t z`G(Io+C}EQ*6rvGNR3Exss#KJ=%xuT6pkDwHC<7u#jf12NsQjGvsKI z9i7dLOj*%yI2=O8tS z4r|?i1-E6oqC=qwF3sI72U)Q?4`82mBOIeXqb=TboMw!*?KtXiz5vVUkP(R`u?!7> zqbr!|NR@NjVRLQ8In^pP_f$YBP?Y0B6w-tjHZJm`)=kJrkyC01t<*2 zDMK-YW1J~XlT$OMa36{+5N6m7xJ?Y`9l%E3G(iTnSPWD95lO>CJt`^9rWav)+QAS@ z^?6;xZIgY}QVqFn<1-w_uJFP=VFuLT)$Lb?TFs>w%8dCV$^*8C>P+mB7~&)-@?+Zh z;p`Y7Lk|zR04S-u!^sU!uQ`Y;M9wR^Ks{F#zFO7p+;O8dF{)@g$W^yrcbB@0?sWIe zxa^`g$L=wtHQTAQ!!7%~&JK!{|s|BYe!{9IE^99L$2P^QAy69@vf0v)l#cjBGtaLBfoXJ!t88N;ASh) z8k(B~D2(n8gRl+L5*5V&v&$lO7Q(O_!qAvi=pWh$P{mlnFy$iyM>Y_=2>Er5yLPr# z>V%gaQy8(;vmPlIjmXieugKz%TKsZR8`Stf`EQS+*9WXzGysNz9##(M6o5Qii=xEv z)BSoNPdX|v6XF#VNpHq^N$WAkloGG<994DRKHAu8Ri{gp63M49Ow*RCJE%b!c6IJS zL{kn|!H^TpX*wqvgoFTCKl&XAch(L&)k$PBR_cqZCN23TV{GuDL93dmy%}Fa4vKF- zd;3&D44=Gz_NTwi^ow6JllcAHuMe*kKfyC!zkhN(<0t3i{5t@Y_)*AT)PMc$@n4p0ppL=g5_K6SOS_hNj1r2%uHQZvmoIKfbkRX;Y%lB|f zFsT5hyeN=n`_@&=Q-<>J?1EPQ*zHogS|$JqkJn;>?-znyesDthv$;~ofcYZRfeFco zj}3ZNwdS|>KxFn7?E8}>^KuZ-FtEr5?ZJUROVXC8y=d%KP@RByDGDHo%c^4K6@$cX zN$}cbl%qQ^|5xgzON~2kxQMuF&U2qPZS8o6a)O?iwdd!!LkDu%3E$N|`w96BL$kw@ zrOnU-1ERpGeIesk@hE_k&P*<$pNs`?=lfJ~*LIb!HJStVAbQ>-mm{d_;c53QVEhP| z`J`^$X9U_Aagi?)2w&}yS#9?$6v$~-I)zTA3vLYR-dHo88%7Cr;MJ-KT%=g%AQ=Tl z>^8;%%XSHm%1$J{Zd9;T@nuT2LsYWgSB%dU0g?5T$;9b_h=H@;>dr8aQ{~!^<4F?2 z;1A2u@#%ppM(ZeEkC_a_RBh4pQ1^Bx>At!`m5p$`Ve}N1f7~j!|O==@-BOd4qR4!X1h`CbgDT%&s^KX1}b}J~81yodi2q z8p}&yjXENA5QFwG`UuRzIM{l>wGha+<4YI%)ipm_@Bub9K%Pn=w9&?}WC1S%PF6ZjZ4%2%FSh>Q^o{qAcS`Qci6iUCwKY{)Y zAthHxP$@#+WrqNHs7V|F8fRl3gFZ_f9vxMYFK7kwN%j9xoA>;Ht9D)5mjK`pgk3S! zFyj|^lGhD#Az3Sz;)04j8;U2{@$fb{E>Yzih{$W**o-(DTHEmfF=hK9B|~V`vU1@F zV@5DBBh>R#icgf}`f)LY;krEb*=CMu56UW?2AFPU9I|>KKsog^^>GJhwbq+Cyee&sA5$iIf6R?+z8NZPJa(K#=y9OqeA(3P#1 z+|2bwjX{g$gm5v8u1a=vUm~cxaKc4=GA8XajH5}x;*u#JzgcpaVfbrzsUbF{3ZU=e*N|%c+NtvB!f~hVe}$Pl=-J(b@*fPCYiRDh3H_+%2in&J!tnuAC?a{lv>{nh8B z+W`4_Rdif>Z2{QBvaTNO;Y`y3Yw9G*bytrE^RJsX?ZLb()LNE+B|&d-ArWo+py1^s zMv9x!u!-tnyKIE1wrJJd-55x@aN8wotVtp7j(MuA$FxrAo5)t|>7>~x{E6&5>hp@j zb##XUQY(o+g*rw~$OPB+a-d2wV|k_PP2_&KOr7c!7V1v{!EW|(AQOjw%T!>P4vz#l zby>v*pzs~cnnvypNYhg`MMu8&XS4#52y6ML?3R!-x=`GF$&S7RfdqGCkc4fANlR^` zG-%8^#}^fEnO-A-MR|^dHeoRXcu(ohIhZCP`v2#_`>X5nxQ~5@);qHhSpy(R_969D8HwQ1bYEG z3+dR4C1T1{wvA+H775$)=HQR8t+mal2k2kRO5x3|t=xdKY^T6}xPdYl+va*iJi+mM`B& zpky(HI?qGyG1HCj*x%^k*UKk_3t^y9EGCMWEbtW~qPZO<&#I^=k%@+zJM}G-0!^$h zRJDg>OpA8wvOpVlR!4JlglKdrF3~9&_K=ko|p+pMG z%14ZQ*&Dn7$#+%`HsJW_kv8bAYWu|pFqNQy+g`!8T@KKEf>EDZ*}MH7v{8=k>IF{m zC-*$~qbp`t&(n)+5%Yx1s(R*^k@^y~&*@|n@pcb(H64FsF& z%sWKkcm7?>g9s9VK0Q(edj?%0nCn4E1k;+UcXy8J0@GHud}CJ6j%9JQN4~)j=XZe= zlh59Ng>2z7iRhoACGzv|{)gfTHFLKh8(wXg1Cu3-j`FeRu*zTv35%d8Fn2x4K4uKNauZ%9 zfFJ;_q-G4`vzMKzbyfltUlah*WE1-%GBUcVjan#g))N6A%;1?7Dx!ylJ_s||;o^h$ z#XbL)<1UbTVbyqOqe$wdt3#GIhvZR=H*$QEcW>wrxKdj*%c>Neju4P-NDM8;2}%tX zicG>|y@ac&M2zd&gBh_OsjfgQ-wS$`F_|%>zSQ|>qwpiaxVrh^b3II;b|bxzemGf)-}%{C~}0Z zk}tQ{jy3?r$EZRQP^55$&a=rs*ydHeegMXBc?nqnsyjZ?BL!-8Cl)~p=|O1-7%@p+ z(5{bwTv#!0mIp~-uBZW_X`;0n+kV=#sLE$eApIcrs;vYq5{lC_sPJEGJvMOflOkR1 zLyp*RKe$xalb(OZCu(Meiv7{je5I~~`>;$KVMJF{)I=$E@cpUO4}4^O9$kRrqTC)k zbcbLdTOrrLS=1%w+0?qoU1Y%m`x11?vCl&b9(#4`p|qAzU&0*u*zXA;K}#I*w zL8xk2HexO-jR#ccluNuQ*QUC&yoLIOm7^*aff-3fl!1Z_Tp2=z#qN=8fi9IO5PSN& z1GcTW0HFL75a72-7S&duP{Rj8okt0vhhW6=h*n{!cS$=-;cr$OaaJq^Kg1_DjRM{zdq~NgdlwO#hW|fuBh<`qSSbD*fT@ zQv($+HvK-l|K30Z)Yr6X_n+Q=6W+hX*H0lIfiL-)w;zXZ|4)fvx@F}E_6(*7y+eIf zYEZX>@K(MBvZO*c*-d0PqK;v#A27dC;?i~Y6FEM_ZXbxgAb67!iIdqYuk9Z6^2@fc zwU|EBHUy(#M-{k{&pON1eg;bBWg#bPR4OzRCZ9S50R5pHUm5@K00utmJz0YtegyWn zkXPOzt9cFA>k;Bq#ZEi?Xq2Fnuh|-=u?YlZhLllqMMntC9AeAzmpBeOnzI+t^<)fH zqKun}NF1~^xu93rBClZtl&qr3ZU4LB!j?u=i8*dandeA#&LkVX>-;Xsok-9$Y8QM3 zm(k@KweXQQb`T37KtI=ovXSubm44YXHVU~vXgo3m&i~T_eaH4>Ups5U5Y|JOQym4b z8wUsDR0o*tS0Q}O78FQ5>8)g@;Oi(aO2pr-}m;%l$ z10fnk(mYrLUP#Uor_h*CkpSz{jKKT%M|`$+_E1U8dm#DQOKNTCV<)=K5Faqy=14#m z_6uaX@gZ2OmJfsV<1n~;7YNz$cEn(SGkB&WeE{}kt-%0(b^Y&jPP>wTfJ`&1{^& z#wK~753FSiO-dJ4m;tUc;Y=Oy7)r3;!XeSbNGX|nOZ(qxJGQ`^|yEz2Y$hxQWC!!v+;G!)xv z2(Jc@;98P8mOqxfn5bLx+EV;oDxRkxX^W5u_%H8q9iv6&Qe!J_qYaB??MnA zWe0dxV=fVEudJXXjbQ1KUrSA8WmvqOXLXrOP8oq%Ctw#AFt-wx)3WGz9#l-o0y2mc z)poM_UK4B-w;ZACI4{IaVI4`_K%icmJag_IjL9gjJthHgS+bF$p2;2H|4l-esB@g< zRDD3B8WzDs;HA`qLU3&Vuo&Ne$>D-il%fw@H0RU4Mn zStad3R#nk3eZMvyKar`$wd_AMxR4renh^*fnm5VIroTlZPeHPqUSp>ug}0L#Sdve% zOa0T%hE?wk3u9AwaA%dBBw5wH3p@>HB5e#AF>n$}Bj2g9#YpVtTqh#*onZ z-eKwm!=;k~<^WI{E9PKw_r0njWdI#?a0<0NA=phy`6Xh1zl~%NBy_(x3hmQ@O@cK1 zE5kC9WOK|zZ;iIq2PGOK0;Gb)U6N@77|uLEc{5@DjK3 zBOCN#uxhy&Z!?-`-MvlZ+N0w@Gf}wSTAl@iiZ~Z7_HYK#p5k?_(sZG&miH3bqv4th z2z}4;^-jKI6IP4xTCxL^?|fdVUmu`#=FRX5w_NU*Fwq#UXsG7X2CcySwyuDQE#wQq zp=!>5Kq8d!@hW{e1(A>Ikh1B;y=))1dncsY=Bmsna6>jg2Q zjupR$AzKwu6Du^Hqf{fuy2k|MZ%MX?07>uiZctpd6rn^56liG|U`FLW-f1cY9G(19 zC&`vXmtJVtm1|LzLfyS;K4#9<5Aw zyg`dfTg2K0X+Kk|Ef9Ci55<*V}TJ_ot~ zmkQB)`#1a>-hYL7{-a>Tp+k zd`}foxZ3i2#`dy>X95Dzf1gx!R)pt)h2;TIU)0`hwHmnQflofUjQ09aL5vTbgwTqn zin`QavMk#>b7DycrURwCs<8^;@T-c;_yl*=Y)MOURSz5|21BjV10}=Z8wwzT#OsqV z5qyZPZ~deKbL1>ryVxJ(7fHP(Ob`i0ug&*X^mfDNz? zeD`jN_OfnedA?1-7l@ww^HK&Wzq)+v-Ijj6oxLawDi3`#9As4F<7y^gJPB8zok9F$QKrJ5w#I-u%Z-T5zT!GTR zr;{_e)wMqN_NTXSBei`F!` zwCyO#=A$sUOPMV79+9gVt5J%7n+;cC;*>bIP6NaUA{U(+pm)0}I^Ov)XbMBWbXn4t zd0-5w;Or^aHWfA$1n2j1C)$C4+p%T zb18sITlZ$_F@x+Oe<`;=2EP~LghN?plrM4%*OL2?PIm!Jtz*|}> z7;7nX>8_XB45?CwdfGB2sM=8qPLiJv{odusf3V1KAJz(L+f4KYfIH-wEme!c%kG@T zx_vOO)9#^}T_gzl7;G=8b307eU@bb|LxvQ|u`C1RQsXmB?!&2=2iF`JQDPe(0S$iO zBcf?X=0{s3?SuP+4uPZPRy&lELD~bAtW)>1SRg#($c=JTQRyq~-OB!{Wx>R(YLpZo zYT+(-55A$?=tOLnS<(9;8--_0JGxU+FmyiVL>uF-L-B=OH_RvGdU#b>s<=ZZUt9E+ z7YRYH{Dsg(B^nNDA8ar~*HKwCN%F8QxP3hKpGOPwgWNzB8_7^3dFa2gCt*G=mm6QE zlT}7o=@=^S`Xo`Ko_9Q!s3D=hgEy!WQLR;?k{eSa3%%k4HnWe4R?LSbSZQq6m?y=r z*aP{u@>K zNUh2EEanvct7He`i~=B2*Smq?{fGw2HsjvG2)D9L2nOxO$A*;{lOUvLPG&$ZJ<<0G z`bPtX&QwWokqGtl;vt6Jlkyx`;Z4xrFQ&1E=#I__dKNE}PEHbxKfCaZbn^n$;8t6z zFku1ZLvT{8J5tK;G!O!S!Vfdy0-&}SQWf-teE2#%s~Do@Cr4gUE5d>%TXH$q_>mld zzUsE-UPAY62S&h?Cx`A(+Rs+jk{x8%8xHg}CAZ@n8dp2S5U_2G0G1(PQH=vf=67)h z@Xo_JdQNv`L|AJ?-cSl3b>owGeU&VbJH`4USz^}u9uQsHvtOtDf~_xZ?JKM38>+~T z0Oxj<&7|c*1yxXLS|~?BtHGs{v(T7f_hswPjX+S4M~w3~EIkecW}u)flr^J7phd$8 zbA)+4=#PriY<*IE-GWqe_9w3}rpia^|47N}tEzPyhWD!IL`kF!Fmsi74ei3JxXQBF zhP&i%Pfks*#4{Bj+f*uA2u07a+YVe92DiP*Zd`O;<9dbK;o^zn;|u+D5M;r9Z8M4& zHT{~$Ly`j|-CAx(E!wOFmsHQV0JM?&O{RM>4^hQSxz+Bi$2)cUu)iXk4KfnDf03#& z!5Gv?Tq>!~A?Wbix&z&(##;|J6~(vROz2Rqa8JjlI(jPww~Hm()s9#txvlXYG4`jn zvt%LjxH{y2#k9)&4**QL?eb$an`mf9k7=kI?EFthsf?T_L8i{jh=>+Q$i{=?fZ!?*uv-}&}UP-Ua9ir1F1 zV9yz&26ydxCiqcehM7;xN}|J(d^Vev4*;hu9;16nKH9PKULvSgCs^?VeJqD-J`&n8 zb*pWXjPbVM-`$Z(OAuBi5>qf#7uGbuEnamq)v#xw$Y(>uUvhy#00r9uj-3OXr>y;<^zpfv zo89V+Iqr~NnH+Jj0hWqyr&8wL^N^V=f1>T1kQ-%8+8AWf%FP5#i1sfvDW^~E=Yx#7LAX4e@ z64>~5*p3S;mD(yFihn0G2c}tSO=~Nlvzy?1^^hc|l&DyCtz+5ed4%m2WLiz8QLesC zbD+po+HgoqDL@%vIbK{_$fdAVb1j4Ky#O^%3Dm=3Kj`}x74u$O$S#JvCM8Zn1IK#h zGznf;m-up4D2B;0)00c+O*a-}9^Ts$!S9XZn^Jltof9X}?~7VzEoOp+z0h8Cz2P#P z+&<(15Eq#z*Q#R(yT6pC!*r#ds!%Wa0wGZX!;cPIxr26r2^aDo<}Lv8&RcaS}8 z?l!f z)syKP(bSiH>Il1*kc{;6>9M+@Kkm(WCF0d=wQjOA#eq#K6bELpr40^@ z4o{~N67!K9U>am;5HM$wx^*4pm>?Y}$v<--kUby)IimfZUl`^%Nh+oG1m%=fv3d_> zRTOOGq-Pwk>s2Q)z)6zx0v)H*IB5dX3gcbFi43N|Ca>kuB3jCAN>paNtFP&4%U1|V z(rzggeunlAIVyC1RvbaeCbLOn`!tcuJk3flZ5 zdk=i&@1b_(95_vbx%sp*13fDR)Vw@9QOtdi%K#S zsQH27Ky!^d_6Z{ABri{p_?_+T$mPA}4F-W+V45SFRH&on4*Z3_YR#wjK)bqvYbr z8i8PjL>=$VY#q$LIFGO)+6N*U%vwmdKs{|Okq6MYax+|tv^q3U5A|PbX24_(BCUN~ ziquP)k5p{t?gGv~YaA%lc@M-^e!CpWNSe0biUyrreBbmS6D_~_$z%h_4;Bp7xb)+c zUD=$eg>oO`JkDXV0Wy}oQaV=V4LW!G05({qNiH+k4)U$_khKaeQP{NeU`c}9Mwgl7 zb)*SsB1%qTU5HX;;;N4A8Nj08nx65q`5|}=;(Z;k9eFw^g(=dt6B&ndIME;BSVvY; ze-@)JRfavsaF}D!{adzfNoMioKorMCZuLvJqybjG`Jp*0D=>kRf)1&|6fjsBh6MFZ z=o-_`R+gfI0XVLTxA4>~LqaGhB&B}5He@uQ%G*C5XD6V_mlQSlJY-b^P(pqd{`9}7 zGgh|e{sfSekKcd)uHW-VQbzzm`4kY8_upr2r%&=@pJZ6dSNdJM4g&z@`aqjvr=^Fa z8}c!v9X%BYsnD`>fpQTBXFi~Nw1?pKsb)1$_MIi*+{wh-yGsr(-*N*k?{- z#mr*CAot#I+efyS-E8SZrIt2_h&OIn3Rr?FOMFQy6^ul~J{=;~SY16N>Mvxbm6yfT^)ev|DyY<3JY!6%^ z?3!&J1Nndn*HAX+dcz*~*SIqIYcP7`f$@580H1fqt6 ztQ}XcfVdjCrd1vp``l<*aFU}6$0a?V21q!x;Z`V}a4P`3wUs4dueS_jR>JJjAio_=!b|k&o;NI2jIH<)cM$mRw&UP@h7ruvF`s zbBzt$=6r;D@2r5o-9yHV6_P?sX*es6q3lSsppe7}2v&D))t9wII+>vJAZyt?H$h=c zg=tO>7v!^kC$F&#-AQBm5gyB-&Hw@*dmaFb+Hhw*0X3#9_QfB90FP5rdXSSh_BiBS z+c%-_O<@XUb5GPqT%=^YSz3cljT2M(7&`e8+i8{g;z(4<-4RLc1cJ5l1+>;aHTH_p za}T3CT%h}wIs#ImM|)7!nA&@;WM*u9dqm#w<0@tPdGhI$VEl!~@ z^y9XdZJSz;R|SdWgE(ZXWb3Ot{Zn$3)REfHYrL5*0fNEfcu`+J6FgFqpAT8iIdEZYH0_418mxjn`U!%DE zOkGy>!tf~z%v7yGdPRH9 zI~QRsCErj|F`=bs(b;$fZ8aDgEU_$YJL8II6+c9;i_X)BI^CcUFJB>btF9U# zDCnCh9q^(3AWT>;Fq-X(Y6@5OHD>fVc~VuFCzAjx;kDfC`oJgx=qN{wE~gZ>#B>A_ z&Lyz7OhEu0FG0*PAV(7(M0GApmQ5sG{sBc zGz&Bt+_r#EuLVR-CuS|VSMdJFv%mIlpk4IsXYc>=_N(yikKTX!_9f%=?-7+xd>I7g zU)Upm#fLtA`}o`c?fr-0Z=h`W8wF(mogx1>Ud#XS_OJ5)-v{|8Gi%^1b)%!DSpnN7 z__AY5Xh!yg(HjSSb#^xIGu$f+#?XS69rhV_U@Ud6)H1v(NrY6BKt}!AQpXsow5ije zx<(ePI=UOdc(JlxZbGPwBO;THy2-EG7*v6a1oUQcd1h5|2)-jJl7cZ907{}KkhTB} zfl_EWoFK80OG0n83nZN*bxaqCyEOI$@)e1kMgfs+pjTstXt0PmU6E;{8b^EVFkqwN zf*edEt&$;3joTVU`o-?SX~G0iWln~-C={~Ba5 z9 zq+C5mV$xL=kOHyVm|H5H(}%TvYVX(}B$7bXkR>qGTLu>F9k>XT(c8x?a#pB~8+t{# z6Cc%|FMpH4-Q*KA^4fjGObueK1}A8xVyDeT2+qEe4V7=(lMRqw6ZJ12u(g@l0|FPD{`zri++c! zj{PJv2Crpnv140>_d*|Dr3ikSbTM39M$f+0H9j`v|0u6Xu5Lox9jaO^aX4e&pO9L%GEVOnV)1^f-SOniJR7ir^2{(a5UG3qD|w4UK9KTVE=Lz@sW;yX|-gZl{1UV9l;ksz+BzF{6DX?+{if zw+A2&fCm0(BOw+tGDq+QbeAKA8RpQy$u)LU;GuBnP)LP+#uw=j1nyQV=MJIrd2@*# zGXAm2!aRDnKsKpnqiY3xC$H)xIRk$1j0W4s1i?(j<5PEre7uEM*P@tkw^*eKTuty} zcO1!H0M3!^lOo zw{Q=^H!HL7)6vxoS77y+_)2;p|62e8m@F$mq2=PjZScaqQ%(0}%>u-mq~b&>*{-y$}C-eo0e{btz&KE&;6p?g-kpX3}sq*{v|Cvs_C zk%{1n=HlFL?~f!~$O*wbLJ+NWfrMu~B6aY;Jlx$tB7=tkXmD*#HKgq_Ui;4$!IX zx-4Enn=WI0+A%CUWubGD0E0hRz8-=W!$HRwA^#nYkkX?kQUf+;iib)bOk`8^BOFRm z^c(!WZ$j0P+EM$o9=r~@J0ZmXi9Jvm0H$+*Q3q8COT@YnBD8K%3F!z*KS>6ckD|86 zsCWT^AV9m!NjeLe6GMrsBsHXDnz_w!zlXcj_~04f61!?+ z0Jz?cpv#znM+@P>*(*P!F$jZ)3R+HOAZmkrXDwP)-qfcgXFObCR6)uyzY?tnoeD{g z1JwyP<7;vaLIjfvU|c)OmS53VTD|<98ZEd@6-zUd!_fSKsUYdNxU&}|h2&FTltq`n zTxMFu!GbdHGN!3=(OcKD$ZSiS4~Nz*#ero8RJ&7`1k;qJ$F!24@-6dv035QFB)0z= z*(h&JME3CsuY>1N*H;~|Ar<@*W+MVsH@OTYW<>e4(LRWpQ`NHr5EGCg^kAU!7yFWK@ID8&8HnKu%Td)SDL|yplG2-Y>5GCuR^Im z;3e5lB()IR$k&wLR>~LXWAJL13Wl+0zrZ0440^YsKv!*?K)8_mJIW`~7qQH9b2O#Y$BdK1|~^4ouU`$c&B4ZeN}rHNPQ z;pQm*8peCJm;}(#ByRTJ$hyy4C@+lBfce`k`OL!3?%xE6Iojs9)a`X(yq0BmVZOg9 z%1qJI14H6Nb^J+AlCaUX*7KgA3N;=|{#OFzvf9H5MX_ox`8w~QJl0FGRvDED%Co6U z#FmzbS7Dj?4b2Jvy1Y0x-a8e`^t5$+PpTu_kC;)zPHDQndUtV5#QsJh4ME6cu zMyJR^&L1iSk~ejvFT7yMs{zl^KS=O-fWTIw)h4WEIDrF#YLu)fpCF-j>()i3aotEV zN)(>xEgkxUnW46f#oU(2NFEq*QR)HwBI-cM_e|Z$9zyFLao%^g!1Pgw*J2uRZN^ip zU3R|a8QJNcx`U`O)d#?Hg34=f1djS@mLu*j6JVHKTy~tGlIe>0Cd$yT4dea!8q{q@ z)HxV{7?R2WyuyYF)Z9VslArR@(RP>Be=1xt&NnFs#L0gKLBguc9*Y-ipLWzxOsp`h zU&3RQv}vQ&5)gqFa?^_Wqw6kUsG_bd7JucM0~s`5x5EKI_IcOz*Etn;#vYhZH+zzN zV&QjHd5%cv-v&2_LMNpi+^5^5KpIzbM2xkZ0BA-7_RS!Bx$M_n34)Y#M9XN)TK-gI zj-jo|RFEr>I2F1<^(r61B|xe@Ik;TFII%`W4Lv2*Z3tJJEuc4nc0q8Bup3)zQr-=xyltM>$A=15KXnjZ5PL{IvAuK%@?dJF_0T5= zC|IJui(i32a@W?wBtII$Kzmedm#&v5>0NL(Jh6*Cl&c4clEq>9m)m z;uSUeTDrU%RMkl)06ZA-0jTm3J?k;+GC&8f(HoSBz^s-R2)1nHKm!31txBPE%cJ4Y z?ND{BBxM(58X3Ryj2p{79gm^XOWF(Im<-2v(r)AxLa0EqHdAO(z@ZdSKEI#gxkWVM zhyWd^-d~QZTa=XJp!}!Osdy$XojUiJgp;}REU%l~DHh{Oc!M!3v%a48xp{(EJ<9~!~mk$#D;q5D&{YwGkFdMsLevrbRiXE#?!jRp>FY0%thfi6g z+H9cHQQP%-7Ej_7#G;GGL-uu(!Bh>khbJ9*)F7#LgTR>|3RP8Lu%z0lK=@RZloul< zVb*QALsxGdgR?pt%zqXMo5)k*swjGL8`2>;yvC10yF2+(y#p3-qwIlnh`oV39biHz z*#-phVM-nF6XY!@jCZ!e8X{8bS|B4oj1=UCm%x9ae1f6bnNVyH-apucHg33bbl(C< zl)7Tx>an|EB9R7;1{6zx4Z5-%;Q>ND$&ZR3T-*eF8mHXmef4s^Jq>iGi_k9LIkDa zqB=D2e(`!mZ~CBJV*dn%&l|`+z}f?58+`zZufQN@o2+-l_bN-kpklIXR|*xguH=2h zw7a3IbD#_qfPMGk)JVZ4!9}C!zCa&`BuU3LPo}Pz#$L25nH<n26>{+1kmHAyrpaS)$Uay z`MW6*Z*q=1t*MoGT2NZY(}#s75ez=}%T2kz0P}l|F|ME42DZb?=d3 zT|2HFpavJ-*rhVtEY=Ucb(C${wc1FW8iE89D$+&0B^+v6!r%4D{y_PNP-~nd^T))X z1kuUr3q?`Fk7AkBt&WV=h#h>M#GF7=fMnMq)|<{?4)^Is zOEdd5Rn@gU21#^XEWv{6itqm*eE%>0og6{Zf;>YwMgRAYNpJj^@%=a9{kO$_7{t81 zoD5B&ti;4i*3+g76l;k-QZR&Wm*No#n^a*XSy3kBDPk^3mHH-HVVhtyNh$aC=7Bxdj z;Q*^n%Z`=jnvYOn8W)A~9SH-ZFLx*@WOK%7uYtxwjj+ zmF(}g3bL@4eo~rAm7rt|-%;lsAo9_Ky5v4M!H^c0SI=M(P5n#xM7Ay0xoYj4kESpe znLT=m#@1G9%IJwnSYDHhat*gYp#*Ra7b-&rYm4>S80si_p~a3h zkQfFKx2L5jQlXhS)RwLox+-2m@>TAPx0o5foDHa^N>FtcavRe@bCeI5l)?>nNt&J4 zI73zj?aiaQ)b+Y`2M};RfPiw5S^)Lx@Z6ba48i(6ux6HA-A*vu)`$S)m#a`+;BV6w zkfWn+1f-o_c;^Dz02HF75m@WEyUc|mQxc$i%bEc71*5R69;74zLO6Pp)X=la_L_84 zPJN)rQYhy(T{u99pwnspKxzsr>9ui3B?1^sklX>7631*h?wPOvI08T>#~lTje`Hv8 zGAPFkPE#?}uAoq<%Vej>I~W?v2Md3?sKWbLWB{&0m)7T~u>>wJo<$ zFO~ZQlpX-t43~h0U1f`kDnr?Fd>@`Ok0eIHIRUnN4(nH6WLieuTGau~C#}-mo)WVc z#i`jZtizbRdWWAnW3#!neGr)cEI=R6{ye<@2;xeL>HGZsEBZ=&_WntD`z-?XH^BSr zm;7&j{vY3e1dv})BjbN~`&F^4Bu%a$WusY^Fm85+0XT4qbcEa`vy^<=6o+2Aa|nKc z3$GLst2M1K1IrN~d~1AG&ynT5ly7&RXgyR4YbaF00=8cH$1wTd!S!CKsx%^TzzA?M zO!qn?;6px)Lp)Ve+9V0UL=I+?oa&=?KV%D_x|TBqmy1-7b(bZG62N;Z$1J;-Ja8*k zdT%N;*JsOVS<#ns5WpHA8Uv{}fP{3FCA-i_0;U;q6LQ|XbfAhu8PZaQdl>K!auxNI z>R@OoG0%D+@{r1}%{lb|U|D&Ck{#k}nJ5vv=rng$bfHdBn3JeMIws(Bn2Kd=R93_7 z9q~SAyVA?y5IXPpxVn?pHDskJPXPiUg{mO+9dqYkA_iL3@;><0GxFq~V^_II*bqC< zJ|tA_OiZA0qhI2|W`>Vrcx{ZF018AFhm4LZXn+`G9s-)W?J+R8#ENvNE}Sudw(LiU zVOc1gWK+7xzx^c)rR5Ma;9-+VpQwzagjG&G)IpNm$1Y0vUbAiTLOTsez06D>n5vH9 zvK515Lz3PtV5sHPVU$XZFv|AZzkmB-7-?H50eU@#&I3en$X zA66Lf(#4uc{BcZ{HR=Q11z!$venBS%kGYp?M)p{&Tri!q_*#Mc6JCo@l;7*iR zNbqa8#Ee_X=>i5c%u-;+M0;U4;t|XV_TlXK1Q-WP=7YSW8;L|j*Si5~5MU_8zaAM<~R?B(QXs)496iy*Z4&0Q-HfmH;uUm2*E7N zXfGcg&Z(Wnlyb08OAx z;Uk-@wsaqkLgxw4J+J9AJe%U7a{Ku&z?8=*ge!o;#kMqEsNHXLTkL*^a@L^ck?}C! zO4v6s+j92yI=1MFrz2T`Octb|mr9b97bn}Tx(=9eJPG9mWkD@Hh(|=Dv!{^K1x!Wi z2f*OMxDe|#jq?@z?#OaZ{W0U9v*tuk3?*C5hb0C~@OUzT3NkW-nSw3jMV+Ml^>pCr zH(6mJw@FS`(eu$y2Af}XCY1`p^h@#=HB1~@0wW&C80}at2pyjwj=+6<0p*ZM#KYj7 z5@n^@#%!`W)G1YTACqJ`Qk3O^ppdtR1vv~TH^=DMz% z_pdlK0$4H(d9DDFe@GIeUR_mPk5jBi_pKfTaFk&N$;?0|kx7cCNRd?ZpiNOSaC!B= zve!O)?W*rHgbboM->s^9c^}^8sr?1@J#a&+`*>iuy3z5t9qXV2PBnxxQtohESIe`ee^Eu>$DUGB$hg61Tp?_N`h)z3 zeIydR%2wWlI@0z4mKf&n2!XUsV#?Y}ky7RCi&D}62@?^?4~hyjP_Sb^C6jV_%J{1lkdM3f zl5#4_V_is5o|#)46hKZ?Q@}pJ?&v&?;pyLaN?^|8%P|#!z^{%@pFk>;Ko96DRA7PH zA-dp#O^yVbjxJ<=nqng8bA>0;CObzQ&)uDdK{Kq>Il^v^Es2P5v?29 zyfh~iLKq`=<_pNPWRHBnaYMWI)=Zx#ho(;i%!JpEFW9hcy7>ZS zfzN>-3nou9cc@1U`%`1X+_Lb|vbFKZdhAAZOW;xj$`2o5Sd9o#g5OHw6yyjaEuOTF z)nn)iD8}4sHCl*uwH|^B0F%LjQ`ZQ19j^=k1EcaVTWVp{eDZv3Di2v*W$l6e)>uZlvt zDxmQkaZ7-D0SDx^P=6*=|D4W7w<(L7LTsR72%IlRc$ux3XS$Rb-b?b!hFn%|0Ri-C zlp9y+5_PohqWUnAl7V36YC2?~){D?$xNzPs6rK}?=$N}Lg91{e3qn znUyhr+sL2j!p-;*;7nrCw#@RI4n2`3W2Y+S45sEx*U+XnpMq?-X+U)=+ut=B(2%FX zu)zkLK3V6riT6PNg6m62H|ue)g1iI@OXow3)zjMmdKa`s9wjodL1*@skYLF`SEM$j z9}y(rrjdUD7cg^adjSXGmQ4Z-rt(TGpqAU0>rJIK8n&5cgw|3R+8Is8Fy@TSmKVCj z#+3W0w8UUxLq^BZxG&X2WS~AWp3I*kTzzuS_Z*MNIwd|FLg-?f2k5)x#-Mm{#!P|b zL~<%UNNG3^C>zvp@m*synBWG@5jcdBrGHKq9{j8Bg6R^H2NAt&t2W%XX71#$(*~iZ zTA1UgB1lYuv%;w{1=<0pIIZOOn|9t!r{>mo&SwB3O|Q9E*xLp7a!9gOJ}ib_RI0?o z=Lq}B=mB z2lv()obAtSgI9%x0|H$G1?JdfC52ddxE0=1W@F@mF!-;--`U5% zOw@=UgdhEF+Ot1H5U3?xz-;li$#e0yyz-B4zYBkvPX2o!P2#7opI}v@r^9o@%fTWG z4hr&nrd#W&PL-7(3oc6CpnVDlc^-p*6LfGUs-n%Qt!dlwP#6LR#;E(5`DaOGNJxr3 z59|y8h29-tA7M)08L6a)YUQqQI3nyq_6)m!73oUJ35z>{E`8NbQa&2MfZ~9?2lZ%3k>c`8u!$ki^rB&) z=^Us*a4<1G!an=phK`N8sgKS)UosuMXN*Wi4Z{BGVuT_Fnr1gG^6gt?QaZItMe6x^ zjcgR~@o2zVXNv<>Wbg+hq|Hn`Te7GqSlvf0=SairmJ%-v* zor&>P&vYYy2-blaMLxnx-bY+fWWytH=aoDWDLt+WTuZI6*-lYHpr&n12&F6cWJ zz9|iUc~E6Bp%=ip@{~4FI}UV!o#bVfeV?>cc+9i|$2wCpXAMca%A5nFpEfq0$|d2v7g0w$o`4!IRujkE{;+bgTi|n;DPXtFb{i zz3P(~5jg_>*4ca+PezHu-f3L+80N!K5-f`aD>Y))D{Z2?cu4+W78mMaUA8mntYGFP z;d44K1V%a(14BzgKb~}ws-bdyZl|>mfC2!`E1G_jpU`bp(e!T5(RmaI?*&!v3AAJq zh(?tj3Zh>95={G=p*T#3YG}fgm<~+T)|49E6f9Sw)0=9<$I3Ls9h|?7&e5TUzs0eA zH*~yxY9(?wSe{n_>_5h{ZT754WVUpweV&6^pOuT9nc4O#KF!$*5CjsK$QY3 z8$B(MOI=dRQfY%lHk*7yn`C919-T;5as}pk4-yK<$=)GiCOl1TkKEhAD_;7~a1?k;iW- z^7!rX-+e_v$XBKi`HI4jU%q|x`o;I3zkU4nEslfvMt%SJ>n8#7kDtAM8(x3*P8%e3 zOZKhz*1-c-LUCu;qraZ|9cUmJxIr>-dVG~;g87Qdj`Xvs-?0eL5zu41Hk!8)Rkg9G zA$5`!5SG&F{cbQMMU%%XoFrKpri2S)jyO$yRSr;V$)szzRp?S!UW^>|7|CdIP(EuW zX8Ht_Z14Ft%2A(Il4Dwep)8vl9Xj#I5pU6s8E)<*v%qJAed0xS9Zpm#41=1B#(cp7 zm%!k`H2`E9S$$^3_cWhEF~y_^O{o~`X5R=1vT}!Z{ak^~X}QD>j_Afy%G#vxP@oJklM?hlNZ}mYHMm3VR9U;1jLptfVVHi{JOfYnOeBnnkSz&g6AH6y5HKrvVzp+G zXKrF_3lf)IMSw*5V`Y(EElX4G1XOD7K?ZZsw$?hv`tQi6>O#D;R|B54VC!s1V-02o za%03FUOKe`F?@T}gHB`U(`K~~QxmaX4>YHOjZ8X3p0gdbVDe_GdhthCEQXPW4*3iz z_Y&MZ7eoiTUIAuTDZX>%Mp zsB%Up9vfNNFXutOW=@TDXMx}?qK$w(j3}}#7zkbSQ+HB_EVPua;dgHYl4?}9r}ZG5 zHq}jDJ{#7^8$7L)nih1dY9JY@RdCHZyT-hYM2%YISbape7QW;Z1q!MU9|5`XYKw<3 zn#cw#V|f86C>^bJe1&E-?Zi-<#EqnnaV=4^+Zl+){Y9q;%XF#Ac1&7|^-|9AUX<*$ zWTqZ4#zsU?q&+M!aeeVgiVtFx!>GZ4ejWsbv~mD?wTe#{4la6lZpwS5iQb{3KNE6S zNHHulEwnm~S~49v%kSY?3pu>Y-1TXjkwAE8KVQ_2e?0L-1!6II6K#B(TX-V4JQYv1 zi$*WX%RsngVYhCS=V3@Jdxj=cV+e*{gUJlyhDAy17Qa+8L#f8KiDOE#ED2@dc2VG| zCu1i&h{~D3^qEXkx&PABcRYMZkx^auOgGrf^KUa~E?^F=H9vT52{5ZZpWk_afSS&LVv*wL{HAZ50q#xp6;z)r$ywXV~x}0F167?j#GwN zdIh#g-Vjf%*--dLDT>%W-egV3Kk1i~TNeTH^tf2SaiRm|eE15jur`o#6g)%fQRb-0 zWGN*JJ(G0UWT_i+WtRg4?ZIV`tEnTdNNXZ_HG^+lB$*WRP;1LcsUD6<&y-!q4QW9) zd1}4xlG_(JnM@Ew+p=RJFQ$@2GPq7uIFx3m#uX2#`y2t_LYZiq@)yiV#v58zO4oM28+jBgkD z1+)cx-DoY5{uk_Hy4bi;LCj%}@6s!zd2?Nfc+!m(v4ty%cS$Jjhh z7|Wsr$^lrIW#&p5K^Dr~ony}V#+=9#;6wmDphQ6G6jh+1-rD3FAq!=XWCVG;4o0@r z|I<}onwqH~vd!mVdGKZHG$!RyfpxiOvi3dP?_tfL$gwTuw%xG?na1T7cTAX|yN}*V zgW%%P?W=9&&|BCemxdR%^8j)8)^CP<8QZqtXuIEA-P%5~FCA|%V47|3m+#L$f3pb| znl<#dCM5(M?#hGz8mqa{!N8Ppg-c=2cLcGn>T=g}H7 zuH*9r>1f@@O*UsKc9C)k>iLJ(r>w*MVSDkYVLFh8Li(02BJ*V^hHaj$jx-1Lm3iGS z!C7GFwPT;ic&5gBR=`!Ky-iC*fxWd;H_-;oI2n-YK%Ves%jEx@#mS^>&9ANwMw41p zJ9i87zij8Hav0HEut3msVh{3mK$r>veMNKtp-b=Knh}w`YW}==P*tlHSvsy{A6!$w z6_g#OQrZ98-m1C2^F$vT(6{3RLO@jTatj1bO;bC=5$ zSwBfy0&jP)%6?WxP&$UPW^~C>)=!XQSN)nzq%z38;2zPkS#}Gz{Bp}*ltg>4XbjQI z%b_sOzNXN=ui8+nNVEnaG`UEB@WBV+ua2$!TdCOL;_&w6**p3@YNmbsBRQMjy)PX7 z4FSQoZzs_3tGD0i)z?qnKJ}}wACuqd`j-Fw`ppkx>(bWy94Vj9~gw*}Kt08S`SR)FIWXKyKNh&<-R zMZhk`@)<>|f7J;pRg0-S=YhYhaiwold5utjqcRIYI+KYLXV%9(sn zStIc#YRuo79JYpR#z-HBu#i}vglNnu*B^&T61==L3NVxxTJm8usY8TSVsp-i@z?olHYf<2fW!nvqF%vHd{20&J+ zO6zpW4zex;(eS12uqN~Q@8JHWN4M=Je>Z)y;!;fw$_B!t4Y=Qq*HbGfkwE;<^_cJD zLfr%?QteD0p&=Z2XcT}nkw2R(HL$y0+tnxc0))b0(><%5XM0FxM&|D}nka#oU$B># zocvKVC}u-7(7Y%weuc&bBYiM?PC?*;lj!UXg^4QU-ak*Ll^{8zj^;-Yxh5h&9~-8t zjw+sr6_;D~NfIf{uW7x3$Eu81%rQ2Y8@DrAV{k+%;O9zraCFHx>SlV%Y%5u)YNWW% zf}LQuHYA}InOfDj4GKx@%MlqEqIT-jg+>ZiXx{`G^$+9+)!C8!VQJ$kD0X!LD9nAv zwuvB1D9}e{VW48;_`S?p6$4pMWC5w)eMh9$1rU=zO7K4+QJ+|*xZ-j=fT}$CNo)8w zxEk3)eazNl9?r(fyhboXWUGs`BGw8Z+|_K?zpO&ux!ZGtHQHWs->+c9saDw54$F}y z?lQyt;6vx&>>m5F#(d>&*C8)!WL~%?CEC-iUf%n=Sx|D#A{%p^U_&`KGBhm zIg4pP2r!qO=~!-_Sf1_(^wlFBR|^=X%NJC=yS0c^rHPtqma;HiYLRWld64D+E6i}9 zt|_MM0)hbH*h*uONVs`~JZDJyr~yf!y~uA^Ru-F1mCv|A;4|b9^e|C)QxR?M@h|H= z(At^K&H@kx;zf8XGR{Qq1H*icvJv_O<8(%UsD7l7Y9~!Z@=F;LN)cFJ8F7Z1Wt^Z# zDgVboCo)T!Q?6NeI&}h!IE2aqRSWVIc}pmq2?tIZ^(FT)eJt)_n@aC+#QeG~#gQ+7q@wZ? zF)=aVDNn6UWI)MNE9-QY8z>o3_vyIEPQ%U6mRuBg9x}PD+~TW8i4DpZr%IJqIfK9< z$B07#A7YM=YRg%tZidr$IWiV8Mw(-+8Jq$exp^`|YgL~!9DDqDOoFJX@8J9NNPjJU zUk_PSl?=^9!H=l~^^_U8+=$!)zk*YJoMS9_<-O95MUUpc^L?b0Va&KMzD*p^ARp`m z8eePZVCHEs#-axZaCUHv4}C$B{$f{!TV*!y2-?!DV77Te)TD4yG6dGta-TPB0c%DH z5Q_jCW&qYbhU+Kupt=vmC5h(xuoc87F|H@k$+buRuH&O?0l_A3wre&X)^I9wK}e3@ zd)13PjdOkigHZYS)LAN;KJ0@Ahl9JlR4;No!zW-RK$Ly5EYYE^2?Gz$ z>AK72QTtcP^Jyky)zhi9)e=1|T>CbHHb4{gX(L)Rw&fKFux0ll`G?xlt$iBWwIw@n zI*Nef37=u4UrEW*uxlfm;{hO`A9RmH%Mm{$M<5c;EjrLZQiMUd5{c*snYUf?YO?>N zt&_$Q^mWbenX?v$=V1%6Gnhm}NQaoIt49ooa%T)BRkm0(( zC1lhPaw)Ft`^x_C*5ICSVjrt*H;>A=UDRY= zQI3HC^fe7JXUF99sT<4OMVRRU*JaqhOffg zmvA=!G`xLw*>|f|cd4H*kJ(#x1`CwaLHPx#O!0f4u^Dr(;IoifdAKc5 zOql9)gKkXzYx|G38Qk2#hVa{@oIO4WKvXt2s;;Sz1Ik@Zw(2H(COnZlrkc;P0YiSY z(+^gzM6Dosn%xmLUXvY;4iX-GR_++@9M;d6EO|Ev_Kj$FuP43H8e14+by7_a2)JxG zky5*~1-L=>4&nx|0aQjjDsc&c3YibF1l{)E|F_p)!T)4E(hinKdtLQj^nsAd+Lo!p zvri5SjEF|LLTwIQhCtq4ox#0~^1@&{xqvbMAb?nDA(8CAJd}N@w6zWIApsktPmVyJic@h`6X9YVdggXzX(<=Yl>k&@#cvYdrhi8ID@02Z>MXQOYAbD53d zJb9ep6)QKKGFz_lFrC{KI$a61hoh=S=#i4rWnI6hZCV*+0bH3?qPI30I>UC+cDiu@ zM%hT}mXYp8CKXt58DU7R`Gqz?8mmWoNRCL9VGg&rH28SE3<>im8jhii71<*YG#YN0 z5uIf$eqQQQAkez%i5-(OIe=#Zb%Z;Jgwe?|DyMyD2Aj`Ype$Pi8~Kj}{~TsB&0&=) zB}-31`w$*i2z40q*~{x;OQrrb%V9Yv&pA7f3O}TXn6lpdW>5`}N~xB2aQB-Fv{_qm zo#c7-=FX0CfG44%)<+(1 za7(VXRJ98_`+{21Sv(z&aHwMQXBBV^BgMlmr0vXNUFz6WDyijpF8}O^Y?IqWKuqCO zQ^hj)Tf84MLyzJCrX!@0Qw19gYh4LgdYGyRf$11wp~3~JW!>D)AD)@X4mh3ajK_mi zFsxl8gvRR11=NITyy3*FtS&&Ag0J9d5{kBf3K(~SwOw9dwLIYEuE6$|Z(`G}G8kv0 zd{_}F@1uVAlhto2_&aln0=oHib8t)1-ox4jKB}ws%j^-xr+cia7b+gipo)D%NC{FV z+=8+c-u!e`KbpHmEE;Xdz{82L4?sY&=d{dF0T}T$MD8Fb2p^#-Ve_6LC^49N10szA zZ*8Q;=4!qm3D0xTb&Yc|FJ#2>ZI$7FcSdUihbBz4*Z`R^DWoe}4I>7_4j*cB(#^{u z{3l)+oCYqh1L>^pYVmjWzrX{%`hgCbU;~n9s=rh<4NORXf5eLa+fRM`{$T2#-@c(K z$sf*O$i+%MGNHjX@q4x66L-m=aNq$5c-|nv`-+8%S#e;!QY1@7Yk+EQ~WtdQVeN<_RQEW zSzuxihFJkbSloUCS{6N$TF}zmFW`O8Sx1nAtV`89dmXinML4Y0?NXLl@7C?ekMXyf znIXUO#7bM+X~IgY0t^EjNeqIl2Y0$t@@%usvT}k=8Ag*Xm<}i_y2FieRZrqY9_ES{ zq-Zo^J~9v2BeY>zkyfR~YzU9BYv&laWrEGS!4r@xpRWJWWx>g`bVtURDVJ|33p=^G z)j5Gmb6lkW<@5^KriW1)S{~qGXqF2+*ucVt<3)l#=prH>aZcP4>u{)=iP?cLrlBiQ zx`3(46Jvc1-?3|Bgi4^Z`gX4JRE6dT%$VaC5wdqospPAzK`Y=B>yvw+C`eh76FIK{ zeE@laWV1|A2DdEhvGY9u-8$kV1(>^p@uxky1Dap{0H{6iL z7$1o*1p#M$aIT;QRvXHuo$R6QnjsKasvdfXtPO%GA?fZ(&aE5IZ-wN>dOC0rv#%)B)RTnV6h#zILK`2T z9Qi7|@J{+lqPx6)Olr&*Z{NVo?3Zs}P(t(bw_m>g47RS{ynb{^R%icku_UZ8*+(9QM!$U|;4Da`2!a)-l1I)Wp(frvW-@_Nq21vtarBVS$ncX2?U6T6>qRY^WU*6(;T4;0Lga0k4pDrCsZw(S~YRM&(VLXIpTr0HGxa zk#vDoD{dvzBCT}Q;qZYU#+DB5nvptJ>L7An1eZI~muMh@IlVw8IA?Ci00rfT0dZk; zyt|A6caPY zm*AnWmAud$r!m-2z^o&OMt+qxIg|AA98V9(SqV8>UG+8cHHH!}BOaousYg>c+S8t# z(7;%ew|S;J8u}K~qC)=4+T;nF#CKkB)eD)Os=R4nPA`riVy9rUd!z+mjQfbBhz~cq zrH{%>kTv^I)xu4T@BpgZ@x)ykt7tqG4|4@b!LmS0C)7>`Uvg-_;Um~E@-PM3r$c$; z?1vyeLjKM3%czF#2|~D))u7D&ewLqOhrQ2E1}FWbkR&U+|3%i8JT-D}44%`Y<)T^NHjxta+=7Wv zn5SN)GVO)~C^+@+%&moo2>(`1K%f%1U5e_k?=7oDiKm+$+^W+gFCn?q#9Jcw zGHYja+eTwM7J}&;DWBG0(s#QWa$3d4SzfwHJL%?{f<6_)XrYX19sP{xxZA^!#|O0M z*}k}0%BEA>$3>mg~moPij&)nN;93z~^=9W_6QlonBp~q5hJLa~6r64Fl%~|iQ zbMm)dwL6+J&}?w*?o-FXq44xq60E{utau5O@gCUT1*b`S*8y*;7VesPNBij66 zJ3@11a`!&P5Qv-r==*a`k-uj!mQNRTw16s*osLNmR-SkzkXwBJ(?9*xfPes$7R=g5 zNW-UewJm}Lh(f*Qgb+1$UL15UuF_rdZKah8^j2Umlf1lSSqEw60(?xI>w`M0j|Y>`eQ=M`^ob^h2ORmKmeE2>H>a~L-wFGAYZ0c@!lLP`*q3WU)j*+olhZt;nI8CZ-D)hXI# zU615Qo!*=?U=U4k^>~=tvts%U&FUxVvFLGsXb4R1j zp7?{6M?yhyyC^^yNw95{SZu=;L7cWn$42V9Jzli6FK7{CKwHHdeGILSP?gb*0~=_p zU2faSHY{)Y)Sj%|N2xnuNQU3eG&$;qq55?+$DA1|KlZvGEddDH=!S+Ima4-pT5Bgp zw#%88;s|VqW?rWju+rC#)&-I!+bretyRox0B?B?RC(n>-!1TTJ25gCT4wG2)@vgKP zFwqefBL{g?|pJsPSnw0FnY6*!CW)l|#ym0yL-+~QIQ zsE|@#Zq#R_-$ew8-1aqD!*`U|Fy6>^6&9s^=T499EIBdAq7IrQBfc?0Xlu_upX4Ph zl1w%uDPilg5=urr(lIr$eB^B=u^^!7!N4)olt_h+Tqin=}CJ3^=ce>rJKRIwLU2d!XRk z7M@zZ>VkaMv7mWqt$Qf>4p6dcHlpp6qp|0(Ro-F}%Bq7(I`jxu0XeEBUsGxURvW40 z0SkYO*ZeTgoO)3qDoe^}qs^vq!^w)YVr=uW2P$lqt;By}*SCC7H)L=gu5jqUEV6FV zIgqV|d#Qe74*sywPFqEhY2L{Mupg~q>f0bW|ejfGK4!Rnpv#6Tebc}ao-KbMh znmIX{wZI?yM0h;xz;Y7cOWH@G3Uve}4G2jtte9T}@2S^~aTs3I;X*F3hN$i;@hJo| zAap>!F~umMda<$^t9~_*p@~|d=9ED#TY0kRD@ydR2O4yiO8N!0Nq$KSf(0rksCb-~ za5Uxx2CZ&js;)Gplu|_#)y%`bt^v=YooQJfMlcn;5(fInvqlvqLDs1`>uFYsm?Geg zA(So#*-DMb?VlVZXc`Pw0xz`Vj-VZRB=2$z=xzULGJFe*y@h#IqRV^=63#QZDG>U6{w&MZ6+_oyicq8*OhetbJUakStDc55_(EsYMhEJ}kPc-L z7bsuKqQ_9z5p-L-QQ>TwX7=e6cBZll%*ycSP4dZch@?bp=mxpbxH3WnrnXMGe+Zh@bEU+8l2Ud0{YsYex z2L;`RyvpZDr@|FhoY8zxH4Bz-0PXooqne1InmCUqC&I)Tw#KW5(!s;q^t_li5?)wG zZq1NQ*K+`|s??&gh!!Nu-!_=D0xUXpa+hx<-%~9m-B4k9$kM(iA#Yy6fiMjF!i;KJ z*MQ6Th%B>vcP&%1hZ@>mwDy|}+3oB#xb^lTIJAR%s@c&XZKXJ9UyCee8|eLZb`KdH zR8iGlp*|@B%z~L#k12Gk?F95U27yiX+$l=}#q!)Bb21v~T&EN3v5?K#4)=nSQef6p zrDN&>8&l8^(n(mZX{DKvB-!ewYtRF(qa4Mfi2$KN>y%Dx8P+l=yrqTA6>VRoTrisk z$dc@VH)E!5jj|oeqHMrvbTg&_ZBgxTmQF?JWZ}$-0@g-qab#9yEXCz-&24Hf1#DCy zk9F&PC+Otf$*lv2KM*ugBP_~`e4VRZ4pQP_#(h~{(?TtzJscx#7^<@+x;)6Tcob-A`8NaJCxaO-Ub#8Bh zm0gH29nnW?#JtLAB{=b@xD}j2Yh1{FLG2ul1@TEGnO4y4>Qdo9ld##F@WIrUSv@~&8#x&Qn{T_T8v`kvG>lqSPX&q}{FW*OYA4J?1@?Oc8 z!deg7(ICH9*0gzel9M2(z&Wu%RW+_uc!au;e<+0nL!Hf#xd=BKBP81cveVVEWpuZX zc2RWzra;bD(HX;$E-k0tlAJSGj@f%JFAoAHX3{EQS3YHnpCWogAdvtD(5utcehVh3 zL}0x}whkTvkNb*&Z!h@yQZ$(~Rc_h#+ESP*s3Vi|NH_V(@WX1Fno)blrc!OYE?E>G zY;t**US0%l+(DbPhDeq!c~ao82}JJFh{DV}hb=UAE5YFiBU?o*pj=ja8ku`|^Du^T zv=&IBAe@m4Ad{o8p}=iZu$=*R;L`7hCk%4o&N31Y&qWxD8u?!O?S+nsJ-U-Sf0De| zlN*R*9-(wW`=k3vrJU6M@*S>-X+Adf9_F3h?pBmtT%QBw5&^D)p*!rx0j~4+B&K-x!m`(R(I$RM_R^9gD;O zy9Ij%)E=@uP;l#hS`f&S5RNFJlW9tmI#{S}$yRRUJ`;cwp9Eb!iZ=TpiMnaM6y)@z zqqxR4v3dFKkj)8K4`l-g$U?vCcbKd|n*owBgt5yuIebG$L^i|VcZ@o{rlTRtTPgR! z`^iQan_kf!NiDqe6-9I~P;PeT*%|(3flug;AA{5~Zn?&*X^06gGAk~n1gC4r)o^b! zxbU`WV@iRR5|vQjj%^u%vb&IjS9JAHA;uu9#XKCofbv#W0WW9aE8$aWZd3^ zkv|Tpx8P=y-?{1AVy%-as2^p|>P5|l1eo%Rv7=OHgtg7;rdr6qD$ugr+ZD}qhv5K$ z8E;ycJXQotM-dOT>?r?(lg7|$Pn_Ld*q|E7QRT5L$NwSx2ufGI_!pcRy-$aDN96j= zpZgg8Ute(1(A#e?H~Pcd|4HBT^Ve@e(vf`k`ir0+K2M+d-*W!;M})!2-DD5c6Luh; z&nd7}UMneR^z5-8VMmX+KLaDdY={(L;7uR=q!L^JdevUT%r(^USm1}?wN?s=5zUnj zY)?e&l&!KJ7?Qm{9oz^onJR=eE4x$ncZ9+rm&jtR(^m;%fJab@hH+o!wegH%?RUTc zLy+mP!{xyKOV}`7TZGA19xR0Kzjc5t3}0V1xDMn#c3(DSYZJu)k8nnl`3P&7jyq?O z{Xq@lO0qrU2KyD>v`YlBVuN7hTG1>C{ur`|p^b<}XFSqvTPy%_{|_A5Y`K~&wXkKE zI@oQ`s?wi&spcpzTuyCRZ4f~ zZV;U~5CZ?t+KL~-W{I?k-G?aC7V6qXB=Tp=zp`+;_gMxnc)W*4+Q`(zWzw<1LUyOM zfHY-A_AbB|Fo`!xSVp-w%tr&3;nan|Mm-(Y;c*OTjt~=c$l(|Rt|TG?mgp*wd4g@Z z=``e(82zZLoCyiJJ!>zikt*)xcQUC*c^9%8ZiFS(L%rNFd>~%eF2tXUK7E8wcZ*$jD6 zhnX3s2e3o5QWpbspf_<8U3RXg6ztWm) zIp*718PfV4k94*o)E1TsD6_K8$2dhB9_gJb8jZNrwbqx~qDe8P;9K4+RcT)hd|)cX ztT$*_hqiRLj#3T6(+M06$|#HDPBClAUoFSt9~oE|K-P7E>*}T+s12EcD-Y8_HP3^K zvGP#%0x`h8D`3Fq%`w$n-E2Jp)2K=-hsN_Q_>dn=mZpVWSII>dv&fLWGaSw|SIrKa zR$deQ3Sk@3Dzx`1%Qpl~uy2#gZU{Ks*KeQO z>5qS)2k&cHet%s38pM}$@Hqg@r^v9Ck3ZLdmrve)8*J+I1RL+78CDwpFi$gUxgA`f z^!UEWU8)T!M5XB!HTY@^o&L}a{!mlhBW67&%ehClVY;^v-9ysj&zr`C^ftt~Yi#So zXFb?5(~+9*TH|C^&c)y-!&Di#A(KVEr2!)K*~s9&+77529&9rh>vMqu1@el)#fGF#-J$0#LxXfSUtCiL%q! z=a;Qv(pD-IGwF(!MFv^W5H8&F5gr;IuBS9lusos6vP(gJw}EoiBo=22XvVmOb4yHV zPzkOx`E1CdJT^G!#nV$Y>q@p!%?iWB`pB!pqA0Jo)PvKqL+h5VXJ|gm3@x7MB@g9m zh!^u3MR~~)PQ+V~j%Xmmoy4d6c(?uyYW=V(buY-@{4G;r)R@Ox9wU_3t?Xwlm{(8`R&-Du!eD-Xtv3DAj-N(Pb2c?>jey=`Zm#l9!6=_< z*hARToSnZ_F;Mjvcq#Oxz$7cOTO)Y4bf(JSk3eH48&$2m;d; zWYif$1@2~WoViq>WYhU0L6-*h^J{!C`~rW3j|NKQ7J$P@_!4d#Em(EKK^F)cF(#9+{3#NC(bY)*)L?BQ&sZU1ZXrS2b!_-Sdf-+Msu` z(Q-?IVhp&H$S$yqQ!Wn-^Az7{Ze3SvH5OE{SXZF7fyr17)kE*WysPJfXv<}YM)Gtk zDCiw3lsN`BP@^Ht!;Q?ssTJdLl)1>tHUq!aThy|pv1^b`$%=F=PBsHsBDWQ2*+63* zPj4T0|y6o7q1kx*GcL1Gcwwiww{{0X2;4i}W|J9f%AAI2Ggdg>~yVbwvZ1&yz zACIp-zJ(*6Ur_b(9aS&K*S~)Hr@s&X*2W}#{+DmReEm8kx$pO%zx^x!yU*S}4{txe zBoF;F*XB3$4*40P^X$9)52$Var?GIs*w z#1EQgIxm5P>~s+&y=vs;K6`o(DbV5zbR2@Li1`6pMwNzU7}CJJPPQv}s}?Fe-z*U} z8K=I#nmI`H9)Q|W&&RPTmtJAL!!`cNKMu5$}9czj&fu9a1;y9wyr0x{y zYPR>R+tv(L*|flyLd5%KNu0C9E8WlX#G!88=wnSAV>&@sOg9NnI9;Y-b4R%3n~@=` z?m3%SdN>rBY5LN&h=Op!aB4CYhtj8!oqTGm;!qOH@`ik$(d+u<$|n3$$#QQ{4uF)C zH{|NbE1LCwp>n!7LWkW3OQpkuyQWPSH9NYhV{5;V!Y1#<^=fT5xml3T0~l8$!eUAC z9<0aQ&Sld|V^>!)rYnKN$~lKB2w}(&rRpp(U6)11kR8}V0A*}Nfmk!QxxH)$;^V2( z$o;cuTU%c%ZoT`xW1MNP^CXp}MHRQ5TXH3-GSp-SB#}L8GrFlTJ?fN*?yz^GA>R~8 z-4;OuGbtfTlC{E}+SYu1J{Srw-@@HM!)#*CO9+E#yN1*8fz@mK)+~`c5`eRS` zSt-i_>l&(xcKjii0g<~XaV~@Gb@L__89YP@PLpApyBf`@|YdsOE7trlSZ|qFgniO+RK{8-ox4FOVb+$Vs zzJdl^?UyTJEd?D87+7deaKaj}v9(q8pa7Trg|FarqZyUXP$evM+DCPljxaLnL4Jns z3Vr}-(yhid7{dd#u-t>kA}MceCjfy==&cBx?g22$V`pcO!?&Fr)H+Gu&P$4b$O(!* zr#Qo>$7Y8W1|4JTAx6+(0a<1qT09Mq8R#dlS0&V9c}|iT9sEpxy7=+K)XTyHRkpGMGdyX$o^xF+wY|{ z>?p-c&^6<Ilj#}*J9cO%Xh?M#GvVlQEo^6a?hSzaZUIJ?;>(s3^2QJ$SgNH>{}E$ z9YCm)O|mT8%QU?+rI_ML8ZE!vn%NsLl@p9gDvFO)j3)1!0h7mJ28;zJ5%=tLTIDt( ziD=d&-x>))AY_}Lifnj>c{L}f+9i0b%=9Tq%8;=_2Mh*4Qg+G>NPjlj;s!yp zIf*Vkh&?A`S$U>BT%bp4t4pKDK*cn$!`vc!DEfd7U8#+dCV9Hj%VRbs7(drrrD@6X znqJyH8&M!+p=JN_i68GkBWW|(! zuEnK(*wd$``P4+A<(k7WaA{D6nH5`u;jo$NH?VLyuvIM^aA~u-x^kFRXNwY~VT0dT z0EC8FfTj2A}$0d#Tvck&c87FeG$ucQE>4N6bhi=*`|H1p5?`8gK|23t|Qk z8|Dbi&}#S3+DwocwWIRNO01fsMQ?=`c|6Mn#dgFAtC~4pH=+ZL8auw&vkeU#RC(Sa zzj+^HPlgd5&GukmKLtWaF?d(cKybt?MQ9US; ztxONk0vixS8S>(hzAbw(#0>;C#ks|_ha+((8DqrW_Ad=hHlbPG7JCqoQYc=?dg}X> z=@SQQ4dhuRpq4|p(g#`?$z1JCMe_-s9ZCq=j%b8zcK3ZHG1D=BRYyW{d_f?@sE3m= z&|HmgkeI;Mhm!J^35$8OxjG^dfASN<0q3^NpF2JSh2Ov5RXTanenuCT&t8oT^u^mh zg}2{*uTwPnR^NXf-ae+l{Il@(HKu7_1qjU1RQlcj|G(kSeL{bx0Jc0m-n()VY;oHw zIzVB?O@_32+^NgTKrF&CdZi=_#;fQd&@66bKGZ$rBa(EUG?_*5Y5sg0q!@<>3)C3x zDHjQ08Yct5byJU)RZx}jpJ%P1PloKt@FZl9Bj8yPOMy-m){oxJYiEr>nJ)qwWT{Qp zj_mW)R04a=pMh1%Dv(aj1Q1nfowhih;WqMv}`9*1Gi{T$c5f9??B^HHhv{z(}TVD%q4)no;HK6^>A)q~X hSpdDrox+^4cgglrz7rRzDPZO0{{oPT@#kp3FaTBF64n3! literal 0 HcmV?d00001 diff --git a/src/diffusers/pipelines/consisid/util_clip/constants.py b/src/diffusers/pipelines/consisid/util_clip/constants.py new file mode 100644 index 000000000000..a670bb3fab44 --- /dev/null +++ b/src/diffusers/pipelines/consisid/util_clip/constants.py @@ -0,0 +1,2 @@ +OPENAI_DATASET_MEAN = (0.48145466, 0.4578275, 0.40821073) +OPENAI_DATASET_STD = (0.26862954, 0.26130258, 0.27577711) diff --git a/src/diffusers/pipelines/consisid/util_clip/eva_vit_model.py b/src/diffusers/pipelines/consisid/util_clip/eva_vit_model.py new file mode 100644 index 000000000000..51db88cf0c7b --- /dev/null +++ b/src/diffusers/pipelines/consisid/util_clip/eva_vit_model.py @@ -0,0 +1,548 @@ +# -------------------------------------------------------- +# Adapted from https://github.com/microsoft/unilm/tree/master/beit +# -------------------------------------------------------- +import math +import os +from functools import partial +import torch +import torch.nn as nn +import torch.nn.functional as F +try: + from timm.models.layers import drop_path, to_2tuple, trunc_normal_ +except: + from timm.layers import drop_path, to_2tuple, trunc_normal_ + +from .transformer import PatchDropout +from .rope import VisionRotaryEmbedding, VisionRotaryEmbeddingFast + +if os.getenv('ENV_TYPE') == 'deepspeed': + try: + from deepspeed.runtime.activation_checkpointing.checkpointing import checkpoint + except: + from torch.utils.checkpoint import checkpoint +else: + from torch.utils.checkpoint import checkpoint + +try: + import xformers + import xformers.ops as xops + XFORMERS_IS_AVAILBLE = True +except: + XFORMERS_IS_AVAILBLE = False + +class DropPath(nn.Module): + """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). + """ + def __init__(self, drop_prob=None): + super(DropPath, self).__init__() + self.drop_prob = drop_prob + + def forward(self, x): + return drop_path(x, self.drop_prob, self.training) + + def extra_repr(self) -> str: + return 'p={}'.format(self.drop_prob) + + +class Mlp(nn.Module): + def __init__( + self, + in_features, + hidden_features=None, + out_features=None, + act_layer=nn.GELU, + norm_layer=nn.LayerNorm, + drop=0., + subln=False, + + ): + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + self.fc1 = nn.Linear(in_features, hidden_features) + self.act = act_layer() + + self.ffn_ln = norm_layer(hidden_features) if subln else nn.Identity() + + self.fc2 = nn.Linear(hidden_features, out_features) + self.drop = nn.Dropout(drop) + + def forward(self, x): + x = self.fc1(x) + x = self.act(x) + # x = self.drop(x) + # commit this for the orignal BERT implement + x = self.ffn_ln(x) + + x = self.fc2(x) + x = self.drop(x) + return x + +class SwiGLU(nn.Module): + def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.SiLU, drop=0., + norm_layer=nn.LayerNorm, subln=False): + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + + self.w1 = nn.Linear(in_features, hidden_features) + self.w2 = nn.Linear(in_features, hidden_features) + + self.act = act_layer() + self.ffn_ln = norm_layer(hidden_features) if subln else nn.Identity() + self.w3 = nn.Linear(hidden_features, out_features) + + self.drop = nn.Dropout(drop) + + def forward(self, x): + x1 = self.w1(x) + x2 = self.w2(x) + hidden = self.act(x1) * x2 + x = self.ffn_ln(hidden) + x = self.w3(x) + x = self.drop(x) + return x + +class Attention(nn.Module): + def __init__( + self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., + proj_drop=0., window_size=None, attn_head_dim=None, xattn=False, rope=None, subln=False, norm_layer=nn.LayerNorm): + super().__init__() + self.num_heads = num_heads + head_dim = dim // num_heads + if attn_head_dim is not None: + head_dim = attn_head_dim + all_head_dim = head_dim * self.num_heads + self.scale = qk_scale or head_dim ** -0.5 + + self.subln = subln + if self.subln: + self.q_proj = nn.Linear(dim, all_head_dim, bias=False) + self.k_proj = nn.Linear(dim, all_head_dim, bias=False) + self.v_proj = nn.Linear(dim, all_head_dim, bias=False) + else: + self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False) + + if qkv_bias: + self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) + self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) + else: + self.q_bias = None + self.v_bias = None + + if window_size: + self.window_size = window_size + self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 + self.relative_position_bias_table = nn.Parameter( + torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH + # cls to token & token 2 cls & cls to cls + + # get pair-wise relative position index for each token inside the window + coords_h = torch.arange(window_size[0]) + coords_w = torch.arange(window_size[1]) + coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww + coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww + relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww + relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 + relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 + relative_coords[:, :, 1] += window_size[1] - 1 + relative_coords[:, :, 0] *= 2 * window_size[1] - 1 + relative_position_index = \ + torch.zeros(size=(window_size[0] * window_size[1] + 1, ) * 2, dtype=relative_coords.dtype) + relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww + relative_position_index[0, 0:] = self.num_relative_distance - 3 + relative_position_index[0:, 0] = self.num_relative_distance - 2 + relative_position_index[0, 0] = self.num_relative_distance - 1 + + self.register_buffer("relative_position_index", relative_position_index) + else: + self.window_size = None + self.relative_position_bias_table = None + self.relative_position_index = None + + self.attn_drop = nn.Dropout(attn_drop) + self.inner_attn_ln = norm_layer(all_head_dim) if subln else nn.Identity() + # self.proj = nn.Linear(all_head_dim, all_head_dim) + self.proj = nn.Linear(all_head_dim, dim) + self.proj_drop = nn.Dropout(proj_drop) + self.xattn = xattn + self.xattn_drop = attn_drop + + self.rope = rope + + def forward(self, x, rel_pos_bias=None, attn_mask=None): + B, N, C = x.shape + if self.subln: + q = F.linear(input=x, weight=self.q_proj.weight, bias=self.q_bias) + k = F.linear(input=x, weight=self.k_proj.weight, bias=None) + v = F.linear(input=x, weight=self.v_proj.weight, bias=self.v_bias) + + q = q.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) # B, num_heads, N, C + k = k.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) + v = v.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) + else: + + qkv_bias = None + if self.q_bias is not None: + qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias)) + + qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) + qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) # 3, B, num_heads, N, C + q, k, v = qkv[0], qkv[1], qkv[2] + + if self.rope: + # slightly fast impl + q_t = q[:, :, 1:, :] + ro_q_t = self.rope(q_t) + q = torch.cat((q[:, :, :1, :], ro_q_t), -2).type_as(v) + + k_t = k[:, :, 1:, :] + ro_k_t = self.rope(k_t) + k = torch.cat((k[:, :, :1, :], ro_k_t), -2).type_as(v) + + if self.xattn: + q = q.permute(0, 2, 1, 3) # B, num_heads, N, C -> B, N, num_heads, C + k = k.permute(0, 2, 1, 3) + v = v.permute(0, 2, 1, 3) + + x = xops.memory_efficient_attention( + q, k, v, + p=self.xattn_drop, + scale=self.scale, + ) + x = x.reshape(B, N, -1) + x = self.inner_attn_ln(x) + x = self.proj(x) + x = self.proj_drop(x) + else: + q = q * self.scale + attn = (q @ k.transpose(-2, -1)) + + if self.relative_position_bias_table is not None: + relative_position_bias = \ + self.relative_position_bias_table[self.relative_position_index.view(-1)].view( + self.window_size[0] * self.window_size[1] + 1, + self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH + relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww + attn = attn + relative_position_bias.unsqueeze(0).type_as(attn) + + if rel_pos_bias is not None: + attn = attn + rel_pos_bias.type_as(attn) + + if attn_mask is not None: + attn_mask = attn_mask.bool() + attn = attn.masked_fill(~attn_mask[:, None, None, :], float("-inf")) + + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + + x = (attn @ v).transpose(1, 2).reshape(B, N, -1) + x = self.inner_attn_ln(x) + x = self.proj(x) + x = self.proj_drop(x) + return x + + +class Block(nn.Module): + + def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., + drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm, + window_size=None, attn_head_dim=None, xattn=False, rope=None, postnorm=False, + subln=False, naiveswiglu=False): + super().__init__() + self.norm1 = norm_layer(dim) + self.attn = Attention( + dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, + attn_drop=attn_drop, proj_drop=drop, window_size=window_size, attn_head_dim=attn_head_dim, + xattn=xattn, rope=rope, subln=subln, norm_layer=norm_layer) + # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here + self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() + self.norm2 = norm_layer(dim) + mlp_hidden_dim = int(dim * mlp_ratio) + + if naiveswiglu: + self.mlp = SwiGLU( + in_features=dim, + hidden_features=mlp_hidden_dim, + subln=subln, + norm_layer=norm_layer, + ) + else: + self.mlp = Mlp( + in_features=dim, + hidden_features=mlp_hidden_dim, + act_layer=act_layer, + subln=subln, + drop=drop + ) + + if init_values is not None and init_values > 0: + self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True) + self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True) + else: + self.gamma_1, self.gamma_2 = None, None + + self.postnorm = postnorm + + def forward(self, x, rel_pos_bias=None, attn_mask=None): + if self.gamma_1 is None: + if self.postnorm: + x = x + self.drop_path(self.norm1(self.attn(x, rel_pos_bias=rel_pos_bias, attn_mask=attn_mask))) + x = x + self.drop_path(self.norm2(self.mlp(x))) + else: + x = x + self.drop_path(self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias, attn_mask=attn_mask)) + x = x + self.drop_path(self.mlp(self.norm2(x))) + else: + if self.postnorm: + x = x + self.drop_path(self.gamma_1 * self.norm1(self.attn(x, rel_pos_bias=rel_pos_bias, attn_mask=attn_mask))) + x = x + self.drop_path(self.gamma_2 * self.norm2(self.mlp(x))) + else: + x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias, attn_mask=attn_mask)) + x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) + return x + + +class PatchEmbed(nn.Module): + """ Image to Patch Embedding + """ + def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): + super().__init__() + img_size = to_2tuple(img_size) + patch_size = to_2tuple(patch_size) + num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) + self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) + self.img_size = img_size + self.patch_size = patch_size + self.num_patches = num_patches + + self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) + + def forward(self, x, **kwargs): + B, C, H, W = x.shape + # FIXME look at relaxing size constraints + assert H == self.img_size[0] and W == self.img_size[1], \ + f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." + x = self.proj(x).flatten(2).transpose(1, 2) + return x + + +class RelativePositionBias(nn.Module): + + def __init__(self, window_size, num_heads): + super().__init__() + self.window_size = window_size + self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 + self.relative_position_bias_table = nn.Parameter( + torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH + # cls to token & token 2 cls & cls to cls + + # get pair-wise relative position index for each token inside the window + coords_h = torch.arange(window_size[0]) + coords_w = torch.arange(window_size[1]) + coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww + coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww + relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww + relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 + relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 + relative_coords[:, :, 1] += window_size[1] - 1 + relative_coords[:, :, 0] *= 2 * window_size[1] - 1 + relative_position_index = \ + torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype) + relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww + relative_position_index[0, 0:] = self.num_relative_distance - 3 + relative_position_index[0:, 0] = self.num_relative_distance - 2 + relative_position_index[0, 0] = self.num_relative_distance - 1 + + self.register_buffer("relative_position_index", relative_position_index) + + def forward(self): + relative_position_bias = \ + self.relative_position_bias_table[self.relative_position_index.view(-1)].view( + self.window_size[0] * self.window_size[1] + 1, + self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH + return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww + + +class EVAVisionTransformer(nn.Module): + """ Vision Transformer with support for patch or hybrid CNN input stage + """ + def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, + num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., + drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=None, patch_dropout=0., + use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False, rope=False, + use_mean_pooling=True, init_scale=0.001, grad_checkpointing=False, xattn=False, postnorm=False, + pt_hw_seq_len=16, intp_freq=False, naiveswiglu=False, subln=False): + super().__init__() + + if not XFORMERS_IS_AVAILBLE: + xattn = False + + self.image_size = img_size + self.num_classes = num_classes + self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models + + self.patch_embed = PatchEmbed( + img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) + num_patches = self.patch_embed.num_patches + + self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) + # self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) + if use_abs_pos_emb: + self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) + else: + self.pos_embed = None + self.pos_drop = nn.Dropout(p=drop_rate) + + if use_shared_rel_pos_bias: + self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.patch_shape, num_heads=num_heads) + else: + self.rel_pos_bias = None + + if rope: + half_head_dim = embed_dim // num_heads // 2 + hw_seq_len = img_size // patch_size + self.rope = VisionRotaryEmbeddingFast( + dim=half_head_dim, + pt_seq_len=pt_hw_seq_len, + ft_seq_len=hw_seq_len if intp_freq else None, + # patch_dropout=patch_dropout + ) + else: + self.rope = None + + self.naiveswiglu = naiveswiglu + + dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule + self.use_rel_pos_bias = use_rel_pos_bias + self.blocks = nn.ModuleList([ + Block( + dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, + drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, + init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None, + xattn=xattn, rope=self.rope, postnorm=postnorm, subln=subln, naiveswiglu=naiveswiglu) + for i in range(depth)]) + self.norm = nn.Identity() if use_mean_pooling else norm_layer(embed_dim) + self.fc_norm = norm_layer(embed_dim) if use_mean_pooling else None + self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() + + if self.pos_embed is not None: + trunc_normal_(self.pos_embed, std=.02) + + trunc_normal_(self.cls_token, std=.02) + # trunc_normal_(self.mask_token, std=.02) + + self.apply(self._init_weights) + self.fix_init_weight() + + if isinstance(self.head, nn.Linear): + trunc_normal_(self.head.weight, std=.02) + self.head.weight.data.mul_(init_scale) + self.head.bias.data.mul_(init_scale) + + # setting a patch_dropout of 0. would mean it is disabled and this function would be the identity fn + self.patch_dropout = PatchDropout(patch_dropout) if patch_dropout > 0. else nn.Identity() + + self.grad_checkpointing = grad_checkpointing + + def fix_init_weight(self): + def rescale(param, layer_id): + param.div_(math.sqrt(2.0 * layer_id)) + + for layer_id, layer in enumerate(self.blocks): + rescale(layer.attn.proj.weight.data, layer_id + 1) + if self.naiveswiglu: + rescale(layer.mlp.w3.weight.data, layer_id + 1) + else: + rescale(layer.mlp.fc2.weight.data, layer_id + 1) + + def get_cast_dtype(self) -> torch.dtype: + return self.blocks[0].mlp.fc2.weight.dtype + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=.02) + if m.bias is not None: + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.LayerNorm): + nn.init.constant_(m.bias, 0) + nn.init.constant_(m.weight, 1.0) + + def get_num_layers(self): + return len(self.blocks) + + def lock(self, unlocked_groups=0, freeze_bn_stats=False): + assert unlocked_groups == 0, 'partial locking not currently supported for this model' + for param in self.parameters(): + param.requires_grad = False + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.grad_checkpointing = enable + + @torch.jit.ignore + def no_weight_decay(self): + return {'pos_embed', 'cls_token'} + + def get_classifier(self): + return self.head + + def reset_classifier(self, num_classes, global_pool=''): + self.num_classes = num_classes + self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() + + def forward_features(self, x, return_all_features=False, return_hidden=False, shuffle=False): + + x = self.patch_embed(x) + batch_size, seq_len, _ = x.size() + + if shuffle: + idx = torch.randperm(x.shape[1]) + 1 + zero = torch.LongTensor([0, ]) + idx = torch.cat([zero, idx]) + pos_embed = self.pos_embed[:, idx] + + cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks + x = torch.cat((cls_tokens, x), dim=1) + if shuffle: + x = x + pos_embed + elif self.pos_embed is not None: + x = x + self.pos_embed + x = self.pos_drop(x) + + # a patch_dropout of 0. would mean it is disabled and this function would do nothing but return what was passed in + if os.getenv('RoPE') == '1': + if self.training and not isinstance(self.patch_dropout, nn.Identity): + x, patch_indices_keep = self.patch_dropout(x) + self.rope.forward = partial(self.rope.forward, patch_indices_keep=patch_indices_keep) + else: + self.rope.forward = partial(self.rope.forward, patch_indices_keep=None) + x = self.patch_dropout(x) + else: + x = self.patch_dropout(x) + + rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None + hidden_states = [] + for idx, blk in enumerate(self.blocks): + if (0 < idx <= 20) and (idx % 4 == 0) and return_hidden: + hidden_states.append(x) + if self.grad_checkpointing: + x = checkpoint(blk, x, (rel_pos_bias,)) + else: + x = blk(x, rel_pos_bias=rel_pos_bias) + + if not return_all_features: + x = self.norm(x) + if self.fc_norm is not None: + return self.fc_norm(x.mean(1)), hidden_states + else: + return x[:, 0], hidden_states + return x + + def forward(self, x, return_all_features=False, return_hidden=False, shuffle=False): + if return_all_features: + return self.forward_features(x, return_all_features, return_hidden, shuffle) + x, hidden_states = self.forward_features(x, return_all_features, return_hidden, shuffle) + x = self.head(x) + if return_hidden: + return x, hidden_states + return x diff --git a/src/diffusers/pipelines/consisid/util_clip/factory.py b/src/diffusers/pipelines/consisid/util_clip/factory.py new file mode 100644 index 000000000000..ced8999997bf --- /dev/null +++ b/src/diffusers/pipelines/consisid/util_clip/factory.py @@ -0,0 +1,517 @@ +import json +import logging +import os +import pathlib +import re +from copy import deepcopy +from pathlib import Path +from typing import Optional, Tuple, Union, Dict, Any +import torch + +from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD +from .model import CLIP, CustomCLIP, convert_weights_to_lp, convert_to_custom_text_state_dict,\ + get_cast_dtype +from .openai import load_openai_model +from .pretrained import is_pretrained_cfg, get_pretrained_cfg, download_pretrained, list_pretrained_tags_by_model +from .transform import image_transform +from .tokenizer import HFTokenizer, tokenize +from .utils import resize_clip_pos_embed, resize_evaclip_pos_embed, resize_visual_pos_embed, resize_eva_pos_embed + + +_MODEL_CONFIG_PATHS = [Path(__file__).parent / f"model_configs/"] +_MODEL_CONFIGS = {} # directory (model_name: config) of model architecture configs + + +def _natural_key(string_): + return [int(s) if s.isdigit() else s for s in re.split(r'(\d+)', string_.lower())] + + +def _rescan_model_configs(): + global _MODEL_CONFIGS + + config_ext = ('.json',) + config_files = [] + for config_path in _MODEL_CONFIG_PATHS: + if config_path.is_file() and config_path.suffix in config_ext: + config_files.append(config_path) + elif config_path.is_dir(): + for ext in config_ext: + config_files.extend(config_path.glob(f'*{ext}')) + + for cf in config_files: + with open(cf, "r", encoding="utf8") as f: + model_cfg = json.load(f) + if all(a in model_cfg for a in ('embed_dim', 'vision_cfg', 'text_cfg')): + _MODEL_CONFIGS[cf.stem] = model_cfg + + _MODEL_CONFIGS = dict(sorted(_MODEL_CONFIGS.items(), key=lambda x: _natural_key(x[0]))) + + +_rescan_model_configs() # initial populate of model config registry + + +def list_models(): + """ enumerate available model architectures based on config files """ + return list(_MODEL_CONFIGS.keys()) + + +def add_model_config(path): + """ add model config path or file and update registry """ + if not isinstance(path, Path): + path = Path(path) + _MODEL_CONFIG_PATHS.append(path) + _rescan_model_configs() + + +def get_model_config(model_name): + if model_name in _MODEL_CONFIGS: + return deepcopy(_MODEL_CONFIGS[model_name]) + else: + return None + + +def get_tokenizer(model_name): + config = get_model_config(model_name) + tokenizer = HFTokenizer(config['text_cfg']['hf_tokenizer_name']) if 'hf_tokenizer_name' in config['text_cfg'] else tokenize + return tokenizer + + +# loading openai CLIP weights when is_openai=True for training +def load_state_dict(checkpoint_path: str, map_location: str='cpu', model_key: str='model|module|state_dict', is_openai: bool=False, skip_list: list=[]): + if is_openai: + model = torch.jit.load(checkpoint_path, map_location="cpu").eval() + state_dict = model.state_dict() + for key in ["input_resolution", "context_length", "vocab_size"]: + state_dict.pop(key, None) + else: + checkpoint = torch.load(checkpoint_path, map_location=map_location) + for mk in model_key.split('|'): + if isinstance(checkpoint, dict) and mk in checkpoint: + state_dict = checkpoint[mk] + break + else: + state_dict = checkpoint + if next(iter(state_dict.items()))[0].startswith('module'): + state_dict = {k[7:]: v for k, v in state_dict.items()} + + for k in skip_list: + if k in list(state_dict.keys()): + logging.info(f"Removing key {k} from pretrained checkpoint") + del state_dict[k] + + if os.getenv('RoPE') == '1': + for k in list(state_dict.keys()): + if 'freqs_cos' in k or 'freqs_sin' in k: + del state_dict[k] + return state_dict + + + +def load_checkpoint(model, checkpoint_path, model_key="model|module|state_dict", strict=True): + state_dict = load_state_dict(checkpoint_path, model_key=model_key, is_openai=False) + # detect old format and make compatible with new format + if 'positional_embedding' in state_dict and not hasattr(model, 'positional_embedding'): + state_dict = convert_to_custom_text_state_dict(state_dict) + if 'text.logit_scale' in state_dict and hasattr(model, 'logit_scale'): + state_dict['logit_scale'] = state_dict['text.logit_scale'] + del state_dict['text.logit_scale'] + + # resize_clip_pos_embed for CLIP and open CLIP + if 'visual.positional_embedding' in state_dict: + resize_clip_pos_embed(state_dict, model) + # specified to eva_vit_model + elif 'visual.pos_embed' in state_dict: + resize_evaclip_pos_embed(state_dict, model) + + # resize_clip_pos_embed(state_dict, model) + incompatible_keys = model.load_state_dict(state_dict, strict=strict) + logging.info(f"incompatible_keys.missing_keys: {incompatible_keys.missing_keys}") + return incompatible_keys + +def load_clip_visual_state_dict(checkpoint_path: str, map_location: str='cpu', is_openai: bool=False, skip_list:list=[]): + state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) + + for k in list(state_dict.keys()): + if not k.startswith('visual.'): + del state_dict[k] + for k in list(state_dict.keys()): + if k.startswith('visual.'): + new_k = k[7:] + state_dict[new_k] = state_dict[k] + del state_dict[k] + return state_dict + +def load_clip_text_state_dict(checkpoint_path: str, map_location: str='cpu', is_openai: bool=False, skip_list:list=[]): + state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) + + for k in list(state_dict.keys()): + if k.startswith('visual.'): + del state_dict[k] + return state_dict + +def get_pretrained_tag(pretrained_model): + pretrained_model = pretrained_model.lower() + if "laion" in pretrained_model or "open_clip" in pretrained_model: + return "open_clip" + elif "openai" in pretrained_model: + return "clip" + elif "eva" in pretrained_model and "clip" in pretrained_model: + return "eva_clip" + else: + return "other" + +def load_pretrained_checkpoint( + model, + visual_checkpoint_path, + text_checkpoint_path, + strict=True, + visual_model=None, + text_model=None, + model_key="model|module|state_dict", + skip_list=[]): + visual_tag = get_pretrained_tag(visual_model) + text_tag = get_pretrained_tag(text_model) + + logging.info(f"num of model state_dict keys: {len(model.state_dict().keys())}") + visual_incompatible_keys, text_incompatible_keys = None, None + if visual_checkpoint_path: + if visual_tag == "eva_clip" or visual_tag == "open_clip": + visual_state_dict = load_clip_visual_state_dict(visual_checkpoint_path, is_openai=False, skip_list=skip_list) + elif visual_tag == "clip": + visual_state_dict = load_clip_visual_state_dict(visual_checkpoint_path, is_openai=True, skip_list=skip_list) + else: + visual_state_dict = load_state_dict(visual_checkpoint_path, model_key=model_key, is_openai=False, skip_list=skip_list) + + # resize_clip_pos_embed for CLIP and open CLIP + if 'positional_embedding' in visual_state_dict: + resize_visual_pos_embed(visual_state_dict, model) + # specified to EVA model + elif 'pos_embed' in visual_state_dict: + resize_eva_pos_embed(visual_state_dict, model) + + visual_incompatible_keys = model.visual.load_state_dict(visual_state_dict, strict=strict) + logging.info(f"num of loaded visual_state_dict keys: {len(visual_state_dict.keys())}") + logging.info(f"visual_incompatible_keys.missing_keys: {visual_incompatible_keys.missing_keys}") + + if text_checkpoint_path: + if text_tag == "eva_clip" or text_tag == "open_clip": + text_state_dict = load_clip_text_state_dict(text_checkpoint_path, is_openai=False, skip_list=skip_list) + elif text_tag == "clip": + text_state_dict = load_clip_text_state_dict(text_checkpoint_path, is_openai=True, skip_list=skip_list) + else: + text_state_dict = load_state_dict(visual_checkpoint_path, model_key=model_key, is_openai=False, skip_list=skip_list) + + text_incompatible_keys = model.text.load_state_dict(text_state_dict, strict=strict) + + logging.info(f"num of loaded text_state_dict keys: {len(text_state_dict.keys())}") + logging.info(f"text_incompatible_keys.missing_keys: {text_incompatible_keys.missing_keys}") + + return visual_incompatible_keys, text_incompatible_keys + +def create_model( + model_name: str, + pretrained: Optional[str] = None, + precision: str = 'fp32', + device: Union[str, torch.device] = 'cpu', + jit: bool = False, + force_quick_gelu: bool = False, + force_custom_clip: bool = False, + force_patch_dropout: Optional[float] = None, + pretrained_image: str = '', + pretrained_text: str = '', + pretrained_hf: bool = True, + pretrained_visual_model: str = None, + pretrained_text_model: str = None, + cache_dir: Optional[str] = None, + skip_list: list = [], +): + model_name = model_name.replace('/', '-') # for callers using old naming with / in ViT names + if isinstance(device, str): + device = torch.device(device) + + if pretrained and pretrained.lower() == 'openai': + logging.info(f'Loading pretrained {model_name} from OpenAI.') + model = load_openai_model( + model_name, + precision=precision, + device=device, + jit=jit, + cache_dir=cache_dir, + ) + else: + model_cfg = get_model_config(model_name) + if model_cfg is not None: + logging.info(f'Loaded {model_name} model config.') + else: + logging.error(f'Model config for {model_name} not found; available models {list_models()}.') + raise RuntimeError(f'Model config for {model_name} not found.') + + if 'rope' in model_cfg.get('vision_cfg', {}): + if model_cfg['vision_cfg']['rope']: + os.environ['RoPE'] = "1" + else: + os.environ['RoPE'] = "0" + + if force_quick_gelu: + # override for use of QuickGELU on non-OpenAI transformer models + model_cfg["quick_gelu"] = True + + if force_patch_dropout is not None: + # override the default patch dropout value + model_cfg['vision_cfg']["patch_dropout"] = force_patch_dropout + + cast_dtype = get_cast_dtype(precision) + custom_clip = model_cfg.pop('custom_text', False) or force_custom_clip or ('hf_model_name' in model_cfg['text_cfg']) + + + if custom_clip: + if 'hf_model_name' in model_cfg.get('text_cfg', {}): + model_cfg['text_cfg']['hf_model_pretrained'] = pretrained_hf + model = CustomCLIP(**model_cfg, cast_dtype=cast_dtype) + else: + model = CLIP(**model_cfg, cast_dtype=cast_dtype) + + pretrained_cfg = {} + if pretrained: + checkpoint_path = '' + pretrained_cfg = get_pretrained_cfg(model_name, pretrained) + if pretrained_cfg: + checkpoint_path = download_pretrained(pretrained_cfg, cache_dir=cache_dir) + elif os.path.exists(pretrained): + checkpoint_path = pretrained + + if checkpoint_path: + logging.info(f'Loading pretrained {model_name} weights ({pretrained}).') + load_checkpoint(model, + checkpoint_path, + model_key="model|module|state_dict", + strict=False + ) + else: + error_str = ( + f'Pretrained weights ({pretrained}) not found for model {model_name}.' + f'Available pretrained tags ({list_pretrained_tags_by_model(model_name)}.') + logging.warning(error_str) + raise RuntimeError(error_str) + else: + visual_checkpoint_path = '' + text_checkpoint_path = '' + + if pretrained_image: + pretrained_visual_model = pretrained_visual_model.replace('/', '-') # for callers using old naming with / in ViT names + pretrained_image_cfg = get_pretrained_cfg(pretrained_visual_model, pretrained_image) + if 'timm_model_name' in model_cfg.get('vision_cfg', {}): + # pretrained weight loading for timm models set via vision_cfg + model_cfg['vision_cfg']['timm_model_pretrained'] = True + elif pretrained_image_cfg: + visual_checkpoint_path = download_pretrained(pretrained_image_cfg, cache_dir=cache_dir) + elif os.path.exists(pretrained_image): + visual_checkpoint_path = pretrained_image + else: + logging.warning(f'Pretrained weights ({visual_checkpoint_path}) not found for model {model_name}.visual.') + raise RuntimeError(f'Pretrained weights ({visual_checkpoint_path}) not found for model {model_name}.visual.') + + if pretrained_text: + pretrained_text_model = pretrained_text_model.replace('/', '-') # for callers using old naming with / in ViT names + pretrained_text_cfg = get_pretrained_cfg(pretrained_text_model, pretrained_text) + if pretrained_image_cfg: + text_checkpoint_path = download_pretrained(pretrained_text_cfg, cache_dir=cache_dir) + elif os.path.exists(pretrained_text): + text_checkpoint_path = pretrained_text + else: + logging.warning(f'Pretrained weights ({text_checkpoint_path}) not found for model {model_name}.text.') + raise RuntimeError(f'Pretrained weights ({text_checkpoint_path}) not found for model {model_name}.text.') + + if visual_checkpoint_path: + logging.info(f'Loading pretrained {model_name}.visual weights ({visual_checkpoint_path}).') + if text_checkpoint_path: + logging.info(f'Loading pretrained {model_name}.text weights ({text_checkpoint_path}).') + + if visual_checkpoint_path or text_checkpoint_path: + load_pretrained_checkpoint( + model, + visual_checkpoint_path, + text_checkpoint_path, + strict=False, + visual_model=pretrained_visual_model, + text_model=pretrained_text_model, + model_key="model|module|state_dict", + skip_list=skip_list + ) + + if "fp16" in precision or "bf16" in precision: + logging.info(f'convert precision to {precision}') + model = model.to(torch.bfloat16) if 'bf16' in precision else model.to(torch.float16) + + model.to(device=device) + + # set image / mean metadata from pretrained_cfg if available, or use default + model.visual.image_mean = pretrained_cfg.get('mean', None) or OPENAI_DATASET_MEAN + model.visual.image_std = pretrained_cfg.get('std', None) or OPENAI_DATASET_STD + + if jit: + model = torch.jit.script(model) + + return model + + +def create_model_and_transforms( + model_name: str, + pretrained: Optional[str] = None, + precision: str = 'fp32', + device: Union[str, torch.device] = 'cpu', + jit: bool = False, + force_quick_gelu: bool = False, + force_custom_clip: bool = False, + force_patch_dropout: Optional[float] = None, + pretrained_image: str = '', + pretrained_text: str = '', + pretrained_hf: bool = True, + pretrained_visual_model: str = None, + pretrained_text_model: str = None, + image_mean: Optional[Tuple[float, ...]] = None, + image_std: Optional[Tuple[float, ...]] = None, + cache_dir: Optional[str] = None, + skip_list: list = [], +): + model = create_model( + model_name, + pretrained, + precision=precision, + device=device, + jit=jit, + force_quick_gelu=force_quick_gelu, + force_custom_clip=force_custom_clip, + force_patch_dropout=force_patch_dropout, + pretrained_image=pretrained_image, + pretrained_text=pretrained_text, + pretrained_hf=pretrained_hf, + pretrained_visual_model=pretrained_visual_model, + pretrained_text_model=pretrained_text_model, + cache_dir=cache_dir, + skip_list=skip_list, + ) + + image_mean = image_mean or getattr(model.visual, 'image_mean', None) + image_std = image_std or getattr(model.visual, 'image_std', None) + preprocess_train = image_transform( + model.visual.image_size, + is_train=True, + mean=image_mean, + std=image_std + ) + preprocess_val = image_transform( + model.visual.image_size, + is_train=False, + mean=image_mean, + std=image_std + ) + + return model, preprocess_train, preprocess_val + + +def create_transforms( + model_name: str, + pretrained: Optional[str] = None, + precision: str = 'fp32', + device: Union[str, torch.device] = 'cpu', + jit: bool = False, + force_quick_gelu: bool = False, + force_custom_clip: bool = False, + force_patch_dropout: Optional[float] = None, + pretrained_image: str = '', + pretrained_text: str = '', + pretrained_hf: bool = True, + pretrained_visual_model: str = None, + pretrained_text_model: str = None, + image_mean: Optional[Tuple[float, ...]] = None, + image_std: Optional[Tuple[float, ...]] = None, + cache_dir: Optional[str] = None, + skip_list: list = [], +): + model = create_model( + model_name, + pretrained, + precision=precision, + device=device, + jit=jit, + force_quick_gelu=force_quick_gelu, + force_custom_clip=force_custom_clip, + force_patch_dropout=force_patch_dropout, + pretrained_image=pretrained_image, + pretrained_text=pretrained_text, + pretrained_hf=pretrained_hf, + pretrained_visual_model=pretrained_visual_model, + pretrained_text_model=pretrained_text_model, + cache_dir=cache_dir, + skip_list=skip_list, + ) + + + image_mean = image_mean or getattr(model.visual, 'image_mean', None) + image_std = image_std or getattr(model.visual, 'image_std', None) + preprocess_train = image_transform( + model.visual.image_size, + is_train=True, + mean=image_mean, + std=image_std + ) + preprocess_val = image_transform( + model.visual.image_size, + is_train=False, + mean=image_mean, + std=image_std + ) + del model + + return preprocess_train, preprocess_val + +def create_model_from_pretrained( + model_name: str, + pretrained: str, + precision: str = 'fp32', + device: Union[str, torch.device] = 'cpu', + jit: bool = False, + force_quick_gelu: bool = False, + force_custom_clip: bool = False, + force_patch_dropout: Optional[float] = None, + return_transform: bool = True, + image_mean: Optional[Tuple[float, ...]] = None, + image_std: Optional[Tuple[float, ...]] = None, + cache_dir: Optional[str] = None, + is_frozen: bool = False, +): + if not is_pretrained_cfg(model_name, pretrained) and not os.path.exists(pretrained): + raise RuntimeError( + f'{pretrained} is not a valid pretrained cfg or checkpoint for {model_name}.' + f' Use open_clip.list_pretrained() to find one.') + + model = create_model( + model_name, + pretrained, + precision=precision, + device=device, + jit=jit, + force_quick_gelu=force_quick_gelu, + force_custom_clip=force_custom_clip, + force_patch_dropout=force_patch_dropout, + cache_dir=cache_dir, + ) + + if is_frozen: + for param in model.parameters(): + param.requires_grad = False + + if not return_transform: + return model + + image_mean = image_mean or getattr(model.visual, 'image_mean', None) + image_std = image_std or getattr(model.visual, 'image_std', None) + preprocess = image_transform( + model.visual.image_size, + is_train=False, + mean=image_mean, + std=image_std + ) + + return model, preprocess diff --git a/src/diffusers/pipelines/consisid/util_clip/hf_configs.py b/src/diffusers/pipelines/consisid/util_clip/hf_configs.py new file mode 100644 index 000000000000..a8c9b704db18 --- /dev/null +++ b/src/diffusers/pipelines/consisid/util_clip/hf_configs.py @@ -0,0 +1,57 @@ +# HF architecture dict: +arch_dict = { + # https://huggingface.co/docs/transformers/model_doc/roberta#roberta + "roberta": { + "config_names": { + "context_length": "max_position_embeddings", + "vocab_size": "vocab_size", + "width": "hidden_size", + "heads": "num_attention_heads", + "layers": "num_hidden_layers", + "layer_attr": "layer", + "token_embeddings_attr": "embeddings" + }, + "pooler": "mean_pooler", + }, + # https://huggingface.co/docs/transformers/model_doc/xlm-roberta#transformers.XLMRobertaConfig + "xlm-roberta": { + "config_names": { + "context_length": "max_position_embeddings", + "vocab_size": "vocab_size", + "width": "hidden_size", + "heads": "num_attention_heads", + "layers": "num_hidden_layers", + "layer_attr": "layer", + "token_embeddings_attr": "embeddings" + }, + "pooler": "mean_pooler", + }, + # https://huggingface.co/docs/transformers/model_doc/mt5#mt5 + "mt5": { + "config_names": { + # unlimited seqlen + # https://github.com/google-research/text-to-text-transfer-transformer/issues/273 + # https://github.com/huggingface/transformers/blob/v4.24.0/src/transformers/models/t5/modeling_t5.py#L374 + "context_length": "", + "vocab_size": "vocab_size", + "width": "d_model", + "heads": "num_heads", + "layers": "num_layers", + "layer_attr": "block", + "token_embeddings_attr": "embed_tokens" + }, + "pooler": "mean_pooler", + }, + "bert": { + "config_names": { + "context_length": "max_position_embeddings", + "vocab_size": "vocab_size", + "width": "hidden_size", + "heads": "num_attention_heads", + "layers": "num_hidden_layers", + "layer_attr": "layer", + "token_embeddings_attr": "embeddings" + }, + "pooler": "mean_pooler", + } +} diff --git a/src/diffusers/pipelines/consisid/util_clip/hf_model.py b/src/diffusers/pipelines/consisid/util_clip/hf_model.py new file mode 100644 index 000000000000..c4b9fd85b406 --- /dev/null +++ b/src/diffusers/pipelines/consisid/util_clip/hf_model.py @@ -0,0 +1,248 @@ +""" huggingface model adapter + +Wraps HuggingFace transformers (https://github.com/huggingface/transformers) models for use as a text tower in CLIP model. +""" + +import re + +import torch +import torch.nn as nn +from torch.nn import functional as F +from torch import TensorType +try: + import transformers + from transformers import AutoModel, AutoModelForMaskedLM, AutoTokenizer, AutoConfig, PretrainedConfig + from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, \ + BaseModelOutputWithPoolingAndCrossAttentions +except ImportError as e: + transformers = None + + + class BaseModelOutput: + pass + + + class PretrainedConfig: + pass + +from .hf_configs import arch_dict + +# utils +def _camel2snake(s): + return re.sub(r'(? TensorType: + # image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(x.device) + # attn_mask = (x != self.config.pad_token_id).long() + # out = self.transformer( + # input_ids=x, + # attention_mask=attn_mask, + # encoder_hidden_states = image_embeds, + # encoder_attention_mask = image_atts, + # ) + # pooled_out = self.pooler(out, attn_mask) + + # return self.itm_proj(pooled_out) + + def mask(self, input_ids, vocab_size, device, targets=None, masked_indices=None, probability_matrix=None): + if masked_indices is None: + masked_indices = torch.bernoulli(probability_matrix).bool() + + masked_indices[input_ids == self.tokenizer.pad_token_id] = False + masked_indices[input_ids == self.tokenizer.cls_token_id] = False + + if targets is not None: + targets[~masked_indices] = -100 # We only compute loss on masked tokens + + # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK]) + indices_replaced = torch.bernoulli(torch.full(input_ids.shape, 0.8)).bool() & masked_indices + input_ids[indices_replaced] = self.tokenizer.mask_token_id + + # 10% of the time, we replace masked input tokens with random word + indices_random = torch.bernoulli(torch.full(input_ids.shape, 0.5)).bool() & masked_indices & ~indices_replaced + random_words = torch.randint(vocab_size, input_ids.shape, dtype=torch.long).to(device) + input_ids[indices_random] = random_words[indices_random] + # The rest of the time (10% of the time) we keep the masked input tokens unchanged + + if targets is not None: + return input_ids, targets + else: + return input_ids + + def forward_mlm(self, input_ids, image_embeds, mlm_probability=0.25): + labels = input_ids.clone() + attn_mask = (input_ids != self.config.pad_token_id).long() + image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(input_ids.device) + vocab_size = getattr(self.config, arch_dict[self.config.model_type]["config_names"]["vocab_size"]) + probability_matrix = torch.full(labels.shape, mlm_probability) + input_ids, labels = self.mask(input_ids, vocab_size, input_ids.device, targets=labels, + probability_matrix = probability_matrix) + mlm_output = self.transformer(input_ids, + attention_mask = attn_mask, + encoder_hidden_states = image_embeds, + encoder_attention_mask = image_atts, + return_dict = True, + labels = labels, + ) + return mlm_output.loss + # mlm_output = self.transformer(input_ids, + # attention_mask = attn_mask, + # encoder_hidden_states = image_embeds, + # encoder_attention_mask = image_atts, + # return_dict = True, + # ).last_hidden_state + # logits = self.mlm_proj(mlm_output) + + # # logits = logits[:, :-1, :].contiguous().view(-1, vocab_size) + # logits = logits[:, 1:, :].contiguous().view(-1, vocab_size) + # labels = labels[:, 1:].contiguous().view(-1) + + # mlm_loss = F.cross_entropy( + # logits, + # labels, + # # label_smoothing=0.1, + # ) + # return mlm_loss + + + def forward(self, x:TensorType) -> TensorType: + attn_mask = (x != self.config.pad_token_id).long() + out = self.transformer(input_ids=x, attention_mask=attn_mask) + pooled_out = self.pooler(out, attn_mask) + + return self.proj(pooled_out) + + def lock(self, unlocked_layers:int=0, freeze_layer_norm:bool=True): + if not unlocked_layers: # full freezing + for n, p in self.transformer.named_parameters(): + p.requires_grad = (not freeze_layer_norm) if "LayerNorm" in n.split(".") else False + return + + encoder = self.transformer.encoder if hasattr(self.transformer, 'encoder') else self.transformer + layer_list = getattr(encoder, arch_dict[self.config.model_type]["config_names"]["layer_attr"]) + print(f"Unlocking {unlocked_layers}/{len(layer_list) + 1} layers of hf model") + embeddings = getattr( + self.transformer, arch_dict[self.config.model_type]["config_names"]["token_embeddings_attr"]) + modules = [embeddings, *layer_list][:-unlocked_layers] + # freeze layers + for module in modules: + for n, p in module.named_parameters(): + p.requires_grad = (not freeze_layer_norm) if "LayerNorm" in n.split(".") else False + + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.transformer.gradient_checkpointing_enable() + + def get_num_layers(self): + encoder = self.transformer.encoder if hasattr(self.transformer, 'encoder') else self.transformer + layer_list = getattr(encoder, arch_dict[self.config.model_type]["config_names"]["layer_attr"]) + return len(layer_list) + + def init_parameters(self): + pass diff --git a/src/diffusers/pipelines/consisid/util_clip/loss.py b/src/diffusers/pipelines/consisid/util_clip/loss.py new file mode 100644 index 000000000000..473f60d98d50 --- /dev/null +++ b/src/diffusers/pipelines/consisid/util_clip/loss.py @@ -0,0 +1,138 @@ +import math +import torch +import torch.nn as nn +from torch.nn import functional as F + +try: + import torch.distributed.nn + from torch import distributed as dist + has_distributed = True +except ImportError: + has_distributed = False + +try: + import horovod.torch as hvd +except ImportError: + hvd = None + +from timm.loss import LabelSmoothingCrossEntropy + + +def gather_features( + image_features, + text_features, + local_loss=False, + gather_with_grad=False, + rank=0, + world_size=1, + use_horovod=False +): + assert has_distributed, 'torch.distributed did not import correctly, please use a PyTorch version with support.' + if use_horovod: + assert hvd is not None, 'Please install horovod' + if gather_with_grad: + all_image_features = hvd.allgather(image_features) + all_text_features = hvd.allgather(text_features) + else: + with torch.no_grad(): + all_image_features = hvd.allgather(image_features) + all_text_features = hvd.allgather(text_features) + if not local_loss: + # ensure grads for local rank when all_* features don't have a gradient + gathered_image_features = list(all_image_features.chunk(world_size, dim=0)) + gathered_text_features = list(all_text_features.chunk(world_size, dim=0)) + gathered_image_features[rank] = image_features + gathered_text_features[rank] = text_features + all_image_features = torch.cat(gathered_image_features, dim=0) + all_text_features = torch.cat(gathered_text_features, dim=0) + else: + # We gather tensors from all gpus + if gather_with_grad: + all_image_features = torch.cat(torch.distributed.nn.all_gather(image_features), dim=0) + all_text_features = torch.cat(torch.distributed.nn.all_gather(text_features), dim=0) + # all_image_features = torch.cat(torch.distributed.nn.all_gather(image_features, async_op=True), dim=0) + # all_text_features = torch.cat(torch.distributed.nn.all_gather(text_features, async_op=True), dim=0) + else: + gathered_image_features = [torch.zeros_like(image_features) for _ in range(world_size)] + gathered_text_features = [torch.zeros_like(text_features) for _ in range(world_size)] + dist.all_gather(gathered_image_features, image_features) + dist.all_gather(gathered_text_features, text_features) + if not local_loss: + # ensure grads for local rank when all_* features don't have a gradient + gathered_image_features[rank] = image_features + gathered_text_features[rank] = text_features + all_image_features = torch.cat(gathered_image_features, dim=0) + all_text_features = torch.cat(gathered_text_features, dim=0) + + return all_image_features, all_text_features + + +class ClipLoss(nn.Module): + + def __init__( + self, + local_loss=False, + gather_with_grad=False, + cache_labels=False, + rank=0, + world_size=1, + use_horovod=False, + smoothing=0., + ): + super().__init__() + self.local_loss = local_loss + self.gather_with_grad = gather_with_grad + self.cache_labels = cache_labels + self.rank = rank + self.world_size = world_size + self.use_horovod = use_horovod + self.label_smoothing_cross_entropy = LabelSmoothingCrossEntropy(smoothing=smoothing) if smoothing > 0 else None + + # cache state + self.prev_num_logits = 0 + self.labels = {} + + def forward(self, image_features, text_features, logit_scale=1.): + device = image_features.device + if self.world_size > 1: + all_image_features, all_text_features = gather_features( + image_features, text_features, + self.local_loss, self.gather_with_grad, self.rank, self.world_size, self.use_horovod) + + if self.local_loss: + logits_per_image = logit_scale * image_features @ all_text_features.T + logits_per_text = logit_scale * text_features @ all_image_features.T + else: + logits_per_image = logit_scale * all_image_features @ all_text_features.T + logits_per_text = logits_per_image.T + else: + logits_per_image = logit_scale * image_features @ text_features.T + logits_per_text = logit_scale * text_features @ image_features.T + # calculated ground-truth and cache if enabled + num_logits = logits_per_image.shape[0] + if self.prev_num_logits != num_logits or device not in self.labels: + labels = torch.arange(num_logits, device=device, dtype=torch.long) + if self.world_size > 1 and self.local_loss: + labels = labels + num_logits * self.rank + if self.cache_labels: + self.labels[device] = labels + self.prev_num_logits = num_logits + else: + labels = self.labels[device] + + if self.label_smoothing_cross_entropy: + total_loss = ( + self.label_smoothing_cross_entropy(logits_per_image, labels) + + self.label_smoothing_cross_entropy(logits_per_text, labels) + ) / 2 + else: + total_loss = ( + F.cross_entropy(logits_per_image, labels) + + F.cross_entropy(logits_per_text, labels) + ) / 2 + + acc = None + i2t_acc = (logits_per_image.argmax(-1) == labels).sum() / len(logits_per_image) + t2i_acc = (logits_per_text.argmax(-1) == labels).sum() / len(logits_per_text) + acc = {"i2t": i2t_acc, "t2i": t2i_acc} + return total_loss, acc \ No newline at end of file diff --git a/src/diffusers/pipelines/consisid/util_clip/model.py b/src/diffusers/pipelines/consisid/util_clip/model.py new file mode 100644 index 000000000000..da3bbd755799 --- /dev/null +++ b/src/diffusers/pipelines/consisid/util_clip/model.py @@ -0,0 +1,439 @@ +""" CLIP Model + +Adapted from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI. +""" +import os +from dataclasses import dataclass +from typing import Optional, Tuple, Union +from functools import partial + +import numpy as np +import torch +import torch.nn.functional as F +from torch import nn + +try: + from .hf_model import HFTextEncoder +except: + HFTextEncoder = None +from .modified_resnet import ModifiedResNet +from .timm_model import TimmModel +from .eva_vit_model import EVAVisionTransformer +from .transformer import LayerNorm, QuickGELU, Attention, VisionTransformer, TextTransformer + +try: + from apex.normalization import FusedLayerNorm +except: + FusedLayerNorm = LayerNorm + print("Please 'pip install apex'") + +try: + import xformers.ops as xops +except ImportError: + xops = None + print("Please 'pip install xformers'") + +@dataclass +class CLIPVisionCfg: + layers: Union[Tuple[int, int, int, int], int] = 12 + width: int = 768 + head_width: int = 64 + mlp_ratio: float = 4.0 + patch_size: int = 16 + image_size: Union[Tuple[int, int], int] = 224 + ls_init_value: Optional[float] = None # layer scale initial value + patch_dropout: float = 0. # what fraction of patches to dropout during training (0 would mean disabled and no patches dropped) - 0.5 to 0.75 recommended in the paper for optimal results + global_average_pool: bool = False # whether to global average pool the last embedding layer, instead of using CLS token (https://arxiv.org/abs/2205.01580) + drop_path_rate: Optional[float] = None # drop path rate + timm_model_name: str = None # a valid model name overrides layers, width, patch_size + timm_model_pretrained: bool = False # use (imagenet) pretrained weights for named model + timm_pool: str = 'avg' # feature pooling for timm model ('abs_attn', 'rot_attn', 'avg', '') + timm_proj: str = 'linear' # linear projection for timm model output ('linear', 'mlp', '') + timm_proj_bias: bool = False # enable bias final projection + eva_model_name: str = None # a valid eva model name overrides layers, width, patch_size + qkv_bias: bool = True + fusedLN: bool = False + xattn: bool = False + postnorm: bool = False + rope: bool = False + pt_hw_seq_len: int = 16 # 224/14 + intp_freq: bool = False + naiveswiglu: bool = False + subln: bool = False + + +@dataclass +class CLIPTextCfg: + context_length: int = 77 + vocab_size: int = 49408 + width: int = 512 + heads: int = 8 + layers: int = 12 + ls_init_value: Optional[float] = None # layer scale initial value + hf_model_name: str = None + hf_tokenizer_name: str = None + hf_model_pretrained: bool = True + proj: str = 'mlp' + pooler_type: str = 'mean_pooler' + masked_language_modeling: bool = False + fusedLN: bool = False + xattn: bool = False + attn_mask: bool = True + +def get_cast_dtype(precision: str): + cast_dtype = None + if precision == 'bf16': + cast_dtype = torch.bfloat16 + elif precision == 'fp16': + cast_dtype = torch.float16 + return cast_dtype + + +def _build_vision_tower( + embed_dim: int, + vision_cfg: CLIPVisionCfg, + quick_gelu: bool = False, + cast_dtype: Optional[torch.dtype] = None +): + if isinstance(vision_cfg, dict): + vision_cfg = CLIPVisionCfg(**vision_cfg) + + # OpenAI models are pretrained w/ QuickGELU but native nn.GELU is both faster and more + # memory efficient in recent PyTorch releases (>= 1.10). + # NOTE: timm models always use native GELU regardless of quick_gelu flag. + act_layer = QuickGELU if quick_gelu else nn.GELU + + if vision_cfg.eva_model_name: + vision_heads = vision_cfg.width // vision_cfg.head_width + norm_layer = LayerNorm + + visual = EVAVisionTransformer( + img_size=vision_cfg.image_size, + patch_size=vision_cfg.patch_size, + num_classes=embed_dim, + use_mean_pooling=vision_cfg.global_average_pool, #False + init_values=vision_cfg.ls_init_value, + patch_dropout=vision_cfg.patch_dropout, + embed_dim=vision_cfg.width, + depth=vision_cfg.layers, + num_heads=vision_heads, + mlp_ratio=vision_cfg.mlp_ratio, + qkv_bias=vision_cfg.qkv_bias, + drop_path_rate=vision_cfg.drop_path_rate, + norm_layer= partial(FusedLayerNorm, eps=1e-6) if vision_cfg.fusedLN else partial(norm_layer, eps=1e-6), + xattn=vision_cfg.xattn, + rope=vision_cfg.rope, + postnorm=vision_cfg.postnorm, + pt_hw_seq_len= vision_cfg.pt_hw_seq_len, # 224/14 + intp_freq= vision_cfg.intp_freq, + naiveswiglu= vision_cfg.naiveswiglu, + subln= vision_cfg.subln + ) + elif vision_cfg.timm_model_name: + visual = TimmModel( + vision_cfg.timm_model_name, + pretrained=vision_cfg.timm_model_pretrained, + pool=vision_cfg.timm_pool, + proj=vision_cfg.timm_proj, + proj_bias=vision_cfg.timm_proj_bias, + embed_dim=embed_dim, + image_size=vision_cfg.image_size + ) + act_layer = nn.GELU # so that text transformer doesn't use QuickGELU w/ timm models + elif isinstance(vision_cfg.layers, (tuple, list)): + vision_heads = vision_cfg.width * 32 // vision_cfg.head_width + visual = ModifiedResNet( + layers=vision_cfg.layers, + output_dim=embed_dim, + heads=vision_heads, + image_size=vision_cfg.image_size, + width=vision_cfg.width + ) + else: + vision_heads = vision_cfg.width // vision_cfg.head_width + norm_layer = LayerNormFp32 if cast_dtype in (torch.float16, torch.bfloat16) else LayerNorm + visual = VisionTransformer( + image_size=vision_cfg.image_size, + patch_size=vision_cfg.patch_size, + width=vision_cfg.width, + layers=vision_cfg.layers, + heads=vision_heads, + mlp_ratio=vision_cfg.mlp_ratio, + ls_init_value=vision_cfg.ls_init_value, + patch_dropout=vision_cfg.patch_dropout, + global_average_pool=vision_cfg.global_average_pool, + output_dim=embed_dim, + act_layer=act_layer, + norm_layer=norm_layer, + ) + + return visual + + +def _build_text_tower( + embed_dim: int, + text_cfg: CLIPTextCfg, + quick_gelu: bool = False, + cast_dtype: Optional[torch.dtype] = None, +): + if isinstance(text_cfg, dict): + text_cfg = CLIPTextCfg(**text_cfg) + + if text_cfg.hf_model_name: + text = HFTextEncoder( + text_cfg.hf_model_name, + output_dim=embed_dim, + tokenizer_name=text_cfg.hf_tokenizer_name, + proj=text_cfg.proj, + pooler_type=text_cfg.pooler_type, + masked_language_modeling=text_cfg.masked_language_modeling + ) + else: + act_layer = QuickGELU if quick_gelu else nn.GELU + norm_layer = LayerNorm + + text = TextTransformer( + context_length=text_cfg.context_length, + vocab_size=text_cfg.vocab_size, + width=text_cfg.width, + heads=text_cfg.heads, + layers=text_cfg.layers, + ls_init_value=text_cfg.ls_init_value, + output_dim=embed_dim, + act_layer=act_layer, + norm_layer= FusedLayerNorm if text_cfg.fusedLN else norm_layer, + xattn=text_cfg.xattn, + attn_mask=text_cfg.attn_mask, + ) + return text + +class CLIP(nn.Module): + def __init__( + self, + embed_dim: int, + vision_cfg: CLIPVisionCfg, + text_cfg: CLIPTextCfg, + quick_gelu: bool = False, + cast_dtype: Optional[torch.dtype] = None, + ): + super().__init__() + self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype) + + text = _build_text_tower(embed_dim, text_cfg, quick_gelu, cast_dtype) + self.transformer = text.transformer + self.vocab_size = text.vocab_size + self.token_embedding = text.token_embedding + self.positional_embedding = text.positional_embedding + self.ln_final = text.ln_final + self.text_projection = text.text_projection + self.register_buffer('attn_mask', text.attn_mask, persistent=False) + + self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) + + def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False): + # lock image tower as per LiT - https://arxiv.org/abs/2111.07991 + self.visual.lock(unlocked_groups=unlocked_groups, freeze_bn_stats=freeze_bn_stats) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.visual.set_grad_checkpointing(enable) + self.transformer.grad_checkpointing = enable + + @torch.jit.ignore + def no_weight_decay(self): + return {'logit_scale'} + + def encode_image(self, image, normalize: bool = False): + features = self.visual(image) + return F.normalize(features, dim=-1) if normalize else features + + def encode_text(self, text, normalize: bool = False): + cast_dtype = self.transformer.get_cast_dtype() + + x = self.token_embedding(text).to(cast_dtype) # [batch_size, n_ctx, d_model] + + x = x + self.positional_embedding.to(cast_dtype) + x = x.permute(1, 0, 2) # NLD -> LND + x = self.transformer(x, attn_mask=self.attn_mask) + x = x.permute(1, 0, 2) # LND -> NLD + x = self.ln_final(x) # [batch_size, n_ctx, transformer.width] + # take features from the eot embedding (eot_token is the highest number in each sequence) + x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection + return F.normalize(x, dim=-1) if normalize else x + + def forward(self, image, text): + image_features = self.encode_image(image, normalize=True) + text_features = self.encode_text(text, normalize=True) + return image_features, text_features, self.logit_scale.exp() + + +class CustomCLIP(nn.Module): + def __init__( + self, + embed_dim: int, + vision_cfg: CLIPVisionCfg, + text_cfg: CLIPTextCfg, + quick_gelu: bool = False, + cast_dtype: Optional[torch.dtype] = None, + itm_task: bool = False, + ): + super().__init__() + self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype) + self.text = _build_text_tower(embed_dim, text_cfg, quick_gelu, cast_dtype) + self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) + + def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False): + # lock image tower as per LiT - https://arxiv.org/abs/2111.07991 + self.visual.lock(unlocked_groups=unlocked_groups, freeze_bn_stats=freeze_bn_stats) + + def lock_text_tower(self, unlocked_layers:int=0, freeze_layer_norm:bool=True): + self.text.lock(unlocked_layers, freeze_layer_norm) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.visual.set_grad_checkpointing(enable) + self.text.set_grad_checkpointing(enable) + + @torch.jit.ignore + def no_weight_decay(self): + return {'logit_scale'} + + def encode_image(self, image, normalize: bool = False): + features = self.visual(image) + return F.normalize(features, dim=-1) if normalize else features + + def encode_text(self, text, normalize: bool = False): + features = self.text(text) + return F.normalize(features, dim=-1) if normalize else features + + def forward(self, image, text): + image_features = self.encode_image(image, normalize=True) + text_features = self.encode_text(text, normalize=True) + return image_features, text_features, self.logit_scale.exp() + + +def convert_weights_to_lp(model: nn.Module, dtype=torch.float16): + """Convert applicable model parameters to low-precision (bf16 or fp16)""" + + def _convert_weights(l): + + if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)): + l.weight.data = l.weight.data.to(dtype) + if l.bias is not None: + l.bias.data = l.bias.data.to(dtype) + + if isinstance(l, (nn.MultiheadAttention, Attention)): + for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]: + tensor = getattr(l, attr, None) + if tensor is not None: + tensor.data = tensor.data.to(dtype) + + if isinstance(l, nn.Parameter): + l.data = l.data.to(dtype) + + for name in ["text_projection", "proj"]: + if hasattr(l, name) and isinstance(l, nn.Parameter): + attr = getattr(l, name, None) + if attr is not None: + attr.data = attr.data.to(dtype) + + model.apply(_convert_weights) + + +convert_weights_to_fp16 = convert_weights_to_lp # backwards compat + + +# used to maintain checkpoint compatibility +def convert_to_custom_text_state_dict(state_dict: dict): + if 'text_projection' in state_dict: + # old format state_dict, move text tower -> .text + new_state_dict = {} + for k, v in state_dict.items(): + if any(k.startswith(p) for p in ( + 'text_projection', + 'positional_embedding', + 'token_embedding', + 'transformer', + 'ln_final', + 'logit_scale' + )): + k = 'text.' + k + new_state_dict[k] = v + return new_state_dict + return state_dict + + +def build_model_from_openai_state_dict( + state_dict: dict, + quick_gelu=True, + cast_dtype=torch.float16, +): + vit = "visual.proj" in state_dict + + if vit: + vision_width = state_dict["visual.conv1.weight"].shape[0] + vision_layers = len( + [k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")]) + vision_patch_size = state_dict["visual.conv1.weight"].shape[-1] + grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5) + image_size = vision_patch_size * grid_size + else: + counts: list = [ + len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]] + vision_layers = tuple(counts) + vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0] + output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5) + vision_patch_size = None + assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0] + image_size = output_width * 32 + + embed_dim = state_dict["text_projection"].shape[1] + context_length = state_dict["positional_embedding"].shape[0] + vocab_size = state_dict["token_embedding.weight"].shape[0] + transformer_width = state_dict["ln_final.weight"].shape[0] + transformer_heads = transformer_width // 64 + transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks"))) + + vision_cfg = CLIPVisionCfg( + layers=vision_layers, + width=vision_width, + patch_size=vision_patch_size, + image_size=image_size, + ) + text_cfg = CLIPTextCfg( + context_length=context_length, + vocab_size=vocab_size, + width=transformer_width, + heads=transformer_heads, + layers=transformer_layers + ) + model = CLIP( + embed_dim, + vision_cfg=vision_cfg, + text_cfg=text_cfg, + quick_gelu=quick_gelu, # OpenAI models were trained with QuickGELU + cast_dtype=cast_dtype, + ) + + for key in ["input_resolution", "context_length", "vocab_size"]: + state_dict.pop(key, None) + + convert_weights_to_fp16(model) # OpenAI state dicts are partially converted to float16 + model.load_state_dict(state_dict) + return model.eval() + + +def trace_model(model, batch_size=256, device=torch.device('cpu')): + model.eval() + image_size = model.visual.image_size + example_images = torch.ones((batch_size, 3, image_size, image_size), device=device) + example_text = torch.zeros((batch_size, model.context_length), dtype=torch.int, device=device) + model = torch.jit.trace_module( + model, + inputs=dict( + forward=(example_images, example_text), + encode_text=(example_text,), + encode_image=(example_images,) + )) + model.visual.image_size = image_size + return model diff --git a/src/diffusers/pipelines/consisid/util_clip/model_configs/EVA01-CLIP-B-16.json b/src/diffusers/pipelines/consisid/util_clip/model_configs/EVA01-CLIP-B-16.json new file mode 100644 index 000000000000..aad205800396 --- /dev/null +++ b/src/diffusers/pipelines/consisid/util_clip/model_configs/EVA01-CLIP-B-16.json @@ -0,0 +1,19 @@ +{ + "embed_dim": 512, + "vision_cfg": { + "image_size": 224, + "layers": 12, + "width": 768, + "patch_size": 16, + "eva_model_name": "eva-clip-b-16", + "ls_init_value": 0.1, + "drop_path_rate": 0.0 + }, + "text_cfg": { + "context_length": 77, + "vocab_size": 49408, + "width": 512, + "heads": 8, + "layers": 12 + } +} \ No newline at end of file diff --git a/src/diffusers/pipelines/consisid/util_clip/model_configs/EVA01-CLIP-g-14-plus.json b/src/diffusers/pipelines/consisid/util_clip/model_configs/EVA01-CLIP-g-14-plus.json new file mode 100644 index 000000000000..100279572ff6 --- /dev/null +++ b/src/diffusers/pipelines/consisid/util_clip/model_configs/EVA01-CLIP-g-14-plus.json @@ -0,0 +1,24 @@ +{ + "embed_dim": 1024, + "vision_cfg": { + "image_size": 224, + "layers": 40, + "width": 1408, + "head_width": 88, + "mlp_ratio": 4.3637, + "patch_size": 14, + "eva_model_name": "eva-clip-g-14-x", + "drop_path_rate": 0, + "xattn": true, + "fusedLN": true + }, + "text_cfg": { + "context_length": 77, + "vocab_size": 49408, + "width": 1024, + "heads": 16, + "layers": 24, + "xattn": false, + "fusedLN": true + } +} \ No newline at end of file diff --git a/src/diffusers/pipelines/consisid/util_clip/model_configs/EVA01-CLIP-g-14.json b/src/diffusers/pipelines/consisid/util_clip/model_configs/EVA01-CLIP-g-14.json new file mode 100644 index 000000000000..5d338b4e6104 --- /dev/null +++ b/src/diffusers/pipelines/consisid/util_clip/model_configs/EVA01-CLIP-g-14.json @@ -0,0 +1,24 @@ +{ + "embed_dim": 1024, + "vision_cfg": { + "image_size": 224, + "layers": 40, + "width": 1408, + "head_width": 88, + "mlp_ratio": 4.3637, + "patch_size": 14, + "eva_model_name": "eva-clip-g-14-x", + "drop_path_rate": 0.4, + "xattn": true, + "fusedLN": true + }, + "text_cfg": { + "context_length": 77, + "vocab_size": 49408, + "width": 768, + "heads": 12, + "layers": 12, + "xattn": false, + "fusedLN": true + } +} \ No newline at end of file diff --git a/src/diffusers/pipelines/consisid/util_clip/model_configs/EVA02-CLIP-B-16.json b/src/diffusers/pipelines/consisid/util_clip/model_configs/EVA02-CLIP-B-16.json new file mode 100644 index 000000000000..e4a6e723f770 --- /dev/null +++ b/src/diffusers/pipelines/consisid/util_clip/model_configs/EVA02-CLIP-B-16.json @@ -0,0 +1,29 @@ +{ + "embed_dim": 512, + "vision_cfg": { + "image_size": 224, + "layers": 12, + "width": 768, + "head_width": 64, + "patch_size": 16, + "mlp_ratio": 2.6667, + "eva_model_name": "eva-clip-b-16-X", + "drop_path_rate": 0.0, + "xattn": true, + "fusedLN": true, + "rope": true, + "pt_hw_seq_len": 16, + "intp_freq": true, + "naiveswiglu": true, + "subln": true + }, + "text_cfg": { + "context_length": 77, + "vocab_size": 49408, + "width": 512, + "heads": 8, + "layers": 12, + "xattn": true, + "fusedLN": true + } +} \ No newline at end of file diff --git a/src/diffusers/pipelines/consisid/util_clip/model_configs/EVA02-CLIP-L-14-336.json b/src/diffusers/pipelines/consisid/util_clip/model_configs/EVA02-CLIP-L-14-336.json new file mode 100644 index 000000000000..3e1d124e1118 --- /dev/null +++ b/src/diffusers/pipelines/consisid/util_clip/model_configs/EVA02-CLIP-L-14-336.json @@ -0,0 +1,29 @@ +{ + "embed_dim": 768, + "vision_cfg": { + "image_size": 336, + "layers": 24, + "width": 1024, + "drop_path_rate": 0, + "head_width": 64, + "mlp_ratio": 2.6667, + "patch_size": 14, + "eva_model_name": "eva-clip-l-14-336", + "xattn": true, + "fusedLN": true, + "rope": true, + "pt_hw_seq_len": 16, + "intp_freq": true, + "naiveswiglu": true, + "subln": true + }, + "text_cfg": { + "context_length": 77, + "vocab_size": 49408, + "width": 768, + "heads": 12, + "layers": 12, + "xattn": false, + "fusedLN": true + } +} \ No newline at end of file diff --git a/src/diffusers/pipelines/consisid/util_clip/model_configs/EVA02-CLIP-L-14.json b/src/diffusers/pipelines/consisid/util_clip/model_configs/EVA02-CLIP-L-14.json new file mode 100644 index 000000000000..03b22ad3cfb9 --- /dev/null +++ b/src/diffusers/pipelines/consisid/util_clip/model_configs/EVA02-CLIP-L-14.json @@ -0,0 +1,29 @@ +{ + "embed_dim": 768, + "vision_cfg": { + "image_size": 224, + "layers": 24, + "width": 1024, + "drop_path_rate": 0, + "head_width": 64, + "mlp_ratio": 2.6667, + "patch_size": 14, + "eva_model_name": "eva-clip-l-14", + "xattn": true, + "fusedLN": true, + "rope": true, + "pt_hw_seq_len": 16, + "intp_freq": true, + "naiveswiglu": true, + "subln": true + }, + "text_cfg": { + "context_length": 77, + "vocab_size": 49408, + "width": 768, + "heads": 12, + "layers": 12, + "xattn": false, + "fusedLN": true + } +} \ No newline at end of file diff --git a/src/diffusers/pipelines/consisid/util_clip/model_configs/EVA02-CLIP-bigE-14-plus.json b/src/diffusers/pipelines/consisid/util_clip/model_configs/EVA02-CLIP-bigE-14-plus.json new file mode 100644 index 000000000000..aa04e2545ac1 --- /dev/null +++ b/src/diffusers/pipelines/consisid/util_clip/model_configs/EVA02-CLIP-bigE-14-plus.json @@ -0,0 +1,25 @@ +{ + "embed_dim": 1024, + "vision_cfg": { + "image_size": 224, + "layers": 64, + "width": 1792, + "head_width": 112, + "mlp_ratio": 8.571428571428571, + "patch_size": 14, + "eva_model_name": "eva-clip-4b-14-x", + "drop_path_rate": 0, + "xattn": true, + "postnorm": true, + "fusedLN": true + }, + "text_cfg": { + "context_length": 77, + "vocab_size": 49408, + "width": 1280, + "heads": 20, + "layers": 32, + "xattn": false, + "fusedLN": true + } +} diff --git a/src/diffusers/pipelines/consisid/util_clip/model_configs/EVA02-CLIP-bigE-14.json b/src/diffusers/pipelines/consisid/util_clip/model_configs/EVA02-CLIP-bigE-14.json new file mode 100644 index 000000000000..747ffccc8bd4 --- /dev/null +++ b/src/diffusers/pipelines/consisid/util_clip/model_configs/EVA02-CLIP-bigE-14.json @@ -0,0 +1,25 @@ +{ + "embed_dim": 1024, + "vision_cfg": { + "image_size": 224, + "layers": 64, + "width": 1792, + "head_width": 112, + "mlp_ratio": 8.571428571428571, + "patch_size": 14, + "eva_model_name": "eva-clip-4b-14-x", + "drop_path_rate": 0, + "xattn": true, + "postnorm": true, + "fusedLN": true + }, + "text_cfg": { + "context_length": 77, + "vocab_size": 49408, + "width": 1024, + "heads": 16, + "layers": 24, + "xattn": false, + "fusedLN": true + } +} \ No newline at end of file diff --git a/src/diffusers/pipelines/consisid/util_clip/modified_resnet.py b/src/diffusers/pipelines/consisid/util_clip/modified_resnet.py new file mode 100644 index 000000000000..299080850061 --- /dev/null +++ b/src/diffusers/pipelines/consisid/util_clip/modified_resnet.py @@ -0,0 +1,188 @@ +import os +import sys + +import torch +from torch import nn +from torch.nn import functional as F +from collections import OrderedDict + +current_file_path = os.path.abspath(__file__) +project_roots = [os.path.dirname(current_file_path)] +for project_root in project_roots: + sys.path.insert(0, project_root) if project_root not in sys.path else None + +from utils import freeze_batch_norm_2d + + +class Bottleneck(nn.Module): + expansion = 4 + + def __init__(self, inplanes, planes, stride=1): + super().__init__() + + # all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1 + self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False) + self.bn1 = nn.BatchNorm2d(planes) + self.act1 = nn.ReLU(inplace=True) + + self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False) + self.bn2 = nn.BatchNorm2d(planes) + self.act2 = nn.ReLU(inplace=True) + + self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity() + + self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False) + self.bn3 = nn.BatchNorm2d(planes * self.expansion) + self.act3 = nn.ReLU(inplace=True) + + self.downsample = None + self.stride = stride + + if stride > 1 or inplanes != planes * Bottleneck.expansion: + # downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1 + self.downsample = nn.Sequential(OrderedDict([ + ("-1", nn.AvgPool2d(stride)), + ("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)), + ("1", nn.BatchNorm2d(planes * self.expansion)) + ])) + + def forward(self, x: torch.Tensor): + identity = x + + out = self.act1(self.bn1(self.conv1(x))) + out = self.act2(self.bn2(self.conv2(out))) + out = self.avgpool(out) + out = self.bn3(self.conv3(out)) + + if self.downsample is not None: + identity = self.downsample(x) + + out += identity + out = self.act3(out) + return out + + +class AttentionPool2d(nn.Module): + def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None): + super().__init__() + self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5) + self.k_proj = nn.Linear(embed_dim, embed_dim) + self.q_proj = nn.Linear(embed_dim, embed_dim) + self.v_proj = nn.Linear(embed_dim, embed_dim) + self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim) + self.num_heads = num_heads + + def forward(self, x): + x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC + x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC + x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC + x, _ = F.multi_head_attention_forward( + query=x, key=x, value=x, + embed_dim_to_check=x.shape[-1], + num_heads=self.num_heads, + q_proj_weight=self.q_proj.weight, + k_proj_weight=self.k_proj.weight, + v_proj_weight=self.v_proj.weight, + in_proj_weight=None, + in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]), + bias_k=None, + bias_v=None, + add_zero_attn=False, + dropout_p=0., + out_proj_weight=self.c_proj.weight, + out_proj_bias=self.c_proj.bias, + use_separate_proj_weight=True, + training=self.training, + need_weights=False + ) + + return x[0] + + +class ModifiedResNet(nn.Module): + """ + A ResNet class that is similar to torchvision's but contains the following changes: + - There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool. + - Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1 + - The final pooling layer is a QKV attention instead of an average pool + """ + + def __init__(self, layers, output_dim, heads, image_size=224, width=64): + super().__init__() + self.output_dim = output_dim + self.image_size = image_size + + # the 3-layer stem + self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False) + self.bn1 = nn.BatchNorm2d(width // 2) + self.act1 = nn.ReLU(inplace=True) + self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False) + self.bn2 = nn.BatchNorm2d(width // 2) + self.act2 = nn.ReLU(inplace=True) + self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False) + self.bn3 = nn.BatchNorm2d(width) + self.act3 = nn.ReLU(inplace=True) + self.avgpool = nn.AvgPool2d(2) + + # residual layers + self._inplanes = width # this is a *mutable* variable used during construction + self.layer1 = self._make_layer(width, layers[0]) + self.layer2 = self._make_layer(width * 2, layers[1], stride=2) + self.layer3 = self._make_layer(width * 4, layers[2], stride=2) + self.layer4 = self._make_layer(width * 8, layers[3], stride=2) + + embed_dim = width * 32 # the ResNet feature dimension + self.attnpool = AttentionPool2d(image_size // 32, embed_dim, heads, output_dim) + + self.init_parameters() + + def _make_layer(self, planes, blocks, stride=1): + layers = [Bottleneck(self._inplanes, planes, stride)] + + self._inplanes = planes * Bottleneck.expansion + for _ in range(1, blocks): + layers.append(Bottleneck(self._inplanes, planes)) + + return nn.Sequential(*layers) + + def init_parameters(self): + if self.attnpool is not None: + std = self.attnpool.c_proj.in_features ** -0.5 + nn.init.normal_(self.attnpool.q_proj.weight, std=std) + nn.init.normal_(self.attnpool.k_proj.weight, std=std) + nn.init.normal_(self.attnpool.v_proj.weight, std=std) + nn.init.normal_(self.attnpool.c_proj.weight, std=std) + + for resnet_block in [self.layer1, self.layer2, self.layer3, self.layer4]: + for name, param in resnet_block.named_parameters(): + if name.endswith("bn3.weight"): + nn.init.zeros_(param) + + def lock(self, unlocked_groups=0, freeze_bn_stats=False): + assert unlocked_groups == 0, 'partial locking not currently supported for this model' + for param in self.parameters(): + param.requires_grad = False + if freeze_bn_stats: + freeze_batch_norm_2d(self) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + # FIXME support for non-transformer + pass + + def stem(self, x): + x = self.act1(self.bn1(self.conv1(x))) + x = self.act2(self.bn2(self.conv2(x))) + x = self.act3(self.bn3(self.conv3(x))) + x = self.avgpool(x) + return x + + def forward(self, x): + x = self.stem(x) + x = self.layer1(x) + x = self.layer2(x) + x = self.layer3(x) + x = self.layer4(x) + x = self.attnpool(x) + + return x diff --git a/src/diffusers/pipelines/consisid/util_clip/openai.py b/src/diffusers/pipelines/consisid/util_clip/openai.py new file mode 100644 index 000000000000..cc4e13e876d6 --- /dev/null +++ b/src/diffusers/pipelines/consisid/util_clip/openai.py @@ -0,0 +1,144 @@ +""" OpenAI pretrained model functions + +Adapted from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI. +""" + +import os +import warnings +from typing import List, Optional, Union + +import torch + +from .model import build_model_from_openai_state_dict, convert_weights_to_lp, get_cast_dtype +from .pretrained import get_pretrained_url, list_pretrained_models_by_tag, download_pretrained_from_url + +__all__ = ["list_openai_models", "load_openai_model"] + + +def list_openai_models() -> List[str]: + """Returns the names of available CLIP models""" + return list_pretrained_models_by_tag('openai') + + +def load_openai_model( + name: str, + precision: Optional[str] = None, + device: Optional[Union[str, torch.device]] = None, + jit: bool = True, + cache_dir: Optional[str] = None, +): + """Load a CLIP model + + Parameters + ---------- + name : str + A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict + precision: str + Model precision, if None defaults to 'fp32' if device == 'cpu' else 'fp16'. + device : Union[str, torch.device] + The device to put the loaded model + jit : bool + Whether to load the optimized JIT model (default) or more hackable non-JIT model. + cache_dir : Optional[str] + The directory to cache the downloaded model weights + + Returns + ------- + model : torch.nn.Module + The CLIP model + preprocess : Callable[[PIL.Image], torch.Tensor] + A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input + """ + if device is None: + device = "cuda" if torch.cuda.is_available() else "cpu" + if precision is None: + precision = 'fp32' if device == 'cpu' else 'fp16' + + if get_pretrained_url(name, 'openai'): + model_path = download_pretrained_from_url(get_pretrained_url(name, 'openai'), cache_dir=cache_dir) + elif os.path.isfile(name): + model_path = name + else: + raise RuntimeError(f"Model {name} not found; available models = {list_openai_models()}") + + try: + # loading JIT archive + model = torch.jit.load(model_path, map_location=device if jit else "cpu").eval() + state_dict = None + except RuntimeError: + # loading saved state dict + if jit: + warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead") + jit = False + state_dict = torch.load(model_path, map_location="cpu") + + if not jit: + # Build a non-jit model from the OpenAI jitted model state dict + cast_dtype = get_cast_dtype(precision) + try: + model = build_model_from_openai_state_dict(state_dict or model.state_dict(), cast_dtype=cast_dtype) + except KeyError: + sd = {k[7:]: v for k, v in state_dict["state_dict"].items()} + model = build_model_from_openai_state_dict(sd, cast_dtype=cast_dtype) + + # model from OpenAI state dict is in manually cast fp16 mode, must be converted for AMP/fp32/bf16 use + model = model.to(device) + if precision.startswith('amp') or precision == 'fp32': + model.float() + elif precision == 'bf16': + convert_weights_to_lp(model, dtype=torch.bfloat16) + + return model + + # patch the device names + device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[]) + device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1] + + def patch_device(module): + try: + graphs = [module.graph] if hasattr(module, "graph") else [] + except RuntimeError: + graphs = [] + + if hasattr(module, "forward1"): + graphs.append(module.forward1.graph) + + for graph in graphs: + for node in graph.findAllNodes("prim::Constant"): + if "value" in node.attributeNames() and str(node["value"]).startswith("cuda"): + node.copyAttributes(device_node) + + model.apply(patch_device) + patch_device(model.encode_image) + patch_device(model.encode_text) + + # patch dtype to float32 (typically for CPU) + if precision == 'fp32': + float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[]) + float_input = list(float_holder.graph.findNode("aten::to").inputs())[1] + float_node = float_input.node() + + def patch_float(module): + try: + graphs = [module.graph] if hasattr(module, "graph") else [] + except RuntimeError: + graphs = [] + + if hasattr(module, "forward1"): + graphs.append(module.forward1.graph) + + for graph in graphs: + for node in graph.findAllNodes("aten::to"): + inputs = list(node.inputs()) + for i in [1, 2]: # dtype can be the second or third argument to aten::to() + if inputs[i].node()["value"] == 5: + inputs[i].node().copyAttributes(float_node) + + model.apply(patch_float) + patch_float(model.encode_image) + patch_float(model.encode_text) + model.float() + + # ensure image_size attr available at consistent location for both jit and non-jit + model.visual.image_size = model.input_resolution.item() + return model diff --git a/src/diffusers/pipelines/consisid/util_clip/pretrained.py b/src/diffusers/pipelines/consisid/util_clip/pretrained.py new file mode 100644 index 000000000000..a1e55dcf36a0 --- /dev/null +++ b/src/diffusers/pipelines/consisid/util_clip/pretrained.py @@ -0,0 +1,332 @@ +import hashlib +import os +import urllib +import warnings +from functools import partial +from typing import Dict, Union + +from tqdm import tqdm + +try: + from huggingface_hub import hf_hub_download + _has_hf_hub = True +except ImportError: + hf_hub_download = None + _has_hf_hub = False + + +def _pcfg(url='', hf_hub='', filename='', mean=None, std=None): + return dict( + url=url, + hf_hub=hf_hub, + mean=mean, + std=std, + ) + +_VITB32 = dict( + openai=_pcfg( + "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt"), + laion400m_e31=_pcfg( + "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e31-d867053b.pt"), + laion400m_e32=_pcfg( + "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e32-46683a32.pt"), + laion2b_e16=_pcfg( + "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-laion2b_e16-af8dbd0c.pth"), + laion2b_s34b_b79k=_pcfg(hf_hub='laion/CLIP-ViT-B-32-laion2B-s34B-b79K/') +) + +_VITB32_quickgelu = dict( + openai=_pcfg( + "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt"), + laion400m_e31=_pcfg( + "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e31-d867053b.pt"), + laion400m_e32=_pcfg( + "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e32-46683a32.pt"), +) + +_VITB16 = dict( + openai=_pcfg( + "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt"), + laion400m_e31=_pcfg( + "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16-laion400m_e31-00efa78f.pt"), + laion400m_e32=_pcfg( + "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16-laion400m_e32-55e67d44.pt"), + laion2b_s34b_b88k=_pcfg(hf_hub='laion/CLIP-ViT-B-16-laion2B-s34B-b88K/'), +) + +_EVAB16 = dict( + eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_B_psz14to16.pt'), + eva02=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_B_psz14to16.pt'), + eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_B_psz16_s8B.pt'), + eva02_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_B_psz16_s8B.pt'), +) + +_VITB16_PLUS_240 = dict( + laion400m_e31=_pcfg( + "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16_plus_240-laion400m_e31-8fb26589.pt"), + laion400m_e32=_pcfg( + "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16_plus_240-laion400m_e32-699c4b84.pt"), +) + +_VITL14 = dict( + openai=_pcfg( + "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt"), + laion400m_e31=_pcfg( + "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_l_14-laion400m_e31-69988bb6.pt"), + laion400m_e32=_pcfg( + "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_l_14-laion400m_e32-3d133497.pt"), + laion2b_s32b_b82k=_pcfg( + hf_hub='laion/CLIP-ViT-L-14-laion2B-s32B-b82K/', + mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)), +) + +_EVAL14 = dict( + eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_L_psz14.pt'), + eva02=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_L_psz14.pt'), + eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_s4B.pt'), + eva02_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_s4B.pt'), +) + +_VITL14_336 = dict( + openai=_pcfg( + "https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt"), +) + +_EVAL14_336 = dict( + eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_336_psz14_s6B.pt'), + eva02_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_336_psz14_s6B.pt'), + eva_clip_224to336=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_224to336.pt'), + eva02_clip_224to336=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_224to336.pt'), +) + +_VITH14 = dict( + laion2b_s32b_b79k=_pcfg(hf_hub='laion/CLIP-ViT-H-14-laion2B-s32B-b79K/'), +) + +_VITg14 = dict( + laion2b_s12b_b42k=_pcfg(hf_hub='laion/CLIP-ViT-g-14-laion2B-s12B-b42K/'), + laion2b_s34b_b88k=_pcfg(hf_hub='laion/CLIP-ViT-g-14-laion2B-s34B-b88K/'), +) + +_EVAg14 = dict( + eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/'), + eva01=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_g_psz14.pt'), + eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_CLIP_g_14_psz14_s11B.pt'), + eva01_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_CLIP_g_14_psz14_s11B.pt'), +) + +_EVAg14_PLUS = dict( + eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/'), + eva01=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_g_psz14.pt'), + eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_CLIP_g_14_plus_psz14_s11B.pt'), + eva01_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_CLIP_g_14_plus_psz14_s11B.pt'), +) + +_VITbigG14 = dict( + laion2b_s39b_b160k=_pcfg(hf_hub='laion/CLIP-ViT-bigG-14-laion2B-39B-b160k/'), +) + +_EVAbigE14 = dict( + eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_E_psz14.pt'), + eva02=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_E_psz14.pt'), + eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_s4B.pt'), + eva02_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_s4B.pt'), +) + +_EVAbigE14_PLUS = dict( + eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_E_psz14.pt'), + eva02=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_E_psz14.pt'), + eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_plus_s9B.pt'), + eva02_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_plus_s9B.pt'), +) + + +_PRETRAINED = { + # "ViT-B-32": _VITB32, + "OpenaiCLIP-B-32": _VITB32, + "OpenCLIP-B-32": _VITB32, + + # "ViT-B-32-quickgelu": _VITB32_quickgelu, + "OpenaiCLIP-B-32-quickgelu": _VITB32_quickgelu, + "OpenCLIP-B-32-quickgelu": _VITB32_quickgelu, + + # "ViT-B-16": _VITB16, + "OpenaiCLIP-B-16": _VITB16, + "OpenCLIP-B-16": _VITB16, + + "EVA02-B-16": _EVAB16, + "EVA02-CLIP-B-16": _EVAB16, + + # "ViT-B-16-plus-240": _VITB16_PLUS_240, + "OpenCLIP-B-16-plus-240": _VITB16_PLUS_240, + + # "ViT-L-14": _VITL14, + "OpenaiCLIP-L-14": _VITL14, + "OpenCLIP-L-14": _VITL14, + + "EVA02-L-14": _EVAL14, + "EVA02-CLIP-L-14": _EVAL14, + + # "ViT-L-14-336": _VITL14_336, + "OpenaiCLIP-L-14-336": _VITL14_336, + + "EVA02-CLIP-L-14-336": _EVAL14_336, + + # "ViT-H-14": _VITH14, + # "ViT-g-14": _VITg14, + "OpenCLIP-H-14": _VITH14, + "OpenCLIP-g-14": _VITg14, + + "EVA01-CLIP-g-14": _EVAg14, + "EVA01-CLIP-g-14-plus": _EVAg14_PLUS, + + # "ViT-bigG-14": _VITbigG14, + "OpenCLIP-bigG-14": _VITbigG14, + + "EVA02-CLIP-bigE-14": _EVAbigE14, + "EVA02-CLIP-bigE-14-plus": _EVAbigE14_PLUS, +} + + +def _clean_tag(tag: str): + # normalize pretrained tags + return tag.lower().replace('-', '_') + + +def list_pretrained(as_str: bool = False): + """ returns list of pretrained models + Returns a tuple (model_name, pretrain_tag) by default or 'name:tag' if as_str == True + """ + return [':'.join([k, t]) if as_str else (k, t) for k in _PRETRAINED.keys() for t in _PRETRAINED[k].keys()] + + +def list_pretrained_models_by_tag(tag: str): + """ return all models having the specified pretrain tag """ + models = [] + tag = _clean_tag(tag) + for k in _PRETRAINED.keys(): + if tag in _PRETRAINED[k]: + models.append(k) + return models + + +def list_pretrained_tags_by_model(model: str): + """ return all pretrain tags for the specified model architecture """ + tags = [] + if model in _PRETRAINED: + tags.extend(_PRETRAINED[model].keys()) + return tags + + +def is_pretrained_cfg(model: str, tag: str): + if model not in _PRETRAINED: + return False + return _clean_tag(tag) in _PRETRAINED[model] + + +def get_pretrained_cfg(model: str, tag: str): + if model not in _PRETRAINED: + return {} + model_pretrained = _PRETRAINED[model] + return model_pretrained.get(_clean_tag(tag), {}) + + +def get_pretrained_url(model: str, tag: str): + cfg = get_pretrained_cfg(model, _clean_tag(tag)) + return cfg.get('url', '') + + +def download_pretrained_from_url( + url: str, + cache_dir: Union[str, None] = None, +): + if not cache_dir: + cache_dir = os.path.expanduser("~/.cache/clip") + os.makedirs(cache_dir, exist_ok=True) + filename = os.path.basename(url) + + if 'openaipublic' in url: + expected_sha256 = url.split("/")[-2] + elif 'mlfoundations' in url: + expected_sha256 = os.path.splitext(filename)[0].split("-")[-1] + else: + expected_sha256 = '' + + download_target = os.path.join(cache_dir, filename) + + if os.path.exists(download_target) and not os.path.isfile(download_target): + raise RuntimeError(f"{download_target} exists and is not a regular file") + + if os.path.isfile(download_target): + if expected_sha256: + if hashlib.sha256(open(download_target, "rb").read()).hexdigest().startswith(expected_sha256): + return download_target + else: + warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file") + else: + return download_target + + with urllib.request.urlopen(url) as source, open(download_target, "wb") as output: + with tqdm(total=int(source.headers.get("Content-Length")), ncols=80, unit='iB', unit_scale=True) as loop: + while True: + buffer = source.read(8192) + if not buffer: + break + + output.write(buffer) + loop.update(len(buffer)) + + if expected_sha256 and not hashlib.sha256(open(download_target, "rb").read()).hexdigest().startswith(expected_sha256): + raise RuntimeError(f"Model has been downloaded but the SHA256 checksum does not not match") + + return download_target + + +def has_hf_hub(necessary=False): + if not _has_hf_hub and necessary: + # if no HF Hub module installed, and it is necessary to continue, raise error + raise RuntimeError( + 'Hugging Face hub model specified but package not installed. Run `pip install huggingface_hub`.') + return _has_hf_hub + + +def download_pretrained_from_hf( + model_id: str, + filename: str = 'open_clip_pytorch_model.bin', + revision=None, + cache_dir: Union[str, None] = None, +): + has_hf_hub(True) + cached_file = hf_hub_download(model_id, filename, revision=revision, cache_dir=cache_dir) + return cached_file + + +def download_pretrained( + cfg: Dict, + force_hf_hub: bool = False, + cache_dir: Union[str, None] = None, +): + target = '' + if not cfg: + return target + + download_url = cfg.get('url', '') + download_hf_hub = cfg.get('hf_hub', '') + if download_hf_hub and force_hf_hub: + # use HF hub even if url exists + download_url = '' + + if download_url: + target = download_pretrained_from_url(download_url, cache_dir=cache_dir) + elif download_hf_hub: + has_hf_hub(True) + # we assume the hf_hub entries in pretrained config combine model_id + filename in + # 'org/model_name/filename.pt' form. To specify just the model id w/o filename and + # use 'open_clip_pytorch_model.bin' default, there must be a trailing slash 'org/model_name/'. + model_id, filename = os.path.split(download_hf_hub) + if filename: + target = download_pretrained_from_hf(model_id, filename=filename, cache_dir=cache_dir) + else: + target = download_pretrained_from_hf(model_id, cache_dir=cache_dir) + + return target diff --git a/src/diffusers/pipelines/consisid/util_clip/rope.py b/src/diffusers/pipelines/consisid/util_clip/rope.py new file mode 100644 index 000000000000..69030c35ea7b --- /dev/null +++ b/src/diffusers/pipelines/consisid/util_clip/rope.py @@ -0,0 +1,137 @@ +from math import pi +import torch +from torch import nn +from einops import rearrange, repeat +import logging + +def broadcat(tensors, dim = -1): + num_tensors = len(tensors) + shape_lens = set(list(map(lambda t: len(t.shape), tensors))) + assert len(shape_lens) == 1, 'tensors must all have the same number of dimensions' + shape_len = list(shape_lens)[0] + dim = (dim + shape_len) if dim < 0 else dim + dims = list(zip(*map(lambda t: list(t.shape), tensors))) + expandable_dims = [(i, val) for i, val in enumerate(dims) if i != dim] + assert all([*map(lambda t: len(set(t[1])) <= 2, expandable_dims)]), 'invalid dimensions for broadcastable concatentation' + max_dims = list(map(lambda t: (t[0], max(t[1])), expandable_dims)) + expanded_dims = list(map(lambda t: (t[0], (t[1],) * num_tensors), max_dims)) + expanded_dims.insert(dim, (dim, dims[dim])) + expandable_shapes = list(zip(*map(lambda t: t[1], expanded_dims))) + tensors = list(map(lambda t: t[0].expand(*t[1]), zip(tensors, expandable_shapes))) + return torch.cat(tensors, dim = dim) + +def rotate_half(x): + x = rearrange(x, '... (d r) -> ... d r', r = 2) + x1, x2 = x.unbind(dim = -1) + x = torch.stack((-x2, x1), dim = -1) + return rearrange(x, '... d r -> ... (d r)') + + +class VisionRotaryEmbedding(nn.Module): + def __init__( + self, + dim, + pt_seq_len, + ft_seq_len=None, + custom_freqs = None, + freqs_for = 'lang', + theta = 10000, + max_freq = 10, + num_freqs = 1, + ): + super().__init__() + if custom_freqs: + freqs = custom_freqs + elif freqs_for == 'lang': + freqs = 1. / (theta ** (torch.arange(0, dim, 2)[:(dim // 2)].float() / dim)) + elif freqs_for == 'pixel': + freqs = torch.linspace(1., max_freq / 2, dim // 2) * pi + elif freqs_for == 'constant': + freqs = torch.ones(num_freqs).float() + else: + raise ValueError(f'unknown modality {freqs_for}') + + if ft_seq_len is None: ft_seq_len = pt_seq_len + t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len + + freqs_h = torch.einsum('..., f -> ... f', t, freqs) + freqs_h = repeat(freqs_h, '... n -> ... (n r)', r = 2) + + freqs_w = torch.einsum('..., f -> ... f', t, freqs) + freqs_w = repeat(freqs_w, '... n -> ... (n r)', r = 2) + + freqs = broadcat((freqs_h[:, None, :], freqs_w[None, :, :]), dim = -1) + + self.register_buffer("freqs_cos", freqs.cos()) + self.register_buffer("freqs_sin", freqs.sin()) + + logging.info(f'Shape of rope freq: {self.freqs_cos.shape}') + + def forward(self, t, start_index = 0): + rot_dim = self.freqs_cos.shape[-1] + end_index = start_index + rot_dim + assert rot_dim <= t.shape[-1], f'feature dimension {t.shape[-1]} is not of sufficient size to rotate in all the positions {rot_dim}' + t_left, t, t_right = t[..., :start_index], t[..., start_index:end_index], t[..., end_index:] + t = (t * self.freqs_cos) + (rotate_half(t) * self.freqs_sin) + + return torch.cat((t_left, t, t_right), dim = -1) + +class VisionRotaryEmbeddingFast(nn.Module): + def __init__( + self, + dim, + pt_seq_len, + ft_seq_len=None, + custom_freqs = None, + freqs_for = 'lang', + theta = 10000, + max_freq = 10, + num_freqs = 1, + patch_dropout = 0. + ): + super().__init__() + if custom_freqs: + freqs = custom_freqs + elif freqs_for == 'lang': + freqs = 1. / (theta ** (torch.arange(0, dim, 2)[:(dim // 2)].float() / dim)) + elif freqs_for == 'pixel': + freqs = torch.linspace(1., max_freq / 2, dim // 2) * pi + elif freqs_for == 'constant': + freqs = torch.ones(num_freqs).float() + else: + raise ValueError(f'unknown modality {freqs_for}') + + if ft_seq_len is None: ft_seq_len = pt_seq_len + t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len + + freqs = torch.einsum('..., f -> ... f', t, freqs) + freqs = repeat(freqs, '... n -> ... (n r)', r = 2) + freqs = broadcat((freqs[:, None, :], freqs[None, :, :]), dim = -1) + + freqs_cos = freqs.cos().view(-1, freqs.shape[-1]) + freqs_sin = freqs.sin().view(-1, freqs.shape[-1]) + + self.patch_dropout = patch_dropout + + self.register_buffer("freqs_cos", freqs_cos) + self.register_buffer("freqs_sin", freqs_sin) + + logging.info(f'Shape of rope freq: {self.freqs_cos.shape}') + + def forward(self, t, patch_indices_keep=None): + if patch_indices_keep is not None: + batch = t.size()[0] + batch_indices = torch.arange(batch) + batch_indices = batch_indices[..., None] + + freqs_cos = repeat(self.freqs_cos, 'i j -> n i m j', n=t.shape[0], m=t.shape[1]) + freqs_sin = repeat(self.freqs_sin, 'i j -> n i m j', n=t.shape[0], m=t.shape[1]) + + freqs_cos = freqs_cos[batch_indices, patch_indices_keep] + freqs_cos = rearrange(freqs_cos, 'n i m j -> n m i j') + freqs_sin = freqs_sin[batch_indices, patch_indices_keep] + freqs_sin = rearrange(freqs_sin, 'n i m j -> n m i j') + + return t * freqs_cos + rotate_half(t) * freqs_sin + + return t * self.freqs_cos + rotate_half(t) * self.freqs_sin \ No newline at end of file diff --git a/src/diffusers/pipelines/consisid/util_clip/timm_model.py b/src/diffusers/pipelines/consisid/util_clip/timm_model.py new file mode 100644 index 000000000000..b58122c0b84f --- /dev/null +++ b/src/diffusers/pipelines/consisid/util_clip/timm_model.py @@ -0,0 +1,122 @@ +""" timm model adapter + +Wraps timm (https://github.com/rwightman/pytorch-image-models) models for use as a vision tower in CLIP model. +""" +import logging +from collections import OrderedDict + +import torch +import torch.nn as nn + +try: + import timm + from timm.models.layers import Mlp, to_2tuple + try: + # old timm imports < 0.8.1 + from timm.models.layers.attention_pool2d import RotAttentionPool2d + from timm.models.layers.attention_pool2d import AttentionPool2d as AbsAttentionPool2d + except ImportError: + # new timm imports >= 0.8.1 + from timm.layers import RotAttentionPool2d + from timm.layers import AttentionPool2d as AbsAttentionPool2d +except ImportError: + timm = None + +from .utils import freeze_batch_norm_2d + + +class TimmModel(nn.Module): + """ timm model adapter + # FIXME this adapter is a work in progress, may change in ways that break weight compat + """ + + def __init__( + self, + model_name, + embed_dim, + image_size=224, + pool='avg', + proj='linear', + proj_bias=False, + drop=0., + pretrained=False): + super().__init__() + if timm is None: + raise RuntimeError("Please `pip install timm` to use timm models.") + + self.image_size = to_2tuple(image_size) + self.trunk = timm.create_model(model_name, pretrained=pretrained) + feat_size = self.trunk.default_cfg.get('pool_size', None) + feature_ndim = 1 if not feat_size else 2 + if pool in ('abs_attn', 'rot_attn'): + assert feature_ndim == 2 + # if attn pooling used, remove both classifier and default pool + self.trunk.reset_classifier(0, global_pool='') + else: + # reset global pool if pool config set, otherwise leave as network default + reset_kwargs = dict(global_pool=pool) if pool else {} + self.trunk.reset_classifier(0, **reset_kwargs) + prev_chs = self.trunk.num_features + + head_layers = OrderedDict() + if pool == 'abs_attn': + head_layers['pool'] = AbsAttentionPool2d(prev_chs, feat_size=feat_size, out_features=embed_dim) + prev_chs = embed_dim + elif pool == 'rot_attn': + head_layers['pool'] = RotAttentionPool2d(prev_chs, out_features=embed_dim) + prev_chs = embed_dim + else: + assert proj, 'projection layer needed if non-attention pooling is used.' + + # NOTE attention pool ends with a projection layer, so proj should usually be set to '' if such pooling is used + if proj == 'linear': + head_layers['drop'] = nn.Dropout(drop) + head_layers['proj'] = nn.Linear(prev_chs, embed_dim, bias=proj_bias) + elif proj == 'mlp': + head_layers['mlp'] = Mlp(prev_chs, 2 * embed_dim, embed_dim, drop=drop, bias=(True, proj_bias)) + + self.head = nn.Sequential(head_layers) + + def lock(self, unlocked_groups=0, freeze_bn_stats=False): + """ lock modules + Args: + unlocked_groups (int): leave last n layer groups unlocked (default: 0) + """ + if not unlocked_groups: + # lock full model + for param in self.trunk.parameters(): + param.requires_grad = False + if freeze_bn_stats: + freeze_batch_norm_2d(self.trunk) + else: + # NOTE: partial freeze requires latest timm (master) branch and is subject to change + try: + # FIXME import here until API stable and in an official release + from timm.models.helpers import group_parameters, group_modules + except ImportError: + raise RuntimeError( + 'Please install latest timm `pip install git+https://github.com/rwightman/pytorch-image-models`') + matcher = self.trunk.group_matcher() + gparams = group_parameters(self.trunk, matcher) + max_layer_id = max(gparams.keys()) + max_layer_id = max_layer_id - unlocked_groups + for group_idx in range(max_layer_id + 1): + group = gparams[group_idx] + for param in group: + self.trunk.get_parameter(param).requires_grad = False + if freeze_bn_stats: + gmodules = group_modules(self.trunk, matcher, reverse=True) + gmodules = {k for k, v in gmodules.items() if v <= max_layer_id} + freeze_batch_norm_2d(self.trunk, gmodules) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + try: + self.trunk.set_grad_checkpointing(enable) + except Exception as e: + logging.warning('grad checkpointing not supported for this timm image tower, continuing without...') + + def forward(self, x): + x = self.trunk(x) + x = self.head(x) + return x diff --git a/src/diffusers/pipelines/consisid/util_clip/tokenizer.py b/src/diffusers/pipelines/consisid/util_clip/tokenizer.py new file mode 100644 index 000000000000..41482f82aebb --- /dev/null +++ b/src/diffusers/pipelines/consisid/util_clip/tokenizer.py @@ -0,0 +1,201 @@ +""" CLIP tokenizer + +Copied from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI. +""" +import gzip +import html +import os +from functools import lru_cache +from typing import Union, List + +import ftfy +import regex as re +import torch + +# https://stackoverflow.com/q/62691279 +import os +os.environ["TOKENIZERS_PARALLELISM"] = "false" + + +@lru_cache() +def default_bpe(): + return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz") + + +@lru_cache() +def bytes_to_unicode(): + """ + Returns list of utf-8 byte and a corresponding list of unicode strings. + The reversible bpe codes work on unicode strings. + This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. + When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. + This is a signficant percentage of your normal, say, 32K bpe vocab. + To avoid that, we want lookup tables between utf-8 bytes and unicode strings. + And avoids mapping to whitespace/control characters the bpe code barfs on. + """ + bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) + cs = bs[:] + n = 0 + for b in range(2**8): + if b not in bs: + bs.append(b) + cs.append(2**8+n) + n += 1 + cs = [chr(n) for n in cs] + return dict(zip(bs, cs)) + + +def get_pairs(word): + """Return set of symbol pairs in a word. + Word is represented as tuple of symbols (symbols being variable-length strings). + """ + pairs = set() + prev_char = word[0] + for char in word[1:]: + pairs.add((prev_char, char)) + prev_char = char + return pairs + + +def basic_clean(text): + text = ftfy.fix_text(text) + text = html.unescape(html.unescape(text)) + return text.strip() + + +def whitespace_clean(text): + text = re.sub(r'\s+', ' ', text) + text = text.strip() + return text + + +class SimpleTokenizer(object): + def __init__(self, bpe_path: str = default_bpe(), special_tokens=None): + self.byte_encoder = bytes_to_unicode() + self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} + merges = gzip.open(bpe_path).read().decode("utf-8").split('\n') + merges = merges[1:49152-256-2+1] + merges = [tuple(merge.split()) for merge in merges] + vocab = list(bytes_to_unicode().values()) + vocab = vocab + [v+'' for v in vocab] + for merge in merges: + vocab.append(''.join(merge)) + if not special_tokens: + special_tokens = ['', ''] + else: + special_tokens = ['', ''] + special_tokens + vocab.extend(special_tokens) + self.encoder = dict(zip(vocab, range(len(vocab)))) + self.decoder = {v: k for k, v in self.encoder.items()} + self.bpe_ranks = dict(zip(merges, range(len(merges)))) + self.cache = {t:t for t in special_tokens} + special = "|".join(special_tokens) + self.pat = re.compile(special + r"""|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE) + + self.vocab_size = len(self.encoder) + self.all_special_ids = [self.encoder[t] for t in special_tokens] + + def bpe(self, token): + if token in self.cache: + return self.cache[token] + word = tuple(token[:-1]) + ( token[-1] + '',) + pairs = get_pairs(word) + + if not pairs: + return token+'' + + while True: + bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf'))) + if bigram not in self.bpe_ranks: + break + first, second = bigram + new_word = [] + i = 0 + while i < len(word): + try: + j = word.index(first, i) + new_word.extend(word[i:j]) + i = j + except: + new_word.extend(word[i:]) + break + + if word[i] == first and i < len(word)-1 and word[i+1] == second: + new_word.append(first+second) + i += 2 + else: + new_word.append(word[i]) + i += 1 + new_word = tuple(new_word) + word = new_word + if len(word) == 1: + break + else: + pairs = get_pairs(word) + word = ' '.join(word) + self.cache[token] = word + return word + + def encode(self, text): + bpe_tokens = [] + text = whitespace_clean(basic_clean(text)).lower() + for token in re.findall(self.pat, text): + token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8')) + bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' ')) + return bpe_tokens + + def decode(self, tokens): + text = ''.join([self.decoder[token] for token in tokens]) + text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('', ' ') + return text + + +_tokenizer = SimpleTokenizer() + + +def tokenize(texts: Union[str, List[str]], context_length: int = 77) -> torch.LongTensor: + """ + Returns the tokenized representation of given input string(s) + + Parameters + ---------- + texts : Union[str, List[str]] + An input string or a list of input strings to tokenize + context_length : int + The context length to use; all CLIP models use 77 as the context length + + Returns + ------- + A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length] + """ + if isinstance(texts, str): + texts = [texts] + + sot_token = _tokenizer.encoder[""] + eot_token = _tokenizer.encoder[""] + all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts] + result = torch.zeros(len(all_tokens), context_length, dtype=torch.long) + + for i, tokens in enumerate(all_tokens): + if len(tokens) > context_length: + tokens = tokens[:context_length] # Truncate + tokens[-1] = eot_token + result[i, :len(tokens)] = torch.tensor(tokens) + + return result + + +class HFTokenizer: + "HuggingFace tokenizer wrapper" + def __init__(self, tokenizer_name:str): + from transformers import AutoTokenizer + self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name) + + def __call__(self, texts:Union[str, List[str]], context_length:int=77) -> torch.Tensor: + # same cleaning as for default tokenizer, except lowercasing + # adding lower (for case-sensitive tokenizers) will make it more robust but less sensitive to nuance + if isinstance(texts, str): + texts = [texts] + texts = [whitespace_clean(basic_clean(text)) for text in texts] + input_ids = self.tokenizer(texts, return_tensors='pt', max_length=context_length, padding='max_length', truncation=True).input_ids + return input_ids diff --git a/src/diffusers/pipelines/consisid/util_clip/transform.py b/src/diffusers/pipelines/consisid/util_clip/transform.py new file mode 100644 index 000000000000..39f3e4cf6cf9 --- /dev/null +++ b/src/diffusers/pipelines/consisid/util_clip/transform.py @@ -0,0 +1,103 @@ +from typing import Optional, Sequence, Tuple + +import torch +import torch.nn as nn +import torchvision.transforms.functional as F + +from torchvision.transforms import Normalize, Compose, RandomResizedCrop, InterpolationMode, ToTensor, Resize, \ + CenterCrop + +from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD + + +class ResizeMaxSize(nn.Module): + + def __init__(self, max_size, interpolation=InterpolationMode.BICUBIC, fn='max', fill=0): + super().__init__() + if not isinstance(max_size, int): + raise TypeError(f"Size should be int. Got {type(max_size)}") + self.max_size = max_size + self.interpolation = interpolation + self.fn = min if fn == 'min' else min + self.fill = fill + + def forward(self, img): + if isinstance(img, torch.Tensor): + height, width = img.shape[:2] + else: + width, height = img.size + scale = self.max_size / float(max(height, width)) + if scale != 1.0: + new_size = tuple(round(dim * scale) for dim in (height, width)) + img = F.resize(img, new_size, self.interpolation) + pad_h = self.max_size - new_size[0] + pad_w = self.max_size - new_size[1] + img = F.pad(img, padding=[pad_w//2, pad_h//2, pad_w - pad_w//2, pad_h - pad_h//2], fill=self.fill) + return img + + +def _convert_to_rgb(image): + return image.convert('RGB') + + +# class CatGen(nn.Module): +# def __init__(self, num=4): +# self.num = num +# def mixgen_batch(image, text): +# batch_size = image.shape[0] +# index = np.random.permutation(batch_size) + +# cat_images = [] +# for i in range(batch_size): +# # image mixup +# image[i,:] = lam * image[i,:] + (1 - lam) * image[index[i],:] +# # text concat +# text[i] = tokenizer((str(text[i]) + " " + str(text[index[i]])))[0] +# text = torch.stack(text) +# return image, text + + +def image_transform( + image_size: int, + is_train: bool, + mean: Optional[Tuple[float, ...]] = None, + std: Optional[Tuple[float, ...]] = None, + resize_longest_max: bool = False, + fill_color: int = 0, +): + mean = mean or OPENAI_DATASET_MEAN + if not isinstance(mean, (list, tuple)): + mean = (mean,) * 3 + + std = std or OPENAI_DATASET_STD + if not isinstance(std, (list, tuple)): + std = (std,) * 3 + + if isinstance(image_size, (list, tuple)) and image_size[0] == image_size[1]: + # for square size, pass size as int so that Resize() uses aspect preserving shortest edge + image_size = image_size[0] + + normalize = Normalize(mean=mean, std=std) + if is_train: + return Compose([ + RandomResizedCrop(image_size, scale=(0.9, 1.0), interpolation=InterpolationMode.BICUBIC), + _convert_to_rgb, + ToTensor(), + normalize, + ]) + else: + if resize_longest_max: + transforms = [ + ResizeMaxSize(image_size, fill=fill_color) + ] + else: + transforms = [ + Resize(image_size, interpolation=InterpolationMode.BICUBIC), + CenterCrop(image_size), + ] + transforms.extend([ + _convert_to_rgb, + ToTensor(), + normalize, + ]) + return Compose(transforms) diff --git a/src/diffusers/pipelines/consisid/util_clip/transformer.py b/src/diffusers/pipelines/consisid/util_clip/transformer.py new file mode 100644 index 000000000000..33e89ff7aa8f --- /dev/null +++ b/src/diffusers/pipelines/consisid/util_clip/transformer.py @@ -0,0 +1,737 @@ +import os +import logging +from collections import OrderedDict +import math +from typing import Callable, Optional, Sequence +import numpy as np +import torch +from torch import nn +from torch.nn import functional as F + +try: + from timm.models.layers import trunc_normal_ +except: + from timm.layers import trunc_normal_ + +from .rope import VisionRotaryEmbedding, VisionRotaryEmbeddingFast +from .utils import to_2tuple + +if os.getenv('ENV_TYPE') == 'deepspeed': + try: + import deepspeed + from deepspeed.runtime.activation_checkpointing.checkpointing import checkpoint + except: + print("Please 'pip install deepspeed'") + deepspeed = None + from torch.utils.checkpoint import checkpoint +else: + from torch.utils.checkpoint import checkpoint + +try: + import xformers.ops as xops +except ImportError: + xops = None + print("Please 'pip install xformers'") + +class LayerNormFp32(nn.LayerNorm): + """Subclass torch's LayerNorm to handle fp16 (by casting to float32 and back).""" + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + + def forward(self, x: torch.Tensor): + output = F.layer_norm( + x.float(), + self.normalized_shape, + self.weight.float() if self.weight is not None else None, + self.bias.float() if self.bias is not None else None, + self.eps, + ) + return output.type_as(x) + + +class LayerNorm(nn.LayerNorm): + """Subclass torch's LayerNorm (with cast back to input dtype).""" + + def forward(self, x: torch.Tensor): + orig_type = x.dtype + x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) + return x.to(orig_type) + +class QuickGELU(nn.Module): + # NOTE This is slower than nn.GELU or nn.SiLU and uses more GPU memory + def forward(self, x: torch.Tensor): + return x * torch.sigmoid(1.702 * x) + + +class LayerScale(nn.Module): + def __init__(self, dim, init_values=1e-5, inplace=False): + super().__init__() + self.inplace = inplace + self.gamma = nn.Parameter(init_values * torch.ones(dim)) + + def forward(self, x): + return x.mul_(self.gamma) if self.inplace else x * self.gamma + +class PatchDropout(nn.Module): + """ + https://arxiv.org/abs/2212.00794 + """ + + def __init__(self, prob, exclude_first_token=True): + super().__init__() + assert 0 <= prob < 1. + self.prob = prob + self.exclude_first_token = exclude_first_token # exclude CLS token + logging.info(f"os.getenv('RoPE')={os.getenv('RoPE')}") + + def forward(self, x): + if not self.training or self.prob == 0.: + return x + + if self.exclude_first_token: + cls_tokens, x = x[:, :1], x[:, 1:] + else: + cls_tokens = torch.jit.annotate(torch.Tensor, x[:, :1]) + + batch = x.size()[0] + num_tokens = x.size()[1] + + batch_indices = torch.arange(batch) + batch_indices = batch_indices[..., None] + + keep_prob = 1 - self.prob + num_patches_keep = max(1, int(num_tokens * keep_prob)) + + rand = torch.randn(batch, num_tokens) + patch_indices_keep = rand.topk(num_patches_keep, dim=-1).indices + + x = x[batch_indices, patch_indices_keep] + + if self.exclude_first_token: + x = torch.cat((cls_tokens, x), dim=1) + + if self.training and os.getenv('RoPE') == '1': + return x, patch_indices_keep + + return x + + +def _in_projection_packed( + q: torch.Tensor, + k: torch.Tensor, + v: torch.Tensor, + w: torch.Tensor, + b: Optional[torch.Tensor] = None, + ): + """ + https://github.com/pytorch/pytorch/blob/db2a237763eb8693a20788be94f8c192e762baa8/torch/nn/functional.py#L4726 + """ + E = q.size(-1) + if k is v: + if q is k: + # self-attention + return F.linear(q, w, b).chunk(3, dim=-1) + else: + # encoder-decoder attention + w_q, w_kv = w.split([E, E * 2]) + if b is None: + b_q = b_kv = None + else: + b_q, b_kv = b.split([E, E * 2]) + return (F.linear(q, w_q, b_q),) + F.linear(k, w_kv, b_kv).chunk(2, dim=-1) + else: + w_q, w_k, w_v = w.chunk(3) + if b is None: + b_q = b_k = b_v = None + else: + b_q, b_k, b_v = b.chunk(3) + return F.linear(q, w_q, b_q), F.linear(k, w_k, b_k), F.linear(v, w_v, b_v) + +class Attention(nn.Module): + def __init__( + self, + dim, + num_heads=8, + qkv_bias=True, + scaled_cosine=False, + scale_heads=False, + logit_scale_max=math.log(1. / 0.01), + attn_drop=0., + proj_drop=0., + xattn=False, + rope=False + ): + super().__init__() + self.scaled_cosine = scaled_cosine + self.scale_heads = scale_heads + assert dim % num_heads == 0, 'dim should be divisible by num_heads' + self.num_heads = num_heads + self.head_dim = dim // num_heads + self.scale = self.head_dim ** -0.5 + self.logit_scale_max = logit_scale_max + + # keeping in_proj in this form (instead of nn.Linear) to match weight scheme of original + self.in_proj_weight = nn.Parameter(torch.randn((dim * 3, dim)) * self.scale) + if qkv_bias: + self.in_proj_bias = nn.Parameter(torch.zeros(dim * 3)) + else: + self.in_proj_bias = None + + if self.scaled_cosine: + self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1)))) + else: + self.logit_scale = None + self.attn_drop = nn.Dropout(attn_drop) + if self.scale_heads: + self.head_scale = nn.Parameter(torch.ones((num_heads, 1, 1))) + else: + self.head_scale = None + self.out_proj = nn.Linear(dim, dim) + self.out_drop = nn.Dropout(proj_drop) + self.xattn = xattn + self.xattn_drop = attn_drop + self.rope = rope + + def forward(self, x, attn_mask: Optional[torch.Tensor] = None): + L, N, C = x.shape + q, k, v = F.linear(x, self.in_proj_weight, self.in_proj_bias).chunk(3, dim=-1) + if self.xattn: + q = q.contiguous().view(L, N, self.num_heads, -1).transpose(0, 1) + k = k.contiguous().view(L, N, self.num_heads, -1).transpose(0, 1) + v = v.contiguous().view(L, N, self.num_heads, -1).transpose(0, 1) + + x = xops.memory_efficient_attention( + q, k, v, + p=self.xattn_drop, + scale=self.scale if self.logit_scale is None else None, + attn_bias=xops.LowerTriangularMask() if attn_mask is not None else None, + ) + else: + q = q.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1) + k = k.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1) + v = v.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1) + + if self.logit_scale is not None: + attn = torch.bmm(F.normalize(q, dim=-1), F.normalize(k, dim=-1).transpose(-1, -2)) + logit_scale = torch.clamp(self.logit_scale, max=self.logit_scale_max).exp() + attn = attn.view(N, self.num_heads, L, L) * logit_scale + attn = attn.view(-1, L, L) + else: + q = q * self.scale + attn = torch.bmm(q, k.transpose(-1, -2)) + + if attn_mask is not None: + if attn_mask.dtype == torch.bool: + new_attn_mask = torch.zeros_like(attn_mask, dtype=q.dtype) + new_attn_mask.masked_fill_(attn_mask, float("-inf")) + attn_mask = new_attn_mask + attn += attn_mask + + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + + x = torch.bmm(attn, v) + + if self.head_scale is not None: + x = x.view(N, self.num_heads, L, C) * self.head_scale + x = x.view(-1, L, C) + x = x.transpose(0, 1).reshape(L, N, C) + x = self.out_proj(x) + x = self.out_drop(x) + return x + +class CustomAttention(nn.Module): + def __init__( + self, + dim, + num_heads=8, + qkv_bias=True, + scaled_cosine=True, + scale_heads=False, + logit_scale_max=math.log(1. / 0.01), + attn_drop=0., + proj_drop=0., + xattn=False + ): + super().__init__() + self.scaled_cosine = scaled_cosine + self.scale_heads = scale_heads + assert dim % num_heads == 0, 'dim should be divisible by num_heads' + self.num_heads = num_heads + self.head_dim = dim // num_heads + self.scale = self.head_dim ** -0.5 + self.logit_scale_max = logit_scale_max + + # keeping in_proj in this form (instead of nn.Linear) to match weight scheme of original + self.in_proj_weight = nn.Parameter(torch.randn((dim * 3, dim)) * self.scale) + if qkv_bias: + self.in_proj_bias = nn.Parameter(torch.zeros(dim * 3)) + else: + self.in_proj_bias = None + + if self.scaled_cosine: + self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1)))) + else: + self.logit_scale = None + self.attn_drop = nn.Dropout(attn_drop) + if self.scale_heads: + self.head_scale = nn.Parameter(torch.ones((num_heads, 1, 1))) + else: + self.head_scale = None + self.out_proj = nn.Linear(dim, dim) + self.out_drop = nn.Dropout(proj_drop) + self.xattn = xattn + self.xattn_drop = attn_drop + + def forward(self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attn_mask: Optional[torch.Tensor] = None): + q, k, v = _in_projection_packed(query, key, value, self.in_proj_weight, self.in_proj_bias) + N_q, B_q, C_q = q.shape + N_k, B_k, C_k = k.shape + N_v, B_v, C_v = v.shape + if self.xattn: + # B, N, C -> B, N, num_heads, C + q = q.permute(1, 0, 2).reshape(B_q, N_q, self.num_heads, -1) + k = k.permute(1, 0, 2).reshape(B_k, N_k, self.num_heads, -1) + v = v.permute(1, 0, 2).reshape(B_v, N_v, self.num_heads, -1) + + x = xops.memory_efficient_attention( + q, k, v, + p=self.xattn_drop, + scale=self.scale if self.logit_scale is None else None, + attn_bias=xops.LowerTriangularMask() if attn_mask is not None else None + ) + else: + # B*H, L, C + q = q.contiguous().view(N_q, B_q * self.num_heads, -1).transpose(0, 1) + k = k.contiguous().view(N_k, B_k * self.num_heads, -1).transpose(0, 1) + v = v.contiguous().view(N_v, B_v * self.num_heads, -1).transpose(0, 1) + + if self.logit_scale is not None: + # B*H, N_q, N_k + attn = torch.bmm(F.normalize(q, dim=-1), F.normalize(k, dim=-1).transpose(-1, -2)) + logit_scale = torch.clamp(self.logit_scale, max=self.logit_scale_max).exp() + attn = attn.view(B_q, self.num_heads, N_q, N_k) * logit_scale + attn = attn.view(-1, N_q, N_k) + else: + q = q * self.scale + attn = torch.bmm(q, k.transpose(-1, -2)) + + if attn_mask is not None: + if attn_mask.dtype == torch.bool: + new_attn_mask = torch.zeros_like(attn_mask, dtype=q.dtype) + new_attn_mask.masked_fill_(attn_mask, float("-inf")) + attn_mask = new_attn_mask + attn += attn_mask + + attn = attn.softmax(dim=-1) + attn = self.attn_drop(attn) + + x = torch.bmm(attn, v) + + if self.head_scale is not None: + x = x.view(B_q, self.num_heads, N_q, C_q) * self.head_scale + x = x.view(-1, N_q, C_q) + x = x.transpose(0, 1).reshape(N_q, B_q, C_q) + x = self.out_proj(x) + x = self.out_drop(x) + return x + +class CustomResidualAttentionBlock(nn.Module): + def __init__( + self, + d_model: int, + n_head: int, + mlp_ratio: float = 4.0, + ls_init_value: float = None, + act_layer: Callable = nn.GELU, + norm_layer: Callable = LayerNorm, + scale_cosine_attn: bool = False, + scale_heads: bool = False, + scale_attn: bool = False, + scale_fc: bool = False, + cross_attn: bool = False, + xattn: bool = False, + ): + super().__init__() + + self.ln_1 = norm_layer(d_model) + self.ln_1_k = norm_layer(d_model) if cross_attn else self.ln_1 + self.ln_1_v = norm_layer(d_model) if cross_attn else self.ln_1 + self.attn = CustomAttention( + d_model, n_head, + qkv_bias=True, + attn_drop=0., + proj_drop=0., + scaled_cosine=scale_cosine_attn, + scale_heads=scale_heads, + xattn=xattn + ) + + self.ln_attn = norm_layer(d_model) if scale_attn else nn.Identity() + self.ls_1 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity() + + self.ln_2 = norm_layer(d_model) + mlp_width = int(d_model * mlp_ratio) + self.mlp = nn.Sequential(OrderedDict([ + ("c_fc", nn.Linear(d_model, mlp_width)), + ('ln', norm_layer(mlp_width) if scale_fc else nn.Identity()), + ("gelu", act_layer()), + ("c_proj", nn.Linear(mlp_width, d_model)) + ])) + + self.ls_2 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity() + + def forward(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, attn_mask: Optional[torch.Tensor] = None): + q = q + self.ls_1(self.ln_attn(self.attn(self.ln_1(q), self.ln_1_k(k), self.ln_1_v(v), attn_mask=attn_mask))) + q = q + self.ls_2(self.mlp(self.ln_2(q))) + return q + +class CustomTransformer(nn.Module): + def __init__( + self, + width: int, + layers: int, + heads: int, + mlp_ratio: float = 4.0, + ls_init_value: float = None, + act_layer: Callable = nn.GELU, + norm_layer: Callable = LayerNorm, + scale_cosine_attn: bool = True, + scale_heads: bool = False, + scale_attn: bool = False, + scale_fc: bool = False, + cross_attn: bool = False, + xattn: bool = False, + ): + super().__init__() + self.width = width + self.layers = layers + self.grad_checkpointing = False + self.xattn = xattn + + self.resblocks = nn.ModuleList([ + CustomResidualAttentionBlock( + width, + heads, + mlp_ratio, + ls_init_value=ls_init_value, + act_layer=act_layer, + norm_layer=norm_layer, + scale_cosine_attn=scale_cosine_attn, + scale_heads=scale_heads, + scale_attn=scale_attn, + scale_fc=scale_fc, + cross_attn=cross_attn, + xattn=xattn) + for _ in range(layers) + ]) + + def get_cast_dtype(self) -> torch.dtype: + return self.resblocks[0].mlp.c_fc.weight.dtype + + def forward(self, q: torch.Tensor, k: torch.Tensor = None, v: torch.Tensor = None, attn_mask: Optional[torch.Tensor] = None): + if k is None and v is None: + k = v = q + for r in self.resblocks: + if self.grad_checkpointing and not torch.jit.is_scripting(): + q = checkpoint(r, q, k, v, attn_mask) + else: + q = r(q, k, v, attn_mask=attn_mask) + return q + + +class ResidualAttentionBlock(nn.Module): + def __init__( + self, + d_model: int, + n_head: int, + mlp_ratio: float = 4.0, + ls_init_value: float = None, + act_layer: Callable = nn.GELU, + norm_layer: Callable = LayerNorm, + xattn: bool = False, + ): + super().__init__() + + self.ln_1 = norm_layer(d_model) + if xattn: + self.attn = Attention(d_model, n_head, xattn=True) + else: + self.attn = nn.MultiheadAttention(d_model, n_head) + self.ls_1 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity() + + self.ln_2 = norm_layer(d_model) + mlp_width = int(d_model * mlp_ratio) + self.mlp = nn.Sequential(OrderedDict([ + ("c_fc", nn.Linear(d_model, mlp_width)), + ("gelu", act_layer()), + ("c_proj", nn.Linear(mlp_width, d_model)) + ])) + + self.ls_2 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity() + self.xattn = xattn + + def attention(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None): + attn_mask = attn_mask.to(x.dtype) if attn_mask is not None else None + if self.xattn: + return self.attn(x, attn_mask=attn_mask) + return self.attn(x, x, x, need_weights=False, attn_mask=attn_mask)[0] + + def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None): + x = x + self.ls_1(self.attention(self.ln_1(x), attn_mask=attn_mask)) + x = x + self.ls_2(self.mlp(self.ln_2(x))) + return x + +class Transformer(nn.Module): + def __init__( + self, + width: int, + layers: int, + heads: int, + mlp_ratio: float = 4.0, + ls_init_value: float = None, + act_layer: Callable = nn.GELU, + norm_layer: Callable = LayerNorm, + xattn: bool = False, + ): + super().__init__() + self.width = width + self.layers = layers + self.grad_checkpointing = False + + self.resblocks = nn.ModuleList([ + ResidualAttentionBlock( + width, heads, mlp_ratio, ls_init_value=ls_init_value, act_layer=act_layer, norm_layer=norm_layer, xattn=xattn) + for _ in range(layers) + ]) + + def get_cast_dtype(self) -> torch.dtype: + return self.resblocks[0].mlp.c_fc.weight.dtype + + def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None): + for r in self.resblocks: + if self.grad_checkpointing and not torch.jit.is_scripting(): + x = checkpoint(r, x, attn_mask) + else: + x = r(x, attn_mask=attn_mask) + return x + + +class VisionTransformer(nn.Module): + def __init__( + self, + image_size: int, + patch_size: int, + width: int, + layers: int, + heads: int, + mlp_ratio: float, + ls_init_value: float = None, + patch_dropout: float = 0., + global_average_pool: bool = False, + output_dim: int = 512, + act_layer: Callable = nn.GELU, + norm_layer: Callable = LayerNorm, + xattn: bool = False, + ): + super().__init__() + self.image_size = to_2tuple(image_size) + self.patch_size = to_2tuple(patch_size) + self.grid_size = (self.image_size[0] // self.patch_size[0], self.image_size[1] // self.patch_size[1]) + self.output_dim = output_dim + self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False) + + scale = width ** -0.5 + self.class_embedding = nn.Parameter(scale * torch.randn(width)) + self.positional_embedding = nn.Parameter(scale * torch.randn(self.grid_size[0] * self.grid_size[1] + 1, width)) + + # setting a patch_dropout of 0. would mean it is disabled and this function would be the identity fn + self.patch_dropout = PatchDropout(patch_dropout) if patch_dropout > 0. else nn.Identity() + self.ln_pre = norm_layer(width) + + self.transformer = Transformer( + width, + layers, + heads, + mlp_ratio, + ls_init_value=ls_init_value, + act_layer=act_layer, + norm_layer=norm_layer, + xattn=xattn + ) + + self.global_average_pool = global_average_pool + self.ln_post = norm_layer(width) + self.proj = nn.Parameter(scale * torch.randn(width, output_dim)) + + def lock(self, unlocked_groups=0, freeze_bn_stats=False): + for param in self.parameters(): + param.requires_grad = False + + if unlocked_groups != 0: + groups = [ + [ + self.conv1, + self.class_embedding, + self.positional_embedding, + self.ln_pre, + ], + *self.transformer.resblocks[:-1], + [ + self.transformer.resblocks[-1], + self.ln_post, + ], + self.proj, + ] + + def _unlock(x): + if isinstance(x, Sequence): + for g in x: + _unlock(g) + else: + if isinstance(x, torch.nn.Parameter): + x.requires_grad = True + else: + for p in x.parameters(): + p.requires_grad = True + + _unlock(groups[-unlocked_groups:]) + + def get_num_layers(self): + return self.transformer.layers + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.transformer.grad_checkpointing = enable + + @torch.jit.ignore + def no_weight_decay(self): + return {'positional_embedding', 'class_embedding'} + + def forward(self, x: torch.Tensor, return_all_features: bool=False): + x = self.conv1(x) # shape = [*, width, grid, grid] + x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] + x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] + x = torch.cat( + [self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), + x], dim=1) # shape = [*, grid ** 2 + 1, width] + x = x + self.positional_embedding.to(x.dtype) + + # a patch_dropout of 0. would mean it is disabled and this function would do nothing but return what was passed in + x = self.patch_dropout(x) + x = self.ln_pre(x) + + x = x.permute(1, 0, 2) # NLD -> LND + x = self.transformer(x) + x = x.permute(1, 0, 2) # LND -> NLD + + if not return_all_features: + if self.global_average_pool: + x = x.mean(dim=1) #x = x[:,1:,:].mean(dim=1) + else: + x = x[:, 0] + + x = self.ln_post(x) + + if self.proj is not None: + x = x @ self.proj + + return x + + +class TextTransformer(nn.Module): + def __init__( + self, + context_length: int = 77, + vocab_size: int = 49408, + width: int = 512, + heads: int = 8, + layers: int = 12, + ls_init_value: float = None, + output_dim: int = 512, + act_layer: Callable = nn.GELU, + norm_layer: Callable = LayerNorm, + xattn: bool= False, + attn_mask: bool = True + ): + super().__init__() + self.context_length = context_length + self.vocab_size = vocab_size + self.width = width + self.output_dim = output_dim + + self.token_embedding = nn.Embedding(vocab_size, width) + self.positional_embedding = nn.Parameter(torch.empty(self.context_length, width)) + self.transformer = Transformer( + width=width, + layers=layers, + heads=heads, + ls_init_value=ls_init_value, + act_layer=act_layer, + norm_layer=norm_layer, + xattn=xattn + ) + + self.xattn = xattn + self.ln_final = norm_layer(width) + self.text_projection = nn.Parameter(torch.empty(width, output_dim)) + + if attn_mask: + self.register_buffer('attn_mask', self.build_attention_mask(), persistent=False) + else: + self.attn_mask = None + + self.init_parameters() + + def init_parameters(self): + nn.init.normal_(self.token_embedding.weight, std=0.02) + nn.init.normal_(self.positional_embedding, std=0.01) + + proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5) + attn_std = self.transformer.width ** -0.5 + fc_std = (2 * self.transformer.width) ** -0.5 + for block in self.transformer.resblocks: + nn.init.normal_(block.attn.in_proj_weight, std=attn_std) + nn.init.normal_(block.attn.out_proj.weight, std=proj_std) + nn.init.normal_(block.mlp.c_fc.weight, std=fc_std) + nn.init.normal_(block.mlp.c_proj.weight, std=proj_std) + + if self.text_projection is not None: + nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5) + + @torch.jit.ignore + def set_grad_checkpointing(self, enable=True): + self.transformer.grad_checkpointing = enable + + @torch.jit.ignore + def no_weight_decay(self): + # return {'positional_embedding', 'token_embedding'} + return {'positional_embedding'} + + def get_num_layers(self): + return self.transformer.layers + + def build_attention_mask(self): + # lazily create causal attention mask, with full attention between the vision tokens + # pytorch uses additive attention mask; fill with -inf + mask = torch.empty(self.context_length, self.context_length) + mask.fill_(float("-inf")) + mask.triu_(1) # zero out the lower diagonal + return mask + + def forward(self, text, return_all_features: bool=False): + cast_dtype = self.transformer.get_cast_dtype() + x = self.token_embedding(text).to(cast_dtype) # [batch_size, n_ctx, d_model] + + x = x + self.positional_embedding.to(cast_dtype) + x = x.permute(1, 0, 2) # NLD -> LND + x = self.transformer(x, attn_mask=self.attn_mask) + # x = self.transformer(x) # no attention mask is applied + x = x.permute(1, 0, 2) # LND -> NLD + x = self.ln_final(x) + + if not return_all_features: + # x.shape = [batch_size, n_ctx, transformer.width] + # take features from the eot embedding (eot_token is the highest number in each sequence) + x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection + return x diff --git a/src/diffusers/pipelines/consisid/util_clip/utils.py b/src/diffusers/pipelines/consisid/util_clip/utils.py new file mode 100644 index 000000000000..bdc5a7a451fd --- /dev/null +++ b/src/diffusers/pipelines/consisid/util_clip/utils.py @@ -0,0 +1,326 @@ +from itertools import repeat +import collections.abc +import logging +import math +import numpy as np + +import torch +from torch import nn as nn +from torchvision.ops.misc import FrozenBatchNorm2d +import torch.nn.functional as F + +# open CLIP +def resize_clip_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1): + # Rescale the grid of position embeddings when loading from state_dict + old_pos_embed = state_dict.get('visual.positional_embedding', None) + if old_pos_embed is None or not hasattr(model.visual, 'grid_size'): + return + grid_size = to_2tuple(model.visual.grid_size) + extra_tokens = 1 # FIXME detect different token configs (ie no class token, or more) + new_seq_len = grid_size[0] * grid_size[1] + extra_tokens + if new_seq_len == old_pos_embed.shape[0]: + return + + if extra_tokens: + pos_emb_tok, pos_emb_img = old_pos_embed[:extra_tokens], old_pos_embed[extra_tokens:] + else: + pos_emb_tok, pos_emb_img = None, old_pos_embed + old_grid_size = to_2tuple(int(math.sqrt(len(pos_emb_img)))) + + logging.info('Resizing position embedding grid-size from %s to %s', old_grid_size, grid_size) + pos_emb_img = pos_emb_img.reshape(1, old_grid_size[0], old_grid_size[1], -1).permute(0, 3, 1, 2) + pos_emb_img = F.interpolate( + pos_emb_img, + size=grid_size, + mode=interpolation, + align_corners=True, + ) + pos_emb_img = pos_emb_img.permute(0, 2, 3, 1).reshape(1, grid_size[0] * grid_size[1], -1)[0] + if pos_emb_tok is not None: + new_pos_embed = torch.cat([pos_emb_tok, pos_emb_img], dim=0) + else: + new_pos_embed = pos_emb_img + state_dict['visual.positional_embedding'] = new_pos_embed + + +def resize_visual_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1): + # Rescale the grid of position embeddings when loading from state_dict + old_pos_embed = state_dict.get('positional_embedding', None) + if old_pos_embed is None or not hasattr(model.visual, 'grid_size'): + return + grid_size = to_2tuple(model.visual.grid_size) + extra_tokens = 1 # FIXME detect different token configs (ie no class token, or more) + new_seq_len = grid_size[0] * grid_size[1] + extra_tokens + if new_seq_len == old_pos_embed.shape[0]: + return + + if extra_tokens: + pos_emb_tok, pos_emb_img = old_pos_embed[:extra_tokens], old_pos_embed[extra_tokens:] + else: + pos_emb_tok, pos_emb_img = None, old_pos_embed + old_grid_size = to_2tuple(int(math.sqrt(len(pos_emb_img)))) + + logging.info('Resizing position embedding grid-size from %s to %s', old_grid_size, grid_size) + pos_emb_img = pos_emb_img.reshape(1, old_grid_size[0], old_grid_size[1], -1).permute(0, 3, 1, 2) + pos_emb_img = F.interpolate( + pos_emb_img, + size=grid_size, + mode=interpolation, + align_corners=True, + ) + pos_emb_img = pos_emb_img.permute(0, 2, 3, 1).reshape(1, grid_size[0] * grid_size[1], -1)[0] + if pos_emb_tok is not None: + new_pos_embed = torch.cat([pos_emb_tok, pos_emb_img], dim=0) + else: + new_pos_embed = pos_emb_img + state_dict['positional_embedding'] = new_pos_embed + +def resize_evaclip_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1): + all_keys = list(state_dict.keys()) + # interpolate position embedding + if 'visual.pos_embed' in state_dict: + pos_embed_checkpoint = state_dict['visual.pos_embed'] + embedding_size = pos_embed_checkpoint.shape[-1] + num_patches = model.visual.patch_embed.num_patches + num_extra_tokens = model.visual.pos_embed.shape[-2] - num_patches + # height (== width) for the checkpoint position embedding + orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5) + # height (== width) for the new position embedding + new_size = int(num_patches ** 0.5) + # class_token and dist_token are kept unchanged + if orig_size != new_size: + print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size)) + extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] + # only the position tokens are interpolated + pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] + pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) + pos_tokens = torch.nn.functional.interpolate( + pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) + pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) + new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) + state_dict['visual.pos_embed'] = new_pos_embed + + patch_embed_proj = state_dict['visual.patch_embed.proj.weight'] + patch_size = model.visual.patch_embed.patch_size + state_dict['visual.patch_embed.proj.weight'] = torch.nn.functional.interpolate( + patch_embed_proj.float(), size=patch_size, mode='bicubic', align_corners=False) + + +def resize_eva_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1): + all_keys = list(state_dict.keys()) + # interpolate position embedding + if 'pos_embed' in state_dict: + pos_embed_checkpoint = state_dict['pos_embed'] + embedding_size = pos_embed_checkpoint.shape[-1] + num_patches = model.visual.patch_embed.num_patches + num_extra_tokens = model.visual.pos_embed.shape[-2] - num_patches + # height (== width) for the checkpoint position embedding + orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5) + # height (== width) for the new position embedding + new_size = int(num_patches ** 0.5) + # class_token and dist_token are kept unchanged + if orig_size != new_size: + print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size)) + extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] + # only the position tokens are interpolated + pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] + pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) + pos_tokens = torch.nn.functional.interpolate( + pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) + pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) + new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) + state_dict['pos_embed'] = new_pos_embed + + patch_embed_proj = state_dict['patch_embed.proj.weight'] + patch_size = model.visual.patch_embed.patch_size + state_dict['patch_embed.proj.weight'] = torch.nn.functional.interpolate( + patch_embed_proj.float(), size=patch_size, mode='bicubic', align_corners=False) + + +def resize_rel_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1): + all_keys = list(state_dict.keys()) + for key in all_keys: + if "relative_position_index" in key: + state_dict.pop(key) + + if "relative_position_bias_table" in key: + rel_pos_bias = state_dict[key] + src_num_pos, num_attn_heads = rel_pos_bias.size() + dst_num_pos, _ = model.visual.state_dict()[key].size() + dst_patch_shape = model.visual.patch_embed.patch_shape + if dst_patch_shape[0] != dst_patch_shape[1]: + raise NotImplementedError() + num_extra_tokens = dst_num_pos - (dst_patch_shape[0] * 2 - 1) * (dst_patch_shape[1] * 2 - 1) + src_size = int((src_num_pos - num_extra_tokens) ** 0.5) + dst_size = int((dst_num_pos - num_extra_tokens) ** 0.5) + if src_size != dst_size: + print("Position interpolate for %s from %dx%d to %dx%d" % ( + key, src_size, src_size, dst_size, dst_size)) + extra_tokens = rel_pos_bias[-num_extra_tokens:, :] + rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :] + + def geometric_progression(a, r, n): + return a * (1.0 - r ** n) / (1.0 - r) + + left, right = 1.01, 1.5 + while right - left > 1e-6: + q = (left + right) / 2.0 + gp = geometric_progression(1, q, src_size // 2) + if gp > dst_size // 2: + right = q + else: + left = q + + # if q > 1.090307: + # q = 1.090307 + + dis = [] + cur = 1 + for i in range(src_size // 2): + dis.append(cur) + cur += q ** (i + 1) + + r_ids = [-_ for _ in reversed(dis)] + + x = r_ids + [0] + dis + y = r_ids + [0] + dis + + t = dst_size // 2.0 + dx = np.arange(-t, t + 0.1, 1.0) + dy = np.arange(-t, t + 0.1, 1.0) + + print("Original positions = %s" % str(x)) + print("Target positions = %s" % str(dx)) + + all_rel_pos_bias = [] + + for i in range(num_attn_heads): + z = rel_pos_bias[:, i].view(src_size, src_size).float().numpy() + f = F.interpolate.interp2d(x, y, z, kind='cubic') + all_rel_pos_bias.append( + torch.Tensor(f(dx, dy)).contiguous().view(-1, 1).to(rel_pos_bias.device)) + + rel_pos_bias = torch.cat(all_rel_pos_bias, dim=-1) + + new_rel_pos_bias = torch.cat((rel_pos_bias, extra_tokens), dim=0) + state_dict[key] = new_rel_pos_bias + + # interpolate position embedding + if 'pos_embed' in state_dict: + pos_embed_checkpoint = state_dict['pos_embed'] + embedding_size = pos_embed_checkpoint.shape[-1] + num_patches = model.visual.patch_embed.num_patches + num_extra_tokens = model.visual.pos_embed.shape[-2] - num_patches + # height (== width) for the checkpoint position embedding + orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5) + # height (== width) for the new position embedding + new_size = int(num_patches ** 0.5) + # class_token and dist_token are kept unchanged + if orig_size != new_size: + print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size)) + extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] + # only the position tokens are interpolated + pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] + pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) + pos_tokens = torch.nn.functional.interpolate( + pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) + pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) + new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) + state_dict['pos_embed'] = new_pos_embed + + patch_embed_proj = state_dict['patch_embed.proj.weight'] + patch_size = model.visual.patch_embed.patch_size + state_dict['patch_embed.proj.weight'] = torch.nn.functional.interpolate( + patch_embed_proj.float(), size=patch_size, mode='bicubic', align_corners=False) + + +def freeze_batch_norm_2d(module, module_match={}, name=''): + """ + Converts all `BatchNorm2d` and `SyncBatchNorm` layers of provided module into `FrozenBatchNorm2d`. If `module` is + itself an instance of either `BatchNorm2d` or `SyncBatchNorm`, it is converted into `FrozenBatchNorm2d` and + returned. Otherwise, the module is walked recursively and submodules are converted in place. + + Args: + module (torch.nn.Module): Any PyTorch module. + module_match (dict): Dictionary of full module names to freeze (all if empty) + name (str): Full module name (prefix) + + Returns: + torch.nn.Module: Resulting module + + Inspired by https://github.com/pytorch/pytorch/blob/a5895f85be0f10212791145bfedc0261d364f103/torch/nn/modules/batchnorm.py#L762 + """ + res = module + is_match = True + if module_match: + is_match = name in module_match + if is_match and isinstance(module, (nn.modules.batchnorm.BatchNorm2d, nn.modules.batchnorm.SyncBatchNorm)): + res = FrozenBatchNorm2d(module.num_features) + res.num_features = module.num_features + res.affine = module.affine + if module.affine: + res.weight.data = module.weight.data.clone().detach() + res.bias.data = module.bias.data.clone().detach() + res.running_mean.data = module.running_mean.data + res.running_var.data = module.running_var.data + res.eps = module.eps + else: + for child_name, child in module.named_children(): + full_child_name = '.'.join([name, child_name]) if name else child_name + new_child = freeze_batch_norm_2d(child, module_match, full_child_name) + if new_child is not child: + res.add_module(child_name, new_child) + return res + + +# From PyTorch internals +def _ntuple(n): + def parse(x): + if isinstance(x, collections.abc.Iterable): + return x + return tuple(repeat(x, n)) + return parse + + +to_1tuple = _ntuple(1) +to_2tuple = _ntuple(2) +to_3tuple = _ntuple(3) +to_4tuple = _ntuple(4) +to_ntuple = lambda n, x: _ntuple(n)(x) + + +def is_logging(args): + def is_global_master(args): + return args.rank == 0 + + def is_local_master(args): + return args.local_rank == 0 + + def is_master(args, local=False): + return is_local_master(args) if local else is_global_master(args) + return is_master + + +class AllGather(torch.autograd.Function): + """An autograd function that performs allgather on a tensor. + Performs all_gather operation on the provided tensors. + *** Warning ***: torch.distributed.all_gather has no gradient. + """ + + @staticmethod + def forward(ctx, tensor, rank, world_size): + tensors_gather = [torch.empty_like(tensor) for _ in range(world_size)] + torch.distributed.all_gather(tensors_gather, tensor) + ctx.rank = rank + ctx.batch_size = tensor.shape[0] + return torch.cat(tensors_gather, 0) + + @staticmethod + def backward(ctx, grad_output): + return ( + grad_output[ctx.batch_size * ctx.rank: ctx.batch_size * (ctx.rank + 1)], + None, + None + ) + +allgather = AllGather.apply \ No newline at end of file diff --git a/src/diffusers/pipelines/consisid/util_clip/utils_qformer.py b/src/diffusers/pipelines/consisid/util_clip/utils_qformer.py new file mode 100644 index 000000000000..809767280a30 --- /dev/null +++ b/src/diffusers/pipelines/consisid/util_clip/utils_qformer.py @@ -0,0 +1,166 @@ +import importlib +import math +import os +import random + +import cv2 +import numpy as np +import torch +import torch.nn.functional as F +from torchvision.utils import make_grid +from transformers import PretrainedConfig + + +def seed_everything(seed): + os.environ["PL_GLOBAL_SEED"] = str(seed) + random.seed(seed) + np.random.seed(seed) + torch.manual_seed(seed) + torch.cuda.manual_seed_all(seed) + + +def is_torch2_available(): + return hasattr(F, "scaled_dot_product_attention") + + +def instantiate_from_config(config): + if "target" not in config: + if config == '__is_first_stage__' or config == "__is_unconditional__": + return None + raise KeyError("Expected key `target` to instantiate.") + return get_obj_from_str(config["target"])(**config.get("params", {})) + + +def get_obj_from_str(string, reload=False): + module, cls = string.rsplit(".", 1) + if reload: + module_imp = importlib.import_module(module) + importlib.reload(module_imp) + return getattr(importlib.import_module(module, package=None), cls) + + +def drop_seq_token(seq, drop_rate=0.5): + idx = torch.randperm(seq.size(1)) + num_keep_tokens = int(len(idx) * (1 - drop_rate)) + idx = idx[:num_keep_tokens] + seq = seq[:, idx] + return seq + + +def import_model_class_from_model_name_or_path( + pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder" +): + text_encoder_config = PretrainedConfig.from_pretrained( + pretrained_model_name_or_path, subfolder=subfolder, revision=revision + ) + model_class = text_encoder_config.architectures[0] + + if model_class == "CLIPTextModel": + from transformers import CLIPTextModel + + return CLIPTextModel + elif model_class == "CLIPTextModelWithProjection": # noqa RET505 + from transformers import CLIPTextModelWithProjection + + return CLIPTextModelWithProjection + else: + raise ValueError(f"{model_class} is not supported.") + + +def resize_numpy_image_long(image, resize_long_edge=768): + h, w = image.shape[:2] + if max(h, w) <= resize_long_edge: + return image + k = resize_long_edge / max(h, w) + h = int(h * k) + w = int(w * k) + image = cv2.resize(image, (w, h), interpolation=cv2.INTER_LANCZOS4) + return image + + +# from basicsr +def img2tensor(imgs, bgr2rgb=True, float32=True): + """Numpy array to tensor. + + Args: + imgs (list[ndarray] | ndarray): Input images. + bgr2rgb (bool): Whether to change bgr to rgb. + float32 (bool): Whether to change to float32. + + Returns: + list[tensor] | tensor: Tensor images. If returned results only have + one element, just return tensor. + """ + + def _totensor(img, bgr2rgb, float32): + if img.shape[2] == 3 and bgr2rgb: + if img.dtype == 'float64': + img = img.astype('float32') + img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) + img = torch.from_numpy(img.transpose(2, 0, 1)) + if float32: + img = img.float() + return img + + if isinstance(imgs, list): + return [_totensor(img, bgr2rgb, float32) for img in imgs] + return _totensor(imgs, bgr2rgb, float32) + + +def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)): + """Convert torch Tensors into image numpy arrays. + + After clamping to [min, max], values will be normalized to [0, 1]. + + Args: + tensor (Tensor or list[Tensor]): Accept shapes: + 1) 4D mini-batch Tensor of shape (B x 3/1 x H x W); + 2) 3D Tensor of shape (3/1 x H x W); + 3) 2D Tensor of shape (H x W). + Tensor channel should be in RGB order. + rgb2bgr (bool): Whether to change rgb to bgr. + out_type (numpy type): output types. If ``np.uint8``, transform outputs + to uint8 type with range [0, 255]; otherwise, float type with + range [0, 1]. Default: ``np.uint8``. + min_max (tuple[int]): min and max values for clamp. + + Returns: + (Tensor or list): 3D ndarray of shape (H x W x C) OR 2D ndarray of + shape (H x W). The channel order is BGR. + """ + if not (torch.is_tensor(tensor) or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))): + raise TypeError(f'tensor or list of tensors expected, got {type(tensor)}') + + if torch.is_tensor(tensor): + tensor = [tensor] + result = [] + for _tensor in tensor: + _tensor = _tensor.squeeze(0).float().detach().cpu().clamp_(*min_max) + _tensor = (_tensor - min_max[0]) / (min_max[1] - min_max[0]) + + n_dim = _tensor.dim() + if n_dim == 4: + img_np = make_grid(_tensor, nrow=int(math.sqrt(_tensor.size(0))), normalize=False).numpy() + img_np = img_np.transpose(1, 2, 0) + if rgb2bgr: + img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR) + elif n_dim == 3: + img_np = _tensor.numpy() + img_np = img_np.transpose(1, 2, 0) + if img_np.shape[2] == 1: # gray image + img_np = np.squeeze(img_np, axis=2) + else: + if rgb2bgr: + img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR) + elif n_dim == 2: + img_np = _tensor.numpy() + else: + raise TypeError(f'Only support 4D, 3D or 2D tensor. But received with dimension: {n_dim}') + if out_type == np.uint8: + # Unlike MATLAB, numpy.unit8() WILL NOT round by default. + img_np = (img_np * 255.0).round() + img_np = img_np.astype(out_type) + result.append(img_np) + if len(result) == 1: + result = result[0] + return result diff --git a/src/diffusers/pipelines/consisid/util_consisid.py b/src/diffusers/pipelines/consisid/util_consisid.py new file mode 100644 index 000000000000..ac365b4f7043 --- /dev/null +++ b/src/diffusers/pipelines/consisid/util_consisid.py @@ -0,0 +1,217 @@ +import os +import cv2 +import math +import numpy as np +from PIL import Image, ImageOps + +import torch +from torchvision.transforms import InterpolationMode +from torchvision.transforms.functional import normalize, resize +from diffusers.utils import load_image + +import insightface +from insightface.app import FaceAnalysis +from facexlib.parsing import init_parsing_model +from facexlib.utils.face_restoration_helper import FaceRestoreHelper + +from .util_clip import create_model_and_transforms +from .util_clip.constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD +from .util_clip.utils_qformer import resize_numpy_image_long + + +def img2tensor(imgs, bgr2rgb=True, float32=True): + """Numpy array to tensor. + + Args: + imgs (list[ndarray] | ndarray): Input images. + bgr2rgb (bool): Whether to change bgr to rgb. + float32 (bool): Whether to change to float32. + + Returns: + list[tensor] | tensor: Tensor images. If returned results only have + one element, just return tensor. + """ + + def _totensor(img, bgr2rgb, float32): + if img.shape[2] == 3 and bgr2rgb: + if img.dtype == 'float64': + img = img.astype('float32') + img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) + img = torch.from_numpy(img.transpose(2, 0, 1)) + if float32: + img = img.float() + return img + + if isinstance(imgs, list): + return [_totensor(img, bgr2rgb, float32) for img in imgs] + return _totensor(imgs, bgr2rgb, float32) + + +def to_gray(img): + """ + Converts an RGB image to grayscale by applying the standard luminosity formula. + + Args: + img (torch.Tensor): The input image tensor with shape (batch_size, channels, height, width). + The image is expected to be in RGB format (3 channels). + + Returns: + torch.Tensor: The grayscale image tensor with shape (batch_size, 3, height, width). + The grayscale values are replicated across all three channels. + """ + x = 0.299 * img[:, 0:1] + 0.587 * img[:, 1:2] + 0.114 * img[:, 2:3] + x = x.repeat(1, 3, 1, 1) + return x + + +def process_face_embeddings(face_helper_1, clip_vision_model, face_helper_2, eva_transform_mean, eva_transform_std, app, device, weight_dtype, image, original_id_image=None, is_align_face=True): + """ + Args: + image: numpy rgb image, range [0, 255] + """ + face_helper_1.clean_all() + image_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # (724, 502, 3) + # get antelopev2 embedding + face_info = app.get(image_bgr) + if len(face_info) > 0: + face_info = sorted(face_info, key=lambda x: (x['bbox'][2] - x['bbox'][0]) * (x['bbox'][3] - x['bbox'][1]))[ + -1 + ] # only use the maximum face + id_ante_embedding = face_info['embedding'] # (512,) + face_kps = face_info['kps'] + else: + id_ante_embedding = None + face_kps = None + + # using facexlib to detect and align face + face_helper_1.read_image(image_bgr) + face_helper_1.get_face_landmarks_5(only_center_face=True) + if face_kps is None: + face_kps = face_helper_1.all_landmarks_5[0] + face_helper_1.align_warp_face() + if len(face_helper_1.cropped_faces) == 0: + raise RuntimeError('facexlib align face fail') + align_face = face_helper_1.cropped_faces[0] # (512, 512, 3) # RGB + + # incase insightface didn't detect face + if id_ante_embedding is None: + print('fail to detect face using insightface, extract embedding on align face') + id_ante_embedding = face_helper_2.get_feat(align_face) + + id_ante_embedding = torch.from_numpy(id_ante_embedding).to(device, weight_dtype) # torch.Size([512]) + if id_ante_embedding.ndim == 1: + id_ante_embedding = id_ante_embedding.unsqueeze(0) # torch.Size([1, 512]) + + # parsing + if is_align_face: + input = img2tensor(align_face, bgr2rgb=True).unsqueeze(0) / 255.0 # torch.Size([1, 3, 512, 512]) + input = input.to(device) + parsing_out = face_helper_1.face_parse(normalize(input, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]))[0] + parsing_out = parsing_out.argmax(dim=1, keepdim=True) # torch.Size([1, 1, 512, 512]) + bg_label = [0, 16, 18, 7, 8, 9, 14, 15] + bg = sum(parsing_out == i for i in bg_label).bool() + white_image = torch.ones_like(input) # torch.Size([1, 3, 512, 512]) + # only keep the face features + return_face_features_image = torch.where(bg, white_image, to_gray(input)) # torch.Size([1, 3, 512, 512]) + return_face_features_image_2 = torch.where(bg, white_image, input) # torch.Size([1, 3, 512, 512]) + else: + original_image_bgr = cv2.cvtColor(original_id_image, cv2.COLOR_RGB2BGR) + input = img2tensor(original_image_bgr, bgr2rgb=True).unsqueeze(0) / 255.0 # torch.Size([1, 3, 512, 512]) + input = input.to(device) + return_face_features_image = return_face_features_image_2 = input + + # transform img before sending to eva-clip-vit + face_features_image = resize(return_face_features_image, clip_vision_model.image_size, + InterpolationMode.BICUBIC) # torch.Size([1, 3, 336, 336]) + face_features_image = normalize(face_features_image, eva_transform_mean, eva_transform_std) + id_cond_vit, id_vit_hidden = clip_vision_model(face_features_image.to(weight_dtype), return_all_features=False, return_hidden=True, shuffle=False) # torch.Size([1, 768]), list(torch.Size([1, 577, 1024])) + id_cond_vit_norm = torch.norm(id_cond_vit, 2, 1, True) + id_cond_vit = torch.div(id_cond_vit, id_cond_vit_norm) + + id_cond = torch.cat([id_ante_embedding, id_cond_vit], dim=-1) # torch.Size([1, 512]), torch.Size([1, 768]) -> torch.Size([1, 1280]) + + return id_cond, id_vit_hidden, return_face_features_image_2, face_kps # torch.Size([1, 1280]), list(torch.Size([1, 577, 1024])) + + +def process_face_embeddings_infer(face_helper_1, clip_vision_model, face_helper_2, eva_transform_mean, eva_transform_std, app, device, weight_dtype, img_file_path, is_align_face=True): + """ + Args: + image: numpy rgb image, range [0, 255] + """ + if isinstance(img_file_path, str): + image = np.array(load_image(image=img_file_path).convert("RGB")) + else: + image = np.array(ImageOps.exif_transpose(Image.fromarray(img_file_path)).convert("RGB")) + + image = resize_numpy_image_long(image, 1024) + original_id_image = image + + id_cond, id_vit_hidden, align_crop_face_image, face_kps = process_face_embeddings(face_helper_1, clip_vision_model, face_helper_2, eva_transform_mean, eva_transform_std, app, device, weight_dtype, image, original_id_image, is_align_face) + + tensor = align_crop_face_image.cpu().detach() + tensor = tensor.squeeze() + tensor = tensor.permute(1, 2, 0) + tensor = tensor.numpy() * 255 + tensor = tensor.astype(np.uint8) + image = ImageOps.exif_transpose(Image.fromarray(tensor)) + + return id_cond, id_vit_hidden, image, face_kps + + +def prepare_face_models(model_path, device, dtype): + """ + Prepare all face models for the facial recognition task. + + Parameters: + - model_path: Path to the directory containing model files. + - device: The device (e.g., 'cuda', 'cpu') where models will be loaded. + - dtype: Data type (e.g., torch.float32) for model inference. + + Returns: + - face_helper_1: First face restoration helper. + - face_helper_2: Second face restoration helper. + - face_clip_model: CLIP model for face extraction. + - eva_transform_mean: Mean value for image normalization. + - eva_transform_std: Standard deviation value for image normalization. + - face_main_model: Main face analysis model. + """ + # get helper model + face_helper_1 = FaceRestoreHelper( + upscale_factor=1, + face_size=512, + crop_ratio=(1, 1), + det_model='retinaface_resnet50', + save_ext='png', + device=device, + model_rootpath=os.path.join(model_path, "face_encoder") + ) + face_helper_1.face_parse = None + face_helper_1.face_parse = init_parsing_model(model_name='bisenet', device=device, model_rootpath=os.path.join(model_path, "face_encoder")) + face_helper_2 = insightface.model_zoo.get_model(f'{model_path}/face_encoder/models/antelopev2/glintr100.onnx', providers=['CUDAExecutionProvider']) + face_helper_2.prepare(ctx_id=0) + + # get local facial extractor part 1 + model, _, _ = create_model_and_transforms('EVA02-CLIP-L-14-336', os.path.join(model_path, "face_encoder", "EVA02_CLIP_L_336_psz14_s6B.pt"), force_custom_clip=True) + face_clip_model = model.visual + eva_transform_mean = getattr(face_clip_model, 'image_mean', OPENAI_DATASET_MEAN) + eva_transform_std = getattr(face_clip_model, 'image_std', OPENAI_DATASET_STD) + if not isinstance(eva_transform_mean, (list, tuple)): + eva_transform_mean = (eva_transform_mean,) * 3 + if not isinstance(eva_transform_std, (list, tuple)): + eva_transform_std = (eva_transform_std,) * 3 + eva_transform_mean = eva_transform_mean + eva_transform_std = eva_transform_std + + # get local facial extractor part 2 + face_main_model = FaceAnalysis(name='antelopev2', root=os.path.join(model_path, "face_encoder"), providers=['CUDAExecutionProvider']) + face_main_model.prepare(ctx_id=0, det_size=(640, 640)) + + # move face models to device + face_helper_1.face_det.eval() + face_helper_1.face_parse.eval() + face_clip_model.eval() + face_helper_1.face_det.to(device) + face_helper_1.face_parse.to(device) + face_clip_model.to(device, dtype=dtype) + + return face_helper_1, face_helper_2, face_clip_model, face_main_model, eva_transform_mean, eva_transform_std \ No newline at end of file From 12855b23252d9946b4ada2bb238275f766a409cc Mon Sep 17 00:00:00 2001 From: SHYuanBest Date: Tue, 10 Dec 2024 13:06:45 +0800 Subject: [PATCH 04/56] update consisid --- .../transformers/consisid_transformer_3d.py | 14 ++-- .../pipelines/consisid/util_clip/__init__.py | 41 ++++++++-- .../consisid/util_clip/eva_vit_model.py | 55 ++++++------- .../pipelines/consisid/util_clip/factory.py | 31 ++++---- .../pipelines/consisid/util_clip/hf_model.py | 43 ++++++----- .../pipelines/consisid/util_clip/loss.py | 8 +- .../pipelines/consisid/util_clip/model.py | 20 ++--- .../consisid/util_clip/modified_resnet.py | 3 +- .../pipelines/consisid/util_clip/openai.py | 3 +- .../consisid/util_clip/pretrained.py | 4 +- .../pipelines/consisid/util_clip/rope.py | 10 ++- .../consisid/util_clip/timm_model.py | 9 ++- .../pipelines/consisid/util_clip/tokenizer.py | 7 +- .../pipelines/consisid/util_clip/transform.py | 14 +++- .../consisid/util_clip/transformer.py | 27 +++---- .../pipelines/consisid/util_clip/utils.py | 11 +-- .../pipelines/consisid/util_consisid.py | 77 +++++++++++++++---- 17 files changed, 234 insertions(+), 143 deletions(-) diff --git a/src/diffusers/models/transformers/consisid_transformer_3d.py b/src/diffusers/models/transformers/consisid_transformer_3d.py index 8ea19c6a93fe..c026a3f8012e 100644 --- a/src/diffusers/models/transformers/consisid_transformer_3d.py +++ b/src/diffusers/models/transformers/consisid_transformer_3d.py @@ -75,9 +75,9 @@ def reshape_tensor(x, heads): class PerceiverAttention(nn.Module): """ Implements the Perceiver attention mechanism with multi-head attention. - + This layer takes two inputs: 'x' (image features) and 'latents' (latent features), - applying multi-head attention to both and producing an output tensor with the same + applying multi-head attention to both and producing an output tensor with the same dimension as the input tensor 'x'. Args: @@ -522,19 +522,19 @@ class ConsisIDTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin): which can help reduce computational overhead. LFE_num_tokens (`int`, defaults to `32`): The number of tokens to use in the Local Facial Extractor (LFE). - This module is responsible for capturing high frequency representations + This module is responsible for capturing high frequency representations of the face. LFE_output_dim (`int`, defaults to `768`): The output dimension of the Local Facial Extractor (LFE) module. - This dimension determines the size of the feature vectors produced + This dimension determines the size of the feature vectors produced by the LFE module. LFE_heads (`int`, defaults to `12`): The number of attention heads used in the Local Facial Extractor (LFE) module. - More heads may improve the ability to capture diverse features, but + More heads may improve the ability to capture diverse features, but can also increase computational complexity. local_face_scale (`float`, defaults to `1.0`): - A scaling factor used to adjust the importance of local facial features - in the model. This can influence how strongly the model focuses on + A scaling factor used to adjust the importance of local facial features + in the model. This can influence how strongly the model focuses on high frequency face-related content. """ diff --git a/src/diffusers/pipelines/consisid/util_clip/__init__.py b/src/diffusers/pipelines/consisid/util_clip/__init__.py index fa2d014bbfe6..08724dcd7a6e 100644 --- a/src/diffusers/pipelines/consisid/util_clip/__init__.py +++ b/src/diffusers/pipelines/consisid/util_clip/__init__.py @@ -1,11 +1,36 @@ from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD -from .factory import create_model, create_model_and_transforms, create_model_from_pretrained, get_tokenizer, create_transforms -from .factory import list_models, add_model_config, get_model_config, load_checkpoint +from .factory import ( + add_model_config, + create_model, + create_model_and_transforms, + create_model_from_pretrained, + create_transforms, + get_model_config, + get_tokenizer, + list_models, + load_checkpoint, +) from .loss import ClipLoss -from .model import CLIP, CustomCLIP, CLIPTextCfg, CLIPVisionCfg,\ - convert_weights_to_lp, convert_weights_to_fp16, trace_model, get_cast_dtype -from .openai import load_openai_model, list_openai_models -from .pretrained import list_pretrained, list_pretrained_models_by_tag, list_pretrained_tags_by_model,\ - get_pretrained_url, download_pretrained_from_url, is_pretrained_cfg, get_pretrained_cfg, download_pretrained +from .model import ( + CLIP, + CLIPTextCfg, + CLIPVisionCfg, + CustomCLIP, + convert_weights_to_fp16, + convert_weights_to_lp, + get_cast_dtype, + trace_model, +) +from .openai import list_openai_models, load_openai_model +from .pretrained import ( + download_pretrained, + download_pretrained_from_url, + get_pretrained_cfg, + get_pretrained_url, + is_pretrained_cfg, + list_pretrained, + list_pretrained_models_by_tag, + list_pretrained_tags_by_model, +) from .tokenizer import SimpleTokenizer, tokenize -from .transform import image_transform \ No newline at end of file +from .transform import image_transform diff --git a/src/diffusers/pipelines/consisid/util_clip/eva_vit_model.py b/src/diffusers/pipelines/consisid/util_clip/eva_vit_model.py index 51db88cf0c7b..06eb180c113a 100644 --- a/src/diffusers/pipelines/consisid/util_clip/eva_vit_model.py +++ b/src/diffusers/pipelines/consisid/util_clip/eva_vit_model.py @@ -4,16 +4,20 @@ import math import os from functools import partial + import torch import torch.nn as nn import torch.nn.functional as F + + try: from timm.models.layers import drop_path, to_2tuple, trunc_normal_ except: from timm.layers import drop_path, to_2tuple, trunc_normal_ - + +from .rope import VisionRotaryEmbeddingFast from .transformer import PatchDropout -from .rope import VisionRotaryEmbedding, VisionRotaryEmbeddingFast + if os.getenv('ENV_TYPE') == 'deepspeed': try: @@ -24,7 +28,6 @@ from torch.utils.checkpoint import checkpoint try: - import xformers import xformers.ops as xops XFORMERS_IS_AVAILBLE = True except: @@ -39,19 +42,19 @@ def __init__(self, drop_prob=None): def forward(self, x): return drop_path(x, self.drop_prob, self.training) - + def extra_repr(self) -> str: return 'p={}'.format(self.drop_prob) class Mlp(nn.Module): def __init__( - self, - in_features, - hidden_features=None, - out_features=None, - act_layer=nn.GELU, - norm_layer=nn.LayerNorm, + self, + in_features, + hidden_features=None, + out_features=None, + act_layer=nn.GELU, + norm_layer=nn.LayerNorm, drop=0., subln=False, @@ -71,7 +74,7 @@ def forward(self, x): x = self.fc1(x) x = self.act(x) # x = self.drop(x) - # commit this for the orignal BERT implement + # commit this for the orignal BERT implement x = self.ffn_ln(x) x = self.fc2(x) @@ -79,7 +82,7 @@ def forward(self, x): return x class SwiGLU(nn.Module): - def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.SiLU, drop=0., + def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.SiLU, drop=0., norm_layer=nn.LayerNorm, subln=False): super().__init__() out_features = out_features or in_features @@ -91,7 +94,7 @@ def __init__(self, in_features, hidden_features=None, out_features=None, act_lay self.act = act_layer() self.ffn_ln = norm_layer(hidden_features) if subln else nn.Identity() self.w3 = nn.Linear(hidden_features, out_features) - + self.drop = nn.Dropout(drop) def forward(self, x): @@ -172,20 +175,20 @@ def __init__( def forward(self, x, rel_pos_bias=None, attn_mask=None): B, N, C = x.shape - if self.subln: + if self.subln: q = F.linear(input=x, weight=self.q_proj.weight, bias=self.q_bias) k = F.linear(input=x, weight=self.k_proj.weight, bias=None) v = F.linear(input=x, weight=self.v_proj.weight, bias=self.v_bias) q = q.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) # B, num_heads, N, C - k = k.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) - v = v.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) - else: + k = k.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) + v = v.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) + else: qkv_bias = None if self.q_bias is not None: qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias)) - + qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) # 3, B, num_heads, N, C q, k, v = qkv[0], qkv[1], qkv[2] @@ -232,7 +235,7 @@ def forward(self, x, rel_pos_bias=None, attn_mask=None): if attn_mask is not None: attn_mask = attn_mask.bool() attn = attn.masked_fill(~attn_mask[:, None, None, :], float("-inf")) - + attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) @@ -262,15 +265,15 @@ def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, if naiveswiglu: self.mlp = SwiGLU( - in_features=dim, - hidden_features=mlp_hidden_dim, + in_features=dim, + hidden_features=mlp_hidden_dim, subln=subln, norm_layer=norm_layer, ) else: self.mlp = Mlp( - in_features=dim, - hidden_features=mlp_hidden_dim, + in_features=dim, + hidden_features=mlp_hidden_dim, act_layer=act_layer, subln=subln, drop=drop @@ -407,7 +410,7 @@ def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, em ft_seq_len=hw_seq_len if intp_freq else None, # patch_dropout=patch_dropout ) - else: + else: self.rope = None self.naiveswiglu = naiveswiglu @@ -469,7 +472,7 @@ def _init_weights(self, m): def get_num_layers(self): return len(self.blocks) - + def lock(self, unlocked_groups=0, freeze_bn_stats=False): assert unlocked_groups == 0, 'partial locking not currently supported for this model' for param in self.parameters(): @@ -491,7 +494,7 @@ def reset_classifier(self, num_classes, global_pool=''): self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() def forward_features(self, x, return_all_features=False, return_hidden=False, shuffle=False): - + x = self.patch_embed(x) batch_size, seq_len, _ = x.size() diff --git a/src/diffusers/pipelines/consisid/util_clip/factory.py b/src/diffusers/pipelines/consisid/util_clip/factory.py index ced8999997bf..65424193ffb3 100644 --- a/src/diffusers/pipelines/consisid/util_clip/factory.py +++ b/src/diffusers/pipelines/consisid/util_clip/factory.py @@ -1,24 +1,23 @@ import json import logging import os -import pathlib import re from copy import deepcopy from pathlib import Path -from typing import Optional, Tuple, Union, Dict, Any +from typing import Optional, Tuple, Union + import torch from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD -from .model import CLIP, CustomCLIP, convert_weights_to_lp, convert_to_custom_text_state_dict,\ - get_cast_dtype +from .model import CLIP, CustomCLIP, convert_to_custom_text_state_dict, get_cast_dtype from .openai import load_openai_model -from .pretrained import is_pretrained_cfg, get_pretrained_cfg, download_pretrained, list_pretrained_tags_by_model -from .transform import image_transform +from .pretrained import download_pretrained, get_pretrained_cfg, is_pretrained_cfg, list_pretrained_tags_by_model from .tokenizer import HFTokenizer, tokenize -from .utils import resize_clip_pos_embed, resize_evaclip_pos_embed, resize_visual_pos_embed, resize_eva_pos_embed +from .transform import image_transform +from .utils import resize_clip_pos_embed, resize_eva_pos_embed, resize_evaclip_pos_embed, resize_visual_pos_embed -_MODEL_CONFIG_PATHS = [Path(__file__).parent / f"model_configs/"] +_MODEL_CONFIG_PATHS = [Path(__file__).parent / "model_configs/"] _MODEL_CONFIGS = {} # directory (model_name: config) of model architecture configs @@ -93,7 +92,7 @@ def load_state_dict(checkpoint_path: str, map_location: str='cpu', model_key: st state_dict = checkpoint if next(iter(state_dict.items()))[0].startswith('module'): state_dict = {k[7:]: v for k, v in state_dict.items()} - + for k in skip_list: if k in list(state_dict.keys()): logging.info(f"Removing key {k} from pretrained checkpoint") @@ -181,7 +180,7 @@ def load_pretrained_checkpoint( visual_state_dict = load_clip_visual_state_dict(visual_checkpoint_path, is_openai=True, skip_list=skip_list) else: visual_state_dict = load_state_dict(visual_checkpoint_path, model_key=model_key, is_openai=False, skip_list=skip_list) - + # resize_clip_pos_embed for CLIP and open CLIP if 'positional_embedding' in visual_state_dict: resize_visual_pos_embed(visual_state_dict, model) @@ -202,7 +201,7 @@ def load_pretrained_checkpoint( text_state_dict = load_state_dict(visual_checkpoint_path, model_key=model_key, is_openai=False, skip_list=skip_list) text_incompatible_keys = model.text.load_state_dict(text_state_dict, strict=strict) - + logging.info(f"num of loaded text_state_dict keys: {len(text_state_dict.keys())}") logging.info(f"text_incompatible_keys.missing_keys: {text_incompatible_keys.missing_keys}") @@ -255,7 +254,7 @@ def create_model( if force_quick_gelu: # override for use of QuickGELU on non-OpenAI transformer models model_cfg["quick_gelu"] = True - + if force_patch_dropout is not None: # override the default patch dropout value model_cfg['vision_cfg']["patch_dropout"] = force_patch_dropout @@ -286,7 +285,7 @@ def create_model( checkpoint_path, model_key="model|module|state_dict", strict=False - ) + ) else: error_str = ( f'Pretrained weights ({pretrained}) not found for model {model_name}.' @@ -296,7 +295,7 @@ def create_model( else: visual_checkpoint_path = '' text_checkpoint_path = '' - + if pretrained_image: pretrained_visual_model = pretrained_visual_model.replace('/', '-') # for callers using old naming with / in ViT names pretrained_image_cfg = get_pretrained_cfg(pretrained_visual_model, pretrained_image) @@ -321,7 +320,7 @@ def create_model( else: logging.warning(f'Pretrained weights ({text_checkpoint_path}) not found for model {model_name}.text.') raise RuntimeError(f'Pretrained weights ({text_checkpoint_path}) not found for model {model_name}.text.') - + if visual_checkpoint_path: logging.info(f'Loading pretrained {model_name}.visual weights ({visual_checkpoint_path}).') if text_checkpoint_path: @@ -338,7 +337,7 @@ def create_model( model_key="model|module|state_dict", skip_list=skip_list ) - + if "fp16" in precision or "bf16" in precision: logging.info(f'convert precision to {precision}') model = model.to(torch.bfloat16) if 'bf16' in precision else model.to(torch.float16) diff --git a/src/diffusers/pipelines/consisid/util_clip/hf_model.py b/src/diffusers/pipelines/consisid/util_clip/hf_model.py index c4b9fd85b406..530240d10090 100644 --- a/src/diffusers/pipelines/consisid/util_clip/hf_model.py +++ b/src/diffusers/pipelines/consisid/util_clip/hf_model.py @@ -7,14 +7,18 @@ import torch import torch.nn as nn -from torch.nn import functional as F from torch import TensorType + + try: import transformers - from transformers import AutoModel, AutoModelForMaskedLM, AutoTokenizer, AutoConfig, PretrainedConfig - from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, \ - BaseModelOutputWithPoolingAndCrossAttentions -except ImportError as e: + from transformers import AutoConfig, AutoModel, AutoModelForMaskedLM, AutoTokenizer, PretrainedConfig + from transformers.modeling_outputs import ( + BaseModelOutput, + BaseModelOutputWithPooling, + BaseModelOutputWithPoolingAndCrossAttentions, + ) +except ImportError: transformers = None @@ -27,6 +31,7 @@ class PretrainedConfig: from .hf_configs import arch_dict + # utils def _camel2snake(s): return re.sub(r'(? TensorType: - # image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(x.device) + # image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(x.device) # attn_mask = (x != self.config.pad_token_id).long() # out = self.transformer( - # input_ids=x, + # input_ids=x, # attention_mask=attn_mask, # encoder_hidden_states = image_embeds, # encoder_attention_mask = image_atts, @@ -150,14 +155,14 @@ def __init__( # return self.itm_proj(pooled_out) def mask(self, input_ids, vocab_size, device, targets=None, masked_indices=None, probability_matrix=None): - if masked_indices is None: + if masked_indices is None: masked_indices = torch.bernoulli(probability_matrix).bool() - + masked_indices[input_ids == self.tokenizer.pad_token_id] = False masked_indices[input_ids == self.tokenizer.cls_token_id] = False - + if targets is not None: - targets[~masked_indices] = -100 # We only compute loss on masked tokens + targets[~masked_indices] = -100 # We only compute loss on masked tokens # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK]) indices_replaced = torch.bernoulli(torch.full(input_ids.shape, 0.8)).bool() & masked_indices @@ -166,9 +171,9 @@ def mask(self, input_ids, vocab_size, device, targets=None, masked_indices=None, # 10% of the time, we replace masked input tokens with random word indices_random = torch.bernoulli(torch.full(input_ids.shape, 0.5)).bool() & masked_indices & ~indices_replaced random_words = torch.randint(vocab_size, input_ids.shape, dtype=torch.long).to(device) - input_ids[indices_random] = random_words[indices_random] - # The rest of the time (10% of the time) we keep the masked input tokens unchanged - + input_ids[indices_random] = random_words[indices_random] + # The rest of the time (10% of the time) we keep the masked input tokens unchanged + if targets is not None: return input_ids, targets else: @@ -177,7 +182,7 @@ def mask(self, input_ids, vocab_size, device, targets=None, masked_indices=None, def forward_mlm(self, input_ids, image_embeds, mlm_probability=0.25): labels = input_ids.clone() attn_mask = (input_ids != self.config.pad_token_id).long() - image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(input_ids.device) + image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(input_ids.device) vocab_size = getattr(self.config, arch_dict[self.config.model_type]["config_names"]["vocab_size"]) probability_matrix = torch.full(labels.shape, mlm_probability) input_ids, labels = self.mask(input_ids, vocab_size, input_ids.device, targets=labels, diff --git a/src/diffusers/pipelines/consisid/util_clip/loss.py b/src/diffusers/pipelines/consisid/util_clip/loss.py index 473f60d98d50..ccdcbf303ea7 100644 --- a/src/diffusers/pipelines/consisid/util_clip/loss.py +++ b/src/diffusers/pipelines/consisid/util_clip/loss.py @@ -1,8 +1,8 @@ -import math import torch import torch.nn as nn from torch.nn import functional as F + try: import torch.distributed.nn from torch import distributed as dist @@ -119,7 +119,7 @@ def forward(self, image_features, text_features, logit_scale=1.): self.prev_num_logits = num_logits else: labels = self.labels[device] - + if self.label_smoothing_cross_entropy: total_loss = ( self.label_smoothing_cross_entropy(logits_per_image, labels) + @@ -130,9 +130,9 @@ def forward(self, image_features, text_features, logit_scale=1.): F.cross_entropy(logits_per_image, labels) + F.cross_entropy(logits_per_text, labels) ) / 2 - + acc = None i2t_acc = (logits_per_image.argmax(-1) == labels).sum() / len(logits_per_image) t2i_acc = (logits_per_text.argmax(-1) == labels).sum() / len(logits_per_text) acc = {"i2t": i2t_acc, "t2i": t2i_acc} - return total_loss, acc \ No newline at end of file + return total_loss, acc diff --git a/src/diffusers/pipelines/consisid/util_clip/model.py b/src/diffusers/pipelines/consisid/util_clip/model.py index da3bbd755799..d2ec07a6a711 100644 --- a/src/diffusers/pipelines/consisid/util_clip/model.py +++ b/src/diffusers/pipelines/consisid/util_clip/model.py @@ -2,24 +2,25 @@ Adapted from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI. """ -import os from dataclasses import dataclass -from typing import Optional, Tuple, Union from functools import partial +from typing import Optional, Tuple, Union import numpy as np import torch import torch.nn.functional as F from torch import nn + try: from .hf_model import HFTextEncoder except: HFTextEncoder = None +from .eva_vit_model import EVAVisionTransformer from .modified_resnet import ModifiedResNet from .timm_model import TimmModel -from .eva_vit_model import EVAVisionTransformer -from .transformer import LayerNorm, QuickGELU, Attention, VisionTransformer, TextTransformer +from .transformer import Attention, LayerNorm, QuickGELU, TextTransformer, VisionTransformer + try: from apex.normalization import FusedLayerNorm @@ -106,7 +107,7 @@ def _build_vision_tower( if vision_cfg.eva_model_name: vision_heads = vision_cfg.width // vision_cfg.head_width norm_layer = LayerNorm - + visual = EVAVisionTransformer( img_size=vision_cfg.image_size, patch_size=vision_cfg.patch_size, @@ -151,7 +152,8 @@ def _build_vision_tower( ) else: vision_heads = vision_cfg.width // vision_cfg.head_width - norm_layer = LayerNormFp32 if cast_dtype in (torch.float16, torch.bfloat16) else LayerNorm + # norm_layer = LayerNormFp32 if cast_dtype in (torch.float16, torch.bfloat16) else LayerNorm + norm_layer = LayerNorm visual = VisionTransformer( image_size=vision_cfg.image_size, patch_size=vision_cfg.patch_size, @@ -238,7 +240,7 @@ def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False): def set_grad_checkpointing(self, enable=True): self.visual.set_grad_checkpointing(enable) self.transformer.grad_checkpointing = enable - + @torch.jit.ignore def no_weight_decay(self): return {'logit_scale'} @@ -316,7 +318,7 @@ def convert_weights_to_lp(model: nn.Module, dtype=torch.float16): """Convert applicable model parameters to low-precision (bf16 or fp16)""" def _convert_weights(l): - + if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)): l.weight.data = l.weight.data.to(dtype) if l.bias is not None: @@ -392,7 +394,7 @@ def build_model_from_openai_state_dict( vocab_size = state_dict["token_embedding.weight"].shape[0] transformer_width = state_dict["ln_final.weight"].shape[0] transformer_heads = transformer_width // 64 - transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks"))) + transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith("transformer.resblocks"))) vision_cfg = CLIPVisionCfg( layers=vision_layers, diff --git a/src/diffusers/pipelines/consisid/util_clip/modified_resnet.py b/src/diffusers/pipelines/consisid/util_clip/modified_resnet.py index 299080850061..48c37b93b4eb 100644 --- a/src/diffusers/pipelines/consisid/util_clip/modified_resnet.py +++ b/src/diffusers/pipelines/consisid/util_clip/modified_resnet.py @@ -1,10 +1,11 @@ import os import sys +from collections import OrderedDict import torch from torch import nn from torch.nn import functional as F -from collections import OrderedDict + current_file_path = os.path.abspath(__file__) project_roots = [os.path.dirname(current_file_path)] diff --git a/src/diffusers/pipelines/consisid/util_clip/openai.py b/src/diffusers/pipelines/consisid/util_clip/openai.py index cc4e13e876d6..719bdad63037 100644 --- a/src/diffusers/pipelines/consisid/util_clip/openai.py +++ b/src/diffusers/pipelines/consisid/util_clip/openai.py @@ -10,7 +10,8 @@ import torch from .model import build_model_from_openai_state_dict, convert_weights_to_lp, get_cast_dtype -from .pretrained import get_pretrained_url, list_pretrained_models_by_tag, download_pretrained_from_url +from .pretrained import download_pretrained_from_url, get_pretrained_url, list_pretrained_models_by_tag + __all__ = ["list_openai_models", "load_openai_model"] diff --git a/src/diffusers/pipelines/consisid/util_clip/pretrained.py b/src/diffusers/pipelines/consisid/util_clip/pretrained.py index a1e55dcf36a0..5729548b00f7 100644 --- a/src/diffusers/pipelines/consisid/util_clip/pretrained.py +++ b/src/diffusers/pipelines/consisid/util_clip/pretrained.py @@ -2,11 +2,11 @@ import os import urllib import warnings -from functools import partial from typing import Dict, Union from tqdm import tqdm + try: from huggingface_hub import hf_hub_download _has_hf_hub = True @@ -277,7 +277,7 @@ def download_pretrained_from_url( loop.update(len(buffer)) if expected_sha256 and not hashlib.sha256(open(download_target, "rb").read()).hexdigest().startswith(expected_sha256): - raise RuntimeError(f"Model has been downloaded but the SHA256 checksum does not not match") + raise RuntimeError("Model has been downloaded but the SHA256 checksum does not not match") return download_target diff --git a/src/diffusers/pipelines/consisid/util_clip/rope.py b/src/diffusers/pipelines/consisid/util_clip/rope.py index 69030c35ea7b..1035dd7704df 100644 --- a/src/diffusers/pipelines/consisid/util_clip/rope.py +++ b/src/diffusers/pipelines/consisid/util_clip/rope.py @@ -1,8 +1,10 @@ +import logging from math import pi + import torch -from torch import nn from einops import rearrange, repeat -import logging +from torch import nn + def broadcat(tensors, dim = -1): num_tensors = len(tensors) @@ -60,7 +62,7 @@ def __init__( freqs_w = torch.einsum('..., f -> ... f', t, freqs) freqs_w = repeat(freqs_w, '... n -> ... (n r)', r = 2) - freqs = broadcat((freqs_h[:, None, :], freqs_w[None, :, :]), dim = -1) + freqs = broadcat((freqs_h[:, None, :], freqs_w[None, :, :]), dim = -1) self.register_buffer("freqs_cos", freqs.cos()) self.register_buffer("freqs_sin", freqs.sin()) @@ -134,4 +136,4 @@ def forward(self, t, patch_indices_keep=None): return t * freqs_cos + rotate_half(t) * freqs_sin - return t * self.freqs_cos + rotate_half(t) * self.freqs_sin \ No newline at end of file + return t * self.freqs_cos + rotate_half(t) * self.freqs_sin diff --git a/src/diffusers/pipelines/consisid/util_clip/timm_model.py b/src/diffusers/pipelines/consisid/util_clip/timm_model.py index b58122c0b84f..855ee8dd061a 100644 --- a/src/diffusers/pipelines/consisid/util_clip/timm_model.py +++ b/src/diffusers/pipelines/consisid/util_clip/timm_model.py @@ -8,17 +8,18 @@ import torch import torch.nn as nn + try: import timm from timm.models.layers import Mlp, to_2tuple try: # old timm imports < 0.8.1 - from timm.models.layers.attention_pool2d import RotAttentionPool2d from timm.models.layers.attention_pool2d import AttentionPool2d as AbsAttentionPool2d + from timm.models.layers.attention_pool2d import RotAttentionPool2d except ImportError: # new timm imports >= 0.8.1 - from timm.layers import RotAttentionPool2d from timm.layers import AttentionPool2d as AbsAttentionPool2d + from timm.layers import RotAttentionPool2d except ImportError: timm = None @@ -92,7 +93,7 @@ def lock(self, unlocked_groups=0, freeze_bn_stats=False): # NOTE: partial freeze requires latest timm (master) branch and is subject to change try: # FIXME import here until API stable and in an official release - from timm.models.helpers import group_parameters, group_modules + from timm.models.helpers import group_modules, group_parameters except ImportError: raise RuntimeError( 'Please install latest timm `pip install git+https://github.com/rwightman/pytorch-image-models`') @@ -113,7 +114,7 @@ def lock(self, unlocked_groups=0, freeze_bn_stats=False): def set_grad_checkpointing(self, enable=True): try: self.trunk.set_grad_checkpointing(enable) - except Exception as e: + except Exception: logging.warning('grad checkpointing not supported for this timm image tower, continuing without...') def forward(self, x): diff --git a/src/diffusers/pipelines/consisid/util_clip/tokenizer.py b/src/diffusers/pipelines/consisid/util_clip/tokenizer.py index 41482f82aebb..00ced6de645e 100644 --- a/src/diffusers/pipelines/consisid/util_clip/tokenizer.py +++ b/src/diffusers/pipelines/consisid/util_clip/tokenizer.py @@ -4,16 +4,17 @@ """ import gzip import html + +# https://stackoverflow.com/q/62691279 import os from functools import lru_cache -from typing import Union, List +from typing import List, Union import ftfy import regex as re import torch -# https://stackoverflow.com/q/62691279 -import os + os.environ["TOKENIZERS_PARALLELISM"] = "false" diff --git a/src/diffusers/pipelines/consisid/util_clip/transform.py b/src/diffusers/pipelines/consisid/util_clip/transform.py index 39f3e4cf6cf9..931ba6755afa 100644 --- a/src/diffusers/pipelines/consisid/util_clip/transform.py +++ b/src/diffusers/pipelines/consisid/util_clip/transform.py @@ -1,11 +1,17 @@ -from typing import Optional, Sequence, Tuple +from typing import Optional, Tuple import torch import torch.nn as nn import torchvision.transforms.functional as F - -from torchvision.transforms import Normalize, Compose, RandomResizedCrop, InterpolationMode, ToTensor, Resize, \ - CenterCrop +from torchvision.transforms import ( + CenterCrop, + Compose, + InterpolationMode, + Normalize, + RandomResizedCrop, + Resize, + ToTensor, +) from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD diff --git a/src/diffusers/pipelines/consisid/util_clip/transformer.py b/src/diffusers/pipelines/consisid/util_clip/transformer.py index 33e89ff7aa8f..0d6e5075b170 100644 --- a/src/diffusers/pipelines/consisid/util_clip/transformer.py +++ b/src/diffusers/pipelines/consisid/util_clip/transformer.py @@ -1,21 +1,22 @@ -import os import logging -from collections import OrderedDict import math +import os +from collections import OrderedDict from typing import Callable, Optional, Sequence -import numpy as np + import torch from torch import nn from torch.nn import functional as F + try: - from timm.models.layers import trunc_normal_ + pass except: - from timm.layers import trunc_normal_ - -from .rope import VisionRotaryEmbedding, VisionRotaryEmbeddingFast + pass + from .utils import to_2tuple + if os.getenv('ENV_TYPE') == 'deepspeed': try: import deepspeed @@ -327,7 +328,7 @@ def forward(self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, a attn = self.attn_drop(attn) x = torch.bmm(attn, v) - + if self.head_scale is not None: x = x.view(B_q, self.num_heads, N_q, C_q) * self.head_scale x = x.view(-1, N_q, C_q) @@ -427,7 +428,7 @@ def __init__( ]) def get_cast_dtype(self) -> torch.dtype: - return self.resblocks[0].mlp.c_fc.weight.dtype + return self.resblocks[0].mlp.c_fc.weight.dtype def forward(self, q: torch.Tensor, k: torch.Tensor = None, v: torch.Tensor = None, attn_mask: Optional[torch.Tensor] = None): if k is None and v is None: @@ -548,7 +549,7 @@ def __init__( # setting a patch_dropout of 0. would mean it is disabled and this function would be the identity fn self.patch_dropout = PatchDropout(patch_dropout) if patch_dropout > 0. else nn.Identity() self.ln_pre = norm_layer(width) - + self.transformer = Transformer( width, layers, @@ -567,7 +568,7 @@ def __init__( def lock(self, unlocked_groups=0, freeze_bn_stats=False): for param in self.parameters(): param.requires_grad = False - + if unlocked_groups != 0: groups = [ [ @@ -671,7 +672,7 @@ def __init__( norm_layer=norm_layer, xattn=xattn ) - + self.xattn = xattn self.ln_final = norm_layer(width) self.text_projection = nn.Parameter(torch.empty(width, output_dim)) @@ -702,7 +703,7 @@ def init_parameters(self): @torch.jit.ignore def set_grad_checkpointing(self, enable=True): self.transformer.grad_checkpointing = enable - + @torch.jit.ignore def no_weight_decay(self): # return {'positional_embedding', 'token_embedding'} diff --git a/src/diffusers/pipelines/consisid/util_clip/utils.py b/src/diffusers/pipelines/consisid/util_clip/utils.py index bdc5a7a451fd..6631d9db2e27 100644 --- a/src/diffusers/pipelines/consisid/util_clip/utils.py +++ b/src/diffusers/pipelines/consisid/util_clip/utils.py @@ -1,13 +1,14 @@ -from itertools import repeat import collections.abc import logging import math -import numpy as np +from itertools import repeat +import numpy as np import torch +import torch.nn.functional as F from torch import nn as nn from torchvision.ops.misc import FrozenBatchNorm2d -import torch.nn.functional as F + # open CLIP def resize_clip_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1): @@ -135,7 +136,7 @@ def resize_eva_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_ patch_size = model.visual.patch_embed.patch_size state_dict['patch_embed.proj.weight'] = torch.nn.functional.interpolate( patch_embed_proj.float(), size=patch_size, mode='bicubic', align_corners=False) - + def resize_rel_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1): all_keys = list(state_dict.keys()) @@ -323,4 +324,4 @@ def backward(ctx, grad_output): None ) -allgather = AllGather.apply \ No newline at end of file +allgather = AllGather.apply diff --git a/src/diffusers/pipelines/consisid/util_consisid.py b/src/diffusers/pipelines/consisid/util_consisid.py index ac365b4f7043..5b08d5659004 100644 --- a/src/diffusers/pipelines/consisid/util_consisid.py +++ b/src/diffusers/pipelines/consisid/util_consisid.py @@ -1,18 +1,17 @@ import os + import cv2 -import math +import insightface import numpy as np -from PIL import Image, ImageOps - import torch +from facexlib.parsing import init_parsing_model +from facexlib.utils.face_restoration_helper import FaceRestoreHelper +from insightface.app import FaceAnalysis +from PIL import Image, ImageOps from torchvision.transforms import InterpolationMode from torchvision.transforms.functional import normalize, resize -from diffusers.utils import load_image -import insightface -from insightface.app import FaceAnalysis -from facexlib.parsing import init_parsing_model -from facexlib.utils.face_restoration_helper import FaceRestoreHelper +from diffusers.utils import load_image from .util_clip import create_model_and_transforms from .util_clip.constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD @@ -66,11 +65,32 @@ def to_gray(img): def process_face_embeddings(face_helper_1, clip_vision_model, face_helper_2, eva_transform_mean, eva_transform_std, app, device, weight_dtype, image, original_id_image=None, is_align_face=True): """ + Process face embeddings from an image, extracting relevant features such as face embeddings, + landmarks, and parsed face features using a series of face detection and alignment tools. + Args: - image: numpy rgb image, range [0, 255] + face_helper_1: Face helper object (first helper) for alignment and landmark detection. + clip_vision_model: Pre-trained CLIP vision model used for feature extraction. + face_helper_2: Face helper object (second helper) for embedding extraction. + eva_transform_mean: Mean values for image normalization before passing to EVA model. + eva_transform_std: Standard deviation values for image normalization before passing to EVA model. + app: Application instance used for face detection. + device: Device (CPU or GPU) where the computations will be performed. + weight_dtype: Data type of the weights for precision (e.g., `torch.float32`). + image: Input image in RGB format with pixel values in the range [0, 255]. + original_id_image: (Optional) Original image for feature extraction if `is_align_face` is False. + is_align_face: Boolean flag indicating whether face alignment should be performed. + + Returns: + Tuple: + - id_cond: Concatenated tensor of Ante face embedding and CLIP vision embedding + - id_vit_hidden: Hidden state of the CLIP vision model, a list of tensors. + - return_face_features_image_2: Processed face features image after normalization and parsing. + - face_kps: Keypoints of the face detected in the image. """ + face_helper_1.clean_all() - image_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # (724, 502, 3) + image_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # get antelopev2 embedding face_info = app.get(image_bgr) if len(face_info) > 0: @@ -135,19 +155,42 @@ def process_face_embeddings(face_helper_1, clip_vision_model, face_helper_2, eva def process_face_embeddings_infer(face_helper_1, clip_vision_model, face_helper_2, eva_transform_mean, eva_transform_std, app, device, weight_dtype, img_file_path, is_align_face=True): """ + Process face embeddings from an input image for inference, including alignment, feature extraction, and embedding concatenation. + Args: - image: numpy rgb image, range [0, 255] + face_helper_1: Face helper object (first helper) for alignment and landmark detection. + clip_vision_model: Pre-trained CLIP vision model used for feature extraction. + face_helper_2: Face helper object (second helper) for embedding extraction. + eva_transform_mean: Mean values for image normalization before passing to EVA model. + eva_transform_std: Standard deviation values for image normalization before passing to EVA model. + app: Application instance used for face detection. + device: Device (CPU or GPU) where the computations will be performed. + weight_dtype: Data type of the weights for precision (e.g., `torch.float32`). + img_file_path: Path to the input image file (string) or a numpy array representing an image. + is_align_face: Boolean flag indicating whether face alignment should be performed (default: True). + + Returns: + Tuple: + - id_cond: Concatenated tensor of Ante face embedding and CLIP vision embedding. + - id_vit_hidden: Hidden state of the CLIP vision model, a list of tensors. + - image: Processed face image after feature extraction and alignment. + - face_kps: Keypoints of the face detected in the image. """ + + # Load and preprocess the input image if isinstance(img_file_path, str): image = np.array(load_image(image=img_file_path).convert("RGB")) - else: + else: image = np.array(ImageOps.exif_transpose(Image.fromarray(img_file_path)).convert("RGB")) - + + # Resize image to ensure the longer side is 1024 pixels image = resize_numpy_image_long(image, 1024) original_id_image = image + # Process the image to extract face embeddings and related features id_cond, id_vit_hidden, align_crop_face_image, face_kps = process_face_embeddings(face_helper_1, clip_vision_model, face_helper_2, eva_transform_mean, eva_transform_std, app, device, weight_dtype, image, original_id_image, is_align_face) - + + # Convert the aligned cropped face image (torch tensor) to a numpy array tensor = align_crop_face_image.cpu().detach() tensor = tensor.squeeze() tensor = tensor.permute(1, 2, 0) @@ -205,7 +248,7 @@ def prepare_face_models(model_path, device, dtype): # get local facial extractor part 2 face_main_model = FaceAnalysis(name='antelopev2', root=os.path.join(model_path, "face_encoder"), providers=['CUDAExecutionProvider']) face_main_model.prepare(ctx_id=0, det_size=(640, 640)) - + # move face models to device face_helper_1.face_det.eval() face_helper_1.face_parse.eval() @@ -213,5 +256,5 @@ def prepare_face_models(model_path, device, dtype): face_helper_1.face_det.to(device) face_helper_1.face_parse.to(device) face_clip_model.to(device, dtype=dtype) - - return face_helper_1, face_helper_2, face_clip_model, face_main_model, eva_transform_mean, eva_transform_std \ No newline at end of file + + return face_helper_1, face_helper_2, face_clip_model, face_main_model, eva_transform_mean, eva_transform_std From 787a69cc0cd0a42b205ec5be8ed837341695cded Mon Sep 17 00:00:00 2001 From: SHYuanBest Date: Tue, 10 Dec 2024 14:51:29 +0800 Subject: [PATCH 05/56] make style --- .../train_dreambooth_lora_sd15_advanced.py | 6 +- .../train_dreambooth_lora_sdxl_advanced.py | 6 +- .../textual_inversion.py | 6 +- .../textual_inversion/textual_inversion.py | 6 +- .../textual_inversion/textual_inversion.py | 6 +- .../textual_inversion_sdxl.py | 12 +- ...vert_hunyuandit_controlnet_to_diffusers.py | 6 +- scripts/convert_hunyuandit_to_diffusers.py | 6 +- scripts/convert_mochi_to_diffusers.py | 12 +- scripts/convert_svd_to_diffusers.py | 12 +- .../loaders/lora_conversion_utils.py | 18 +- .../transformers/consisid_transformer_3d.py | 41 +- .../pipelines/consisid/pipeline_consisid.py | 42 +- .../consisid/util_clip/eva_vit_model.py | 271 +++++++++---- .../pipelines/consisid/util_clip/factory.py | 371 +++++++++--------- .../consisid/util_clip/hf_configs.py | 106 ++--- .../pipelines/consisid/util_clip/hf_model.py | 123 +++--- .../pipelines/consisid/util_clip/loss.py | 53 ++- .../pipelines/consisid/util_clip/model.py | 154 ++++---- .../consisid/util_clip/modified_resnet.py | 38 +- .../pipelines/consisid/util_clip/openai.py | 34 +- .../consisid/util_clip/pretrained.py | 336 ++++++++-------- .../pipelines/consisid/util_clip/rope.py | 122 +++--- .../consisid/util_clip/timm_model.py | 61 +-- .../pipelines/consisid/util_clip/tokenizer.py | 84 ++-- .../pipelines/consisid/util_clip/transform.py | 51 +-- .../consisid/util_clip/transformer.py | 371 ++++++++++-------- .../pipelines/consisid/util_clip/utils.py | 120 +++--- .../consisid/util_clip/utils_qformer.py | 22 +- .../pipelines/consisid/util_consisid.py | 116 ++++-- src/diffusers/pipelines/free_noise_utils.py | 6 +- src/diffusers/quantizers/auto.py | 1 + src/diffusers/quantizers/base.py | 12 +- tests/pipelines/amused/test_amused.py | 3 +- tests/pipelines/amused/test_amused_img2img.py | 3 +- tests/pipelines/amused/test_amused_inpaint.py | 3 +- 36 files changed, 1447 insertions(+), 1193 deletions(-) diff --git a/examples/advanced_diffusion_training/train_dreambooth_lora_sd15_advanced.py b/examples/advanced_diffusion_training/train_dreambooth_lora_sd15_advanced.py index 5b78501f9b49..2528bd3a5639 100644 --- a/examples/advanced_diffusion_training/train_dreambooth_lora_sd15_advanced.py +++ b/examples/advanced_diffusion_training/train_dreambooth_lora_sd15_advanced.py @@ -746,9 +746,9 @@ def initialize_new_tokens(self, inserting_toks: List[str]): .to(dtype=self.dtype) * std_token_embedding ) - self.embeddings_settings[ - f"original_embeddings_{idx}" - ] = text_encoder.text_model.embeddings.token_embedding.weight.data.clone() + self.embeddings_settings[f"original_embeddings_{idx}"] = ( + text_encoder.text_model.embeddings.token_embedding.weight.data.clone() + ) self.embeddings_settings[f"std_token_embedding_{idx}"] = std_token_embedding inu = torch.ones((len(tokenizer),), dtype=torch.bool) diff --git a/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py b/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py index 74d52186dd81..d93ea91aa9ea 100644 --- a/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py +++ b/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py @@ -913,9 +913,9 @@ def initialize_new_tokens(self, inserting_toks: List[str]): .to(dtype=self.dtype) * std_token_embedding ) - self.embeddings_settings[ - f"original_embeddings_{idx}" - ] = text_encoder.text_model.embeddings.token_embedding.weight.data.clone() + self.embeddings_settings[f"original_embeddings_{idx}"] = ( + text_encoder.text_model.embeddings.token_embedding.weight.data.clone() + ) self.embeddings_settings[f"std_token_embedding_{idx}"] = std_token_embedding inu = torch.ones((len(tokenizer),), dtype=torch.bool) diff --git a/examples/research_projects/multi_token_textual_inversion/textual_inversion.py b/examples/research_projects/multi_token_textual_inversion/textual_inversion.py index 57ad77477b0d..7aad64ecb1dd 100644 --- a/examples/research_projects/multi_token_textual_inversion/textual_inversion.py +++ b/examples/research_projects/multi_token_textual_inversion/textual_inversion.py @@ -830,9 +830,9 @@ def main(): # Let's make sure we don't update any embedding weights besides the newly added token index_no_updates = get_mask(tokenizer, accelerator) with torch.no_grad(): - accelerator.unwrap_model(text_encoder).get_input_embeddings().weight[ - index_no_updates - ] = orig_embeds_params[index_no_updates] + accelerator.unwrap_model(text_encoder).get_input_embeddings().weight[index_no_updates] = ( + orig_embeds_params[index_no_updates] + ) # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: diff --git a/examples/research_projects/onnxruntime/textual_inversion/textual_inversion.py b/examples/research_projects/onnxruntime/textual_inversion/textual_inversion.py index e10564fa59ef..5f0710e85319 100644 --- a/examples/research_projects/onnxruntime/textual_inversion/textual_inversion.py +++ b/examples/research_projects/onnxruntime/textual_inversion/textual_inversion.py @@ -886,9 +886,9 @@ def main(): index_no_updates[min(placeholder_token_ids) : max(placeholder_token_ids) + 1] = False with torch.no_grad(): - accelerator.unwrap_model(text_encoder).get_input_embeddings().weight[ - index_no_updates - ] = orig_embeds_params[index_no_updates] + accelerator.unwrap_model(text_encoder).get_input_embeddings().weight[index_no_updates] = ( + orig_embeds_params[index_no_updates] + ) # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: diff --git a/examples/textual_inversion/textual_inversion.py b/examples/textual_inversion/textual_inversion.py index 43e8bf4e9072..d3d330ddeb17 100644 --- a/examples/textual_inversion/textual_inversion.py +++ b/examples/textual_inversion/textual_inversion.py @@ -910,9 +910,9 @@ def main(): index_no_updates[min(placeholder_token_ids) : max(placeholder_token_ids) + 1] = False with torch.no_grad(): - accelerator.unwrap_model(text_encoder).get_input_embeddings().weight[ - index_no_updates - ] = orig_embeds_params[index_no_updates] + accelerator.unwrap_model(text_encoder).get_input_embeddings().weight[index_no_updates] = ( + orig_embeds_params[index_no_updates] + ) # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: diff --git a/examples/textual_inversion/textual_inversion_sdxl.py b/examples/textual_inversion/textual_inversion_sdxl.py index 3a9da9fb11df..02fed2e946ae 100644 --- a/examples/textual_inversion/textual_inversion_sdxl.py +++ b/examples/textual_inversion/textual_inversion_sdxl.py @@ -965,12 +965,12 @@ def main(): index_no_updates_2[min(placeholder_token_ids_2) : max(placeholder_token_ids_2) + 1] = False with torch.no_grad(): - accelerator.unwrap_model(text_encoder_1).get_input_embeddings().weight[ - index_no_updates - ] = orig_embeds_params[index_no_updates] - accelerator.unwrap_model(text_encoder_2).get_input_embeddings().weight[ - index_no_updates_2 - ] = orig_embeds_params_2[index_no_updates_2] + accelerator.unwrap_model(text_encoder_1).get_input_embeddings().weight[index_no_updates] = ( + orig_embeds_params[index_no_updates] + ) + accelerator.unwrap_model(text_encoder_2).get_input_embeddings().weight[index_no_updates_2] = ( + orig_embeds_params_2[index_no_updates_2] + ) # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: diff --git a/scripts/convert_hunyuandit_controlnet_to_diffusers.py b/scripts/convert_hunyuandit_controlnet_to_diffusers.py index 1c8383690890..5cef46c98983 100644 --- a/scripts/convert_hunyuandit_controlnet_to_diffusers.py +++ b/scripts/convert_hunyuandit_controlnet_to_diffusers.py @@ -21,9 +21,9 @@ def main(args): model_config = HunyuanDiT2DControlNetModel.load_config( "Tencent-Hunyuan/HunyuanDiT-v1.2-Diffusers", subfolder="transformer" ) - model_config[ - "use_style_cond_and_image_meta_size" - ] = args.use_style_cond_and_image_meta_size ### version <= v1.1: True; version >= v1.2: False + model_config["use_style_cond_and_image_meta_size"] = ( + args.use_style_cond_and_image_meta_size + ) ### version <= v1.1: True; version >= v1.2: False print(model_config) for key in state_dict: diff --git a/scripts/convert_hunyuandit_to_diffusers.py b/scripts/convert_hunyuandit_to_diffusers.py index da3af8333ee3..79178bad83bd 100644 --- a/scripts/convert_hunyuandit_to_diffusers.py +++ b/scripts/convert_hunyuandit_to_diffusers.py @@ -19,9 +19,9 @@ def main(args): device = "cuda" model_config = HunyuanDiT2DModel.load_config("Tencent-Hunyuan/HunyuanDiT-Diffusers", subfolder="transformer") - model_config[ - "use_style_cond_and_image_meta_size" - ] = args.use_style_cond_and_image_meta_size ### version <= v1.1: True; version >= v1.2: False + model_config["use_style_cond_and_image_meta_size"] = ( + args.use_style_cond_and_image_meta_size + ) ### version <= v1.1: True; version >= v1.2: False # input_size -> sample_size, text_dim -> cross_attention_dim for key in state_dict: diff --git a/scripts/convert_mochi_to_diffusers.py b/scripts/convert_mochi_to_diffusers.py index 9727deeb6b0c..be5de74cb04c 100644 --- a/scripts/convert_mochi_to_diffusers.py +++ b/scripts/convert_mochi_to_diffusers.py @@ -303,9 +303,9 @@ def convert_mochi_vae_state_dict_to_diffusers(encoder_ckpt_path, decoder_ckpt_pa for i in range(down_block_layers[block]): # Convert resnets - new_state_dict[ - f"{prefix}down_blocks.{block}.resnets.{i}.norm1.norm_layer.weight" - ] = encoder_state_dict.pop(f"layers.{block+4}.layers.{i+1}.stack.0.weight") + new_state_dict[f"{prefix}down_blocks.{block}.resnets.{i}.norm1.norm_layer.weight"] = ( + encoder_state_dict.pop(f"layers.{block+4}.layers.{i+1}.stack.0.weight") + ) new_state_dict[f"{prefix}down_blocks.{block}.resnets.{i}.norm1.norm_layer.bias"] = encoder_state_dict.pop( f"layers.{block+4}.layers.{i+1}.stack.0.bias" ) @@ -315,9 +315,9 @@ def convert_mochi_vae_state_dict_to_diffusers(encoder_ckpt_path, decoder_ckpt_pa new_state_dict[f"{prefix}down_blocks.{block}.resnets.{i}.conv1.conv.bias"] = encoder_state_dict.pop( f"layers.{block+4}.layers.{i+1}.stack.2.bias" ) - new_state_dict[ - f"{prefix}down_blocks.{block}.resnets.{i}.norm2.norm_layer.weight" - ] = encoder_state_dict.pop(f"layers.{block+4}.layers.{i+1}.stack.3.weight") + new_state_dict[f"{prefix}down_blocks.{block}.resnets.{i}.norm2.norm_layer.weight"] = ( + encoder_state_dict.pop(f"layers.{block+4}.layers.{i+1}.stack.3.weight") + ) new_state_dict[f"{prefix}down_blocks.{block}.resnets.{i}.norm2.norm_layer.bias"] = encoder_state_dict.pop( f"layers.{block+4}.layers.{i+1}.stack.3.bias" ) diff --git a/scripts/convert_svd_to_diffusers.py b/scripts/convert_svd_to_diffusers.py index 3243ce294b26..e46410ccb3bd 100644 --- a/scripts/convert_svd_to_diffusers.py +++ b/scripts/convert_svd_to_diffusers.py @@ -381,9 +381,9 @@ def convert_ldm_unet_checkpoint( # TODO resnet time_mixer.mix_factor if f"input_blocks.{i}.0.time_mixer.mix_factor" in unet_state_dict: - new_checkpoint[ - f"down_blocks.{block_id}.resnets.{layer_in_block_id}.time_mixer.mix_factor" - ] = unet_state_dict[f"input_blocks.{i}.0.time_mixer.mix_factor"] + new_checkpoint[f"down_blocks.{block_id}.resnets.{layer_in_block_id}.time_mixer.mix_factor"] = ( + unet_state_dict[f"input_blocks.{i}.0.time_mixer.mix_factor"] + ) if len(attentions): paths = renew_attention_paths(attentions) @@ -478,9 +478,9 @@ def convert_ldm_unet_checkpoint( ) if f"output_blocks.{i}.0.time_mixer.mix_factor" in unet_state_dict: - new_checkpoint[ - f"up_blocks.{block_id}.resnets.{layer_in_block_id}.time_mixer.mix_factor" - ] = unet_state_dict[f"output_blocks.{i}.0.time_mixer.mix_factor"] + new_checkpoint[f"up_blocks.{block_id}.resnets.{layer_in_block_id}.time_mixer.mix_factor"] = ( + unet_state_dict[f"output_blocks.{i}.0.time_mixer.mix_factor"] + ) output_block_list = {k: sorted(v) for k, v in output_block_list.items()} if ["conv.bias", "conv.weight"] in output_block_list.values(): diff --git a/src/diffusers/loaders/lora_conversion_utils.py b/src/diffusers/loaders/lora_conversion_utils.py index 51a406b2f6a3..43f29f160926 100644 --- a/src/diffusers/loaders/lora_conversion_utils.py +++ b/src/diffusers/loaders/lora_conversion_utils.py @@ -177,9 +177,9 @@ def _convert_non_diffusers_lora_to_diffusers(state_dict, unet_name="unet", text_ # Store DoRA scale if present. if dora_present_in_unet: dora_scale_key_to_replace = "_lora.down." if "_lora.down." in diffusers_name else ".lora.down." - unet_state_dict[ - diffusers_name.replace(dora_scale_key_to_replace, ".lora_magnitude_vector.") - ] = state_dict.pop(key.replace("lora_down.weight", "dora_scale")) + unet_state_dict[diffusers_name.replace(dora_scale_key_to_replace, ".lora_magnitude_vector.")] = ( + state_dict.pop(key.replace("lora_down.weight", "dora_scale")) + ) # Handle text encoder LoRAs. elif lora_name.startswith(("lora_te_", "lora_te1_", "lora_te2_")): @@ -199,13 +199,13 @@ def _convert_non_diffusers_lora_to_diffusers(state_dict, unet_name="unet", text_ "_lora.down." if "_lora.down." in diffusers_name else ".lora_linear_layer." ) if lora_name.startswith(("lora_te_", "lora_te1_")): - te_state_dict[ - diffusers_name.replace(dora_scale_key_to_replace_te, ".lora_magnitude_vector.") - ] = state_dict.pop(key.replace("lora_down.weight", "dora_scale")) + te_state_dict[diffusers_name.replace(dora_scale_key_to_replace_te, ".lora_magnitude_vector.")] = ( + state_dict.pop(key.replace("lora_down.weight", "dora_scale")) + ) elif lora_name.startswith("lora_te2_"): - te2_state_dict[ - diffusers_name.replace(dora_scale_key_to_replace_te, ".lora_magnitude_vector.") - ] = state_dict.pop(key.replace("lora_down.weight", "dora_scale")) + te2_state_dict[diffusers_name.replace(dora_scale_key_to_replace_te, ".lora_magnitude_vector.")] = ( + state_dict.pop(key.replace("lora_down.weight", "dora_scale")) + ) # Store alpha if present. if lora_name_alpha in state_dict: diff --git a/src/diffusers/models/transformers/consisid_transformer_3d.py b/src/diffusers/models/transformers/consisid_transformer_3d.py index c026a3f8012e..b19bd43a783f 100644 --- a/src/diffusers/models/transformers/consisid_transformer_3d.py +++ b/src/diffusers/models/transformers/consisid_transformer_3d.py @@ -35,8 +35,8 @@ def ConsisIDFeedForward(dim, mult=4): """ - Creates a consistent ID feedforward block consisting of layer normalization, - two linear layers, and a GELU activation. + Creates a consistent ID feedforward block consisting of layer normalization, two linear layers, and a GELU + activation. Args: dim (int): The input dimension of the tensor. @@ -76,9 +76,8 @@ class PerceiverAttention(nn.Module): """ Implements the Perceiver attention mechanism with multi-head attention. - This layer takes two inputs: 'x' (image features) and 'latents' (latent features), - applying multi-head attention to both and producing an output tensor with the same - dimension as the input tensor 'x'. + This layer takes two inputs: 'x' (image features) and 'latents' (latent features), applying multi-head attention to + both and producing an output tensor with the same dimension as the input tensor 'x'. Args: dim (int): The input dimension. @@ -511,31 +510,25 @@ class ConsisIDTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin): temporal_interpolation_scale (`float`, defaults to `1.0`): Scaling factor to apply in 3D positional embeddings across temporal dimensions. is_train_face (`bool`, defaults to `False`): - Whether to use enable the identity-preserving module during the training process. - When set to `True`, the model will focus on identity-preserving tasks. + Whether to use enable the identity-preserving module during the training process. When set to `True`, the + model will focus on identity-preserving tasks. is_kps (`bool`, defaults to `False`): - Whether to enable keypoint for global facial extractor. - If `True`, keypoints will be in the model. + Whether to enable keypoint for global facial extractor. If `True`, keypoints will be in the model. cross_attn_interval (`int`, defaults to `1`): - The interval between cross-attention layers in the Transformer architecture. - A larger value may reduce the frequency of cross-attention computations, - which can help reduce computational overhead. + The interval between cross-attention layers in the Transformer architecture. A larger value may reduce the + frequency of cross-attention computations, which can help reduce computational overhead. LFE_num_tokens (`int`, defaults to `32`): - The number of tokens to use in the Local Facial Extractor (LFE). - This module is responsible for capturing high frequency representations - of the face. + The number of tokens to use in the Local Facial Extractor (LFE). This module is responsible for capturing + high frequency representations of the face. LFE_output_dim (`int`, defaults to `768`): - The output dimension of the Local Facial Extractor (LFE) module. - This dimension determines the size of the feature vectors produced - by the LFE module. + The output dimension of the Local Facial Extractor (LFE) module. This dimension determines the size of the + feature vectors produced by the LFE module. LFE_heads (`int`, defaults to `12`): - The number of attention heads used in the Local Facial Extractor (LFE) module. - More heads may improve the ability to capture diverse features, but - can also increase computational complexity. + The number of attention heads used in the Local Facial Extractor (LFE) module. More heads may improve the + ability to capture diverse features, but can also increase computational complexity. local_face_scale (`float`, defaults to `1.0`): - A scaling factor used to adjust the importance of local facial features - in the model. This can influence how strongly the model focuses on - high frequency face-related content. + A scaling factor used to adjust the importance of local facial features in the model. This can influence + how strongly the model focuses on high frequency face-related content. """ _supports_gradient_checkpointing = True diff --git a/src/diffusers/pipelines/consisid/pipeline_consisid.py b/src/diffusers/pipelines/consisid/pipeline_consisid.py index 31024826eb75..606e5b261cca 100644 --- a/src/diffusers/pipelines/consisid/pipeline_consisid.py +++ b/src/diffusers/pipelines/consisid/pipeline_consisid.py @@ -46,26 +46,44 @@ >>> import torch >>> from diffusers import ConsisIDPipeline >>> from diffusers.pipelines.consisid.util_consisid import prepare_face_models, process_face_embeddings_infer - >>> from diffusers.utils import export_to_video, load_image + >>> from diffusers.utils import export_to_video + >>> from huggingface_hub import snapshot_download - >>> face_helper_1, face_helper_2, face_clip_model, face_main_model, eva_transform_mean, eva_transform_std = prepare_face_models("https://huggingface.co/BestWishYsh/ConsisID-preview", device="cuda", torch_dtype=torch.bfloat16) - >>> face_helper_1.face_det.to(device) - >>> face_helper_1.face_parse.to(device) - >>> face_clip_model.to(device, dtype=dtype) + >>> snapshot_download(repo_id="BestWishYsh/ConsisID-preview", local_dir="BestWishYsh/ConsisID-preview") - >>> pipe = ConsisIDPipeline.from_pretrained("https://huggingface.co/BestWishYsh/ConsisID-preview", torch_dtype=torch.bfloat16) + >>> face_helper_1, face_helper_2, face_clip_model, face_main_model, eva_transform_mean, eva_transform_std = ( + ... prepare_face_models("BestWishYsh/ConsisID-preview", device="cuda", dtype=torch.bfloat16) + ... ) + >>> pipe = ConsisIDPipeline.from_pretrained("BestWishYsh/ConsisID-preview", torch_dtype=torch.bfloat16) >>> pipe.to("cuda") >>> prompt = "A woman adorned with a delicate flower crown, is standing amidst a field of gently swaying wildflowers. Her eyes sparkle with a serene gaze, and a faint smile graces her lips, suggesting a moment of peaceful contentment. The shot is framed from the waist up, highlighting the gentle breeze lightly tousling her hair. The background reveals an expansive meadow under a bright blue sky, capturing the tranquility of a sunny afternoon." - >>> image = load_image( - ... "https://github.com/PKU-YuanGroup/ConsisID/blob/main/asserts/example_images/1.png?raw=true" + >>> image = "https://github.com/PKU-YuanGroup/ConsisID/blob/main/asserts/example_images/1.png?raw=true" + + >>> id_cond, id_vit_hidden, image, face_kps = process_face_embeddings_infer( + ... face_helper_1, + ... face_clip_model, + ... face_helper_2, + ... eva_transform_mean, + ... eva_transform_std, + ... face_main_model, + ... "cuda", + ... torch.bfloat16, + ... image, + ... is_align_face=True, ... ) - - >>> id_cond, id_vit_hidden, image, face_kps = process_face_embeddings_infer(face_helper_1, face_clip_model, face_helper_2, eva_transform_mean, eva_transform_std, face_main_model, device, dtype, img_file_path, is_align_face=True) - >>> is_kps = getattr(pipe.transformer.config, 'is_kps', False) + >>> is_kps = getattr(pipe.transformer.config, "is_kps", False) >>> kps_cond = face_kps if is_kps else None - >>> video = pipe(image=image, prompt=prompt, use_dynamic_cfg=False, id_vit_hidden=id_vit_hidden, id_cond=id_cond, kps_cond=kps_cond) + >>> video = pipe( + ... image=image, + ... prompt=prompt, + ... use_dynamic_cfg=False, + ... id_vit_hidden=id_vit_hidden, + ... id_cond=id_cond, + ... kps_cond=kps_cond, + ... generator=torch.Generator("cuda").manual_seed(42), + ... ) >>> export_to_video(video.frames[0], "output.mp4", fps=8) ``` """ diff --git a/src/diffusers/pipelines/consisid/util_clip/eva_vit_model.py b/src/diffusers/pipelines/consisid/util_clip/eva_vit_model.py index 06eb180c113a..96ed648972eb 100644 --- a/src/diffusers/pipelines/consisid/util_clip/eva_vit_model.py +++ b/src/diffusers/pipelines/consisid/util_clip/eva_vit_model.py @@ -12,30 +12,33 @@ try: from timm.models.layers import drop_path, to_2tuple, trunc_normal_ -except: +except ImportError: from timm.layers import drop_path, to_2tuple, trunc_normal_ + from .rope import VisionRotaryEmbeddingFast from .transformer import PatchDropout -if os.getenv('ENV_TYPE') == 'deepspeed': +if os.getenv("ENV_TYPE") == "deepspeed": try: from deepspeed.runtime.activation_checkpointing.checkpointing import checkpoint - except: + except ImportError: from torch.utils.checkpoint import checkpoint else: from torch.utils.checkpoint import checkpoint try: import xformers.ops as xops + XFORMERS_IS_AVAILBLE = True -except: +except ImportError: XFORMERS_IS_AVAILBLE = False + class DropPath(nn.Module): - """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). - """ + """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" + def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob @@ -44,7 +47,7 @@ def forward(self, x): return drop_path(x, self.drop_prob, self.training) def extra_repr(self) -> str: - return 'p={}'.format(self.drop_prob) + return "p={}".format(self.drop_prob) class Mlp(nn.Module): @@ -55,10 +58,9 @@ def __init__( out_features=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm, - drop=0., + drop=0.0, subln=False, - - ): + ): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features @@ -81,9 +83,18 @@ def forward(self, x): x = self.drop(x) return x + class SwiGLU(nn.Module): - def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.SiLU, drop=0., - norm_layer=nn.LayerNorm, subln=False): + def __init__( + self, + in_features, + hidden_features=None, + out_features=None, + act_layer=nn.SiLU, + drop=0.0, + norm_layer=nn.LayerNorm, + subln=False, + ): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features @@ -106,17 +117,30 @@ def forward(self, x): x = self.drop(x) return x + class Attention(nn.Module): def __init__( - self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., - proj_drop=0., window_size=None, attn_head_dim=None, xattn=False, rope=None, subln=False, norm_layer=nn.LayerNorm): + self, + dim, + num_heads=8, + qkv_bias=False, + qk_scale=None, + attn_drop=0.0, + proj_drop=0.0, + window_size=None, + attn_head_dim=None, + xattn=False, + rope=None, + subln=False, + norm_layer=nn.LayerNorm, + ): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads if attn_head_dim is not None: head_dim = attn_head_dim all_head_dim = head_dim * self.num_heads - self.scale = qk_scale or head_dim ** -0.5 + self.scale = qk_scale or head_dim**-0.5 self.subln = subln if self.subln: @@ -137,7 +161,8 @@ def __init__( self.window_size = window_size self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 self.relative_position_bias_table = nn.Parameter( - torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH + torch.zeros(self.num_relative_distance, num_heads) + ) # 2*Wh-1 * 2*Ww-1, nH # cls to token & token 2 cls & cls to cls # get pair-wise relative position index for each token inside the window @@ -150,8 +175,9 @@ def __init__( relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += window_size[1] - 1 relative_coords[:, :, 0] *= 2 * window_size[1] - 1 - relative_position_index = \ - torch.zeros(size=(window_size[0] * window_size[1] + 1, ) * 2, dtype=relative_coords.dtype) + relative_position_index = torch.zeros( + size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype + ) relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww relative_position_index[0, 0:] = self.num_relative_distance - 3 relative_position_index[0:, 0] = self.num_relative_distance - 2 @@ -180,17 +206,16 @@ def forward(self, x, rel_pos_bias=None, attn_mask=None): k = F.linear(input=x, weight=self.k_proj.weight, bias=None) v = F.linear(input=x, weight=self.v_proj.weight, bias=self.v_bias) - q = q.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) # B, num_heads, N, C + q = q.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) # B, num_heads, N, C k = k.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) v = v.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) else: - qkv_bias = None if self.q_bias is not None: qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias)) qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) - qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) # 3, B, num_heads, N, C + qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) # 3, B, num_heads, N, C q, k, v = qkv[0], qkv[1], qkv[2] if self.rope: @@ -204,28 +229,29 @@ def forward(self, x, rel_pos_bias=None, attn_mask=None): k = torch.cat((k[:, :, :1, :], ro_k_t), -2).type_as(v) if self.xattn: - q = q.permute(0, 2, 1, 3) # B, num_heads, N, C -> B, N, num_heads, C + q = q.permute(0, 2, 1, 3) # B, num_heads, N, C -> B, N, num_heads, C k = k.permute(0, 2, 1, 3) v = v.permute(0, 2, 1, 3) x = xops.memory_efficient_attention( - q, k, v, + q, + k, + v, p=self.xattn_drop, scale=self.scale, - ) + ) x = x.reshape(B, N, -1) x = self.inner_attn_ln(x) x = self.proj(x) x = self.proj_drop(x) else: q = q * self.scale - attn = (q @ k.transpose(-2, -1)) + attn = q @ k.transpose(-2, -1) if self.relative_position_bias_table is not None: - relative_position_bias = \ - self.relative_position_bias_table[self.relative_position_index.view(-1)].view( - self.window_size[0] * self.window_size[1] + 1, - self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH + relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view( + self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1 + ) # Wh*Ww,Wh*Ww,nH relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww attn = attn + relative_position_bias.unsqueeze(0).type_as(attn) @@ -247,19 +273,45 @@ def forward(self, x, rel_pos_bias=None, attn_mask=None): class Block(nn.Module): - - def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., - drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm, - window_size=None, attn_head_dim=None, xattn=False, rope=None, postnorm=False, - subln=False, naiveswiglu=False): + def __init__( + self, + dim, + num_heads, + mlp_ratio=4.0, + qkv_bias=False, + qk_scale=None, + drop=0.0, + attn_drop=0.0, + drop_path=0.0, + init_values=None, + act_layer=nn.GELU, + norm_layer=nn.LayerNorm, + window_size=None, + attn_head_dim=None, + xattn=False, + rope=None, + postnorm=False, + subln=False, + naiveswiglu=False, + ): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( - dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, - attn_drop=attn_drop, proj_drop=drop, window_size=window_size, attn_head_dim=attn_head_dim, - xattn=xattn, rope=rope, subln=subln, norm_layer=norm_layer) + dim, + num_heads=num_heads, + qkv_bias=qkv_bias, + qk_scale=qk_scale, + attn_drop=attn_drop, + proj_drop=drop, + window_size=window_size, + attn_head_dim=attn_head_dim, + xattn=xattn, + rope=rope, + subln=subln, + norm_layer=norm_layer, + ) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here - self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() + self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) @@ -272,16 +324,12 @@ def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, ) else: self.mlp = Mlp( - in_features=dim, - hidden_features=mlp_hidden_dim, - act_layer=act_layer, - subln=subln, - drop=drop + in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, subln=subln, drop=drop ) if init_values is not None and init_values > 0: - self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True) - self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True) + self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True) + self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True) else: self.gamma_1, self.gamma_2 = None, None @@ -297,17 +345,21 @@ def forward(self, x, rel_pos_bias=None, attn_mask=None): x = x + self.drop_path(self.mlp(self.norm2(x))) else: if self.postnorm: - x = x + self.drop_path(self.gamma_1 * self.norm1(self.attn(x, rel_pos_bias=rel_pos_bias, attn_mask=attn_mask))) + x = x + self.drop_path( + self.gamma_1 * self.norm1(self.attn(x, rel_pos_bias=rel_pos_bias, attn_mask=attn_mask)) + ) x = x + self.drop_path(self.gamma_2 * self.norm2(self.mlp(x))) else: - x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias, attn_mask=attn_mask)) + x = x + self.drop_path( + self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias, attn_mask=attn_mask) + ) x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) return x class PatchEmbed(nn.Module): - """ Image to Patch Embedding - """ + """Image to Patch Embedding""" + def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): super().__init__() img_size = to_2tuple(img_size) @@ -323,20 +375,21 @@ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): def forward(self, x, **kwargs): B, C, H, W = x.shape # FIXME look at relaxing size constraints - assert H == self.img_size[0] and W == self.img_size[1], \ - f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." + assert ( + H == self.img_size[0] and W == self.img_size[1] + ), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.proj(x).flatten(2).transpose(1, 2) return x class RelativePositionBias(nn.Module): - def __init__(self, window_size, num_heads): super().__init__() self.window_size = window_size self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 self.relative_position_bias_table = nn.Parameter( - torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH + torch.zeros(self.num_relative_distance, num_heads) + ) # 2*Wh-1 * 2*Ww-1, nH # cls to token & token 2 cls & cls to cls # get pair-wise relative position index for each token inside the window @@ -349,8 +402,9 @@ def __init__(self, window_size, num_heads): relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += window_size[1] - 1 relative_coords[:, :, 0] *= 2 * window_size[1] - 1 - relative_position_index = \ - torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype) + relative_position_index = torch.zeros( + size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype + ) relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww relative_position_index[0, 0:] = self.num_relative_distance - 3 relative_position_index[0:, 0] = self.num_relative_distance - 2 @@ -359,22 +413,47 @@ def __init__(self, window_size, num_heads): self.register_buffer("relative_position_index", relative_position_index) def forward(self): - relative_position_bias = \ - self.relative_position_bias_table[self.relative_position_index.view(-1)].view( - self.window_size[0] * self.window_size[1] + 1, - self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH + relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view( + self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1 + ) # Wh*Ww,Wh*Ww,nH return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww class EVAVisionTransformer(nn.Module): - """ Vision Transformer with support for patch or hybrid CNN input stage - """ - def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, - num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., - drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=None, patch_dropout=0., - use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False, rope=False, - use_mean_pooling=True, init_scale=0.001, grad_checkpointing=False, xattn=False, postnorm=False, - pt_hw_seq_len=16, intp_freq=False, naiveswiglu=False, subln=False): + """Vision Transformer with support for patch or hybrid CNN input stage""" + + def __init__( + self, + img_size=224, + patch_size=16, + in_chans=3, + num_classes=1000, + embed_dim=768, + depth=12, + num_heads=12, + mlp_ratio=4.0, + qkv_bias=False, + qk_scale=None, + drop_rate=0.0, + attn_drop_rate=0.0, + drop_path_rate=0.0, + norm_layer=nn.LayerNorm, + init_values=None, + patch_dropout=0.0, + use_abs_pos_emb=True, + use_rel_pos_bias=False, + use_shared_rel_pos_bias=False, + rope=False, + use_mean_pooling=True, + init_scale=0.001, + grad_checkpointing=False, + xattn=False, + postnorm=False, + pt_hw_seq_len=16, + intp_freq=False, + naiveswiglu=False, + subln=False, + ): super().__init__() if not XFORMERS_IS_AVAILBLE: @@ -384,8 +463,7 @@ def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, em self.num_classes = num_classes self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models - self.patch_embed = PatchEmbed( - img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) + self.patch_embed = PatchEmbed(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) num_patches = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) @@ -417,33 +495,49 @@ def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, em dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule self.use_rel_pos_bias = use_rel_pos_bias - self.blocks = nn.ModuleList([ - Block( - dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, - drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, - init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None, - xattn=xattn, rope=self.rope, postnorm=postnorm, subln=subln, naiveswiglu=naiveswiglu) - for i in range(depth)]) + self.blocks = nn.ModuleList( + [ + Block( + dim=embed_dim, + num_heads=num_heads, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, + qk_scale=qk_scale, + drop=drop_rate, + attn_drop=attn_drop_rate, + drop_path=dpr[i], + norm_layer=norm_layer, + init_values=init_values, + window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None, + xattn=xattn, + rope=self.rope, + postnorm=postnorm, + subln=subln, + naiveswiglu=naiveswiglu, + ) + for i in range(depth) + ] + ) self.norm = nn.Identity() if use_mean_pooling else norm_layer(embed_dim) self.fc_norm = norm_layer(embed_dim) if use_mean_pooling else None self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() if self.pos_embed is not None: - trunc_normal_(self.pos_embed, std=.02) + trunc_normal_(self.pos_embed, std=0.02) - trunc_normal_(self.cls_token, std=.02) + trunc_normal_(self.cls_token, std=0.02) # trunc_normal_(self.mask_token, std=.02) self.apply(self._init_weights) self.fix_init_weight() if isinstance(self.head, nn.Linear): - trunc_normal_(self.head.weight, std=.02) + trunc_normal_(self.head.weight, std=0.02) self.head.weight.data.mul_(init_scale) self.head.bias.data.mul_(init_scale) # setting a patch_dropout of 0. would mean it is disabled and this function would be the identity fn - self.patch_dropout = PatchDropout(patch_dropout) if patch_dropout > 0. else nn.Identity() + self.patch_dropout = PatchDropout(patch_dropout) if patch_dropout > 0.0 else nn.Identity() self.grad_checkpointing = grad_checkpointing @@ -463,7 +557,7 @@ def get_cast_dtype(self) -> torch.dtype: def _init_weights(self, m): if isinstance(m, nn.Linear): - trunc_normal_(m.weight, std=.02) + trunc_normal_(m.weight, std=0.02) if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): @@ -474,7 +568,7 @@ def get_num_layers(self): return len(self.blocks) def lock(self, unlocked_groups=0, freeze_bn_stats=False): - assert unlocked_groups == 0, 'partial locking not currently supported for this model' + assert unlocked_groups == 0, "partial locking not currently supported for this model" for param in self.parameters(): param.requires_grad = False @@ -484,23 +578,26 @@ def set_grad_checkpointing(self, enable=True): @torch.jit.ignore def no_weight_decay(self): - return {'pos_embed', 'cls_token'} + return {"pos_embed", "cls_token"} def get_classifier(self): return self.head - def reset_classifier(self, num_classes, global_pool=''): + def reset_classifier(self, num_classes, global_pool=""): self.num_classes = num_classes self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() def forward_features(self, x, return_all_features=False, return_hidden=False, shuffle=False): - x = self.patch_embed(x) batch_size, seq_len, _ = x.size() if shuffle: idx = torch.randperm(x.shape[1]) + 1 - zero = torch.LongTensor([0, ]) + zero = torch.LongTensor( + [ + 0, + ] + ) idx = torch.cat([zero, idx]) pos_embed = self.pos_embed[:, idx] @@ -513,7 +610,7 @@ def forward_features(self, x, return_all_features=False, return_hidden=False, sh x = self.pos_drop(x) # a patch_dropout of 0. would mean it is disabled and this function would do nothing but return what was passed in - if os.getenv('RoPE') == '1': + if os.getenv("RoPE") == "1": if self.training and not isinstance(self.patch_dropout, nn.Identity): x, patch_indices_keep = self.patch_dropout(x) self.rope.forward = partial(self.rope.forward, patch_indices_keep=patch_indices_keep) diff --git a/src/diffusers/pipelines/consisid/util_clip/factory.py b/src/diffusers/pipelines/consisid/util_clip/factory.py index 65424193ffb3..0e005a2489b4 100644 --- a/src/diffusers/pipelines/consisid/util_clip/factory.py +++ b/src/diffusers/pipelines/consisid/util_clip/factory.py @@ -22,25 +22,25 @@ def _natural_key(string_): - return [int(s) if s.isdigit() else s for s in re.split(r'(\d+)', string_.lower())] + return [int(s) if s.isdigit() else s for s in re.split(r"(\d+)", string_.lower())] def _rescan_model_configs(): global _MODEL_CONFIGS - config_ext = ('.json',) + config_ext = (".json",) config_files = [] for config_path in _MODEL_CONFIG_PATHS: if config_path.is_file() and config_path.suffix in config_ext: config_files.append(config_path) elif config_path.is_dir(): for ext in config_ext: - config_files.extend(config_path.glob(f'*{ext}')) + config_files.extend(config_path.glob(f"*{ext}")) for cf in config_files: with open(cf, "r", encoding="utf8") as f: model_cfg = json.load(f) - if all(a in model_cfg for a in ('embed_dim', 'vision_cfg', 'text_cfg')): + if all(a in model_cfg for a in ("embed_dim", "vision_cfg", "text_cfg")): _MODEL_CONFIGS[cf.stem] = model_cfg _MODEL_CONFIGS = dict(sorted(_MODEL_CONFIGS.items(), key=lambda x: _natural_key(x[0]))) @@ -50,12 +50,12 @@ def _rescan_model_configs(): def list_models(): - """ enumerate available model architectures based on config files """ + """enumerate available model architectures based on config files""" return list(_MODEL_CONFIGS.keys()) def add_model_config(path): - """ add model config path or file and update registry """ + """add model config path or file and update registry""" if not isinstance(path, Path): path = Path(path) _MODEL_CONFIG_PATHS.append(path) @@ -71,12 +71,20 @@ def get_model_config(model_name): def get_tokenizer(model_name): config = get_model_config(model_name) - tokenizer = HFTokenizer(config['text_cfg']['hf_tokenizer_name']) if 'hf_tokenizer_name' in config['text_cfg'] else tokenize + tokenizer = ( + HFTokenizer(config["text_cfg"]["hf_tokenizer_name"]) if "hf_tokenizer_name" in config["text_cfg"] else tokenize + ) return tokenizer # loading openai CLIP weights when is_openai=True for training -def load_state_dict(checkpoint_path: str, map_location: str='cpu', model_key: str='model|module|state_dict', is_openai: bool=False, skip_list: list=[]): +def load_state_dict( + checkpoint_path: str, + map_location: str = "cpu", + model_key: str = "model|module|state_dict", + is_openai: bool = False, + skip_list: list = [], +): if is_openai: model = torch.jit.load(checkpoint_path, map_location="cpu").eval() state_dict = model.state_dict() @@ -84,13 +92,13 @@ def load_state_dict(checkpoint_path: str, map_location: str='cpu', model_key: st state_dict.pop(key, None) else: checkpoint = torch.load(checkpoint_path, map_location=map_location) - for mk in model_key.split('|'): + for mk in model_key.split("|"): if isinstance(checkpoint, dict) and mk in checkpoint: state_dict = checkpoint[mk] break else: state_dict = checkpoint - if next(iter(state_dict.items()))[0].startswith('module'): + if next(iter(state_dict.items()))[0].startswith("module"): state_dict = {k[7:]: v for k, v in state_dict.items()} for k in skip_list: @@ -98,28 +106,27 @@ def load_state_dict(checkpoint_path: str, map_location: str='cpu', model_key: st logging.info(f"Removing key {k} from pretrained checkpoint") del state_dict[k] - if os.getenv('RoPE') == '1': + if os.getenv("RoPE") == "1": for k in list(state_dict.keys()): - if 'freqs_cos' in k or 'freqs_sin' in k: + if "freqs_cos" in k or "freqs_sin" in k: del state_dict[k] return state_dict - def load_checkpoint(model, checkpoint_path, model_key="model|module|state_dict", strict=True): state_dict = load_state_dict(checkpoint_path, model_key=model_key, is_openai=False) # detect old format and make compatible with new format - if 'positional_embedding' in state_dict and not hasattr(model, 'positional_embedding'): + if "positional_embedding" in state_dict and not hasattr(model, "positional_embedding"): state_dict = convert_to_custom_text_state_dict(state_dict) - if 'text.logit_scale' in state_dict and hasattr(model, 'logit_scale'): - state_dict['logit_scale'] = state_dict['text.logit_scale'] - del state_dict['text.logit_scale'] + if "text.logit_scale" in state_dict and hasattr(model, "logit_scale"): + state_dict["logit_scale"] = state_dict["text.logit_scale"] + del state_dict["text.logit_scale"] # resize_clip_pos_embed for CLIP and open CLIP - if 'visual.positional_embedding' in state_dict: + if "visual.positional_embedding" in state_dict: resize_clip_pos_embed(state_dict, model) # specified to eva_vit_model - elif 'visual.pos_embed' in state_dict: + elif "visual.pos_embed" in state_dict: resize_evaclip_pos_embed(state_dict, model) # resize_clip_pos_embed(state_dict, model) @@ -127,27 +134,34 @@ def load_checkpoint(model, checkpoint_path, model_key="model|module|state_dict", logging.info(f"incompatible_keys.missing_keys: {incompatible_keys.missing_keys}") return incompatible_keys -def load_clip_visual_state_dict(checkpoint_path: str, map_location: str='cpu', is_openai: bool=False, skip_list:list=[]): + +def load_clip_visual_state_dict( + checkpoint_path: str, map_location: str = "cpu", is_openai: bool = False, skip_list: list = [] +): state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) for k in list(state_dict.keys()): - if not k.startswith('visual.'): + if not k.startswith("visual."): del state_dict[k] for k in list(state_dict.keys()): - if k.startswith('visual.'): + if k.startswith("visual."): new_k = k[7:] state_dict[new_k] = state_dict[k] del state_dict[k] return state_dict -def load_clip_text_state_dict(checkpoint_path: str, map_location: str='cpu', is_openai: bool=False, skip_list:list=[]): + +def load_clip_text_state_dict( + checkpoint_path: str, map_location: str = "cpu", is_openai: bool = False, skip_list: list = [] +): state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) for k in list(state_dict.keys()): - if k.startswith('visual.'): + if k.startswith("visual."): del state_dict[k] return state_dict + def get_pretrained_tag(pretrained_model): pretrained_model = pretrained_model.lower() if "laion" in pretrained_model or "open_clip" in pretrained_model: @@ -159,15 +173,17 @@ def get_pretrained_tag(pretrained_model): else: return "other" + def load_pretrained_checkpoint( - model, - visual_checkpoint_path, - text_checkpoint_path, - strict=True, - visual_model=None, - text_model=None, - model_key="model|module|state_dict", - skip_list=[]): + model, + visual_checkpoint_path, + text_checkpoint_path, + strict=True, + visual_model=None, + text_model=None, + model_key="model|module|state_dict", + skip_list=[], +): visual_tag = get_pretrained_tag(visual_model) text_tag = get_pretrained_tag(text_model) @@ -175,17 +191,23 @@ def load_pretrained_checkpoint( visual_incompatible_keys, text_incompatible_keys = None, None if visual_checkpoint_path: if visual_tag == "eva_clip" or visual_tag == "open_clip": - visual_state_dict = load_clip_visual_state_dict(visual_checkpoint_path, is_openai=False, skip_list=skip_list) + visual_state_dict = load_clip_visual_state_dict( + visual_checkpoint_path, is_openai=False, skip_list=skip_list + ) elif visual_tag == "clip": - visual_state_dict = load_clip_visual_state_dict(visual_checkpoint_path, is_openai=True, skip_list=skip_list) + visual_state_dict = load_clip_visual_state_dict( + visual_checkpoint_path, is_openai=True, skip_list=skip_list + ) else: - visual_state_dict = load_state_dict(visual_checkpoint_path, model_key=model_key, is_openai=False, skip_list=skip_list) + visual_state_dict = load_state_dict( + visual_checkpoint_path, model_key=model_key, is_openai=False, skip_list=skip_list + ) # resize_clip_pos_embed for CLIP and open CLIP - if 'positional_embedding' in visual_state_dict: + if "positional_embedding" in visual_state_dict: resize_visual_pos_embed(visual_state_dict, model) # specified to EVA model - elif 'pos_embed' in visual_state_dict: + elif "pos_embed" in visual_state_dict: resize_eva_pos_embed(visual_state_dict, model) visual_incompatible_keys = model.visual.load_state_dict(visual_state_dict, strict=strict) @@ -198,7 +220,9 @@ def load_pretrained_checkpoint( elif text_tag == "clip": text_state_dict = load_clip_text_state_dict(text_checkpoint_path, is_openai=True, skip_list=skip_list) else: - text_state_dict = load_state_dict(visual_checkpoint_path, model_key=model_key, is_openai=False, skip_list=skip_list) + text_state_dict = load_state_dict( + visual_checkpoint_path, model_key=model_key, is_openai=False, skip_list=skip_list + ) text_incompatible_keys = model.text.load_state_dict(text_state_dict, strict=strict) @@ -207,29 +231,30 @@ def load_pretrained_checkpoint( return visual_incompatible_keys, text_incompatible_keys + def create_model( - model_name: str, - pretrained: Optional[str] = None, - precision: str = 'fp32', - device: Union[str, torch.device] = 'cpu', - jit: bool = False, - force_quick_gelu: bool = False, - force_custom_clip: bool = False, - force_patch_dropout: Optional[float] = None, - pretrained_image: str = '', - pretrained_text: str = '', - pretrained_hf: bool = True, - pretrained_visual_model: str = None, - pretrained_text_model: str = None, - cache_dir: Optional[str] = None, - skip_list: list = [], + model_name: str, + pretrained: Optional[str] = None, + precision: str = "fp32", + device: Union[str, torch.device] = "cpu", + jit: bool = False, + force_quick_gelu: bool = False, + force_custom_clip: bool = False, + force_patch_dropout: Optional[float] = None, + pretrained_image: str = "", + pretrained_text: str = "", + pretrained_hf: bool = True, + pretrained_visual_model: str = None, + pretrained_text_model: str = None, + cache_dir: Optional[str] = None, + skip_list: list = [], ): - model_name = model_name.replace('/', '-') # for callers using old naming with / in ViT names + model_name = model_name.replace("/", "-") # for callers using old naming with / in ViT names if isinstance(device, str): device = torch.device(device) - if pretrained and pretrained.lower() == 'openai': - logging.info(f'Loading pretrained {model_name} from OpenAI.') + if pretrained and pretrained.lower() == "openai": + logging.info(f"Loading pretrained {model_name} from OpenAI.") model = load_openai_model( model_name, precision=precision, @@ -240,16 +265,16 @@ def create_model( else: model_cfg = get_model_config(model_name) if model_cfg is not None: - logging.info(f'Loaded {model_name} model config.') + logging.info(f"Loaded {model_name} model config.") else: - logging.error(f'Model config for {model_name} not found; available models {list_models()}.') - raise RuntimeError(f'Model config for {model_name} not found.') + logging.error(f"Model config for {model_name} not found; available models {list_models()}.") + raise RuntimeError(f"Model config for {model_name} not found.") - if 'rope' in model_cfg.get('vision_cfg', {}): - if model_cfg['vision_cfg']['rope']: - os.environ['RoPE'] = "1" + if "rope" in model_cfg.get("vision_cfg", {}): + if model_cfg["vision_cfg"]["rope"]: + os.environ["RoPE"] = "1" else: - os.environ['RoPE'] = "0" + os.environ["RoPE"] = "0" if force_quick_gelu: # override for use of QuickGELU on non-OpenAI transformer models @@ -257,22 +282,23 @@ def create_model( if force_patch_dropout is not None: # override the default patch dropout value - model_cfg['vision_cfg']["patch_dropout"] = force_patch_dropout + model_cfg["vision_cfg"]["patch_dropout"] = force_patch_dropout cast_dtype = get_cast_dtype(precision) - custom_clip = model_cfg.pop('custom_text', False) or force_custom_clip or ('hf_model_name' in model_cfg['text_cfg']) - + custom_clip = ( + model_cfg.pop("custom_text", False) or force_custom_clip or ("hf_model_name" in model_cfg["text_cfg"]) + ) if custom_clip: - if 'hf_model_name' in model_cfg.get('text_cfg', {}): - model_cfg['text_cfg']['hf_model_pretrained'] = pretrained_hf + if "hf_model_name" in model_cfg.get("text_cfg", {}): + model_cfg["text_cfg"]["hf_model_pretrained"] = pretrained_hf model = CustomCLIP(**model_cfg, cast_dtype=cast_dtype) else: model = CLIP(**model_cfg, cast_dtype=cast_dtype) pretrained_cfg = {} if pretrained: - checkpoint_path = '' + checkpoint_path = "" pretrained_cfg = get_pretrained_cfg(model_name, pretrained) if pretrained_cfg: checkpoint_path = download_pretrained(pretrained_cfg, cache_dir=cache_dir) @@ -280,51 +306,60 @@ def create_model( checkpoint_path = pretrained if checkpoint_path: - logging.info(f'Loading pretrained {model_name} weights ({pretrained}).') - load_checkpoint(model, - checkpoint_path, - model_key="model|module|state_dict", - strict=False - ) + logging.info(f"Loading pretrained {model_name} weights ({pretrained}).") + load_checkpoint(model, checkpoint_path, model_key="model|module|state_dict", strict=False) else: error_str = ( - f'Pretrained weights ({pretrained}) not found for model {model_name}.' - f'Available pretrained tags ({list_pretrained_tags_by_model(model_name)}.') + f"Pretrained weights ({pretrained}) not found for model {model_name}." + f"Available pretrained tags ({list_pretrained_tags_by_model(model_name)}." + ) logging.warning(error_str) raise RuntimeError(error_str) else: - visual_checkpoint_path = '' - text_checkpoint_path = '' + visual_checkpoint_path = "" + text_checkpoint_path = "" if pretrained_image: - pretrained_visual_model = pretrained_visual_model.replace('/', '-') # for callers using old naming with / in ViT names + pretrained_visual_model = pretrained_visual_model.replace( + "/", "-" + ) # for callers using old naming with / in ViT names pretrained_image_cfg = get_pretrained_cfg(pretrained_visual_model, pretrained_image) - if 'timm_model_name' in model_cfg.get('vision_cfg', {}): + if "timm_model_name" in model_cfg.get("vision_cfg", {}): # pretrained weight loading for timm models set via vision_cfg - model_cfg['vision_cfg']['timm_model_pretrained'] = True + model_cfg["vision_cfg"]["timm_model_pretrained"] = True elif pretrained_image_cfg: visual_checkpoint_path = download_pretrained(pretrained_image_cfg, cache_dir=cache_dir) elif os.path.exists(pretrained_image): visual_checkpoint_path = pretrained_image else: - logging.warning(f'Pretrained weights ({visual_checkpoint_path}) not found for model {model_name}.visual.') - raise RuntimeError(f'Pretrained weights ({visual_checkpoint_path}) not found for model {model_name}.visual.') + logging.warning( + f"Pretrained weights ({visual_checkpoint_path}) not found for model {model_name}.visual." + ) + raise RuntimeError( + f"Pretrained weights ({visual_checkpoint_path}) not found for model {model_name}.visual." + ) if pretrained_text: - pretrained_text_model = pretrained_text_model.replace('/', '-') # for callers using old naming with / in ViT names + pretrained_text_model = pretrained_text_model.replace( + "/", "-" + ) # for callers using old naming with / in ViT names pretrained_text_cfg = get_pretrained_cfg(pretrained_text_model, pretrained_text) if pretrained_image_cfg: text_checkpoint_path = download_pretrained(pretrained_text_cfg, cache_dir=cache_dir) elif os.path.exists(pretrained_text): text_checkpoint_path = pretrained_text else: - logging.warning(f'Pretrained weights ({text_checkpoint_path}) not found for model {model_name}.text.') - raise RuntimeError(f'Pretrained weights ({text_checkpoint_path}) not found for model {model_name}.text.') + logging.warning( + f"Pretrained weights ({text_checkpoint_path}) not found for model {model_name}.text." + ) + raise RuntimeError( + f"Pretrained weights ({text_checkpoint_path}) not found for model {model_name}.text." + ) if visual_checkpoint_path: - logging.info(f'Loading pretrained {model_name}.visual weights ({visual_checkpoint_path}).') + logging.info(f"Loading pretrained {model_name}.visual weights ({visual_checkpoint_path}).") if text_checkpoint_path: - logging.info(f'Loading pretrained {model_name}.text weights ({text_checkpoint_path}).') + logging.info(f"Loading pretrained {model_name}.text weights ({text_checkpoint_path}).") if visual_checkpoint_path or text_checkpoint_path: load_pretrained_checkpoint( @@ -335,18 +370,18 @@ def create_model( visual_model=pretrained_visual_model, text_model=pretrained_text_model, model_key="model|module|state_dict", - skip_list=skip_list + skip_list=skip_list, ) if "fp16" in precision or "bf16" in precision: - logging.info(f'convert precision to {precision}') - model = model.to(torch.bfloat16) if 'bf16' in precision else model.to(torch.float16) + logging.info(f"convert precision to {precision}") + model = model.to(torch.bfloat16) if "bf16" in precision else model.to(torch.float16) model.to(device=device) # set image / mean metadata from pretrained_cfg if available, or use default - model.visual.image_mean = pretrained_cfg.get('mean', None) or OPENAI_DATASET_MEAN - model.visual.image_std = pretrained_cfg.get('std', None) or OPENAI_DATASET_STD + model.visual.image_mean = pretrained_cfg.get("mean", None) or OPENAI_DATASET_MEAN + model.visual.image_std = pretrained_cfg.get("std", None) or OPENAI_DATASET_STD if jit: model = torch.jit.script(model) @@ -355,23 +390,23 @@ def create_model( def create_model_and_transforms( - model_name: str, - pretrained: Optional[str] = None, - precision: str = 'fp32', - device: Union[str, torch.device] = 'cpu', - jit: bool = False, - force_quick_gelu: bool = False, - force_custom_clip: bool = False, - force_patch_dropout: Optional[float] = None, - pretrained_image: str = '', - pretrained_text: str = '', - pretrained_hf: bool = True, - pretrained_visual_model: str = None, - pretrained_text_model: str = None, - image_mean: Optional[Tuple[float, ...]] = None, - image_std: Optional[Tuple[float, ...]] = None, - cache_dir: Optional[str] = None, - skip_list: list = [], + model_name: str, + pretrained: Optional[str] = None, + precision: str = "fp32", + device: Union[str, torch.device] = "cpu", + jit: bool = False, + force_quick_gelu: bool = False, + force_custom_clip: bool = False, + force_patch_dropout: Optional[float] = None, + pretrained_image: str = "", + pretrained_text: str = "", + pretrained_hf: bool = True, + pretrained_visual_model: str = None, + pretrained_text_model: str = None, + image_mean: Optional[Tuple[float, ...]] = None, + image_std: Optional[Tuple[float, ...]] = None, + cache_dir: Optional[str] = None, + skip_list: list = [], ): model = create_model( model_name, @@ -391,42 +426,32 @@ def create_model_and_transforms( skip_list=skip_list, ) - image_mean = image_mean or getattr(model.visual, 'image_mean', None) - image_std = image_std or getattr(model.visual, 'image_std', None) - preprocess_train = image_transform( - model.visual.image_size, - is_train=True, - mean=image_mean, - std=image_std - ) - preprocess_val = image_transform( - model.visual.image_size, - is_train=False, - mean=image_mean, - std=image_std - ) + image_mean = image_mean or getattr(model.visual, "image_mean", None) + image_std = image_std or getattr(model.visual, "image_std", None) + preprocess_train = image_transform(model.visual.image_size, is_train=True, mean=image_mean, std=image_std) + preprocess_val = image_transform(model.visual.image_size, is_train=False, mean=image_mean, std=image_std) return model, preprocess_train, preprocess_val def create_transforms( - model_name: str, - pretrained: Optional[str] = None, - precision: str = 'fp32', - device: Union[str, torch.device] = 'cpu', - jit: bool = False, - force_quick_gelu: bool = False, - force_custom_clip: bool = False, - force_patch_dropout: Optional[float] = None, - pretrained_image: str = '', - pretrained_text: str = '', - pretrained_hf: bool = True, - pretrained_visual_model: str = None, - pretrained_text_model: str = None, - image_mean: Optional[Tuple[float, ...]] = None, - image_std: Optional[Tuple[float, ...]] = None, - cache_dir: Optional[str] = None, - skip_list: list = [], + model_name: str, + pretrained: Optional[str] = None, + precision: str = "fp32", + device: Union[str, torch.device] = "cpu", + jit: bool = False, + force_quick_gelu: bool = False, + force_custom_clip: bool = False, + force_patch_dropout: Optional[float] = None, + pretrained_image: str = "", + pretrained_text: str = "", + pretrained_hf: bool = True, + pretrained_visual_model: str = None, + pretrained_text_model: str = None, + image_mean: Optional[Tuple[float, ...]] = None, + image_std: Optional[Tuple[float, ...]] = None, + cache_dir: Optional[str] = None, + skip_list: list = [], ): model = create_model( model_name, @@ -446,44 +471,35 @@ def create_transforms( skip_list=skip_list, ) - - image_mean = image_mean or getattr(model.visual, 'image_mean', None) - image_std = image_std or getattr(model.visual, 'image_std', None) - preprocess_train = image_transform( - model.visual.image_size, - is_train=True, - mean=image_mean, - std=image_std - ) - preprocess_val = image_transform( - model.visual.image_size, - is_train=False, - mean=image_mean, - std=image_std - ) + image_mean = image_mean or getattr(model.visual, "image_mean", None) + image_std = image_std or getattr(model.visual, "image_std", None) + preprocess_train = image_transform(model.visual.image_size, is_train=True, mean=image_mean, std=image_std) + preprocess_val = image_transform(model.visual.image_size, is_train=False, mean=image_mean, std=image_std) del model return preprocess_train, preprocess_val + def create_model_from_pretrained( - model_name: str, - pretrained: str, - precision: str = 'fp32', - device: Union[str, torch.device] = 'cpu', - jit: bool = False, - force_quick_gelu: bool = False, - force_custom_clip: bool = False, - force_patch_dropout: Optional[float] = None, - return_transform: bool = True, - image_mean: Optional[Tuple[float, ...]] = None, - image_std: Optional[Tuple[float, ...]] = None, - cache_dir: Optional[str] = None, - is_frozen: bool = False, + model_name: str, + pretrained: str, + precision: str = "fp32", + device: Union[str, torch.device] = "cpu", + jit: bool = False, + force_quick_gelu: bool = False, + force_custom_clip: bool = False, + force_patch_dropout: Optional[float] = None, + return_transform: bool = True, + image_mean: Optional[Tuple[float, ...]] = None, + image_std: Optional[Tuple[float, ...]] = None, + cache_dir: Optional[str] = None, + is_frozen: bool = False, ): if not is_pretrained_cfg(model_name, pretrained) and not os.path.exists(pretrained): raise RuntimeError( - f'{pretrained} is not a valid pretrained cfg or checkpoint for {model_name}.' - f' Use open_clip.list_pretrained() to find one.') + f"{pretrained} is not a valid pretrained cfg or checkpoint for {model_name}." + f" Use open_clip.list_pretrained() to find one." + ) model = create_model( model_name, @@ -504,13 +520,8 @@ def create_model_from_pretrained( if not return_transform: return model - image_mean = image_mean or getattr(model.visual, 'image_mean', None) - image_std = image_std or getattr(model.visual, 'image_std', None) - preprocess = image_transform( - model.visual.image_size, - is_train=False, - mean=image_mean, - std=image_std - ) + image_mean = image_mean or getattr(model.visual, "image_mean", None) + image_std = image_std or getattr(model.visual, "image_std", None) + preprocess = image_transform(model.visual.image_size, is_train=False, mean=image_mean, std=image_std) return model, preprocess diff --git a/src/diffusers/pipelines/consisid/util_clip/hf_configs.py b/src/diffusers/pipelines/consisid/util_clip/hf_configs.py index a8c9b704db18..ddd2c672fdcc 100644 --- a/src/diffusers/pipelines/consisid/util_clip/hf_configs.py +++ b/src/diffusers/pipelines/consisid/util_clip/hf_configs.py @@ -1,57 +1,57 @@ # HF architecture dict: arch_dict = { - # https://huggingface.co/docs/transformers/model_doc/roberta#roberta - "roberta": { - "config_names": { - "context_length": "max_position_embeddings", - "vocab_size": "vocab_size", - "width": "hidden_size", - "heads": "num_attention_heads", - "layers": "num_hidden_layers", - "layer_attr": "layer", - "token_embeddings_attr": "embeddings" - }, - "pooler": "mean_pooler", - }, - # https://huggingface.co/docs/transformers/model_doc/xlm-roberta#transformers.XLMRobertaConfig - "xlm-roberta": { - "config_names": { - "context_length": "max_position_embeddings", - "vocab_size": "vocab_size", - "width": "hidden_size", - "heads": "num_attention_heads", - "layers": "num_hidden_layers", - "layer_attr": "layer", - "token_embeddings_attr": "embeddings" - }, - "pooler": "mean_pooler", - }, - # https://huggingface.co/docs/transformers/model_doc/mt5#mt5 - "mt5": { - "config_names": { - # unlimited seqlen - # https://github.com/google-research/text-to-text-transfer-transformer/issues/273 - # https://github.com/huggingface/transformers/blob/v4.24.0/src/transformers/models/t5/modeling_t5.py#L374 - "context_length": "", - "vocab_size": "vocab_size", - "width": "d_model", - "heads": "num_heads", - "layers": "num_layers", - "layer_attr": "block", - "token_embeddings_attr": "embed_tokens" - }, - "pooler": "mean_pooler", - }, - "bert": { - "config_names": { - "context_length": "max_position_embeddings", - "vocab_size": "vocab_size", - "width": "hidden_size", - "heads": "num_attention_heads", - "layers": "num_hidden_layers", - "layer_attr": "layer", - "token_embeddings_attr": "embeddings" + # https://huggingface.co/docs/transformers/model_doc/roberta#roberta + "roberta": { + "config_names": { + "context_length": "max_position_embeddings", + "vocab_size": "vocab_size", + "width": "hidden_size", + "heads": "num_attention_heads", + "layers": "num_hidden_layers", + "layer_attr": "layer", + "token_embeddings_attr": "embeddings", + }, + "pooler": "mean_pooler", + }, + # https://huggingface.co/docs/transformers/model_doc/xlm-roberta#transformers.XLMRobertaConfig + "xlm-roberta": { + "config_names": { + "context_length": "max_position_embeddings", + "vocab_size": "vocab_size", + "width": "hidden_size", + "heads": "num_attention_heads", + "layers": "num_hidden_layers", + "layer_attr": "layer", + "token_embeddings_attr": "embeddings", + }, + "pooler": "mean_pooler", + }, + # https://huggingface.co/docs/transformers/model_doc/mt5#mt5 + "mt5": { + "config_names": { + # unlimited seqlen + # https://github.com/google-research/text-to-text-transfer-transformer/issues/273 + # https://github.com/huggingface/transformers/blob/v4.24.0/src/transformers/models/t5/modeling_t5.py#L374 + "context_length": "", + "vocab_size": "vocab_size", + "width": "d_model", + "heads": "num_heads", + "layers": "num_layers", + "layer_attr": "block", + "token_embeddings_attr": "embed_tokens", + }, + "pooler": "mean_pooler", + }, + "bert": { + "config_names": { + "context_length": "max_position_embeddings", + "vocab_size": "vocab_size", + "width": "hidden_size", + "heads": "num_attention_heads", + "layers": "num_hidden_layers", + "layer_attr": "layer", + "token_embeddings_attr": "embeddings", + }, + "pooler": "mean_pooler", }, - "pooler": "mean_pooler", - } } diff --git a/src/diffusers/pipelines/consisid/util_clip/hf_model.py b/src/diffusers/pipelines/consisid/util_clip/hf_model.py index 530240d10090..450b0d85c628 100644 --- a/src/diffusers/pipelines/consisid/util_clip/hf_model.py +++ b/src/diffusers/pipelines/consisid/util_clip/hf_model.py @@ -1,6 +1,7 @@ -""" huggingface model adapter +"""huggingface model adapter -Wraps HuggingFace transformers (https://github.com/huggingface/transformers) models for use as a text tower in CLIP model. +Wraps HuggingFace transformers (https://github.com/huggingface/transformers) models for use as a text tower in CLIP +model. """ import re @@ -21,24 +22,25 @@ except ImportError: transformers = None - class BaseModelOutput: pass - class PretrainedConfig: pass + from .hf_configs import arch_dict # utils def _camel2snake(s): - return re.sub(r'(? TensorType: + def forward(self, x: TensorType) -> TensorType: attn_mask = (x != self.config.pad_token_id).long() out = self.transformer(input_ids=x, attention_mask=attn_mask) pooled_out = self.pooler(out, attn_mask) return self.proj(pooled_out) - def lock(self, unlocked_layers:int=0, freeze_layer_norm:bool=True): - if not unlocked_layers: # full freezing - for n, p in self.transformer.named_parameters(): - p.requires_grad = (not freeze_layer_norm) if "LayerNorm" in n.split(".") else False - return + def lock(self, unlocked_layers: int = 0, freeze_layer_norm: bool = True): + if not unlocked_layers: # full freezing + for n, p in self.transformer.named_parameters(): + p.requires_grad = (not freeze_layer_norm) if "LayerNorm" in n.split(".") else False + return - encoder = self.transformer.encoder if hasattr(self.transformer, 'encoder') else self.transformer + encoder = self.transformer.encoder if hasattr(self.transformer, "encoder") else self.transformer layer_list = getattr(encoder, arch_dict[self.config.model_type]["config_names"]["layer_attr"]) print(f"Unlocking {unlocked_layers}/{len(layer_list) + 1} layers of hf model") embeddings = getattr( - self.transformer, arch_dict[self.config.model_type]["config_names"]["token_embeddings_attr"]) + self.transformer, arch_dict[self.config.model_type]["config_names"]["token_embeddings_attr"] + ) modules = [embeddings, *layer_list][:-unlocked_layers] # freeze layers for module in modules: for n, p in module.named_parameters(): p.requires_grad = (not freeze_layer_norm) if "LayerNorm" in n.split(".") else False - @torch.jit.ignore def set_grad_checkpointing(self, enable=True): self.transformer.gradient_checkpointing_enable() def get_num_layers(self): - encoder = self.transformer.encoder if hasattr(self.transformer, 'encoder') else self.transformer + encoder = self.transformer.encoder if hasattr(self.transformer, "encoder") else self.transformer layer_list = getattr(encoder, arch_dict[self.config.model_type]["config_names"]["layer_attr"]) return len(layer_list) diff --git a/src/diffusers/pipelines/consisid/util_clip/loss.py b/src/diffusers/pipelines/consisid/util_clip/loss.py index ccdcbf303ea7..75c53d12a050 100644 --- a/src/diffusers/pipelines/consisid/util_clip/loss.py +++ b/src/diffusers/pipelines/consisid/util_clip/loss.py @@ -6,6 +6,7 @@ try: import torch.distributed.nn from torch import distributed as dist + has_distributed = True except ImportError: has_distributed = False @@ -19,17 +20,11 @@ def gather_features( - image_features, - text_features, - local_loss=False, - gather_with_grad=False, - rank=0, - world_size=1, - use_horovod=False + image_features, text_features, local_loss=False, gather_with_grad=False, rank=0, world_size=1, use_horovod=False ): - assert has_distributed, 'torch.distributed did not import correctly, please use a PyTorch version with support.' + assert has_distributed, "torch.distributed did not import correctly, please use a PyTorch version with support." if use_horovod: - assert hvd is not None, 'Please install horovod' + assert hvd is not None, "Please install horovod" if gather_with_grad: all_image_features = hvd.allgather(image_features) all_text_features = hvd.allgather(text_features) @@ -68,16 +63,15 @@ def gather_features( class ClipLoss(nn.Module): - def __init__( - self, - local_loss=False, - gather_with_grad=False, - cache_labels=False, - rank=0, - world_size=1, - use_horovod=False, - smoothing=0., + self, + local_loss=False, + gather_with_grad=False, + cache_labels=False, + rank=0, + world_size=1, + use_horovod=False, + smoothing=0.0, ): super().__init__() self.local_loss = local_loss @@ -92,12 +86,18 @@ def __init__( self.prev_num_logits = 0 self.labels = {} - def forward(self, image_features, text_features, logit_scale=1.): + def forward(self, image_features, text_features, logit_scale=1.0): device = image_features.device if self.world_size > 1: all_image_features, all_text_features = gather_features( - image_features, text_features, - self.local_loss, self.gather_with_grad, self.rank, self.world_size, self.use_horovod) + image_features, + text_features, + self.local_loss, + self.gather_with_grad, + self.rank, + self.world_size, + self.use_horovod, + ) if self.local_loss: logits_per_image = logit_scale * image_features @ all_text_features.T @@ -122,14 +122,11 @@ def forward(self, image_features, text_features, logit_scale=1.): if self.label_smoothing_cross_entropy: total_loss = ( - self.label_smoothing_cross_entropy(logits_per_image, labels) + - self.label_smoothing_cross_entropy(logits_per_text, labels) - ) / 2 + self.label_smoothing_cross_entropy(logits_per_image, labels) + + self.label_smoothing_cross_entropy(logits_per_text, labels) + ) / 2 else: - total_loss = ( - F.cross_entropy(logits_per_image, labels) + - F.cross_entropy(logits_per_text, labels) - ) / 2 + total_loss = (F.cross_entropy(logits_per_image, labels) + F.cross_entropy(logits_per_text, labels)) / 2 acc = None i2t_acc = (logits_per_image.argmax(-1) == labels).sum() / len(logits_per_image) diff --git a/src/diffusers/pipelines/consisid/util_clip/model.py b/src/diffusers/pipelines/consisid/util_clip/model.py index d2ec07a6a711..c34a5f1c0a7b 100644 --- a/src/diffusers/pipelines/consisid/util_clip/model.py +++ b/src/diffusers/pipelines/consisid/util_clip/model.py @@ -1,7 +1,8 @@ -""" CLIP Model +"""CLIP Model Adapted from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI. """ + from dataclasses import dataclass from functools import partial from typing import Optional, Tuple, Union @@ -14,7 +15,7 @@ try: from .hf_model import HFTextEncoder -except: +except ImportError: HFTextEncoder = None from .eva_vit_model import EVAVisionTransformer from .modified_resnet import ModifiedResNet @@ -24,7 +25,7 @@ try: from apex.normalization import FusedLayerNorm -except: +except ImportError: FusedLayerNorm = LayerNorm print("Please 'pip install apex'") @@ -34,6 +35,7 @@ xops = None print("Please 'pip install xformers'") + @dataclass class CLIPVisionCfg: layers: Union[Tuple[int, int, int, int], int] = 12 @@ -43,21 +45,21 @@ class CLIPVisionCfg: patch_size: int = 16 image_size: Union[Tuple[int, int], int] = 224 ls_init_value: Optional[float] = None # layer scale initial value - patch_dropout: float = 0. # what fraction of patches to dropout during training (0 would mean disabled and no patches dropped) - 0.5 to 0.75 recommended in the paper for optimal results - global_average_pool: bool = False # whether to global average pool the last embedding layer, instead of using CLS token (https://arxiv.org/abs/2205.01580) + patch_dropout: float = 0.0 # what fraction of patches to dropout during training (0 would mean disabled and no patches dropped) - 0.5 to 0.75 recommended in the paper for optimal results + global_average_pool: bool = False # whether to global average pool the last embedding layer, instead of using CLS token (https://arxiv.org/abs/2205.01580) drop_path_rate: Optional[float] = None # drop path rate timm_model_name: str = None # a valid model name overrides layers, width, patch_size timm_model_pretrained: bool = False # use (imagenet) pretrained weights for named model - timm_pool: str = 'avg' # feature pooling for timm model ('abs_attn', 'rot_attn', 'avg', '') - timm_proj: str = 'linear' # linear projection for timm model output ('linear', 'mlp', '') + timm_pool: str = "avg" # feature pooling for timm model ('abs_attn', 'rot_attn', 'avg', '') + timm_proj: str = "linear" # linear projection for timm model output ('linear', 'mlp', '') timm_proj_bias: bool = False # enable bias final projection - eva_model_name: str = None # a valid eva model name overrides layers, width, patch_size + eva_model_name: str = None # a valid eva model name overrides layers, width, patch_size qkv_bias: bool = True fusedLN: bool = False xattn: bool = False postnorm: bool = False rope: bool = False - pt_hw_seq_len: int = 16 # 224/14 + pt_hw_seq_len: int = 16 # 224/14 intp_freq: bool = False naiveswiglu: bool = False subln: bool = False @@ -74,27 +76,25 @@ class CLIPTextCfg: hf_model_name: str = None hf_tokenizer_name: str = None hf_model_pretrained: bool = True - proj: str = 'mlp' - pooler_type: str = 'mean_pooler' + proj: str = "mlp" + pooler_type: str = "mean_pooler" masked_language_modeling: bool = False fusedLN: bool = False xattn: bool = False attn_mask: bool = True + def get_cast_dtype(precision: str): cast_dtype = None - if precision == 'bf16': + if precision == "bf16": cast_dtype = torch.bfloat16 - elif precision == 'fp16': + elif precision == "fp16": cast_dtype = torch.float16 return cast_dtype def _build_vision_tower( - embed_dim: int, - vision_cfg: CLIPVisionCfg, - quick_gelu: bool = False, - cast_dtype: Optional[torch.dtype] = None + embed_dim: int, vision_cfg: CLIPVisionCfg, quick_gelu: bool = False, cast_dtype: Optional[torch.dtype] = None ): if isinstance(vision_cfg, dict): vision_cfg = CLIPVisionCfg(**vision_cfg) @@ -112,7 +112,7 @@ def _build_vision_tower( img_size=vision_cfg.image_size, patch_size=vision_cfg.patch_size, num_classes=embed_dim, - use_mean_pooling=vision_cfg.global_average_pool, #False + use_mean_pooling=vision_cfg.global_average_pool, # False init_values=vision_cfg.ls_init_value, patch_dropout=vision_cfg.patch_dropout, embed_dim=vision_cfg.width, @@ -121,14 +121,14 @@ def _build_vision_tower( mlp_ratio=vision_cfg.mlp_ratio, qkv_bias=vision_cfg.qkv_bias, drop_path_rate=vision_cfg.drop_path_rate, - norm_layer= partial(FusedLayerNorm, eps=1e-6) if vision_cfg.fusedLN else partial(norm_layer, eps=1e-6), + norm_layer=partial(FusedLayerNorm, eps=1e-6) if vision_cfg.fusedLN else partial(norm_layer, eps=1e-6), xattn=vision_cfg.xattn, rope=vision_cfg.rope, postnorm=vision_cfg.postnorm, - pt_hw_seq_len= vision_cfg.pt_hw_seq_len, # 224/14 - intp_freq= vision_cfg.intp_freq, - naiveswiglu= vision_cfg.naiveswiglu, - subln= vision_cfg.subln + pt_hw_seq_len=vision_cfg.pt_hw_seq_len, # 224/14 + intp_freq=vision_cfg.intp_freq, + naiveswiglu=vision_cfg.naiveswiglu, + subln=vision_cfg.subln, ) elif vision_cfg.timm_model_name: visual = TimmModel( @@ -138,7 +138,7 @@ def _build_vision_tower( proj=vision_cfg.timm_proj, proj_bias=vision_cfg.timm_proj_bias, embed_dim=embed_dim, - image_size=vision_cfg.image_size + image_size=vision_cfg.image_size, ) act_layer = nn.GELU # so that text transformer doesn't use QuickGELU w/ timm models elif isinstance(vision_cfg.layers, (tuple, list)): @@ -148,7 +148,7 @@ def _build_vision_tower( output_dim=embed_dim, heads=vision_heads, image_size=vision_cfg.image_size, - width=vision_cfg.width + width=vision_cfg.width, ) else: vision_heads = vision_cfg.width // vision_cfg.head_width @@ -173,10 +173,10 @@ def _build_vision_tower( def _build_text_tower( - embed_dim: int, - text_cfg: CLIPTextCfg, - quick_gelu: bool = False, - cast_dtype: Optional[torch.dtype] = None, + embed_dim: int, + text_cfg: CLIPTextCfg, + quick_gelu: bool = False, + cast_dtype: Optional[torch.dtype] = None, ): if isinstance(text_cfg, dict): text_cfg = CLIPTextCfg(**text_cfg) @@ -188,8 +188,8 @@ def _build_text_tower( tokenizer_name=text_cfg.hf_tokenizer_name, proj=text_cfg.proj, pooler_type=text_cfg.pooler_type, - masked_language_modeling=text_cfg.masked_language_modeling - ) + masked_language_modeling=text_cfg.masked_language_modeling, + ) else: act_layer = QuickGELU if quick_gelu else nn.GELU norm_layer = LayerNorm @@ -203,20 +203,21 @@ def _build_text_tower( ls_init_value=text_cfg.ls_init_value, output_dim=embed_dim, act_layer=act_layer, - norm_layer= FusedLayerNorm if text_cfg.fusedLN else norm_layer, + norm_layer=FusedLayerNorm if text_cfg.fusedLN else norm_layer, xattn=text_cfg.xattn, attn_mask=text_cfg.attn_mask, ) return text + class CLIP(nn.Module): def __init__( - self, - embed_dim: int, - vision_cfg: CLIPVisionCfg, - text_cfg: CLIPTextCfg, - quick_gelu: bool = False, - cast_dtype: Optional[torch.dtype] = None, + self, + embed_dim: int, + vision_cfg: CLIPVisionCfg, + text_cfg: CLIPTextCfg, + quick_gelu: bool = False, + cast_dtype: Optional[torch.dtype] = None, ): super().__init__() self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype) @@ -228,7 +229,7 @@ def __init__( self.positional_embedding = text.positional_embedding self.ln_final = text.ln_final self.text_projection = text.text_projection - self.register_buffer('attn_mask', text.attn_mask, persistent=False) + self.register_buffer("attn_mask", text.attn_mask, persistent=False) self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) @@ -243,7 +244,7 @@ def set_grad_checkpointing(self, enable=True): @torch.jit.ignore def no_weight_decay(self): - return {'logit_scale'} + return {"logit_scale"} def encode_image(self, image, normalize: bool = False): features = self.visual(image) @@ -271,13 +272,13 @@ def forward(self, image, text): class CustomCLIP(nn.Module): def __init__( - self, - embed_dim: int, - vision_cfg: CLIPVisionCfg, - text_cfg: CLIPTextCfg, - quick_gelu: bool = False, - cast_dtype: Optional[torch.dtype] = None, - itm_task: bool = False, + self, + embed_dim: int, + vision_cfg: CLIPVisionCfg, + text_cfg: CLIPTextCfg, + quick_gelu: bool = False, + cast_dtype: Optional[torch.dtype] = None, + itm_task: bool = False, ): super().__init__() self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype) @@ -288,7 +289,7 @@ def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False): # lock image tower as per LiT - https://arxiv.org/abs/2111.07991 self.visual.lock(unlocked_groups=unlocked_groups, freeze_bn_stats=freeze_bn_stats) - def lock_text_tower(self, unlocked_layers:int=0, freeze_layer_norm:bool=True): + def lock_text_tower(self, unlocked_layers: int = 0, freeze_layer_norm: bool = True): self.text.lock(unlocked_layers, freeze_layer_norm) @torch.jit.ignore @@ -298,7 +299,7 @@ def set_grad_checkpointing(self, enable=True): @torch.jit.ignore def no_weight_decay(self): - return {'logit_scale'} + return {"logit_scale"} def encode_image(self, image, normalize: bool = False): features = self.visual(image) @@ -318,7 +319,6 @@ def convert_weights_to_lp(model: nn.Module, dtype=torch.float16): """Convert applicable model parameters to low-precision (bf16 or fp16)""" def _convert_weights(l): - if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)): l.weight.data = l.weight.data.to(dtype) if l.bias is not None: @@ -347,46 +347,51 @@ def _convert_weights(l): # used to maintain checkpoint compatibility def convert_to_custom_text_state_dict(state_dict: dict): - if 'text_projection' in state_dict: + if "text_projection" in state_dict: # old format state_dict, move text tower -> .text new_state_dict = {} for k, v in state_dict.items(): - if any(k.startswith(p) for p in ( - 'text_projection', - 'positional_embedding', - 'token_embedding', - 'transformer', - 'ln_final', - 'logit_scale' - )): - k = 'text.' + k + if any( + k.startswith(p) + for p in ( + "text_projection", + "positional_embedding", + "token_embedding", + "transformer", + "ln_final", + "logit_scale", + ) + ): + k = "text." + k new_state_dict[k] = v return new_state_dict return state_dict def build_model_from_openai_state_dict( - state_dict: dict, - quick_gelu=True, - cast_dtype=torch.float16, + state_dict: dict, + quick_gelu=True, + cast_dtype=torch.float16, ): vit = "visual.proj" in state_dict if vit: vision_width = state_dict["visual.conv1.weight"].shape[0] vision_layers = len( - [k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")]) + [k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")] + ) vision_patch_size = state_dict["visual.conv1.weight"].shape[-1] grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5) image_size = vision_patch_size * grid_size else: counts: list = [ - len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]] + len({k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}")}) for b in [1, 2, 3, 4] + ] vision_layers = tuple(counts) vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0] output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5) vision_patch_size = None - assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0] + assert output_width**2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0] image_size = output_width * 32 embed_dim = state_dict["text_projection"].shape[1] @@ -394,7 +399,7 @@ def build_model_from_openai_state_dict( vocab_size = state_dict["token_embedding.weight"].shape[0] transformer_width = state_dict["ln_final.weight"].shape[0] transformer_heads = transformer_width // 64 - transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith("transformer.resblocks"))) + transformer_layers = len({k.split(".")[2] for k in state_dict if k.startswith("transformer.resblocks")}) vision_cfg = CLIPVisionCfg( layers=vision_layers, @@ -407,7 +412,7 @@ def build_model_from_openai_state_dict( vocab_size=vocab_size, width=transformer_width, heads=transformer_heads, - layers=transformer_layers + layers=transformer_layers, ) model = CLIP( embed_dim, @@ -425,17 +430,18 @@ def build_model_from_openai_state_dict( return model.eval() -def trace_model(model, batch_size=256, device=torch.device('cpu')): +def trace_model(model, batch_size=256, device=torch.device("cpu")): model.eval() image_size = model.visual.image_size example_images = torch.ones((batch_size, 3, image_size, image_size), device=device) example_text = torch.zeros((batch_size, model.context_length), dtype=torch.int, device=device) model = torch.jit.trace_module( model, - inputs=dict( - forward=(example_images, example_text), - encode_text=(example_text,), - encode_image=(example_images,) - )) + inputs={ + "forward": (example_images, example_text), + "encode_text": (example_text,), + "encode_image": (example_images,), + }, + ) model.visual.image_size = image_size return model diff --git a/src/diffusers/pipelines/consisid/util_clip/modified_resnet.py b/src/diffusers/pipelines/consisid/util_clip/modified_resnet.py index 48c37b93b4eb..e91dc0e3dcbe 100644 --- a/src/diffusers/pipelines/consisid/util_clip/modified_resnet.py +++ b/src/diffusers/pipelines/consisid/util_clip/modified_resnet.py @@ -1,18 +1,10 @@ -import os -import sys from collections import OrderedDict import torch from torch import nn from torch.nn import functional as F - -current_file_path = os.path.abspath(__file__) -project_roots = [os.path.dirname(current_file_path)] -for project_root in project_roots: - sys.path.insert(0, project_root) if project_root not in sys.path else None - -from utils import freeze_batch_norm_2d +from .utils import freeze_batch_norm_2d class Bottleneck(nn.Module): @@ -41,11 +33,15 @@ def __init__(self, inplanes, planes, stride=1): if stride > 1 or inplanes != planes * Bottleneck.expansion: # downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1 - self.downsample = nn.Sequential(OrderedDict([ - ("-1", nn.AvgPool2d(stride)), - ("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)), - ("1", nn.BatchNorm2d(planes * self.expansion)) - ])) + self.downsample = nn.Sequential( + OrderedDict( + [ + ("-1", nn.AvgPool2d(stride)), + ("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)), + ("1", nn.BatchNorm2d(planes * self.expansion)), + ] + ) + ) def forward(self, x: torch.Tensor): identity = x @@ -66,7 +62,7 @@ def forward(self, x: torch.Tensor): class AttentionPool2d(nn.Module): def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None): super().__init__() - self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5) + self.positional_embedding = nn.Parameter(torch.randn(spacial_dim**2 + 1, embed_dim) / embed_dim**0.5) self.k_proj = nn.Linear(embed_dim, embed_dim) self.q_proj = nn.Linear(embed_dim, embed_dim) self.v_proj = nn.Linear(embed_dim, embed_dim) @@ -78,7 +74,9 @@ def forward(self, x): x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC x, _ = F.multi_head_attention_forward( - query=x, key=x, value=x, + query=x, + key=x, + value=x, embed_dim_to_check=x.shape[-1], num_heads=self.num_heads, q_proj_weight=self.q_proj.weight, @@ -89,12 +87,12 @@ def forward(self, x): bias_k=None, bias_v=None, add_zero_attn=False, - dropout_p=0., + dropout_p=0.0, out_proj_weight=self.c_proj.weight, out_proj_bias=self.c_proj.bias, use_separate_proj_weight=True, training=self.training, - need_weights=False + need_weights=False, ) return x[0] @@ -148,7 +146,7 @@ def _make_layer(self, planes, blocks, stride=1): def init_parameters(self): if self.attnpool is not None: - std = self.attnpool.c_proj.in_features ** -0.5 + std = self.attnpool.c_proj.in_features**-0.5 nn.init.normal_(self.attnpool.q_proj.weight, std=std) nn.init.normal_(self.attnpool.k_proj.weight, std=std) nn.init.normal_(self.attnpool.v_proj.weight, std=std) @@ -160,7 +158,7 @@ def init_parameters(self): nn.init.zeros_(param) def lock(self, unlocked_groups=0, freeze_bn_stats=False): - assert unlocked_groups == 0, 'partial locking not currently supported for this model' + assert unlocked_groups == 0, "partial locking not currently supported for this model" for param in self.parameters(): param.requires_grad = False if freeze_bn_stats: diff --git a/src/diffusers/pipelines/consisid/util_clip/openai.py b/src/diffusers/pipelines/consisid/util_clip/openai.py index 719bdad63037..3a75acd27cb2 100644 --- a/src/diffusers/pipelines/consisid/util_clip/openai.py +++ b/src/diffusers/pipelines/consisid/util_clip/openai.py @@ -1,4 +1,4 @@ -""" OpenAI pretrained model functions +"""OpenAI pretrained model functions Adapted from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI. """ @@ -18,21 +18,19 @@ def list_openai_models() -> List[str]: """Returns the names of available CLIP models""" - return list_pretrained_models_by_tag('openai') + return list_pretrained_models_by_tag("openai") def load_openai_model( - name: str, - precision: Optional[str] = None, - device: Optional[Union[str, torch.device]] = None, - jit: bool = True, - cache_dir: Optional[str] = None, + name: str, + precision: Optional[str] = None, + device: Optional[Union[str, torch.device]] = None, + jit: bool = True, + cache_dir: Optional[str] = None, ): """Load a CLIP model - Parameters - ---------- - name : str + Parameters ---------- name : str A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict precision: str Model precision, if None defaults to 'fp32' if device == 'cpu' else 'fp16'. @@ -43,9 +41,7 @@ def load_openai_model( cache_dir : Optional[str] The directory to cache the downloaded model weights - Returns - ------- - model : torch.nn.Module + Returns ------- model : torch.nn.Module The CLIP model preprocess : Callable[[PIL.Image], torch.Tensor] A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input @@ -53,10 +49,10 @@ def load_openai_model( if device is None: device = "cuda" if torch.cuda.is_available() else "cpu" if precision is None: - precision = 'fp32' if device == 'cpu' else 'fp16' + precision = "fp32" if device == "cpu" else "fp16" - if get_pretrained_url(name, 'openai'): - model_path = download_pretrained_from_url(get_pretrained_url(name, 'openai'), cache_dir=cache_dir) + if get_pretrained_url(name, "openai"): + model_path = download_pretrained_from_url(get_pretrained_url(name, "openai"), cache_dir=cache_dir) elif os.path.isfile(name): model_path = name else: @@ -84,9 +80,9 @@ def load_openai_model( # model from OpenAI state dict is in manually cast fp16 mode, must be converted for AMP/fp32/bf16 use model = model.to(device) - if precision.startswith('amp') or precision == 'fp32': + if precision.startswith("amp") or precision == "fp32": model.float() - elif precision == 'bf16': + elif precision == "bf16": convert_weights_to_lp(model, dtype=torch.bfloat16) return model @@ -114,7 +110,7 @@ def patch_device(module): patch_device(model.encode_text) # patch dtype to float32 (typically for CPU) - if precision == 'fp32': + if precision == "fp32": float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[]) float_input = list(float_holder.graph.findNode("aten::to").inputs())[1] float_node = float_input.node() diff --git a/src/diffusers/pipelines/consisid/util_clip/pretrained.py b/src/diffusers/pipelines/consisid/util_clip/pretrained.py index 5729548b00f7..7fd618735c88 100644 --- a/src/diffusers/pipelines/consisid/util_clip/pretrained.py +++ b/src/diffusers/pipelines/consisid/util_clip/pretrained.py @@ -9,180 +9,187 @@ try: from huggingface_hub import hf_hub_download + _has_hf_hub = True except ImportError: hf_hub_download = None _has_hf_hub = False -def _pcfg(url='', hf_hub='', filename='', mean=None, std=None): - return dict( - url=url, - hf_hub=hf_hub, - mean=mean, - std=std, - ) - -_VITB32 = dict( - openai=_pcfg( - "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt"), - laion400m_e31=_pcfg( - "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e31-d867053b.pt"), - laion400m_e32=_pcfg( - "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e32-46683a32.pt"), - laion2b_e16=_pcfg( - "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-laion2b_e16-af8dbd0c.pth"), - laion2b_s34b_b79k=_pcfg(hf_hub='laion/CLIP-ViT-B-32-laion2B-s34B-b79K/') -) - -_VITB32_quickgelu = dict( - openai=_pcfg( - "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt"), - laion400m_e31=_pcfg( - "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e31-d867053b.pt"), - laion400m_e32=_pcfg( - "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e32-46683a32.pt"), -) - -_VITB16 = dict( - openai=_pcfg( - "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt"), - laion400m_e31=_pcfg( - "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16-laion400m_e31-00efa78f.pt"), - laion400m_e32=_pcfg( - "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16-laion400m_e32-55e67d44.pt"), - laion2b_s34b_b88k=_pcfg(hf_hub='laion/CLIP-ViT-B-16-laion2B-s34B-b88K/'), -) - -_EVAB16 = dict( - eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_B_psz14to16.pt'), - eva02=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_B_psz14to16.pt'), - eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_B_psz16_s8B.pt'), - eva02_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_B_psz16_s8B.pt'), -) - -_VITB16_PLUS_240 = dict( - laion400m_e31=_pcfg( - "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16_plus_240-laion400m_e31-8fb26589.pt"), - laion400m_e32=_pcfg( - "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16_plus_240-laion400m_e32-699c4b84.pt"), -) - -_VITL14 = dict( - openai=_pcfg( - "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt"), - laion400m_e31=_pcfg( - "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_l_14-laion400m_e31-69988bb6.pt"), - laion400m_e32=_pcfg( - "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_l_14-laion400m_e32-3d133497.pt"), - laion2b_s32b_b82k=_pcfg( - hf_hub='laion/CLIP-ViT-L-14-laion2B-s32B-b82K/', - mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)), -) - -_EVAL14 = dict( - eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_L_psz14.pt'), - eva02=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_L_psz14.pt'), - eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_s4B.pt'), - eva02_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_s4B.pt'), -) - -_VITL14_336 = dict( - openai=_pcfg( - "https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt"), -) - -_EVAL14_336 = dict( - eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_336_psz14_s6B.pt'), - eva02_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_336_psz14_s6B.pt'), - eva_clip_224to336=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_224to336.pt'), - eva02_clip_224to336=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_224to336.pt'), -) - -_VITH14 = dict( - laion2b_s32b_b79k=_pcfg(hf_hub='laion/CLIP-ViT-H-14-laion2B-s32B-b79K/'), -) - -_VITg14 = dict( - laion2b_s12b_b42k=_pcfg(hf_hub='laion/CLIP-ViT-g-14-laion2B-s12B-b42K/'), - laion2b_s34b_b88k=_pcfg(hf_hub='laion/CLIP-ViT-g-14-laion2B-s34B-b88K/'), -) - -_EVAg14 = dict( - eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/'), - eva01=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_g_psz14.pt'), - eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_CLIP_g_14_psz14_s11B.pt'), - eva01_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_CLIP_g_14_psz14_s11B.pt'), -) - -_EVAg14_PLUS = dict( - eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/'), - eva01=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_g_psz14.pt'), - eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_CLIP_g_14_plus_psz14_s11B.pt'), - eva01_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA01_CLIP_g_14_plus_psz14_s11B.pt'), -) - -_VITbigG14 = dict( - laion2b_s39b_b160k=_pcfg(hf_hub='laion/CLIP-ViT-bigG-14-laion2B-39B-b160k/'), -) - -_EVAbigE14 = dict( - eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_E_psz14.pt'), - eva02=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_E_psz14.pt'), - eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_s4B.pt'), - eva02_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_s4B.pt'), -) - -_EVAbigE14_PLUS = dict( - eva=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_E_psz14.pt'), - eva02=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_E_psz14.pt'), - eva_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_plus_s9B.pt'), - eva02_clip=_pcfg(hf_hub='QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_plus_s9B.pt'), -) +def _pcfg(url="", hf_hub="", filename="", mean=None, std=None): + return { + "url": url, + "hf_hub": hf_hub, + "mean": mean, + "std": std, + } + + +_VITB32 = { + "openai": _pcfg( + "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt" + ), + "laion400m_e31": _pcfg( + "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e31-d867053b.pt" + ), + "laion400m_e32": _pcfg( + "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e32-46683a32.pt" + ), + "laion2b_e16": _pcfg( + "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-laion2b_e16-af8dbd0c.pth" + ), + "laion2b_s34b_b79k": _pcfg(hf_hub="laion/CLIP-ViT-B-32-laion2B-s34B-b79K/"), +} + +_VITB32_quickgelu = { + "openai": _pcfg( + "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt" + ), + "laion400m_e31": _pcfg( + "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e31-d867053b.pt" + ), + "laion400m_e32": _pcfg( + "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e32-46683a32.pt" + ), +} + +_VITB16 = { + "openai": _pcfg( + "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt" + ), + "laion400m_e31": _pcfg( + "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16-laion400m_e31-00efa78f.pt" + ), + "laion400m_e32": _pcfg( + "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16-laion400m_e32-55e67d44.pt" + ), + "laion2b_s34b_b88k": _pcfg(hf_hub="laion/CLIP-ViT-B-16-laion2B-s34B-b88K/"), +} + +_EVAB16 = { + "eva": _pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_B_psz14to16.pt"), + "eva02": _pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_B_psz14to16.pt"), + "eva_clip": _pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_CLIP_B_psz16_s8B.pt"), + "eva02_clip": _pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_CLIP_B_psz16_s8B.pt"), +} + +_VITB16_PLUS_240 = { + "laion400m_e31": _pcfg( + "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16_plus_240-laion400m_e31-8fb26589.pt" + ), + "laion400m_e32": _pcfg( + "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16_plus_240-laion400m_e32-699c4b84.pt" + ), +} + +_VITL14 = { + "openai": _pcfg( + "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt" + ), + "laion400m_e31": _pcfg( + "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_l_14-laion400m_e31-69988bb6.pt" + ), + "laion400m_e32": _pcfg( + "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_l_14-laion400m_e32-3d133497.pt" + ), + "laion2b_s32b_b82k": _pcfg( + hf_hub="laion/CLIP-ViT-L-14-laion2B-s32B-b82K/", mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5) + ), +} + +_EVAL14 = { + "eva": _pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_L_psz14.pt"), + "eva02": _pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_L_psz14.pt"), + "eva_clip": _pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_s4B.pt"), + "eva02_clip": _pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_s4B.pt"), +} + +_VITL14_336 = { + "openai": _pcfg( + "https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt" + ), +} + +_EVAL14_336 = { + "eva_clip": _pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_CLIP_L_336_psz14_s6B.pt"), + "eva02_clip": _pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_CLIP_L_336_psz14_s6B.pt"), + "eva_clip_224to336": _pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_224to336.pt"), + "eva02_clip_224to336": _pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_224to336.pt"), +} + +_VITH14 = { + "laion2b_s32b_b79k": _pcfg(hf_hub="laion/CLIP-ViT-H-14-laion2B-s32B-b79K/"), +} + +_VITg14 = { + "laion2b_s12b_b42k": _pcfg(hf_hub="laion/CLIP-ViT-g-14-laion2B-s12B-b42K/"), + "laion2b_s34b_b88k": _pcfg(hf_hub="laion/CLIP-ViT-g-14-laion2B-s34B-b88K/"), +} + +_EVAg14 = { + "eva": _pcfg(hf_hub="QuanSun/EVA-CLIP/"), + "eva01": _pcfg(hf_hub="QuanSun/EVA-CLIP/EVA01_g_psz14.pt"), + "eva_clip": _pcfg(hf_hub="QuanSun/EVA-CLIP/EVA01_CLIP_g_14_psz14_s11B.pt"), + "eva01_clip": _pcfg(hf_hub="QuanSun/EVA-CLIP/EVA01_CLIP_g_14_psz14_s11B.pt"), +} + +_EVAg14_PLUS = { + "eva": _pcfg(hf_hub="QuanSun/EVA-CLIP/"), + "eva01": _pcfg(hf_hub="QuanSun/EVA-CLIP/EVA01_g_psz14.pt"), + "eva_clip": _pcfg(hf_hub="QuanSun/EVA-CLIP/EVA01_CLIP_g_14_plus_psz14_s11B.pt"), + "eva01_clip": _pcfg(hf_hub="QuanSun/EVA-CLIP/EVA01_CLIP_g_14_plus_psz14_s11B.pt"), +} + +_VITbigG14 = { + "laion2b_s39b_b160k": _pcfg(hf_hub="laion/CLIP-ViT-bigG-14-laion2B-39B-b160k/"), +} + +_EVAbigE14 = { + "eva": _pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_E_psz14.pt"), + "eva02": _pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_E_psz14.pt"), + "eva_clip": _pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_s4B.pt"), + "eva02_clip": _pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_s4B.pt"), +} + + +_EVAbigE14_PLUS = { + "eva": _pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_E_psz14.pt"), + "eva02": _pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_E_psz14.pt"), + "eva_clip": _pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_plus_s9B.pt"), + "eva02_clip": _pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_plus_s9B.pt"), +} _PRETRAINED = { # "ViT-B-32": _VITB32, "OpenaiCLIP-B-32": _VITB32, "OpenCLIP-B-32": _VITB32, - # "ViT-B-32-quickgelu": _VITB32_quickgelu, "OpenaiCLIP-B-32-quickgelu": _VITB32_quickgelu, "OpenCLIP-B-32-quickgelu": _VITB32_quickgelu, - # "ViT-B-16": _VITB16, "OpenaiCLIP-B-16": _VITB16, "OpenCLIP-B-16": _VITB16, - "EVA02-B-16": _EVAB16, "EVA02-CLIP-B-16": _EVAB16, - # "ViT-B-16-plus-240": _VITB16_PLUS_240, "OpenCLIP-B-16-plus-240": _VITB16_PLUS_240, - # "ViT-L-14": _VITL14, "OpenaiCLIP-L-14": _VITL14, "OpenCLIP-L-14": _VITL14, - "EVA02-L-14": _EVAL14, "EVA02-CLIP-L-14": _EVAL14, - # "ViT-L-14-336": _VITL14_336, "OpenaiCLIP-L-14-336": _VITL14_336, - "EVA02-CLIP-L-14-336": _EVAL14_336, - # "ViT-H-14": _VITH14, # "ViT-g-14": _VITg14, "OpenCLIP-H-14": _VITH14, "OpenCLIP-g-14": _VITg14, - "EVA01-CLIP-g-14": _EVAg14, "EVA01-CLIP-g-14-plus": _EVAg14_PLUS, - # "ViT-bigG-14": _VITbigG14, "OpenCLIP-bigG-14": _VITbigG14, - "EVA02-CLIP-bigE-14": _EVAbigE14, "EVA02-CLIP-bigE-14-plus": _EVAbigE14_PLUS, } @@ -190,18 +197,18 @@ def _pcfg(url='', hf_hub='', filename='', mean=None, std=None): def _clean_tag(tag: str): # normalize pretrained tags - return tag.lower().replace('-', '_') + return tag.lower().replace("-", "_") def list_pretrained(as_str: bool = False): - """ returns list of pretrained models + """returns list of pretrained models Returns a tuple (model_name, pretrain_tag) by default or 'name:tag' if as_str == True """ - return [':'.join([k, t]) if as_str else (k, t) for k in _PRETRAINED.keys() for t in _PRETRAINED[k].keys()] + return [":".join([k, t]) if as_str else (k, t) for k in _PRETRAINED.keys() for t in _PRETRAINED[k].keys()] def list_pretrained_models_by_tag(tag: str): - """ return all models having the specified pretrain tag """ + """return all models having the specified pretrain tag""" models = [] tag = _clean_tag(tag) for k in _PRETRAINED.keys(): @@ -211,7 +218,7 @@ def list_pretrained_models_by_tag(tag: str): def list_pretrained_tags_by_model(model: str): - """ return all pretrain tags for the specified model architecture """ + """return all pretrain tags for the specified model architecture""" tags = [] if model in _PRETRAINED: tags.extend(_PRETRAINED[model].keys()) @@ -233,24 +240,24 @@ def get_pretrained_cfg(model: str, tag: str): def get_pretrained_url(model: str, tag: str): cfg = get_pretrained_cfg(model, _clean_tag(tag)) - return cfg.get('url', '') + return cfg.get("url", "") def download_pretrained_from_url( - url: str, - cache_dir: Union[str, None] = None, + url: str, + cache_dir: Union[str, None] = None, ): if not cache_dir: cache_dir = os.path.expanduser("~/.cache/clip") os.makedirs(cache_dir, exist_ok=True) filename = os.path.basename(url) - if 'openaipublic' in url: + if "openaipublic" in url: expected_sha256 = url.split("/")[-2] - elif 'mlfoundations' in url: + elif "mlfoundations" in url: expected_sha256 = os.path.splitext(filename)[0].split("-")[-1] else: - expected_sha256 = '' + expected_sha256 = "" download_target = os.path.join(cache_dir, filename) @@ -262,12 +269,14 @@ def download_pretrained_from_url( if hashlib.sha256(open(download_target, "rb").read()).hexdigest().startswith(expected_sha256): return download_target else: - warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file") + warnings.warn( + f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file" + ) else: return download_target with urllib.request.urlopen(url) as source, open(download_target, "wb") as output: - with tqdm(total=int(source.headers.get("Content-Length")), ncols=80, unit='iB', unit_scale=True) as loop: + with tqdm(total=int(source.headers.get("Content-Length")), ncols=80, unit="iB", unit_scale=True) as loop: while True: buffer = source.read(8192) if not buffer: @@ -276,7 +285,9 @@ def download_pretrained_from_url( output.write(buffer) loop.update(len(buffer)) - if expected_sha256 and not hashlib.sha256(open(download_target, "rb").read()).hexdigest().startswith(expected_sha256): + if expected_sha256 and not hashlib.sha256(open(download_target, "rb").read()).hexdigest().startswith( + expected_sha256 + ): raise RuntimeError("Model has been downloaded but the SHA256 checksum does not not match") return download_target @@ -286,15 +297,16 @@ def has_hf_hub(necessary=False): if not _has_hf_hub and necessary: # if no HF Hub module installed, and it is necessary to continue, raise error raise RuntimeError( - 'Hugging Face hub model specified but package not installed. Run `pip install huggingface_hub`.') + "Hugging Face hub model specified but package not installed. Run `pip install huggingface_hub`." + ) return _has_hf_hub def download_pretrained_from_hf( - model_id: str, - filename: str = 'open_clip_pytorch_model.bin', - revision=None, - cache_dir: Union[str, None] = None, + model_id: str, + filename: str = "open_clip_pytorch_model.bin", + revision=None, + cache_dir: Union[str, None] = None, ): has_hf_hub(True) cached_file = hf_hub_download(model_id, filename, revision=revision, cache_dir=cache_dir) @@ -302,19 +314,19 @@ def download_pretrained_from_hf( def download_pretrained( - cfg: Dict, - force_hf_hub: bool = False, - cache_dir: Union[str, None] = None, + cfg: Dict, + force_hf_hub: bool = False, + cache_dir: Union[str, None] = None, ): - target = '' + target = "" if not cfg: return target - download_url = cfg.get('url', '') - download_hf_hub = cfg.get('hf_hub', '') + download_url = cfg.get("url", "") + download_hf_hub = cfg.get("hf_hub", "") if download_hf_hub and force_hf_hub: # use HF hub even if url exists - download_url = '' + download_url = "" if download_url: target = download_pretrained_from_url(download_url, cache_dir=cache_dir) diff --git a/src/diffusers/pipelines/consisid/util_clip/rope.py b/src/diffusers/pipelines/consisid/util_clip/rope.py index 1035dd7704df..7f7d32499dca 100644 --- a/src/diffusers/pipelines/consisid/util_clip/rope.py +++ b/src/diffusers/pipelines/consisid/util_clip/rope.py @@ -6,27 +6,28 @@ from torch import nn -def broadcat(tensors, dim = -1): +def broadcat(tensors, dim=-1): num_tensors = len(tensors) - shape_lens = set(list(map(lambda t: len(t.shape), tensors))) - assert len(shape_lens) == 1, 'tensors must all have the same number of dimensions' + shape_lens = {len(t.shape) for t in tensors} + assert len(shape_lens) == 1, "tensors must all have the same number of dimensions" shape_len = list(shape_lens)[0] dim = (dim + shape_len) if dim < 0 else dim - dims = list(zip(*map(lambda t: list(t.shape), tensors))) + dims = list(zip(*(list(t.shape) for t in tensors))) expandable_dims = [(i, val) for i, val in enumerate(dims) if i != dim] - assert all([*map(lambda t: len(set(t[1])) <= 2, expandable_dims)]), 'invalid dimensions for broadcastable concatentation' - max_dims = list(map(lambda t: (t[0], max(t[1])), expandable_dims)) - expanded_dims = list(map(lambda t: (t[0], (t[1],) * num_tensors), max_dims)) + assert all(len(set(t[1])) <= 2 for t in expandable_dims), "invalid dimensions for broadcastable concatenation" + max_dims = [(t[0], max(t[1])) for t in expandable_dims] + expanded_dims = [(t[0], (t[1],) * num_tensors) for t in max_dims] expanded_dims.insert(dim, (dim, dims[dim])) - expandable_shapes = list(zip(*map(lambda t: t[1], expanded_dims))) - tensors = list(map(lambda t: t[0].expand(*t[1]), zip(tensors, expandable_shapes))) - return torch.cat(tensors, dim = dim) + expandable_shapes = list(zip(*(t[1] for t in expanded_dims))) + tensors = [t[0].expand(*t[1]) for t in zip(tensors, expandable_shapes)] + return torch.cat(tensors, dim=dim) + def rotate_half(x): - x = rearrange(x, '... (d r) -> ... d r', r = 2) - x1, x2 = x.unbind(dim = -1) - x = torch.stack((-x2, x1), dim = -1) - return rearrange(x, '... d r -> ... (d r)') + x = rearrange(x, "... (d r) -> ... d r", r=2) + x1, x2 = x.unbind(dim=-1) + x = torch.stack((-x2, x1), dim=-1) + return rearrange(x, "... d r -> ... (d r)") class VisionRotaryEmbedding(nn.Module): @@ -35,48 +36,52 @@ def __init__( dim, pt_seq_len, ft_seq_len=None, - custom_freqs = None, - freqs_for = 'lang', - theta = 10000, - max_freq = 10, - num_freqs = 1, + custom_freqs=None, + freqs_for="lang", + theta=10000, + max_freq=10, + num_freqs=1, ): super().__init__() if custom_freqs: freqs = custom_freqs - elif freqs_for == 'lang': - freqs = 1. / (theta ** (torch.arange(0, dim, 2)[:(dim // 2)].float() / dim)) - elif freqs_for == 'pixel': - freqs = torch.linspace(1., max_freq / 2, dim // 2) * pi - elif freqs_for == 'constant': + elif freqs_for == "lang": + freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) + elif freqs_for == "pixel": + freqs = torch.linspace(1.0, max_freq / 2, dim // 2) * pi + elif freqs_for == "constant": freqs = torch.ones(num_freqs).float() else: - raise ValueError(f'unknown modality {freqs_for}') + raise ValueError(f"unknown modality {freqs_for}") - if ft_seq_len is None: ft_seq_len = pt_seq_len + if ft_seq_len is None: + ft_seq_len = pt_seq_len t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len - freqs_h = torch.einsum('..., f -> ... f', t, freqs) - freqs_h = repeat(freqs_h, '... n -> ... (n r)', r = 2) + freqs_h = torch.einsum("..., f -> ... f", t, freqs) + freqs_h = repeat(freqs_h, "... n -> ... (n r)", r=2) - freqs_w = torch.einsum('..., f -> ... f', t, freqs) - freqs_w = repeat(freqs_w, '... n -> ... (n r)', r = 2) + freqs_w = torch.einsum("..., f -> ... f", t, freqs) + freqs_w = repeat(freqs_w, "... n -> ... (n r)", r=2) - freqs = broadcat((freqs_h[:, None, :], freqs_w[None, :, :]), dim = -1) + freqs = broadcat((freqs_h[:, None, :], freqs_w[None, :, :]), dim=-1) self.register_buffer("freqs_cos", freqs.cos()) self.register_buffer("freqs_sin", freqs.sin()) - logging.info(f'Shape of rope freq: {self.freqs_cos.shape}') + logging.info(f"Shape of rope freq: {self.freqs_cos.shape}") - def forward(self, t, start_index = 0): + def forward(self, t, start_index=0): rot_dim = self.freqs_cos.shape[-1] end_index = start_index + rot_dim - assert rot_dim <= t.shape[-1], f'feature dimension {t.shape[-1]} is not of sufficient size to rotate in all the positions {rot_dim}' + assert ( + rot_dim <= t.shape[-1] + ), f"feature dimension {t.shape[-1]} is not of sufficient size to rotate in all the positions {rot_dim}" t_left, t, t_right = t[..., :start_index], t[..., start_index:end_index], t[..., end_index:] t = (t * self.freqs_cos) + (rotate_half(t) * self.freqs_sin) - return torch.cat((t_left, t, t_right), dim = -1) + return torch.cat((t_left, t, t_right), dim=-1) + class VisionRotaryEmbeddingFast(nn.Module): def __init__( @@ -84,31 +89,32 @@ def __init__( dim, pt_seq_len, ft_seq_len=None, - custom_freqs = None, - freqs_for = 'lang', - theta = 10000, - max_freq = 10, - num_freqs = 1, - patch_dropout = 0. + custom_freqs=None, + freqs_for="lang", + theta=10000, + max_freq=10, + num_freqs=1, + patch_dropout=0.0, ): super().__init__() if custom_freqs: freqs = custom_freqs - elif freqs_for == 'lang': - freqs = 1. / (theta ** (torch.arange(0, dim, 2)[:(dim // 2)].float() / dim)) - elif freqs_for == 'pixel': - freqs = torch.linspace(1., max_freq / 2, dim // 2) * pi - elif freqs_for == 'constant': + elif freqs_for == "lang": + freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) + elif freqs_for == "pixel": + freqs = torch.linspace(1.0, max_freq / 2, dim // 2) * pi + elif freqs_for == "constant": freqs = torch.ones(num_freqs).float() else: - raise ValueError(f'unknown modality {freqs_for}') + raise ValueError(f"unknown modality {freqs_for}") - if ft_seq_len is None: ft_seq_len = pt_seq_len + if ft_seq_len is None: + ft_seq_len = pt_seq_len t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len - freqs = torch.einsum('..., f -> ... f', t, freqs) - freqs = repeat(freqs, '... n -> ... (n r)', r = 2) - freqs = broadcat((freqs[:, None, :], freqs[None, :, :]), dim = -1) + freqs = torch.einsum("..., f -> ... f", t, freqs) + freqs = repeat(freqs, "... n -> ... (n r)", r=2) + freqs = broadcat((freqs[:, None, :], freqs[None, :, :]), dim=-1) freqs_cos = freqs.cos().view(-1, freqs.shape[-1]) freqs_sin = freqs.sin().view(-1, freqs.shape[-1]) @@ -118,7 +124,7 @@ def __init__( self.register_buffer("freqs_cos", freqs_cos) self.register_buffer("freqs_sin", freqs_sin) - logging.info(f'Shape of rope freq: {self.freqs_cos.shape}') + logging.info(f"Shape of rope freq: {self.freqs_cos.shape}") def forward(self, t, patch_indices_keep=None): if patch_indices_keep is not None: @@ -126,14 +132,14 @@ def forward(self, t, patch_indices_keep=None): batch_indices = torch.arange(batch) batch_indices = batch_indices[..., None] - freqs_cos = repeat(self.freqs_cos, 'i j -> n i m j', n=t.shape[0], m=t.shape[1]) - freqs_sin = repeat(self.freqs_sin, 'i j -> n i m j', n=t.shape[0], m=t.shape[1]) + freqs_cos = repeat(self.freqs_cos, "i j -> n i m j", n=t.shape[0], m=t.shape[1]) + freqs_sin = repeat(self.freqs_sin, "i j -> n i m j", n=t.shape[0], m=t.shape[1]) freqs_cos = freqs_cos[batch_indices, patch_indices_keep] - freqs_cos = rearrange(freqs_cos, 'n i m j -> n m i j') + freqs_cos = rearrange(freqs_cos, "n i m j -> n m i j") freqs_sin = freqs_sin[batch_indices, patch_indices_keep] - freqs_sin = rearrange(freqs_sin, 'n i m j -> n m i j') + freqs_sin = rearrange(freqs_sin, "n i m j -> n m i j") - return t * freqs_cos + rotate_half(t) * freqs_sin + return t * freqs_cos + rotate_half(t) * freqs_sin - return t * self.freqs_cos + rotate_half(t) * self.freqs_sin + return t * self.freqs_cos + rotate_half(t) * self.freqs_sin diff --git a/src/diffusers/pipelines/consisid/util_clip/timm_model.py b/src/diffusers/pipelines/consisid/util_clip/timm_model.py index 855ee8dd061a..038ae217e7ee 100644 --- a/src/diffusers/pipelines/consisid/util_clip/timm_model.py +++ b/src/diffusers/pipelines/consisid/util_clip/timm_model.py @@ -1,7 +1,8 @@ -""" timm model adapter +"""timm model adapter Wraps timm (https://github.com/rwightman/pytorch-image-models) models for use as a vision tower in CLIP model. """ + import logging from collections import OrderedDict @@ -12,6 +13,7 @@ try: import timm from timm.models.layers import Mlp, to_2tuple + try: # old timm imports < 0.8.1 from timm.models.layers.attention_pool2d import AttentionPool2d as AbsAttentionPool2d @@ -27,59 +29,61 @@ class TimmModel(nn.Module): - """ timm model adapter + """timm model adapter # FIXME this adapter is a work in progress, may change in ways that break weight compat """ def __init__( - self, - model_name, - embed_dim, - image_size=224, - pool='avg', - proj='linear', - proj_bias=False, - drop=0., - pretrained=False): + self, + model_name, + embed_dim, + image_size=224, + pool="avg", + proj="linear", + proj_bias=False, + drop=0.0, + pretrained=False, + ): super().__init__() if timm is None: raise RuntimeError("Please `pip install timm` to use timm models.") self.image_size = to_2tuple(image_size) self.trunk = timm.create_model(model_name, pretrained=pretrained) - feat_size = self.trunk.default_cfg.get('pool_size', None) + feat_size = self.trunk.default_cfg.get("pool_size", None) feature_ndim = 1 if not feat_size else 2 - if pool in ('abs_attn', 'rot_attn'): + if pool in ("abs_attn", "rot_attn"): assert feature_ndim == 2 # if attn pooling used, remove both classifier and default pool - self.trunk.reset_classifier(0, global_pool='') + self.trunk.reset_classifier(0, global_pool="") else: # reset global pool if pool config set, otherwise leave as network default - reset_kwargs = dict(global_pool=pool) if pool else {} + reset_kwargs = {"global_pool": pool} if pool else {} self.trunk.reset_classifier(0, **reset_kwargs) prev_chs = self.trunk.num_features head_layers = OrderedDict() - if pool == 'abs_attn': - head_layers['pool'] = AbsAttentionPool2d(prev_chs, feat_size=feat_size, out_features=embed_dim) + if pool == "abs_attn": + head_layers["pool"] = AbsAttentionPool2d(prev_chs, feat_size=feat_size, out_features=embed_dim) prev_chs = embed_dim - elif pool == 'rot_attn': - head_layers['pool'] = RotAttentionPool2d(prev_chs, out_features=embed_dim) + elif pool == "rot_attn": + head_layers["pool"] = RotAttentionPool2d(prev_chs, out_features=embed_dim) prev_chs = embed_dim else: - assert proj, 'projection layer needed if non-attention pooling is used.' + assert proj, "projection layer needed if non-attention pooling is used." # NOTE attention pool ends with a projection layer, so proj should usually be set to '' if such pooling is used - if proj == 'linear': - head_layers['drop'] = nn.Dropout(drop) - head_layers['proj'] = nn.Linear(prev_chs, embed_dim, bias=proj_bias) - elif proj == 'mlp': - head_layers['mlp'] = Mlp(prev_chs, 2 * embed_dim, embed_dim, drop=drop, bias=(True, proj_bias)) + if proj == "linear": + head_layers["drop"] = nn.Dropout(drop) + head_layers["proj"] = nn.Linear(prev_chs, embed_dim, bias=proj_bias) + elif proj == "mlp": + head_layers["mlp"] = Mlp(prev_chs, 2 * embed_dim, embed_dim, drop=drop, bias=(True, proj_bias)) self.head = nn.Sequential(head_layers) def lock(self, unlocked_groups=0, freeze_bn_stats=False): - """ lock modules + """lock modules + Args: unlocked_groups (int): leave last n layer groups unlocked (default: 0) """ @@ -96,7 +100,8 @@ def lock(self, unlocked_groups=0, freeze_bn_stats=False): from timm.models.helpers import group_modules, group_parameters except ImportError: raise RuntimeError( - 'Please install latest timm `pip install git+https://github.com/rwightman/pytorch-image-models`') + "Please install latest timm `pip install git+https://github.com/rwightman/pytorch-image-models`" + ) matcher = self.trunk.group_matcher() gparams = group_parameters(self.trunk, matcher) max_layer_id = max(gparams.keys()) @@ -115,7 +120,7 @@ def set_grad_checkpointing(self, enable=True): try: self.trunk.set_grad_checkpointing(enable) except Exception: - logging.warning('grad checkpointing not supported for this timm image tower, continuing without...') + logging.warning("grad checkpointing not supported for this timm image tower, continuing without...") def forward(self, x): x = self.trunk(x) diff --git a/src/diffusers/pipelines/consisid/util_clip/tokenizer.py b/src/diffusers/pipelines/consisid/util_clip/tokenizer.py index 00ced6de645e..d311bf0222d9 100644 --- a/src/diffusers/pipelines/consisid/util_clip/tokenizer.py +++ b/src/diffusers/pipelines/consisid/util_clip/tokenizer.py @@ -1,7 +1,8 @@ -""" CLIP tokenizer +"""CLIP tokenizer Copied from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI. """ + import gzip import html @@ -26,21 +27,21 @@ def default_bpe(): @lru_cache() def bytes_to_unicode(): """ - Returns list of utf-8 byte and a corresponding list of unicode strings. - The reversible bpe codes work on unicode strings. - This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. - When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. - This is a signficant percentage of your normal, say, 32K bpe vocab. - To avoid that, we want lookup tables between utf-8 bytes and unicode strings. - And avoids mapping to whitespace/control characters the bpe code barfs on. + Returns list of utf-8 byte and a corresponding list of unicode strings. The reversible bpe codes work on unicode + strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're + at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a signficant + percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode + strings. And avoids mapping to whitespace/control characters the bpe code barfs on. """ - bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) + bs = ( + list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) + ) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) - cs.append(2**8+n) + cs.append(2**8 + n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) @@ -65,7 +66,7 @@ def basic_clean(text): def whitespace_clean(text): - text = re.sub(r'\s+', ' ', text) + text = re.sub(r"\s+", " ", text) text = text.strip() return text @@ -74,24 +75,26 @@ class SimpleTokenizer(object): def __init__(self, bpe_path: str = default_bpe(), special_tokens=None): self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} - merges = gzip.open(bpe_path).read().decode("utf-8").split('\n') - merges = merges[1:49152-256-2+1] + merges = gzip.open(bpe_path).read().decode("utf-8").split("\n") + merges = merges[1 : 49152 - 256 - 2 + 1] merges = [tuple(merge.split()) for merge in merges] vocab = list(bytes_to_unicode().values()) - vocab = vocab + [v+'' for v in vocab] + vocab = vocab + [v + "" for v in vocab] for merge in merges: - vocab.append(''.join(merge)) + vocab.append("".join(merge)) if not special_tokens: - special_tokens = ['', ''] + special_tokens = ["", ""] else: - special_tokens = ['', ''] + special_tokens + special_tokens = ["", ""] + special_tokens vocab.extend(special_tokens) self.encoder = dict(zip(vocab, range(len(vocab)))) self.decoder = {v: k for k, v in self.encoder.items()} self.bpe_ranks = dict(zip(merges, range(len(merges)))) - self.cache = {t:t for t in special_tokens} + self.cache = {t: t for t in special_tokens} special = "|".join(special_tokens) - self.pat = re.compile(special + r"""|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE) + self.pat = re.compile( + special + r"""|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE + ) self.vocab_size = len(self.encoder) self.all_special_ids = [self.encoder[t] for t in special_tokens] @@ -99,14 +102,14 @@ def __init__(self, bpe_path: str = default_bpe(), special_tokens=None): def bpe(self, token): if token in self.cache: return self.cache[token] - word = tuple(token[:-1]) + ( token[-1] + '',) + word = tuple(token[:-1]) + (token[-1] + "",) pairs = get_pairs(word) if not pairs: - return token+'' + return token + "" while True: - bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf'))) + bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram @@ -117,12 +120,12 @@ def bpe(self, token): j = word.index(first, i) new_word.extend(word[i:j]) i = j - except: + except IndexError: new_word.extend(word[i:]) break - if word[i] == first and i < len(word)-1 and word[i+1] == second: - new_word.append(first+second) + if word[i] == first and i < len(word) - 1 and word[i + 1] == second: + new_word.append(first + second) i += 2 else: new_word.append(word[i]) @@ -133,7 +136,7 @@ def bpe(self, token): break else: pairs = get_pairs(word) - word = ' '.join(word) + word = " ".join(word) self.cache[token] = word return word @@ -141,13 +144,13 @@ def encode(self, text): bpe_tokens = [] text = whitespace_clean(basic_clean(text)).lower() for token in re.findall(self.pat, text): - token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8')) - bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' ')) + token = "".join(self.byte_encoder[b] for b in token.encode("utf-8")) + bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(" ")) return bpe_tokens def decode(self, tokens): - text = ''.join([self.decoder[token] for token in tokens]) - text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('', ' ') + text = "".join([self.decoder[token] for token in tokens]) + text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors="replace").replace("", " ") return text @@ -158,16 +161,13 @@ def tokenize(texts: Union[str, List[str]], context_length: int = 77) -> torch.Lo """ Returns the tokenized representation of given input string(s) - Parameters - ---------- - texts : Union[str, List[str]] + Parameters ---------- texts : Union[str, List[str]] An input string or a list of input strings to tokenize context_length : int The context length to use; all CLIP models use 77 as the context length - Returns - ------- - A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length] + Returns ------- A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, + context_length] """ if isinstance(texts, str): texts = [texts] @@ -181,22 +181,26 @@ def tokenize(texts: Union[str, List[str]], context_length: int = 77) -> torch.Lo if len(tokens) > context_length: tokens = tokens[:context_length] # Truncate tokens[-1] = eot_token - result[i, :len(tokens)] = torch.tensor(tokens) + result[i, : len(tokens)] = torch.tensor(tokens) return result class HFTokenizer: "HuggingFace tokenizer wrapper" - def __init__(self, tokenizer_name:str): + + def __init__(self, tokenizer_name: str): from transformers import AutoTokenizer + self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name) - def __call__(self, texts:Union[str, List[str]], context_length:int=77) -> torch.Tensor: + def __call__(self, texts: Union[str, List[str]], context_length: int = 77) -> torch.Tensor: # same cleaning as for default tokenizer, except lowercasing # adding lower (for case-sensitive tokenizers) will make it more robust but less sensitive to nuance if isinstance(texts, str): texts = [texts] texts = [whitespace_clean(basic_clean(text)) for text in texts] - input_ids = self.tokenizer(texts, return_tensors='pt', max_length=context_length, padding='max_length', truncation=True).input_ids + input_ids = self.tokenizer( + texts, return_tensors="pt", max_length=context_length, padding="max_length", truncation=True + ).input_ids return input_ids diff --git a/src/diffusers/pipelines/consisid/util_clip/transform.py b/src/diffusers/pipelines/consisid/util_clip/transform.py index 931ba6755afa..9876a111bf6c 100644 --- a/src/diffusers/pipelines/consisid/util_clip/transform.py +++ b/src/diffusers/pipelines/consisid/util_clip/transform.py @@ -17,14 +17,13 @@ class ResizeMaxSize(nn.Module): - - def __init__(self, max_size, interpolation=InterpolationMode.BICUBIC, fn='max', fill=0): + def __init__(self, max_size, interpolation=InterpolationMode.BICUBIC, fn="max", fill=0): super().__init__() if not isinstance(max_size, int): raise TypeError(f"Size should be int. Got {type(max_size)}") self.max_size = max_size self.interpolation = interpolation - self.fn = min if fn == 'min' else min + self.fn = min if fn == "min" else min self.fill = fill def forward(self, img): @@ -38,12 +37,12 @@ def forward(self, img): img = F.resize(img, new_size, self.interpolation) pad_h = self.max_size - new_size[0] pad_w = self.max_size - new_size[1] - img = F.pad(img, padding=[pad_w//2, pad_h//2, pad_w - pad_w//2, pad_h - pad_h//2], fill=self.fill) + img = F.pad(img, padding=[pad_w // 2, pad_h // 2, pad_w - pad_w // 2, pad_h - pad_h // 2], fill=self.fill) return img def _convert_to_rgb(image): - return image.convert('RGB') + return image.convert("RGB") # class CatGen(nn.Module): @@ -64,12 +63,12 @@ def _convert_to_rgb(image): def image_transform( - image_size: int, - is_train: bool, - mean: Optional[Tuple[float, ...]] = None, - std: Optional[Tuple[float, ...]] = None, - resize_longest_max: bool = False, - fill_color: int = 0, + image_size: int, + is_train: bool, + mean: Optional[Tuple[float, ...]] = None, + std: Optional[Tuple[float, ...]] = None, + resize_longest_max: bool = False, + fill_color: int = 0, ): mean = mean or OPENAI_DATASET_MEAN if not isinstance(mean, (list, tuple)): @@ -85,25 +84,27 @@ def image_transform( normalize = Normalize(mean=mean, std=std) if is_train: - return Compose([ - RandomResizedCrop(image_size, scale=(0.9, 1.0), interpolation=InterpolationMode.BICUBIC), - _convert_to_rgb, - ToTensor(), - normalize, - ]) + return Compose( + [ + RandomResizedCrop(image_size, scale=(0.9, 1.0), interpolation=InterpolationMode.BICUBIC), + _convert_to_rgb, + ToTensor(), + normalize, + ] + ) else: if resize_longest_max: - transforms = [ - ResizeMaxSize(image_size, fill=fill_color) - ] + transforms = [ResizeMaxSize(image_size, fill=fill_color)] else: transforms = [ Resize(image_size, interpolation=InterpolationMode.BICUBIC), CenterCrop(image_size), ] - transforms.extend([ - _convert_to_rgb, - ToTensor(), - normalize, - ]) + transforms.extend( + [ + _convert_to_rgb, + ToTensor(), + normalize, + ] + ) return Compose(transforms) diff --git a/src/diffusers/pipelines/consisid/util_clip/transformer.py b/src/diffusers/pipelines/consisid/util_clip/transformer.py index 0d6e5075b170..13478974b25a 100644 --- a/src/diffusers/pipelines/consisid/util_clip/transformer.py +++ b/src/diffusers/pipelines/consisid/util_clip/transformer.py @@ -8,20 +8,14 @@ from torch import nn from torch.nn import functional as F - -try: - pass -except: - pass - from .utils import to_2tuple -if os.getenv('ENV_TYPE') == 'deepspeed': +if os.getenv("ENV_TYPE") == "deepspeed": try: import deepspeed from deepspeed.runtime.activation_checkpointing.checkpointing import checkpoint - except: + except ImportError: print("Please 'pip install deepspeed'") deepspeed = None from torch.utils.checkpoint import checkpoint @@ -34,8 +28,10 @@ xops = None print("Please 'pip install xformers'") + class LayerNormFp32(nn.LayerNorm): """Subclass torch's LayerNorm to handle fp16 (by casting to float32 and back).""" + def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) @@ -58,6 +54,7 @@ def forward(self, x: torch.Tensor): x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) return x.to(orig_type) + class QuickGELU(nn.Module): # NOTE This is slower than nn.GELU or nn.SiLU and uses more GPU memory def forward(self, x: torch.Tensor): @@ -73,6 +70,7 @@ def __init__(self, dim, init_values=1e-5, inplace=False): def forward(self, x): return x.mul_(self.gamma) if self.inplace else x * self.gamma + class PatchDropout(nn.Module): """ https://arxiv.org/abs/2212.00794 @@ -80,13 +78,13 @@ class PatchDropout(nn.Module): def __init__(self, prob, exclude_first_token=True): super().__init__() - assert 0 <= prob < 1. + assert 0 <= prob < 1.0 self.prob = prob self.exclude_first_token = exclude_first_token # exclude CLS token logging.info(f"os.getenv('RoPE')={os.getenv('RoPE')}") def forward(self, x): - if not self.training or self.prob == 0.: + if not self.training or self.prob == 0.0: return x if self.exclude_first_token: @@ -111,7 +109,7 @@ def forward(self, x): if self.exclude_first_token: x = torch.cat((cls_tokens, x), dim=1) - if self.training and os.getenv('RoPE') == '1': + if self.training and os.getenv("RoPE") == "1": return x, patch_indices_keep return x @@ -123,7 +121,7 @@ def _in_projection_packed( v: torch.Tensor, w: torch.Tensor, b: Optional[torch.Tensor] = None, - ): +): """ https://github.com/pytorch/pytorch/blob/db2a237763eb8693a20788be94f8c192e762baa8/torch/nn/functional.py#L4726 """ @@ -148,27 +146,28 @@ def _in_projection_packed( b_q, b_k, b_v = b.chunk(3) return F.linear(q, w_q, b_q), F.linear(k, w_k, b_k), F.linear(v, w_v, b_v) + class Attention(nn.Module): def __init__( - self, - dim, - num_heads=8, - qkv_bias=True, - scaled_cosine=False, - scale_heads=False, - logit_scale_max=math.log(1. / 0.01), - attn_drop=0., - proj_drop=0., - xattn=False, - rope=False + self, + dim, + num_heads=8, + qkv_bias=True, + scaled_cosine=False, + scale_heads=False, + logit_scale_max=math.log(1.0 / 0.01), + attn_drop=0.0, + proj_drop=0.0, + xattn=False, + rope=False, ): super().__init__() self.scaled_cosine = scaled_cosine self.scale_heads = scale_heads - assert dim % num_heads == 0, 'dim should be divisible by num_heads' + assert dim % num_heads == 0, "dim should be divisible by num_heads" self.num_heads = num_heads self.head_dim = dim // num_heads - self.scale = self.head_dim ** -0.5 + self.scale = self.head_dim**-0.5 self.logit_scale_max = logit_scale_max # keeping in_proj in this form (instead of nn.Linear) to match weight scheme of original @@ -202,11 +201,13 @@ def forward(self, x, attn_mask: Optional[torch.Tensor] = None): v = v.contiguous().view(L, N, self.num_heads, -1).transpose(0, 1) x = xops.memory_efficient_attention( - q, k, v, + q, + k, + v, p=self.xattn_drop, scale=self.scale if self.logit_scale is None else None, attn_bias=xops.LowerTriangularMask() if attn_mask is not None else None, - ) + ) else: q = q.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1) k = k.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1) @@ -241,26 +242,27 @@ def forward(self, x, attn_mask: Optional[torch.Tensor] = None): x = self.out_drop(x) return x + class CustomAttention(nn.Module): def __init__( - self, - dim, - num_heads=8, - qkv_bias=True, - scaled_cosine=True, - scale_heads=False, - logit_scale_max=math.log(1. / 0.01), - attn_drop=0., - proj_drop=0., - xattn=False + self, + dim, + num_heads=8, + qkv_bias=True, + scaled_cosine=True, + scale_heads=False, + logit_scale_max=math.log(1.0 / 0.01), + attn_drop=0.0, + proj_drop=0.0, + xattn=False, ): super().__init__() self.scaled_cosine = scaled_cosine self.scale_heads = scale_heads - assert dim % num_heads == 0, 'dim should be divisible by num_heads' + assert dim % num_heads == 0, "dim should be divisible by num_heads" self.num_heads = num_heads self.head_dim = dim // num_heads - self.scale = self.head_dim ** -0.5 + self.scale = self.head_dim**-0.5 self.logit_scale_max = logit_scale_max # keeping in_proj in this form (instead of nn.Linear) to match weight scheme of original @@ -284,7 +286,9 @@ def __init__( self.xattn = xattn self.xattn_drop = attn_drop - def forward(self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attn_mask: Optional[torch.Tensor] = None): + def forward( + self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attn_mask: Optional[torch.Tensor] = None + ): q, k, v = _in_projection_packed(query, key, value, self.in_proj_weight, self.in_proj_bias) N_q, B_q, C_q = q.shape N_k, B_k, C_k = k.shape @@ -296,11 +300,13 @@ def forward(self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, a v = v.permute(1, 0, 2).reshape(B_v, N_v, self.num_heads, -1) x = xops.memory_efficient_attention( - q, k, v, + q, + k, + v, p=self.xattn_drop, scale=self.scale if self.logit_scale is None else None, - attn_bias=xops.LowerTriangularMask() if attn_mask is not None else None - ) + attn_bias=xops.LowerTriangularMask() if attn_mask is not None else None, + ) else: # B*H, L, C q = q.contiguous().view(N_q, B_q * self.num_heads, -1).transpose(0, 1) @@ -337,21 +343,22 @@ def forward(self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, a x = self.out_drop(x) return x + class CustomResidualAttentionBlock(nn.Module): def __init__( - self, - d_model: int, - n_head: int, - mlp_ratio: float = 4.0, - ls_init_value: float = None, - act_layer: Callable = nn.GELU, - norm_layer: Callable = LayerNorm, - scale_cosine_attn: bool = False, - scale_heads: bool = False, - scale_attn: bool = False, - scale_fc: bool = False, - cross_attn: bool = False, - xattn: bool = False, + self, + d_model: int, + n_head: int, + mlp_ratio: float = 4.0, + ls_init_value: float = None, + act_layer: Callable = nn.GELU, + norm_layer: Callable = LayerNorm, + scale_cosine_attn: bool = False, + scale_heads: bool = False, + scale_attn: bool = False, + scale_fc: bool = False, + cross_attn: bool = False, + xattn: bool = False, ): super().__init__() @@ -359,13 +366,14 @@ def __init__( self.ln_1_k = norm_layer(d_model) if cross_attn else self.ln_1 self.ln_1_v = norm_layer(d_model) if cross_attn else self.ln_1 self.attn = CustomAttention( - d_model, n_head, + d_model, + n_head, qkv_bias=True, - attn_drop=0., - proj_drop=0., + attn_drop=0.0, + proj_drop=0.0, scaled_cosine=scale_cosine_attn, scale_heads=scale_heads, - xattn=xattn + xattn=xattn, ) self.ln_attn = norm_layer(d_model) if scale_attn else nn.Identity() @@ -373,12 +381,16 @@ def __init__( self.ln_2 = norm_layer(d_model) mlp_width = int(d_model * mlp_ratio) - self.mlp = nn.Sequential(OrderedDict([ - ("c_fc", nn.Linear(d_model, mlp_width)), - ('ln', norm_layer(mlp_width) if scale_fc else nn.Identity()), - ("gelu", act_layer()), - ("c_proj", nn.Linear(mlp_width, d_model)) - ])) + self.mlp = nn.Sequential( + OrderedDict( + [ + ("c_fc", nn.Linear(d_model, mlp_width)), + ("ln", norm_layer(mlp_width) if scale_fc else nn.Identity()), + ("gelu", act_layer()), + ("c_proj", nn.Linear(mlp_width, d_model)), + ] + ) + ) self.ls_2 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity() @@ -387,22 +399,23 @@ def forward(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, attn_mask: q = q + self.ls_2(self.mlp(self.ln_2(q))) return q + class CustomTransformer(nn.Module): def __init__( - self, - width: int, - layers: int, - heads: int, - mlp_ratio: float = 4.0, - ls_init_value: float = None, - act_layer: Callable = nn.GELU, - norm_layer: Callable = LayerNorm, - scale_cosine_attn: bool = True, - scale_heads: bool = False, - scale_attn: bool = False, - scale_fc: bool = False, - cross_attn: bool = False, - xattn: bool = False, + self, + width: int, + layers: int, + heads: int, + mlp_ratio: float = 4.0, + ls_init_value: float = None, + act_layer: Callable = nn.GELU, + norm_layer: Callable = LayerNorm, + scale_cosine_attn: bool = True, + scale_heads: bool = False, + scale_attn: bool = False, + scale_fc: bool = False, + cross_attn: bool = False, + xattn: bool = False, ): super().__init__() self.width = width @@ -410,27 +423,32 @@ def __init__( self.grad_checkpointing = False self.xattn = xattn - self.resblocks = nn.ModuleList([ - CustomResidualAttentionBlock( - width, - heads, - mlp_ratio, - ls_init_value=ls_init_value, - act_layer=act_layer, - norm_layer=norm_layer, - scale_cosine_attn=scale_cosine_attn, - scale_heads=scale_heads, - scale_attn=scale_attn, - scale_fc=scale_fc, - cross_attn=cross_attn, - xattn=xattn) - for _ in range(layers) - ]) + self.resblocks = nn.ModuleList( + [ + CustomResidualAttentionBlock( + width, + heads, + mlp_ratio, + ls_init_value=ls_init_value, + act_layer=act_layer, + norm_layer=norm_layer, + scale_cosine_attn=scale_cosine_attn, + scale_heads=scale_heads, + scale_attn=scale_attn, + scale_fc=scale_fc, + cross_attn=cross_attn, + xattn=xattn, + ) + for _ in range(layers) + ] + ) def get_cast_dtype(self) -> torch.dtype: return self.resblocks[0].mlp.c_fc.weight.dtype - def forward(self, q: torch.Tensor, k: torch.Tensor = None, v: torch.Tensor = None, attn_mask: Optional[torch.Tensor] = None): + def forward( + self, q: torch.Tensor, k: torch.Tensor = None, v: torch.Tensor = None, attn_mask: Optional[torch.Tensor] = None + ): if k is None and v is None: k = v = q for r in self.resblocks: @@ -443,14 +461,14 @@ def forward(self, q: torch.Tensor, k: torch.Tensor = None, v: torch.Tensor = Non class ResidualAttentionBlock(nn.Module): def __init__( - self, - d_model: int, - n_head: int, - mlp_ratio: float = 4.0, - ls_init_value: float = None, - act_layer: Callable = nn.GELU, - norm_layer: Callable = LayerNorm, - xattn: bool = False, + self, + d_model: int, + n_head: int, + mlp_ratio: float = 4.0, + ls_init_value: float = None, + act_layer: Callable = nn.GELU, + norm_layer: Callable = LayerNorm, + xattn: bool = False, ): super().__init__() @@ -463,11 +481,15 @@ def __init__( self.ln_2 = norm_layer(d_model) mlp_width = int(d_model * mlp_ratio) - self.mlp = nn.Sequential(OrderedDict([ - ("c_fc", nn.Linear(d_model, mlp_width)), - ("gelu", act_layer()), - ("c_proj", nn.Linear(mlp_width, d_model)) - ])) + self.mlp = nn.Sequential( + OrderedDict( + [ + ("c_fc", nn.Linear(d_model, mlp_width)), + ("gelu", act_layer()), + ("c_proj", nn.Linear(mlp_width, d_model)), + ] + ) + ) self.ls_2 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity() self.xattn = xattn @@ -483,28 +505,38 @@ def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None): x = x + self.ls_2(self.mlp(self.ln_2(x))) return x + class Transformer(nn.Module): def __init__( - self, - width: int, - layers: int, - heads: int, - mlp_ratio: float = 4.0, - ls_init_value: float = None, - act_layer: Callable = nn.GELU, - norm_layer: Callable = LayerNorm, - xattn: bool = False, + self, + width: int, + layers: int, + heads: int, + mlp_ratio: float = 4.0, + ls_init_value: float = None, + act_layer: Callable = nn.GELU, + norm_layer: Callable = LayerNorm, + xattn: bool = False, ): super().__init__() self.width = width self.layers = layers self.grad_checkpointing = False - self.resblocks = nn.ModuleList([ - ResidualAttentionBlock( - width, heads, mlp_ratio, ls_init_value=ls_init_value, act_layer=act_layer, norm_layer=norm_layer, xattn=xattn) - for _ in range(layers) - ]) + self.resblocks = nn.ModuleList( + [ + ResidualAttentionBlock( + width, + heads, + mlp_ratio, + ls_init_value=ls_init_value, + act_layer=act_layer, + norm_layer=norm_layer, + xattn=xattn, + ) + for _ in range(layers) + ] + ) def get_cast_dtype(self) -> torch.dtype: return self.resblocks[0].mlp.c_fc.weight.dtype @@ -520,34 +552,36 @@ def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None): class VisionTransformer(nn.Module): def __init__( - self, - image_size: int, - patch_size: int, - width: int, - layers: int, - heads: int, - mlp_ratio: float, - ls_init_value: float = None, - patch_dropout: float = 0., - global_average_pool: bool = False, - output_dim: int = 512, - act_layer: Callable = nn.GELU, - norm_layer: Callable = LayerNorm, - xattn: bool = False, + self, + image_size: int, + patch_size: int, + width: int, + layers: int, + heads: int, + mlp_ratio: float, + ls_init_value: float = None, + patch_dropout: float = 0.0, + global_average_pool: bool = False, + output_dim: int = 512, + act_layer: Callable = nn.GELU, + norm_layer: Callable = LayerNorm, + xattn: bool = False, ): super().__init__() self.image_size = to_2tuple(image_size) self.patch_size = to_2tuple(patch_size) self.grid_size = (self.image_size[0] // self.patch_size[0], self.image_size[1] // self.patch_size[1]) self.output_dim = output_dim - self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False) + self.conv1 = nn.Conv2d( + in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False + ) - scale = width ** -0.5 + scale = width**-0.5 self.class_embedding = nn.Parameter(scale * torch.randn(width)) self.positional_embedding = nn.Parameter(scale * torch.randn(self.grid_size[0] * self.grid_size[1] + 1, width)) # setting a patch_dropout of 0. would mean it is disabled and this function would be the identity fn - self.patch_dropout = PatchDropout(patch_dropout) if patch_dropout > 0. else nn.Identity() + self.patch_dropout = PatchDropout(patch_dropout) if patch_dropout > 0.0 else nn.Identity() self.ln_pre = norm_layer(width) self.transformer = Transformer( @@ -558,7 +592,7 @@ def __init__( ls_init_value=ls_init_value, act_layer=act_layer, norm_layer=norm_layer, - xattn=xattn + xattn=xattn, ) self.global_average_pool = global_average_pool @@ -607,15 +641,20 @@ def set_grad_checkpointing(self, enable=True): @torch.jit.ignore def no_weight_decay(self): - return {'positional_embedding', 'class_embedding'} + return {"positional_embedding", "class_embedding"} - def forward(self, x: torch.Tensor, return_all_features: bool=False): + def forward(self, x: torch.Tensor, return_all_features: bool = False): x = self.conv1(x) # shape = [*, width, grid, grid] x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] x = torch.cat( - [self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), - x], dim=1) # shape = [*, grid ** 2 + 1, width] + [ + self.class_embedding.to(x.dtype) + + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), + x, + ], + dim=1, + ) # shape = [*, grid ** 2 + 1, width] x = x + self.positional_embedding.to(x.dtype) # a patch_dropout of 0. would mean it is disabled and this function would do nothing but return what was passed in @@ -628,7 +667,7 @@ def forward(self, x: torch.Tensor, return_all_features: bool=False): if not return_all_features: if self.global_average_pool: - x = x.mean(dim=1) #x = x[:,1:,:].mean(dim=1) + x = x.mean(dim=1) # x = x[:,1:,:].mean(dim=1) else: x = x[:, 0] @@ -642,18 +681,18 @@ def forward(self, x: torch.Tensor, return_all_features: bool=False): class TextTransformer(nn.Module): def __init__( - self, - context_length: int = 77, - vocab_size: int = 49408, - width: int = 512, - heads: int = 8, - layers: int = 12, - ls_init_value: float = None, - output_dim: int = 512, - act_layer: Callable = nn.GELU, - norm_layer: Callable = LayerNorm, - xattn: bool= False, - attn_mask: bool = True + self, + context_length: int = 77, + vocab_size: int = 49408, + width: int = 512, + heads: int = 8, + layers: int = 12, + ls_init_value: float = None, + output_dim: int = 512, + act_layer: Callable = nn.GELU, + norm_layer: Callable = LayerNorm, + xattn: bool = False, + attn_mask: bool = True, ): super().__init__() self.context_length = context_length @@ -670,7 +709,7 @@ def __init__( ls_init_value=ls_init_value, act_layer=act_layer, norm_layer=norm_layer, - xattn=xattn + xattn=xattn, ) self.xattn = xattn @@ -678,7 +717,7 @@ def __init__( self.text_projection = nn.Parameter(torch.empty(width, output_dim)) if attn_mask: - self.register_buffer('attn_mask', self.build_attention_mask(), persistent=False) + self.register_buffer("attn_mask", self.build_attention_mask(), persistent=False) else: self.attn_mask = None @@ -688,8 +727,8 @@ def init_parameters(self): nn.init.normal_(self.token_embedding.weight, std=0.02) nn.init.normal_(self.positional_embedding, std=0.01) - proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5) - attn_std = self.transformer.width ** -0.5 + proj_std = (self.transformer.width**-0.5) * ((2 * self.transformer.layers) ** -0.5) + attn_std = self.transformer.width**-0.5 fc_std = (2 * self.transformer.width) ** -0.5 for block in self.transformer.resblocks: nn.init.normal_(block.attn.in_proj_weight, std=attn_std) @@ -698,7 +737,7 @@ def init_parameters(self): nn.init.normal_(block.mlp.c_proj.weight, std=proj_std) if self.text_projection is not None: - nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5) + nn.init.normal_(self.text_projection, std=self.transformer.width**-0.5) @torch.jit.ignore def set_grad_checkpointing(self, enable=True): @@ -707,7 +746,7 @@ def set_grad_checkpointing(self, enable=True): @torch.jit.ignore def no_weight_decay(self): # return {'positional_embedding', 'token_embedding'} - return {'positional_embedding'} + return {"positional_embedding"} def get_num_layers(self): return self.transformer.layers @@ -720,7 +759,7 @@ def build_attention_mask(self): mask.triu_(1) # zero out the lower diagonal return mask - def forward(self, text, return_all_features: bool=False): + def forward(self, text, return_all_features: bool = False): cast_dtype = self.transformer.get_cast_dtype() x = self.token_embedding(text).to(cast_dtype) # [batch_size, n_ctx, d_model] diff --git a/src/diffusers/pipelines/consisid/util_clip/utils.py b/src/diffusers/pipelines/consisid/util_clip/utils.py index 6631d9db2e27..62f891d059c1 100644 --- a/src/diffusers/pipelines/consisid/util_clip/utils.py +++ b/src/diffusers/pipelines/consisid/util_clip/utils.py @@ -11,10 +11,10 @@ # open CLIP -def resize_clip_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1): +def resize_clip_pos_embed(state_dict, model, interpolation: str = "bicubic", seq_dim=1): # Rescale the grid of position embeddings when loading from state_dict - old_pos_embed = state_dict.get('visual.positional_embedding', None) - if old_pos_embed is None or not hasattr(model.visual, 'grid_size'): + old_pos_embed = state_dict.get("visual.positional_embedding", None) + if old_pos_embed is None or not hasattr(model.visual, "grid_size"): return grid_size = to_2tuple(model.visual.grid_size) extra_tokens = 1 # FIXME detect different token configs (ie no class token, or more) @@ -28,7 +28,7 @@ def resize_clip_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq pos_emb_tok, pos_emb_img = None, old_pos_embed old_grid_size = to_2tuple(int(math.sqrt(len(pos_emb_img)))) - logging.info('Resizing position embedding grid-size from %s to %s', old_grid_size, grid_size) + logging.info("Resizing position embedding grid-size from %s to %s", old_grid_size, grid_size) pos_emb_img = pos_emb_img.reshape(1, old_grid_size[0], old_grid_size[1], -1).permute(0, 3, 1, 2) pos_emb_img = F.interpolate( pos_emb_img, @@ -41,13 +41,13 @@ def resize_clip_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq new_pos_embed = torch.cat([pos_emb_tok, pos_emb_img], dim=0) else: new_pos_embed = pos_emb_img - state_dict['visual.positional_embedding'] = new_pos_embed + state_dict["visual.positional_embedding"] = new_pos_embed -def resize_visual_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1): +def resize_visual_pos_embed(state_dict, model, interpolation: str = "bicubic", seq_dim=1): # Rescale the grid of position embeddings when loading from state_dict - old_pos_embed = state_dict.get('positional_embedding', None) - if old_pos_embed is None or not hasattr(model.visual, 'grid_size'): + old_pos_embed = state_dict.get("positional_embedding", None) + if old_pos_embed is None or not hasattr(model.visual, "grid_size"): return grid_size = to_2tuple(model.visual.grid_size) extra_tokens = 1 # FIXME detect different token configs (ie no class token, or more) @@ -61,7 +61,7 @@ def resize_visual_pos_embed(state_dict, model, interpolation: str = 'bicubic', s pos_emb_tok, pos_emb_img = None, old_pos_embed old_grid_size = to_2tuple(int(math.sqrt(len(pos_emb_img)))) - logging.info('Resizing position embedding grid-size from %s to %s', old_grid_size, grid_size) + logging.info("Resizing position embedding grid-size from %s to %s", old_grid_size, grid_size) pos_emb_img = pos_emb_img.reshape(1, old_grid_size[0], old_grid_size[1], -1).permute(0, 3, 1, 2) pos_emb_img = F.interpolate( pos_emb_img, @@ -74,20 +74,20 @@ def resize_visual_pos_embed(state_dict, model, interpolation: str = 'bicubic', s new_pos_embed = torch.cat([pos_emb_tok, pos_emb_img], dim=0) else: new_pos_embed = pos_emb_img - state_dict['positional_embedding'] = new_pos_embed + state_dict["positional_embedding"] = new_pos_embed -def resize_evaclip_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1): - all_keys = list(state_dict.keys()) + +def resize_evaclip_pos_embed(state_dict, model, interpolation: str = "bicubic", seq_dim=1): # interpolate position embedding - if 'visual.pos_embed' in state_dict: - pos_embed_checkpoint = state_dict['visual.pos_embed'] + if "visual.pos_embed" in state_dict: + pos_embed_checkpoint = state_dict["visual.pos_embed"] embedding_size = pos_embed_checkpoint.shape[-1] num_patches = model.visual.patch_embed.num_patches num_extra_tokens = model.visual.pos_embed.shape[-2] - num_patches # height (== width) for the checkpoint position embedding orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5) # height (== width) for the new position embedding - new_size = int(num_patches ** 0.5) + new_size = int(num_patches**0.5) # class_token and dist_token are kept unchanged if orig_size != new_size: print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size)) @@ -96,29 +96,30 @@ def resize_evaclip_pos_embed(state_dict, model, interpolation: str = 'bicubic', pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) pos_tokens = torch.nn.functional.interpolate( - pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) + pos_tokens, size=(new_size, new_size), mode="bicubic", align_corners=False + ) pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) - state_dict['visual.pos_embed'] = new_pos_embed + state_dict["visual.pos_embed"] = new_pos_embed - patch_embed_proj = state_dict['visual.patch_embed.proj.weight'] + patch_embed_proj = state_dict["visual.patch_embed.proj.weight"] patch_size = model.visual.patch_embed.patch_size - state_dict['visual.patch_embed.proj.weight'] = torch.nn.functional.interpolate( - patch_embed_proj.float(), size=patch_size, mode='bicubic', align_corners=False) + state_dict["visual.patch_embed.proj.weight"] = torch.nn.functional.interpolate( + patch_embed_proj.float(), size=patch_size, mode="bicubic", align_corners=False + ) -def resize_eva_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1): - all_keys = list(state_dict.keys()) +def resize_eva_pos_embed(state_dict, model, interpolation: str = "bicubic", seq_dim=1): # interpolate position embedding - if 'pos_embed' in state_dict: - pos_embed_checkpoint = state_dict['pos_embed'] + if "pos_embed" in state_dict: + pos_embed_checkpoint = state_dict["pos_embed"] embedding_size = pos_embed_checkpoint.shape[-1] num_patches = model.visual.patch_embed.num_patches num_extra_tokens = model.visual.pos_embed.shape[-2] - num_patches # height (== width) for the checkpoint position embedding orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5) # height (== width) for the new position embedding - new_size = int(num_patches ** 0.5) + new_size = int(num_patches**0.5) # class_token and dist_token are kept unchanged if orig_size != new_size: print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size)) @@ -127,18 +128,20 @@ def resize_eva_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_ pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) pos_tokens = torch.nn.functional.interpolate( - pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) + pos_tokens, size=(new_size, new_size), mode="bicubic", align_corners=False + ) pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) - state_dict['pos_embed'] = new_pos_embed + state_dict["pos_embed"] = new_pos_embed - patch_embed_proj = state_dict['patch_embed.proj.weight'] + patch_embed_proj = state_dict["patch_embed.proj.weight"] patch_size = model.visual.patch_embed.patch_size - state_dict['patch_embed.proj.weight'] = torch.nn.functional.interpolate( - patch_embed_proj.float(), size=patch_size, mode='bicubic', align_corners=False) + state_dict["patch_embed.proj.weight"] = torch.nn.functional.interpolate( + patch_embed_proj.float(), size=patch_size, mode="bicubic", align_corners=False + ) -def resize_rel_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1): +def resize_rel_pos_embed(state_dict, model, interpolation: str = "bicubic", seq_dim=1): all_keys = list(state_dict.keys()) for key in all_keys: if "relative_position_index" in key: @@ -155,13 +158,14 @@ def resize_rel_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_ src_size = int((src_num_pos - num_extra_tokens) ** 0.5) dst_size = int((dst_num_pos - num_extra_tokens) ** 0.5) if src_size != dst_size: - print("Position interpolate for %s from %dx%d to %dx%d" % ( - key, src_size, src_size, dst_size, dst_size)) + print( + "Position interpolate for %s from %dx%d to %dx%d" % (key, src_size, src_size, dst_size, dst_size) + ) extra_tokens = rel_pos_bias[-num_extra_tokens:, :] rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :] def geometric_progression(a, r, n): - return a * (1.0 - r ** n) / (1.0 - r) + return a * (1.0 - r**n) / (1.0 - r) left, right = 1.01, 1.5 while right - left > 1e-6: @@ -197,9 +201,8 @@ def geometric_progression(a, r, n): for i in range(num_attn_heads): z = rel_pos_bias[:, i].view(src_size, src_size).float().numpy() - f = F.interpolate.interp2d(x, y, z, kind='cubic') - all_rel_pos_bias.append( - torch.Tensor(f(dx, dy)).contiguous().view(-1, 1).to(rel_pos_bias.device)) + f = F.interpolate.interp2d(x, y, z, kind="cubic") + all_rel_pos_bias.append(torch.Tensor(f(dx, dy)).contiguous().view(-1, 1).to(rel_pos_bias.device)) rel_pos_bias = torch.cat(all_rel_pos_bias, dim=-1) @@ -207,15 +210,15 @@ def geometric_progression(a, r, n): state_dict[key] = new_rel_pos_bias # interpolate position embedding - if 'pos_embed' in state_dict: - pos_embed_checkpoint = state_dict['pos_embed'] + if "pos_embed" in state_dict: + pos_embed_checkpoint = state_dict["pos_embed"] embedding_size = pos_embed_checkpoint.shape[-1] num_patches = model.visual.patch_embed.num_patches num_extra_tokens = model.visual.pos_embed.shape[-2] - num_patches # height (== width) for the checkpoint position embedding orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5) # height (== width) for the new position embedding - new_size = int(num_patches ** 0.5) + new_size = int(num_patches**0.5) # class_token and dist_token are kept unchanged if orig_size != new_size: print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size)) @@ -224,18 +227,20 @@ def geometric_progression(a, r, n): pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) pos_tokens = torch.nn.functional.interpolate( - pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) + pos_tokens, size=(new_size, new_size), mode="bicubic", align_corners=False + ) pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) - state_dict['pos_embed'] = new_pos_embed + state_dict["pos_embed"] = new_pos_embed - patch_embed_proj = state_dict['patch_embed.proj.weight'] + patch_embed_proj = state_dict["patch_embed.proj.weight"] patch_size = model.visual.patch_embed.patch_size - state_dict['patch_embed.proj.weight'] = torch.nn.functional.interpolate( - patch_embed_proj.float(), size=patch_size, mode='bicubic', align_corners=False) + state_dict["patch_embed.proj.weight"] = torch.nn.functional.interpolate( + patch_embed_proj.float(), size=patch_size, mode="bicubic", align_corners=False + ) -def freeze_batch_norm_2d(module, module_match={}, name=''): +def freeze_batch_norm_2d(module, module_match={}, name=""): """ Converts all `BatchNorm2d` and `SyncBatchNorm` layers of provided module into `FrozenBatchNorm2d`. If `module` is itself an instance of either `BatchNorm2d` or `SyncBatchNorm`, it is converted into `FrozenBatchNorm2d` and @@ -249,7 +254,8 @@ def freeze_batch_norm_2d(module, module_match={}, name=''): Returns: torch.nn.Module: Resulting module - Inspired by https://github.com/pytorch/pytorch/blob/a5895f85be0f10212791145bfedc0261d364f103/torch/nn/modules/batchnorm.py#L762 + Inspired by + https://github.com/pytorch/pytorch/blob/a5895f85be0f10212791145bfedc0261d364f103/torch/nn/modules/batchnorm.py#L762 """ res = module is_match = True @@ -267,7 +273,7 @@ def freeze_batch_norm_2d(module, module_match={}, name=''): res.eps = module.eps else: for child_name, child in module.named_children(): - full_child_name = '.'.join([name, child_name]) if name else child_name + full_child_name = ".".join([name, child_name]) if name else child_name new_child = freeze_batch_norm_2d(child, module_match, full_child_name) if new_child is not child: res.add_module(child_name, new_child) @@ -280,6 +286,7 @@ def parse(x): if isinstance(x, collections.abc.Iterable): return x return tuple(repeat(x, n)) + return parse @@ -287,7 +294,10 @@ def parse(x): to_2tuple = _ntuple(2) to_3tuple = _ntuple(3) to_4tuple = _ntuple(4) -to_ntuple = lambda n, x: _ntuple(n)(x) + + +def to_ntuple(n, x): + return _ntuple(n)(x) def is_logging(args): @@ -299,13 +309,14 @@ def is_local_master(args): def is_master(args, local=False): return is_local_master(args) if local else is_global_master(args) + return is_master class AllGather(torch.autograd.Function): """An autograd function that performs allgather on a tensor. - Performs all_gather operation on the provided tensors. - *** Warning ***: torch.distributed.all_gather has no gradient. + Performs all_gather operation on the provided tensors. *** Warning ***: torch.distributed.all_gather has no + gradient. """ @staticmethod @@ -318,10 +329,7 @@ def forward(ctx, tensor, rank, world_size): @staticmethod def backward(ctx, grad_output): - return ( - grad_output[ctx.batch_size * ctx.rank: ctx.batch_size * (ctx.rank + 1)], - None, - None - ) + return (grad_output[ctx.batch_size * ctx.rank : ctx.batch_size * (ctx.rank + 1)], None, None) + allgather = AllGather.apply diff --git a/src/diffusers/pipelines/consisid/util_clip/utils_qformer.py b/src/diffusers/pipelines/consisid/util_clip/utils_qformer.py index 809767280a30..7ac450f4de1f 100644 --- a/src/diffusers/pipelines/consisid/util_clip/utils_qformer.py +++ b/src/diffusers/pipelines/consisid/util_clip/utils_qformer.py @@ -25,7 +25,7 @@ def is_torch2_available(): def instantiate_from_config(config): if "target" not in config: - if config == '__is_first_stage__' or config == "__is_unconditional__": + if config == "__is_first_stage__" or config == "__is_unconditional__": return None raise KeyError("Expected key `target` to instantiate.") return get_obj_from_str(config["target"])(**config.get("params", {})) @@ -94,8 +94,8 @@ def img2tensor(imgs, bgr2rgb=True, float32=True): def _totensor(img, bgr2rgb, float32): if img.shape[2] == 3 and bgr2rgb: - if img.dtype == 'float64': - img = img.astype('float32') + if img.dtype == "float64": + img = img.astype("float32") img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = torch.from_numpy(img.transpose(2, 0, 1)) if float32: @@ -114,22 +114,18 @@ def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)): Args: tensor (Tensor or list[Tensor]): Accept shapes: - 1) 4D mini-batch Tensor of shape (B x 3/1 x H x W); - 2) 3D Tensor of shape (3/1 x H x W); - 3) 2D Tensor of shape (H x W). - Tensor channel should be in RGB order. + 1) 4D mini-batch Tensor of shape (B x 3/1 x H x W); 2) 3D Tensor of shape (3/1 x H x W); 3) 2D Tensor of + shape (H x W). Tensor channel should be in RGB order. rgb2bgr (bool): Whether to change rgb to bgr. out_type (numpy type): output types. If ``np.uint8``, transform outputs - to uint8 type with range [0, 255]; otherwise, float type with - range [0, 1]. Default: ``np.uint8``. + to uint8 type with range [0, 255]; otherwise, float type with range [0, 1]. Default: ``np.uint8``. min_max (tuple[int]): min and max values for clamp. Returns: - (Tensor or list): 3D ndarray of shape (H x W x C) OR 2D ndarray of - shape (H x W). The channel order is BGR. + (Tensor or list): 3D ndarray of shape (H x W x C) OR 2D ndarray of shape (H x W). The channel order is BGR. """ if not (torch.is_tensor(tensor) or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))): - raise TypeError(f'tensor or list of tensors expected, got {type(tensor)}') + raise TypeError(f"tensor or list of tensors expected, got {type(tensor)}") if torch.is_tensor(tensor): tensor = [tensor] @@ -155,7 +151,7 @@ def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)): elif n_dim == 2: img_np = _tensor.numpy() else: - raise TypeError(f'Only support 4D, 3D or 2D tensor. But received with dimension: {n_dim}') + raise TypeError(f"Only support 4D, 3D or 2D tensor. But received with dimension: {n_dim}") if out_type == np.uint8: # Unlike MATLAB, numpy.unit8() WILL NOT round by default. img_np = (img_np * 255.0).round() diff --git a/src/diffusers/pipelines/consisid/util_consisid.py b/src/diffusers/pipelines/consisid/util_consisid.py index 5b08d5659004..327216f6f2f5 100644 --- a/src/diffusers/pipelines/consisid/util_consisid.py +++ b/src/diffusers/pipelines/consisid/util_consisid.py @@ -33,8 +33,8 @@ def img2tensor(imgs, bgr2rgb=True, float32=True): def _totensor(img, bgr2rgb, float32): if img.shape[2] == 3 and bgr2rgb: - if img.dtype == 'float64': - img = img.astype('float32') + if img.dtype == "float64": + img = img.astype("float32") img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = torch.from_numpy(img.transpose(2, 0, 1)) if float32: @@ -63,10 +63,22 @@ def to_gray(img): return x -def process_face_embeddings(face_helper_1, clip_vision_model, face_helper_2, eva_transform_mean, eva_transform_std, app, device, weight_dtype, image, original_id_image=None, is_align_face=True): +def process_face_embeddings( + face_helper_1, + clip_vision_model, + face_helper_2, + eva_transform_mean, + eva_transform_std, + app, + device, + weight_dtype, + image, + original_id_image=None, + is_align_face=True, +): """ - Process face embeddings from an image, extracting relevant features such as face embeddings, - landmarks, and parsed face features using a series of face detection and alignment tools. + Process face embeddings from an image, extracting relevant features such as face embeddings, landmarks, and parsed + face features using a series of face detection and alignment tools. Args: face_helper_1: Face helper object (first helper) for alignment and landmark detection. @@ -94,11 +106,11 @@ def process_face_embeddings(face_helper_1, clip_vision_model, face_helper_2, eva # get antelopev2 embedding face_info = app.get(image_bgr) if len(face_info) > 0: - face_info = sorted(face_info, key=lambda x: (x['bbox'][2] - x['bbox'][0]) * (x['bbox'][3] - x['bbox'][1]))[ + face_info = sorted(face_info, key=lambda x: (x["bbox"][2] - x["bbox"][0]) * (x["bbox"][3] - x["bbox"][1]))[ -1 ] # only use the maximum face - id_ante_embedding = face_info['embedding'] # (512,) - face_kps = face_info['kps'] + id_ante_embedding = face_info["embedding"] # (512,) + face_kps = face_info["kps"] else: id_ante_embedding = None face_kps = None @@ -110,12 +122,12 @@ def process_face_embeddings(face_helper_1, clip_vision_model, face_helper_2, eva face_kps = face_helper_1.all_landmarks_5[0] face_helper_1.align_warp_face() if len(face_helper_1.cropped_faces) == 0: - raise RuntimeError('facexlib align face fail') + raise RuntimeError("facexlib align face fail") align_face = face_helper_1.cropped_faces[0] # (512, 512, 3) # RGB # incase insightface didn't detect face if id_ante_embedding is None: - print('fail to detect face using insightface, extract embedding on align face') + print("fail to detect face using insightface, extract embedding on align face") id_ante_embedding = face_helper_2.get_feat(align_face) id_ante_embedding = torch.from_numpy(id_ante_embedding).to(device, weight_dtype) # torch.Size([512]) @@ -141,21 +153,43 @@ def process_face_embeddings(face_helper_1, clip_vision_model, face_helper_2, eva return_face_features_image = return_face_features_image_2 = input # transform img before sending to eva-clip-vit - face_features_image = resize(return_face_features_image, clip_vision_model.image_size, - InterpolationMode.BICUBIC) # torch.Size([1, 3, 336, 336]) + face_features_image = resize( + return_face_features_image, clip_vision_model.image_size, InterpolationMode.BICUBIC + ) # torch.Size([1, 3, 336, 336]) face_features_image = normalize(face_features_image, eva_transform_mean, eva_transform_std) - id_cond_vit, id_vit_hidden = clip_vision_model(face_features_image.to(weight_dtype), return_all_features=False, return_hidden=True, shuffle=False) # torch.Size([1, 768]), list(torch.Size([1, 577, 1024])) + id_cond_vit, id_vit_hidden = clip_vision_model( + face_features_image.to(weight_dtype), return_all_features=False, return_hidden=True, shuffle=False + ) # torch.Size([1, 768]), list(torch.Size([1, 577, 1024])) id_cond_vit_norm = torch.norm(id_cond_vit, 2, 1, True) id_cond_vit = torch.div(id_cond_vit, id_cond_vit_norm) - id_cond = torch.cat([id_ante_embedding, id_cond_vit], dim=-1) # torch.Size([1, 512]), torch.Size([1, 768]) -> torch.Size([1, 1280]) - - return id_cond, id_vit_hidden, return_face_features_image_2, face_kps # torch.Size([1, 1280]), list(torch.Size([1, 577, 1024])) - - -def process_face_embeddings_infer(face_helper_1, clip_vision_model, face_helper_2, eva_transform_mean, eva_transform_std, app, device, weight_dtype, img_file_path, is_align_face=True): + id_cond = torch.cat( + [id_ante_embedding, id_cond_vit], dim=-1 + ) # torch.Size([1, 512]), torch.Size([1, 768]) -> torch.Size([1, 1280]) + + return ( + id_cond, + id_vit_hidden, + return_face_features_image_2, + face_kps, + ) # torch.Size([1, 1280]), list(torch.Size([1, 577, 1024])) + + +def process_face_embeddings_infer( + face_helper_1, + clip_vision_model, + face_helper_2, + eva_transform_mean, + eva_transform_std, + app, + device, + weight_dtype, + img_file_path, + is_align_face=True, +): """ - Process face embeddings from an input image for inference, including alignment, feature extraction, and embedding concatenation. + Process face embeddings from an input image for inference, including alignment, feature extraction, and embedding + concatenation. Args: face_helper_1: Face helper object (first helper) for alignment and landmark detection. @@ -188,7 +222,19 @@ def process_face_embeddings_infer(face_helper_1, clip_vision_model, face_helper_ original_id_image = image # Process the image to extract face embeddings and related features - id_cond, id_vit_hidden, align_crop_face_image, face_kps = process_face_embeddings(face_helper_1, clip_vision_model, face_helper_2, eva_transform_mean, eva_transform_std, app, device, weight_dtype, image, original_id_image, is_align_face) + id_cond, id_vit_hidden, align_crop_face_image, face_kps = process_face_embeddings( + face_helper_1, + clip_vision_model, + face_helper_2, + eva_transform_mean, + eva_transform_std, + app, + device, + weight_dtype, + image, + original_id_image, + is_align_face, + ) # Convert the aligned cropped face image (torch tensor) to a numpy array tensor = align_crop_face_image.cpu().detach() @@ -223,21 +269,29 @@ def prepare_face_models(model_path, device, dtype): upscale_factor=1, face_size=512, crop_ratio=(1, 1), - det_model='retinaface_resnet50', - save_ext='png', + det_model="retinaface_resnet50", + save_ext="png", device=device, - model_rootpath=os.path.join(model_path, "face_encoder") + model_rootpath=os.path.join(model_path, "face_encoder"), ) face_helper_1.face_parse = None - face_helper_1.face_parse = init_parsing_model(model_name='bisenet', device=device, model_rootpath=os.path.join(model_path, "face_encoder")) - face_helper_2 = insightface.model_zoo.get_model(f'{model_path}/face_encoder/models/antelopev2/glintr100.onnx', providers=['CUDAExecutionProvider']) + face_helper_1.face_parse = init_parsing_model( + model_name="bisenet", device=device, model_rootpath=os.path.join(model_path, "face_encoder") + ) + face_helper_2 = insightface.model_zoo.get_model( + f"{model_path}/face_encoder/models/antelopev2/glintr100.onnx", providers=["CUDAExecutionProvider"] + ) face_helper_2.prepare(ctx_id=0) # get local facial extractor part 1 - model, _, _ = create_model_and_transforms('EVA02-CLIP-L-14-336', os.path.join(model_path, "face_encoder", "EVA02_CLIP_L_336_psz14_s6B.pt"), force_custom_clip=True) + model, _, _ = create_model_and_transforms( + "EVA02-CLIP-L-14-336", + os.path.join(model_path, "face_encoder", "EVA02_CLIP_L_336_psz14_s6B.pt"), + force_custom_clip=True, + ) face_clip_model = model.visual - eva_transform_mean = getattr(face_clip_model, 'image_mean', OPENAI_DATASET_MEAN) - eva_transform_std = getattr(face_clip_model, 'image_std', OPENAI_DATASET_STD) + eva_transform_mean = getattr(face_clip_model, "image_mean", OPENAI_DATASET_MEAN) + eva_transform_std = getattr(face_clip_model, "image_std", OPENAI_DATASET_STD) if not isinstance(eva_transform_mean, (list, tuple)): eva_transform_mean = (eva_transform_mean,) * 3 if not isinstance(eva_transform_std, (list, tuple)): @@ -246,7 +300,9 @@ def prepare_face_models(model_path, device, dtype): eva_transform_std = eva_transform_std # get local facial extractor part 2 - face_main_model = FaceAnalysis(name='antelopev2', root=os.path.join(model_path, "face_encoder"), providers=['CUDAExecutionProvider']) + face_main_model = FaceAnalysis( + name="antelopev2", root=os.path.join(model_path, "face_encoder"), providers=["CUDAExecutionProvider"] + ) face_main_model.prepare(ctx_id=0, det_size=(640, 640)) # move face models to device diff --git a/src/diffusers/pipelines/free_noise_utils.py b/src/diffusers/pipelines/free_noise_utils.py index dc0071a494e3..8ea5eb7dd575 100644 --- a/src/diffusers/pipelines/free_noise_utils.py +++ b/src/diffusers/pipelines/free_noise_utils.py @@ -341,9 +341,9 @@ def _encode_prompt_free_noise( start_tensor = negative_prompt_embeds[i].unsqueeze(0) end_tensor = negative_prompt_embeds[i + 1].unsqueeze(0) - negative_prompt_interpolation_embeds[ - start_frame : end_frame + 1 - ] = self._free_noise_prompt_interpolation_callback(start_frame, end_frame, start_tensor, end_tensor) + negative_prompt_interpolation_embeds[start_frame : end_frame + 1] = ( + self._free_noise_prompt_interpolation_callback(start_frame, end_frame, start_tensor, end_tensor) + ) prompt_embeds = prompt_interpolation_embeds negative_prompt_embeds = negative_prompt_interpolation_embeds diff --git a/src/diffusers/quantizers/auto.py b/src/diffusers/quantizers/auto.py index 97cbcdc0e53f..53abecc511e9 100644 --- a/src/diffusers/quantizers/auto.py +++ b/src/diffusers/quantizers/auto.py @@ -15,6 +15,7 @@ Adapted from https://github.com/huggingface/transformers/blob/c409cd81777fb27aadc043ed3d8339dbc020fb3b/src/transformers/quantizers/auto.py """ + import warnings from typing import Dict, Optional, Union diff --git a/src/diffusers/quantizers/base.py b/src/diffusers/quantizers/base.py index 6ec3885fe373..db57db70d0d4 100644 --- a/src/diffusers/quantizers/base.py +++ b/src/diffusers/quantizers/base.py @@ -215,19 +215,15 @@ def _dequantize(self, model): ) @abstractmethod - def _process_model_before_weight_loading(self, model, **kwargs): - ... + def _process_model_before_weight_loading(self, model, **kwargs): ... @abstractmethod - def _process_model_after_weight_loading(self, model, **kwargs): - ... + def _process_model_after_weight_loading(self, model, **kwargs): ... @property @abstractmethod - def is_serializable(self): - ... + def is_serializable(self): ... @property @abstractmethod - def is_trainable(self): - ... + def is_trainable(self): ... diff --git a/tests/pipelines/amused/test_amused.py b/tests/pipelines/amused/test_amused.py index f28d8708d309..f348008ae4de 100644 --- a/tests/pipelines/amused/test_amused.py +++ b/tests/pipelines/amused/test_amused.py @@ -124,8 +124,7 @@ def test_inference_batch_consistent(self, batch_sizes=[2]): self._test_inference_batch_consistent(batch_sizes=batch_sizes, batch_generator=False) @unittest.skip("aMUSEd does not support lists of generators") - def test_inference_batch_single_identical(self): - ... + def test_inference_batch_single_identical(self): ... @slow diff --git a/tests/pipelines/amused/test_amused_img2img.py b/tests/pipelines/amused/test_amused_img2img.py index 2699bbe7f56f..942735f15707 100644 --- a/tests/pipelines/amused/test_amused_img2img.py +++ b/tests/pipelines/amused/test_amused_img2img.py @@ -126,8 +126,7 @@ def test_inference_batch_consistent(self, batch_sizes=[2]): self._test_inference_batch_consistent(batch_sizes=batch_sizes, batch_generator=False) @unittest.skip("aMUSEd does not support lists of generators") - def test_inference_batch_single_identical(self): - ... + def test_inference_batch_single_identical(self): ... @slow diff --git a/tests/pipelines/amused/test_amused_inpaint.py b/tests/pipelines/amused/test_amused_inpaint.py index 645379a7eab1..541b988f1798 100644 --- a/tests/pipelines/amused/test_amused_inpaint.py +++ b/tests/pipelines/amused/test_amused_inpaint.py @@ -130,8 +130,7 @@ def test_inference_batch_consistent(self, batch_sizes=[2]): self._test_inference_batch_consistent(batch_sizes=batch_sizes, batch_generator=False) @unittest.skip("aMUSEd does not support lists of generators") - def test_inference_batch_single_identical(self): - ... + def test_inference_batch_single_identical(self): ... @slow From 33d429170c7a0826d694db396b9ecb8ddf471b72 Mon Sep 17 00:00:00 2001 From: SHYuanBest Date: Tue, 10 Dec 2024 15:35:40 +0800 Subject: [PATCH 06/56] make_style --- .../train_dreambooth_lora_sd15_advanced.py | 6 +-- .../train_dreambooth_lora_sdxl_advanced.py | 6 +-- .../textual_inversion.py | 6 +-- .../textual_inversion/textual_inversion.py | 6 +-- .../textual_inversion/textual_inversion.py | 6 +-- .../textual_inversion_sdxl.py | 12 +++--- ...vert_hunyuandit_controlnet_to_diffusers.py | 6 +-- scripts/convert_hunyuandit_to_diffusers.py | 6 +-- scripts/convert_mochi_to_diffusers.py | 12 +++--- scripts/convert_svd_to_diffusers.py | 12 +++--- .../loaders/lora_conversion_utils.py | 18 ++++----- .../pipelines/consisid/pipeline_consisid.py | 37 ++++++++++++++----- src/diffusers/pipelines/free_noise_utils.py | 6 +-- src/diffusers/quantizers/base.py | 12 ++++-- tests/pipelines/amused/test_amused.py | 3 +- tests/pipelines/amused/test_amused_img2img.py | 3 +- tests/pipelines/amused/test_amused_inpaint.py | 3 +- 17 files changed, 93 insertions(+), 67 deletions(-) diff --git a/examples/advanced_diffusion_training/train_dreambooth_lora_sd15_advanced.py b/examples/advanced_diffusion_training/train_dreambooth_lora_sd15_advanced.py index 2528bd3a5639..5b78501f9b49 100644 --- a/examples/advanced_diffusion_training/train_dreambooth_lora_sd15_advanced.py +++ b/examples/advanced_diffusion_training/train_dreambooth_lora_sd15_advanced.py @@ -746,9 +746,9 @@ def initialize_new_tokens(self, inserting_toks: List[str]): .to(dtype=self.dtype) * std_token_embedding ) - self.embeddings_settings[f"original_embeddings_{idx}"] = ( - text_encoder.text_model.embeddings.token_embedding.weight.data.clone() - ) + self.embeddings_settings[ + f"original_embeddings_{idx}" + ] = text_encoder.text_model.embeddings.token_embedding.weight.data.clone() self.embeddings_settings[f"std_token_embedding_{idx}"] = std_token_embedding inu = torch.ones((len(tokenizer),), dtype=torch.bool) diff --git a/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py b/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py index d93ea91aa9ea..74d52186dd81 100644 --- a/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py +++ b/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py @@ -913,9 +913,9 @@ def initialize_new_tokens(self, inserting_toks: List[str]): .to(dtype=self.dtype) * std_token_embedding ) - self.embeddings_settings[f"original_embeddings_{idx}"] = ( - text_encoder.text_model.embeddings.token_embedding.weight.data.clone() - ) + self.embeddings_settings[ + f"original_embeddings_{idx}" + ] = text_encoder.text_model.embeddings.token_embedding.weight.data.clone() self.embeddings_settings[f"std_token_embedding_{idx}"] = std_token_embedding inu = torch.ones((len(tokenizer),), dtype=torch.bool) diff --git a/examples/research_projects/multi_token_textual_inversion/textual_inversion.py b/examples/research_projects/multi_token_textual_inversion/textual_inversion.py index 7aad64ecb1dd..57ad77477b0d 100644 --- a/examples/research_projects/multi_token_textual_inversion/textual_inversion.py +++ b/examples/research_projects/multi_token_textual_inversion/textual_inversion.py @@ -830,9 +830,9 @@ def main(): # Let's make sure we don't update any embedding weights besides the newly added token index_no_updates = get_mask(tokenizer, accelerator) with torch.no_grad(): - accelerator.unwrap_model(text_encoder).get_input_embeddings().weight[index_no_updates] = ( - orig_embeds_params[index_no_updates] - ) + accelerator.unwrap_model(text_encoder).get_input_embeddings().weight[ + index_no_updates + ] = orig_embeds_params[index_no_updates] # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: diff --git a/examples/research_projects/onnxruntime/textual_inversion/textual_inversion.py b/examples/research_projects/onnxruntime/textual_inversion/textual_inversion.py index 5f0710e85319..e10564fa59ef 100644 --- a/examples/research_projects/onnxruntime/textual_inversion/textual_inversion.py +++ b/examples/research_projects/onnxruntime/textual_inversion/textual_inversion.py @@ -886,9 +886,9 @@ def main(): index_no_updates[min(placeholder_token_ids) : max(placeholder_token_ids) + 1] = False with torch.no_grad(): - accelerator.unwrap_model(text_encoder).get_input_embeddings().weight[index_no_updates] = ( - orig_embeds_params[index_no_updates] - ) + accelerator.unwrap_model(text_encoder).get_input_embeddings().weight[ + index_no_updates + ] = orig_embeds_params[index_no_updates] # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: diff --git a/examples/textual_inversion/textual_inversion.py b/examples/textual_inversion/textual_inversion.py index d3d330ddeb17..43e8bf4e9072 100644 --- a/examples/textual_inversion/textual_inversion.py +++ b/examples/textual_inversion/textual_inversion.py @@ -910,9 +910,9 @@ def main(): index_no_updates[min(placeholder_token_ids) : max(placeholder_token_ids) + 1] = False with torch.no_grad(): - accelerator.unwrap_model(text_encoder).get_input_embeddings().weight[index_no_updates] = ( - orig_embeds_params[index_no_updates] - ) + accelerator.unwrap_model(text_encoder).get_input_embeddings().weight[ + index_no_updates + ] = orig_embeds_params[index_no_updates] # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: diff --git a/examples/textual_inversion/textual_inversion_sdxl.py b/examples/textual_inversion/textual_inversion_sdxl.py index 02fed2e946ae..3a9da9fb11df 100644 --- a/examples/textual_inversion/textual_inversion_sdxl.py +++ b/examples/textual_inversion/textual_inversion_sdxl.py @@ -965,12 +965,12 @@ def main(): index_no_updates_2[min(placeholder_token_ids_2) : max(placeholder_token_ids_2) + 1] = False with torch.no_grad(): - accelerator.unwrap_model(text_encoder_1).get_input_embeddings().weight[index_no_updates] = ( - orig_embeds_params[index_no_updates] - ) - accelerator.unwrap_model(text_encoder_2).get_input_embeddings().weight[index_no_updates_2] = ( - orig_embeds_params_2[index_no_updates_2] - ) + accelerator.unwrap_model(text_encoder_1).get_input_embeddings().weight[ + index_no_updates + ] = orig_embeds_params[index_no_updates] + accelerator.unwrap_model(text_encoder_2).get_input_embeddings().weight[ + index_no_updates_2 + ] = orig_embeds_params_2[index_no_updates_2] # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: diff --git a/scripts/convert_hunyuandit_controlnet_to_diffusers.py b/scripts/convert_hunyuandit_controlnet_to_diffusers.py index 5cef46c98983..1c8383690890 100644 --- a/scripts/convert_hunyuandit_controlnet_to_diffusers.py +++ b/scripts/convert_hunyuandit_controlnet_to_diffusers.py @@ -21,9 +21,9 @@ def main(args): model_config = HunyuanDiT2DControlNetModel.load_config( "Tencent-Hunyuan/HunyuanDiT-v1.2-Diffusers", subfolder="transformer" ) - model_config["use_style_cond_and_image_meta_size"] = ( - args.use_style_cond_and_image_meta_size - ) ### version <= v1.1: True; version >= v1.2: False + model_config[ + "use_style_cond_and_image_meta_size" + ] = args.use_style_cond_and_image_meta_size ### version <= v1.1: True; version >= v1.2: False print(model_config) for key in state_dict: diff --git a/scripts/convert_hunyuandit_to_diffusers.py b/scripts/convert_hunyuandit_to_diffusers.py index 79178bad83bd..da3af8333ee3 100644 --- a/scripts/convert_hunyuandit_to_diffusers.py +++ b/scripts/convert_hunyuandit_to_diffusers.py @@ -19,9 +19,9 @@ def main(args): device = "cuda" model_config = HunyuanDiT2DModel.load_config("Tencent-Hunyuan/HunyuanDiT-Diffusers", subfolder="transformer") - model_config["use_style_cond_and_image_meta_size"] = ( - args.use_style_cond_and_image_meta_size - ) ### version <= v1.1: True; version >= v1.2: False + model_config[ + "use_style_cond_and_image_meta_size" + ] = args.use_style_cond_and_image_meta_size ### version <= v1.1: True; version >= v1.2: False # input_size -> sample_size, text_dim -> cross_attention_dim for key in state_dict: diff --git a/scripts/convert_mochi_to_diffusers.py b/scripts/convert_mochi_to_diffusers.py index be5de74cb04c..9727deeb6b0c 100644 --- a/scripts/convert_mochi_to_diffusers.py +++ b/scripts/convert_mochi_to_diffusers.py @@ -303,9 +303,9 @@ def convert_mochi_vae_state_dict_to_diffusers(encoder_ckpt_path, decoder_ckpt_pa for i in range(down_block_layers[block]): # Convert resnets - new_state_dict[f"{prefix}down_blocks.{block}.resnets.{i}.norm1.norm_layer.weight"] = ( - encoder_state_dict.pop(f"layers.{block+4}.layers.{i+1}.stack.0.weight") - ) + new_state_dict[ + f"{prefix}down_blocks.{block}.resnets.{i}.norm1.norm_layer.weight" + ] = encoder_state_dict.pop(f"layers.{block+4}.layers.{i+1}.stack.0.weight") new_state_dict[f"{prefix}down_blocks.{block}.resnets.{i}.norm1.norm_layer.bias"] = encoder_state_dict.pop( f"layers.{block+4}.layers.{i+1}.stack.0.bias" ) @@ -315,9 +315,9 @@ def convert_mochi_vae_state_dict_to_diffusers(encoder_ckpt_path, decoder_ckpt_pa new_state_dict[f"{prefix}down_blocks.{block}.resnets.{i}.conv1.conv.bias"] = encoder_state_dict.pop( f"layers.{block+4}.layers.{i+1}.stack.2.bias" ) - new_state_dict[f"{prefix}down_blocks.{block}.resnets.{i}.norm2.norm_layer.weight"] = ( - encoder_state_dict.pop(f"layers.{block+4}.layers.{i+1}.stack.3.weight") - ) + new_state_dict[ + f"{prefix}down_blocks.{block}.resnets.{i}.norm2.norm_layer.weight" + ] = encoder_state_dict.pop(f"layers.{block+4}.layers.{i+1}.stack.3.weight") new_state_dict[f"{prefix}down_blocks.{block}.resnets.{i}.norm2.norm_layer.bias"] = encoder_state_dict.pop( f"layers.{block+4}.layers.{i+1}.stack.3.bias" ) diff --git a/scripts/convert_svd_to_diffusers.py b/scripts/convert_svd_to_diffusers.py index e46410ccb3bd..3243ce294b26 100644 --- a/scripts/convert_svd_to_diffusers.py +++ b/scripts/convert_svd_to_diffusers.py @@ -381,9 +381,9 @@ def convert_ldm_unet_checkpoint( # TODO resnet time_mixer.mix_factor if f"input_blocks.{i}.0.time_mixer.mix_factor" in unet_state_dict: - new_checkpoint[f"down_blocks.{block_id}.resnets.{layer_in_block_id}.time_mixer.mix_factor"] = ( - unet_state_dict[f"input_blocks.{i}.0.time_mixer.mix_factor"] - ) + new_checkpoint[ + f"down_blocks.{block_id}.resnets.{layer_in_block_id}.time_mixer.mix_factor" + ] = unet_state_dict[f"input_blocks.{i}.0.time_mixer.mix_factor"] if len(attentions): paths = renew_attention_paths(attentions) @@ -478,9 +478,9 @@ def convert_ldm_unet_checkpoint( ) if f"output_blocks.{i}.0.time_mixer.mix_factor" in unet_state_dict: - new_checkpoint[f"up_blocks.{block_id}.resnets.{layer_in_block_id}.time_mixer.mix_factor"] = ( - unet_state_dict[f"output_blocks.{i}.0.time_mixer.mix_factor"] - ) + new_checkpoint[ + f"up_blocks.{block_id}.resnets.{layer_in_block_id}.time_mixer.mix_factor" + ] = unet_state_dict[f"output_blocks.{i}.0.time_mixer.mix_factor"] output_block_list = {k: sorted(v) for k, v in output_block_list.items()} if ["conv.bias", "conv.weight"] in output_block_list.values(): diff --git a/src/diffusers/loaders/lora_conversion_utils.py b/src/diffusers/loaders/lora_conversion_utils.py index 43f29f160926..51a406b2f6a3 100644 --- a/src/diffusers/loaders/lora_conversion_utils.py +++ b/src/diffusers/loaders/lora_conversion_utils.py @@ -177,9 +177,9 @@ def _convert_non_diffusers_lora_to_diffusers(state_dict, unet_name="unet", text_ # Store DoRA scale if present. if dora_present_in_unet: dora_scale_key_to_replace = "_lora.down." if "_lora.down." in diffusers_name else ".lora.down." - unet_state_dict[diffusers_name.replace(dora_scale_key_to_replace, ".lora_magnitude_vector.")] = ( - state_dict.pop(key.replace("lora_down.weight", "dora_scale")) - ) + unet_state_dict[ + diffusers_name.replace(dora_scale_key_to_replace, ".lora_magnitude_vector.") + ] = state_dict.pop(key.replace("lora_down.weight", "dora_scale")) # Handle text encoder LoRAs. elif lora_name.startswith(("lora_te_", "lora_te1_", "lora_te2_")): @@ -199,13 +199,13 @@ def _convert_non_diffusers_lora_to_diffusers(state_dict, unet_name="unet", text_ "_lora.down." if "_lora.down." in diffusers_name else ".lora_linear_layer." ) if lora_name.startswith(("lora_te_", "lora_te1_")): - te_state_dict[diffusers_name.replace(dora_scale_key_to_replace_te, ".lora_magnitude_vector.")] = ( - state_dict.pop(key.replace("lora_down.weight", "dora_scale")) - ) + te_state_dict[ + diffusers_name.replace(dora_scale_key_to_replace_te, ".lora_magnitude_vector.") + ] = state_dict.pop(key.replace("lora_down.weight", "dora_scale")) elif lora_name.startswith("lora_te2_"): - te2_state_dict[diffusers_name.replace(dora_scale_key_to_replace_te, ".lora_magnitude_vector.")] = ( - state_dict.pop(key.replace("lora_down.weight", "dora_scale")) - ) + te2_state_dict[ + diffusers_name.replace(dora_scale_key_to_replace_te, ".lora_magnitude_vector.") + ] = state_dict.pop(key.replace("lora_down.weight", "dora_scale")) # Store alpha if present. if lora_name_alpha in state_dict: diff --git a/src/diffusers/pipelines/consisid/pipeline_consisid.py b/src/diffusers/pipelines/consisid/pipeline_consisid.py index 606e5b261cca..f13810e60ee4 100644 --- a/src/diffusers/pipelines/consisid/pipeline_consisid.py +++ b/src/diffusers/pipelines/consisid/pipeline_consisid.py @@ -90,6 +90,19 @@ def draw_kps(image_pil, kps, color_list=[(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 0), (255, 0, 255)]): + """ + This function draws keypoints and the limbs connecting them on an image. + + Parameters: + - image_pil (PIL.Image): Input image as a PIL object. + - kps (list of tuples): A list of keypoints where each keypoint is a tuple of (x, y) coordinates. + - color_list (list of tuples, optional): List of colors (in RGB format) for each keypoint. Default is a set of five + colors. + + Returns: + - PIL.Image: Image with the keypoints and limbs drawn. + """ + stickwidth = 4 limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]]) kps = np.array(kps) @@ -120,17 +133,23 @@ def draw_kps(image_pil, kps, color_list=[(255, 0, 0), (0, 255, 0), (0, 0, 255), return out_img_pil -def process_image(image, vae): - image_noise_sigma = torch.normal(mean=-3.0, std=0.5, size=(1,), device=image.device) - image_noise_sigma = torch.exp(image_noise_sigma).to(dtype=image.dtype) - noisy_image = torch.randn_like(image) * image_noise_sigma[:, None, None, None, None] - input_image = image + noisy_image - image_latent_dist = vae.encode(input_image).latent_dist - return image_latent_dist - - # Similar to diffusers.pipelines.hunyuandit.pipeline_hunyuandit.get_resize_crop_region_for_grid def get_resize_crop_region_for_grid(src, tgt_width, tgt_height): + """ + This function calculates the resize and crop region for an image to fit a target width and height while preserving + the aspect ratio. + + Parameters: + - src (tuple): A tuple containing the source image's height (h) and width (w). + - tgt_width (int): The target width to resize the image. + - tgt_height (int): The target height to resize the image. + + Returns: + - tuple: Two tuples representing the crop region: + 1. The top-left coordinates of the crop region. + 2. The bottom-right coordinates of the crop region. + """ + tw = tgt_width th = tgt_height h, w = src diff --git a/src/diffusers/pipelines/free_noise_utils.py b/src/diffusers/pipelines/free_noise_utils.py index 8ea5eb7dd575..dc0071a494e3 100644 --- a/src/diffusers/pipelines/free_noise_utils.py +++ b/src/diffusers/pipelines/free_noise_utils.py @@ -341,9 +341,9 @@ def _encode_prompt_free_noise( start_tensor = negative_prompt_embeds[i].unsqueeze(0) end_tensor = negative_prompt_embeds[i + 1].unsqueeze(0) - negative_prompt_interpolation_embeds[start_frame : end_frame + 1] = ( - self._free_noise_prompt_interpolation_callback(start_frame, end_frame, start_tensor, end_tensor) - ) + negative_prompt_interpolation_embeds[ + start_frame : end_frame + 1 + ] = self._free_noise_prompt_interpolation_callback(start_frame, end_frame, start_tensor, end_tensor) prompt_embeds = prompt_interpolation_embeds negative_prompt_embeds = negative_prompt_interpolation_embeds diff --git a/src/diffusers/quantizers/base.py b/src/diffusers/quantizers/base.py index db57db70d0d4..6ec3885fe373 100644 --- a/src/diffusers/quantizers/base.py +++ b/src/diffusers/quantizers/base.py @@ -215,15 +215,19 @@ def _dequantize(self, model): ) @abstractmethod - def _process_model_before_weight_loading(self, model, **kwargs): ... + def _process_model_before_weight_loading(self, model, **kwargs): + ... @abstractmethod - def _process_model_after_weight_loading(self, model, **kwargs): ... + def _process_model_after_weight_loading(self, model, **kwargs): + ... @property @abstractmethod - def is_serializable(self): ... + def is_serializable(self): + ... @property @abstractmethod - def is_trainable(self): ... + def is_trainable(self): + ... diff --git a/tests/pipelines/amused/test_amused.py b/tests/pipelines/amused/test_amused.py index f348008ae4de..f28d8708d309 100644 --- a/tests/pipelines/amused/test_amused.py +++ b/tests/pipelines/amused/test_amused.py @@ -124,7 +124,8 @@ def test_inference_batch_consistent(self, batch_sizes=[2]): self._test_inference_batch_consistent(batch_sizes=batch_sizes, batch_generator=False) @unittest.skip("aMUSEd does not support lists of generators") - def test_inference_batch_single_identical(self): ... + def test_inference_batch_single_identical(self): + ... @slow diff --git a/tests/pipelines/amused/test_amused_img2img.py b/tests/pipelines/amused/test_amused_img2img.py index 942735f15707..2699bbe7f56f 100644 --- a/tests/pipelines/amused/test_amused_img2img.py +++ b/tests/pipelines/amused/test_amused_img2img.py @@ -126,7 +126,8 @@ def test_inference_batch_consistent(self, batch_sizes=[2]): self._test_inference_batch_consistent(batch_sizes=batch_sizes, batch_generator=False) @unittest.skip("aMUSEd does not support lists of generators") - def test_inference_batch_single_identical(self): ... + def test_inference_batch_single_identical(self): + ... @slow diff --git a/tests/pipelines/amused/test_amused_inpaint.py b/tests/pipelines/amused/test_amused_inpaint.py index 541b988f1798..645379a7eab1 100644 --- a/tests/pipelines/amused/test_amused_inpaint.py +++ b/tests/pipelines/amused/test_amused_inpaint.py @@ -130,7 +130,8 @@ def test_inference_batch_consistent(self, batch_sizes=[2]): self._test_inference_batch_consistent(batch_sizes=batch_sizes, batch_generator=False) @unittest.skip("aMUSEd does not support lists of generators") - def test_inference_batch_single_identical(self): ... + def test_inference_batch_single_identical(self): + ... @slow From 455d68d424ab40ce6c950c682521466608143372 Mon Sep 17 00:00:00 2001 From: Shenghai Yuan <140951558+SHYuanBest@users.noreply.github.com> Date: Tue, 10 Dec 2024 16:32:05 +0800 Subject: [PATCH 07/56] Update src/diffusers/pipelines/consisid/pipeline_consisid.py Co-authored-by: hlky --- src/diffusers/pipelines/consisid/pipeline_consisid.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/diffusers/pipelines/consisid/pipeline_consisid.py b/src/diffusers/pipelines/consisid/pipeline_consisid.py index f13810e60ee4..45ade719d80a 100644 --- a/src/diffusers/pipelines/consisid/pipeline_consisid.py +++ b/src/diffusers/pipelines/consisid/pipeline_consisid.py @@ -302,7 +302,7 @@ def __init__( self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial) - # Copied from diffusers.pipelines.consisid.pipeline_consisID.ConsisIDPipeline._get_t5_prompt_embeds + # Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline._get_t5_prompt_embeds def _get_t5_prompt_embeds( self, prompt: Union[str, List[str]] = None, From 8f310c506510743c4a1f79662b60950376a4eb21 Mon Sep 17 00:00:00 2001 From: Shenghai Yuan <140951558+SHYuanBest@users.noreply.github.com> Date: Tue, 10 Dec 2024 16:32:11 +0800 Subject: [PATCH 08/56] Update src/diffusers/pipelines/consisid/pipeline_consisid.py Co-authored-by: hlky --- src/diffusers/pipelines/consisid/pipeline_consisid.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/diffusers/pipelines/consisid/pipeline_consisid.py b/src/diffusers/pipelines/consisid/pipeline_consisid.py index 45ade719d80a..c164339ec912 100644 --- a/src/diffusers/pipelines/consisid/pipeline_consisid.py +++ b/src/diffusers/pipelines/consisid/pipeline_consisid.py @@ -345,7 +345,7 @@ def _get_t5_prompt_embeds( return prompt_embeds - # Copied from diffusers.pipelines.consisid.pipeline_consisid.ConsisIDPipeline.encode_prompt + # Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline.encode_prompt def encode_prompt( self, prompt: Union[str, List[str]], From 0f447a4033d63fcb20605e08df92b5a20820a038 Mon Sep 17 00:00:00 2001 From: Shenghai Yuan <140951558+SHYuanBest@users.noreply.github.com> Date: Tue, 10 Dec 2024 16:32:16 +0800 Subject: [PATCH 09/56] Update src/diffusers/pipelines/consisid/pipeline_consisid.py Co-authored-by: hlky --- src/diffusers/pipelines/consisid/pipeline_consisid.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/diffusers/pipelines/consisid/pipeline_consisid.py b/src/diffusers/pipelines/consisid/pipeline_consisid.py index c164339ec912..1bd8ded31fcf 100644 --- a/src/diffusers/pipelines/consisid/pipeline_consisid.py +++ b/src/diffusers/pipelines/consisid/pipeline_consisid.py @@ -512,7 +512,7 @@ def prepare_latents( latents = latents * self.scheduler.init_noise_sigma return latents, image_latents - # Copied from diffusers.pipelines.consisid.pipeline_consisid.ConsisIDPipeline.decode_latents + # Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline.decode_latents def decode_latents(self, latents: torch.Tensor) -> torch.Tensor: latents = latents.permute(0, 2, 1, 3, 4) # [batch_size, num_channels, num_frames, height, width] latents = 1 / self.vae_scaling_factor_image * latents From d348901e6e8fe97923cd478ddf23f3d7e98dea46 Mon Sep 17 00:00:00 2001 From: Shenghai Yuan <140951558+SHYuanBest@users.noreply.github.com> Date: Tue, 10 Dec 2024 16:32:21 +0800 Subject: [PATCH 10/56] Update src/diffusers/pipelines/consisid/pipeline_consisid.py Co-authored-by: hlky --- src/diffusers/pipelines/consisid/pipeline_consisid.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/diffusers/pipelines/consisid/pipeline_consisid.py b/src/diffusers/pipelines/consisid/pipeline_consisid.py index 1bd8ded31fcf..d59b6997a5ec 100644 --- a/src/diffusers/pipelines/consisid/pipeline_consisid.py +++ b/src/diffusers/pipelines/consisid/pipeline_consisid.py @@ -617,7 +617,7 @@ def fuse_qkv_projections(self) -> None: self.fusing_transformer = True self.transformer.fuse_qkv_projections() - # Copied from diffusers.pipelines.consisid.pipeline_consisid.ConsisIDPipeline.unfuse_qkv_projections + # Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline.unfuse_qkv_projections def unfuse_qkv_projections(self) -> None: r"""Disable QKV projection fusion if enabled.""" if not self.fusing_transformer: From a35f92a667c5f944ece23b2766caf9dafa42ca42 Mon Sep 17 00:00:00 2001 From: Shenghai Yuan <140951558+SHYuanBest@users.noreply.github.com> Date: Tue, 10 Dec 2024 16:32:29 +0800 Subject: [PATCH 11/56] Update src/diffusers/pipelines/consisid/pipeline_consisid.py Co-authored-by: hlky --- src/diffusers/pipelines/consisid/pipeline_consisid.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/diffusers/pipelines/consisid/pipeline_consisid.py b/src/diffusers/pipelines/consisid/pipeline_consisid.py index d59b6997a5ec..aeeb76a7776d 100644 --- a/src/diffusers/pipelines/consisid/pipeline_consisid.py +++ b/src/diffusers/pipelines/consisid/pipeline_consisid.py @@ -611,7 +611,7 @@ def check_inputs( f" {negative_prompt_embeds.shape}." ) - # Copied from diffusers.pipelines.consisid.pipeline_consisid.ConsisIDPipeline.fuse_qkv_projections + # Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline.fuse_qkv_projections def fuse_qkv_projections(self) -> None: r"""Enables fused QKV projections.""" self.fusing_transformer = True From 33f3acbc8cdfc8bece39f79093c7a018410c6830 Mon Sep 17 00:00:00 2001 From: Shenghai Yuan <140951558+SHYuanBest@users.noreply.github.com> Date: Tue, 10 Dec 2024 16:32:38 +0800 Subject: [PATCH 12/56] Update src/diffusers/pipelines/consisid/pipeline_consisid.py Co-authored-by: hlky --- src/diffusers/pipelines/consisid/pipeline_consisid.py | 1 - 1 file changed, 1 deletion(-) diff --git a/src/diffusers/pipelines/consisid/pipeline_consisid.py b/src/diffusers/pipelines/consisid/pipeline_consisid.py index aeeb76a7776d..e9d696af405e 100644 --- a/src/diffusers/pipelines/consisid/pipeline_consisid.py +++ b/src/diffusers/pipelines/consisid/pipeline_consisid.py @@ -626,7 +626,6 @@ def unfuse_qkv_projections(self) -> None: self.transformer.unfuse_qkv_projections() self.fusing_transformer = False - # Copied from diffusers.pipelines.consisid.pipeline_consisid.ConsisIDPipeline._prepare_rotary_positional_embeddings def _prepare_rotary_positional_embeddings( self, height: int, From 6503a171cc4d5ae091c663f1fc0b9c55f2f05826 Mon Sep 17 00:00:00 2001 From: SHYuanBest Date: Tue, 10 Dec 2024 17:02:25 +0800 Subject: [PATCH 13/56] add doc --- docs/source/en/_toctree.yml | 6 + .../en/api/models/consisid_transformer3d.md | 30 +++++ docs/source/en/api/pipelines/consisid.md | 111 ++++++++++++++++++ docs/source/en/using-diffusers/consisid.md | 100 ++++++++++++++++ docs/source/zh/_toctree.yml | 2 + docs/source/zh/consisid .md | 100 ++++++++++++++++ 6 files changed, 349 insertions(+) create mode 100644 docs/source/en/api/models/consisid_transformer3d.md create mode 100644 docs/source/en/api/pipelines/consisid.md create mode 100644 docs/source/en/using-diffusers/consisid.md create mode 100644 docs/source/zh/consisid .md diff --git a/docs/source/en/_toctree.yml b/docs/source/en/_toctree.yml index 47eb922f525e..bf3c26563f98 100644 --- a/docs/source/en/_toctree.yml +++ b/docs/source/en/_toctree.yml @@ -79,6 +79,8 @@ - sections: - local: using-diffusers/cogvideox title: CogVideoX + - local: using-diffusers/consisid + title: ConsisID - local: using-diffusers/sdxl title: Stable Diffusion XL - local: using-diffusers/sdxl_turbo @@ -260,6 +262,8 @@ title: AuraFlowTransformer2DModel - local: api/models/cogvideox_transformer3d title: CogVideoXTransformer3DModel + - local: api/models/consisid_transformer3d + title: ConsisIDTransformer3DModel - local: api/models/cogview3plus_transformer2d title: CogView3PlusTransformer2DModel - local: api/models/dit_transformer2d @@ -350,6 +354,8 @@ title: BLIP-Diffusion - local: api/pipelines/cogvideox title: CogVideoX + - local: api/pipelines/consisid + title: ConsisID - local: api/pipelines/cogview3 title: CogView3 - local: api/pipelines/consistency_models diff --git a/docs/source/en/api/models/consisid_transformer3d.md b/docs/source/en/api/models/consisid_transformer3d.md new file mode 100644 index 000000000000..bca03c099b1d --- /dev/null +++ b/docs/source/en/api/models/consisid_transformer3d.md @@ -0,0 +1,30 @@ + + +# ConsisIDTransformer3DModel + +A Diffusion Transformer model for 3D data from [ConsisID](https://github.com/PKU-YuanGroup/ConsisID) was introduced in [Identity-Preserving Text-to-Video Generation by Frequency Decomposition](https://arxiv.org/pdf/2411.17440) by Peking University & University of Rochester & etc. + +The model can be loaded with the following code snippet. + +```python +from diffusers import ConsisIDTransformer3DModel + +transformer = ConsisIDTransformer3DModel.from_pretrained("BestWishYsh/ConsisID-preview", subfolder="transformer", torch_dtype=torch.bfloat16).to("cuda") +``` + +## ConsisIDTransformer3DModel + +[[autodoc]] ConsisIDTransformer3DModel + +## Transformer2DModelOutput + +[[autodoc]] models.modeling_outputs.Transformer2DModelOutput diff --git a/docs/source/en/api/pipelines/consisid.md b/docs/source/en/api/pipelines/consisid.md new file mode 100644 index 000000000000..faf7253c83c3 --- /dev/null +++ b/docs/source/en/api/pipelines/consisid.md @@ -0,0 +1,111 @@ + + +# ConsisID + +[Identity-Preserving Text-to-Video Generation by Frequency Decomposition](https://arxiv.org/abs/2411.17440) from Peking University & University of Rochester & etc, by Shenghai Yuan, Jinfa Huang, Xianyi He, Yunyang Ge, Yujun Shi, Liuhan Chen, Jiebo Luo, Li Yuan. + +The abstract from the paper is: + +*Identity-preserving text-to-video (IPT2V) generation aims to create high-fidelity videos with consistent human identity. It is an important task in video generation but remains an open problem for generative models. This paper pushes the technical frontier of IPT2V in two directions that have not been resolved in the literature: (1) A tuning-free pipeline without tedious case-by-case finetuning, and (2) A frequency-aware heuristic identity-preserving Diffusion Transformer (DiT)-based control scheme. To achieve these goals, we propose **ConsisID**, a tuning-free DiT-based controllable IPT2V model to keep human-**id**entity **consis**tent in the generated video. Inspired by prior findings in frequency analysis of vision/diffusion transformers, it employs identity-control signals in the frequency domain, where facial features can be decomposed into low-frequency global features (e.g., profile, proportions) and high-frequency intrinsic features (e.g., identity markers that remain unaffected by pose changes). First, from a low-frequency perspective, we introduce a global facial extractor, which encodes the reference image and facial key points into a latent space, generating features enriched with low-frequency information. These features are then integrated into the shallow layers of the network to alleviate training challenges associated with DiT. Second, from a high-frequency perspective, we design a local facial extractor to capture high-frequency details and inject them into the transformer blocks, enhancing the model's ability to preserve fine-grained features. To leverage the frequency information for identity preservation, we propose a hierarchical training strategy, transforming a vanilla pre-trained video generation model into an IPT2V model. Extensive experiments demonstrate that our frequency-aware heuristic scheme provides an optimal control solution for DiT-based models. Thanks to this scheme, our **ConsisID** achieves excellent results in generating high-quality, identity-preserving videos, making strides towards more effective IPT2V. The model weight of ConsID is publicly available at https://github.com/PKU-YuanGroup/ConsisID.* + + + +Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers.md) to learn how to explore the tradeoff between scheduler speed and quality, and see the [reuse components across pipelines](../../using-diffusers/loading.md#reuse-a-pipeline) section to learn how to efficiently load the same components into multiple pipelines. + + + +This pipeline was contributed by [SHYuanBest](https://github.com/SHYuanBest). The original codebase can be found [here](https://github.com/PKU-YuanGroup/ConsisID). The original weights can be found under [hf.co/BestWishYsh](https://huggingface.co/BestWishYsh). + +There are two official ConsisID checkpoints for identity-preserving text-to-video. + +| checkpoints | recommended inference dtype | +|:---:|:---:| +| [`BestWishYsh/ConsisID-preview`](https://huggingface.co/BestWishYsh/ConsisID-preview) | torch.bfloat16 | +| [`BestWishYsh/ConsisID-1.5`](https://huggingface.co/BestWishYsh/ConsisID-preview) | torch.bfloat16 | + +## Inference + +Use [`torch.compile`](https://huggingface.co/docs/diffusers/main/en/tutorials/fast_diffusion#torchcompile) to reduce the inference latency. + +First, load the pipeline: + +```python +import torch +from diffusers import ConsisIDPipeline +from diffusers.pipelines.consisid.util_consisid import prepare_face_models, process_face_embeddings_infer +from diffusers.utils import export_to_video +from huggingface_hub import snapshot_download + +snapshot_download(repo_id="BestWishYsh/ConsisID-preview", local_dir="BestWishYsh/ConsisID-preview") +face_helper_1, face_helper_2, face_clip_model, face_main_model, eva_transform_mean, eva_transform_std = prepare_face_models("BestWishYsh/ConsisID-preview", device="cuda", dtype=torch.bfloat16) +pipe = ConsisIDPipeline.from_pretrained("BestWishYsh/ConsisID-preview", torch_dtype=torch.bfloat16) +``` + +Then change the memory layout of the pipelines `transformer` component to `torch.channels_last`: + +```python +pipe.transformer.to(memory_format=torch.channels_last) +``` + +Compile the components and run inference: + +```python +pipe.transformer = torch.compile(pipeline.transformer, mode="max-autotune", fullgraph=True) + +# ConsisID works well with long and well-described prompts and image contain clear face (e.g., preferably half-body or full-body). +prompt = "A woman adorned with a delicate flower crown, is standing amidst a field of gently swaying wildflowers. Her eyes sparkle with a serene gaze, and a faint smile graces her lips, suggesting a moment of peaceful contentment. The shot is framed from the waist up, highlighting the gentle breeze lightly tousling her hair. The background reveals an expansive meadow under a bright blue sky, capturing the tranquility of a sunny afternoon." +image = "https://github.com/PKU-YuanGroup/ConsisID/blob/main/asserts/example_images/1.png?raw=true" + +id_cond, id_vit_hidden, image, face_kps = process_face_embeddings_infer(face_helper_1, face_clip_model, face_helper_2, eva_transform_mean, eva_transform_std, face_main_model, "cuda", torch.bfloat16, image, is_align_face=True) +is_kps = getattr(pipe.transformer.config, 'is_kps', False) +kps_cond = face_kps if is_kps else None + +video = pipe(image=image, prompt=prompt, use_dynamic_cfg=False, id_vit_hidden=id_vit_hidden, id_cond=id_cond, kps_cond=kps_cond, generator=torch.Generator("cuda").manual_seed(42)) +export_to_video(video.frames[0], "output.mp4", fps=8) +``` + +### Memory optimization + +ConsisID requires about 37 GB of GPU memory to decode 49 frames (6 seconds of video at 8 FPS) with output resolution 720x480 (W x H), which makes it not possible to run on consumer GPUs or free-tier T4 Colab. The following memory optimizations could be used to reduce the memory footprint. For replication, you can refer to [this](https://gist.github.com/a-r-r-o-w/3959a03f15be5c9bd1fe545b09dfcc93) script. + +- `pipe.enable_model_cpu_offload()`: + - Without enabling cpu offloading, memory usage is `33 GB` + - With enabling cpu offloading, memory usage is `19 GB` +- `pipe.enable_sequential_cpu_offload()`: + - Similar to `enable_model_cpu_offload` but can significantly reduce memory usage at the cost of slow inference + - When enabled, memory usage is under `4 GB` +- `pipe.vae.enable_tiling()`: + - With enabling cpu offloading and tiling, memory usage is `11 GB` +- `pipe.vae.enable_slicing()` + +### Quantized inference + +[torchao](https://github.com/pytorch/ao) and [optimum-quanto](https://github.com/huggingface/optimum-quanto/) can be used to quantize the text encoder, transformer and VAE modules to lower the memory requirements. This makes it possible to run the model on a free-tier T4 Colab or lower VRAM GPUs! + +It is also worth noting that torchao quantization is fully compatible with [torch.compile](/optimization/torch2.0#torchcompile), which allows for much faster inference speed. Additionally, models can be serialized and stored in a quantized datatype to save disk space with torchao. Find examples and benchmarks in the gists below. +- [torchao](https://gist.github.com/a-r-r-o-w/4d9732d17412888c885480c6521a9897) +- [quanto](https://gist.github.com/a-r-r-o-w/31be62828b00a9292821b85c1017effa) + +## ConsisIDPipeline + +[[autodoc]] ConsisIDPipeline + + - all + - __call__ + +## ConsisIDPipelineOutput + +[[autodoc]] pipelines.consisid.pipeline_output.ConsisIDPipelineOutput diff --git a/docs/source/en/using-diffusers/consisid.md b/docs/source/en/using-diffusers/consisid.md new file mode 100644 index 000000000000..97231316c132 --- /dev/null +++ b/docs/source/en/using-diffusers/consisid.md @@ -0,0 +1,100 @@ + +# ConsisID + +[ConsisID](https://github.com/PKU-YuanGroup/ConsisID) is an identity-preserving text-to-video generation model, which keep the face consistent in the generated video by frequency decomposition. There is a [video](https://www.youtube.com/watch?v=PhlgC-bI5SQ) show its powerful function. It has the following features: + +​ 🔥 **Frequency Decomposition**: The characteristics of the DiT architecture are analyzed from the frequency domain perspective, and based on these characteristics, a reasonable control information injection method is designed. + +​ 🔥 **Consistency Training Strategy**: We propose a coarse-to-fine training strategy, dynamic masking loss, and dynamic cross-face loss, which further enhance the model's generalization ability and identity preservation performance. + +​ 🔥 **Inference Without Fine-Tuning**: Previous methods required case-by-case fine-tuning of the input ID before inference, leading to significant time and computational costs. In contrast, consisid is tuning-free. + +For more information, please refer to the [paper](https://arxiv.org/abs/2411.17440). This guide will walk you through using ConsisID for use cases. + +## Load Model Checkpoints +Model weights may be stored in separate subfolders on the Hub or locally, in which case, you should use the [`~DiffusionPipeline.from_pretrained`] method. + + +```python +import torch +from diffusers import ConsisIDPipeline +from diffusers.pipelines.consisid.util_consisid import prepare_face_models, process_face_embeddings_infer +from huggingface_hub import snapshot_download + +# Download ckpts +snapshot_download(repo_id="BestWishYsh/ConsisID-preview", local_dir="BestWishYsh/ConsisID-preview") + +# Load face helper model to preprocess input face image +face_helper_1, face_helper_2, face_clip_model, face_main_model, eva_transform_mean, eva_transform_std = prepare_face_models("BestWishYsh/ConsisID-preview", device="cuda", dtype=torch.bfloat16) + +# Load consisid base model +pipe = ConsisIDPipeline.from_pretrained("BestWishYsh/ConsisID-preview", torch_dtype=torch.bfloat16) +pipe.to("cuda") +``` + +## Identity-Preserving Text-to-Video +For identity-preserving text-to-video, pass a text prompt and an image contain clear face (e.g., preferably half-body or full-body). By default, ConsisID generates a 720x480 video for the best results. + +```python +from diffusers.utils import export_to_video + +prompt = "A woman adorned with a delicate flower crown, is standing amidst a field of gently swaying wildflowers. Her eyes sparkle with a serene gaze, and a faint smile graces her lips, suggesting a moment of peaceful contentment. The shot is framed from the waist up, highlighting the gentle breeze lightly tousling her hair. The background reveals an expansive meadow under a bright blue sky, capturing the tranquility of a sunny afternoon." +image = "https://github.com/PKU-YuanGroup/ConsisID/blob/main/asserts/example_images/1.png?raw=true" + +id_cond, id_vit_hidden, image, face_kps = process_face_embeddings_infer(face_helper_1, face_clip_model, face_helper_2, eva_transform_mean, eva_transform_std, face_main_model, "cuda", torch.bfloat16, image, is_align_face=True) +is_kps = getattr(pipe.transformer.config, 'is_kps', False) +kps_cond = face_kps if is_kps else None + +video = pipe(image=image, prompt=prompt, use_dynamic_cfg=False, id_vit_hidden=id_vit_hidden, id_cond=id_cond, kps_cond=kps_cond, generator=torch.Generator("cuda").manual_seed(42)) +export_to_video(video.frames[0], "output.mp4", fps=8) +``` + + + + + + + + + + + + + + + + + + + + + + + + + +
Face ImageVideoDescription
The video features a woman in exquisite hybrid armor adorned with iridescent gemstones, standing amidst gently falling cherry blossoms. Her piercing yet serene gaze hints at quiet determination, as a breeze catches a loose strand of her hair ......
The video features a baby wearing a bright superhero cape, standing confidently with arms raised in a powerful pose. The baby has a determined look on their face, with eyes wide and lips pursed in concentration, as if ready to take on a challenge ......
The video captures a boy walking along a city street, filmed in black and white on a classic 35mm camera. His expression is thoughtful, his brow slightly furrowed as if he's lost in contemplation. The film grain adds a textured ......
The video features a man standing at an easel, focused intently as his brush dances across the canvas. His expression is one of deep concentration, with a hint of satisfaction as each brushstroke adds color and form ......
+ +## Citation + +If you find consisid useful in your research, please consider giving a star and citation. + +```BibTeX +@article{yuan2024identity, + title={Identity-Preserving Text-to-Video Generation by Frequency Decomposition}, + author={Yuan, Shenghai and Huang, Jinfa and He, Xianyi and Ge, Yunyuan and Shi, Yujun and Chen, Liuhan and Luo, Jiebo and Yuan, Li}, + journal={arXiv preprint arXiv:2411.17440}, + year={2024} +} +``` diff --git a/docs/source/zh/_toctree.yml b/docs/source/zh/_toctree.yml index 41d5e95a4230..6416c468a8e9 100644 --- a/docs/source/zh/_toctree.yml +++ b/docs/source/zh/_toctree.yml @@ -5,6 +5,8 @@ title: 快速入门 - local: stable_diffusion title: 有效和高效的扩散 + - local: consisid + title: 身份保持的文本到视频生成 - local: installation title: 安装 title: 开始 diff --git a/docs/source/zh/consisid .md b/docs/source/zh/consisid .md new file mode 100644 index 000000000000..78aced8ffddc --- /dev/null +++ b/docs/source/zh/consisid .md @@ -0,0 +1,100 @@ + +# ConsisID + +[ConsisID](https://github.com/PKU-YuanGroup/ConsisID)是一种身份保持的文本到视频生成模型,其通过频率分解在生成的视频中保持面部一致性。有一个 [视频](https://www.youtube.com/watch?v=PhlgC-bI5SQ) 展示了其强大的功能。它具有以下特点: + +​ 🔥 基于频率分解:将人物ID特征解耦为高频和低频部分,从频域的角度分析DIT架构的特性,并且基于此特性设计合理的控制信息注入方式。 + +​ 🔥 一致性训练策略:我们提出粗到细训练策略、动态掩码损失、动态跨脸损失,进一步提高了模型的泛化能力和身份保持效果。 + +​ 🔥 推理无需微调:之前的方法在推理前,需要对输入id进行case-by-case微调,时间和算力开销较大,而我们的方法是tuning-free的。 + +有关更多信息,请参阅[论文](https://arxiv.org/abs/2411.17440)。本指南将指导您使用 ConsisID 生成身份保持的视频。 + +## Load Model Checkpoints +模型权重可以存储在Hub上或本地的单独子文件夹中,在这种情况下,您应该使用 [`~DiffusionPipeline.from_pretrained`] 方法。 + + +```python +import torch +from diffusers import ConsisIDPipeline +from diffusers.pipelines.consisid.util_consisid import prepare_face_models, process_face_embeddings_infer +from huggingface_hub import snapshot_download + +# Download ckpts +snapshot_download(repo_id="BestWishYsh/ConsisID-preview", local_dir="BestWishYsh/ConsisID-preview") + +# Load face helper model to preprocess input face image +face_helper_1, face_helper_2, face_clip_model, face_main_model, eva_transform_mean, eva_transform_std = prepare_face_models("BestWishYsh/ConsisID-preview", device="cuda", dtype=torch.bfloat16) + +# Load consisid base model +pipe = ConsisIDPipeline.from_pretrained("BestWishYsh/ConsisID-preview", torch_dtype=torch.bfloat16) +pipe.to("cuda") +``` + +## Identity-Preserving Text-to-Video +对于身份保持的文本到视频生成,需要输入文本提示和包含清晰面部(例如,最好是半身或全身)的图像。默认情况下,ConsisID 会生成 720x480 的视频以获得最佳效果。 + +```python +from diffusers.utils import export_to_video + +prompt = "A woman adorned with a delicate flower crown, is standing amidst a field of gently swaying wildflowers. Her eyes sparkle with a serene gaze, and a faint smile graces her lips, suggesting a moment of peaceful contentment. The shot is framed from the waist up, highlighting the gentle breeze lightly tousling her hair. The background reveals an expansive meadow under a bright blue sky, capturing the tranquility of a sunny afternoon." +image = "https://github.com/PKU-YuanGroup/ConsisID/blob/main/asserts/example_images/1.png?raw=true" + +id_cond, id_vit_hidden, image, face_kps = process_face_embeddings_infer(face_helper_1, face_clip_model, face_helper_2, eva_transform_mean, eva_transform_std, face_main_model, "cuda", torch.bfloat16, image, is_align_face=True) +is_kps = getattr(pipe.transformer.config, 'is_kps', False) +kps_cond = face_kps if is_kps else None + +video = pipe(image=image, prompt=prompt, use_dynamic_cfg=False, id_vit_hidden=id_vit_hidden, id_cond=id_cond, kps_cond=kps_cond, generator=torch.Generator("cuda").manual_seed(42)) +export_to_video(video.frames[0], "output.mp4", fps=8) +``` + + + + + + + + + + + + + + + + + + + + + + + + + +
Face ImageVideoDescription
The video features a woman in exquisite hybrid armor adorned with iridescent gemstones, standing amidst gently falling cherry blossoms. Her piercing yet serene gaze hints at quiet determination, as a breeze catches a loose strand of her hair ......
The video features a baby wearing a bright superhero cape, standing confidently with arms raised in a powerful pose. The baby has a determined look on their face, with eyes wide and lips pursed in concentration, as if ready to take on a challenge ......
The video captures a boy walking along a city street, filmed in black and white on a classic 35mm camera. His expression is thoughtful, his brow slightly furrowed as if he's lost in contemplation. The film grain adds a textured ......
The video features a man standing at an easel, focused intently as his brush dances across the canvas. His expression is one of deep concentration, with a hint of satisfaction as each brushstroke adds color and form ......
+ +## Citation + +如果您发现ConsisID对您的研究有用,请给我们[Repo](https://github.com/PKU-YuanGroup/ConsisID)点个Star或者在文章中引用ConsisID。 + +```BibTeX +@article{yuan2024identity, + title={Identity-Preserving Text-to-Video Generation by Frequency Decomposition}, + author={Yuan, Shenghai and Huang, Jinfa and He, Xianyi and Ge, Yunyuan and Shi, Yujun and Chen, Liuhan and Luo, Jiebo and Yuan, Li}, + journal={arXiv preprint arXiv:2411.17440}, + year={2024} +} +``` From c13fb17e577559f972ec59856ea33973102979c2 Mon Sep 17 00:00:00 2001 From: SHYuanBest Date: Tue, 10 Dec 2024 19:01:03 +0800 Subject: [PATCH 14/56] make style --- docs/source/en/_toctree.yml | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/docs/source/en/_toctree.yml b/docs/source/en/_toctree.yml index bf3c26563f98..ea74a8b0f8c6 100644 --- a/docs/source/en/_toctree.yml +++ b/docs/source/en/_toctree.yml @@ -354,10 +354,10 @@ title: BLIP-Diffusion - local: api/pipelines/cogvideox title: CogVideoX - - local: api/pipelines/consisid - title: ConsisID - local: api/pipelines/cogview3 title: CogView3 + - local: api/pipelines/consisid + title: ConsisID - local: api/pipelines/consistency_models title: Consistency Models - local: api/pipelines/controlnet From 61ad37bd3bbe05894cce2a707e3d22f8bf842222 Mon Sep 17 00:00:00 2001 From: Shenghai Yuan <140951558+SHYuanBest@users.noreply.github.com> Date: Tue, 10 Dec 2024 19:32:29 +0800 Subject: [PATCH 15/56] Rename consisid .md to consisid.md --- docs/source/zh/{consisid .md => consisid.md} | 0 1 file changed, 0 insertions(+), 0 deletions(-) rename docs/source/zh/{consisid .md => consisid.md} (100%) diff --git a/docs/source/zh/consisid .md b/docs/source/zh/consisid.md similarity index 100% rename from docs/source/zh/consisid .md rename to docs/source/zh/consisid.md From 3a274cac2a6b600ff663fe5e1573f0f700ff714d Mon Sep 17 00:00:00 2001 From: hlky Date: Wed, 11 Dec 2024 08:19:53 +0000 Subject: [PATCH 16/56] Update geodiff_molecule_conformation.ipynb --- .../geodiff_molecule_conformation.ipynb | 7232 ++++++++--------- 1 file changed, 3612 insertions(+), 3620 deletions(-) diff --git a/examples/research_projects/geodiff/geodiff_molecule_conformation.ipynb b/examples/research_projects/geodiff/geodiff_molecule_conformation.ipynb index 03f58f1f2f63..670f5c9cc1ac 100644 --- a/examples/research_projects/geodiff/geodiff_molecule_conformation.ipynb +++ b/examples/research_projects/geodiff/geodiff_molecule_conformation.ipynb @@ -1,3660 +1,3652 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "id": "F88mignPnalS" - }, - "source": [ - "# Introduction\n", - "\n", - "This colab is design to run the pretrained models from [GeoDiff](https://github.com/MinkaiXu/GeoDiff).\n", - "The visualization code is inspired by this PyMol [colab](https://colab.research.google.com/gist/iwatobipen/2ec7faeafe5974501e69fcc98c122922/pymol.ipynb#scrollTo=Hm4kY7CaZSlw).\n", - "\n", - "The goal is to generate physically accurate molecules. Given the input of a molecule graph (atom and bond structures with their connectivity -- in the form of a 2d graph). What we want to generate is a stable 3d structure of the molecule.\n", - "\n", - "This colab uses GEOM datasets that have multiple 3d targets per configuration, which provide more compelling targets for generative methods.\n", - "\n", - "> Colab made by [natolambert](https://twitter.com/natolambert).\n", - "\n", - "![diffusers_library](https://github.com/huggingface/diffusers/raw/main/docs/source/imgs/diffusers_library.jpg)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "7cnwXMocnuzB" - }, - "source": [ - "## Installations\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "ff9SxWnaNId9" - }, - "source": [ - "### Install Conda" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "1g_6zOabItDk" - }, - "source": [ - "Here we check the `cuda` version of colab. When this was built, the version was always 11.1, which impacts some installation decisions below." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "K0ofXobG5Y-X", - "outputId": "572c3d25-6f19-4c1e-83f5-a1d084a3207f" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "nvcc: NVIDIA (R) Cuda compiler driver\n", - "Copyright (c) 2005-2021 NVIDIA Corporation\n", - "Built on Sun_Feb_14_21:12:58_PST_2021\n", - "Cuda compilation tools, release 11.2, V11.2.152\n", - "Build cuda_11.2.r11.2/compiler.29618528_0\n" - ] - } - ], - "source": [ - "!nvcc --version" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "VfthW90vI0nw" - }, - "source": [ - "Install Conda for some more complex dependencies for geometric networks." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "2WNFzSnbiE0k", - "outputId": "690d0d4d-9d0a-4ead-c6dc-086f113f532f" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n", - "\u001b[0m" - ] - } - ], - "source": [ - "!pip install -q condacolab" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "NUsbWYCUI7Km" - }, - "source": [ - "Setup Conda" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "FZelreINdmd0", - "outputId": "635f0cb8-0af4-499f-e0a4-b3790cb12e9f" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "✨🍰✨ Everything looks OK!\n" - ] - } - ], - "source": [ - "import condacolab\n", - "\n", - "\n", - "condacolab.install()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "JzDHaPU7I9Sn" - }, - "source": [ - "Install pytorch requirements (this takes a few minutes, go grab yourself a coffee 🤗)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "JMxRjHhL7w8V", - "outputId": "6ed511b3-9262-49e8-b340-08e76b05ebd8" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Collecting package metadata (current_repodata.json): - \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\bdone\n", - "Solving environment: \\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\bdone\n", - "\n", - "## Package Plan ##\n", - "\n", - " environment location: /usr/local\n", - "\n", - " added / updated specs:\n", - " - cudatoolkit=11.1\n", - " - pytorch\n", - " - torchaudio\n", - " - torchvision\n", - "\n", - "\n", - "The following packages will be downloaded:\n", - "\n", - " package | build\n", - " ---------------------------|-----------------\n", - " conda-22.9.0 | py37h89c1867_1 960 KB conda-forge\n", - " ------------------------------------------------------------\n", - " Total: 960 KB\n", - "\n", - "The following packages will be UPDATED:\n", - "\n", - " conda 4.14.0-py37h89c1867_0 --> 22.9.0-py37h89c1867_1\n", - "\n", - "\n", - "\n", - "Downloading and Extracting Packages\n", - "conda-22.9.0 | 960 KB | : 100% 1.0/1 [00:00<00:00, 4.15it/s]\n", - "Preparing transaction: / \b\bdone\n", - "Verifying transaction: \\ \b\bdone\n", - "Executing transaction: / \b\bdone\n", - "Retrieving notices: ...working... done\n" - ] - } - ], - "source": [ - "!conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch-lts -c nvidia\n", - "# !conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=11.1 -c pytorch -c conda-forge" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "QDS6FPZ0Tu5b" - }, - "source": [ - "Need to remove a pathspec for colab that specifies the incorrect cuda version." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "dq1lxR10TtrR", - "outputId": "ed9c5a71-b449-418f-abb7-072b74e7f6c8" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "rm: cannot remove '/usr/local/conda-meta/pinned': No such file or directory\n" - ] - } - ], - "source": [ - "!rm /usr/local/conda-meta/pinned" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Z1L3DdZOJB30" - }, - "source": [ - "Install torch geometric (used in the model later)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "D5ukfCOWfjzK", - "outputId": "8437485a-5aa6-4d53-8f7f-23517ac1ace6" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Collecting package metadata (current_repodata.json): - \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\bdone\n", - "Solving environment: | \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\bdone\n", - "\n", - "## Package Plan ##\n", - "\n", - " environment location: /usr/local\n", - "\n", - " added / updated specs:\n", - " - pytorch-geometric=1.7.2\n", - "\n", - "\n", - "The following packages will be downloaded:\n", - "\n", - " package | build\n", - " ---------------------------|-----------------\n", - " decorator-4.4.2 | py_0 11 KB conda-forge\n", - " googledrivedownloader-0.4 | pyhd3deb0d_1 7 KB conda-forge\n", - " jinja2-3.1.2 | pyhd8ed1ab_1 99 KB conda-forge\n", - " joblib-1.2.0 | pyhd8ed1ab_0 205 KB conda-forge\n", - " markupsafe-2.1.1 | py37h540881e_1 22 KB conda-forge\n", - " networkx-2.5.1 | pyhd8ed1ab_0 1.2 MB conda-forge\n", - " pandas-1.2.3 | py37hdc94413_0 11.8 MB conda-forge\n", - " pyparsing-3.0.9 | pyhd8ed1ab_0 79 KB conda-forge\n", - " python-dateutil-2.8.2 | pyhd8ed1ab_0 240 KB conda-forge\n", - " python-louvain-0.15 | pyhd8ed1ab_1 13 KB conda-forge\n", - " pytorch-cluster-1.5.9 |py37_torch_1.8.0_cu111 1.2 MB rusty1s\n", - " pytorch-geometric-1.7.2 |py37_torch_1.8.0_cu111 445 KB rusty1s\n", - " pytorch-scatter-2.0.8 |py37_torch_1.8.0_cu111 6.1 MB rusty1s\n", - " pytorch-sparse-0.6.12 |py37_torch_1.8.0_cu111 2.9 MB rusty1s\n", - " pytorch-spline-conv-1.2.1 |py37_torch_1.8.0_cu111 736 KB rusty1s\n", - " pytz-2022.4 | pyhd8ed1ab_0 232 KB conda-forge\n", - " scikit-learn-1.0.2 | py37hf9e9bfc_0 7.8 MB conda-forge\n", - " scipy-1.7.3 | py37hf2a6cf1_0 21.8 MB conda-forge\n", - " setuptools-59.8.0 | py37h89c1867_1 1.0 MB conda-forge\n", - " threadpoolctl-3.1.0 | pyh8a188c0_0 18 KB conda-forge\n", - " ------------------------------------------------------------\n", - " Total: 55.9 MB\n", - "\n", - "The following NEW packages will be INSTALLED:\n", - "\n", - " decorator conda-forge/noarch::decorator-4.4.2-py_0 None\n", - " googledrivedownlo~ conda-forge/noarch::googledrivedownloader-0.4-pyhd3deb0d_1 None\n", - " jinja2 conda-forge/noarch::jinja2-3.1.2-pyhd8ed1ab_1 None\n", - " joblib conda-forge/noarch::joblib-1.2.0-pyhd8ed1ab_0 None\n", - " markupsafe conda-forge/linux-64::markupsafe-2.1.1-py37h540881e_1 None\n", - " networkx conda-forge/noarch::networkx-2.5.1-pyhd8ed1ab_0 None\n", - " pandas conda-forge/linux-64::pandas-1.2.3-py37hdc94413_0 None\n", - " pyparsing conda-forge/noarch::pyparsing-3.0.9-pyhd8ed1ab_0 None\n", - " python-dateutil conda-forge/noarch::python-dateutil-2.8.2-pyhd8ed1ab_0 None\n", - " python-louvain conda-forge/noarch::python-louvain-0.15-pyhd8ed1ab_1 None\n", - " pytorch-cluster rusty1s/linux-64::pytorch-cluster-1.5.9-py37_torch_1.8.0_cu111 None\n", - " pytorch-geometric rusty1s/linux-64::pytorch-geometric-1.7.2-py37_torch_1.8.0_cu111 None\n", - " pytorch-scatter rusty1s/linux-64::pytorch-scatter-2.0.8-py37_torch_1.8.0_cu111 None\n", - " pytorch-sparse rusty1s/linux-64::pytorch-sparse-0.6.12-py37_torch_1.8.0_cu111 None\n", - " pytorch-spline-co~ rusty1s/linux-64::pytorch-spline-conv-1.2.1-py37_torch_1.8.0_cu111 None\n", - " pytz conda-forge/noarch::pytz-2022.4-pyhd8ed1ab_0 None\n", - " scikit-learn conda-forge/linux-64::scikit-learn-1.0.2-py37hf9e9bfc_0 None\n", - " scipy conda-forge/linux-64::scipy-1.7.3-py37hf2a6cf1_0 None\n", - " threadpoolctl conda-forge/noarch::threadpoolctl-3.1.0-pyh8a188c0_0 None\n", - "\n", - "The following packages will be DOWNGRADED:\n", - "\n", - " setuptools 65.3.0-py37h89c1867_0 --> 59.8.0-py37h89c1867_1 None\n", - "\n", - "\n", - "\n", - "Downloading and Extracting Packages\n", - "scikit-learn-1.0.2 | 7.8 MB | : 100% 1.0/1 [00:01<00:00, 1.37s/it] \n", - "pytorch-scatter-2.0. | 6.1 MB | : 100% 1.0/1 [00:06<00:00, 6.18s/it]\n", - "pytorch-geometric-1. | 445 KB | : 100% 1.0/1 [00:02<00:00, 2.53s/it]\n", - "scipy-1.7.3 | 21.8 MB | : 100% 1.0/1 [00:03<00:00, 3.06s/it]\n", - "python-dateutil-2.8. | 240 KB | : 100% 1.0/1 [00:00<00:00, 21.48it/s]\n", - "pytorch-spline-conv- | 736 KB | : 100% 1.0/1 [00:01<00:00, 1.00s/it]\n", - "pytorch-sparse-0.6.1 | 2.9 MB | : 100% 1.0/1 [00:07<00:00, 7.51s/it]\n", - "pyparsing-3.0.9 | 79 KB | : 100% 1.0/1 [00:00<00:00, 26.32it/s]\n", - "pytorch-cluster-1.5. | 1.2 MB | : 100% 1.0/1 [00:02<00:00, 2.78s/it]\n", - "jinja2-3.1.2 | 99 KB | : 100% 1.0/1 [00:00<00:00, 20.28it/s]\n", - "decorator-4.4.2 | 11 KB | : 100% 1.0/1 [00:00<00:00, 21.57it/s]\n", - "joblib-1.2.0 | 205 KB | : 100% 1.0/1 [00:00<00:00, 15.04it/s]\n", - "pytz-2022.4 | 232 KB | : 100% 1.0/1 [00:00<00:00, 10.21it/s]\n", - "python-louvain-0.15 | 13 KB | : 100% 1.0/1 [00:00<00:00, 3.34it/s]\n", - "googledrivedownloade | 7 KB | : 100% 1.0/1 [00:00<00:00, 3.33it/s]\n", - "threadpoolctl-3.1.0 | 18 KB | : 100% 1.0/1 [00:00<00:00, 29.40it/s]\n", - "markupsafe-2.1.1 | 22 KB | : 100% 1.0/1 [00:00<00:00, 28.62it/s]\n", - "pandas-1.2.3 | 11.8 MB | : 100% 1.0/1 [00:02<00:00, 2.08s/it] \n", - "networkx-2.5.1 | 1.2 MB | : 100% 1.0/1 [00:01<00:00, 1.39s/it]\n", - "setuptools-59.8.0 | 1.0 MB | : 100% 1.0/1 [00:00<00:00, 4.25it/s]\n", - "Preparing transaction: / \b\b- \b\b\\ \b\bdone\n", - "Verifying transaction: / \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\bdone\n", - "Executing transaction: / \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\bdone\n", - "Retrieving notices: ...working... done\n" - ] - } - ], - "source": [ - "!conda install -c rusty1s pytorch-geometric=1.7.2" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "ppxv6Mdkalbc" - }, - "source": [ - "### Install Diffusers" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "mgQA_XN-XGY2", - "outputId": "85392615-b6a4-4052-9d2a-79604be62c94" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "/content\n", - "Cloning into 'diffusers'...\n", - "remote: Enumerating objects: 9298, done.\u001b[K\n", - "remote: Counting objects: 100% (40/40), done.\u001b[K\n", - "remote: Compressing objects: 100% (23/23), done.\u001b[K\n", - "remote: Total 9298 (delta 17), reused 23 (delta 11), pack-reused 9258\u001b[K\n", - "Receiving objects: 100% (9298/9298), 7.38 MiB | 5.28 MiB/s, done.\n", - "Resolving deltas: 100% (6168/6168), done.\n", - " Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n", - " Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n", - " Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m757.0/757.0 kB\u001b[0m \u001b[31m52.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m163.5/163.5 kB\u001b[0m \u001b[31m21.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m40.8/40.8 kB\u001b[0m \u001b[31m5.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m596.3/596.3 kB\u001b[0m \u001b[31m51.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25h Building wheel for diffusers (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", - "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m432.7/432.7 kB\u001b[0m \u001b[31m36.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m5.3/5.3 MB\u001b[0m \u001b[31m90.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m35.3/35.3 MB\u001b[0m \u001b[31m39.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m115.1/115.1 kB\u001b[0m \u001b[31m16.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m948.0/948.0 kB\u001b[0m \u001b[31m63.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m212.2/212.2 kB\u001b[0m \u001b[31m21.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m95.8/95.8 kB\u001b[0m \u001b[31m12.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m140.8/140.8 kB\u001b[0m \u001b[31m18.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.6/7.6 MB\u001b[0m \u001b[31m104.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m148.0/148.0 kB\u001b[0m \u001b[31m20.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m231.3/231.3 kB\u001b[0m \u001b[31m30.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m94.8/94.8 kB\u001b[0m \u001b[31m14.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m58.8/58.8 kB\u001b[0m \u001b[31m8.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25h\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n", - "\u001b[0m" - ] - } - ], - "source": [ - "%cd /content\n", - "\n", - "# install latest HF diffusers (will update to the release once added)\n", - "!git clone https://github.com/huggingface/diffusers.git\n", - "!pip install -q /content/diffusers\n", - "\n", - "# dependencies for diffusers\n", - "!pip install -q datasets transformers" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "LZO6AJKuJKO8" - }, - "source": [ - "Check that torch is installed correctly and utilizing the GPU in the colab" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 53 - }, - "id": "gZt7BNi1e1PA", - "outputId": "a0e1832c-9c02-49aa-cff8-1339e6cdc889" - }, - "outputs": [ + "cells": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "True\n" - ] + "cell_type": "markdown", + "metadata": { + "id": "F88mignPnalS" + }, + "source": [ + "# Introduction\n", + "\n", + "This colab is design to run the pretrained models from [GeoDiff](https://github.com/MinkaiXu/GeoDiff).\n", + "The visualization code is inspired by this PyMol [colab](https://colab.research.google.com/gist/iwatobipen/2ec7faeafe5974501e69fcc98c122922/pymol.ipynb#scrollTo=Hm4kY7CaZSlw).\n", + "\n", + "The goal is to generate physically accurate molecules. Given the input of a molecule graph (atom and bond structures with their connectivity -- in the form of a 2d graph). What we want to generate is a stable 3d structure of the molecule.\n", + "\n", + "This colab uses GEOM datasets that have multiple 3d targets per configuration, which provide more compelling targets for generative methods.\n", + "\n", + "> Colab made by [natolambert](https://twitter.com/natolambert).\n", + "\n", + "![diffusers_library](https://github.com/huggingface/diffusers/raw/main/docs/source/imgs/diffusers_library.jpg)\n" + ] }, { - "data": { - "application/vnd.google.colaboratory.intrinsic+json": { - "type": "string" + "cell_type": "markdown", + "metadata": { + "id": "7cnwXMocnuzB" }, - "text/plain": [ - "'1.8.2'" + "source": [ + "## Installations\n", + "\n" ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import torch\n", - "\n", - "\n", - "print(torch.cuda.is_available())\n", - "torch.__version__" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "KLE7CqlfJNUO" - }, - "source": [ - "### Install Chemistry-specific Dependencies\n", - "\n", - "Install RDKit, a tool for working with and visualizing chemsitry in python (you use this to visualize the generate models later)." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "0CPv_NvehRz3", - "outputId": "6ee0ae4e-4511-4816-de29-22b1c21d49bc" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n", - "Collecting rdkit\n", - " Downloading rdkit-2022.3.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.8 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m36.8/36.8 MB\u001b[0m \u001b[31m34.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: Pillow in /usr/local/lib/python3.7/site-packages (from rdkit) (9.2.0)\n", - "Requirement already satisfied: numpy in /usr/local/lib/python3.7/site-packages (from rdkit) (1.21.6)\n", - "Installing collected packages: rdkit\n", - "Successfully installed rdkit-2022.3.5\n", - "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n", - "\u001b[0m" - ] - } - ], - "source": [ - "!pip install rdkit" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "88GaDbDPxJ5I" - }, - "source": [ - "### Get viewer from nglview\n", - "\n", - "The model you will use outputs a position matrix tensor. This pytorch geometric data object will have many features (positions, known features, edge features -- all tensors).\n", - "The data we give to the model will also have a rdmol object (which can extract features to geometric if needed).\n", - "The rdmol in this object is a source of ground truth for the generated molecules.\n", - "\n", - "You will use one rendering function from nglviewer later!\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 1000 - }, - "id": "jcl8GCS2mz6t", - "outputId": "99b5cc40-67bb-4d8e-faa0-47d7cb33e98f" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n", - "Collecting nglview\n", - " Downloading nglview-3.0.3.tar.gz (5.7 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m5.7/5.7 MB\u001b[0m \u001b[31m91.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25h Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n", - " Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n", - " Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", - "Requirement already satisfied: numpy in /usr/local/lib/python3.7/site-packages (from nglview) (1.21.6)\n", - "Collecting jupyterlab-widgets\n", - " Downloading jupyterlab_widgets-3.0.3-py3-none-any.whl (384 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m384.1/384.1 kB\u001b[0m \u001b[31m40.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting ipywidgets>=7\n", - " Downloading ipywidgets-8.0.2-py3-none-any.whl (134 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m134.4/134.4 kB\u001b[0m \u001b[31m21.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting widgetsnbextension~=4.0\n", - " Downloading widgetsnbextension-4.0.3-py3-none-any.whl (2.0 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.0/2.0 MB\u001b[0m \u001b[31m84.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting ipython>=6.1.0\n", - " Downloading ipython-7.34.0-py3-none-any.whl (793 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m793.8/793.8 kB\u001b[0m \u001b[31m60.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting ipykernel>=4.5.1\n", - " Downloading ipykernel-6.16.0-py3-none-any.whl (138 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m138.4/138.4 kB\u001b[0m \u001b[31m20.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting traitlets>=4.3.1\n", - " Downloading traitlets-5.4.0-py3-none-any.whl (107 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m107.1/107.1 kB\u001b[0m \u001b[31m17.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: packaging in /usr/local/lib/python3.7/site-packages (from ipykernel>=4.5.1->ipywidgets>=7->nglview) (21.3)\n", - "Collecting pyzmq>=17\n", - " Downloading pyzmq-24.0.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.1 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.1/1.1 MB\u001b[0m \u001b[31m68.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting matplotlib-inline>=0.1\n", - " Downloading matplotlib_inline-0.1.6-py3-none-any.whl (9.4 kB)\n", - "Collecting tornado>=6.1\n", - " Downloading tornado-6.2-cp37-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (423 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m424.0/424.0 kB\u001b[0m \u001b[31m41.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting nest-asyncio\n", - " Downloading nest_asyncio-1.5.6-py3-none-any.whl (5.2 kB)\n", - "Collecting debugpy>=1.0\n", - " Downloading debugpy-1.6.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.8 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.8/1.8 MB\u001b[0m \u001b[31m83.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting psutil\n", - " Downloading psutil-5.9.2-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (281 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m281.3/281.3 kB\u001b[0m \u001b[31m33.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting jupyter-client>=6.1.12\n", - " Downloading jupyter_client-7.4.2-py3-none-any.whl (132 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m132.2/132.2 kB\u001b[0m \u001b[31m19.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting pickleshare\n", - " Downloading pickleshare-0.7.5-py2.py3-none-any.whl (6.9 kB)\n", - "Requirement already satisfied: setuptools>=18.5 in /usr/local/lib/python3.7/site-packages (from ipython>=6.1.0->ipywidgets>=7->nglview) (59.8.0)\n", - "Collecting backcall\n", - " Downloading backcall-0.2.0-py2.py3-none-any.whl (11 kB)\n", - "Collecting pexpect>4.3\n", - " Downloading pexpect-4.8.0-py2.py3-none-any.whl (59 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m59.0/59.0 kB\u001b[0m \u001b[31m7.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting pygments\n", - " Downloading Pygments-2.13.0-py3-none-any.whl (1.1 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.1/1.1 MB\u001b[0m \u001b[31m70.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting jedi>=0.16\n", - " Downloading jedi-0.18.1-py2.py3-none-any.whl (1.6 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.6/1.6 MB\u001b[0m \u001b[31m83.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0\n", - " Downloading prompt_toolkit-3.0.31-py3-none-any.whl (382 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m382.3/382.3 kB\u001b[0m \u001b[31m40.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: decorator in /usr/local/lib/python3.7/site-packages (from ipython>=6.1.0->ipywidgets>=7->nglview) (4.4.2)\n", - "Collecting parso<0.9.0,>=0.8.0\n", - " Downloading parso-0.8.3-py2.py3-none-any.whl (100 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m100.8/100.8 kB\u001b[0m \u001b[31m14.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hRequirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.7/site-packages (from jupyter-client>=6.1.12->ipykernel>=4.5.1->ipywidgets>=7->nglview) (2.8.2)\n", - "Collecting entrypoints\n", - " Downloading entrypoints-0.4-py3-none-any.whl (5.3 kB)\n", - "Collecting jupyter-core>=4.9.2\n", - " Downloading jupyter_core-4.11.1-py3-none-any.whl (88 kB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m88.4/88.4 kB\u001b[0m \u001b[31m14.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25hCollecting ptyprocess>=0.5\n", - " Downloading ptyprocess-0.7.0-py2.py3-none-any.whl (13 kB)\n", - "Collecting wcwidth\n", - " Downloading wcwidth-0.2.5-py2.py3-none-any.whl (30 kB)\n", - "Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.7/site-packages (from packaging->ipykernel>=4.5.1->ipywidgets>=7->nglview) (3.0.9)\n", - "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/site-packages (from python-dateutil>=2.8.2->jupyter-client>=6.1.12->ipykernel>=4.5.1->ipywidgets>=7->nglview) (1.16.0)\n", - "Building wheels for collected packages: nglview\n", - " Building wheel for nglview (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", - " Created wheel for nglview: filename=nglview-3.0.3-py3-none-any.whl size=8057538 sha256=b7e1071bb91822e48515bf27f4e6b197c6e85e06b90912b3439edc8be1e29514\n", - " Stored in directory: /root/.cache/pip/wheels/01/0c/49/c6f79d8edba8fe89752bf20de2d99040bfa57db0548975c5d5\n", - "Successfully built nglview\n", - "Installing collected packages: wcwidth, ptyprocess, pickleshare, backcall, widgetsnbextension, traitlets, tornado, pyzmq, pygments, psutil, prompt-toolkit, pexpect, parso, nest-asyncio, jupyterlab-widgets, entrypoints, debugpy, matplotlib-inline, jupyter-core, jedi, jupyter-client, ipython, ipykernel, ipywidgets, nglview\n", - "Successfully installed backcall-0.2.0 debugpy-1.6.3 entrypoints-0.4 ipykernel-6.16.0 ipython-7.34.0 ipywidgets-8.0.2 jedi-0.18.1 jupyter-client-7.4.2 jupyter-core-4.11.1 jupyterlab-widgets-3.0.3 matplotlib-inline-0.1.6 nest-asyncio-1.5.6 nglview-3.0.3 parso-0.8.3 pexpect-4.8.0 pickleshare-0.7.5 prompt-toolkit-3.0.31 psutil-5.9.2 ptyprocess-0.7.0 pygments-2.13.0 pyzmq-24.0.1 tornado-6.2 traitlets-5.4.0 wcwidth-0.2.5 widgetsnbextension-4.0.3\n", - "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n", - "\u001b[0m" - ] - }, - { - "data": { - "application/vnd.colab-display-data+json": { - "pip_warning": { - "packages": [ - "pexpect", - "pickleshare", - "wcwidth" - ] - } + }, + { + "cell_type": "markdown", + "source": [ + "### Install Conda" + ], + "metadata": { + "id": "ff9SxWnaNId9" } - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "!pip install nglview" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "8t8_e_uVLdKB" - }, - "source": [ - "## Create a diffusion model" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "G0rMncVtNSqU" - }, - "source": [ - "### Model class(es)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "L5FEXz5oXkzt" - }, - "source": [ - "Imports" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "-3-P4w5sXkRU" - }, - "outputs": [], - "source": [ - "# Model adapted from GeoDiff https://github.com/MinkaiXu/GeoDiff\n", - "# Model inspired by https://github.com/DeepGraphLearning/torchdrug/tree/master/torchdrug/models\n", - "from dataclasses import dataclass\n", - "from typing import Callable, Tuple, Union\n", - "\n", - "import numpy as np\n", - "import torch\n", - "import torch.nn.functional as F\n", - "from torch import Tensor, nn\n", - "from torch.nn import Embedding, Linear, Module, ModuleList, Sequential\n", - "from torch_geometric.nn import MessagePassing, radius, radius_graph\n", - "from torch_geometric.typing import Adj, OptPairTensor, OptTensor, Size\n", - "from torch_geometric.utils import dense_to_sparse, to_dense_adj\n", - "from torch_scatter import scatter_add\n", - "from torch_sparse import SparseTensor, coalesce\n", - "\n", - "from diffusers.configuration_utils import ConfigMixin, register_to_config\n", - "from diffusers.modeling_utils import ModelMixin\n", - "from diffusers.utils import BaseOutput\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "EzJQXPN_XrMX" - }, - "source": [ - "Helper classes" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "oR1Y56QiLY90" - }, - "outputs": [], - "source": [ - "@dataclass\n", - "class MoleculeGNNOutput(BaseOutput):\n", - " \"\"\"\n", - " Args:\n", - " sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)`):\n", - " Hidden states output. Output of last layer of model.\n", - " \"\"\"\n", - "\n", - " sample: torch.Tensor\n", - "\n", - "\n", - "class MultiLayerPerceptron(nn.Module):\n", - " \"\"\"\n", - " Multi-layer Perceptron. Note there is no activation or dropout in the last layer.\n", - " Args:\n", - " input_dim (int): input dimension\n", - " hidden_dim (list of int): hidden dimensions\n", - " activation (str or function, optional): activation function\n", - " dropout (float, optional): dropout rate\n", - " \"\"\"\n", - "\n", - " def __init__(self, input_dim, hidden_dims, activation=\"relu\", dropout=0):\n", - " super(MultiLayerPerceptron, self).__init__()\n", - "\n", - " self.dims = [input_dim] + hidden_dims\n", - " if isinstance(activation, str):\n", - " self.activation = getattr(F, activation)\n", - " else:\n", - " print(f\"Warning, activation passed {activation} is not string and ignored\")\n", - " self.activation = None\n", - " if dropout > 0:\n", - " self.dropout = nn.Dropout(dropout)\n", - " else:\n", - " self.dropout = None\n", - "\n", - " self.layers = nn.ModuleList()\n", - " for i in range(len(self.dims) - 1):\n", - " self.layers.append(nn.Linear(self.dims[i], self.dims[i + 1]))\n", - "\n", - " def forward(self, x):\n", - " \"\"\"\"\"\"\n", - " for i, layer in enumerate(self.layers):\n", - " x = layer(x)\n", - " if i < len(self.layers) - 1:\n", - " if self.activation:\n", - " x = self.activation(x)\n", - " if self.dropout:\n", - " x = self.dropout(x)\n", - " return x\n", - "\n", - "\n", - "class ShiftedSoftplus(torch.nn.Module):\n", - " def __init__(self):\n", - " super(ShiftedSoftplus, self).__init__()\n", - " self.shift = torch.log(torch.tensor(2.0)).item()\n", - "\n", - " def forward(self, x):\n", - " return F.softplus(x) - self.shift\n", - "\n", - "\n", - "class CFConv(MessagePassing):\n", - " def __init__(self, in_channels, out_channels, num_filters, mlp, cutoff, smooth):\n", - " super(CFConv, self).__init__(aggr=\"add\")\n", - " self.lin1 = Linear(in_channels, num_filters, bias=False)\n", - " self.lin2 = Linear(num_filters, out_channels)\n", - " self.nn = mlp\n", - " self.cutoff = cutoff\n", - " self.smooth = smooth\n", - "\n", - " self.reset_parameters()\n", - "\n", - " def reset_parameters(self):\n", - " torch.nn.init.xavier_uniform_(self.lin1.weight)\n", - " torch.nn.init.xavier_uniform_(self.lin2.weight)\n", - " self.lin2.bias.data.fill_(0)\n", - "\n", - " def forward(self, x, edge_index, edge_length, edge_attr):\n", - " if self.smooth:\n", - " C = 0.5 * (torch.cos(edge_length * np.pi / self.cutoff) + 1.0)\n", - " C = C * (edge_length <= self.cutoff) * (edge_length >= 0.0) # Modification: cutoff\n", - " else:\n", - " C = (edge_length <= self.cutoff).float()\n", - " W = self.nn(edge_attr) * C.view(-1, 1)\n", - "\n", - " x = self.lin1(x)\n", - " x = self.propagate(edge_index, x=x, W=W)\n", - " x = self.lin2(x)\n", - " return x\n", - "\n", - " def message(self, x_j: torch.Tensor, W) -> torch.Tensor:\n", - " return x_j * W\n", - "\n", - "\n", - "class InteractionBlock(torch.nn.Module):\n", - " def __init__(self, hidden_channels, num_gaussians, num_filters, cutoff, smooth):\n", - " super(InteractionBlock, self).__init__()\n", - " mlp = Sequential(\n", - " Linear(num_gaussians, num_filters),\n", - " ShiftedSoftplus(),\n", - " Linear(num_filters, num_filters),\n", - " )\n", - " self.conv = CFConv(hidden_channels, hidden_channels, num_filters, mlp, cutoff, smooth)\n", - " self.act = ShiftedSoftplus()\n", - " self.lin = Linear(hidden_channels, hidden_channels)\n", - "\n", - " def forward(self, x, edge_index, edge_length, edge_attr):\n", - " x = self.conv(x, edge_index, edge_length, edge_attr)\n", - " x = self.act(x)\n", - " x = self.lin(x)\n", - " return x\n", - "\n", - "\n", - "class SchNetEncoder(Module):\n", - " def __init__(\n", - " self, hidden_channels=128, num_filters=128, num_interactions=6, edge_channels=100, cutoff=10.0, smooth=False\n", - " ):\n", - " super().__init__()\n", - "\n", - " self.hidden_channels = hidden_channels\n", - " self.num_filters = num_filters\n", - " self.num_interactions = num_interactions\n", - " self.cutoff = cutoff\n", - "\n", - " self.embedding = Embedding(100, hidden_channels, max_norm=10.0)\n", - "\n", - " self.interactions = ModuleList()\n", - " for _ in range(num_interactions):\n", - " block = InteractionBlock(hidden_channels, edge_channels, num_filters, cutoff, smooth)\n", - " self.interactions.append(block)\n", - "\n", - " def forward(self, z, edge_index, edge_length, edge_attr, embed_node=True):\n", - " if embed_node:\n", - " assert z.dim() == 1 and z.dtype == torch.long\n", - " h = self.embedding(z)\n", - " else:\n", - " h = z\n", - " for interaction in self.interactions:\n", - " h = h + interaction(h, edge_index, edge_length, edge_attr)\n", - "\n", - " return h\n", - "\n", - "\n", - "class GINEConv(MessagePassing):\n", - " \"\"\"\n", - " Custom class of the graph isomorphism operator from the \"How Powerful are Graph Neural Networks?\n", - " https://arxiv.org/abs/1810.00826 paper. Note that this implementation has the added option of a custom activation.\n", - " \"\"\"\n", - "\n", - " def __init__(self, mlp: Callable, eps: float = 0.0, train_eps: bool = False, activation=\"softplus\", **kwargs):\n", - " super(GINEConv, self).__init__(aggr=\"add\", **kwargs)\n", - " self.nn = mlp\n", - " self.initial_eps = eps\n", - "\n", - " if isinstance(activation, str):\n", - " self.activation = getattr(F, activation)\n", - " else:\n", - " self.activation = None\n", - "\n", - " if train_eps:\n", - " self.eps = torch.nn.Parameter(torch.Tensor([eps]))\n", - " else:\n", - " self.register_buffer(\"eps\", torch.Tensor([eps]))\n", - "\n", - " def forward(\n", - " self, x: Union[Tensor, OptPairTensor], edge_index: Adj, edge_attr: OptTensor = None, size: Size = None\n", - " ) -> torch.Tensor:\n", - " \"\"\"\"\"\"\n", - " if isinstance(x, torch.Tensor):\n", - " x: OptPairTensor = (x, x)\n", - "\n", - " # Node and edge feature dimensionalites need to match.\n", - " if isinstance(edge_index, torch.Tensor):\n", - " assert edge_attr is not None\n", - " assert x[0].size(-1) == edge_attr.size(-1)\n", - " elif isinstance(edge_index, SparseTensor):\n", - " assert x[0].size(-1) == edge_index.size(-1)\n", - "\n", - " # propagate_type: (x: OptPairTensor, edge_attr: OptTensor)\n", - " out = self.propagate(edge_index, x=x, edge_attr=edge_attr, size=size)\n", - "\n", - " x_r = x[1]\n", - " if x_r is not None:\n", - " out += (1 + self.eps) * x_r\n", - "\n", - " return self.nn(out)\n", - "\n", - " def message(self, x_j: torch.Tensor, edge_attr: torch.Tensor) -> torch.Tensor:\n", - " if self.activation:\n", - " return self.activation(x_j + edge_attr)\n", - " else:\n", - " return x_j + edge_attr\n", - "\n", - " def __repr__(self):\n", - " return \"{}(nn={})\".format(self.__class__.__name__, self.nn)\n", - "\n", - "\n", - "class GINEncoder(torch.nn.Module):\n", - " def __init__(self, hidden_dim, num_convs=3, activation=\"relu\", short_cut=True, concat_hidden=False):\n", - " super().__init__()\n", - "\n", - " self.hidden_dim = hidden_dim\n", - " self.num_convs = num_convs\n", - " self.short_cut = short_cut\n", - " self.concat_hidden = concat_hidden\n", - " self.node_emb = nn.Embedding(100, hidden_dim)\n", - "\n", - " if isinstance(activation, str):\n", - " self.activation = getattr(F, activation)\n", - " else:\n", - " self.activation = None\n", - "\n", - " self.convs = nn.ModuleList()\n", - " for i in range(self.num_convs):\n", - " self.convs.append(\n", - " GINEConv(\n", - " MultiLayerPerceptron(hidden_dim, [hidden_dim, hidden_dim], activation=activation),\n", - " activation=activation,\n", - " )\n", - " )\n", - "\n", - " def forward(self, z, edge_index, edge_attr):\n", - " \"\"\"\n", - " Input:\n", - " data: (torch_geometric.data.Data): batched graph edge_index: bond indices of the original graph (num_node,\n", - " hidden) edge_attr: edge feature tensor with shape (num_edge, hidden)\n", - " Output:\n", - " node_feature: graph feature\n", - " \"\"\"\n", - "\n", - " node_attr = self.node_emb(z) # (num_node, hidden)\n", - "\n", - " hiddens = []\n", - " conv_input = node_attr # (num_node, hidden)\n", - "\n", - " for conv_idx, conv in enumerate(self.convs):\n", - " hidden = conv(conv_input, edge_index, edge_attr)\n", - " if conv_idx < len(self.convs) - 1 and self.activation is not None:\n", - " hidden = self.activation(hidden)\n", - " assert hidden.shape == conv_input.shape\n", - " if self.short_cut and hidden.shape == conv_input.shape:\n", - " hidden += conv_input\n", - "\n", - " hiddens.append(hidden)\n", - " conv_input = hidden\n", - "\n", - " if self.concat_hidden:\n", - " node_feature = torch.cat(hiddens, dim=-1)\n", - " else:\n", - " node_feature = hiddens[-1]\n", - "\n", - " return node_feature\n", - "\n", - "\n", - "class MLPEdgeEncoder(Module):\n", - " def __init__(self, hidden_dim=100, activation=\"relu\"):\n", - " super().__init__()\n", - " self.hidden_dim = hidden_dim\n", - " self.bond_emb = Embedding(100, embedding_dim=self.hidden_dim)\n", - " self.mlp = MultiLayerPerceptron(1, [self.hidden_dim, self.hidden_dim], activation=activation)\n", - "\n", - " @property\n", - " def out_channels(self):\n", - " return self.hidden_dim\n", - "\n", - " def forward(self, edge_length, edge_type):\n", - " \"\"\"\n", - " Input:\n", - " edge_length: The length of edges, shape=(E, 1). edge_type: The type pf edges, shape=(E,)\n", - " Returns:\n", - " edge_attr: The representation of edges. (E, 2 * num_gaussians)\n", - " \"\"\"\n", - " d_emb = self.mlp(edge_length) # (num_edge, hidden_dim)\n", - " edge_attr = self.bond_emb(edge_type) # (num_edge, hidden_dim)\n", - " return d_emb * edge_attr # (num_edge, hidden)\n", - "\n", - "\n", - "def assemble_atom_pair_feature(node_attr, edge_index, edge_attr):\n", - " h_row, h_col = node_attr[edge_index[0]], node_attr[edge_index[1]]\n", - " h_pair = torch.cat([h_row * h_col, edge_attr], dim=-1) # (E, 2H)\n", - " return h_pair\n", - "\n", - "\n", - "def _extend_graph_order(num_nodes, edge_index, edge_type, order=3):\n", - " \"\"\"\n", - " Args:\n", - " num_nodes: Number of atoms.\n", - " edge_index: Bond indices of the original graph.\n", - " edge_type: Bond types of the original graph.\n", - " order: Extension order.\n", - " Returns:\n", - " new_edge_index: Extended edge indices. new_edge_type: Extended edge types.\n", - " \"\"\"\n", - "\n", - " def binarize(x):\n", - " return torch.where(x > 0, torch.ones_like(x), torch.zeros_like(x))\n", - "\n", - " def get_higher_order_adj_matrix(adj, order):\n", - " \"\"\"\n", - " Args:\n", - " adj: (N, N)\n", - " type_mat: (N, N)\n", - " Returns:\n", - " Following attributes will be updated:\n", - " - edge_index\n", - " - edge_type\n", - " Following attributes will be added to the data object:\n", - " - bond_edge_index: Original edge_index.\n", - " \"\"\"\n", - " adj_mats = [\n", - " torch.eye(adj.size(0), dtype=torch.long, device=adj.device),\n", - " binarize(adj + torch.eye(adj.size(0), dtype=torch.long, device=adj.device)),\n", - " ]\n", - "\n", - " for i in range(2, order + 1):\n", - " adj_mats.append(binarize(adj_mats[i - 1] @ adj_mats[1]))\n", - " order_mat = torch.zeros_like(adj)\n", - "\n", - " for i in range(1, order + 1):\n", - " order_mat += (adj_mats[i] - adj_mats[i - 1]) * i\n", - "\n", - " return order_mat\n", - "\n", - " num_types = 22\n", - " # given from len(BOND_TYPES), where BOND_TYPES = {t: i for i, t in enumerate(BT.names.values())}\n", - " # from rdkit.Chem.rdchem import BondType as BT\n", - " N = num_nodes\n", - " adj = to_dense_adj(edge_index).squeeze(0)\n", - " adj_order = get_higher_order_adj_matrix(adj, order) # (N, N)\n", - "\n", - " type_mat = to_dense_adj(edge_index, edge_attr=edge_type).squeeze(0) # (N, N)\n", - " type_highorder = torch.where(adj_order > 1, num_types + adj_order - 1, torch.zeros_like(adj_order))\n", - " assert (type_mat * type_highorder == 0).all()\n", - " type_new = type_mat + type_highorder\n", - "\n", - " new_edge_index, new_edge_type = dense_to_sparse(type_new)\n", - " _, edge_order = dense_to_sparse(adj_order)\n", - "\n", - " # data.bond_edge_index = data.edge_index # Save original edges\n", - " new_edge_index, new_edge_type = coalesce(new_edge_index, new_edge_type.long(), N, N) # modify data\n", - "\n", - " return new_edge_index, new_edge_type\n", - "\n", - "\n", - "def _extend_to_radius_graph(pos, edge_index, edge_type, cutoff, batch, unspecified_type_number=0, is_sidechain=None):\n", - " assert edge_type.dim() == 1\n", - " N = pos.size(0)\n", - "\n", - " bgraph_adj = torch.sparse.LongTensor(edge_index, edge_type, torch.Size([N, N]))\n", - "\n", - " if is_sidechain is None:\n", - " rgraph_edge_index = radius_graph(pos, r=cutoff, batch=batch) # (2, E_r)\n", - " else:\n", - " # fetch sidechain and its batch index\n", - " is_sidechain = is_sidechain.bool()\n", - " dummy_index = torch.arange(pos.size(0), device=pos.device)\n", - " sidechain_pos = pos[is_sidechain]\n", - " sidechain_index = dummy_index[is_sidechain]\n", - " sidechain_batch = batch[is_sidechain]\n", - "\n", - " assign_index = radius(x=pos, y=sidechain_pos, r=cutoff, batch_x=batch, batch_y=sidechain_batch)\n", - " r_edge_index_x = assign_index[1]\n", - " r_edge_index_y = assign_index[0]\n", - " r_edge_index_y = sidechain_index[r_edge_index_y]\n", - "\n", - " rgraph_edge_index1 = torch.stack((r_edge_index_x, r_edge_index_y)) # (2, E)\n", - " rgraph_edge_index2 = torch.stack((r_edge_index_y, r_edge_index_x)) # (2, E)\n", - " rgraph_edge_index = torch.cat((rgraph_edge_index1, rgraph_edge_index2), dim=-1) # (2, 2E)\n", - " # delete self loop\n", - " rgraph_edge_index = rgraph_edge_index[:, (rgraph_edge_index[0] != rgraph_edge_index[1])]\n", - "\n", - " rgraph_adj = torch.sparse.LongTensor(\n", - " rgraph_edge_index,\n", - " torch.ones(rgraph_edge_index.size(1)).long().to(pos.device) * unspecified_type_number,\n", - " torch.Size([N, N]),\n", - " )\n", - "\n", - " composed_adj = (bgraph_adj + rgraph_adj).coalesce() # Sparse (N, N, T)\n", - "\n", - " new_edge_index = composed_adj.indices()\n", - " new_edge_type = composed_adj.values().long()\n", - "\n", - " return new_edge_index, new_edge_type\n", - "\n", - "\n", - "def extend_graph_order_radius(\n", - " num_nodes,\n", - " pos,\n", - " edge_index,\n", - " edge_type,\n", - " batch,\n", - " order=3,\n", - " cutoff=10.0,\n", - " extend_order=True,\n", - " extend_radius=True,\n", - " is_sidechain=None,\n", - "):\n", - " if extend_order:\n", - " edge_index, edge_type = _extend_graph_order(\n", - " num_nodes=num_nodes, edge_index=edge_index, edge_type=edge_type, order=order\n", - " )\n", - "\n", - " if extend_radius:\n", - " edge_index, edge_type = _extend_to_radius_graph(\n", - " pos=pos, edge_index=edge_index, edge_type=edge_type, cutoff=cutoff, batch=batch, is_sidechain=is_sidechain\n", - " )\n", - "\n", - " return edge_index, edge_type\n", - "\n", - "\n", - "def get_distance(pos, edge_index):\n", - " return (pos[edge_index[0]] - pos[edge_index[1]]).norm(dim=-1)\n", - "\n", - "\n", - "def graph_field_network(score_d, pos, edge_index, edge_length):\n", - " \"\"\"\n", - " Transformation to make the epsilon predicted from the diffusion model roto-translational equivariant. See equations\n", - " 5-7 of the GeoDiff Paper https://arxiv.org/pdf/2203.02923.pdf\n", - " \"\"\"\n", - " N = pos.size(0)\n", - " dd_dr = (1.0 / edge_length) * (pos[edge_index[0]] - pos[edge_index[1]]) # (E, 3)\n", - " score_pos = scatter_add(dd_dr * score_d, edge_index[0], dim=0, dim_size=N) + scatter_add(\n", - " -dd_dr * score_d, edge_index[1], dim=0, dim_size=N\n", - " ) # (N, 3)\n", - " return score_pos\n", - "\n", - "\n", - "def clip_norm(vec, limit, p=2):\n", - " norm = torch.norm(vec, dim=-1, p=2, keepdim=True)\n", - " denom = torch.where(norm > limit, limit / norm, torch.ones_like(norm))\n", - " return vec * denom\n", - "\n", - "\n", - "def is_local_edge(edge_type):\n", - " return edge_type > 0\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "QWrHJFcYXyUB" - }, - "source": [ - "Main model class!" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "MCeZA1qQXzoK" - }, - "outputs": [], - "source": [ - "class MoleculeGNN(ModelMixin, ConfigMixin):\n", - " @register_to_config\n", - " def __init__(\n", - " self,\n", - " hidden_dim=128,\n", - " num_convs=6,\n", - " num_convs_local=4,\n", - " cutoff=10.0,\n", - " mlp_act=\"relu\",\n", - " edge_order=3,\n", - " edge_encoder=\"mlp\",\n", - " smooth_conv=True,\n", - " ):\n", - " super().__init__()\n", - " self.cutoff = cutoff\n", - " self.edge_encoder = edge_encoder\n", - " self.edge_order = edge_order\n", - "\n", - " \"\"\"\n", - " edge_encoder: Takes both edge type and edge length as input and outputs a vector [Note]: node embedding is done\n", - " in SchNetEncoder\n", - " \"\"\"\n", - " self.edge_encoder_global = MLPEdgeEncoder(hidden_dim, mlp_act) # get_edge_encoder(config)\n", - " self.edge_encoder_local = MLPEdgeEncoder(hidden_dim, mlp_act) # get_edge_encoder(config)\n", - "\n", - " \"\"\"\n", - " The graph neural network that extracts node-wise features.\n", - " \"\"\"\n", - " self.encoder_global = SchNetEncoder(\n", - " hidden_channels=hidden_dim,\n", - " num_filters=hidden_dim,\n", - " num_interactions=num_convs,\n", - " edge_channels=self.edge_encoder_global.out_channels,\n", - " cutoff=cutoff,\n", - " smooth=smooth_conv,\n", - " )\n", - " self.encoder_local = GINEncoder(\n", - " hidden_dim=hidden_dim,\n", - " num_convs=num_convs_local,\n", - " )\n", - "\n", - " \"\"\"\n", - " `output_mlp` takes a mixture of two nodewise features and edge features as input and outputs\n", - " gradients w.r.t. edge_length (out_dim = 1).\n", - " \"\"\"\n", - " self.grad_global_dist_mlp = MultiLayerPerceptron(\n", - " 2 * hidden_dim, [hidden_dim, hidden_dim // 2, 1], activation=mlp_act\n", - " )\n", - "\n", - " self.grad_local_dist_mlp = MultiLayerPerceptron(\n", - " 2 * hidden_dim, [hidden_dim, hidden_dim // 2, 1], activation=mlp_act\n", - " )\n", - "\n", - " \"\"\"\n", - " Incorporate parameters together\n", - " \"\"\"\n", - " self.model_global = nn.ModuleList([self.edge_encoder_global, self.encoder_global, self.grad_global_dist_mlp])\n", - " self.model_local = nn.ModuleList([self.edge_encoder_local, self.encoder_local, self.grad_local_dist_mlp])\n", - "\n", - " def _forward(\n", - " self,\n", - " atom_type,\n", - " pos,\n", - " bond_index,\n", - " bond_type,\n", - " batch,\n", - " time_step, # NOTE, model trained without timestep performed best\n", - " edge_index=None,\n", - " edge_type=None,\n", - " edge_length=None,\n", - " return_edges=False,\n", - " extend_order=True,\n", - " extend_radius=True,\n", - " is_sidechain=None,\n", - " ):\n", - " \"\"\"\n", - " Args:\n", - " atom_type: Types of atoms, (N, ).\n", - " bond_index: Indices of bonds (not extended, not radius-graph), (2, E).\n", - " bond_type: Bond types, (E, ).\n", - " batch: Node index to graph index, (N, ).\n", - " \"\"\"\n", - " N = atom_type.size(0)\n", - " if edge_index is None or edge_type is None or edge_length is None:\n", - " edge_index, edge_type = extend_graph_order_radius(\n", - " num_nodes=N,\n", - " pos=pos,\n", - " edge_index=bond_index,\n", - " edge_type=bond_type,\n", - " batch=batch,\n", - " order=self.edge_order,\n", - " cutoff=self.cutoff,\n", - " extend_order=extend_order,\n", - " extend_radius=extend_radius,\n", - " is_sidechain=is_sidechain,\n", - " )\n", - " edge_length = get_distance(pos, edge_index).unsqueeze(-1) # (E, 1)\n", - " local_edge_mask = is_local_edge(edge_type) # (E, )\n", - "\n", - " # with the parameterization of NCSNv2\n", - " # DDPM loss implicit handle the noise variance scale conditioning\n", - " sigma_edge = torch.ones(size=(edge_index.size(1), 1), device=pos.device) # (E, 1)\n", - "\n", - " # Encoding global\n", - " edge_attr_global = self.edge_encoder_global(edge_length=edge_length, edge_type=edge_type) # Embed edges\n", - "\n", - " # Global\n", - " node_attr_global = self.encoder_global(\n", - " z=atom_type,\n", - " edge_index=edge_index,\n", - " edge_length=edge_length,\n", - " edge_attr=edge_attr_global,\n", - " )\n", - " # Assemble pairwise features\n", - " h_pair_global = assemble_atom_pair_feature(\n", - " node_attr=node_attr_global,\n", - " edge_index=edge_index,\n", - " edge_attr=edge_attr_global,\n", - " ) # (E_global, 2H)\n", - " # Invariant features of edges (radius graph, global)\n", - " edge_inv_global = self.grad_global_dist_mlp(h_pair_global) * (1.0 / sigma_edge) # (E_global, 1)\n", - "\n", - " # Encoding local\n", - " edge_attr_local = self.edge_encoder_global(edge_length=edge_length, edge_type=edge_type) # Embed edges\n", - " # edge_attr += temb_edge\n", - "\n", - " # Local\n", - " node_attr_local = self.encoder_local(\n", - " z=atom_type,\n", - " edge_index=edge_index[:, local_edge_mask],\n", - " edge_attr=edge_attr_local[local_edge_mask],\n", - " )\n", - " # Assemble pairwise features\n", - " h_pair_local = assemble_atom_pair_feature(\n", - " node_attr=node_attr_local,\n", - " edge_index=edge_index[:, local_edge_mask],\n", - " edge_attr=edge_attr_local[local_edge_mask],\n", - " ) # (E_local, 2H)\n", - "\n", - " # Invariant features of edges (bond graph, local)\n", - " if isinstance(sigma_edge, torch.Tensor):\n", - " edge_inv_local = self.grad_local_dist_mlp(h_pair_local) * (\n", - " 1.0 / sigma_edge[local_edge_mask]\n", - " ) # (E_local, 1)\n", - " else:\n", - " edge_inv_local = self.grad_local_dist_mlp(h_pair_local) * (1.0 / sigma_edge) # (E_local, 1)\n", - "\n", - " if return_edges:\n", - " return edge_inv_global, edge_inv_local, edge_index, edge_type, edge_length, local_edge_mask\n", - " else:\n", - " return edge_inv_global, edge_inv_local\n", - "\n", - " def forward(\n", - " self,\n", - " sample,\n", - " timestep: Union[torch.Tensor, float, int],\n", - " return_dict: bool = True,\n", - " sigma=1.0,\n", - " global_start_sigma=0.5,\n", - " w_global=1.0,\n", - " extend_order=False,\n", - " extend_radius=True,\n", - " clip_local=None,\n", - " clip_global=1000.0,\n", - " ) -> Union[MoleculeGNNOutput, Tuple]:\n", - " r\"\"\"\n", - " Args:\n", - " sample: packed torch geometric object\n", - " timestep (`torch.Tensor` or `float` or `int): TODO verify type and shape (batch) timesteps\n", - " return_dict (`bool`, *optional*, defaults to `True`):\n", - " Whether or not to return a [`~models.molecule_gnn.MoleculeGNNOutput`] instead of a plain tuple.\n", - " Returns:\n", - " [`~models.molecule_gnn.MoleculeGNNOutput`] or `tuple`: [`~models.molecule_gnn.MoleculeGNNOutput`] if\n", - " `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.\n", - " \"\"\"\n", - "\n", - " # unpack sample\n", - " atom_type = sample.atom_type\n", - " bond_index = sample.edge_index\n", - " bond_type = sample.edge_type\n", - " num_graphs = sample.num_graphs\n", - " pos = sample.pos\n", - "\n", - " timesteps = torch.full(size=(num_graphs,), fill_value=timestep, dtype=torch.long, device=pos.device)\n", - "\n", - " edge_inv_global, edge_inv_local, edge_index, edge_type, edge_length, local_edge_mask = self._forward(\n", - " atom_type=atom_type,\n", - " pos=sample.pos,\n", - " bond_index=bond_index,\n", - " bond_type=bond_type,\n", - " batch=sample.batch,\n", - " time_step=timesteps,\n", - " return_edges=True,\n", - " extend_order=extend_order,\n", - " extend_radius=extend_radius,\n", - " ) # (E_global, 1), (E_local, 1)\n", - "\n", - " # Important equation in the paper for equivariant features - eqns 5-7 of GeoDiff\n", - " node_eq_local = graph_field_network(\n", - " edge_inv_local, pos, edge_index[:, local_edge_mask], edge_length[local_edge_mask]\n", - " )\n", - " if clip_local is not None:\n", - " node_eq_local = clip_norm(node_eq_local, limit=clip_local)\n", - "\n", - " # Global\n", - " if sigma < global_start_sigma:\n", - " edge_inv_global = edge_inv_global * (1 - local_edge_mask.view(-1, 1).float())\n", - " node_eq_global = graph_field_network(edge_inv_global, pos, edge_index, edge_length)\n", - " node_eq_global = clip_norm(node_eq_global, limit=clip_global)\n", - " else:\n", - " node_eq_global = 0\n", - "\n", - " # Sum\n", - " eps_pos = node_eq_local + node_eq_global * w_global\n", - "\n", - " if not return_dict:\n", - " return (-eps_pos,)\n", - "\n", - " return MoleculeGNNOutput(sample=torch.Tensor(-eps_pos).to(pos.device))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "CCIrPYSJj9wd" - }, - "source": [ - "### Load pretrained model" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "YdrAr6Ch--Ab" - }, - "source": [ - "#### Load a model\n", - "The model used is a design an\n", - "equivariant convolutional layer, named graph field network (GFN).\n", - "\n", - "The warning about `betas` and `alphas` can be ignored, those were moved to the scheduler." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 172, - "referenced_widgets": [ - "d90f304e9560472eacfbdd11e46765eb", - "1c6246f15b654f4daa11c9bcf997b78c", - "c2321b3bff6f490ca12040a20308f555", - "b7feb522161f4cf4b7cc7c1a078ff12d", - "e2d368556e494ae7ae4e2e992af2cd4f", - "bbef741e76ec41b7ab7187b487a383df", - "561f742d418d4721b0670cc8dd62e22c", - "872915dd1bb84f538c44e26badabafdd", - "d022575f1fa2446d891650897f187b4d", - "fdc393f3468c432aa0ada05e238a5436", - "2c9362906e4b40189f16d14aa9a348da", - "6010fc8daa7a44d5aec4b830ec2ebaa1", - "7e0bb1b8d65249d3974200686b193be2", - "ba98aa6d6a884e4ab8bbb5dfb5e4cf7a", - "6526646be5ed415c84d1245b040e629b", - "24d31fc3576e43dd9f8301d2ef3a37ab", - "2918bfaadc8d4b1a9832522c40dfefb8", - "a4bfdca35cc54dae8812720f1b276a08", - "e4901541199b45c6a18824627692fc39", - "f915cf874246446595206221e900b2fe", - "a9e388f22a9742aaaf538e22575c9433", - "42f6c3db29d7484ba6b4f73590abd2f4" - ] - }, - "id": "DyCo0nsqjbml", - "outputId": "d6bce9d5-c51e-43a4-e680-e1e81bdfaf45" - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "d90f304e9560472eacfbdd11e46765eb", - "version_major": 2, - "version_minor": 0 + }, + { + "cell_type": "markdown", + "metadata": { + "id": "1g_6zOabItDk" }, - "text/plain": [ - "Downloading: 0%| | 0.00/3.27M [00:00] 124.78K 180KB/s in 0.7s \n", - "\n", - "2022-10-12 18:32:20 (180 KB/s) - ‘molecules.pkl’ saved [127774/127774]\n", - "\n" - ] - } - ], - "source": [ - "import torch\n", - "\n", - "\n", - "!wget https://huggingface.co/datasets/fusing/geodiff-example-data/resolve/main/data/molecules.pkl\n", - "dataset = torch.load('/content/molecules.pkl')" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "QZcmy1EvKQRk" - }, - "source": [ - "Print out one entry of the dataset, it contains molecular formulas, atom types, positions, and more." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" }, - "id": "JVjz6iH_H6Eh", - "outputId": "898cb0cf-a0b3-411b-fd4c-bea1fbfd17fe" - }, - "outputs": [ { - "data": { - "text/plain": [ - "Data(atom_type=[51], bond_edge_index=[2, 108], edge_index=[2, 598], edge_order=[598], edge_type=[598], idx=[1], is_bond=[598], num_nodes_per_graph=[1], num_pos_ref=[1], nx=, pos=[51, 3], pos_ref=[255, 3], rdmol=, smiles=\"CC1CCCN(C(=O)C2CCN(S(=O)(=O)c3cccc4nonc34)CC2)C1\")" + "cell_type": "markdown", + "metadata": { + "id": "VfthW90vI0nw" + }, + "source": [ + "Install Conda for some more complex dependencies for geometric networks." ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dataset[0]" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "vHNiZAUxNgoy" - }, - "source": [ - "## Run the diffusion process" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "jZ1KZrxKqENg" - }, - "source": [ - "#### Helper Functions" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "s240tYueqKKf" - }, - "outputs": [], - "source": [ - "import copy\n", - "import os\n", - "\n", - "from torch_geometric.data import Batch, Data\n", - "from torch_scatter import scatter_mean\n", - "from tqdm import tqdm\n", - "\n", - "\n", - "def repeat_data(data: Data, num_repeat) -> Batch:\n", - " datas = [copy.deepcopy(data) for i in range(num_repeat)]\n", - " return Batch.from_data_list(datas)\n", - "\n", - "def repeat_batch(batch: Batch, num_repeat) -> Batch:\n", - " datas = batch.to_data_list()\n", - " new_data = []\n", - " for i in range(num_repeat):\n", - " new_data += copy.deepcopy(datas)\n", - " return Batch.from_data_list(new_data)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "AMnQTk0eqT7Z" - }, - "source": [ - "#### Constants" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "WYGkzqgzrHmF" - }, - "outputs": [], - "source": [ - "num_samples = 1 # solutions per molecule\n", - "num_molecules = 3\n", - "\n", - "DEVICE = 'cuda'\n", - "sampling_type = 'ddpm_noisy' #'' # paper also uses \"generalize\" and \"ld\"\n", - "# constants for inference\n", - "w_global = 0.5 #0,.3 for qm9\n", - "global_start_sigma = 0.5\n", - "eta = 1.0\n", - "clip_local = None\n", - "clip_pos = None\n", - "\n", - "# constands for data handling\n", - "save_traj = False\n", - "save_data = False\n", - "output_dir = '/content/'" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "-xD5bJ3SqM7t" - }, - "source": [ - "#### Generate samples!\n", - "Note that the 3d representation of a molecule is referred to as the **conformation**" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "x9xuLUNg26z1", - "outputId": "236d2a60-09ed-4c4d-97c1-6e3c0f2d26c4" - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:4: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n", - " after removing the cwd from sys.path.\n", - "100%|██████████| 5/5 [00:55<00:00, 11.06s/it]\n" - ] - } - ], - "source": [ - "results = []\n", - "\n", - "# define sigmas\n", - "sigmas = torch.tensor(1.0 - scheduler.alphas_cumprod).sqrt() / torch.tensor(scheduler.alphas_cumprod).sqrt()\n", - "sigmas = sigmas.to(DEVICE)\n", - "\n", - "for count, data in enumerate(tqdm(dataset)):\n", - " num_samples = max(data.pos_ref.size(0) // data.num_nodes, 1)\n", - "\n", - " data_input = data.clone()\n", - " data_input['pos_ref'] = None\n", - " batch = repeat_data(data_input, num_samples).to(DEVICE)\n", - "\n", - " # initial configuration\n", - " pos_init = torch.randn(batch.num_nodes, 3).to(DEVICE)\n", - "\n", - " # for logging animation of denoising\n", - " pos_traj = []\n", - " with torch.no_grad():\n", - "\n", - " # scale initial sample\n", - " pos = pos_init * sigmas[-1]\n", - " for t in scheduler.timesteps:\n", - " batch.pos = pos\n", - "\n", - " # generate geometry with model, then filter it\n", - " epsilon = model.forward(batch, t, sigma=sigmas[t], return_dict=False)[0]\n", - "\n", - " # Update\n", - " reconstructed_pos = scheduler.step(epsilon, t, pos)[\"prev_sample\"].to(DEVICE)\n", - "\n", - " pos = reconstructed_pos\n", - "\n", - " if torch.isnan(pos).any():\n", - " print(\"NaN detected. Please restart.\")\n", - " raise FloatingPointError()\n", - "\n", - " # recenter graph of positions for next iteration\n", - " pos = pos - scatter_mean(pos, batch.batch, dim=0)[batch.batch]\n", - "\n", - " # optional clipping\n", - " if clip_pos is not None:\n", - " pos = torch.clamp(pos, min=-clip_pos, max=clip_pos)\n", - " pos_traj.append(pos.clone().cpu())\n", - "\n", - " pos_gen = pos.cpu()\n", - " if save_traj:\n", - " pos_gen_traj = pos_traj.cpu()\n", - " data.pos_gen = torch.stack(pos_gen_traj)\n", - " else:\n", - " data.pos_gen = pos_gen\n", - " results.append(data)\n", - "\n", - "\n", - "if save_data:\n", - " save_path = os.path.join(output_dir, 'samples_all.pkl')\n", - "\n", - " with open(save_path, 'wb') as f:\n", - " pickle.dump(results, f)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "fSApwSaZNndW" - }, - "source": [ - "## Render the results!" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "d47Zxo2OKdgZ" - }, - "source": [ - "This function allows us to render 3d in colab." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "e9Cd0kCAv9b8" - }, - "outputs": [], - "source": [ - "from google.colab import output\n", - "\n", - "\n", - "output.enable_custom_widget_manager()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "RjaVuR15NqzF" - }, - "source": [ - "### Helper functions" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "28rBYa9NKhlz" - }, - "source": [ - "Here is a helper function for copying the generated tensors into a format used by RDKit & NGLViewer." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "LKdKdwxcyTQ6" - }, - "outputs": [], - "source": [ - "from copy import deepcopy\n", - "\n", - "\n", - "def set_rdmol_positions(rdkit_mol, pos):\n", - " \"\"\"\n", - " Args:\n", - " rdkit_mol: An `rdkit.Chem.rdchem.Mol` object.\n", - " pos: (N_atoms, 3)\n", - " \"\"\"\n", - " mol = deepcopy(rdkit_mol)\n", - " set_rdmol_positions_(mol, pos)\n", - " return mol\n", - "\n", - "def set_rdmol_positions_(mol, pos):\n", - " \"\"\"\n", - " Args:\n", - " rdkit_mol: An `rdkit.Chem.rdchem.Mol` object.\n", - " pos: (N_atoms, 3)\n", - " \"\"\"\n", - " for i in range(pos.shape[0]):\n", - " mol.GetConformer(0).SetAtomPosition(i, pos[i].tolist())\n", - " return mol\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "NuE10hcpKmzK" - }, - "source": [ - "Process the generated data to make it easy to view." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "KieVE1vc0_Vs", - "outputId": "6faa185d-b1bc-47e8-be18-30d1e557e7c8" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "collect 5 generated molecules in `mols`\n" - ] - } - ], - "source": [ - "# the model can generate multiple conformations per 2d geometry\n", - "num_gen = results[0]['pos_gen'].shape[0]\n", - "\n", - "# init storage objects\n", - "mols_gen = []\n", - "mols_orig = []\n", - "for to_process in results:\n", - "\n", - " # store the reference 3d position\n", - " to_process['pos_ref'] = to_process['pos_ref'].reshape(-1, to_process['rdmol'].GetNumAtoms(), 3)\n", - "\n", - " # store the generated 3d position\n", - " to_process['pos_gen'] = to_process['pos_gen'].reshape(-1, to_process['rdmol'].GetNumAtoms(), 3)\n", - "\n", - " # copy data to new object\n", - " new_mol = set_rdmol_positions(to_process.rdmol, to_process['pos_gen'][0])\n", - "\n", - " # append results\n", - " mols_gen.append(new_mol)\n", - " mols_orig.append(to_process.rdmol)\n", - "\n", - "print(f\"collect {len(mols_gen)} generated molecules in `mols`\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "tin89JwMKp4v" - }, - "source": [ - "Import tools to visualize the 2d chemical diagram of the molecule." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "yqV6gllSZn38" - }, - "outputs": [], - "source": [ - "from IPython.display import SVG, display\n", - "from rdkit import Chem\n", - "from rdkit.Chem.Draw import rdMolDraw2D as MD2" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "TFNKmGddVoOk" - }, - "source": [ - "Select molecule to visualize" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "KzuwLlrrVaGc" - }, - "outputs": [], - "source": [ - "idx = 0\n", - "assert idx < len(results), \"selected molecule that was not generated\"" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "hkb8w0_SNtU8" - }, - "source": [ - "### Viewing" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "I3R4QBQeKttN" - }, - "source": [ - "This 2D rendering is the equivalent of the **input to the model**!" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 321 - }, - "id": "gkQRWjraaKex", - "outputId": "9c3d1a91-a51d-475d-9e34-2be2459abc47" - }, - "outputs": [ - { - "data": { - "image/svg+xml": "\n\n \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n", - "text/plain": [ - "" + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "2WNFzSnbiE0k", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "690d0d4d-9d0a-4ead-c6dc-086f113f532f" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n", + "\u001b[0m" + ] + } + ], + "source": [ + "!pip install -q condacolab" ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "mc = Chem.MolFromSmiles(dataset[0]['smiles'])\n", - "molSize=(450,300)\n", - "drawer = MD2.MolDraw2DSVG(molSize[0],molSize[1])\n", - "drawer.DrawMolecule(mc)\n", - "drawer.FinishDrawing()\n", - "svg = drawer.GetDrawingText()\n", - "display(SVG(svg.replace('svg:','')))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "z4FDMYMxKw2I" - }, - "source": [ - "Generate the 3d molecule!" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 17, - "referenced_widgets": [ - "695ab5bbf30a4ab19df1f9f33469f314", - "eac6a8dcdc9d4335a2e51031793ead29" - ] - }, - "id": "aT1Bkb8YxJfV", - "outputId": "b98870ae-049d-4386-b676-166e9526bda2" - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "695ab5bbf30a4ab19df1f9f33469f314", - "version_major": 2, - "version_minor": 0 + }, + { + "cell_type": "markdown", + "metadata": { + "id": "NUsbWYCUI7Km" }, - "text/plain": [] - }, - "metadata": { - "application/vnd.jupyter.widget-view+json": { - "colab": { - "custom_widget_manager": { - "url": "https://ssl.gstatic.com/colaboratory-static/widgets/colab-cdn-widget-manager/d2e234f7cc04bf79/manager.min.js" + "source": [ + "Setup Conda" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "FZelreINdmd0", + "outputId": "635f0cb8-0af4-499f-e0a4-b3790cb12e9f" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "✨🍰✨ Everything looks OK!\n" + ] } - } - } - }, - "output_type": "display_data" - } - ], - "source": [ - "from nglview import show_rdkit as show" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 337, - "referenced_widgets": [ - "be446195da2b4ff2aec21ec5ff963a54", - "c6596896148b4a8a9c57963b67c7782f", - "2489b5e5648541fbbdceadb05632a050", - "01e0ba4e5da04914b4652b8d58565d7b", - "c30e6c2f3e2a44dbbb3d63bd519acaa4", - "f31c6e40e9b2466a9064a2669933ecd5", - "19308ccac642498ab8b58462e3f1b0bb", - "4a081cdc2ec3421ca79dd933b7e2b0c4", - "e5c0d75eb5e1447abd560c8f2c6017e1", - "5146907ef6764654ad7d598baebc8b58", - "144ec959b7604a2cabb5ca46ae5e5379", - "abce2a80e6304df3899109c6d6cac199", - "65195cb7a4134f4887e9dd19f3676462" - ] - }, - "id": "pxtq8I-I18C-", - "outputId": "72ed63ac-d2ec-4f5c-a0b1-4e7c1840a4e7" - }, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "be446195da2b4ff2aec21ec5ff963a54", - "version_major": 2, - "version_minor": 0 + ], + "source": [ + "import condacolab\n", + "condacolab.install()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "JzDHaPU7I9Sn" }, - "text/plain": [ - "NGLWidget()" + "source": [ + "Install pytorch requirements (this takes a few minutes, go grab yourself a coffee 🤗)" ] - }, - "metadata": { - "application/vnd.jupyter.widget-view+json": { - "colab": { - "custom_widget_manager": { - "url": "https://ssl.gstatic.com/colaboratory-static/widgets/colab-cdn-widget-manager/d2e234f7cc04bf79/manager.min.js" + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "JMxRjHhL7w8V", + "outputId": "6ed511b3-9262-49e8-b340-08e76b05ebd8" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Collecting package metadata (current_repodata.json): - \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\bdone\n", + "Solving environment: \\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\bdone\n", + "\n", + "## Package Plan ##\n", + "\n", + " environment location: /usr/local\n", + "\n", + " added / updated specs:\n", + " - cudatoolkit=11.1\n", + " - pytorch\n", + " - torchaudio\n", + " - torchvision\n", + "\n", + "\n", + "The following packages will be downloaded:\n", + "\n", + " package | build\n", + " ---------------------------|-----------------\n", + " conda-22.9.0 | py37h89c1867_1 960 KB conda-forge\n", + " ------------------------------------------------------------\n", + " Total: 960 KB\n", + "\n", + "The following packages will be UPDATED:\n", + "\n", + " conda 4.14.0-py37h89c1867_0 --> 22.9.0-py37h89c1867_1\n", + "\n", + "\n", + "\n", + "Downloading and Extracting Packages\n", + "conda-22.9.0 | 960 KB | : 100% 1.0/1 [00:00<00:00, 4.15it/s]\n", + "Preparing transaction: / \b\bdone\n", + "Verifying transaction: \\ \b\bdone\n", + "Executing transaction: / \b\bdone\n", + "Retrieving notices: ...working... done\n" + ] } - } + ], + "source": [ + "!conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch-lts -c nvidia\n", + "# !conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=11.1 -c pytorch -c conda-forge" + ] + }, + { + "cell_type": "markdown", + "source": [ + "Need to remove a pathspec for colab that specifies the incorrect cuda version." + ], + "metadata": { + "id": "QDS6FPZ0Tu5b" } - }, - "output_type": "display_data" - } - ], - "source": [ - "# new molecule\n", - "show(mols_gen[idx])" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "KJr4h2mwXeTo" - }, - "outputs": [], - "source": [] - } - ], - "metadata": { - "accelerator": "GPU", - "colab": { - "provenance": [] - }, - "gpuClass": "standard", - "kernelspec": { - "display_name": "Python 3", - "name": "python3" - }, - "language_info": { - "name": "python" - }, - "widgets": { - "application/vnd.jupyter.widget-state+json": { - "01e0ba4e5da04914b4652b8d58565d7b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e5c0d75eb5e1447abd560c8f2c6017e1", - "IPY_MODEL_5146907ef6764654ad7d598baebc8b58" + }, + { + "cell_type": "code", + "source": [ + "!rm /usr/local/conda-meta/pinned" ], - "layout": "IPY_MODEL_144ec959b7604a2cabb5ca46ae5e5379" - } - }, - "144ec959b7604a2cabb5ca46ae5e5379": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "19308ccac642498ab8b58462e3f1b0bb": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "1c6246f15b654f4daa11c9bcf997b78c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_bbef741e76ec41b7ab7187b487a383df", - "placeholder": "​", - "style": "IPY_MODEL_561f742d418d4721b0670cc8dd62e22c", - "value": "Downloading: 100%" - } - }, - "2489b5e5648541fbbdceadb05632a050": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ButtonModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ButtonModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ButtonView", - "button_style": "", - "description": "", - "disabled": false, - "icon": "compress", - "layout": "IPY_MODEL_abce2a80e6304df3899109c6d6cac199", - "style": "IPY_MODEL_65195cb7a4134f4887e9dd19f3676462", - "tooltip": "" - } - }, - "24d31fc3576e43dd9f8301d2ef3a37ab": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "2918bfaadc8d4b1a9832522c40dfefb8": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "2c9362906e4b40189f16d14aa9a348da": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "42f6c3db29d7484ba6b4f73590abd2f4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "4a081cdc2ec3421ca79dd933b7e2b0c4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "SliderStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "SliderStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "", - "handle_color": null - } - }, - "5146907ef6764654ad7d598baebc8b58": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "IntSliderModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "IntSliderModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "IntSliderView", - "continuous_update": true, - "description": "", - "description_tooltip": null, - "disabled": false, - "layout": "IPY_MODEL_19308ccac642498ab8b58462e3f1b0bb", - "max": 0, - "min": 0, - "orientation": "horizontal", - "readout": true, - "readout_format": "d", - "step": 1, - "style": "IPY_MODEL_4a081cdc2ec3421ca79dd933b7e2b0c4", - "value": 0 - } - }, - "561f742d418d4721b0670cc8dd62e22c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "6010fc8daa7a44d5aec4b830ec2ebaa1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7e0bb1b8d65249d3974200686b193be2", - "IPY_MODEL_ba98aa6d6a884e4ab8bbb5dfb5e4cf7a", - "IPY_MODEL_6526646be5ed415c84d1245b040e629b" + "metadata": { + "id": "dq1lxR10TtrR", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "ed9c5a71-b449-418f-abb7-072b74e7f6c8" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "rm: cannot remove '/usr/local/conda-meta/pinned': No such file or directory\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Z1L3DdZOJB30" + }, + "source": [ + "Install torch geometric (used in the model later)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "D5ukfCOWfjzK", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "8437485a-5aa6-4d53-8f7f-23517ac1ace6" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Collecting package metadata (current_repodata.json): - \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\bdone\n", + "Solving environment: | \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\bdone\n", + "\n", + "## Package Plan ##\n", + "\n", + " environment location: /usr/local\n", + "\n", + " added / updated specs:\n", + " - pytorch-geometric=1.7.2\n", + "\n", + "\n", + "The following packages will be downloaded:\n", + "\n", + " package | build\n", + " ---------------------------|-----------------\n", + " decorator-4.4.2 | py_0 11 KB conda-forge\n", + " googledrivedownloader-0.4 | pyhd3deb0d_1 7 KB conda-forge\n", + " jinja2-3.1.2 | pyhd8ed1ab_1 99 KB conda-forge\n", + " joblib-1.2.0 | pyhd8ed1ab_0 205 KB conda-forge\n", + " markupsafe-2.1.1 | py37h540881e_1 22 KB conda-forge\n", + " networkx-2.5.1 | pyhd8ed1ab_0 1.2 MB conda-forge\n", + " pandas-1.2.3 | py37hdc94413_0 11.8 MB conda-forge\n", + " pyparsing-3.0.9 | pyhd8ed1ab_0 79 KB conda-forge\n", + " python-dateutil-2.8.2 | pyhd8ed1ab_0 240 KB conda-forge\n", + " python-louvain-0.15 | pyhd8ed1ab_1 13 KB conda-forge\n", + " pytorch-cluster-1.5.9 |py37_torch_1.8.0_cu111 1.2 MB rusty1s\n", + " pytorch-geometric-1.7.2 |py37_torch_1.8.0_cu111 445 KB rusty1s\n", + " pytorch-scatter-2.0.8 |py37_torch_1.8.0_cu111 6.1 MB rusty1s\n", + " pytorch-sparse-0.6.12 |py37_torch_1.8.0_cu111 2.9 MB rusty1s\n", + " pytorch-spline-conv-1.2.1 |py37_torch_1.8.0_cu111 736 KB rusty1s\n", + " pytz-2022.4 | pyhd8ed1ab_0 232 KB conda-forge\n", + " scikit-learn-1.0.2 | py37hf9e9bfc_0 7.8 MB conda-forge\n", + " scipy-1.7.3 | py37hf2a6cf1_0 21.8 MB conda-forge\n", + " setuptools-59.8.0 | py37h89c1867_1 1.0 MB conda-forge\n", + " threadpoolctl-3.1.0 | pyh8a188c0_0 18 KB conda-forge\n", + " ------------------------------------------------------------\n", + " Total: 55.9 MB\n", + "\n", + "The following NEW packages will be INSTALLED:\n", + "\n", + " decorator conda-forge/noarch::decorator-4.4.2-py_0 None\n", + " googledrivedownlo~ conda-forge/noarch::googledrivedownloader-0.4-pyhd3deb0d_1 None\n", + " jinja2 conda-forge/noarch::jinja2-3.1.2-pyhd8ed1ab_1 None\n", + " joblib conda-forge/noarch::joblib-1.2.0-pyhd8ed1ab_0 None\n", + " markupsafe conda-forge/linux-64::markupsafe-2.1.1-py37h540881e_1 None\n", + " networkx conda-forge/noarch::networkx-2.5.1-pyhd8ed1ab_0 None\n", + " pandas conda-forge/linux-64::pandas-1.2.3-py37hdc94413_0 None\n", + " pyparsing conda-forge/noarch::pyparsing-3.0.9-pyhd8ed1ab_0 None\n", + " python-dateutil conda-forge/noarch::python-dateutil-2.8.2-pyhd8ed1ab_0 None\n", + " python-louvain conda-forge/noarch::python-louvain-0.15-pyhd8ed1ab_1 None\n", + " pytorch-cluster rusty1s/linux-64::pytorch-cluster-1.5.9-py37_torch_1.8.0_cu111 None\n", + " pytorch-geometric rusty1s/linux-64::pytorch-geometric-1.7.2-py37_torch_1.8.0_cu111 None\n", + " pytorch-scatter rusty1s/linux-64::pytorch-scatter-2.0.8-py37_torch_1.8.0_cu111 None\n", + " pytorch-sparse rusty1s/linux-64::pytorch-sparse-0.6.12-py37_torch_1.8.0_cu111 None\n", + " pytorch-spline-co~ rusty1s/linux-64::pytorch-spline-conv-1.2.1-py37_torch_1.8.0_cu111 None\n", + " pytz conda-forge/noarch::pytz-2022.4-pyhd8ed1ab_0 None\n", + " scikit-learn conda-forge/linux-64::scikit-learn-1.0.2-py37hf9e9bfc_0 None\n", + " scipy conda-forge/linux-64::scipy-1.7.3-py37hf2a6cf1_0 None\n", + " threadpoolctl conda-forge/noarch::threadpoolctl-3.1.0-pyh8a188c0_0 None\n", + "\n", + "The following packages will be DOWNGRADED:\n", + "\n", + " setuptools 65.3.0-py37h89c1867_0 --> 59.8.0-py37h89c1867_1 None\n", + "\n", + "\n", + "\n", + "Downloading and Extracting Packages\n", + "scikit-learn-1.0.2 | 7.8 MB | : 100% 1.0/1 [00:01<00:00, 1.37s/it] \n", + "pytorch-scatter-2.0. | 6.1 MB | : 100% 1.0/1 [00:06<00:00, 6.18s/it]\n", + "pytorch-geometric-1. | 445 KB | : 100% 1.0/1 [00:02<00:00, 2.53s/it]\n", + "scipy-1.7.3 | 21.8 MB | : 100% 1.0/1 [00:03<00:00, 3.06s/it]\n", + "python-dateutil-2.8. | 240 KB | : 100% 1.0/1 [00:00<00:00, 21.48it/s]\n", + "pytorch-spline-conv- | 736 KB | : 100% 1.0/1 [00:01<00:00, 1.00s/it]\n", + "pytorch-sparse-0.6.1 | 2.9 MB | : 100% 1.0/1 [00:07<00:00, 7.51s/it]\n", + "pyparsing-3.0.9 | 79 KB | : 100% 1.0/1 [00:00<00:00, 26.32it/s]\n", + "pytorch-cluster-1.5. | 1.2 MB | : 100% 1.0/1 [00:02<00:00, 2.78s/it]\n", + "jinja2-3.1.2 | 99 KB | : 100% 1.0/1 [00:00<00:00, 20.28it/s]\n", + "decorator-4.4.2 | 11 KB | : 100% 1.0/1 [00:00<00:00, 21.57it/s]\n", + "joblib-1.2.0 | 205 KB | : 100% 1.0/1 [00:00<00:00, 15.04it/s]\n", + "pytz-2022.4 | 232 KB | : 100% 1.0/1 [00:00<00:00, 10.21it/s]\n", + "python-louvain-0.15 | 13 KB | : 100% 1.0/1 [00:00<00:00, 3.34it/s]\n", + "googledrivedownloade | 7 KB | : 100% 1.0/1 [00:00<00:00, 3.33it/s]\n", + "threadpoolctl-3.1.0 | 18 KB | : 100% 1.0/1 [00:00<00:00, 29.40it/s]\n", + "markupsafe-2.1.1 | 22 KB | : 100% 1.0/1 [00:00<00:00, 28.62it/s]\n", + "pandas-1.2.3 | 11.8 MB | : 100% 1.0/1 [00:02<00:00, 2.08s/it] \n", + "networkx-2.5.1 | 1.2 MB | : 100% 1.0/1 [00:01<00:00, 1.39s/it]\n", + "setuptools-59.8.0 | 1.0 MB | : 100% 1.0/1 [00:00<00:00, 4.25it/s]\n", + "Preparing transaction: / \b\b- \b\b\\ \b\bdone\n", + "Verifying transaction: / \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\bdone\n", + "Executing transaction: / \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\b\\ \b\b| \b\b/ \b\b- \b\bdone\n", + "Retrieving notices: ...working... done\n" + ] + } ], - "layout": "IPY_MODEL_24d31fc3576e43dd9f8301d2ef3a37ab" - } - }, - "65195cb7a4134f4887e9dd19f3676462": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ButtonStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ButtonStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "button_color": null, - "font_weight": "" - } - }, - "6526646be5ed415c84d1245b040e629b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a9e388f22a9742aaaf538e22575c9433", - "placeholder": "​", - "style": "IPY_MODEL_42f6c3db29d7484ba6b4f73590abd2f4", - "value": " 401/401 [00:00<00:00, 13.5kB/s]" - } - }, - "695ab5bbf30a4ab19df1f9f33469f314": { - "model_module": "nglview-js-widgets", - "model_module_version": "3.0.1", - "model_name": "ColormakerRegistryModel", - "state": { - "_dom_classes": [], - "_model_module": "nglview-js-widgets", - "_model_module_version": "3.0.1", - "_model_name": "ColormakerRegistryModel", - "_msg_ar": [], - "_msg_q": [], - "_ready": false, - "_view_count": null, - "_view_module": "nglview-js-widgets", - "_view_module_version": "3.0.1", - "_view_name": "ColormakerRegistryView", - "layout": "IPY_MODEL_eac6a8dcdc9d4335a2e51031793ead29" - } - }, - "7e0bb1b8d65249d3974200686b193be2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_2918bfaadc8d4b1a9832522c40dfefb8", - "placeholder": "​", - "style": "IPY_MODEL_a4bfdca35cc54dae8812720f1b276a08", - "value": "Downloading: 100%" - } - }, - "872915dd1bb84f538c44e26badabafdd": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "a4bfdca35cc54dae8812720f1b276a08": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "a9e388f22a9742aaaf538e22575c9433": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "abce2a80e6304df3899109c6d6cac199": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": "34px" - } - }, - "b7feb522161f4cf4b7cc7c1a078ff12d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_fdc393f3468c432aa0ada05e238a5436", - "placeholder": "​", - "style": "IPY_MODEL_2c9362906e4b40189f16d14aa9a348da", - "value": " 3.27M/3.27M [00:01<00:00, 3.25MB/s]" - } - }, - "ba98aa6d6a884e4ab8bbb5dfb5e4cf7a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_e4901541199b45c6a18824627692fc39", - "max": 401, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_f915cf874246446595206221e900b2fe", - "value": 401 - } - }, - "bbef741e76ec41b7ab7187b487a383df": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "be446195da2b4ff2aec21ec5ff963a54": { - "model_module": "nglview-js-widgets", - "model_module_version": "3.0.1", - "model_name": "NGLModel", - "state": { - "_camera_orientation": [ - -15.519693580202304, - -14.065056548036177, - -23.53197484807691, - 0, - -23.357853515109753, - 20.94055073042662, - 2.888695042134944, - 0, - 14.352363398292775, - 18.870825741878015, - -20.744689572909344, - 0, - 0.2724999189376831, - 0.6940000057220459, - -0.3734999895095825, - 1 + "source": [ + "!conda install -c rusty1s pytorch-geometric=1.7.2" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ppxv6Mdkalbc" + }, + "source": [ + "### Install Diffusers" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "mgQA_XN-XGY2", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "85392615-b6a4-4052-9d2a-79604be62c94" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "/content\n", + "Cloning into 'diffusers'...\n", + "remote: Enumerating objects: 9298, done.\u001b[K\n", + "remote: Counting objects: 100% (40/40), done.\u001b[K\n", + "remote: Compressing objects: 100% (23/23), done.\u001b[K\n", + "remote: Total 9298 (delta 17), reused 23 (delta 11), pack-reused 9258\u001b[K\n", + "Receiving objects: 100% (9298/9298), 7.38 MiB | 5.28 MiB/s, done.\n", + "Resolving deltas: 100% (6168/6168), done.\n", + " Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n", + " Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n", + " Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m757.0/757.0 kB\u001b[0m \u001b[31m52.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m163.5/163.5 kB\u001b[0m \u001b[31m21.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m40.8/40.8 kB\u001b[0m \u001b[31m5.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m596.3/596.3 kB\u001b[0m \u001b[31m51.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h Building wheel for diffusers (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", + "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m432.7/432.7 kB\u001b[0m \u001b[31m36.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m5.3/5.3 MB\u001b[0m \u001b[31m90.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m35.3/35.3 MB\u001b[0m \u001b[31m39.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m115.1/115.1 kB\u001b[0m \u001b[31m16.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m948.0/948.0 kB\u001b[0m \u001b[31m63.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m212.2/212.2 kB\u001b[0m \u001b[31m21.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m95.8/95.8 kB\u001b[0m \u001b[31m12.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m140.8/140.8 kB\u001b[0m \u001b[31m18.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.6/7.6 MB\u001b[0m \u001b[31m104.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m148.0/148.0 kB\u001b[0m \u001b[31m20.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m231.3/231.3 kB\u001b[0m \u001b[31m30.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m94.8/94.8 kB\u001b[0m \u001b[31m14.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m58.8/58.8 kB\u001b[0m \u001b[31m8.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n", + "\u001b[0m" + ] + } ], - "_camera_str": "orthographic", - "_dom_classes": [], - "_gui_theme": null, - "_ibtn_fullscreen": "IPY_MODEL_2489b5e5648541fbbdceadb05632a050", - "_igui": null, - "_iplayer": "IPY_MODEL_01e0ba4e5da04914b4652b8d58565d7b", - "_model_module": "nglview-js-widgets", - "_model_module_version": "3.0.1", - "_model_name": "NGLModel", - "_ngl_color_dict": {}, - "_ngl_coordinate_resource": {}, - "_ngl_full_stage_parameters": { - "ambientColor": 14540253, - "ambientIntensity": 0.2, - "backgroundColor": "white", - "cameraEyeSep": 0.3, - "cameraFov": 40, - "cameraType": "perspective", - "clipDist": 10, - "clipFar": 100, - "clipNear": 0, - "fogFar": 100, - "fogNear": 50, - "hoverTimeout": 0, - "impostor": true, - "lightColor": 14540253, - "lightIntensity": 1, - "mousePreset": "default", - "panSpeed": 1, - "quality": "medium", - "rotateSpeed": 2, - "sampleLevel": 0, - "tooltip": true, - "workerDefault": true, - "zoomSpeed": 1.2 + "source": [ + "%cd /content\n", + "\n", + "# install latest HF diffusers (will update to the release once added)\n", + "!git clone https://github.com/huggingface/diffusers.git\n", + "!pip install -q /content/diffusers\n", + "\n", + "# dependencies for diffusers\n", + "!pip install -q datasets transformers" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "LZO6AJKuJKO8" }, - "_ngl_msg_archive": [ - { - "args": [ - { - "binary": false, - "data": "HETATM 1 C1 UNL 1 -0.025 3.128 2.316 1.00 0.00 C \nHETATM 2 H1 UNL 1 0.183 3.657 2.823 1.00 0.00 H \nHETATM 3 C2 UNL 1 0.590 3.559 0.963 1.00 0.00 C \nHETATM 4 C3 UNL 1 0.056 4.479 0.406 1.00 0.00 C \nHETATM 5 C4 UNL 1 -0.219 4.802 -1.065 1.00 0.00 C \nHETATM 6 H2 UNL 1 0.686 4.431 -1.575 1.00 0.00 H \nHETATM 7 H3 UNL 1 -0.524 5.217 -1.274 1.00 0.00 H \nHETATM 8 C5 UNL 1 -1.284 3.766 -1.342 1.00 0.00 C \nHETATM 9 N1 UNL 1 -1.073 2.494 -0.580 1.00 0.00 N \nHETATM 10 C6 UNL 1 -1.909 1.494 -0.964 1.00 0.00 C \nHETATM 11 O1 UNL 1 -2.487 1.531 -2.092 1.00 0.00 O \nHETATM 12 C7 UNL 1 -2.232 0.242 -0.130 1.00 0.00 C \nHETATM 13 C8 UNL 1 -2.161 -1.057 -1.037 1.00 0.00 C \nHETATM 14 C9 UNL 1 -0.744 -1.111 -1.610 1.00 0.00 C \nHETATM 15 N2 UNL 1 0.290 -0.917 -0.628 1.00 0.00 N \nHETATM 16 S1 UNL 1 1.717 -1.597 -0.914 1.00 0.00 S \nHETATM 17 O2 UNL 1 1.960 -1.671 -2.338 1.00 0.00 O \nHETATM 18 O3 UNL 1 2.713 -0.968 -0.082 1.00 0.00 O \nHETATM 19 C10 UNL 1 1.425 -3.170 -0.345 1.00 0.00 C \nHETATM 20 C11 UNL 1 1.225 -4.400 -1.271 1.00 0.00 C \nHETATM 21 C12 UNL 1 1.314 -5.913 -0.895 1.00 0.00 C \nHETATM 22 C13 UNL 1 1.823 -6.229 0.386 1.00 0.00 C \nHETATM 23 C14 UNL 1 2.031 -5.110 1.365 1.00 0.00 C \nHETATM 24 N3 UNL 1 1.850 -5.267 2.712 1.00 0.00 N \nHETATM 25 O4 UNL 1 1.382 -4.029 3.126 1.00 0.00 O \nHETATM 26 N4 UNL 1 1.300 -3.023 2.154 1.00 0.00 N \nHETATM 27 C15 UNL 1 1.731 -3.672 1.032 1.00 0.00 C \nHETATM 28 H4 UNL 1 2.380 -6.874 0.436 1.00 0.00 H \nHETATM 29 H5 UNL 1 0.704 -6.526 -1.420 1.00 0.00 H \nHETATM 30 H6 UNL 1 1.144 -4.035 -2.291 1.00 0.00 H \nHETATM 31 C16 UNL 1 0.044 -0.371 0.685 1.00 0.00 C \nHETATM 32 C17 UNL 1 -1.352 -0.045 1.077 1.00 0.00 C \nHETATM 33 H7 UNL 1 -1.395 0.770 1.768 1.00 0.00 H \nHETATM 34 H8 UNL 1 -1.792 -0.941 1.582 1.00 0.00 H \nHETATM 35 H9 UNL 1 0.583 -1.035 1.393 1.00 0.00 H \nHETATM 36 H10 UNL 1 0.664 0.613 0.663 1.00 0.00 H \nHETATM 37 H11 UNL 1 -0.631 -0.267 -2.335 1.00 0.00 H \nHETATM 38 H12 UNL 1 -0.571 -2.046 -2.098 1.00 0.00 H \nHETATM 39 H13 UNL 1 -2.872 -0.992 -1.826 1.00 0.00 H \nHETATM 40 H14 UNL 1 -2.370 -1.924 -0.444 1.00 0.00 H \nHETATM 41 H15 UNL 1 -3.258 0.364 0.197 1.00 0.00 H \nHETATM 42 C18 UNL 1 0.276 2.337 -0.078 1.00 0.00 C \nHETATM 43 H16 UNL 1 0.514 1.371 0.252 1.00 0.00 H \nHETATM 44 H17 UNL 1 0.988 2.413 -0.949 1.00 0.00 H \nHETATM 45 H18 UNL 1 -1.349 3.451 -2.379 1.00 0.00 H \nHETATM 46 H19 UNL 1 -2.224 4.055 -0.958 1.00 0.00 H \nHETATM 47 H20 UNL 1 0.793 5.486 0.669 1.00 0.00 H \nHETATM 48 H21 UNL 1 -0.849 4.974 0.937 1.00 0.00 H \nHETATM 49 H22 UNL 1 1.667 3.431 1.070 1.00 0.00 H \nHETATM 50 H23 UNL 1 0.379 2.143 2.689 1.00 0.00 H \nHETATM 51 H24 UNL 1 -1.094 2.983 2.223 1.00 0.00 H \nCONECT 1 2 3 50 51\nCONECT 3 4 42 49\nCONECT 4 5 47 48\nCONECT 5 6 7 8\nCONECT 8 9 45 46\nCONECT 9 10 42\nCONECT 10 11 11 12\nCONECT 12 13 32 41\nCONECT 13 14 39 40\nCONECT 14 15 37 38\nCONECT 15 16 31\nCONECT 16 17 17 18 18\nCONECT 16 19\nCONECT 19 20 20 27\nCONECT 20 21 30\nCONECT 21 22 22 29\nCONECT 22 23 28\nCONECT 23 24 24 27\nCONECT 24 25\nCONECT 25 26\nCONECT 26 27 27\nCONECT 31 32 35 36\nCONECT 32 33 34\nCONECT 42 43 44\nEND\n", - "type": "blob" - } - ], - "kwargs": { - "defaultRepresentation": true, - "ext": "pdb" + "source": [ + "Check that torch is installed correctly and utilizing the GPU in the colab" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "gZt7BNi1e1PA", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 53 + }, + "outputId": "a0e1832c-9c02-49aa-cff8-1339e6cdc889" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "True\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'1.8.2'" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + } + }, + "metadata": {}, + "execution_count": 8 + } + ], + "source": [ + "import torch\n", + "print(torch.cuda.is_available())\n", + "torch.__version__" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "KLE7CqlfJNUO" + }, + "source": [ + "### Install Chemistry-specific Dependencies\n", + "\n", + "Install RDKit, a tool for working with and visualizing chemsitry in python (you use this to visualize the generate models later)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "0CPv_NvehRz3", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "6ee0ae4e-4511-4816-de29-22b1c21d49bc" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n", + "Collecting rdkit\n", + " Downloading rdkit-2022.3.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.8 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m36.8/36.8 MB\u001b[0m \u001b[31m34.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: Pillow in /usr/local/lib/python3.7/site-packages (from rdkit) (9.2.0)\n", + "Requirement already satisfied: numpy in /usr/local/lib/python3.7/site-packages (from rdkit) (1.21.6)\n", + "Installing collected packages: rdkit\n", + "Successfully installed rdkit-2022.3.5\n", + "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n", + "\u001b[0m" + ] + } + ], + "source": [ + "!pip install rdkit" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "88GaDbDPxJ5I" + }, + "source": [ + "### Get viewer from nglview\n", + "\n", + "The model you will use outputs a position matrix tensor. This pytorch geometric data object will have many features (positions, known features, edge features -- all tensors).\n", + "The data we give to the model will also have a rdmol object (which can extract features to geometric if needed).\n", + "The rdmol in this object is a source of ground truth for the generated molecules.\n", + "\n", + "You will use one rendering function from nglviewer later!\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "jcl8GCS2mz6t", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "outputId": "99b5cc40-67bb-4d8e-faa0-47d7cb33e98f" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n", + "Collecting nglview\n", + " Downloading nglview-3.0.3.tar.gz (5.7 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m5.7/5.7 MB\u001b[0m \u001b[31m91.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25h Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n", + " Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n", + " Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", + "Requirement already satisfied: numpy in /usr/local/lib/python3.7/site-packages (from nglview) (1.21.6)\n", + "Collecting jupyterlab-widgets\n", + " Downloading jupyterlab_widgets-3.0.3-py3-none-any.whl (384 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m384.1/384.1 kB\u001b[0m \u001b[31m40.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting ipywidgets>=7\n", + " Downloading ipywidgets-8.0.2-py3-none-any.whl (134 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m134.4/134.4 kB\u001b[0m \u001b[31m21.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting widgetsnbextension~=4.0\n", + " Downloading widgetsnbextension-4.0.3-py3-none-any.whl (2.0 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.0/2.0 MB\u001b[0m \u001b[31m84.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting ipython>=6.1.0\n", + " Downloading ipython-7.34.0-py3-none-any.whl (793 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m793.8/793.8 kB\u001b[0m \u001b[31m60.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting ipykernel>=4.5.1\n", + " Downloading ipykernel-6.16.0-py3-none-any.whl (138 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m138.4/138.4 kB\u001b[0m \u001b[31m20.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting traitlets>=4.3.1\n", + " Downloading traitlets-5.4.0-py3-none-any.whl (107 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m107.1/107.1 kB\u001b[0m \u001b[31m17.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: packaging in /usr/local/lib/python3.7/site-packages (from ipykernel>=4.5.1->ipywidgets>=7->nglview) (21.3)\n", + "Collecting pyzmq>=17\n", + " Downloading pyzmq-24.0.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.1 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.1/1.1 MB\u001b[0m \u001b[31m68.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting matplotlib-inline>=0.1\n", + " Downloading matplotlib_inline-0.1.6-py3-none-any.whl (9.4 kB)\n", + "Collecting tornado>=6.1\n", + " Downloading tornado-6.2-cp37-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (423 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m424.0/424.0 kB\u001b[0m \u001b[31m41.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting nest-asyncio\n", + " Downloading nest_asyncio-1.5.6-py3-none-any.whl (5.2 kB)\n", + "Collecting debugpy>=1.0\n", + " Downloading debugpy-1.6.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.8 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.8/1.8 MB\u001b[0m \u001b[31m83.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting psutil\n", + " Downloading psutil-5.9.2-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (281 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m281.3/281.3 kB\u001b[0m \u001b[31m33.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting jupyter-client>=6.1.12\n", + " Downloading jupyter_client-7.4.2-py3-none-any.whl (132 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m132.2/132.2 kB\u001b[0m \u001b[31m19.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting pickleshare\n", + " Downloading pickleshare-0.7.5-py2.py3-none-any.whl (6.9 kB)\n", + "Requirement already satisfied: setuptools>=18.5 in /usr/local/lib/python3.7/site-packages (from ipython>=6.1.0->ipywidgets>=7->nglview) (59.8.0)\n", + "Collecting backcall\n", + " Downloading backcall-0.2.0-py2.py3-none-any.whl (11 kB)\n", + "Collecting pexpect>4.3\n", + " Downloading pexpect-4.8.0-py2.py3-none-any.whl (59 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m59.0/59.0 kB\u001b[0m \u001b[31m7.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting pygments\n", + " Downloading Pygments-2.13.0-py3-none-any.whl (1.1 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.1/1.1 MB\u001b[0m \u001b[31m70.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting jedi>=0.16\n", + " Downloading jedi-0.18.1-py2.py3-none-any.whl (1.6 MB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.6/1.6 MB\u001b[0m \u001b[31m83.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0\n", + " Downloading prompt_toolkit-3.0.31-py3-none-any.whl (382 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m382.3/382.3 kB\u001b[0m \u001b[31m40.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: decorator in /usr/local/lib/python3.7/site-packages (from ipython>=6.1.0->ipywidgets>=7->nglview) (4.4.2)\n", + "Collecting parso<0.9.0,>=0.8.0\n", + " Downloading parso-0.8.3-py2.py3-none-any.whl (100 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m100.8/100.8 kB\u001b[0m \u001b[31m14.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hRequirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.7/site-packages (from jupyter-client>=6.1.12->ipykernel>=4.5.1->ipywidgets>=7->nglview) (2.8.2)\n", + "Collecting entrypoints\n", + " Downloading entrypoints-0.4-py3-none-any.whl (5.3 kB)\n", + "Collecting jupyter-core>=4.9.2\n", + " Downloading jupyter_core-4.11.1-py3-none-any.whl (88 kB)\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m88.4/88.4 kB\u001b[0m \u001b[31m14.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[?25hCollecting ptyprocess>=0.5\n", + " Downloading ptyprocess-0.7.0-py2.py3-none-any.whl (13 kB)\n", + "Collecting wcwidth\n", + " Downloading wcwidth-0.2.5-py2.py3-none-any.whl (30 kB)\n", + "Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.7/site-packages (from packaging->ipykernel>=4.5.1->ipywidgets>=7->nglview) (3.0.9)\n", + "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/site-packages (from python-dateutil>=2.8.2->jupyter-client>=6.1.12->ipykernel>=4.5.1->ipywidgets>=7->nglview) (1.16.0)\n", + "Building wheels for collected packages: nglview\n", + " Building wheel for nglview (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", + " Created wheel for nglview: filename=nglview-3.0.3-py3-none-any.whl size=8057538 sha256=b7e1071bb91822e48515bf27f4e6b197c6e85e06b90912b3439edc8be1e29514\n", + " Stored in directory: /root/.cache/pip/wheels/01/0c/49/c6f79d8edba8fe89752bf20de2d99040bfa57db0548975c5d5\n", + "Successfully built nglview\n", + "Installing collected packages: wcwidth, ptyprocess, pickleshare, backcall, widgetsnbextension, traitlets, tornado, pyzmq, pygments, psutil, prompt-toolkit, pexpect, parso, nest-asyncio, jupyterlab-widgets, entrypoints, debugpy, matplotlib-inline, jupyter-core, jedi, jupyter-client, ipython, ipykernel, ipywidgets, nglview\n", + "Successfully installed backcall-0.2.0 debugpy-1.6.3 entrypoints-0.4 ipykernel-6.16.0 ipython-7.34.0 ipywidgets-8.0.2 jedi-0.18.1 jupyter-client-7.4.2 jupyter-core-4.11.1 jupyterlab-widgets-3.0.3 matplotlib-inline-0.1.6 nest-asyncio-1.5.6 nglview-3.0.3 parso-0.8.3 pexpect-4.8.0 pickleshare-0.7.5 prompt-toolkit-3.0.31 psutil-5.9.2 ptyprocess-0.7.0 pygments-2.13.0 pyzmq-24.0.1 tornado-6.2 traitlets-5.4.0 wcwidth-0.2.5 widgetsnbextension-4.0.3\n", + "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n", + "\u001b[0m" + ] }, - "methodName": "loadFile", - "reconstruc_color_scheme": false, - "target": "Stage", - "type": "call_method" - } + { + "output_type": "display_data", + "data": { + "application/vnd.colab-display-data+json": { + "pip_warning": { + "packages": [ + "pexpect", + "pickleshare", + "wcwidth" + ] + } + } + }, + "metadata": {} + } + ], + "source": [ + "!pip install nglview" + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Create a diffusion model" + ], + "metadata": { + "id": "8t8_e_uVLdKB" + } + }, + { + "cell_type": "markdown", + "source": [ + "### Model class(es)" + ], + "metadata": { + "id": "G0rMncVtNSqU" + } + }, + { + "cell_type": "markdown", + "source": [ + "Imports" + ], + "metadata": { + "id": "L5FEXz5oXkzt" + } + }, + { + "cell_type": "code", + "source": [ + "# Model adapted from GeoDiff https://github.com/MinkaiXu/GeoDiff\n", + "# Model inspired by https://github.com/DeepGraphLearning/torchdrug/tree/master/torchdrug/models\n", + "from dataclasses import dataclass\n", + "from typing import Callable, Tuple, Union\n", + "\n", + "import numpy as np\n", + "import torch\n", + "import torch.nn.functional as F\n", + "from torch import Tensor, nn\n", + "from torch.nn import Embedding, Linear, Module, ModuleList, Sequential\n", + "\n", + "from torch_geometric.nn import MessagePassing, radius, radius_graph\n", + "from torch_geometric.typing import Adj, OptPairTensor, OptTensor, Size\n", + "from torch_geometric.utils import dense_to_sparse, to_dense_adj\n", + "from torch_scatter import scatter_add\n", + "from torch_sparse import SparseTensor, coalesce\n", + "\n", + "from diffusers.configuration_utils import ConfigMixin, register_to_config\n", + "from diffusers.modeling_utils import ModelMixin\n", + "from diffusers.utils import BaseOutput\n" + ], + "metadata": { + "id": "-3-P4w5sXkRU" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "Helper classes" + ], + "metadata": { + "id": "EzJQXPN_XrMX" + } + }, + { + "cell_type": "code", + "source": [ + "@dataclass\n", + "class MoleculeGNNOutput(BaseOutput):\n", + " \"\"\"\n", + " Args:\n", + " sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)`):\n", + " Hidden states output. Output of last layer of model.\n", + " \"\"\"\n", + "\n", + " sample: torch.Tensor\n", + "\n", + "\n", + "class MultiLayerPerceptron(nn.Module):\n", + " \"\"\"\n", + " Multi-layer Perceptron. Note there is no activation or dropout in the last layer.\n", + " Args:\n", + " input_dim (int): input dimension\n", + " hidden_dim (list of int): hidden dimensions\n", + " activation (str or function, optional): activation function\n", + " dropout (float, optional): dropout rate\n", + " \"\"\"\n", + "\n", + " def __init__(self, input_dim, hidden_dims, activation=\"relu\", dropout=0):\n", + " super(MultiLayerPerceptron, self).__init__()\n", + "\n", + " self.dims = [input_dim] + hidden_dims\n", + " if isinstance(activation, str):\n", + " self.activation = getattr(F, activation)\n", + " else:\n", + " print(f\"Warning, activation passed {activation} is not string and ignored\")\n", + " self.activation = None\n", + " if dropout > 0:\n", + " self.dropout = nn.Dropout(dropout)\n", + " else:\n", + " self.dropout = None\n", + "\n", + " self.layers = nn.ModuleList()\n", + " for i in range(len(self.dims) - 1):\n", + " self.layers.append(nn.Linear(self.dims[i], self.dims[i + 1]))\n", + "\n", + " def forward(self, x):\n", + " \"\"\"\"\"\"\n", + " for i, layer in enumerate(self.layers):\n", + " x = layer(x)\n", + " if i < len(self.layers) - 1:\n", + " if self.activation:\n", + " x = self.activation(x)\n", + " if self.dropout:\n", + " x = self.dropout(x)\n", + " return x\n", + "\n", + "\n", + "class ShiftedSoftplus(torch.nn.Module):\n", + " def __init__(self):\n", + " super(ShiftedSoftplus, self).__init__()\n", + " self.shift = torch.log(torch.tensor(2.0)).item()\n", + "\n", + " def forward(self, x):\n", + " return F.softplus(x) - self.shift\n", + "\n", + "\n", + "class CFConv(MessagePassing):\n", + " def __init__(self, in_channels, out_channels, num_filters, mlp, cutoff, smooth):\n", + " super(CFConv, self).__init__(aggr=\"add\")\n", + " self.lin1 = Linear(in_channels, num_filters, bias=False)\n", + " self.lin2 = Linear(num_filters, out_channels)\n", + " self.nn = mlp\n", + " self.cutoff = cutoff\n", + " self.smooth = smooth\n", + "\n", + " self.reset_parameters()\n", + "\n", + " def reset_parameters(self):\n", + " torch.nn.init.xavier_uniform_(self.lin1.weight)\n", + " torch.nn.init.xavier_uniform_(self.lin2.weight)\n", + " self.lin2.bias.data.fill_(0)\n", + "\n", + " def forward(self, x, edge_index, edge_length, edge_attr):\n", + " if self.smooth:\n", + " C = 0.5 * (torch.cos(edge_length * np.pi / self.cutoff) + 1.0)\n", + " C = C * (edge_length <= self.cutoff) * (edge_length >= 0.0) # Modification: cutoff\n", + " else:\n", + " C = (edge_length <= self.cutoff).float()\n", + " W = self.nn(edge_attr) * C.view(-1, 1)\n", + "\n", + " x = self.lin1(x)\n", + " x = self.propagate(edge_index, x=x, W=W)\n", + " x = self.lin2(x)\n", + " return x\n", + "\n", + " def message(self, x_j: torch.Tensor, W) -> torch.Tensor:\n", + " return x_j * W\n", + "\n", + "\n", + "class InteractionBlock(torch.nn.Module):\n", + " def __init__(self, hidden_channels, num_gaussians, num_filters, cutoff, smooth):\n", + " super(InteractionBlock, self).__init__()\n", + " mlp = Sequential(\n", + " Linear(num_gaussians, num_filters),\n", + " ShiftedSoftplus(),\n", + " Linear(num_filters, num_filters),\n", + " )\n", + " self.conv = CFConv(hidden_channels, hidden_channels, num_filters, mlp, cutoff, smooth)\n", + " self.act = ShiftedSoftplus()\n", + " self.lin = Linear(hidden_channels, hidden_channels)\n", + "\n", + " def forward(self, x, edge_index, edge_length, edge_attr):\n", + " x = self.conv(x, edge_index, edge_length, edge_attr)\n", + " x = self.act(x)\n", + " x = self.lin(x)\n", + " return x\n", + "\n", + "\n", + "class SchNetEncoder(Module):\n", + " def __init__(\n", + " self, hidden_channels=128, num_filters=128, num_interactions=6, edge_channels=100, cutoff=10.0, smooth=False\n", + " ):\n", + " super().__init__()\n", + "\n", + " self.hidden_channels = hidden_channels\n", + " self.num_filters = num_filters\n", + " self.num_interactions = num_interactions\n", + " self.cutoff = cutoff\n", + "\n", + " self.embedding = Embedding(100, hidden_channels, max_norm=10.0)\n", + "\n", + " self.interactions = ModuleList()\n", + " for _ in range(num_interactions):\n", + " block = InteractionBlock(hidden_channels, edge_channels, num_filters, cutoff, smooth)\n", + " self.interactions.append(block)\n", + "\n", + " def forward(self, z, edge_index, edge_length, edge_attr, embed_node=True):\n", + " if embed_node:\n", + " assert z.dim() == 1 and z.dtype == torch.long\n", + " h = self.embedding(z)\n", + " else:\n", + " h = z\n", + " for interaction in self.interactions:\n", + " h = h + interaction(h, edge_index, edge_length, edge_attr)\n", + "\n", + " return h\n", + "\n", + "\n", + "class GINEConv(MessagePassing):\n", + " \"\"\"\n", + " Custom class of the graph isomorphism operator from the \"How Powerful are Graph Neural Networks?\n", + " https://arxiv.org/abs/1810.00826 paper. Note that this implementation has the added option of a custom activation.\n", + " \"\"\"\n", + "\n", + " def __init__(self, mlp: Callable, eps: float = 0.0, train_eps: bool = False, activation=\"softplus\", **kwargs):\n", + " super(GINEConv, self).__init__(aggr=\"add\", **kwargs)\n", + " self.nn = mlp\n", + " self.initial_eps = eps\n", + "\n", + " if isinstance(activation, str):\n", + " self.activation = getattr(F, activation)\n", + " else:\n", + " self.activation = None\n", + "\n", + " if train_eps:\n", + " self.eps = torch.nn.Parameter(torch.Tensor([eps]))\n", + " else:\n", + " self.register_buffer(\"eps\", torch.Tensor([eps]))\n", + "\n", + " def forward(\n", + " self, x: Union[Tensor, OptPairTensor], edge_index: Adj, edge_attr: OptTensor = None, size: Size = None\n", + " ) -> torch.Tensor:\n", + " \"\"\"\"\"\"\n", + " if isinstance(x, torch.Tensor):\n", + " x: OptPairTensor = (x, x)\n", + "\n", + " # Node and edge feature dimensionalites need to match.\n", + " if isinstance(edge_index, torch.Tensor):\n", + " assert edge_attr is not None\n", + " assert x[0].size(-1) == edge_attr.size(-1)\n", + " elif isinstance(edge_index, SparseTensor):\n", + " assert x[0].size(-1) == edge_index.size(-1)\n", + "\n", + " # propagate_type: (x: OptPairTensor, edge_attr: OptTensor)\n", + " out = self.propagate(edge_index, x=x, edge_attr=edge_attr, size=size)\n", + "\n", + " x_r = x[1]\n", + " if x_r is not None:\n", + " out += (1 + self.eps) * x_r\n", + "\n", + " return self.nn(out)\n", + "\n", + " def message(self, x_j: torch.Tensor, edge_attr: torch.Tensor) -> torch.Tensor:\n", + " if self.activation:\n", + " return self.activation(x_j + edge_attr)\n", + " else:\n", + " return x_j + edge_attr\n", + "\n", + " def __repr__(self):\n", + " return \"{}(nn={})\".format(self.__class__.__name__, self.nn)\n", + "\n", + "\n", + "class GINEncoder(torch.nn.Module):\n", + " def __init__(self, hidden_dim, num_convs=3, activation=\"relu\", short_cut=True, concat_hidden=False):\n", + " super().__init__()\n", + "\n", + " self.hidden_dim = hidden_dim\n", + " self.num_convs = num_convs\n", + " self.short_cut = short_cut\n", + " self.concat_hidden = concat_hidden\n", + " self.node_emb = nn.Embedding(100, hidden_dim)\n", + "\n", + " if isinstance(activation, str):\n", + " self.activation = getattr(F, activation)\n", + " else:\n", + " self.activation = None\n", + "\n", + " self.convs = nn.ModuleList()\n", + " for i in range(self.num_convs):\n", + " self.convs.append(\n", + " GINEConv(\n", + " MultiLayerPerceptron(hidden_dim, [hidden_dim, hidden_dim], activation=activation),\n", + " activation=activation,\n", + " )\n", + " )\n", + "\n", + " def forward(self, z, edge_index, edge_attr):\n", + " \"\"\"\n", + " Input:\n", + " data: (torch_geometric.data.Data): batched graph edge_index: bond indices of the original graph (num_node,\n", + " hidden) edge_attr: edge feature tensor with shape (num_edge, hidden)\n", + " Output:\n", + " node_feature: graph feature\n", + " \"\"\"\n", + "\n", + " node_attr = self.node_emb(z) # (num_node, hidden)\n", + "\n", + " hiddens = []\n", + " conv_input = node_attr # (num_node, hidden)\n", + "\n", + " for conv_idx, conv in enumerate(self.convs):\n", + " hidden = conv(conv_input, edge_index, edge_attr)\n", + " if conv_idx < len(self.convs) - 1 and self.activation is not None:\n", + " hidden = self.activation(hidden)\n", + " assert hidden.shape == conv_input.shape\n", + " if self.short_cut and hidden.shape == conv_input.shape:\n", + " hidden += conv_input\n", + "\n", + " hiddens.append(hidden)\n", + " conv_input = hidden\n", + "\n", + " if self.concat_hidden:\n", + " node_feature = torch.cat(hiddens, dim=-1)\n", + " else:\n", + " node_feature = hiddens[-1]\n", + "\n", + " return node_feature\n", + "\n", + "\n", + "class MLPEdgeEncoder(Module):\n", + " def __init__(self, hidden_dim=100, activation=\"relu\"):\n", + " super().__init__()\n", + " self.hidden_dim = hidden_dim\n", + " self.bond_emb = Embedding(100, embedding_dim=self.hidden_dim)\n", + " self.mlp = MultiLayerPerceptron(1, [self.hidden_dim, self.hidden_dim], activation=activation)\n", + "\n", + " @property\n", + " def out_channels(self):\n", + " return self.hidden_dim\n", + "\n", + " def forward(self, edge_length, edge_type):\n", + " \"\"\"\n", + " Input:\n", + " edge_length: The length of edges, shape=(E, 1). edge_type: The type pf edges, shape=(E,)\n", + " Returns:\n", + " edge_attr: The representation of edges. (E, 2 * num_gaussians)\n", + " \"\"\"\n", + " d_emb = self.mlp(edge_length) # (num_edge, hidden_dim)\n", + " edge_attr = self.bond_emb(edge_type) # (num_edge, hidden_dim)\n", + " return d_emb * edge_attr # (num_edge, hidden)\n", + "\n", + "\n", + "def assemble_atom_pair_feature(node_attr, edge_index, edge_attr):\n", + " h_row, h_col = node_attr[edge_index[0]], node_attr[edge_index[1]]\n", + " h_pair = torch.cat([h_row * h_col, edge_attr], dim=-1) # (E, 2H)\n", + " return h_pair\n", + "\n", + "\n", + "def _extend_graph_order(num_nodes, edge_index, edge_type, order=3):\n", + " \"\"\"\n", + " Args:\n", + " num_nodes: Number of atoms.\n", + " edge_index: Bond indices of the original graph.\n", + " edge_type: Bond types of the original graph.\n", + " order: Extension order.\n", + " Returns:\n", + " new_edge_index: Extended edge indices. new_edge_type: Extended edge types.\n", + " \"\"\"\n", + "\n", + " def binarize(x):\n", + " return torch.where(x > 0, torch.ones_like(x), torch.zeros_like(x))\n", + "\n", + " def get_higher_order_adj_matrix(adj, order):\n", + " \"\"\"\n", + " Args:\n", + " adj: (N, N)\n", + " type_mat: (N, N)\n", + " Returns:\n", + " Following attributes will be updated:\n", + " - edge_index\n", + " - edge_type\n", + " Following attributes will be added to the data object:\n", + " - bond_edge_index: Original edge_index.\n", + " \"\"\"\n", + " adj_mats = [\n", + " torch.eye(adj.size(0), dtype=torch.long, device=adj.device),\n", + " binarize(adj + torch.eye(adj.size(0), dtype=torch.long, device=adj.device)),\n", + " ]\n", + "\n", + " for i in range(2, order + 1):\n", + " adj_mats.append(binarize(adj_mats[i - 1] @ adj_mats[1]))\n", + " order_mat = torch.zeros_like(adj)\n", + "\n", + " for i in range(1, order + 1):\n", + " order_mat += (adj_mats[i] - adj_mats[i - 1]) * i\n", + "\n", + " return order_mat\n", + "\n", + " num_types = 22\n", + " # given from len(BOND_TYPES), where BOND_TYPES = {t: i for i, t in enumerate(BT.names.values())}\n", + " # from rdkit.Chem.rdchem import BondType as BT\n", + " N = num_nodes\n", + " adj = to_dense_adj(edge_index).squeeze(0)\n", + " adj_order = get_higher_order_adj_matrix(adj, order) # (N, N)\n", + "\n", + " type_mat = to_dense_adj(edge_index, edge_attr=edge_type).squeeze(0) # (N, N)\n", + " type_highorder = torch.where(adj_order > 1, num_types + adj_order - 1, torch.zeros_like(adj_order))\n", + " assert (type_mat * type_highorder == 0).all()\n", + " type_new = type_mat + type_highorder\n", + "\n", + " new_edge_index, new_edge_type = dense_to_sparse(type_new)\n", + " _, edge_order = dense_to_sparse(adj_order)\n", + "\n", + " # data.bond_edge_index = data.edge_index # Save original edges\n", + " new_edge_index, new_edge_type = coalesce(new_edge_index, new_edge_type.long(), N, N) # modify data\n", + "\n", + " return new_edge_index, new_edge_type\n", + "\n", + "\n", + "def _extend_to_radius_graph(pos, edge_index, edge_type, cutoff, batch, unspecified_type_number=0, is_sidechain=None):\n", + " assert edge_type.dim() == 1\n", + " N = pos.size(0)\n", + "\n", + " bgraph_adj = torch.sparse.LongTensor(edge_index, edge_type, torch.Size([N, N]))\n", + "\n", + " if is_sidechain is None:\n", + " rgraph_edge_index = radius_graph(pos, r=cutoff, batch=batch) # (2, E_r)\n", + " else:\n", + " # fetch sidechain and its batch index\n", + " is_sidechain = is_sidechain.bool()\n", + " dummy_index = torch.arange(pos.size(0), device=pos.device)\n", + " sidechain_pos = pos[is_sidechain]\n", + " sidechain_index = dummy_index[is_sidechain]\n", + " sidechain_batch = batch[is_sidechain]\n", + "\n", + " assign_index = radius(x=pos, y=sidechain_pos, r=cutoff, batch_x=batch, batch_y=sidechain_batch)\n", + " r_edge_index_x = assign_index[1]\n", + " r_edge_index_y = assign_index[0]\n", + " r_edge_index_y = sidechain_index[r_edge_index_y]\n", + "\n", + " rgraph_edge_index1 = torch.stack((r_edge_index_x, r_edge_index_y)) # (2, E)\n", + " rgraph_edge_index2 = torch.stack((r_edge_index_y, r_edge_index_x)) # (2, E)\n", + " rgraph_edge_index = torch.cat((rgraph_edge_index1, rgraph_edge_index2), dim=-1) # (2, 2E)\n", + " # delete self loop\n", + " rgraph_edge_index = rgraph_edge_index[:, (rgraph_edge_index[0] != rgraph_edge_index[1])]\n", + "\n", + " rgraph_adj = torch.sparse.LongTensor(\n", + " rgraph_edge_index,\n", + " torch.ones(rgraph_edge_index.size(1)).long().to(pos.device) * unspecified_type_number,\n", + " torch.Size([N, N]),\n", + " )\n", + "\n", + " composed_adj = (bgraph_adj + rgraph_adj).coalesce() # Sparse (N, N, T)\n", + "\n", + " new_edge_index = composed_adj.indices()\n", + " new_edge_type = composed_adj.values().long()\n", + "\n", + " return new_edge_index, new_edge_type\n", + "\n", + "\n", + "def extend_graph_order_radius(\n", + " num_nodes,\n", + " pos,\n", + " edge_index,\n", + " edge_type,\n", + " batch,\n", + " order=3,\n", + " cutoff=10.0,\n", + " extend_order=True,\n", + " extend_radius=True,\n", + " is_sidechain=None,\n", + "):\n", + " if extend_order:\n", + " edge_index, edge_type = _extend_graph_order(\n", + " num_nodes=num_nodes, edge_index=edge_index, edge_type=edge_type, order=order\n", + " )\n", + "\n", + " if extend_radius:\n", + " edge_index, edge_type = _extend_to_radius_graph(\n", + " pos=pos, edge_index=edge_index, edge_type=edge_type, cutoff=cutoff, batch=batch, is_sidechain=is_sidechain\n", + " )\n", + "\n", + " return edge_index, edge_type\n", + "\n", + "\n", + "def get_distance(pos, edge_index):\n", + " return (pos[edge_index[0]] - pos[edge_index[1]]).norm(dim=-1)\n", + "\n", + "\n", + "def graph_field_network(score_d, pos, edge_index, edge_length):\n", + " \"\"\"\n", + " Transformation to make the epsilon predicted from the diffusion model roto-translational equivariant. See equations\n", + " 5-7 of the GeoDiff Paper https://arxiv.org/pdf/2203.02923.pdf\n", + " \"\"\"\n", + " N = pos.size(0)\n", + " dd_dr = (1.0 / edge_length) * (pos[edge_index[0]] - pos[edge_index[1]]) # (E, 3)\n", + " score_pos = scatter_add(dd_dr * score_d, edge_index[0], dim=0, dim_size=N) + scatter_add(\n", + " -dd_dr * score_d, edge_index[1], dim=0, dim_size=N\n", + " ) # (N, 3)\n", + " return score_pos\n", + "\n", + "\n", + "def clip_norm(vec, limit, p=2):\n", + " norm = torch.norm(vec, dim=-1, p=2, keepdim=True)\n", + " denom = torch.where(norm > limit, limit / norm, torch.ones_like(norm))\n", + " return vec * denom\n", + "\n", + "\n", + "def is_local_edge(edge_type):\n", + " return edge_type > 0\n" + ], + "metadata": { + "id": "oR1Y56QiLY90" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "source": [ + "Main model class!" + ], + "metadata": { + "id": "QWrHJFcYXyUB" + } + }, + { + "cell_type": "code", + "source": [ + "class MoleculeGNN(ModelMixin, ConfigMixin):\n", + " @register_to_config\n", + " def __init__(\n", + " self,\n", + " hidden_dim=128,\n", + " num_convs=6,\n", + " num_convs_local=4,\n", + " cutoff=10.0,\n", + " mlp_act=\"relu\",\n", + " edge_order=3,\n", + " edge_encoder=\"mlp\",\n", + " smooth_conv=True,\n", + " ):\n", + " super().__init__()\n", + " self.cutoff = cutoff\n", + " self.edge_encoder = edge_encoder\n", + " self.edge_order = edge_order\n", + "\n", + " \"\"\"\n", + " edge_encoder: Takes both edge type and edge length as input and outputs a vector [Note]: node embedding is done\n", + " in SchNetEncoder\n", + " \"\"\"\n", + " self.edge_encoder_global = MLPEdgeEncoder(hidden_dim, mlp_act) # get_edge_encoder(config)\n", + " self.edge_encoder_local = MLPEdgeEncoder(hidden_dim, mlp_act) # get_edge_encoder(config)\n", + "\n", + " \"\"\"\n", + " The graph neural network that extracts node-wise features.\n", + " \"\"\"\n", + " self.encoder_global = SchNetEncoder(\n", + " hidden_channels=hidden_dim,\n", + " num_filters=hidden_dim,\n", + " num_interactions=num_convs,\n", + " edge_channels=self.edge_encoder_global.out_channels,\n", + " cutoff=cutoff,\n", + " smooth=smooth_conv,\n", + " )\n", + " self.encoder_local = GINEncoder(\n", + " hidden_dim=hidden_dim,\n", + " num_convs=num_convs_local,\n", + " )\n", + "\n", + " \"\"\"\n", + " `output_mlp` takes a mixture of two nodewise features and edge features as input and outputs\n", + " gradients w.r.t. edge_length (out_dim = 1).\n", + " \"\"\"\n", + " self.grad_global_dist_mlp = MultiLayerPerceptron(\n", + " 2 * hidden_dim, [hidden_dim, hidden_dim // 2, 1], activation=mlp_act\n", + " )\n", + "\n", + " self.grad_local_dist_mlp = MultiLayerPerceptron(\n", + " 2 * hidden_dim, [hidden_dim, hidden_dim // 2, 1], activation=mlp_act\n", + " )\n", + "\n", + " \"\"\"\n", + " Incorporate parameters together\n", + " \"\"\"\n", + " self.model_global = nn.ModuleList([self.edge_encoder_global, self.encoder_global, self.grad_global_dist_mlp])\n", + " self.model_local = nn.ModuleList([self.edge_encoder_local, self.encoder_local, self.grad_local_dist_mlp])\n", + "\n", + " def _forward(\n", + " self,\n", + " atom_type,\n", + " pos,\n", + " bond_index,\n", + " bond_type,\n", + " batch,\n", + " time_step, # NOTE, model trained without timestep performed best\n", + " edge_index=None,\n", + " edge_type=None,\n", + " edge_length=None,\n", + " return_edges=False,\n", + " extend_order=True,\n", + " extend_radius=True,\n", + " is_sidechain=None,\n", + " ):\n", + " \"\"\"\n", + " Args:\n", + " atom_type: Types of atoms, (N, ).\n", + " bond_index: Indices of bonds (not extended, not radius-graph), (2, E).\n", + " bond_type: Bond types, (E, ).\n", + " batch: Node index to graph index, (N, ).\n", + " \"\"\"\n", + " N = atom_type.size(0)\n", + " if edge_index is None or edge_type is None or edge_length is None:\n", + " edge_index, edge_type = extend_graph_order_radius(\n", + " num_nodes=N,\n", + " pos=pos,\n", + " edge_index=bond_index,\n", + " edge_type=bond_type,\n", + " batch=batch,\n", + " order=self.edge_order,\n", + " cutoff=self.cutoff,\n", + " extend_order=extend_order,\n", + " extend_radius=extend_radius,\n", + " is_sidechain=is_sidechain,\n", + " )\n", + " edge_length = get_distance(pos, edge_index).unsqueeze(-1) # (E, 1)\n", + " local_edge_mask = is_local_edge(edge_type) # (E, )\n", + "\n", + " # with the parameterization of NCSNv2\n", + " # DDPM loss implicit handle the noise variance scale conditioning\n", + " sigma_edge = torch.ones(size=(edge_index.size(1), 1), device=pos.device) # (E, 1)\n", + "\n", + " # Encoding global\n", + " edge_attr_global = self.edge_encoder_global(edge_length=edge_length, edge_type=edge_type) # Embed edges\n", + "\n", + " # Global\n", + " node_attr_global = self.encoder_global(\n", + " z=atom_type,\n", + " edge_index=edge_index,\n", + " edge_length=edge_length,\n", + " edge_attr=edge_attr_global,\n", + " )\n", + " # Assemble pairwise features\n", + " h_pair_global = assemble_atom_pair_feature(\n", + " node_attr=node_attr_global,\n", + " edge_index=edge_index,\n", + " edge_attr=edge_attr_global,\n", + " ) # (E_global, 2H)\n", + " # Invariant features of edges (radius graph, global)\n", + " edge_inv_global = self.grad_global_dist_mlp(h_pair_global) * (1.0 / sigma_edge) # (E_global, 1)\n", + "\n", + " # Encoding local\n", + " edge_attr_local = self.edge_encoder_global(edge_length=edge_length, edge_type=edge_type) # Embed edges\n", + " # edge_attr += temb_edge\n", + "\n", + " # Local\n", + " node_attr_local = self.encoder_local(\n", + " z=atom_type,\n", + " edge_index=edge_index[:, local_edge_mask],\n", + " edge_attr=edge_attr_local[local_edge_mask],\n", + " )\n", + " # Assemble pairwise features\n", + " h_pair_local = assemble_atom_pair_feature(\n", + " node_attr=node_attr_local,\n", + " edge_index=edge_index[:, local_edge_mask],\n", + " edge_attr=edge_attr_local[local_edge_mask],\n", + " ) # (E_local, 2H)\n", + "\n", + " # Invariant features of edges (bond graph, local)\n", + " if isinstance(sigma_edge, torch.Tensor):\n", + " edge_inv_local = self.grad_local_dist_mlp(h_pair_local) * (\n", + " 1.0 / sigma_edge[local_edge_mask]\n", + " ) # (E_local, 1)\n", + " else:\n", + " edge_inv_local = self.grad_local_dist_mlp(h_pair_local) * (1.0 / sigma_edge) # (E_local, 1)\n", + "\n", + " if return_edges:\n", + " return edge_inv_global, edge_inv_local, edge_index, edge_type, edge_length, local_edge_mask\n", + " else:\n", + " return edge_inv_global, edge_inv_local\n", + "\n", + " def forward(\n", + " self,\n", + " sample,\n", + " timestep: Union[torch.Tensor, float, int],\n", + " return_dict: bool = True,\n", + " sigma=1.0,\n", + " global_start_sigma=0.5,\n", + " w_global=1.0,\n", + " extend_order=False,\n", + " extend_radius=True,\n", + " clip_local=None,\n", + " clip_global=1000.0,\n", + " ) -> Union[MoleculeGNNOutput, Tuple]:\n", + " r\"\"\"\n", + " Args:\n", + " sample: packed torch geometric object\n", + " timestep (`torch.Tensor` or `float` or `int): TODO verify type and shape (batch) timesteps\n", + " return_dict (`bool`, *optional*, defaults to `True`):\n", + " Whether or not to return a [`~models.molecule_gnn.MoleculeGNNOutput`] instead of a plain tuple.\n", + " Returns:\n", + " [`~models.molecule_gnn.MoleculeGNNOutput`] or `tuple`: [`~models.molecule_gnn.MoleculeGNNOutput`] if\n", + " `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.\n", + " \"\"\"\n", + "\n", + " # unpack sample\n", + " atom_type = sample.atom_type\n", + " bond_index = sample.edge_index\n", + " bond_type = sample.edge_type\n", + " num_graphs = sample.num_graphs\n", + " pos = sample.pos\n", + "\n", + " timesteps = torch.full(size=(num_graphs,), fill_value=timestep, dtype=torch.long, device=pos.device)\n", + "\n", + " edge_inv_global, edge_inv_local, edge_index, edge_type, edge_length, local_edge_mask = self._forward(\n", + " atom_type=atom_type,\n", + " pos=sample.pos,\n", + " bond_index=bond_index,\n", + " bond_type=bond_type,\n", + " batch=sample.batch,\n", + " time_step=timesteps,\n", + " return_edges=True,\n", + " extend_order=extend_order,\n", + " extend_radius=extend_radius,\n", + " ) # (E_global, 1), (E_local, 1)\n", + "\n", + " # Important equation in the paper for equivariant features - eqns 5-7 of GeoDiff\n", + " node_eq_local = graph_field_network(\n", + " edge_inv_local, pos, edge_index[:, local_edge_mask], edge_length[local_edge_mask]\n", + " )\n", + " if clip_local is not None:\n", + " node_eq_local = clip_norm(node_eq_local, limit=clip_local)\n", + "\n", + " # Global\n", + " if sigma < global_start_sigma:\n", + " edge_inv_global = edge_inv_global * (1 - local_edge_mask.view(-1, 1).float())\n", + " node_eq_global = graph_field_network(edge_inv_global, pos, edge_index, edge_length)\n", + " node_eq_global = clip_norm(node_eq_global, limit=clip_global)\n", + " else:\n", + " node_eq_global = 0\n", + "\n", + " # Sum\n", + " eps_pos = node_eq_local + node_eq_global * w_global\n", + "\n", + " if not return_dict:\n", + " return (-eps_pos,)\n", + "\n", + " return MoleculeGNNOutput(sample=torch.Tensor(-eps_pos).to(pos.device))" ], - "_ngl_original_stage_parameters": { - "ambientColor": 14540253, - "ambientIntensity": 0.2, - "backgroundColor": "white", - "cameraEyeSep": 0.3, - "cameraFov": 40, - "cameraType": "perspective", - "clipDist": 10, - "clipFar": 100, - "clipNear": 0, - "fogFar": 100, - "fogNear": 50, - "hoverTimeout": 0, - "impostor": true, - "lightColor": 14540253, - "lightIntensity": 1, - "mousePreset": "default", - "panSpeed": 1, - "quality": "medium", - "rotateSpeed": 2, - "sampleLevel": 0, - "tooltip": true, - "workerDefault": true, - "zoomSpeed": 1.2 + "metadata": { + "id": "MCeZA1qQXzoK" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "CCIrPYSJj9wd" + }, + "source": [ + "### Load pretrained model" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "YdrAr6Ch--Ab" + }, + "source": [ + "#### Load a model\n", + "The model used is a design an\n", + "equivariant convolutional layer, named graph field network (GFN).\n", + "\n", + "The warning about `betas` and `alphas` can be ignored, those were moved to the scheduler." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "DyCo0nsqjbml", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 172, + "referenced_widgets": [ + "d90f304e9560472eacfbdd11e46765eb", + "1c6246f15b654f4daa11c9bcf997b78c", + "c2321b3bff6f490ca12040a20308f555", + "b7feb522161f4cf4b7cc7c1a078ff12d", + "e2d368556e494ae7ae4e2e992af2cd4f", + "bbef741e76ec41b7ab7187b487a383df", + "561f742d418d4721b0670cc8dd62e22c", + "872915dd1bb84f538c44e26badabafdd", + "d022575f1fa2446d891650897f187b4d", + "fdc393f3468c432aa0ada05e238a5436", + "2c9362906e4b40189f16d14aa9a348da", + "6010fc8daa7a44d5aec4b830ec2ebaa1", + "7e0bb1b8d65249d3974200686b193be2", + "ba98aa6d6a884e4ab8bbb5dfb5e4cf7a", + "6526646be5ed415c84d1245b040e629b", + "24d31fc3576e43dd9f8301d2ef3a37ab", + "2918bfaadc8d4b1a9832522c40dfefb8", + "a4bfdca35cc54dae8812720f1b276a08", + "e4901541199b45c6a18824627692fc39", + "f915cf874246446595206221e900b2fe", + "a9e388f22a9742aaaf538e22575c9433", + "42f6c3db29d7484ba6b4f73590abd2f4" + ] + }, + "outputId": "d6bce9d5-c51e-43a4-e680-e1e81bdfaf45" }, - "_ngl_repr_dict": { - "0": { - "0": { - "params": { - "aspectRatio": 1.5, - "assembly": "default", - "bondScale": 0.3, - "bondSpacing": 0.75, - "clipCenter": { - "x": 0, - "y": 0, - "z": 0 + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Downloading: 0%| | 0.00/3.27M [00:00] 124.78K 180KB/s in 0.7s \n", + "\n", + "2022-10-12 18:32:20 (180 KB/s) - ‘molecules.pkl’ saved [127774/127774]\n", + "\n" + ] } - }, - "1": { - "0": { - "params": { - "aspectRatio": 1.5, - "assembly": "default", - "bondScale": 0.3, - "bondSpacing": 0.75, - "clipCenter": { - "x": 0, - "y": 0, - "z": 0 + ], + "source": [ + "import torch\n", + "import numpy as np\n", + "\n", + "!wget https://huggingface.co/datasets/fusing/geodiff-example-data/resolve/main/data/molecules.pkl\n", + "dataset = torch.load('/content/molecules.pkl')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "QZcmy1EvKQRk" + }, + "source": [ + "Print out one entry of the dataset, it contains molecular formulas, atom types, positions, and more." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "JVjz6iH_H6Eh", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "898cb0cf-a0b3-411b-fd4c-bea1fbfd17fe" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Data(atom_type=[51], bond_edge_index=[2, 108], edge_index=[2, 598], edge_order=[598], edge_type=[598], idx=[1], is_bond=[598], num_nodes_per_graph=[1], num_pos_ref=[1], nx=, pos=[51, 3], pos_ref=[255, 3], rdmol=, smiles=\"CC1CCCN(C(=O)C2CCN(S(=O)(=O)c3cccc4nonc34)CC2)C1\")" + ] }, - "clipNear": 0, - "clipRadius": 0, - "colorMode": "hcl", - "colorReverse": false, - "colorScale": "", - "colorScheme": "element", - "colorValue": 9474192, - "cylinderOnly": false, - "defaultAssembly": "", - "depthWrite": true, - "diffuse": 16777215, - "diffuseInterior": false, - "disableImpostor": false, - "disablePicking": false, - "flatShaded": false, - "interiorColor": 2236962, - "interiorDarkening": 0, - "lazy": false, - "lineOnly": false, - "linewidth": 2, - "matrix": { - "elements": [ - 1, - 0, - 0, - 0, - 0, - 1, - 0, - 0, - 0, - 0, - 1, - 0, - 0, - 0, - 0, - 1 - ] + "metadata": {}, + "execution_count": 20 + } + ], + "source": [ + "dataset[0]" + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Run the diffusion process" + ], + "metadata": { + "id": "vHNiZAUxNgoy" + } + }, + { + "cell_type": "markdown", + "metadata": { + "id": "jZ1KZrxKqENg" + }, + "source": [ + "#### Helper Functions" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "s240tYueqKKf" + }, + "outputs": [], + "source": [ + "from torch_geometric.data import Data, Batch\n", + "from torch_scatter import scatter_add, scatter_mean\n", + "from tqdm import tqdm\n", + "import copy\n", + "import os\n", + "\n", + "def repeat_data(data: Data, num_repeat) -> Batch:\n", + " datas = [copy.deepcopy(data) for i in range(num_repeat)]\n", + " return Batch.from_data_list(datas)\n", + "\n", + "def repeat_batch(batch: Batch, num_repeat) -> Batch:\n", + " datas = batch.to_data_list()\n", + " new_data = []\n", + " for i in range(num_repeat):\n", + " new_data += copy.deepcopy(datas)\n", + " return Batch.from_data_list(new_data)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "AMnQTk0eqT7Z" + }, + "source": [ + "#### Constants" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "WYGkzqgzrHmF" + }, + "outputs": [], + "source": [ + "num_samples = 1 # solutions per molecule\n", + "num_molecules = 3\n", + "\n", + "DEVICE = 'cuda'\n", + "sampling_type = 'ddpm_noisy' #'' # paper also uses \"generalize\" and \"ld\"\n", + "# constants for inference\n", + "w_global = 0.5 #0,.3 for qm9\n", + "global_start_sigma = 0.5\n", + "eta = 1.0\n", + "clip_local = None\n", + "clip_pos = None\n", + "\n", + "# constands for data handling\n", + "save_traj = False\n", + "save_data = False\n", + "output_dir = '/content/'" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-xD5bJ3SqM7t" + }, + "source": [ + "#### Generate samples!\n", + "Note that the 3d representation of a molecule is referred to as the **conformation**" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "x9xuLUNg26z1", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "236d2a60-09ed-4c4d-97c1-6e3c0f2d26c4" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:4: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n", + " after removing the cwd from sys.path.\n", + "100%|██████████| 5/5 [00:55<00:00, 11.06s/it]\n" + ] + } + ], + "source": [ + "results = []\n", + "\n", + "# define sigmas\n", + "sigmas = torch.tensor(1.0 - scheduler.alphas_cumprod).sqrt() / torch.tensor(scheduler.alphas_cumprod).sqrt()\n", + "sigmas = sigmas.to(DEVICE)\n", + "\n", + "for count, data in enumerate(tqdm(dataset)):\n", + " num_samples = max(data.pos_ref.size(0) // data.num_nodes, 1)\n", + "\n", + " data_input = data.clone()\n", + " data_input['pos_ref'] = None\n", + " batch = repeat_data(data_input, num_samples).to(DEVICE)\n", + "\n", + " # initial configuration\n", + " pos_init = torch.randn(batch.num_nodes, 3).to(DEVICE)\n", + "\n", + " # for logging animation of denoising\n", + " pos_traj = []\n", + " with torch.no_grad():\n", + "\n", + " # scale initial sample\n", + " pos = pos_init * sigmas[-1]\n", + " for t in scheduler.timesteps:\n", + " batch.pos = pos\n", + "\n", + " # generate geometry with model, then filter it\n", + " epsilon = model.forward(batch, t, sigma=sigmas[t], return_dict=False)[0]\n", + "\n", + " # Update\n", + " reconstructed_pos = scheduler.step(epsilon, t, pos)[\"prev_sample\"].to(DEVICE)\n", + "\n", + " pos = reconstructed_pos\n", + "\n", + " if torch.isnan(pos).any():\n", + " print(\"NaN detected. Please restart.\")\n", + " raise FloatingPointError()\n", + "\n", + " # recenter graph of positions for next iteration\n", + " pos = pos - scatter_mean(pos, batch.batch, dim=0)[batch.batch]\n", + "\n", + " # optional clipping\n", + " if clip_pos is not None:\n", + " pos = torch.clamp(pos, min=-clip_pos, max=clip_pos)\n", + " pos_traj.append(pos.clone().cpu())\n", + "\n", + " pos_gen = pos.cpu()\n", + " if save_traj:\n", + " pos_gen_traj = pos_traj.cpu()\n", + " data.pos_gen = torch.stack(pos_gen_traj)\n", + " else:\n", + " data.pos_gen = pos_gen\n", + " results.append(data)\n", + "\n", + "\n", + "if save_data:\n", + " save_path = os.path.join(output_dir, 'samples_all.pkl')\n", + "\n", + " with open(save_path, 'wb') as f:\n", + " pickle.dump(results, f)" + ] + }, + { + "cell_type": "markdown", + "source": [ + "## Render the results!" + ], + "metadata": { + "id": "fSApwSaZNndW" + } + }, + { + "cell_type": "markdown", + "metadata": { + "id": "d47Zxo2OKdgZ" + }, + "source": [ + "This function allows us to render 3d in colab." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "e9Cd0kCAv9b8" + }, + "outputs": [], + "source": [ + "from google.colab import output\n", + "output.enable_custom_widget_manager()" + ] + }, + { + "cell_type": "markdown", + "source": [ + "### Helper functions" + ], + "metadata": { + "id": "RjaVuR15NqzF" + } + }, + { + "cell_type": "markdown", + "metadata": { + "id": "28rBYa9NKhlz" + }, + "source": [ + "Here is a helper function for copying the generated tensors into a format used by RDKit & NGLViewer." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "LKdKdwxcyTQ6" + }, + "outputs": [], + "source": [ + "from copy import deepcopy\n", + "def set_rdmol_positions(rdkit_mol, pos):\n", + " \"\"\"\n", + " Args:\n", + " rdkit_mol: An `rdkit.Chem.rdchem.Mol` object.\n", + " pos: (N_atoms, 3)\n", + " \"\"\"\n", + " mol = deepcopy(rdkit_mol)\n", + " set_rdmol_positions_(mol, pos)\n", + " return mol\n", + "\n", + "def set_rdmol_positions_(mol, pos):\n", + " \"\"\"\n", + " Args:\n", + " rdkit_mol: An `rdkit.Chem.rdchem.Mol` object.\n", + " pos: (N_atoms, 3)\n", + " \"\"\"\n", + " for i in range(pos.shape[0]):\n", + " mol.GetConformer(0).SetAtomPosition(i, pos[i].tolist())\n", + " return mol\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "NuE10hcpKmzK" + }, + "source": [ + "Process the generated data to make it easy to view." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "KieVE1vc0_Vs", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "6faa185d-b1bc-47e8-be18-30d1e557e7c8" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "collect 5 generated molecules in `mols`\n" + ] + } + ], + "source": [ + "# the model can generate multiple conformations per 2d geometry\n", + "num_gen = results[0]['pos_gen'].shape[0]\n", + "\n", + "# init storage objects\n", + "mols_gen = []\n", + "mols_orig = []\n", + "for to_process in results:\n", + "\n", + " # store the reference 3d position\n", + " to_process['pos_ref'] = to_process['pos_ref'].reshape(-1, to_process['rdmol'].GetNumAtoms(), 3)\n", + "\n", + " # store the generated 3d position\n", + " to_process['pos_gen'] = to_process['pos_gen'].reshape(-1, to_process['rdmol'].GetNumAtoms(), 3)\n", + "\n", + " # copy data to new object\n", + " new_mol = set_rdmol_positions(to_process.rdmol, to_process['pos_gen'][0])\n", + "\n", + " # append results\n", + " mols_gen.append(new_mol)\n", + " mols_orig.append(to_process.rdmol)\n", + "\n", + "print(f\"collect {len(mols_gen)} generated molecules in `mols`\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "tin89JwMKp4v" + }, + "source": [ + "Import tools to visualize the 2d chemical diagram of the molecule." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "yqV6gllSZn38" + }, + "outputs": [], + "source": [ + "from rdkit.Chem import AllChem\n", + "from rdkit import Chem\n", + "from rdkit.Chem.Draw import rdMolDraw2D as MD2\n", + "from IPython.display import SVG, display" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "TFNKmGddVoOk" + }, + "source": [ + "Select molecule to visualize" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "KzuwLlrrVaGc" + }, + "outputs": [], + "source": [ + "idx = 0\n", + "assert idx < len(results), \"selected molecule that was not generated\"" + ] + }, + { + "cell_type": "markdown", + "source": [ + "### Viewing" + ], + "metadata": { + "id": "hkb8w0_SNtU8" + } + }, + { + "cell_type": "markdown", + "metadata": { + "id": "I3R4QBQeKttN" + }, + "source": [ + "This 2D rendering is the equivalent of the **input to the model**!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "gkQRWjraaKex", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 321 + }, + "outputId": "9c3d1a91-a51d-475d-9e34-2be2459abc47" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "" + ], + "image/svg+xml": "\n\n \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n" }, - "metalness": 0, - "multipleBond": "off", - "opacity": 1, - "openEnded": true, - "quality": "high", - "radialSegments": 20, - "radiusData": {}, - "radiusScale": 2, - "radiusSize": 0.15, - "radiusType": "size", - "roughness": 0.4, - "sele": "", - "side": "double", - "sphereDetail": 2, - "useInteriorColor": true, - "visible": true, - "wireframe": false - }, - "type": "ball+stick" + "metadata": {} } - } + ], + "source": [ + "mc = Chem.MolFromSmiles(dataset[0]['smiles'])\n", + "molSize=(450,300)\n", + "drawer = MD2.MolDraw2DSVG(molSize[0],molSize[1])\n", + "drawer.DrawMolecule(mc)\n", + "drawer.FinishDrawing()\n", + "svg = drawer.GetDrawingText()\n", + "display(SVG(svg.replace('svg:','')))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "z4FDMYMxKw2I" }, - "_ngl_serialize": false, - "_ngl_version": "", - "_ngl_view_id": [ - "FB989FD1-5B9C-446B-8914-6B58AF85446D" + "source": [ + "Generate the 3d molecule!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "aT1Bkb8YxJfV", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 17, + "referenced_widgets": [ + "695ab5bbf30a4ab19df1f9f33469f314", + "eac6a8dcdc9d4335a2e51031793ead29" + ] + }, + "outputId": "b98870ae-049d-4386-b676-166e9526bda2" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "695ab5bbf30a4ab19df1f9f33469f314" + } + }, + "metadata": { + "application/vnd.jupyter.widget-view+json": { + "colab": { + "custom_widget_manager": { + "url": "https://ssl.gstatic.com/colaboratory-static/widgets/colab-cdn-widget-manager/d2e234f7cc04bf79/manager.min.js" + } + } + } + } + } ], - "_player_dict": {}, - "_scene_position": {}, - "_scene_rotation": {}, - "_synced_model_ids": [], - "_synced_repr_model_ids": [], - "_view_count": null, - "_view_height": "", - "_view_module": "nglview-js-widgets", - "_view_module_version": "3.0.1", - "_view_name": "NGLView", - "_view_width": "", - "background": "white", - "frame": 0, - "gui_style": null, - "layout": "IPY_MODEL_c6596896148b4a8a9c57963b67c7782f", - "max_frame": 0, - "n_components": 2, - "picked": {} - } - }, - "c2321b3bff6f490ca12040a20308f555": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_872915dd1bb84f538c44e26badabafdd", - "max": 3271865, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_d022575f1fa2446d891650897f187b4d", - "value": 3271865 - } - }, - "c30e6c2f3e2a44dbbb3d63bd519acaa4": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "c6596896148b4a8a9c57963b67c7782f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "d022575f1fa2446d891650897f187b4d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d90f304e9560472eacfbdd11e46765eb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1c6246f15b654f4daa11c9bcf997b78c", - "IPY_MODEL_c2321b3bff6f490ca12040a20308f555", - "IPY_MODEL_b7feb522161f4cf4b7cc7c1a078ff12d" + "source": [ + "from nglview import show_rdkit as show" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "pxtq8I-I18C-", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 337, + "referenced_widgets": [ + "be446195da2b4ff2aec21ec5ff963a54", + "c6596896148b4a8a9c57963b67c7782f", + "2489b5e5648541fbbdceadb05632a050", + "01e0ba4e5da04914b4652b8d58565d7b", + "c30e6c2f3e2a44dbbb3d63bd519acaa4", + "f31c6e40e9b2466a9064a2669933ecd5", + "19308ccac642498ab8b58462e3f1b0bb", + "4a081cdc2ec3421ca79dd933b7e2b0c4", + "e5c0d75eb5e1447abd560c8f2c6017e1", + "5146907ef6764654ad7d598baebc8b58", + "144ec959b7604a2cabb5ca46ae5e5379", + "abce2a80e6304df3899109c6d6cac199", + "65195cb7a4134f4887e9dd19f3676462" + ] + }, + "outputId": "72ed63ac-d2ec-4f5c-a0b1-4e7c1840a4e7" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "NGLWidget()" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "be446195da2b4ff2aec21ec5ff963a54" + } + }, + "metadata": { + "application/vnd.jupyter.widget-view+json": { + "colab": { + "custom_widget_manager": { + "url": "https://ssl.gstatic.com/colaboratory-static/widgets/colab-cdn-widget-manager/d2e234f7cc04bf79/manager.min.js" + } + } + } + } + } ], - "layout": "IPY_MODEL_e2d368556e494ae7ae4e2e992af2cd4f" - } - }, - "e2d368556e494ae7ae4e2e992af2cd4f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "e4901541199b45c6a18824627692fc39": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "e5c0d75eb5e1447abd560c8f2c6017e1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "PlayModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "PlayModel", - "_playing": false, - "_repeat": false, - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "PlayView", - "description": "", - "description_tooltip": null, - "disabled": false, - "interval": 100, - "layout": "IPY_MODEL_c30e6c2f3e2a44dbbb3d63bd519acaa4", - "max": 0, - "min": 0, - "show_repeat": true, - "step": 1, - "style": "IPY_MODEL_f31c6e40e9b2466a9064a2669933ecd5", - "value": 0 - } - }, - "eac6a8dcdc9d4335a2e51031793ead29": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "f31c6e40e9b2466a9064a2669933ecd5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "f915cf874246446595206221e900b2fe": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "fdc393f3468c432aa0ada05e238a5436": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } + "source": [ + "# new molecule\n", + "show(mols_gen[idx])" + ] + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "KJr4h2mwXeTo" + }, + "execution_count": null, + "outputs": [] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "provenance": [] + }, + "gpuClass": "standard", + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "d90f304e9560472eacfbdd11e46765eb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1c6246f15b654f4daa11c9bcf997b78c", + "IPY_MODEL_c2321b3bff6f490ca12040a20308f555", + "IPY_MODEL_b7feb522161f4cf4b7cc7c1a078ff12d" + ], + "layout": "IPY_MODEL_e2d368556e494ae7ae4e2e992af2cd4f" + } + }, + "1c6246f15b654f4daa11c9bcf997b78c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_bbef741e76ec41b7ab7187b487a383df", + "placeholder": "​", + "style": "IPY_MODEL_561f742d418d4721b0670cc8dd62e22c", + "value": "Downloading: 100%" + } + }, + "c2321b3bff6f490ca12040a20308f555": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_872915dd1bb84f538c44e26badabafdd", + "max": 3271865, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_d022575f1fa2446d891650897f187b4d", + "value": 3271865 + } + }, + "b7feb522161f4cf4b7cc7c1a078ff12d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fdc393f3468c432aa0ada05e238a5436", + "placeholder": "​", + "style": "IPY_MODEL_2c9362906e4b40189f16d14aa9a348da", + "value": " 3.27M/3.27M [00:01<00:00, 3.25MB/s]" + } + }, + "e2d368556e494ae7ae4e2e992af2cd4f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bbef741e76ec41b7ab7187b487a383df": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "561f742d418d4721b0670cc8dd62e22c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "872915dd1bb84f538c44e26badabafdd": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d022575f1fa2446d891650897f187b4d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "fdc393f3468c432aa0ada05e238a5436": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2c9362906e4b40189f16d14aa9a348da": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "6010fc8daa7a44d5aec4b830ec2ebaa1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7e0bb1b8d65249d3974200686b193be2", + "IPY_MODEL_ba98aa6d6a884e4ab8bbb5dfb5e4cf7a", + "IPY_MODEL_6526646be5ed415c84d1245b040e629b" + ], + "layout": "IPY_MODEL_24d31fc3576e43dd9f8301d2ef3a37ab" + } + }, + "7e0bb1b8d65249d3974200686b193be2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2918bfaadc8d4b1a9832522c40dfefb8", + "placeholder": "​", + "style": "IPY_MODEL_a4bfdca35cc54dae8812720f1b276a08", + "value": "Downloading: 100%" + } + }, + "ba98aa6d6a884e4ab8bbb5dfb5e4cf7a": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e4901541199b45c6a18824627692fc39", + "max": 401, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_f915cf874246446595206221e900b2fe", + "value": 401 + } + }, + "6526646be5ed415c84d1245b040e629b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a9e388f22a9742aaaf538e22575c9433", + "placeholder": "​", + "style": "IPY_MODEL_42f6c3db29d7484ba6b4f73590abd2f4", + "value": " 401/401 [00:00<00:00, 13.5kB/s]" + } + }, + "24d31fc3576e43dd9f8301d2ef3a37ab": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2918bfaadc8d4b1a9832522c40dfefb8": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a4bfdca35cc54dae8812720f1b276a08": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e4901541199b45c6a18824627692fc39": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f915cf874246446595206221e900b2fe": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "a9e388f22a9742aaaf538e22575c9433": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "42f6c3db29d7484ba6b4f73590abd2f4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "695ab5bbf30a4ab19df1f9f33469f314": { + "model_module": "nglview-js-widgets", + "model_name": "ColormakerRegistryModel", + "model_module_version": "3.0.1", + "state": { + "_dom_classes": [], + "_model_module": "nglview-js-widgets", + "_model_module_version": "3.0.1", + "_model_name": "ColormakerRegistryModel", + "_msg_ar": [], + "_msg_q": [], + "_ready": false, + "_view_count": null, + "_view_module": "nglview-js-widgets", + "_view_module_version": "3.0.1", + "_view_name": "ColormakerRegistryView", + "layout": "IPY_MODEL_eac6a8dcdc9d4335a2e51031793ead29" + } + }, + "eac6a8dcdc9d4335a2e51031793ead29": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "be446195da2b4ff2aec21ec5ff963a54": { + "model_module": "nglview-js-widgets", + "model_name": "NGLModel", + "model_module_version": "3.0.1", + "state": { + "_camera_orientation": [ + -15.519693580202304, + -14.065056548036177, + -23.53197484807691, + 0, + -23.357853515109753, + 20.94055073042662, + 2.888695042134944, + 0, + 14.352363398292777, + 18.870825741878015, + -20.744689572909344, + 0, + 0.2724999189376831, + 0.6940000057220459, + -0.3734999895095825, + 1 + ], + "_camera_str": "orthographic", + "_dom_classes": [], + "_gui_theme": null, + "_ibtn_fullscreen": "IPY_MODEL_2489b5e5648541fbbdceadb05632a050", + "_igui": null, + "_iplayer": "IPY_MODEL_01e0ba4e5da04914b4652b8d58565d7b", + "_model_module": "nglview-js-widgets", + "_model_module_version": "3.0.1", + "_model_name": "NGLModel", + "_ngl_color_dict": {}, + "_ngl_coordinate_resource": {}, + "_ngl_full_stage_parameters": { + "impostor": true, + "quality": "medium", + "workerDefault": true, + "sampleLevel": 0, + "backgroundColor": "white", + "rotateSpeed": 2, + "zoomSpeed": 1.2, + "panSpeed": 1, + "clipNear": 0, + "clipFar": 100, + "clipDist": 10, + "fogNear": 50, + "fogFar": 100, + "cameraFov": 40, + "cameraEyeSep": 0.3, + "cameraType": "perspective", + "lightColor": 14540253, + "lightIntensity": 1, + "ambientColor": 14540253, + "ambientIntensity": 0.2, + "hoverTimeout": 0, + "tooltip": true, + "mousePreset": "default" + }, + "_ngl_msg_archive": [ + { + "target": "Stage", + "type": "call_method", + "methodName": "loadFile", + "reconstruc_color_scheme": false, + "args": [ + { + "type": "blob", + "data": "HETATM 1 C1 UNL 1 -0.025 3.128 2.316 1.00 0.00 C \nHETATM 2 H1 UNL 1 0.183 3.657 2.823 1.00 0.00 H \nHETATM 3 C2 UNL 1 0.590 3.559 0.963 1.00 0.00 C \nHETATM 4 C3 UNL 1 0.056 4.479 0.406 1.00 0.00 C \nHETATM 5 C4 UNL 1 -0.219 4.802 -1.065 1.00 0.00 C \nHETATM 6 H2 UNL 1 0.686 4.431 -1.575 1.00 0.00 H \nHETATM 7 H3 UNL 1 -0.524 5.217 -1.274 1.00 0.00 H \nHETATM 8 C5 UNL 1 -1.284 3.766 -1.342 1.00 0.00 C \nHETATM 9 N1 UNL 1 -1.073 2.494 -0.580 1.00 0.00 N \nHETATM 10 C6 UNL 1 -1.909 1.494 -0.964 1.00 0.00 C \nHETATM 11 O1 UNL 1 -2.487 1.531 -2.092 1.00 0.00 O \nHETATM 12 C7 UNL 1 -2.232 0.242 -0.130 1.00 0.00 C \nHETATM 13 C8 UNL 1 -2.161 -1.057 -1.037 1.00 0.00 C \nHETATM 14 C9 UNL 1 -0.744 -1.111 -1.610 1.00 0.00 C \nHETATM 15 N2 UNL 1 0.290 -0.917 -0.628 1.00 0.00 N \nHETATM 16 S1 UNL 1 1.717 -1.597 -0.914 1.00 0.00 S \nHETATM 17 O2 UNL 1 1.960 -1.671 -2.338 1.00 0.00 O \nHETATM 18 O3 UNL 1 2.713 -0.968 -0.082 1.00 0.00 O \nHETATM 19 C10 UNL 1 1.425 -3.170 -0.345 1.00 0.00 C \nHETATM 20 C11 UNL 1 1.225 -4.400 -1.271 1.00 0.00 C \nHETATM 21 C12 UNL 1 1.314 -5.913 -0.895 1.00 0.00 C \nHETATM 22 C13 UNL 1 1.823 -6.229 0.386 1.00 0.00 C \nHETATM 23 C14 UNL 1 2.031 -5.110 1.365 1.00 0.00 C \nHETATM 24 N3 UNL 1 1.850 -5.267 2.712 1.00 0.00 N \nHETATM 25 O4 UNL 1 1.382 -4.029 3.126 1.00 0.00 O \nHETATM 26 N4 UNL 1 1.300 -3.023 2.154 1.00 0.00 N \nHETATM 27 C15 UNL 1 1.731 -3.672 1.032 1.00 0.00 C \nHETATM 28 H4 UNL 1 2.380 -6.874 0.436 1.00 0.00 H \nHETATM 29 H5 UNL 1 0.704 -6.526 -1.420 1.00 0.00 H \nHETATM 30 H6 UNL 1 1.144 -4.035 -2.291 1.00 0.00 H \nHETATM 31 C16 UNL 1 0.044 -0.371 0.685 1.00 0.00 C \nHETATM 32 C17 UNL 1 -1.352 -0.045 1.077 1.00 0.00 C \nHETATM 33 H7 UNL 1 -1.395 0.770 1.768 1.00 0.00 H \nHETATM 34 H8 UNL 1 -1.792 -0.941 1.582 1.00 0.00 H \nHETATM 35 H9 UNL 1 0.583 -1.035 1.393 1.00 0.00 H \nHETATM 36 H10 UNL 1 0.664 0.613 0.663 1.00 0.00 H \nHETATM 37 H11 UNL 1 -0.631 -0.267 -2.335 1.00 0.00 H \nHETATM 38 H12 UNL 1 -0.571 -2.046 -2.098 1.00 0.00 H \nHETATM 39 H13 UNL 1 -2.872 -0.992 -1.826 1.00 0.00 H \nHETATM 40 H14 UNL 1 -2.370 -1.924 -0.444 1.00 0.00 H \nHETATM 41 H15 UNL 1 -3.258 0.364 0.197 1.00 0.00 H \nHETATM 42 C18 UNL 1 0.276 2.337 -0.078 1.00 0.00 C \nHETATM 43 H16 UNL 1 0.514 1.371 0.252 1.00 0.00 H \nHETATM 44 H17 UNL 1 0.988 2.413 -0.949 1.00 0.00 H \nHETATM 45 H18 UNL 1 -1.349 3.451 -2.379 1.00 0.00 H \nHETATM 46 H19 UNL 1 -2.224 4.055 -0.958 1.00 0.00 H \nHETATM 47 H20 UNL 1 0.793 5.486 0.669 1.00 0.00 H \nHETATM 48 H21 UNL 1 -0.849 4.974 0.937 1.00 0.00 H \nHETATM 49 H22 UNL 1 1.667 3.431 1.070 1.00 0.00 H \nHETATM 50 H23 UNL 1 0.379 2.143 2.689 1.00 0.00 H \nHETATM 51 H24 UNL 1 -1.094 2.983 2.223 1.00 0.00 H \nCONECT 1 2 3 50 51\nCONECT 3 4 42 49\nCONECT 4 5 47 48\nCONECT 5 6 7 8\nCONECT 8 9 45 46\nCONECT 9 10 42\nCONECT 10 11 11 12\nCONECT 12 13 32 41\nCONECT 13 14 39 40\nCONECT 14 15 37 38\nCONECT 15 16 31\nCONECT 16 17 17 18 18\nCONECT 16 19\nCONECT 19 20 20 27\nCONECT 20 21 30\nCONECT 21 22 22 29\nCONECT 22 23 28\nCONECT 23 24 24 27\nCONECT 24 25\nCONECT 25 26\nCONECT 26 27 27\nCONECT 31 32 35 36\nCONECT 32 33 34\nCONECT 42 43 44\nEND\n", + "binary": false + } + ], + "kwargs": { + "defaultRepresentation": true, + "ext": "pdb" + } + } + ], + "_ngl_original_stage_parameters": { + "impostor": true, + "quality": "medium", + "workerDefault": true, + "sampleLevel": 0, + "backgroundColor": "white", + "rotateSpeed": 2, + "zoomSpeed": 1.2, + "panSpeed": 1, + "clipNear": 0, + "clipFar": 100, + "clipDist": 10, + "fogNear": 50, + "fogFar": 100, + "cameraFov": 40, + "cameraEyeSep": 0.3, + "cameraType": "perspective", + "lightColor": 14540253, + "lightIntensity": 1, + "ambientColor": 14540253, + "ambientIntensity": 0.2, + "hoverTimeout": 0, + "tooltip": true, + "mousePreset": "default" + }, + "_ngl_repr_dict": { + "0": { + "0": { + "type": "ball+stick", + "params": { + "lazy": false, + "visible": true, + "quality": "high", + "sphereDetail": 2, + "radialSegments": 20, + "openEnded": true, + "disableImpostor": false, + "aspectRatio": 1.5, + "lineOnly": false, + "cylinderOnly": false, + "multipleBond": "off", + "bondScale": 0.3, + "bondSpacing": 0.75, + "linewidth": 2, + "radiusType": "size", + "radiusData": {}, + "radiusSize": 0.15, + "radiusScale": 2, + "assembly": "default", + "defaultAssembly": "", + "clipNear": 0, + "clipRadius": 0, + "clipCenter": { + "x": 0, + "y": 0, + "z": 0 + }, + "flatShaded": false, + "opacity": 1, + "depthWrite": true, + "side": "double", + "wireframe": false, + "colorScheme": "element", + "colorScale": "", + "colorReverse": false, + "colorValue": 9474192, + "colorMode": "hcl", + "roughness": 0.4, + "metalness": 0, + "diffuse": 16777215, + "diffuseInterior": false, + "useInteriorColor": true, + "interiorColor": 2236962, + "interiorDarkening": 0, + "matrix": { + "elements": [ + 1, + 0, + 0, + 0, + 0, + 1, + 0, + 0, + 0, + 0, + 1, + 0, + 0, + 0, + 0, + 1 + ] + }, + "disablePicking": false, + "sele": "" + } + } + }, + "1": { + "0": { + "type": "ball+stick", + "params": { + "lazy": false, + "visible": true, + "quality": "high", + "sphereDetail": 2, + "radialSegments": 20, + "openEnded": true, + "disableImpostor": false, + "aspectRatio": 1.5, + "lineOnly": false, + "cylinderOnly": false, + "multipleBond": "off", + "bondScale": 0.3, + "bondSpacing": 0.75, + "linewidth": 2, + "radiusType": "size", + "radiusData": {}, + "radiusSize": 0.15, + "radiusScale": 2, + "assembly": "default", + "defaultAssembly": "", + "clipNear": 0, + "clipRadius": 0, + "clipCenter": { + "x": 0, + "y": 0, + "z": 0 + }, + "flatShaded": false, + "opacity": 1, + "depthWrite": true, + "side": "double", + "wireframe": false, + "colorScheme": "element", + "colorScale": "", + "colorReverse": false, + "colorValue": 9474192, + "colorMode": "hcl", + "roughness": 0.4, + "metalness": 0, + "diffuse": 16777215, + "diffuseInterior": false, + "useInteriorColor": true, + "interiorColor": 2236962, + "interiorDarkening": 0, + "matrix": { + "elements": [ + 1, + 0, + 0, + 0, + 0, + 1, + 0, + 0, + 0, + 0, + 1, + 0, + 0, + 0, + 0, + 1 + ] + }, + "disablePicking": false, + "sele": "" + } + } + } + }, + "_ngl_serialize": false, + "_ngl_version": "", + "_ngl_view_id": [ + "FB989FD1-5B9C-446B-8914-6B58AF85446D" + ], + "_player_dict": {}, + "_scene_position": {}, + "_scene_rotation": {}, + "_synced_model_ids": [], + "_synced_repr_model_ids": [], + "_view_count": null, + "_view_height": "", + "_view_module": "nglview-js-widgets", + "_view_module_version": "3.0.1", + "_view_name": "NGLView", + "_view_width": "", + "background": "white", + "frame": 0, + "gui_style": null, + "layout": "IPY_MODEL_c6596896148b4a8a9c57963b67c7782f", + "max_frame": 0, + "n_components": 2, + "picked": {} + } + }, + "c6596896148b4a8a9c57963b67c7782f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "2489b5e5648541fbbdceadb05632a050": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ButtonModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ButtonModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ButtonView", + "button_style": "", + "description": "", + "disabled": false, + "icon": "compress", + "layout": "IPY_MODEL_abce2a80e6304df3899109c6d6cac199", + "style": "IPY_MODEL_65195cb7a4134f4887e9dd19f3676462", + "tooltip": "" + } + }, + "01e0ba4e5da04914b4652b8d58565d7b": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e5c0d75eb5e1447abd560c8f2c6017e1", + "IPY_MODEL_5146907ef6764654ad7d598baebc8b58" + ], + "layout": "IPY_MODEL_144ec959b7604a2cabb5ca46ae5e5379" + } + }, + "c30e6c2f3e2a44dbbb3d63bd519acaa4": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "f31c6e40e9b2466a9064a2669933ecd5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "19308ccac642498ab8b58462e3f1b0bb": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "4a081cdc2ec3421ca79dd933b7e2b0c4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "SliderStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "SliderStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "", + "handle_color": null + } + }, + "e5c0d75eb5e1447abd560c8f2c6017e1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "PlayModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "PlayModel", + "_playing": false, + "_repeat": false, + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "PlayView", + "description": "", + "description_tooltip": null, + "disabled": false, + "interval": 100, + "layout": "IPY_MODEL_c30e6c2f3e2a44dbbb3d63bd519acaa4", + "max": 0, + "min": 0, + "show_repeat": true, + "step": 1, + "style": "IPY_MODEL_f31c6e40e9b2466a9064a2669933ecd5", + "value": 0 + } + }, + "5146907ef6764654ad7d598baebc8b58": { + "model_module": "@jupyter-widgets/controls", + "model_name": "IntSliderModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "IntSliderModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "IntSliderView", + "continuous_update": true, + "description": "", + "description_tooltip": null, + "disabled": false, + "layout": "IPY_MODEL_19308ccac642498ab8b58462e3f1b0bb", + "max": 0, + "min": 0, + "orientation": "horizontal", + "readout": true, + "readout_format": "d", + "step": 1, + "style": "IPY_MODEL_4a081cdc2ec3421ca79dd933b7e2b0c4", + "value": 0 + } + }, + "144ec959b7604a2cabb5ca46ae5e5379": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "abce2a80e6304df3899109c6d6cac199": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": "34px" + } + }, + "65195cb7a4134f4887e9dd19f3676462": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ButtonStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ButtonStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "button_color": null, + "font_weight": "" + } + } + } } - } - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} \ No newline at end of file + }, + "nbformat": 4, + "nbformat_minor": 0 +} From 02c16ba1eb98e16dc798ab6f7b4245d388fedd3c Mon Sep 17 00:00:00 2001 From: hlky Date: Wed, 11 Dec 2024 08:20:53 +0000 Subject: [PATCH 17/56] Update geodiff_molecule_conformation.ipynb From e76338e12f409290078899a18bf9b77ec60ee874 Mon Sep 17 00:00:00 2001 From: hlky Date: Wed, 11 Dec 2024 08:22:55 +0000 Subject: [PATCH 18/56] Update geodiff_molecule_conformation.ipynb From a5977133290301bcb4effe1303a50c95ff415a9a Mon Sep 17 00:00:00 2001 From: hlky Date: Wed, 11 Dec 2024 08:23:59 +0000 Subject: [PATCH 19/56] Update demo.ipynb --- examples/research_projects/gligen/demo.ipynb | 13 ++++++------- 1 file changed, 6 insertions(+), 7 deletions(-) diff --git a/examples/research_projects/gligen/demo.ipynb b/examples/research_projects/gligen/demo.ipynb index 4930253ff66e..571f1a0323a2 100644 --- a/examples/research_projects/gligen/demo.ipynb +++ b/examples/research_projects/gligen/demo.ipynb @@ -26,7 +26,8 @@ "%load_ext autoreload\n", "%autoreload 2\n", "\n", - "from diffusers import StableDiffusionGLIGENPipeline" + "import torch\n", + "from diffusers import StableDiffusionGLIGENTextImagePipeline, StableDiffusionGLIGENPipeline" ] }, { @@ -35,17 +36,16 @@ "metadata": {}, "outputs": [], "source": [ - "from transformers import CLIPTextModel, CLIPTokenizer\n", - "\n", + "import os\n", "import diffusers\n", "from diffusers import (\n", " AutoencoderKL,\n", " DDPMScheduler,\n", - " EulerDiscreteScheduler,\n", " UNet2DConditionModel,\n", + " UniPCMultistepScheduler,\n", + " EulerDiscreteScheduler,\n", ")\n", - "\n", - "\n", + "from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer\n", "# pretrained_model_name_or_path = 'masterful/gligen-1-4-generation-text-box'\n", "\n", "pretrained_model_name_or_path = '/root/data/zhizhonghuang/checkpoints/models--masterful--gligen-1-4-generation-text-box/snapshots/d2820dc1e9ba6ca082051ce79cfd3eb468ae2c83'\n", @@ -122,7 +122,6 @@ "\n", "import numpy as np\n", "\n", - "\n", "boxes = np.array([x[1] for x in gen_boxes])\n", "boxes = boxes / 512\n", "boxes[:, 2] = boxes[:, 0] + boxes[:, 2]\n", From 51003e83b7df8a2c96d84fb8edb868be9ba47a0e Mon Sep 17 00:00:00 2001 From: hlky Date: Wed, 11 Dec 2024 08:56:15 +0000 Subject: [PATCH 20/56] Update pipeline_consisid.py --- src/diffusers/pipelines/consisid/pipeline_consisid.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/diffusers/pipelines/consisid/pipeline_consisid.py b/src/diffusers/pipelines/consisid/pipeline_consisid.py index e9d696af405e..a0b9d006b912 100644 --- a/src/diffusers/pipelines/consisid/pipeline_consisid.py +++ b/src/diffusers/pipelines/consisid/pipeline_consisid.py @@ -176,7 +176,7 @@ def retrieve_timesteps( sigmas: Optional[List[float]] = None, **kwargs, ): - """ + r""" Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. From a0e746e81c77b877dc4773a957f069829d9b5142 Mon Sep 17 00:00:00 2001 From: hlky Date: Wed, 11 Dec 2024 09:22:50 +0000 Subject: [PATCH 21/56] make fix-copies --- .../utils/dummy_torch_and_transformers_objects.py | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/src/diffusers/utils/dummy_torch_and_transformers_objects.py b/src/diffusers/utils/dummy_torch_and_transformers_objects.py index ade7ea321958..1830400c573b 100644 --- a/src/diffusers/utils/dummy_torch_and_transformers_objects.py +++ b/src/diffusers/utils/dummy_torch_and_transformers_objects.py @@ -287,7 +287,7 @@ def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"]) -class ConsisIDPipeline(metaclass=DummyObject): +class CogVideoXFunControlPipeline(metaclass=DummyObject): _backends = ["torch", "transformers"] def __init__(self, *args, **kwargs): @@ -302,7 +302,7 @@ def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"]) -class CogVideoXFunControlPipeline(metaclass=DummyObject): +class CogVideoXImageToVideoPipeline(metaclass=DummyObject): _backends = ["torch", "transformers"] def __init__(self, *args, **kwargs): @@ -317,7 +317,7 @@ def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"]) -class CogVideoXImageToVideoPipeline(metaclass=DummyObject): +class CogVideoXPipeline(metaclass=DummyObject): _backends = ["torch", "transformers"] def __init__(self, *args, **kwargs): @@ -332,7 +332,7 @@ def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"]) -class CogVideoXPipeline(metaclass=DummyObject): +class CogVideoXVideoToVideoPipeline(metaclass=DummyObject): _backends = ["torch", "transformers"] def __init__(self, *args, **kwargs): @@ -347,7 +347,7 @@ def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"]) -class CogVideoXVideoToVideoPipeline(metaclass=DummyObject): +class CogView3PlusPipeline(metaclass=DummyObject): _backends = ["torch", "transformers"] def __init__(self, *args, **kwargs): @@ -362,7 +362,7 @@ def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers"]) -class CogView3PlusPipeline(metaclass=DummyObject): +class ConsisIDPipeline(metaclass=DummyObject): _backends = ["torch", "transformers"] def __init__(self, *args, **kwargs): From 14ad9af8c674e94ccc4b49ac8f08e4a4e32bc31f Mon Sep 17 00:00:00 2001 From: Shenghai Yuan <140951558+SHYuanBest@users.noreply.github.com> Date: Thu, 12 Dec 2024 15:46:01 +0800 Subject: [PATCH 22/56] Update docs/source/en/using-diffusers/consisid.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> --- docs/source/en/using-diffusers/consisid.md | 10 ++++------ 1 file changed, 4 insertions(+), 6 deletions(-) diff --git a/docs/source/en/using-diffusers/consisid.md b/docs/source/en/using-diffusers/consisid.md index 97231316c132..a96db2d416a6 100644 --- a/docs/source/en/using-diffusers/consisid.md +++ b/docs/source/en/using-diffusers/consisid.md @@ -11,13 +11,11 @@ specific language governing permissions and limitations under the License. --> # ConsisID -[ConsisID](https://github.com/PKU-YuanGroup/ConsisID) is an identity-preserving text-to-video generation model, which keep the face consistent in the generated video by frequency decomposition. There is a [video](https://www.youtube.com/watch?v=PhlgC-bI5SQ) show its powerful function. It has the following features: +[ConsisID](https://github.com/PKU-YuanGroup/ConsisID) is an identity-preserving text-to-video generation model that keeps the face consistent in the generated video by frequency decomposition. The main features of ConsisID are: -​ 🔥 **Frequency Decomposition**: The characteristics of the DiT architecture are analyzed from the frequency domain perspective, and based on these characteristics, a reasonable control information injection method is designed. - -​ 🔥 **Consistency Training Strategy**: We propose a coarse-to-fine training strategy, dynamic masking loss, and dynamic cross-face loss, which further enhance the model's generalization ability and identity preservation performance. - -​ 🔥 **Inference Without Fine-Tuning**: Previous methods required case-by-case fine-tuning of the input ID before inference, leading to significant time and computational costs. In contrast, consisid is tuning-free. +- Frequency decomposition: The characteristics of the DiT architecture are analyzed from the frequency domain perspective, and based on these characteristics, a reasonable control information injection method is designed. +Consistency training strategy: A coarse-to-fine training strategy, dynamic masking loss, and dynamic cross-face loss further enhance the model's generalization ability and identity preservation performance. +- Inference without finetuning: Previous methods required case-by-case finetuning of the input ID before inference, leading to significant time and computational costs. In contrast, ConsisID is tuning-free. For more information, please refer to the [paper](https://arxiv.org/abs/2411.17440). This guide will walk you through using ConsisID for use cases. From e5c84c74c6ff3183e6d83416a06a2f341134b789 Mon Sep 17 00:00:00 2001 From: Shenghai Yuan <140951558+SHYuanBest@users.noreply.github.com> Date: Thu, 12 Dec 2024 15:46:10 +0800 Subject: [PATCH 23/56] Update src/diffusers/pipelines/consisid/pipeline_consisid.py Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> --- src/diffusers/pipelines/consisid/pipeline_consisid.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/diffusers/pipelines/consisid/pipeline_consisid.py b/src/diffusers/pipelines/consisid/pipeline_consisid.py index a0b9d006b912..8fef073d1295 100644 --- a/src/diffusers/pipelines/consisid/pipeline_consisid.py +++ b/src/diffusers/pipelines/consisid/pipeline_consisid.py @@ -724,7 +724,7 @@ def __call__( Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed will be used. Must be in descending order. - guidance_scale (`float`, *optional*, defaults to 7.0): + guidance_scale (`float`, *optional*, defaults to 6): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > From 0bb54c98418f3d4ce7b6e8ca92aee9785bf9430f Mon Sep 17 00:00:00 2001 From: Shenghai Yuan <140951558+SHYuanBest@users.noreply.github.com> Date: Thu, 12 Dec 2024 15:46:46 +0800 Subject: [PATCH 24/56] Update src/diffusers/pipelines/consisid/pipeline_consisid.py Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> --- src/diffusers/pipelines/consisid/pipeline_consisid.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/diffusers/pipelines/consisid/pipeline_consisid.py b/src/diffusers/pipelines/consisid/pipeline_consisid.py index 8fef073d1295..92304e201b93 100644 --- a/src/diffusers/pipelines/consisid/pipeline_consisid.py +++ b/src/diffusers/pipelines/consisid/pipeline_consisid.py @@ -712,7 +712,7 @@ def __call__( The height in pixels of the generated image. This is set to 480 by default for the best results. width (`int`, *optional*, defaults to self.transformer.config.sample_height * self.vae_scale_factor_spatial): The width in pixels of the generated image. This is set to 720 by default for the best results. - num_frames (`int`, defaults to `48`): + num_frames (`int`, defaults to `49`): Number of frames to generate. Must be divisible by self.vae_scale_factor_temporal. Generated video will contain 1 extra frame because ConsisID is conditioned with (num_seconds * fps + 1) frames where num_seconds is 6 and fps is 4. However, since videos can be saved at any fps, the only condition that From c3894001093b70ce28ef4626ae9bc0e8270b7cb0 Mon Sep 17 00:00:00 2001 From: Shenghai Yuan <140951558+SHYuanBest@users.noreply.github.com> Date: Thu, 12 Dec 2024 15:46:57 +0800 Subject: [PATCH 25/56] Update docs/source/en/using-diffusers/consisid.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> --- docs/source/en/using-diffusers/consisid.md | 15 ++++----------- 1 file changed, 4 insertions(+), 11 deletions(-) diff --git a/docs/source/en/using-diffusers/consisid.md b/docs/source/en/using-diffusers/consisid.md index a96db2d416a6..297a7b3bb6d6 100644 --- a/docs/source/en/using-diffusers/consisid.md +++ b/docs/source/en/using-diffusers/consisid.md @@ -84,15 +84,8 @@ export_to_video(video.frames[0], "output.mp4", fps=8) -## Citation +## Resources -If you find consisid useful in your research, please consider giving a star and citation. - -```BibTeX -@article{yuan2024identity, - title={Identity-Preserving Text-to-Video Generation by Frequency Decomposition}, - author={Yuan, Shenghai and Huang, Jinfa and He, Xianyi and Ge, Yunyuan and Shi, Yujun and Chen, Liuhan and Luo, Jiebo and Yuan, Li}, - journal={arXiv preprint arXiv:2411.17440}, - year={2024} -} -``` +Learn more about ConsisID with the following resources. +- A [video](https://www.youtube.com/watch?v=PhlgC-bI5SQ) demonstrating ConsisID's main features. +- The research paper, [Identity-Preserving Text-to-Video Generation by Frequency Decomposition](https://hf.co/papers/2411.17440) for more details. From 4fb4529fde6b6b30546d2cfc0e65f6b278664778 Mon Sep 17 00:00:00 2001 From: Shenghai Yuan <140951558+SHYuanBest@users.noreply.github.com> Date: Thu, 12 Dec 2024 15:47:17 +0800 Subject: [PATCH 26/56] Update docs/source/en/using-diffusers/consisid.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> --- docs/source/en/using-diffusers/consisid.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/docs/source/en/using-diffusers/consisid.md b/docs/source/en/using-diffusers/consisid.md index 297a7b3bb6d6..c2320bfc9b2e 100644 --- a/docs/source/en/using-diffusers/consisid.md +++ b/docs/source/en/using-diffusers/consisid.md @@ -17,7 +17,7 @@ specific language governing permissions and limitations under the License. Consistency training strategy: A coarse-to-fine training strategy, dynamic masking loss, and dynamic cross-face loss further enhance the model's generalization ability and identity preservation performance. - Inference without finetuning: Previous methods required case-by-case finetuning of the input ID before inference, leading to significant time and computational costs. In contrast, ConsisID is tuning-free. -For more information, please refer to the [paper](https://arxiv.org/abs/2411.17440). This guide will walk you through using ConsisID for use cases. +This guide will walk you through using ConsisID for use cases. ## Load Model Checkpoints Model weights may be stored in separate subfolders on the Hub or locally, in which case, you should use the [`~DiffusionPipeline.from_pretrained`] method. From 9b2bd31629cd984a2296c4fe513fa527f3776d6d Mon Sep 17 00:00:00 2001 From: SHYuanBest Date: Thu, 12 Dec 2024 17:12:48 +0800 Subject: [PATCH 27/56] update doc & pipeline code --- docs/source/en/api/pipelines/consisid.md | 22 +- docs/source/en/using-diffusers/consisid.md | 2 +- docs/source/zh/consisid.md | 26 +- .../{util_consisid.py => consisid_utils.py} | 27 +- .../pipelines/consisid/pipeline_consisid.py | 2 +- .../pipelines/consisid/util_clip/__init__.py | 36 - .../util_clip/bpe_simple_vocab_16e6.txt.gz | Bin 1356917 -> 0 bytes .../pipelines/consisid/util_clip/constants.py | 2 - .../consisid/util_clip/eva_vit_model.py | 648 --------------- .../pipelines/consisid/util_clip/factory.py | 527 ------------ .../consisid/util_clip/hf_configs.py | 57 -- .../pipelines/consisid/util_clip/hf_model.py | 270 ------ .../pipelines/consisid/util_clip/loss.py | 135 --- .../pipelines/consisid/util_clip/model.py | 447 ---------- .../model_configs/EVA01-CLIP-B-16.json | 19 - .../model_configs/EVA01-CLIP-g-14-plus.json | 24 - .../model_configs/EVA01-CLIP-g-14.json | 24 - .../model_configs/EVA02-CLIP-B-16.json | 29 - .../model_configs/EVA02-CLIP-L-14-336.json | 29 - .../model_configs/EVA02-CLIP-L-14.json | 29 - .../EVA02-CLIP-bigE-14-plus.json | 25 - .../model_configs/EVA02-CLIP-bigE-14.json | 25 - .../consisid/util_clip/modified_resnet.py | 187 ----- .../pipelines/consisid/util_clip/openai.py | 141 ---- .../consisid/util_clip/pretrained.py | 344 -------- .../pipelines/consisid/util_clip/rope.py | 145 ---- .../consisid/util_clip/timm_model.py | 128 --- .../pipelines/consisid/util_clip/tokenizer.py | 206 ----- .../pipelines/consisid/util_clip/transform.py | 110 --- .../consisid/util_clip/transformer.py | 777 ------------------ .../pipelines/consisid/util_clip/utils.py | 335 -------- .../consisid/util_clip/utils_qformer.py | 162 ---- 32 files changed, 47 insertions(+), 4893 deletions(-) rename src/diffusers/pipelines/consisid/{util_consisid.py => consisid_utils.py} (93%) delete mode 100644 src/diffusers/pipelines/consisid/util_clip/__init__.py delete mode 100644 src/diffusers/pipelines/consisid/util_clip/bpe_simple_vocab_16e6.txt.gz delete mode 100644 src/diffusers/pipelines/consisid/util_clip/constants.py delete mode 100644 src/diffusers/pipelines/consisid/util_clip/eva_vit_model.py delete mode 100644 src/diffusers/pipelines/consisid/util_clip/factory.py delete mode 100644 src/diffusers/pipelines/consisid/util_clip/hf_configs.py delete mode 100644 src/diffusers/pipelines/consisid/util_clip/hf_model.py delete mode 100644 src/diffusers/pipelines/consisid/util_clip/loss.py delete mode 100644 src/diffusers/pipelines/consisid/util_clip/model.py delete mode 100644 src/diffusers/pipelines/consisid/util_clip/model_configs/EVA01-CLIP-B-16.json delete mode 100644 src/diffusers/pipelines/consisid/util_clip/model_configs/EVA01-CLIP-g-14-plus.json delete mode 100644 src/diffusers/pipelines/consisid/util_clip/model_configs/EVA01-CLIP-g-14.json delete mode 100644 src/diffusers/pipelines/consisid/util_clip/model_configs/EVA02-CLIP-B-16.json delete mode 100644 src/diffusers/pipelines/consisid/util_clip/model_configs/EVA02-CLIP-L-14-336.json delete mode 100644 src/diffusers/pipelines/consisid/util_clip/model_configs/EVA02-CLIP-L-14.json delete mode 100644 src/diffusers/pipelines/consisid/util_clip/model_configs/EVA02-CLIP-bigE-14-plus.json delete mode 100644 src/diffusers/pipelines/consisid/util_clip/model_configs/EVA02-CLIP-bigE-14.json delete mode 100644 src/diffusers/pipelines/consisid/util_clip/modified_resnet.py delete mode 100644 src/diffusers/pipelines/consisid/util_clip/openai.py delete mode 100644 src/diffusers/pipelines/consisid/util_clip/pretrained.py delete mode 100644 src/diffusers/pipelines/consisid/util_clip/rope.py delete mode 100644 src/diffusers/pipelines/consisid/util_clip/timm_model.py delete mode 100644 src/diffusers/pipelines/consisid/util_clip/tokenizer.py delete mode 100644 src/diffusers/pipelines/consisid/util_clip/transform.py delete mode 100644 src/diffusers/pipelines/consisid/util_clip/transformer.py delete mode 100644 src/diffusers/pipelines/consisid/util_clip/utils.py delete mode 100644 src/diffusers/pipelines/consisid/util_clip/utils_qformer.py diff --git a/docs/source/en/api/pipelines/consisid.md b/docs/source/en/api/pipelines/consisid.md index faf7253c83c3..60cc318975fe 100644 --- a/docs/source/en/api/pipelines/consisid.md +++ b/docs/source/en/api/pipelines/consisid.md @@ -45,7 +45,7 @@ First, load the pipeline: ```python import torch from diffusers import ConsisIDPipeline -from diffusers.pipelines.consisid.util_consisid import prepare_face_models, process_face_embeddings_infer +from diffusers.pipelines.consisid.consisid_utils import prepare_face_models, process_face_embeddings_infer from diffusers.utils import export_to_video from huggingface_hub import snapshot_download @@ -79,17 +79,15 @@ export_to_video(video.frames[0], "output.mp4", fps=8) ### Memory optimization -ConsisID requires about 37 GB of GPU memory to decode 49 frames (6 seconds of video at 8 FPS) with output resolution 720x480 (W x H), which makes it not possible to run on consumer GPUs or free-tier T4 Colab. The following memory optimizations could be used to reduce the memory footprint. For replication, you can refer to [this](https://gist.github.com/a-r-r-o-w/3959a03f15be5c9bd1fe545b09dfcc93) script. - -- `pipe.enable_model_cpu_offload()`: - - Without enabling cpu offloading, memory usage is `33 GB` - - With enabling cpu offloading, memory usage is `19 GB` -- `pipe.enable_sequential_cpu_offload()`: - - Similar to `enable_model_cpu_offload` but can significantly reduce memory usage at the cost of slow inference - - When enabled, memory usage is under `4 GB` -- `pipe.vae.enable_tiling()`: - - With enabling cpu offloading and tiling, memory usage is `11 GB` -- `pipe.vae.enable_slicing()` +ConsisID requires about 43 GB of GPU memory to decode 49 frames (6 seconds of video at 8 FPS) with output resolution 720x480 (W x H), which makes it not possible to run on consumer GPUs or free-tier T4 Colab. The following memory optimizations could be used to reduce the memory footprint. For replication, you can refer to [this](https://gist.github.com/SHYuanBest/bc4207c36f454f9e969adbb50eaf8258) script. + +| Feature (overlay the previous) | Max Memory Allocated | Max Memory Reserved | +| :----------------------------- | :------------------- | :------------------ | +| - | 37 GB | 44 GB | +| enable_model_cpu_offload | 22 GB | 25 GB | +| enable_sequential_cpu_offload | 16 GB | 22 GB | +| vae.enable_slicing | 16 GB | 22 GB | +| vae.enable_tiling | 5 GB | 7 GB | ### Quantized inference diff --git a/docs/source/en/using-diffusers/consisid.md b/docs/source/en/using-diffusers/consisid.md index c2320bfc9b2e..d233c7984821 100644 --- a/docs/source/en/using-diffusers/consisid.md +++ b/docs/source/en/using-diffusers/consisid.md @@ -26,7 +26,7 @@ Model weights may be stored in separate subfolders on the Hub or locally, in whi ```python import torch from diffusers import ConsisIDPipeline -from diffusers.pipelines.consisid.util_consisid import prepare_face_models, process_face_embeddings_infer +from diffusers.pipelines.consisid.consisid_utils import prepare_face_models, process_face_embeddings_infer from huggingface_hub import snapshot_download # Download ckpts diff --git a/docs/source/zh/consisid.md b/docs/source/zh/consisid.md index 78aced8ffddc..271faf7197d6 100644 --- a/docs/source/zh/consisid.md +++ b/docs/source/zh/consisid.md @@ -11,15 +11,17 @@ specific language governing permissions and limitations under the License. --> # ConsisID -[ConsisID](https://github.com/PKU-YuanGroup/ConsisID)是一种身份保持的文本到视频生成模型,其通过频率分解在生成的视频中保持面部一致性。有一个 [视频](https://www.youtube.com/watch?v=PhlgC-bI5SQ) 展示了其强大的功能。它具有以下特点: +[ConsisID](https://github.com/PKU-YuanGroup/ConsisID)是一种身份保持的文本到视频生成模型,其通过频率分解在生成的视频中保持面部一致性。它具有以下特点: -​ 🔥 基于频率分解:将人物ID特征解耦为高频和低频部分,从频域的角度分析DIT架构的特性,并且基于此特性设计合理的控制信息注入方式。 +- 基于频率分解:将人物ID特征解耦为高频和低频部分,从频域的角度分析DIT架构的特性,并且基于此特性设计合理的控制信息注入方式。 -​ 🔥 一致性训练策略:我们提出粗到细训练策略、动态掩码损失、动态跨脸损失,进一步提高了模型的泛化能力和身份保持效果。 +- 一致性训练策略:我们提出粗到细训练策略、动态掩码损失、动态跨脸损失,进一步提高了模型的泛化能力和身份保持效果。 -​ 🔥 推理无需微调:之前的方法在推理前,需要对输入id进行case-by-case微调,时间和算力开销较大,而我们的方法是tuning-free的。 -有关更多信息,请参阅[论文](https://arxiv.org/abs/2411.17440)。本指南将指导您使用 ConsisID 生成身份保持的视频。 +- 推理无需微调:之前的方法在推理前,需要对输入id进行case-by-case微调,时间和算力开销较大,而我们的方法是tuning-free的。 + + +本指南将指导您使用 ConsisID 生成身份保持的视频。 ## Load Model Checkpoints 模型权重可以存储在Hub上或本地的单独子文件夹中,在这种情况下,您应该使用 [`~DiffusionPipeline.from_pretrained`] 方法。 @@ -28,7 +30,7 @@ specific language governing permissions and limitations under the License. ```python import torch from diffusers import ConsisIDPipeline -from diffusers.pipelines.consisid.util_consisid import prepare_face_models, process_face_embeddings_infer +from diffusers.pipelines.consisid.consisid_utils import prepare_face_models, process_face_embeddings_infer from huggingface_hub import snapshot_download # Download ckpts @@ -88,13 +90,7 @@ export_to_video(video.frames[0], "output.mp4", fps=8) ## Citation -如果您发现ConsisID对您的研究有用,请给我们[Repo](https://github.com/PKU-YuanGroup/ConsisID)点个Star或者在文章中引用ConsisID。 +通过以下资源了解有关 ConsisID 的更多信息: -```BibTeX -@article{yuan2024identity, - title={Identity-Preserving Text-to-Video Generation by Frequency Decomposition}, - author={Yuan, Shenghai and Huang, Jinfa and He, Xianyi and Ge, Yunyuan and Shi, Yujun and Chen, Liuhan and Luo, Jiebo and Yuan, Li}, - journal={arXiv preprint arXiv:2411.17440}, - year={2024} -} -``` +- 一段 [视频](https://www.youtube.com/watch?v=PhlgC-bI5SQ) 演示了 ConsisID 的主要功能; +- 有关更多详细信息,请参阅研究论文 [Identity-Preserving Text-to-Video Generation by Frequency Decomposition](https://hf.co/papers/2411.17440)。 diff --git a/src/diffusers/pipelines/consisid/util_consisid.py b/src/diffusers/pipelines/consisid/consisid_utils.py similarity index 93% rename from src/diffusers/pipelines/consisid/util_consisid.py rename to src/diffusers/pipelines/consisid/consisid_utils.py index 327216f6f2f5..28a8e804c39e 100644 --- a/src/diffusers/pipelines/consisid/util_consisid.py +++ b/src/diffusers/pipelines/consisid/consisid_utils.py @@ -13,9 +13,30 @@ from diffusers.utils import load_image -from .util_clip import create_model_and_transforms -from .util_clip.constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD -from .util_clip.utils_qformer import resize_numpy_image_long +from consisid_eva_clip import create_model_and_transforms +from consisid_eva_clip.constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD + + +def resize_numpy_image_long(image, resize_long_edge=768): + """ + Resize the input image to a specified long edge while maintaining aspect ratio. + + Args: + image (numpy.ndarray): Input image (H x W x C or H x W). + resize_long_edge (int): The target size for the long edge of the image. Default is 768. + + Returns: + numpy.ndarray: Resized image with the long edge matching `resize_long_edge`, while maintaining the aspect ratio. + """ + + h, w = image.shape[:2] + if max(h, w) <= resize_long_edge: + return image + k = resize_long_edge / max(h, w) + h = int(h * k) + w = int(w * k) + image = cv2.resize(image, (w, h), interpolation=cv2.INTER_LANCZOS4) + return image def img2tensor(imgs, bgr2rgb=True, float32=True): diff --git a/src/diffusers/pipelines/consisid/pipeline_consisid.py b/src/diffusers/pipelines/consisid/pipeline_consisid.py index 92304e201b93..92b257912bfa 100644 --- a/src/diffusers/pipelines/consisid/pipeline_consisid.py +++ b/src/diffusers/pipelines/consisid/pipeline_consisid.py @@ -45,7 +45,7 @@ ```py >>> import torch >>> from diffusers import ConsisIDPipeline - >>> from diffusers.pipelines.consisid.util_consisid import prepare_face_models, process_face_embeddings_infer + >>> from diffusers.pipelines.consisid.consisid_utils import prepare_face_models, process_face_embeddings_infer >>> from diffusers.utils import export_to_video >>> from huggingface_hub import snapshot_download diff --git a/src/diffusers/pipelines/consisid/util_clip/__init__.py b/src/diffusers/pipelines/consisid/util_clip/__init__.py deleted file mode 100644 index 08724dcd7a6e..000000000000 --- a/src/diffusers/pipelines/consisid/util_clip/__init__.py +++ /dev/null @@ -1,36 +0,0 @@ -from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD -from .factory import ( - add_model_config, - create_model, - create_model_and_transforms, - create_model_from_pretrained, - create_transforms, - get_model_config, - get_tokenizer, - list_models, - load_checkpoint, -) -from .loss import ClipLoss -from .model import ( - CLIP, - CLIPTextCfg, - CLIPVisionCfg, - CustomCLIP, - convert_weights_to_fp16, - convert_weights_to_lp, - get_cast_dtype, - trace_model, -) -from .openai import list_openai_models, load_openai_model -from .pretrained import ( - download_pretrained, - download_pretrained_from_url, - get_pretrained_cfg, - get_pretrained_url, - is_pretrained_cfg, - list_pretrained, - list_pretrained_models_by_tag, - list_pretrained_tags_by_model, -) -from .tokenizer import SimpleTokenizer, tokenize -from .transform import image_transform diff --git a/src/diffusers/pipelines/consisid/util_clip/bpe_simple_vocab_16e6.txt.gz b/src/diffusers/pipelines/consisid/util_clip/bpe_simple_vocab_16e6.txt.gz deleted file mode 100644 index 7b5088a527f720063f044eb928eee315f63b2fc0..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 1356917 zcmV(nK=QvIiwFQl6I)*Z19ZK~vMkwgB)E^SaG(|_PzuTJUep5J0`N~DK81(h@F{(W zxN)TxRpd|fvY8l2bh9uNNe~1;Qsm*`zuHufsU3f;?gfyU@7){Weg+%V)YQIRE$xrC zeq4t3M~}HKs~`QZ|GE9oU+wSve|WU(*3Z-Ti~r@T|LxKj(`7Gim(u>Z7Onkry|nhf z{Z_R9$DcocaOtO_C?efA9V8_G0Eg*J8Fm z+xYK;eN$i5_?`6oQ_=8WTL0%e=^%gKm6r4`|-ox)!xtl zyS;qJALFq1Z|v_Y`?JA*_sK_{?a#`WKW}=D(f)F>zZm>OZ9y*c5i7M`I{VFM(PPQd z8@>1zn|`&**-T$V;DjxnW z?d1PrKW0ncVr{XY>GiM0idQ}CS!VkQ|NWbGc8z^V-+x_gqjfNRQC57H9mUCiw(>V= z>=U&#Pup_5MfwSQPW!%f=1H)h+x++N^Vmnd#eDIVTjM6+g!oVUD(tN_pjLOqz?A7SNq@B_P>Wd`j5Z*(|;>I|L*c;e>mFzY>V5t82B;!h<@sH zoa~it>+E1$zOw!DuUWCdjbF6`yI!VMe8YJwu2|m7)D}-a1Ec?Qu{X8fwI#NfJ1*1g zKk?$b>s#$e9=;5_FYsjFU-KB1IKz0Y-ahY&S6;bnc1IR}@!8k3$3|`bANVyb=W4$; z*yY;&C3~!Q`pai)k5cg}`a0so-pb6ApJ?`D*kKYuZ zzp+O@Y%|h=4Kt0?c|A~MR`D&J8@oTV9?>kpFz9TT_L$|Q`!m>w9G5+QQ0K0~<6>j_%bTsyuI=%?!=uRb z;HH&0Etg6+^cg1wSNi4mvR|{u||`YjttMNZ749c5Qcw z)0O_qc5hiOlT|Z>ukfP%ro{htqDFAKhUQCglW0lbWJ-umcD&Y>{shgP|-tfJszdMY_oPG znVNrq7n=C?mqCuzE?{~2<1dR(zl9%$wYu5L9k{WbOzPwow1-=jiNYzd7n3cT53N;M zeDE4$WBgzpa-}$nb{&UU)gC4{{YRUR&k#GS&|#2;*kFa%i!QnCC$IhH$KOAzH>-X1 z&%5@ku7{551_KR4VORGm8<9TZJ8mPlZ~^Ji!VlR0)nTG#&*r(2HEVG_UcX2K7HyC=FWfmz-hzb#v1K90d^+JL3e9Fd{x6lua`$(;EI)cX*>E2 zEzSTNZccY&{4@JDPWk0_xGh@|7}~PI|EJe^*?&f~aN(u1Grh?u9yomi?9$;@?tv#N z!%ht_wz$5GrTmQ_FqrUORjU&LOM7{m9Zowkl=_SETI{~&ZEX9JF0~s6Tj$>2=#Srg z{-*f!Grur)5M<+Er4;nF+vzg?J&(m`Z}7xzxw{!kF9!2>mG#~c?A{P=PJV4H+}QCY z7P-LS%((Qn(}%tChCjOcG5=2Ci&Njy{;XUuk6%14R8Tc4(pJd2_)V~@(fO^1fwir) z&v~}3KeKtXZ~0OVM{UE@H&b8#neVm7?z z6{{b{*Y5gmp^Ys5gezztmi_ZXuCtzT-68;=aL4ZcLZyc_b_=w0W_C86FuQzu+%m_V zHJz;;@Qx8lsZe0!so%m4epP(iUui(piJNC1Z?^d!M|tRx2aNbtC6XPknY}z82@xUe zmqO&BJsrN}OvX7!S0(%SJ0^Je%y)OAaBMiu`nqkO*ZkD*0=88iwPIJ97`H9=Jj&)b~(xj&pLn2w0*zABH3>!BiZ5pTy>g64w1D*hrJ+7?gH%SATuVbAR025iw?d%ZtB`n0{O9fGhE z>Hqq`PBvj9WK!<>6I;Ozt}kc&i{Ebr5YIS^D~i;$)l;^G+#8qZ`N9j<7H3(+szivC;i=_fQI7sX_DdE^gu2lCfVzTBef2PD=aZob-k_6i;F)C>Ii&DPMZ6yp5a_qN7w zZ1#8Q30j2@c61|Yp7A6-)`9-oqU}n5S=hp*Ksnv1YXB4W(`Jz$Fus>Y(NsB{{uZk+ zFw|Ctt#?^)q`y-r0!T)!^i6l;jKxW21WwLQnSHgNi`5dZ+eLqWtVK3p_Jxgw_O=8) zqTTYrpskT<0Xz^tZ8oLxL*FSO#AZw>3N9lv1?S7Izb zvN6w5b=}$uSLEW1l^sCVB{4FMTch-f$2 z*rinBiqA=Z*6W=gy}5{4cF`QoB;R9~=H3R1ppdX!)8Aih7xVG7XYI3b><}tcv}!}~ zlt0>wN^yQEIA>%ehc`5D)f_df$5tcyZD7k_fc)fb1jv994es&Iq1Eq^g7|&h`%|L0 zGjY1a0lv;i4(@^4*zrhb^UJue3I@wy$)8HM@JA^pfdJ1v%DJo;DE}PJl);T_}HuJVjERQ9R+8=R&AYCiRt|3 zd0W#Ln9jJiz9z}QweZ`Br5fK?Y zcAcP+^iC}LloN_`4braO-N&_WhnzKD)35jqECX`H6}0Ob2*MZ0(JzqimT-G3ciOj* zFa44W@FnSBG3|an;tbk@Pi?Ht4kO0U$nL2-Ae|&jjCHUFT(=?NKC#+?P21t&dhnEN zOTukfz?s|-Z7Oo6i?s#fVs?&R5w6#5No0(Siz0flyKO(;_1w+f{oq`@*|K+L@_c_B z(Lia_lKxuTal>_4j-ncH!F#`~LxA|o%wPa4Mq~VwHp$L(N>}@^pSQ4-TZWbPSQq9V zVf5F0Y%RDkf9uu?S%Zf_woaZ-mkFI)k)slmL~U@oglAguU-t83<>!P>kWdwiZ_j?m znH&*l%QCwwEgK7B%j_mgRY|u%P)j@Jb{z(lX}99*gT<>YJIH*i{9FtP;Y0}2`Qh6m zd+$f>>c~tEUJUkaCZ>}?gJL~+nSYF5PDYMclOnDX(avP=IgYv^i$%7(p8N^}aZ4%B z+S})irQC!&Ic!7Ph5BaU&0@!(wd~1_xJ3j}G%{Nd$HJGzR>jiWAu{F{&UOP(!49j1 zsTQSfi*0T%D-rSW771Ax|I%V@mS_B~-Vid)tN*1EQ-*j*rq?5#gq*qQ`Zm5zcWuTM zH6a{+w_0UBlN;Qw`+?Cm%!2mF#Wp4z5rv>M0!wC5b2ya>$+U{caM$L04uqZUCR(GxGqB>#HwtSwq5$C{R`<+G9H$MQ|DNM5yINk{!Q_S3{2c=_dsOZil;fJ6YS8!RRmDBSclDfw2y1M;JmgbDlTs zQIH3KVDHxmJ>6A_P_TSOE_1azJrm2ed)?YymJ?Ep$jY&KiCIPalDwJHQZZX})q)hy zlz!j-_1eY`;5- zmkwWWCmOYYLH>s0!*|3fx?#}6Q=g;zP4aw!HVbIIbnUOhz^V7H_}J_1%%N%My^ z{kpp|^!R@7B-A37w>JW={7NAZ9GI5%aksr*J?D2Rn?ApP8us%11 zEp^{v*D)m*J8+di@KDWr$$7#D?|>fcdRvgT!Zwr$66R621|=%9{u5zP9LE9NpAJ8{ z^%0rv3SNM>^lg}lab5|Y^mb|o;hqSpnn(uh3DO0`{X^A4S@;4Zv(=e|Wkk-}XMA}> z$qdi1qE2ZK#2^a(z|TO9f}ke~ak%Yjcy@>FHP>sFw~pmGU=1xVGy_{}5v~@>?2#kg zA_6HFi~8&)$VCS#Nn_$rHY)3mroIDOYJ-_lw+P=5AVf6Y(4CgHa$y?2BkMWGVaHaC zc=&!$qyS1mD|FP(AY5CE0~}uV1$Sac2~@&-dx4$%amguD)3R!jKKb4&g!uZfJ7SLH zR^p`ZC2?XHDWm`%#xj`Ov<^V6@!;-yV8T2rIkbnRir7uq{Sm(?=+AH3tHr~I{Q@%`cnVM^0&Vvf9 zT^RuyJmAW-%2js-{K6F)z5b*K5nY zwST0z=~BnD+0x>EDZ*ZZ4WSzgq#hn>Bo{1V$Xhrk|N69GprK4rv>e@&En-16{RT!@ zE?UKpq7s4h&`;$K#^oOM>?_d6^mWaV>`h>x^awO{4IO!LTn98 zCM)fY&}@b)UeEYV`f;-_w!!-7RUukGng31vB68^V>_E*;Zu=T32U$C~Lgp3f;@&DJ znIDSgnBkj~c(GO$pel;vwdcYEc4Jfm_-Gxk!dv^2pa`x?-HR?@j&f&*LSC&*4;XhB zaVspXO1VRS3bqnZSSP-qGt&+rH()X{1QR>Y8Kd?V7LYW+el}DwZ(;wP+K}tO6$l&-kU`CL>6UNqN3TK;o-E9?`f_c$z3w~zg)W;V z(#xLh+;(FwF)?E6s2m^^Awt=%oh*Ttg3H+ulOEFwmpe*dzb;NtY^;l z=34|e9%fG}iBuU$s(e9P#hnd+B9ck{Y~C#cS`Z+0ww4{f6bHK#f$tidWMAo^{20k% zroaVYupL3!RfURB#gO<8@Ra}2G2UZBjJa-#N=T=0ueQ#Dy*kj5&E2GTdm#Q!Clyx6 zxw690QSlq$-;@oF2%XKD-GZVEb_y1KYy(!}ad!{#!{Ucw6&Z5$K`v>D>w{8kdl7{c zngN^@FsA@iR&XJAye|>c$P4Bn>JiR3Nxt9T0U09e`V)S_eP>aT%bdP`dQ%`?fj!U; zx#+jw0PxF7^wU+uP@OWJxwKpnL+*06V~#Z8Zfa0Y=K(B*R)2Vfj}>5DE}lT&B1LEU zy(8A}2U3Jq1aRRd%81OKf+@{gAyfp){7}5p;_LmA9@^@KDSFE6w#=o#Wuh4&4ETTz z)XF|(=h9ILb|uMuX{SF3xiC5-9i1G`2_NDGg!0h`lU+p@t!G1T3~CC>m9vA5mQn3| z)D5glI|q-xO;1w8vxvu{8}fF@K_DUMQb83!7dbkC{o#c9@g_-=QHMplqC_?2xp0~G z)q;$T?~|S%SZ44U2q1j^Nuhs%O#q>6l?z)5neBEw5t&>vaQKFIJ1kJ&qO$R7voj~N zvpMi%=-jZtbwT{B_NNTRfA|tdM99pXNUGg0nC5UabFk)X{?Hq#0YIr|9MNzvI1Jr! zs(LU1_iq`?PW5lQo;WXG3*}0IQ21b90%DNDR9iXuNZyAiB*oIeOSf(e*CU|8-p!-< zXRLqXO4sm4ulTZ|!KJ>T`e-5ayzYq+r)B6O)&=Ht^1E6-k9m=vJ_D{N5fvF&s(c(O z6BDiUlQPYjx5pA zP2}0{7XK-H14z|?Q&J^ueBewsNf)f0XEEY`rw;Ig~iN0`35+)7HY43aQ@f09Giac z>mwz(Z#e^9(_P1F9^jp)#NTc$81L)sP6;q;H%ELD5UgaMG=uSDip*zB{L z-uD#IGiQHzWh|#smEOxNq35T9Rs3geifck@IkwWtzl-fEz8Lm%ZhDd9PBlm`n3eHQpo43sQdxfQldR*^aCaS z>B%EKb42sd1CRNPU$1R219XZygbVB5pQ`ElYMja%C0UV<5VlS8)pLHUg7WajVA>ps@XDsU_b3h2-{4^dfEp}k&^L2PUpnV@*3EY9KC=2 zp*JOR7)&|YzI_$Hc-vXx^*@JyThT|03=cF`e`IvcrLtLKWXk&v!Pg3aCc{XI68fB1 zngbdaRQ>!!w{hsu?{?XP=Y4E}KU<)Cs#jQkIrG+Rv7U%IV>!j&8iLIH25&I077X-L z)DqLv*b9MhA6&LDj3kgG#LT>`ZGuPns6r!$XO98ehW#+Jox+nkW*Ba>WP&>7&dq5@ zD}vsW-Paz)$li~W97bdWJO!DgJ!IqyEePm`kN#{&nx6C2APPIwG_IzOTg2Ks8?vyk z;b%G^;$+HRszK26HRE3>_z$vj&s>aWZlMe|!vc{oFXfS2k^Mh)*2i^rH zmIo6gPd`tj`d%CBO(;A0+;`<;YK5|I>kh`rmOPYd8L7##in4jH0+yZ4LG&^Z8u*fk zt6+u)+2Ce9wU~fl+T_4fr)S8m8D(w-`=a2x zq6lrTsT*DI2LN0)d^#vSD1s+&C+-jlR(*Z(q8*0%lsEsoHtOxlS>$P})QT!;qrH}zo zd#g1P9uS}7>4FXS<~O89CAM*t;ShMhocOM@`c3iaoAmAqszJhH1GcA>(Vn=rC*I_O zd(+y9-sW^7WRZY0EL=O%AI+a`TW(QXS+Wc30V0y+(G33PSrA+uC+r!mXt>_h(2D=> zk1VvKil%{R*=e$k!o9Y|$c}M5(T&|LE>Q$ZX!Rd#x339g@w^r7hi2BjB);W}Yz??a za7}UK=Z!-TxZDGVKAk<3O4}N=a*veSpb0br38&0A-gH~rh^&In-C-wa=Ml-Q*y+*3 z)h-)n)>{10?1BsGrSA%V0241hPhKMSr+Ly72}uegR1H2(4lC7iQziYP;$*qSw#=+5 zl^$BNbZ-})Ki#jvPE>b=y__$t?fj36Pd{UwB3WG9ZRDSoqI0CSm(C1Kr5pm_g&j|K zAoHc{~pv$zw9YV_Dt=AF<>>;<9eiOB#ZK^h4LLu!XlZYA3;=penOdMwV4UPo>6s z@&hi@k=cvu927Rv$37Ct*)JUUQVZH^-6jg6JtEh`okonl=(?zwfy0n0&bIeag|juT zRNpE>?s;du1t?V2*=WP8xag2)zxC#lw8YxU@d=*IlpF?*FC~uAzN-qMn)R-%GLxV7Po%!vj=M* zP;3=mvU?h7KeA`~RE=i7nS#;`W#gr&+BVZEbFp!cD#uMzJ zm>o=r+8uemnnU2XOQ)Ow26;vH(cE!9m<&0z4&JOB)Z9=%48(sdFxpR#MyT z?K(8hqWHckpr{e!uBoNj-)ubvr9ld0+$=N#m9~b-nTH@^@SWSv8qfuPQ2Ze6M4K67 zn+K3xzEI`KDLHExAX6hqMy6&frF;UE)xA?KIJQs7@I(KNAT3EsU1W}!V}NMmIOd#z z1-2LpO$D|@0g#<^6%f4Vkq-jvHLz*D4_C?E`%Urbr|G~XLOo03xfAuvl1%aW@6x8W zfvmOfD3RIOSLy`gr2r1N3yLk4WqpmqrauSrQbA)&^_+yfZP~G~wC0;_?rt+5UyIvZ z`A%%dDGs(fx=~c)#4U|pOtk0Nn$#IC?cYUD}Z6 zLNjy&Ck1vuI!FIdeEz5Og!kN)ht}nu*yB?6Q$BgaoFVdKB4{$%#hp8`LCOsVP&tn| z!Sb35$#;QrZII`>S@ol3&U zzItaflL(Ri`8a`dqJ|$7$P@U}v6nS28mRLq*&@8JiRNXddMYReHHjR@jZ!50i4Szh zAA>Od6JYrDB~=*MP#Q;s)dECI5vxU|n~nYcNbG{PcOJc|V@3ujnnicy)-L9mp*A8X zRwG6O2avvY4sYzr7fT%JdWh(?3F6O=hkxQtiz8 zDYTy0+m_a=7c#Y;vJ6C*`Q{h5R*WW|W6-kJISGgau2vqYOzjVA=6(jR{GCw~ba7_r zK!AW5jiUt0?w9iDj@-+{#{9lmf(+Dqc1zgsr90EXCxl|#>dG_JU3-$8+0c6R5A@5r z$085QQ{z#rTW368fg2x|_`QL@60XB`Awqnxk2;6S%iz|4o@D{28*?Zo?w0orEb`sa zuHVc@oEb}vp|!JZN3_f`2t%{uypDMThA@!m=<(ER%7p;it`x^Zzn};C55lJ#g*(6n z+}bRkK;;|~ZqTn3kxPfF=O%t&gr@_ch3M&_Gl0*^wBC8mP0T3nFaf**0dtdu;sFch z&EW(dzwaogZV7Qj_GSr~vhgw$@`!zlsdvP7quch~k2?T6S$Ik@kYDc0WqZ6p=jfHa z(-e#)E`?x?^++JFzi3iYLpY2xz!E)`OoGeq4Ly^)A4|{w^k4Dl(c#vwxfENWv~^{T zVMt0Z8RW&&Do923J&EhtSpW*xsh}ai4&d(PNeb2igqoBv`N>ytvRZv^4HU3S5^Ca* zB@G@5O!-+X#a+0;ovZK(sO5)>yk)9;Eq-Y9Nwld%eca7*Vve{4Y0aHp%jn&NrB z_CX?^dM}q<))S(To3w6h-vP74js-xoOP5^nRf2 zBt?L=PqfiJcDYnh*xuChcyv@8xuv4MrOu7?5W`7*%ME{-rGDlAK}c{|c4hBUtvb$I z5$HSVZ62!s&TnHhaoKL!2|)$0y*y^xv1m!@bAfcN*}`12G$Vj=0}|x*Sn{5qZDkkA z-=``Ic~HyLl~%PB`?^xR$Wr|$yW(q|!-M>iw1`8XH{h7C?Kz0HH9Fzs9$e&B1tQu7 zUs7-$RR}o2|E)xO{4(#VYdq$Ni<(uC)uTs;L29CqdqF+Pagb}VlYhdUO%~jXB$S46 zGFepq7P{M#EX}KV(DXuY<#JN=g2vJm#d|Y{PD}uo3q81>f3F11vdBQX*ERy)vO^rU z40F^X!tZtmLiWo2H1(? z`Vu@;W}93c^0c>%c1=3%e_s4K{|R<@Bm@xi(!yGt->Da+=^2Y=N#?AE%sN5ciezFZ zP+A|h8jqebXy*Lg(U&Xh??O?d1K*}JRc3{-%7Xzr)^=>Vw0>r*{w$&J48nq81tD2g)~SQRB$3gCS{-0n(LXpf6@jzXnY8iEdyB^)Ftw&Viw zy;UO?*g6^7-;lu`dinp|%~2gSI&V1mr8*COnYfm_Zh|5v%bWvPe4KjziVU03( z*n5akEHEMUG2}jOil*AO#Np0G!|inG!G{w2+&m|GI&z0lxyJ3Cc)|p3ok1&@iHO!A_lzAT*nM3o(}}IwUrg-T@!v4(>3Jxs=fqZ|N;i9LTcE!Z0@K1NC)o zg_{q$-YXS@OMTnuAF^g${Z_f^9j8h$m!)VMJ4z#r?N(yJw+pM7pa{&lpB$xFD)+n5 zn#ZNxPlW|EtRQ!8_e79Aj20#&Y zQI}zew}K}uS~cB)L;+qVWEXE(RQ5^wl^dC6aZW|j`O(q~$qnF(MIb*NXL8OQ>WX}N z=}bg;zs-_wXKgI;d&`4ZScF};amw6^t{2f2pyMracoeVIPt=w}q}1)ZQ1oju(G zDN|jYK_HHDz?#c_r_Nmqn}Ox)l%WY@NF2u~BK{{w@P1hQ@Q408)TEs$uDjcbLvuys z1JE3@%!E~P-!nwffXpm)otNyhz8KZB$=HB05vdl6Le3+C;tSf7V%gB$Is|M{$urgx zn;#`{-j7QJ?v#?*H1vl0I+Muw#~K1!^wwrDc1#qRai#ZYEV1BhonQGBc*+B1M3in< zDrj;-N9H>VwpwyKbD2gysH)h9E_Qt~)@w*Zc$?gqpq%ux&o<8zpbWH6r%0oQ+@3I8 zzuY5wCbFuVH55w@ilTI~zqAgh0E*LRe&Su1W`5Envwl#bR==GDWFP9fOchbHniIl2 zshI6(wJvj)Uetr2_J?{+YaPeG(p2SB7{#Mm;px7C*cj*;DT4m>mq zoD9hl{f2*nIT`vQNNr2Chz&C(XZ^dnQxKXC8VJdG=9FD+Q8vM3+(i_V4DkbfqtN!8 z+4izi04>p=vdV*OyXBPj9SH>%`ANw$dNEhwOPd?(^+03{L6Atlct(F!eExsZZyn*L z<+ajZ)FJ6a0+k~A6n+Nmg#gIE(?UhKel@I9TA}h|3Zcffi~0nOrofBBvi_7)rgJ*O zs(lN+ril)=pM;MVj;@2!pk(0NGGlt6*CH=gv_0RZ=ufJcBio^PsyIo)YJ17?cg_EX z?l$R&k$@drbj8;Cm#>c~3$7u!k8WEWk7pLHKxF7GGj8JSZ~Y7?!2g5a9m+*gL$gPt z>?n7jirZ9P5^timlUnA!g2WHFglg#$VrFY?*|GfD0JFS*qbqiugiT(k1IOk^& zW!SREndk_qNHHfedt82t_f-PHfF(O zaJ}jiZAdaLUT|h`Mu&-LYReR(2c2tf1A_U+xC+ksijT&jc9Htwu8Hn;pTomex$te?_L59TCKn&0x8kRgkK2UYJ&OK@-*4NQ*A)XG4j_7a-bEs`mnuty$fV&$H-{rcvPsZTi(mpBX;8}|m&`e7afd|x z4`jy!SRx**PpQfF)>kLYr5~u34XChMPv`&p#rM7|dzMtJ5PpPsW~eTBVCf*p9Cd7z zqgfgVHsS7}@jYwtZgU;1IYuzPWgxBg)E0D1iZXZoDBL$u3*PINm--B)Le+O8$0<@e zC~yy#=)F$zdB61OBEg=wA8EhndA_!`d4Vi)?vvYmm6$NZdBixZK=}@+#f`-p)FS(v zD4GH3ve0oRDG8oAKlbl|Yn*sHNC-Ke(oQaEFD;_K(9nQHb#<0R`Q*|k%IgRH=X+=8VH(aA#>{}pkT zozPoI*kwjG8`^11(n*XKZ(t1`_qt|*U`1pnP5%Y|7bN*O%?LY(HqUE<;{vB|2y;|Z z1THnNLMxoz77sgV(c1KF*Q-Xp&?uAI|rvJ*%PDv?X3}>sNpKwcE`a=ZpfRhKM-&c!~{JcWOJX+D$WP0RfN6QWl z#v<}eusYB$u$LTtO7u`(-pcwOSrNEAX-~=|D!!lFAAXPN4fnXR%MA69GU_c6H6~&~ zd*T*RFf;CLBF!W4qrB&Hw zTa5#a84bwj2DfpInDvf9;O-dM_PM#yP32KX`IAnz*>1hs2e`-}fzcmoy_Qrt@0Y}5 z4jMzUD#C{|422Vrnr$|{c-d09+6g|bR0^obV9l&)k5}8GE5*j*lHi$q zishH3|B!0q7%~#i0B)#+)~T+Fes=JcoQKwCQDXRj3Pi_RoAt(%RP%a*$0WUJ%_9anaz>UvJqxxyV%h+ z%Vur?q6}!$tjnxQ1rp$g3W`&Ex%Ow%j5q{6u`e+3=g=4Sda@U;EdBh@US{QnTR&!& zd=qkV35A9g-=q1&*<)bG`u#~-)beTtVg~zUXOg1JG-(NqBWo#sRTO{Ca|%({gJFdz z8AZp@)X{$;W{FZpG-tT=RrpA4k*ukuP^CYs!0!I_90dD}hRiuSeYzOSh&~VLIjpUV z`zPtb7(a@@l1O3ld6MG4)1zdz4IE1700Go0!9RWa1^ZTzGfIIYD+i^ePC^K49XUIo zzMgV;{0AELF584tUqz(~Q29R!&Ca0$^tv2#%1v#w4(1Wr-nc<4gHLV zCd1=2>;&9Dv^1U6dy8Ecz!D#eeXF*M_-bUoKWU{C^L^V`5 zFrpt|$1L{yj;l~02&(+TATW7wjvScND|KR3m;qjLYoq>>G)PY6ybj4|mr2Kdt64)v zN8SlrU?!TPH@R@si(WbtvrLmpY}+2;jeO(Fwt$*;;1IbjoBE&+jIU${x1$C+9O_%j zaJDd@6j*ynUj=cjzwb-8un8d$uu#3N$BVJ#>1!3PYY#ChITX-NydVg8B<2s+b%x9C z2zyR>z~2*s$gr+*%d{m&5(si(tKvH3Uqnx|g`i*iJ;=S!B^&3UI-thKV8hIz>X)X) zr6#aJ<-^2hq)?s1H&)3a@FX+ODiR;x(Ekxm4D_bBh`3q#HSM?Wfl^dtI2 zw1IPcSg zeoR71rg@j!*@05u+Dnw?pe6!`k5CbmFI8vEg=AcLpvqBHlw&$689#ZPStqO0X@GK+ zy!Io<_6ccEmmk*D4}Sn*2)YkGP|_r-i6#zibC0s z=`sNANH&#P<3k`%d(29ruT%PmIVMbV!_K8R;w3n>d=mPKiE}NP2zyrThf*{FCq+fB zgOap$PnaBNWI6*ItplFx5yX37tpw?^rac7YhaED&;O9nHH&9WXf;`7PF>(Y_o`QOm-lQh@y`JW-Az_ z>ETYpM@Dw+CpqINte`O@6=H)T(B`RF_2pQaT=2PO@MX(lUo{U@uzODPYfkKeg@Seh zi0-7EKsoHhOel37Hh+&bZHV&(@2Y6db*8u48f3Q1THnz8naSxXHqjb63e^L&!t8~# zuO$i2o08X3Lj;7RTJCNEvnqGK4*kSZpxa1L^1wpU&X9aLE-AO|L32WjV00Vr=i)Y| zyJ!VvjOsp0zANNAyPhmKx2@&lqJ+PU=N+Z<_RO8SDHTXBQDY7zhNz^5Mz?~%qeEvb z9$-WU&jImg=F#uOJo@7|fBLV*r@uZIYRk;-f`t5lxh}-W*W62%7;Rq2N@w$S5*+MA ztY!P!O@1lcl#_wM&0R3*o;V7F{@|6a0o%LsDOF)|6jX-bdz!D7h|@v6&r?4Kdtyl+ zMK@_vqLEI5YqVwdvmZKP`<{lVlNrEXKGmTdf%4#D4P!RJtoRDqOZm!_R8_p^vdvjj z-%}P3dyg$d*Mag~a+eU9qO1`r5pnAPyFpriwgOq+C@~WekiQ+&WgvSU0)Uevt!9*e z2W}8P8PmCYDl+@^5jFLz;y>uK(ILbWf`-xwq0Gh1!U;P;_oxbfbrKMU7%Lo|ZG@gqst)oU)*w$$Dw@q)kwA>>ZQ&ZoDy>WksAB1`EUJ)k%wQwvXU z2T^~TH43XAzEDd{`GaP`v#3NvuMdbBdd)B}98l}`*`~XqUmFg zC0GFw;fw6&@#PsMV#}vz2d|>mtZa}K!}8XU3yq1Y_U%o1mh=%}JEcRL98w7Feb05z zB*?s6t?qmOCo?9G#%C|fZG6suD zW5>9qXzX6Hde1T^SD>;763jVW=@?AVLqjCZOPDMs!k`|AxFdy-R_J!>Fnz?Z?q}{N zxnbH8Zgf)Er3_053T1eVq}N-UMx!PNknN&)O>c1HgSi{Ok+9abA{A7fyg4sc4Hi4y zYlOuF>C~Ejjm{wMCsf$F&_oW+Z;1G@!P8S=3`18PD2`pjxr_>-MKXA(!tuG95B-Wlpk_ znsa8>0y3CVG0qdaL<=m{@f6b{I9sS!Oa}0>>qw44H{v&+e@_+oF5Z2_{35TRQgtz` z)siFE)Ty5eL{hB7q(%!Pe3vzS?OIkA-6)yAu0eiB{xj>NtJL3>_NOHeRn@sE3)}v% z_@V7*6^Cn{a)B`S2;(+OhTj>3Z#vL$i&G*aZ$TFb-8t#{n-9Z20jhqe)ox*`znItG(O~jppDa>lc3{Brvd`m4uKuLLtemUnHN2Vt zgrDpU`ge7p^kYYuIS?eM3dd1HVH{2gT0-7DHZkW}p4gA|!Syv%tJAeACLjQ6JX^UHLIg2v-6LX{@5ja@r zmr;{qpXbc)p{Uh1_2)VbOY& zvdu$w5*Br4^YDlv#cgm#KrEc%tfwhHjD@4Mr3g6!kNfE3uEl84C3ggM zdh!Rg&xRhQzD1hpwjLuy6V8dNbS6Rv9Fdy4VDSzm>g|!pdZJB`ZY$0gqJghG8eorC zlz?%G`t4kuMhdq@2Y*r@_Xs*lk(57#@b*?>oHK=#Zo*Gd+XDefk@3hmp{X-QZksy% zeF$q+bI#?qqMHdzI434|AR=T=dj(G59`l)7@aZrPEryenc@)UDm-~qycRkP4X$g}Y zBbCr96p?k7(y)*yQti>!(dN1-CmU*;c6A&=GnTGOS`4E7CT$f#sADcZKm(7xYIslq zmce=(@@%j<1Qi#(X;c-S7H|fIrF2F^b?lzPNP8jkqX_(1ESd0(CIBI1H8bKAG^^hL zSf$=UbsZ2TRjD}Ix={>|Cf$ABPfTw>*D9iA+R$kR(-vMGO(h5Q0OMDl;Kd<}%7O`j z%sqP8i#%D(kt8T0@2nPHbhphf_j&A0MZ6i@X6P=gPP>!wc;|rBCMJ5YK21pj^|cqZ zM$uO06|Pa1WHn&lX}> z3%=IJ~FU1?lU-rZ;TmF%(xHFOz*>whAO z-fZ_m>ch;%9Woq4t3uP~Z_ceKSG9IwV@QcEPera@EexE6#6(^>A z+X)#QKYRE5w);yezlge#wHRm7RWwk@}dF)D@8$pq7wGirJ0@v0-Y6GJ#Cf zk$uYko~qo^^pA<;0?3QE>SkCGRCGa>!yqy9e@%o(URP&gu~H{3=zCLYRqzZ}U6UL; z-^Xy&4oSv4z>SpLK9FaO0hvM%t;4lBB&C#8ax-U)W2SnT%_j6w_A@NjOEV^1>A8xS zKIl81y|T$weE{sDV1D4o8|7Sp)??~kO%DiMzT+gb)nXk?h`JXW{jtBFPW(HxIys0h zbyP&3remeE>I~EXPmrn`$mWsiy|YBfquF~q&EiCy>lggX=Cq%G`klJ8e;Xd*FA=P# z$tiswY=GNu5t z8#32tm8|TUr|wEMS`}90nx?8E72Z03KiH0f%XD3M^)smqh;-j-NbOG^75Yrpo1+5A309>6tQT;>qc96l;tG z&0AeVBBK7@_loa*j|%56De`!u%SnoY66_M6fP&eERx8+! zQbz4?=P~97y`xrN1!na`0)TtB8DY4uq9mx(#*ll7h9(LK*EbEdfTBm9n&_TZe ztm@~=jP4=&a#ZrbXtX&5A)jlAVF0-HxiXr@`UNM~o}-c~kv-wNfOK}wDY)qKpb!*f z=mGa|5er2!)3h^@O1?hw)1XXJiX1hi?!9Ee{!)$P2#8O*5K;I8!r&465GC9ivFQix zNKjK+nd%QIoI(*goWPyBLIhnfe&W()FyDRl%Pbrl``DK=>BV9mO8sINMdfD}LAc*r zalOrw#ggoyu#a(*N}z@`yChU1x1&l#?Q3+}x9?b5QB&>KYIwqX%$&`PQB|AE^-M_z z+LTn_o-(=62-JM^R+u>yO)4nTjeW-di=yER?tubbI(@AqtyT5@%1}xtuCm z6P20d4|cEx#0cfoNFDn@=*@PP1;GU&Q6#6iTgqMGCmSfgZpTUgwhr;dK2Y$`2MS1x zf$4ToeeY2Yh%VyUqn++~QW}AI54r0hdwL}5uKVv7|1lZfxww)IGYY3dV^I=6C5I2W z;nVCun>mIwLuu<0S<&NEG?eanD2vGHvm+KK^{UXVJT*Hb%J%?|gjR};dX2YyL|K`9 zuZYx+sthSxjac-FJ_tXeXqBEwEfJ~7osDfmBckNQp0f-1J4Lrf``IIpT3BPa;}D`$ zF(ox7utuTmLY(#OlUiXXa#Ky-<+$)NL`yFFofvu<$1{`(mUP%cyO={M{iUdNVC`Exxs-t3+Ws_N3j|F& ziEY$>-rA>q)_T_F`57*k)O!BU;?v*Qok|C9cCeUbL@{Sz2Q{l|J5GiFEC3sd?PM;bry&W)~* z0KkZq{l?iVd$9QJ$1sMOYX4|CMm#)}_2n&2!5qApYf@9w?SbD6Y%pcNW13~-$KgC- zGMK`9yPTStizR7LyWAAI#AiRxaP@3-%#yC<3jRc{2C(B&T@`G~j%x$~$@I_+QORL$ zsi&S4anw~3a@Kuf^ zTW;Pi6dh`5q;n8l%-AD$oz5eNce2OJW6GJ@rrmKduwD|iZ4T&;Ey}^usr=He{TvvK zr4r=@7uXIhs+D4IhtzX`pXKCLkdHB&78rmy^_tDaS4pvqA=snu~%v zPD@CGX8ny=$Mpkn~yxv#}KBXWPr&zWNpSO6sen(qb4) zln@q#9a~J*N+0is60kv|O)E8EMHhNFgKzT!urib+38~gm<&7y2y*5uF-ln^-uap;+ zcsqnzh|k;7b4^|?<3t3EDE$WTTb((CSjjuVEP6e z?iio*IyA*oldn?+MK=9O`vI_22p2k7v&;+(5XHJ9vQtxA#1{SZ7VIo^0Yf9hPhSHL zaadXCpzTo5!9W;45dYCR=Tiv;c|V|Fu8UjrQ4dKr>J6T*=_!RJTsrzJNt%fMvOKqO z;_M{|m8sBJE+~;o!KzX8pU3*tP!I7l!pau0V8Guw+7Emy%_ask8~S3uFFyTsx=*d8 zRa2TylfD|pUG?ksiiE*$B?faqPU<9W0zVKnv6vktJkGxk0=R0TMc%5KUc4#AFWgup zGKoL;;U51QHAW6K^h51YM+$d7|CYU;N=nQ6M9SqPB5}5pRDcLl?BCgg+n?uHcV>yVYmzZaZka{x%X`5F`O=2FAUq=@Zm{e1e z+4l@zVIH*&@X)UMILFdgwa^k@M5P%~81w*lt1UG8;4n*t8qPl``}=SLpJeeclp-a3%cuY<~Flg`dc z?N;=AVXt1GaR#hkXZ!s~0@G*$IBgOnCWS6GZ2g!L?YCpyntVja z1l(ksXJ6Xw)Z9n`7g^w063D5O$ZcWKE+RJpJXa&WU>oXlSPbGwJ)=D8{9jHj#R&Wt zNHhB)lRn4LQM`GK*}|t?Esz`)f`K=X`Nr)Dnu#e~SE^gTP*jf5Q~0AUP6os(Liy{Z zmvTZ_G8B}LZrRk6hQM6%;9l=Vj-(h$An+<54i7zVBBj9*R+kDW)GSw2M))`%ySZFZ z9@{2cc_e<(h2`fbh$&+fH(VYeTZ-rjq>K-`MhppfuGef~ZeY(Hs4~ifBz%M$n zGG!Z)^QVa{!5>PCL1vztR&k1`6&`mBYQbL)-0_7aGC&HBb9T`gOw=VD&yaYl-~8#X ziqHSUR{rokTx-N-Q>+UWgKz^wJO`>*?!4cVNGmL|o4b4s5`W?s7btH(IRs98zwfDE zhvXQ&itX~deY9}=BhOLHzj;S*95It!&=k@+Hdz9|)buiRe1Kdus7tHGp}wk0T2^8OIV{WXgrq4Er!^*ZFHR5Z*?^tuns zB|F&dRSf)b3OS$9=Uw7sl++xkPZ8LO`Fuu5 znk1?Op2Ij9^Id$HGR;8u!gioA0V6!l#ZzcTXUp zI0oPMNBQ$5kbR0((Yp8h+`Xj12Sjc-#*L~8&uz`sD7(=$N zJ!{fBH%B`8Ox?6HW7~%(zOo9Lt&%v+Ok9qIZBAUgCX}!BK|<*TLGZ zy7+@H^zhy=|BfcjXH1`$0^^xFM(v36ADXnDDCoM~k;Pm}h?B7+f7>IA<3@Kahg$Kg2co18dA)st1>XR`x2&H6Y%F6gE`e)}V9%{7AdMaQ=E94DS8bZ&7Qd zNQ^66wa6YT-VRK%7a$Ym7Boy;?ilM^2898$I9nE2HZ9f563CU(rL!Bxt{lpDDSV>B zr*<=ROH`>7E}w=bKKriSt1*>5X@6_s5fz5?R#~O72NZs{i=0w%aB~{0}3nfh?LzLlnG@m`UFYHmCLZ2M?Q5IQSVD0hg0^VoJ4AblQ z3Z({UN1?O6X&NUHpq5Pqj@xs%h}W%2C1C6c76oQMb}hV4zle6%!2Fy*3|3EHij|g$wPDfh~K=wa>Klk zNjCM-$D1d7ofbLFGUjiTjQ`n5pE zwgQmtOU?RQ8Vg@lt`Aq1MOlKp*#T89{hKKf2Y(lABprrCl!|~;cn^?^{=}kgd|BS2 zE$W8S=_ra2X!0lp?U3p3i2 zRR|<+W<3wp697BTVg7G;M^A2y09{cwwVWG^on5zVvbSDqbnMWCffoA=MBK_sb zF`*;YPU8!HIqSVLRa>IS+2MK*S?&tF!j0M~$vZ4XdZCmofIy!{V7VQl3LYgSynbHn zqPS7w{Eqksjd!k~W%pJA-rA1Yg4gSLs0Zjsk5-5M3yd~L;v8~}tjs?-da)spm7{$R z58gn_awoy@ABnlBewi8`)8d$1T!Z|zzV)iBiMU^XXs19!Lt@%8KT~+gnghbcwtRVI z(~3VhD^x)Ui#=^GY;abfGp7gzyw$d&XT#XZ#apt&>_fg~AF`4!3QV)@j^g$%x4p0m zEBqP9wS5G&j1>4T_kP(oW+5tjw;H0ImcCL4kuo_Q;;vo;RDr{7=n<<>E=Zs8fNIhb zWB@P}e+@Z9(lnA&a9ZLb)_z=-Hc;|qqm2q zES|5`GZ2nwE&JoIiqHRsAF3++Kg#JLsjwzh7XObp>|>r-=!Rd}uZA&`84&=O*#4X| zm33k7{yQwrY|c-v^N8Ej1ekJofYp2Ca`zTVU%%vvVaK*N)W%_6rL9HfR6WLofPcvV zF2Zp4jFI=0eO3vriAtv{CuDD+vj(w&ep`>Ij{p-16-dg@NL@ZO6EX^%y2P05qOUwPupx@f7X1A!& z80wTwTgUXQk|PXRc=p4tCktdEw&r<@PUw_@3!yt@G|`;BQh1l5sF(~oQTUtfW<$bG zXDOARq=0MP@F<@QnGy}DO3wx65M6y`DFX#A!H_YJJR$n4)bE-;C+lwA%QS#4c=~gm zja21H?q~%{oh>ALs9=ly#n+_O#QfQcO#w^;;-fWYl>6(01_d8}QCBnl)^~0Kq&;vOmk0BwrdG97O#doXK06`#xmTM#~d!lCqfQOoj#T z75I#~5});(Qyk2Y0}QgPlJ7k`4D-SUKMijB z?pqk{q!8|g8*#k9Jf+=pX*r5K$S`-EuXR2_MU&GKN7~OshJwKS8V$~Dhz75CJIP!% zEyfxanIMEFr*g`Os|EoV^>BH#)aBNkw37*0%k%WLPe0>9*^*L2)&rQ-S=D)~(kzIa z#lt)<2rL;5`>o1oVq{tXkMR+OFt~Wzh%OH}Cg)|jWF6dxAWF)FJM)OIeByZfT{bK1 z7$5hrolvY&z*=?p_cR8Q|Tf-%%(83VhlTBodN8je@KhXNLnUxT<3{;&k$gYr360Vgx#N+IzFO8|LavqN3k@ z)JqWeH#Camu#W6x9hIaEW*g&o2tu;r@SHSvEscBTro|N;`gj0@Ob>$Zx$grcMA!i* zcX3206sp6<`(0*uVeUJROH6vtevW6A+8g$_knhuSbR^p{+Dn$bAF?R)4G_NB_rNCE zV&HH=@l0k#4^P6}4& z3mX+mOu14iHquDQu3%dni^G8_9Pe@ow|0e zE%bo(j(6+VocUp@f&KmP#f+i^-rLpb>#RtfwQC9Ixm{aMauI9Ugb?Ol1ddAXHSbe| zow<}kDf%3*Doh)Ds-exE$)Vc#o68lgnGQLT3S~#-r4dH;srY~&|7-LwF@U1R>0NcR znSCELB(+3T>a%!b+r1=-TR=915|=8im9VZjd|To) z_?jeP0l{xVKx>S_0U(; zoDh0nRqxWgprBXoWP|zoa@0fGqY&#ragKWJk;Kdj?ks;RYS0MhSCK};q*q|y`vOmN^X8C@8pbZl~kI9^(x^58t082p;%Xo5=|-W6Rok1d4laY7bhW*^T?t`4N|EB zkh*4K#w+5M0{kBbo`!PkB=nCcH(2n<>B`(r0vxslLE#!x>zbr|=XrcM%Z@CQfE9L?Xa~3x$vp5UIKGG-ltC>5pzp1GkzbA2( zq^2nd!xEuEG`Twi7I+0Eq`@v$-K9EK!NL%$QzfExXkBP$n>tHWw3W_cd7?{0-v;|M19fK1$2Pbpq&>tOH$*@l-PB)zMsS`7G zux0*KgJu6_j3F54@Kl;1m~KFKSwnGRu%rdGSGO~Ta(`Th0W}Jo>X74zVF94Fi7S{u zmI%HO-*Df8lyNL;^v&U>P7Yhi*9Q43W$|N8HDD z>e8(-;KHZ1=edTt_fS>bg<`47YX_E|f%6|qFsOpXz&DeH07&f|))CS-s+s4r06`mx z^IOVL#j?CU$Q8;hK6xjB@qk%_BB5!&3w5=ZzQ{ard(vM`p_+KDf+W$`7Wj`jYHn3@_us|q6-1I1mh>BaWHhElt&dE4#R{(r1s4x{%BUrUlyN!FWYePFS3sd z^-QIqd?*8aQ3EidkP=CI7nwdAUQmX2s}mpO7y=A*a{N%F^6+q(+< za0+0$`SaiA>=4t49gpNnSV;GSSOZ|qxaoGiSft4v0h~vY-?Ig!=Or5&vs1?~91YA6 z5Ue@rVwqtY%}k-OVvmV|X;R&ySf0bSbfe7e1kk#HaK)r;UN6%*o0#Ns&H!=K?opi% z5hpJe%s~@XsX4t5^rz;3=TKX* z3?jAP52z6NAxJZ;e0TGy@%cnz#Z|>2wZSy(Ga8wxo_s^>sS!TC+9|g>;*A^U)hcMA zq@FppHxwIRM=(S7+|AmQ!iaMdGCDVv^rt$?Ke;xUm-KB@ZtiFxBv#9!ORFKqHm+=n z%GKFAb*^37;>)o0^DqB@8UUCjWzt1{a|`($!eI!rNy`mGO=j;ADMKK7FFuGx$ckZz zjW**tL;uF1L-!v+8n6u!%LNl1F4P4;W!_xwbmcYR z=Eo(~3i~7*!W7X5U%`2C_-|J0Y(fWdOm(f(05zo7F*CHpO@hC4z=<=l5}t~?{{s8Y z1xqlusX7f*voPmcW{IRo|Dd+0=tAv9@8-S}r}=u-rcW_citmz#5IxJB*FJEZGOUy$IG7<$cbLV=HHpr21OJc?ltsfHZ=A57^$P=m7aI!?dE38Q0sZQd4={&1{7(}0V93<8#<3VVbDxuNok5*6%h3e3g%9MuPZxZx1cOmSou|-dZ z`e5dE5^wz(F4A_}Bgx{JJPbVdTvPKuz3fyjV4;SZdInQ(;;4fG5VfZz&dZJ-obMJs z83mYx&UddlYTm8jKqlvU1-#_`{@Y%-XU{5^oPBUgD z{r;k3^72jKNXuCPvy=*rMN@kc@Q5?%0qJ@c@<-S$Qi|DENUl`OdR(#C&n%L=!y79d z`7PqJZy<=<;XO}UfugmDT?he^ftjF2R!afRiA0>y4XLX$D*zC)?58R$h;ne-?LOLZ zwBW#dP=k1Q>dr@}ps&OmB6D-IW$60sr{(|SH^ryFbJb0#v_`{bRmq!FREIC?5|*Zy zF4P{jSHS}d9_(5W-jXMKLv46Eq2rXL5@SY_P{~zK9%K&HU$p-t3GGOlL5mFqH$P&Q zWldUN$*%IoLV#LZc8}9m?0M9YC?Mj+eN%k?7tUqK={kBDAz+7ugFoXEB1 zG6*^TrMJL=wgc%gqJI ztwmhh`&+8An5kFhuihv+P^l`0P5WZdjTdI^5V3sf7#<2%Zd*E;jF7M_S}6*DzxWQu z9{7m^;~%`^oUu|_-j53q+B78Bp9O})vx`(L5>^B)sJtp7KT0Ug*OiQbU}1XtY75=0 z1lwb_tIusmJu&@e(zA5E0bD}=q9ev6u+K2-zeef9p%iIQD|`Ug$J1g0-A@5DO;+)v zf{l=!y65D(QzQc@Jw(!G>0tI5g%+SgNh>MHKVtR>_}kTSMJZTvN|s+^QkF;Tn356+ z+^xJJd%Kmm8CA5Kg+T=Y-R(IpG8llAW&C1aC~KA;j(2+lkEX>TLZ#}aTkrH@^lJ*% zWLFqv*~I<)S~E;Y5-gF@Vnvpir&xy*1=-i5jeUyIf9q?()Rg%MP`m78ase`|xo8X) z#?nh>8Xle%W!tYlAZ>Fbx7%9Y6ZlDm05!}WtkvRR&w{efHcubsm3Ok6-=9W8ZRHL!#9qJ6!=%= z1^PL>_MGcjk9L?dk$MYg%n2m2f#|OVH}urdfDU>;nnZbCq+IuN#xX)$(Hj_r=OiFL zas~z{=YSGDO#MgFgUETqP`-jOl+}YJ&5`ySQz?9ot^1BG&wm|R=do~WCxEIHdgVx@ zJ(M)ahv+ZJ)suUaEVfzD{WQAi=#Lh*I7wI$u@b(af)ep7rHEd;sBk;N!lspryjR#Lp=b6tOs*+DlqI?6^Boqk9Ey`^Y zE5!r?@)c7Xket$qceA2+V~Gw%6V`bMGTk9aOs-vA?ie4Zcxv}ooN>dv;jzpE!LaNj zcv&2f(sw7@`qft&&|OOizO|Swz~OmnN{|$6gYz%FP6GtcH|>Mq+=gWpBeY$cVd=!k zU&=iG6G7&Q<%}*MC{|JnTzWFL(pALyr_rd6xd1@hmLwk;CD|u{qCYSG!rjz5oY^x} zPEWV@8`5Gh- zr(L6~%V|OAC`pZCQTu80z-|P+{gJDEn?lZ_ycMV(g3C^Gh6gqP=Q<$4(9B;Q!keM@WgW>}o zik1IvJO=~t^FSkH6O4V`SlEl^W7p4W30%dqV28nJgaYJjTQ!~hqV+iUq_^wi%xS$L zBE20MALmr56>|ehj@Re|BnCWjV7i~{{vwSIZJe~#eaPfXG|=zhZ4a%?BrzKEz?O3r z0Mxa`4GF}r*an@!iZx4TFJ`v$aFP?L8PnfULr+1_x83>&{ZmtgevxW5KTl;Q2nIKY zup3NTQ_=+De0tRP;yoeBA0KKuPapMn`Y1*Z;*X*AsR=@`g&JQ{!qV)y=RBQNoHd?T zF!tJVHWUfL#gdumWsYwD_*WQ^2L%&52TaH2GzBB5L2PI`5|v!Eu96xVD(_)XgqK>< z6f25upumhQJB`8=qp+fo?HlqGPW4a})|^Cd*+U~;8_s3qIlBWMIv9)|5f>_2?Snh# z!hV;X?VO12g@3H4?p@c*@#I}n_begITjJlfij{78bO@#%<+)=P;Gr9Q@3YD_nuK** zESXLZ2WHe>f^%1%u&V#r?4&pGU)r%jN?iU353L^lAwqm6?8 zLuQ0UMnq;tWlT4Q%9HgVqktdiN9v8dASMC?Nz4;TvvUvrtM^*I*LE-TL^BB&7w1%E zM!4^B4OCaL2iRILkeR~9(R+_UPoZCLLG_F8e)?YZ@%JZ=S5J3L2|aLi9QVhCS?b;^ zBJ4Pkjxm}J!!gi20-UxSrD!i=2NziS+-i`g=x7EF{n5Xs&o^*ODGY(OnhQq;7&vWR z+V-wpvN&^p!Eaj{iq|`J%sf-ibKwkeYY7g4A3@%wh4!^1#GX%o?miM}n*<~;T?D05 z7WBNP&h12&J_5Gts`CmL($g1z`|$_W7yk=%y6g?sR*%z`Oef^yN}*s3E^GLv$7apG zisOwQ9kpN1xc~wFDRcC#Jy1WHC;U{h&yfTchL&I-S=D2rO*nOa)g{yvRh^5CE!Mgj zMV7f8Sp?xP-2E7Nz8bVmfSW*=qDp9L_CjIkkxew8A;#4LU^pd@B#6ms_a#8Wd5x65 zzWPtVF?#oIjA`aFKvdK!VEf=hL3~@gYh7@r`)QhAixwgWmM&5k&qDecpC8id#2|Pj|$F`t=BA3VqlzCHhV7$ugA16;eSrjB6z|Rh0Jg0Yq&VAJsOXyLE{m!kQ;nU_Q0&TKh=z3-dR&+Ex2%uTkc!F zkEwQ;$JJ|w#Y3bKqAu8lWrz3#TT$g*lk=9!9%}H))pxR*SyWL99S5iuvo{yV3Jg=j zADU|kj!-BOT2SCF34;ImAHN-37j+6?(Cw4_dInhV`uV1r%b?19%ScKL;qAv2w-owJ zMCZdb;SxaOx6=~>NpQmRGB$u~Tj|+(E_`FHT)kKFi_B!7rk{#5cv>OWO{q zNW@v32r#LR1XB}OfNV@bHGl3$ELYf(SN1vNwwF3P`Dq$|JBao_bMzZR<%t#z@8BVp zJm;iA+J*yR(IzyZD2nhf;oJ`an`tw0^hVv>{z@_OIB+O|qy%(S0-Ib1T!~A6JwoaN zSO{-$VM*p;Xd=1ssX&v_o0lYZZmnoYE&^}|A<9{%+m}9mIv3PaGJ&|7MaR@9 zBVYm9tg4V5rJ!H19$K<4=s8rWu;n3vN^&6GUa9=j0!T}bd;lOY5c8fTvVpJQK&pga zi+}%Q`|Y2H&SM@iV>5l}FWMKqhLPx&&3Is=Ralt3sFp$t>NnukufBcx-cM~dl(2uP zv$UqC?4w)MCKfFGiq|D)66^s-dvy=Ml{C|Y08F18IZk~W`_NXqxRGS%Id?U1`2vX| zUP?`sL7mU^Whvf?qBTU1rWmeH)wzkkn4UEPBkp?)4mBr~G8Wa|Q2-;8jte#pS_>z6 zrfh&tV@|Kr{OC#?)ILw=@_29I?w+!*L^~n|bdLL%+AFOj`T&a;rw>>0Hd}6dptn=A zFptH$Bgy;1(LBrw<`2Z3==X(Ol9jpvh`T5#y^}c`=Pi_n8tr{aa>5ky(?8RC<WmT-RAWBhjm)*OR%& zb+6E**h#Z%(-#m}U{#+uAZLV^&BesM@hMxkuD zrdt5SH1-3;hqCj9nCyQ!=pP`w<^}Cl??d2U85vlN=hlvdRzFqT?MyJmQ?z z&uo@u>T`lB2<3RfNpqhgfdH6Or(#=K?wGKV(<~c$ia`m%R$#vcuMA_jEEnCk8d5>4 zd_6UG>!CD|KKi4&$HL)R&+d8p@(6My)ZHjopKVb+`Y3_^I2P<) zy$!4v;Z9(UUI4 zqPg&uhZba;f0@sCbgjnfQj>r%^jX>v0EcrvzTyCN=TOd!dkLMtjnce(O;z!QBDeZ& zqp)Gxj$FV-ZLpyW$AQHIw(ElXFxNVTH-83P2V^5vj5Oo=AIV@8i1|I!jkaT@f_E%v zA=w8fopskh50nY1Pa~;bF?C{d7wVQTK!deOfgYt|W ziyE$_0JhV(z_N0%^q0fyb5PABdI&6eqx)h%{WVHPYYctb-K{LS6EZgj3WecTy@u-W z2;F$_fcvTNikb8iOE(pFZz8chSnFL3jRD8vem}iZjFi(VaMT?0kAG8Mrys_CWCZf( zrpK5*V$uWL_F|vYZ!26p{bN}1v+L`Uqa1Oujkfwbyx)1>VIrCy&s45ZCk(8@g}&IIhuwOU&Cf3q@t?C;@-EN8^BX zu=X$>?XveL4$Ck*F5(DXsy2RAPZPe=m$BMU2jonRy+AtrC|NB@z1d<3p5(Q#tHqyk zqW^9oB}7K)_ol8gYL6)fBQ>CgpB<{}qO7z_Glh8fsN3_`)n9vnN=G}rC5)m{VvGZb z2}}ApY<3|(RTnS$s+Botr3I9V$eGx@p8N+MPq9zxK8bMfd`iiZdaS3P9nyhi{(m)lcHKJNXf zZt_MMFw3b@=jQV#nPdeCtqsEx8XzVx;KMP6c7vSuX;EXpIt(M9Q$ zCa60#lPOm#76PUv3%#{5wGn|zwE8-p6e{=d_1Oz8tj6>7Lk9#Mc`wN>K)ao}%V}3v zNm(FyI0)Z3gwR^OHaV^&3r;J8u0zeG{!#3YCS}^MB9ad>mF8K zB!-=`V*8@H?j`RE@ESR!YgO5SP<#5)m#Qz>|0xPcv1CGUz7BH%DzKAypq6kk)E7XK zDbJWJ!!kVc4WpuPbO36y*b2io%+9jc8psDxT>_$YI5;3Z?$8wwu3(BZyjE5Nam$Kr zw(qNckWL1$4|SvofPkLvp!TZ*6JzHmaFF?SgT%TL>oO&#K8W&Y;PB8|2m&-w@zYS>lXGW!pg0#o zGe!TgC(T&&CueF+f+D)_C(?&gK&aQC!3|1Z0RvOC+ycRE^`_Ke8 z^FGZPfQL8yrYCZ2VT?xQT=j6x9O_M1T$G+8AecH!&YMZw!{->TRaO@}aCdnk}L>}D|l%Q96cax_mCVOZoL%zwMPeVZTrPmHRwzpU%9&2n{25h9m z_Nw83i}r zfPmRvwq54tD4Jc&$HkE=hQ``nQ|gnxj~h__A+O^Q5G3H!VAWT5mxh#pZMe-00y8-e%Gla!RK_N$+jye`)Lg; zsUr|d81L>;WmHpAWP4S)YGFG{D@>BT9fYh0RcTz-C-MP?YZ>*4aWTZS3a$>2q%r9S znXyxZWxDWeHDm?%%TdJw*-Ew7E+1I%s07qZaS(P&J`_sMRVorcb>9 zKpJ1JzUHT7P8dLb9~f+PYqs3IMP+MI7H4xtuEI#&qXg13asijtfMlmk`=2c&EBi4JfB02P`ojX+dfc)`$KGG1v=79Uy=lF?G4*?4RVPV9ztD7K`Z} znH-5S4rhB5Qn9v%o}u7iA5IDF#rj&~AOXx-+To=QbYt@Q55%Yy1YnzXmKN=bxpLT6 z5|#EE#ZZ)$fHyH##CN_<1?|ysSz4kxFk`an#z{-aUX!DALw$3AN|7K&%ls(SsSW^8 zW#ShQmch=@Z5GaOsu+KgA-9r{geXwmjr|yYx!g+HvPMv2=q{2452y*C#Dh~#J$b%hbc0x8M z-ek-!;qKEwcugY!41Ml8Q3y8rcxTPkS#)_v4Hb&GYu8&uIckR>P>06YH3LPUZro?d zyBcb*y}z@jo5!|socKe3{JuUUrxYwlSo})$^+s6LqNR0v}(0_(5NN})PK%; zx6RIH;(^}|Dl=o_d14EOpnl?tCPJJ&t@S+_jPmSPCCQcF?w9m+2A^6YVrNWy_RlZ^$(X zC6pCu(N4A*ngodhdmSf$L^_bid#0B$;pNuvw6z=dNwWxbXQ+DHwFb$(?~;OgfTR!u#_VmQ?26$U9nq&_2rf?yRp9&7U1=Bt}d7K-@ax4 zSK z&wiS9sRAAa+u}Odhvy+nzRvIDlbacdMNFa^F4>^~Tq~bhQ62mAAG&|LqT&_`8vQu- z*HYB2CM3?WBX;z9?mW{^yb3)vN~j3LPS2jvy17dmAE(N8tov1EU9BK&dd#itdV21y z{l~c4PWoFA>aZReZO-$dFkJ4_OXl4LzqMZVV>AMH5_Nh~+met7W#GGk{yUT;9B0^F3Vg#@LC`&_bSyn$GR+d@)^Qgn4%8N{ zviq=q{BEMe$rkkCsloEI`>P_trlb8O=SIyjnqBKKS6Sx5;0@KKx@W#!G}gz&I4vJw zR8erHv`RK$VGvzaw|Xx?{7WnCB43xa%jz3;SOdi4w#gX{P-+GfB71@^ z0$aJ5-)+@&#Ox*mI}0sC$`D84cdqh8E9MO=hNn(M@~Hb#h3b8g>j+v%FL*8{OO3?W z*DR}P@9sa&@YHOSE8~Jh(nD(n_4&o0{rP|qq=w5sW_-_ZgjOhi%N4#RK5xar8Dw`~XFwA$ zLA!beOuNw^p*^yzC)aeB6Oqd`9s`(5u{47ixgro}jVgGo^eq7?zf*;WQm8+lTaN{Zkz!#kwx6*C*X76g4{LYcYsOc%hIHhz@4m z1e!^x4zC~|n7?9k)}?uaGs?I#^5U~EAH-_Kug67L+iJv$rPZ5EYzwm$3CmO9>dUR<^OYb{B_0YsRjXhbrSiS|>WGRr>FaBQX z{yF>efr@zSfk2e$y>OMeHV|Or>0zf4#FZwdBbIJrqI08mLdHkmtE|Vo#&V^vUJixR z2Fs!Ml`AIrW`J8BRt!#uDO{HQJ5kXqHW*b@j*+849!JDm(H zngXcY!u|7B49A*V*xC{aA-uY3#d~O#q0aGaJgf3(-3gBp4!d>0aO{inFA>K!M_b zYOf`t(7i~vaZvV#K-xUG>uBybuh`fp!j=jK2#8`W3m~{AHlN31-JiIbLzkrk%h6|! z31=9WA0aJE+%|nZ{jN8J=4BmquK0=!`sp9^pVgoK3;Pl{m;we6beXbHt4jqGruI}A z26fd{7hRq$5!~7;Xe@!30ypla@BfSH)A!O*2eFbH3W4w{MaA7>jlf~R<$B)LF0BdG zu~jxn3tGZFv$P-khARzKzjNpnwBE-7fprMd1P&Av$bigT58U*x^D_qQKoZMEYQ|gV zDqst^D?&chxBbvPN7Mnm6OUT#6zuLRCDu(U8GV!j{LY^c98*Oz9C;{5tB^^!d3?mN z>xwUXEtHEf1PYY|gi`xy)BNf@WlcM?zB`3Qz@8b;2u9k=7R#42>m9#+e^-6{8BQ}S zbK2qw?RYz$>(UfR|06*?6luR>ty0_`)q$$ZtZeb*QC%ZD=M{H9@)vpJsF$EYUk~e< zUTO$?TbQ}k7?hl|?9HwMaG`&>ua1F-v-qaT_FhEZ@3Ly7$$^*&i z2zjJPd>v`dpB++u5O`0*d#_yr<0;y8p|IJ`$91TKcn~B9;P!t2;3Sa~LzE(8Ok_N4 z0X7~IIQQy7BHKC(NJaf(AC4lxYxH<=mWB++MejLx1yK~WV4$#}hN^)=kIt{NXjq`P zpv6~nh2+^~E_DRH7NS|<&4#C9xvtB!L^yJ6Cxpi5sn0HLZNz9C|APvr2NPBscr1Sa zXnMAwCB2gl1V1lnB%DYm3CQo*Wn-EoW|n?v>ka>s{hRuc{7*|(G4-9JlII0UUlPGR z{gZVCb=>;ckk~gyYKFeb%07**Q5X*PaCf;?D`6`TWptz8Lju>_D%2gq$KkP11&3>! z@_Y`u{8-pfLuSlHTJY%}L6~Uj?3X&g`$uDFJDlFPo-MvhFx6oa?xmMp%l)YXMAUOb zw{)7AE)Y11g)0K1B~u87WZc*iaI+~XuR-9u?UDrBc`g9UV0mRb09d+24e;C30@1G- zwmgAS`kGJL&~D!VsM-rw@J1dZ76RvV0dCK86vrVn}xWxw07+1Ji0EUn1IP! zlQdm1&Du3M|3>wdujous?UJWp)0KWua+z>sKS_le`+T=oahu1mK7cg1RfMk@V@#Z6 zXid_6u#fx$wJjJlSk&^F8PwdOO}Ld4pL5;Ey(gNu1~1~+}P)7tVUXCF%k25M_KP-u0Al*Ep0y;+o zpxcvXUZB>m9T63pIwR&O_+RI}cUAZeMfqGvjg4cUbW?@>#Be|M+;wPk z_gh%A4o9OS3B-olQ1UTAky*kPDO@HBH%m4dSNK1naDU)S%N-1~Sk;dixikS2F0y5SnUdbcy8lMysW+ZaBdL)F*XeJjxJu&9_dS(AF{b=~zg||1{Jea!EUcQ+iq?d6Do6+w?u_oc7Ze zv%*L9aP`2&OSwJhj9Bw|etSR_dI~oW{BtZh=)P8Xud!^O0yLfb0P0`(N3iE!YmMV+ zWUVpb(}<0qUk~pEK<%vSa>=M^3bsO6*k>ij=2atoG56&9wA5G2v6w%2chqrhTyJ^X zxXDkvLDopC2USmOfUWKDkPwpcm+I`}A3$IgmTq!u4u;-1L#Cy9N><#-9sp^QkME!0 zpjx|d*SpHu7X70OPTV3e)sK5tAOd*xlzP3=PvEV7Y77T_v_`Jb<{tBs&F3C5wLKpp zS;C#h0f2$K9iZ$O0(-}K&dF^`(`W5L)(FM%E}7@KNouAttiHDWhJ)2MK%5GFrnkXfOugr6vmX;Rwu&-cyho8SCq`cdR| zrPx%J|HYrlT?Njupq3ZgG4bZTRoaSf8j>1PzbBr!|-eOB;r4j+De)>U& zL78BO4rUkvUCEN*%kH+b?a#b`b|KK;_`(1o$S;$F$l`d>MziGr{CeAwfJzFn8#Dh& z_1tHP!6phiDK#rUzR^e;GsF;QBjJ-D?O&=-|B#N8z0o;9{!@&PZXs?+?O0vg3wq*^ z5NX>)8jCN3Rc1MWzGFiJ@amIb`oKMQf#89?BAC7uW2+!y1bDoYCd0OSQ^%Y@UeG;* zpINQk_!O-K=-TI8mSw=lxAls0qtvYT^H|;?u$tpgs_8o0is01N|@6J;Q0oh$ysV7 z_Kguye7ZP5{=$tXe9rypx4JfI3j>T41p!;n3=kv+ic6aiLR&CvPJDIX{XD1u74Gg# zl;%$V{{N`H_7%MzkP9RN=%}N#cO7X)yUyIsMFpz2Lzg$eXA>*Os!jO0tI!1c;jy1)WNL0OWT$RB4F9%@W9)Pi6TSC&phwH!7wEcJf9A9X66i{IR zG`kNChlfZvBlsob0p*ZUr9pLdIk?MEC>6bSQw&ZUObobvj;qRKbp^iJBFQ~3S);k z{9f7NWWSsg0Q~m8&V^gegVY~lO$Kew*J3b;n({SjXOMa|)U5+9>h4&APi5nWZl>Pd zNY@5{M&>md0jhX~jO;q)*+wec=~9sQV59Yw&GSrFU~|NAgQ6aTCx3Vqlda+ymB%xfIwd0y1^w)*A!H0Mam*BvB z)dhA3YMRC_^q4XZt-l0#Rp4c#A82v5~aW8VpZ4RHP`9cdz_nKdV0e%0Ga#HP$TYD@IcE=6f9L z*I=ThVcU@@mKN>qJ)p-I&gcBugUX)QOFLD;V_y>d+cdUP-hx7*`ZxLyLnA{?%nr?- zqgBec`0d>_)!MfDHLvTM>OsYNi=}|KM*+)$cdH<5&lREBXa4{t-83}_MYLND&2u`! z7RTeK)yGsdT+}TkcI{<`yeO3ri-LEE{C8y2XKoxdgPCJalT?q8U0gm1QON`NQU%rM z+^Y?S!yH9)5j__w(q;^7%xSQvT*ApI%Mky&)gP#W17D;uLAN$txTH^{IdHLscTi}a zqW9*_;j@;tCXB}9mgaQfgV_M?&7HPim=MD{q z@0mca)TJsljek*n`j!9eb0~ba5C&FF=tYe+5i9k7{KI7jmGc1pVW<39NgM5+aEDY0 z)rY(aTK)()8&u%7Btf43d+-2>0=Lp+z`SHgbWRN}`_eMlbr8c-50fPSEoWBE8(L>_ z9rcmBLbG$pdJhBX%gS`HvDdsDuf;Df7Euq)8A0aE)(6(TICtvE07@hQtWqt25Y?3a zWCOF4TC$=^f%i#EsuN9@$aor)+&##| zL&mQI%$WrHPtR~<;5;_8^U$5f{xQb4=dPjJSl|>e4L*e2XdvnG5O5FMKv%meEFL9s zl{63JV5cK>2TOkJrS`s;+ZZkaXJ;psulamonj6y}FZ!A_Nm_;GPR?tzhq$_{Ge zP_kR8SBXjzLlqbB9y1HiZuV6p6D(rFYW5u1!(;Uc?kE+^W5PIvR_iG)wo)bLP_`F< zaMMG-&fsTDw{yxgru~>Q4G#91ClHM?9Q#F4_4n1sA1jP%Q>jqodazvx3iLtcApfK3 zsRpPGZ_#Jho3wQ8)V+i@+NIx^r^SKLP{_}7s^s3H#3D-FC$qnvwHKavffB~x%nb+PNGm!sZ> z_ix1r6L1mxt9L(zJE%jO3KgI)o4MY?1O)5Xxk%r?sy_b0Ujy2@Gp0;f(1+sVC2s-= z+d+vjq`&){>f=B70bB#V2iqR(6cEl{{pQx;OZ0-pIqH&37@!Izb<2LA$RJ&zcQyv>ne}&e zOCIyCccxw3_5|u%tjTf9#(qgjxV)-55CG>BT+$C z>mgZ|MksFwZjtP2E}4^Ye(yPAJ;4vtb4oK$uOU$pYZE$MGSPdf9Wmf(^^3p7Z=|-T zUErr4NkiJJdSU8wD}>_^2HDSTUI(p&r(_ibbcX+^kfx!$rxXMenX-Cj6}(Y|NITd! zN<)blOy%|hoA}h=c1ZUNXF4EL1+u)ULwTA-r00CtzJ>2}m4%Nsd7ve?-lUUw^4dMD zbzh@RhO~&UC}={!MXJ5nqYyr|j^{TXm{au!v#mOLB}PiN!lkYA^lhYR(wyz?A^+DN zxdnsn&U|6XcRi5#CBKhX4)BVHm+VYwDH2CB2)$Y%qM-2kOi zPL|2rBUux8ojni17^R=Z7QO?a9NRuIy$41g zrL-R`kOc;RY_L}B6`SvN@B=c5?vq|i)EUdK!w$R?!mOlbH#k9gyyl=ab{3dkH`LZB zDw!H8lQ=I5H`@(7nkVryS(KT;iXG*G7%cq$5#mg%EM9{T+qkDXdP z$&l7x(E*8B={Z{wh@rBq3k#A&GsD&;{qxtp=IeCJTyTx!Ci67)TVT1e6E^?ri-h)) zq@F$O#OU$o;}wLqTeB)*VDoa99rUbJga199>D`Xw1@cT9Vcke7I9=amaSUkXnj_)5 z@{7_4FYdzrB{Zd85T+dOo0N&2x-qEWlF>SCdMuqF?E1 zpWNirXT(_0P8ecmz_ebiEa=kd{_pad1@ivga)<&mfrzr^-k!r)yM)pO1Sl6S-){4) zf(<-$|7RFp4-f_Sgm+vs6q<10z~}+FC6o~p2!Hy%1<0{+sCw)Wj2(Cz@VUkx;WPrA6lSK_&eZq4N zx>S!ipsx^ZB7+USRL8>V6QyW%vp(rSQmb_(k%!WuOg4Jy=e00jOZP7zXB46h1}$zS zoXtq$oZ#!cK@p%(IP^mKe70}Kv3Yn3_(fhQokr~}7(+K697vG_QaZ#TYU?^(m=P+w zx^xct1wd-Y&J2Z=uJ3bP04fr8XY~(r3rGu0;(K&P=|c|mYSw`Ec8uD9P!0l!nw}hl z5CDNd6_)TZz<>*rU1L(3q`8kNa5_KGrUVK8I>o_Uv@(E{6;-UU?Kt&X`g2;^%dXct z!1aW7JA_*hxjfE2x|S{L2~sk081Ue0zs3`IVB09*dvM_kDFOYwLRYt~r&zMTas{{o zxw82s`>NmGP08v5{e4K%0=SYs*>{A~Y`*HbB%zA%F9MU*_)O$3_y$4V7F?3Rr;glS z1q58#6oBKH0@{~4ACfa2qCpQo91wvQ07~4hW3FDkP(55b+CycOMx*pDT8tY)92GWu z86{NuA+FKEV)fyhEC8Yi50ucu95fst=lTv`!(uG8q%1Xj57Go|kHXOiXHx+eiobqr z<}iw=MOgl<%4_lLRy0II2L8@J+xc!|ak>>0(AZgGp2FBcF(Hyk)H%j+sxcrQfo-)V?z>LFCd_XSrW)CqPxe05uom*oo)NVAywy!;k0bN&&sNSvDd&{~%|paxS%6@eN4ot4 z_%JC7{TpYOmKiv5i}7K7SR|N2<`RCmk3Om~M+4=jc%6CY($D?;(;omf26eR0OsBO2 zY|6T)ca6!<>`(f6yH)f?PHzm;r@UcIfshj(A%;{bX>FJ6NE=v zKA(^OCN+^(_3Ex`#-d<{*pCN|5h@COE?9*#)fG&C9fLbS_bp_A9j%39mLAZWR81oG zoPHiZyeFku^l!3>x7Yw^$6YW(XIiu8KDo+JM%dF}i~+bBoRMNZ`S~fotkDrq9(y6G z81RIi6TuMI#)N9L-{>x|_M*|X3BkBnF+n$NLcKLNvX_%@*AAR_zQF0nj&!6WKjGXB zefNrYq>1c?@d*Z;r(m5fSqf=GdC75Q(wmb zfOrZYb-Eg1K&vEB>TCbjC9NxnG2<8KpUls}w zhw91|ydm1xIyw~9p9?x;9-01rK~tZIt+e_l@|j%&sd7-w76lQ6@>{pn=mD0+mpyl+ zLm_lnHDn1x?Elwa!4*}1}k2DAiw-Qq4`q6SL` z|D*aJyfS)oVc*cE4X>u@h(P;|vO$nY;(s8iW_0Kisw59;vx5ud%HLcv9jg>w%hKV~ zkJF6mUubd|ZoX)lozn#~tc+vYv+osjtTkx`bp%JL%T5Sl5UDJ?0h_YP4RfLt!4uOL z7y=7O#cJVnPeQFPlnBAnZw@}yB|<|j$-^BkCb26(#u5GAO^E~5cu5fAz$R=NAEuOq zQf#4t1u-6Xg;h~8GIFa6k6k;VL%-y~!tXx*P8kPg)Iur}0plN^&O}4kH(g=BkzJWhz41{nxAUq(wnS&x{(9ka2#>i;@370RqKRU`!V52jFe5mFRR)cPK)^NeCM7Usw?w76*WsN;Hiee&=F>F#*)rI4s zCLI(<+p&hEn_hY+_BTgBlEqU=4Ra}Ueo9`!0nxB>?gg276`*`MiqSBb>7gQlGv|TI zqW2K0dsN^XyloGag|)jJ;b{W1Z40;=LHy}QAAh2FnIKI!E+B!r>jDyKmFF2}RURn| z6Gy8o^xDtaqWl#@&SZw2MU9+5yS`H;*sIL7%*fv`Rm2b{DVu6YwMzH4RIiM%bap6# zjDcKooYl7{3IZ1d`USTX#RNp+Lkg5C=k&1@?P1Z3wGU-Gq$o~ABec1%_7=nLHCB}q zHYP#60oG3}c8kBy`NCzqwdRfda<5pyM1-z`W8VwcaU-THtiiSd7t)1RIZE%pFOj14 z)nn@=nLJ>y4=4?6bj4qM-1;qab*a@=%QblK0eWPHMRRKg~id zpCJf=``Uo-9JvLc3v0N@W%jT@k+hiKtyCGe#CW9b)Cpq{!7-*#5Nr#BZ1g2fJ5^Zy zD7y?#)H>A2OW%`Bt#w8R<})rdG=2}(j^<;zQSB+qcFpRKlsN21`^ z58XN28$bcSOZFFjByr}@(a^lOw=+W@18q}_Q=tp;3%`P(+Bh^CV5%iBd*j@4Rgbwb z0PO)ApQpU;v6r)#?7{3=n$6N#+3C{RBRi;%mIqyTSg3>!UP3}VpvjkqqPHxO3r)5+ zbgmTnU3(;QOW?m1!vqGcwTl6cS|GuRR9xoMm#c3oQn^_%GiVAiRMTdHj+I=(o-PRW z&Si*Y{06zun@`NgaN4t{(v+}73@}eICkWGZD~pJ)ihJ*l8hPnhcjvcBcyN*D~K(%2#6KCqBixl?% zypsOf*RY4P|4XyE6Q(eN3l7;zv(-W-Zy5ZN(Ugp|X2o+!Fxg?cTmtM~sS({0^~it6 zoNA1aH-L&h-Ml5-fA$||--s&YU2*(h{eMA*O$%Jt`K2fzOmNz4o#TV!w%2(%cl}ES z4kDrT;#9QSe%U{{sNYP*f~}zUJ*p?EeV0DwqJxssi+{F)A5=q>v$i|E%5@yCU0_k1 zaGx(?Hh7Jp*Dj&gkbV!o^VwkwZ`mQdTj~EE-BKTr9hBO_%e+Co!(+xPq*}Lyp3p(~ ztj7*RNNBCd@kax?Ms&M9S`@^5hoUFk3vel6LqnOCR?d5{Z}&CO6BG+kJXEe_jk^?V z|M;Cs|BwO&;(?_t7q34AHCg&?j*)5;3*SXTc_YQ$*G5G zVztttXs3K+}0{TLzpVpZp4(G+0{--`?fTrO58WYS%b)KKX##p9R*|pMtS_73^0Hz;V z(-F&YZzuE0fwe4AMlOX)p|R|*DqdEDoM?evW<4Ro4j&((iC$4R-6@Jz7xBN7l~&g5 zw;n5z?E{_!R0!tIZPKrUAl<9q@+VsNPDoto3jB#eJAVQOj^wAL@mCME9KbuD`K$oq z0jC@4wzO-}DLKAADx0yUaFBH_XZq1}A8-H#o49nVoub(JbYs!`qeOt?=Q3a}Qo|dM z#B6zTNxAGnACXaCPaU3^J=w0wkEoJfAfz? z`A%RtuLUtA?a@9jdS3cWsOHgKgh+TPn3+WVJQO^`Au51O>__M7QYgGOIpTxd5EJIH zg8=EOn|`g;TAwd@)(GwEQH>JC%Mu)<2}=m!uK>%25biMj6Z|Cu`}ems%m$igmb2 ztpy`%RM`kKz=We40)mJL1|Xw&&RIi)D38+H1eOx*k3=|F zfU;jx=rRisq+sd8b58Ww*6`S2+;7P=3Ln&W*YN<*49X(U9c5^ma0bwRZq{vKHs#f~$rP6cd$^gn8jXA)^l|CTkO zol!=F3n41r&Qp4rr#!iT`qsH_U*}wdreeN3eeu7lPd^Fh^3Q>6dnIB>Dwm+YL4wOV ztZ9zDK&?ChLF@MLKNFw*6I^XlQT@`*>NLIBzGT*gc2AaaFZ5D*INvT{WSNK z!l!4IT@%@gHdM|)+-=hN-LLfbfFs|ru2JM^TDAsemDUsDz9l^ppb@V4zA&FV&GkKR z0jaDAI8{Hv?4mT5t58p#>RYJnVJu|9<%7laXA=79ngsY&^Zhx96~EJ!n6nQ5jzZ=e z)tA$uo!)7FgEbEJZwRooSvi1`w0^0@Fd9VJ7koH>8Q6{g3%6w*MWI%f z_SfiaMxZk_*$<$km|YG{&Bj4{Qd+#O!7Z#a%lo|6Z$KG`()go8L<+C#^Eom%6!KGL zlYTR1b3IUi7O<5q-T_sqgx*89O=E{NP($S!Kju;gQ|61G;1+-sTflKN-u`7$NaS4j zqMW53NiXCDsV}J9A*O(4I=TY@j9L zli0uRusnM|RQg5r$>pel83EMJLW|IE$OP3*L8h;6@!fu!9vtX{C5QmH!zp$|U2FOK z$_cEZOHJYeLSI_Sz$$F@l%FV>&@e_-?yqK=1cc9aWNEUL2^5)0RY?0>`*Yl@^L!L$ z^Pt=nWOz!+F8vTXfM?<&BskC!1s_lYi0MTek1xARSpjemnEE&*z%$uELzf^@?Owb2 zJ+sDe5Aj8qAV~4RKGtVPPutI{T}~+XXuCO5aC%R#;tx27Ymi!#cAKXp%#nLSR;)7h zrP==irz#D zWZ=jeEBVGJ+NW#z<39b5mxAlUar{*<>7=EE2fFN-(-Gld4V+{Jh$3KDy$Q209XVwrn~0*YWB>xFj7zS>dk-qR~V%yp1k*1Ffc zoUDAib25|!ibkU~)ZbzCzoy@ZBV$1c)02pES4 zJVZT7*CxhL9SIZz`0|2nZ7lMlEKz@lW)&EPk3XyM9~rmgCs1;?L$Ui;XTRwINn`y? zXZ!fk=U&cJ(c*CHTd-D@1yJ&IXlA3|wcore8;gmHh!$zIE5HnEX{fl*A2iHP+VQ>( z>zjSfNuCmr_u26#+p{U{Ox9?|0Wp`e1F^wc4MLUBGM?oQW&YMm`&mA?mNL;ON^x|} ztOTM4^tLcQ@C;6qX@6luU+^^xWpPp=8~v#3l^%3B3x3!We7<*k@`$dO#a(v0TI$f( z{;CS|4Xc~_40*0h)7!Ju?o6K5LzV;&pQv5p{9$ghfvw?!!0FHnW|L?{Zhe}ydkSYC zKSi$^{oZ2%L3O$z;q?5Jpjmm*tWQV zxMTrghjrFX#6rRnsV?H#zKhSkq;X=lg;=p)fIS4pzE|v@MMaVcNt7TcZnMTxYW=jl z!}ftB`8`KMAQ~v!|6b@A;>Wm+BDO$yd}ogd7<#_bb}^sHKqVH}A1dfa==1EgW^WpT z9$BQv%N}UF`)mA0^_PE{K6#*#<{fw&T@N*n*4_Jkeu~dR^bm)Fn)rj_a*kq>!eN?u z^@a4Dy^2(5QlEeCh&kwY?qILVm8gDQl-Gi`_E`h$U2_vM6MW}aBTXB!1P*><5|-!S z#n&B&6q_jP+o^|58$MJ8$r@BS--G%0eaRi8MAu}292Sb@`DstsvCNjN?emA}MSWW50_F$Prw#C~HO_iy z&Q{miPkkN6w8=ApJ(4|BpAE+;( z`P_G^PhP4Qi!3)7a>r!Bp75yTWm(zk8k9BFee#xVLg93U{a>*FNOPNCQ3K)P(ZjCZ z<-N7YGb1?IKn7;!gI^Ggo9*a(0y!WEN=mPfa^^f=t*y$u#^8d>1@deyFM$Pnk=)UX zobleR?|&g-mQ5mQ#M(G^?O@O1lG$}tETn#GVa zC23bYBdnPdlu^5Pd&Fl=QDN9D|F=+s`0rLiA;S^)F%(`VvfaYfcW#XF8cN4HT03 zg+dVu234~|sO8jKIFw(tnQy|_WTcMN+NJh-lE>N_0>0{Jf9W}alSpsQ#PNNpyItSML{b|2^DMe@v0EP}4q>iw=a-yH(`5fRtaT(Mw>9 zo@fF_gPEe0%#tILeAr zcEXQMou_sDrT!l+QM_L1gl76i^}l(11H|XX&Zx62Rf1kCO|F zmNTJZrvy(*cZGXvODQys5I`)jp~;&g&n%>SJ75*rL22PO$GwX{vSC!-=*fn# zl6SJtEh+E$4TDmjGnkT}PwuhS=2!#Fnw0ljda9;k_osf5pc+R756jvuDKq-nDq`Nr zF8&^qwIRIb5*I`9WTWrHJzyJ|;+`QW5A?Jdsw zF7K*P!H0+m&z?sfv;-t#%cK5Kx$skO^yFcEQ&RM3zwbpc_pz~Lw-4_hcY`-SCD# zHJz6gQ!x9J`hb`O+-fJmCLdbJ(5Tej?y(NtZ=urO9E*j5%+O5KH}62Afm;zInryqe zZR#uUAS&5aYkC~Ilv=UIj3*!z83q>DQ-7~S->wQ`wWEU6E>_Da)5__JI8n**P1pXJ zzCsjn$+*1?+2=wACpc~(6%h;WUE}+oC&?VJ0FD^USfS5eh3R>9c zQ9H5mn~oNWBF|D70`sd7n_$JFW_cCkW0DSSwxrh?1~4kan|rl6G}iG75>RD8_}w3^ z4j_B!w4Oz{&I1wkfPDk1+zJX3e%4eT7Gdr+c(I_*-nF<9B6E65c7x2l&(-WxMkV8v zERnV?&1I(31H5i~+?OCYiu$eWkwe5N=e{NY9AlSpk@hjh8BFZFlR^3Qo;LY8wF>=o z{wMlJe*C_lTIqnt>~ZVl2?WWlfV4Qn>nEao{e+rpZ$}LN&iDj=swnj1$A0%)9-m5n zv5H;^KF6|YvMbC-l+KcsF0ZQOFpcYrX^$E`vjdZvocgar2+%AP={u(6qgMDA zmTT6w?nTGBW|v)*$iPEI_xm5P*~`Fb%xW3xeohvr=N_FJmk zOo%$bxQ_=%23h<{|0ocyc>nDGtBHWLT~*{$C(gSt=zc5hvwC>Vs%h zpXmcSzrY0hcA^QumhLdEw?Ye>u4g-(lbwvTgI16oT=Xq4;u_~O#|ZY>-dwxQ6&dKE zsUEq`bv~F_AaDZITTfZ81Te7?tu?*Z8h;;F+e21K*#XBpWEwzg)XnL6l0%;RB5=u4 z$V^#vF5#0tg)M(Fm}*m;$U?Z|_IF?&CsO;y?zHEJmG)+8wAO>AR+63GR2ztR(G1iv z1D3u{l$R6BO40(aMR|+B{vYXU-D)VL`~3jMC;g$n{rCf51inw4n3dczrQm;H3(&^w z^T!UqmY_f82nDd@r_~?-#^d1&DxU!plvD{}J2%X}A+kqw3sEfq5D8NF0rq)MNg<(` zi36GjT0i$Q)OVMRa(76Yn$pw^xsw_!IsmUX>eZ`_o0Dq^E<0 zBC3#naKPAS2M~P)EB2hJHX!T0&hc;a9$+nx>y*ZY5_7QAK9886TGcksN=+*;EE>zP zU7nB3c>elE^))ga?Q$iDI1fC19@ehKis@0% z{==IKB85-PVRuXfA9X=*2E@tQfb@H*H|$sLnKh7m3FK}Vp+44LFY$ULnyj7+iZhK? zEa9C4AZY#V81psU5>HFJlz=G*NJrW~u}g3cT8}Tk0?VHaGx4rYUvY3B*5d=Q0`C8&-b^f^MDgfTBWBajDd%I z$RH@qzWjrJh5h^w{`+o!I+YT@yU-I>N<$+WM&Y|Xq%m}S4$X!(%=g-Owm3g2dVb3-`sy% ziPx~2e}TkY);JQa>Hmf2RJ~vjOcG%d0kLEM8m!dYt-5JAbXE*cRL&nql!Bn&nadvS z1fUxgdXx;5oN$F^=UYRPX7mG-CF2f&=TIM?wqaez}7kL>4e{w zo&(L7>~Dme($HbnDt#ntr;=u`=G-EA(J*aF{h6=yfYO#ZQR<{T4AH3%a`MlaYA;FW zNzLoc=LjzCBY@Gs?E}hyy(XJ?K?pl60T8GpSVES3f$c@06=+%NRmNC<$Plr*%>^3X zs8wa534h@4fXfNj+5Xnv|MMDw8&fNI%K4M<)M@;?3=8}U1v z!v^y5iWDevsxSVQ!1WOErN$}3mKY!K^Nz1NAp%$`3hRIV2+IH3Vab zU7m=d3Me!dJ%8y!j`!##0JsxZ^A!*^ITvn8ft>&RCHKApd|TRLD0E%3i=u5^MAd&M z=TKO8V6S$jVE=2E;lM89)l1o@gzfASG(l_ro<~?O!Zt!X@mcRkKil)PpCv1vIzkWf z-7DFH0=<0DoXT!ERIVlF&%*jzga0a#-A63%x3+5BdX>5f!nH`FepBSmbh}p{UqDL_ zVHCji-y*)vKF)?o3=Fm;G&MyjMw45Md-x(Gj_T<)9jdCUc9dAl)P4N4zT7y<~J^oNVNNP{(cj(1b`S+;~~2mDpx?@TSeYznvgd$bEPq8h}v z^lb;iuHeAbdPL)l-_h88I^w!L0!55z;)JIK@Bx7LQ7za-9GPk)%va5WS~r2J^JKLF zE)-WoLuE-fC^mioqiq8JKxWcXxS&f<%-9B4LtHxhh)~2xSda7+FbQ#G8qH{DicWd4 z`n2P`%-Of-n4IzyQFGyZ?@DWX!7~rSYK0rnCI!jfXR{k*H~j2;m_LN9HmWvfPEw~p zEcaQ445G`jw05jr7D= zqv3d{y2aG6i-aUzd44D}ThEf#)QK^FuNGxXUTV#|fuPvqd zf?9`=i?!u@KWrt7Gjtp#yQfi{~jiZ^{RyKO(^b z$k%k4CiRXrFj}!l9g4i_7pF$BVG&rWj9Ij5_S$jGu78syS^Cp91YYNr7KPCE8IrSR zp6q~5pmVmX*xsaLzEy9&OGz#*{i0TZ?tN;Z!)n>8tyemRw?0f*`W>7fA8=r|8ykB2 zP$!E1qoCX8_sY73jG^~G_TKIAY7sNocR5@@|E+{?QLiF4M_9*gNR~;5{SRn0{AuAg z*2-iPLG#6LuRi{;{BNJWn|>lOu&n@n7!hm-VOt)ypjo0qhMVSS|LG=sMp3r2OiYEt zbbwzA;+Fq>0Iw9@ED{MnHy0+vm>A6#>dFC z3!e~>@RH*IPt_j{Y~nEdu7m0G-Rh6uPQjABp$COkcm9k26EeyGch&>Td=Pt8S8kND zK@~#z>NL9mQ$Vc0vFDjoVKmUmV_A z=N9t>ExOf=pr=CDrD|kCc6Iuocu?2_2g$@-}+Ydt@K;$LIML~ZG<tB| z@TREq4hU<-uwfw;StIa0@QW}hB6-K(B839N-v_%()f_h<)Ag>KCYJcyk%j7z7@It> z26O?ot#X0Q&a12e!k)u=t!aJ$YY}s`4@!bzkrMfiq8|gWwZL&`Ymi(!h2zHjM5;an zY`HcT+^+*M2L`Ss?GxGY{@(XKLqfoJ_4|u~z!3l3g(tZ$^n=O?o;#5up`~`F?}O^( zw|)ee?cu*JCULDyO9frvl3CNrv~F+c#T}?s{}NdBKT#urOxCZ_7p#Rf!c7B=iHL^2 ziyu2{2Q}E$TYAD->ur-dEnwPR;Nj}vwI?;jlX}^2RF1*#1u8+e)`y6;rBxUC{AEf( zKe9tUg=Nw=y-j~~!EXZ=d441<4mKW|$4yn-?rj0aQO^ka2lXRxSgdhJG1tMOtFaEA zq6dL)D(2Zk2TO33S2qs;SkOw9Z|}2tChqAvcaiTj0$LOPemRz?^VTeDHP(=gvCsJC zH)##D#sX!K?70hdEU!JXKq;tf&FRJOVV=fa1q6BAi2Y>oeHw_cw$9Z5biK<~FTt<1 ziJ9B#o?ez6U}r;0QUu9s=uaMN&Q z8D{%(f1`biLxppP@c!h3iotpC z4;GImENo_QbPJs-FO2}TyoK}!K_u2Roc_G}Qu-0MC&bHpZa)iK68m7F5pfqZ=U#gm zxDnn3>ZGa)B(?33iNTmS16UZP#`>ILl%yKXmXyyKqHE9XPwd{@jQXKq^%vD&_^sk3 zT4S3!?SUW{jLD6fiDH$x7NTq1cU`N|HMf)Dmu7!p+J(v~{b8c1YzcJ%ynPSvi9Sy8 z#$jtMaj(Uas>V{c>XEGnwyxG<2jivsmH9c^jnEp_K#KCE68K4=Lf<=v2`|fEDTdjZ zs5$2pGKmJSzL1-Dk@{|d6u3f}PmukDg7uD`l;7;tH9HX#z*IDu$-4}Igw<3OfeonHykRkO7XDz9GJr%GY+W&RUkU2o0 zbRMo=4X!Az6qRd*?7K(Zdr11C-g1*;1qQOqxv$;=(Y3($pzy4;Ts+zQ9hy@)Lwqg9Xl)zoxPI6(J5!yr5?R&hHbtY&o&;DzVRD}E$i^xZz z5NV~5uohQlC&s<@l#(v&yhiQ!#dkjb+>^>`u|oPd;Mu)u#{e%Es3)O4_2)|w(Hi^3 zdVnp;<0Lu_$j)K%&U=q@xSgsdFWr(|4xlNb* zIK-jk+4#t*uDR^O81UootMnhIz1j{HzDs01GEg*=x3+%QvT&p+O*bXAM#9FWSuoRx zlJlf1R`ajHm$KB_x@|zFbWm#5(dJz+=+_c&0my=Okai!gV1CVWf`MyfWbNA^-?|B@ zlaoQv+>Y4oV4UHnjKCJ@o4-`+=}qv&uU7xfpD2eTp_$z@9ZE-)k=K1t=T^M4DNp+Q*-K`cXMpN5zRDBUEvF8mCWFZeQ0uTfM?_*GUu_dLa{|Oed6nmmBxm!KGZuD1He>4}jWkPj-M?g9D-}fc_qd!Bvws1YVVTU`k}vHe#VF_Y52ZB~Sx7 zl(y;fe_h38I~apjJQ#81BwAWQhG;U|N7S*jCBXX z3EQszn%-{7!3Bqm0{EVI05q$yId}qcM@^VonK9>sgb}eO)jOE_-jmWDZ0bNMpNFHf zNH%+tBpoum87&u`m`iuW80a91It1|0_3%rX#Ee|iNTKz74(j^%{k7Sh{^0R*iiOgS zqWc=1?3QT8d1?Yh>oxMqJ^wYqp?8o%Lt49=u+NYx6}JglU?tgGVagesme}Tua>_wR z2_Gv6^B`0e+?QX7yC(q4_fBv6Ya7V_j#Xc4+-i-({I0ZYu?AAok-DQZjOSzT5I}xcdXAeSNxmllhPW7n57*D=R;xr ztnzf#)5Jv96%o&v#CSJY7|FM_7=yDKp4Ud$ZT0u%O&s2s=$?MlmKiWc*64X|`ge~(~6-^Qh1pYOh99ZQ6& z9B)kj{yz*&a3<57tPmu=WplCawT}td&|Uj?!jNe=>5H0den1bMT>*#u+w?pRr2MrH zX-v1SR*xuSy81+mPs;9W`eKq0^n!-)U5YXY3Rc@;Okca-vmFybFU2~s zlgX){skxwlbTpzUbr&cHpgD7$R(4SU;4A2tR0FNVV{-J=Tirv`(RFq8qu>15LVIZl zlKhxz7)62tdW%w2Pzshs;U*4@e1CJS+( zW|YT70PO?zhZTJo(-#Up{uv5i3JFM@7a)#FOw;qh4o3rxRITU<&Y%tf{oIoYa4>_o-6xFEZc1;pi)|4Nty3)+)kd_<4K{SZ*RE!`G z0%lAx&{a!}NUcU9AQj8v@IO9>m`M%zkQg2rQijpG#p2Ct(1F&ZV?R70`l)-AeD8m0mHhRgGBZpZ?l0JZEnXaeT{=CNhSc9^?X2oT?#Gk`z zW1|naW_?{&FrdzgC1d=&7|Nb4Hz!zyQ=13_#^ePdD=+Y8UyC&{*#wx|Gg81mQo|iO zWcI8pSNk16DZ{P;vVvD7lZSQ9n*)<9RP=Tgi7$+80*%M?1s=e>I6`>4_u<_&1bgHh z`f$)#e`v-yqD;cmUkek-pH`oKqWiL;2SKo(^KT8n!IoLsG;WK`Bnsu{_M@NNl&Y}+ z$3$kYd)H0j%u|z42U5@~MmRZ+K2^|IApI{f4L^5<&>aODNY3tLWphOOL#-y& z>SqNg>L3xhG%>x!4boz>eF6@oTsIt8-o>EA3VXD>{@-4Yf!eTv(D#-y0jnQ`EI|du z`iVL!j>IX^M2HT_Y_d<^@HX6~((w4~ZJ|sU^28~5KE#x%?Y6r`8Yxjcs_p1y5atOrmnRbG70jxThm84f7=%|dH_#xUdxADsw{hzFj9I_V zS*9`zs_hB@miKNR#^$<35X#CV!5?0p1PHe!p73rT*sA^qMYE$Sd@T??c%lCIdN`*K zV!|t4wVeEcplM&7QY_9NE8KV9Q|GN4X z^$j*Ze8UlvS_CF5&AAE*RptP0AElvhhqoId0xuRymJmbCNH0%n-2W40 z(*&R~aWk#{4~wl^c4mT;eENqvRQ`cfl>4qPZ$x>rq(V*mXT^bpCI)pCOk{`&jmfM@ z&*-eOW-Vpm=|ov?v1@#pZvfsFZEf@l{3btx5aHNSu`zGnY1)y0$eIhrdjzF4|ItYq zW;>!`YkZa=@cHP6_b0lXp~LGPss_?+f%q9t1^FLVFs0vUkJx7qkLv7Byw$aLbvhDO zEy@S$)?Y?fxzT&FBUFKXNY3qA6tWAx{qCQB%Nxb+!ycIbYw%AS3JJw35rX*1J85eG z8qUs1cHE_!ZM_2FPF`{p9g+n2F9Xyilm|Hw9)e{UjpKi=zN%cZM*C7sn5jbQ9-c8i zYUNsDnX7l4s0KSoh*9*sM9bGx!u6>mq>0gm=H!+=V3GJ=Jw|j^O}7$|KZ`O5SU_}m z+|zRQ<1g)MFEBdv5I6*{(cX8c0mCT`^>%sE*7WC9b7I-xgT*d;LcN1)P#IIJi8jj? zfkqafg(coD>A0gs0{gsugZ1QDjUeQnJyLf_XXm5MoEVUq$o3eXTG>q=u110DS(9$> z?EI>asdhvY6oD6QwW}1?S{EL2kp%jmy7r-0afCes)UO#cecd`_^PohLc0uA#zx7N9 zmo%%WX<*)U*l2qFGIccby=Mcp*clFa(|^W-OV1>$J%a9XO5~OccagKS)rNY^qZf56 zcCjzK$p~b})?w*D0H0pUnN$le*e~p4Yb8=}Bt-B-iM4oQp46PSVTDC4MEIo9LmSOw z9qO$Oz{7;kctv)bY2=Al8RxCF3fMBduJ@pDGYU{(-)`!XRCpY-?7bz8ai0XnQ0J?q zjFB5IXqdhSUgs*6YWgty|9t0f@}RNS84jJaYBaQ|{Y&8jNQ#n#=)qlquXHxlPC0qK z`rpM{xC(L=?qNRqBSKCChj7bVA|dyx9Wk%-GMO`~Sn+q9(e1@W^!2Z5Wav@IoxPj$ zorQXPl79=$&?CT91;ARrL4OLm8FpCNCjw8V7^U;_NNQRkv2LjiEyO$jxO;b^i=P9Q z7OY*QSS(Sm7c9wPJw2~2zV8}|htpeM{xy>Nr%j-}crDld?&EJjfyX8Q3U150g;fFw zokI&J%LYM;Fe8a?IDPWTdBMzhe5T!YmPnq*g~FGOP7%c)v!2QiP`lhT^M@eWd8U`S zKG6-j-vI-W0vUqDD&>bMWNXIU1Ea{&1p8($Q*ty8q;%9a{5b3p`lq|X(GrA=#cy0f z2^Ir?z|gI*K&?4x`3Qk%H2|0bkICaJ@bL!)_x(#LX9m-YNb^ZA3E1o;5#moAqoUbT z{|)xQO?_ZEUu^d*I!7#kz+#XL_pCB;gZ?wv172%BLgUKo8@26pejn73r`(Iju~~H( zQR;;t;{S9bs zqmCZ4`|mB&Aa^Z*IjXQ)XO4;jDF^ zeu_uJZ5)Ow=e!PnKyB8)pcMM7*AGbNvf4`(P{+cjM^A{bdW5`|+YQg;2Q!L38Py3r zZWqo@!zr0NazO6E!s@7}-)=Is{injgcJ!aI=XU<$4@mB?$o{h&Sfqlu8O`3x3(I5*dGe zwBUTnquUiftQAK zkSiU1{^<`N|GgZ|JV+iZCE|WxeMwm+P4TdI@_~ zUurhb=0;_sM$PYLu>eC@MjlcBdXOV1Zk!A6DtbndX0Ye(ffxX3+=t(sA z6~k`L#5-y-dnT2$1)dyck!_!T-OsB}KZk}8{pfGGO++QcfeOOC9ih0J+Dlv*$2?`p z4K&Y438_&UKUQqVgCBmcLzTde{4<#pJ71t)(YXgMY0Yf)>Y%ILHKg#aWNA&baz4>y zhmQ{G3>#Ma+kWX}<}DS;zw{RQ1of*hUMIK0=!>Oh-i@ z@6V&JplSEawfzNfySUqP+`Z}L7Ul9~NJ;{vb{fp|qcp$;!on~UmE`8SD+yM6R_e&h>L~_JIcSisB zpdeVMZBInsyA$0ib&B@jC}t3-VEC@c&jc0sAX>LqI4!3O{xIHfuYIO~W0hV|!Y(LI zwpkslKHN&ttKS6V!Oq;leK$*Sz8Yr5V5M6p+4SC`NN~+|D!R4OeSn))=4k91eL-;R z`_|0uK`%!+ca`jl-ONLqadrircd(u;BXVp}G7=|y%OhZqwnShOsE^dz1jQPF+>Mj`a{>WIel@JzUO zw&^VFdJZ%O3*Ptvd!)Pd7S=B=U1@ksK|{-n0TQ9%$)a2&A4$3R{C9tZ5cs!h7Ru&O z)DEUJdjwBOAgEBe!<*c*T`X3##$kdu5liCNS}le zTe14+0X(t;5xyM2dfsng7?2@K$x&JHo(ermgG=k}4iQlsH7keN<}604idG51F@-f*_j>l0oWbA zRkyAmF?<@&=(w&`t-2W|KS@c)4+6<&7vUFM%!e{!!Fw&(e&|4uTky`t{zuivA6Z!e zt*I!8u_5*!1I1W;KI{>_UswaKI71rH3;C~q-36bqT7Tfl<{v1x%Gg9=NbF}tJg&7X zut{i)C?4X-hXxZ}t~2cMX1mM0CVtH{ON8tXel`~P!D$!`<@U-x8v3+t3mni768FdJ zs3A+&PL?~K`76xoj6#E=9uCag4y}V++X2=GlPJ0`n6adPJ>|8q6(8vQt;TRiZKX|W zm0nAl*a)cYv3AVeo#uhhB@n-Rc>5)1U>b-C-f#_~PaUduJ#^r#nYR*n;n~|T_{bbz zt|u@nK#7x%%~vYTuwUkROO%b{+oHu+72zIhMm~Bi#_Pkev^>)bD}KbVq1xE$Ewak5-Y3p zjNf9w(e~GVraA!Y!3EVCv4^&o{F3JK23t}J93A_N>_`$Wm*NoJim_@Bm3`}6N zuAz2(&^YCs2nb{S(q((#uFzeiiASwXw6EXq%w)(d{^YFCt8VopM3aX*P;L?z!@QIc zI{Bunm4~2o+TCBWW$lod@%~-^vii%UN?{`Gc3asj2EU8wnmN^E>Z&@s-sze>~-(QHH>1?e1bGu)5~Dld$Z zF`mALY!x-yhE8dUqoiEwG+i*CuCtn9cq;Xzhhk3RZ~ZOy_;wnzw>Re30g%N+D+%bY ziJGd@Tt9FsL$n?UrmdI`vD+Myi6}}4;&b72P2G$(sMdtnH?bt0LVs|k7fgEbP&*G} zAn4D(D;fR{R^fvfgw%VeV@N|S>mFMJ{~f){*l7GP(EJ+`2^lnk=%l^GBkxhg^%(0X z=A0wEWDX%R#<_{T?3nbrDW@pG4wy`OU6O{$5-l0ShIDMOn8tCPI%>IU=2Bm+CbdtR z@6W9ceIx?;OHO@GQ%zWMZQ#)^y&ZZGHPdv|&o@Po6~f;zy-L}_dKw`SWN;?aqSF=? z4CO2zvHKQj>%VReC^> zWd@m5!>eAQ4DO4d(sKwI*2ilUH{_9=f;D)ldwY)(qU*8%&t1e?Wlv_z( zaEL}=1`cuIC%k^)q+sp{NsI?3Y|3T z8!Q6Cyhl@N(S?dfLw{y`=!UZSe%pp>*6{qcK6Shz||{_3OoO`b0Apnu2RK+utBz=j(xh)X0DY7=C%xeSK^8oK)pFJ7E>4Nhk$0E3 zO8Xnrb`5I)aSbZrwiROj5brAz4$M{lRV`339OlR~9kVfo!#uFv)ss`Mo)!STHx<+6 zgP##F9D4OhHi8TU!Y0v6d$?-bBQtDwkS#;ekZY)3pVi>y5+09gk|S+7Xm?919$gp` zb3y4t4L@mhQ*dCMCy@zxrnEhJk=m#A5%Pe3G^+*w&Lgeh2Z@xH#%Vq9%^{~9J%Xm* zbDtDx?NvAoWJc+E?vfqeF&ELirYS^ZF|Z`&y^&Sv*Rm@8`f#j{s(Jw4A7;OuTeNU9 z#>H}sod{W5GG4yg<<}?;JfdKr7}B|rBb6krEn@A-8|H489-MdpQqr5C=^EgiQF>dPUU{%Sn^ z1HbnbtO>Wwkxoo{Ci+cn*8(B4uJLT7HX_T%7q#Ee26}oa~ z*q)y;mhm?R!OY(H?D;-K1G~)Z84BMcOEFzJ0)+ob2{W0hA$_d^`VnB4ENhWI%AQ4B z;CmSPRR@C!Rtx<4OfYN#s)5%kqOt`)Py$jbV?g8cKlo3K)yZ>n$kSeQ7wAfb_Weop zkETW|9L3a6=x*(i&oY&KR#S?vi8kf`^!G?spuTBGiW2AG3m`ENCDF`77JN%kIJHb7 zK?20C?Yt1BlCi7%ETWs;$OsMRybAJl=niHUNbR!tx68cEDe!3E60^W16wK^A&z_SP z;Wgbm%az4nbfll?UMmJs8W)VWsJv|p&ZAu555P}nz(}$NT>+0w-)r<{c~17OfznmT z946VQ49h_QSaMgvkPI49awW(fk5rddsGTvhe5%1`S#H4cW3QbCil@(LPS_p{%vJK% zkmNX~QBS+NfFU5!)?xpU0s`3n1yT|cmZ5)&hF>QcvK@1SB_J?hbz;)k;ozb47J(p_ zf7cIkOEaE^B;`s;aAQcSsjv|e9Y`68*7Y?UK+bgI>>WHrJppU;(8~#|T2mi>UcLX- z;k)kDNAjrT@#{gpPj8uqzz6E7rXJ-Az~^)o9wu|4hlCA5Tt9~L2*Tb1y51dUV%eX=f7Z^1m6sKg-D}^KA`E0|y zAZ_(xt=arD#d9e9^ikVPwquJh z079Ij1EJr0_~eu7lTWA@x9S}9P`D0RD`DvJPz3Qc@+b7`?89A%MFK$pUgR1&dtQBl zyt$$a{DHJ2#^^E8ga9DdS3o_kMUX}pL@gB9zNKf=)BbC#lVa>hZ)C5H>71M%GOBR3 z`NPybUE8SZ!L6peq2jm&2L{D_&fBoC)zxwl@ zGEKM@PW55GyIqzrFnI~{Gz{0Yf$wx2^fLQe$t3r&_yF=ms)EC=FQ}6d!*cq5p0rK?6z7!Hbrr%iUmsGX4j&TC0<$-8W1@BSK}SC|K(Vy-+DS2RnYK?}hDn z0%V3B8_8Rme~Mw%<{|oqOkuqZ$;eyiwgjj2+pq@;4=nO$(%KNycnW61UF{AOiwm3K zLY=S3CUL`6jU)#HO%1Uo8s? zK?ewgp*3vg(CMlrY^Lhrod_>!szGa!P~KhUcgg-z1!A4F;CD|Wt_jqoVF{(6yl8`N zK3_8G)Tf)b1$KDIgsLaNi3>(K0F$A=t(~cY{|r~K=CxB=5sEaB%ME#a8Ls>c$NW2A zDMaiD|4_4RJ^`lgG-=o!eQB^DQYx_wU4(TqDw zvU4I^7uBm;juSkcAcA+*(%!h_SWWL!fB5j3bSuvM^nM{r9Q@;)ATC-d^iXgUovOa1 zkzV#ZT`pjSxpeA8RE(7ek%?KE1drh3(T)IgnOp_-ymaS)Lq|)n?qHMH=~DZll-%7GCLDLcssT;WmxS{4xokLkK=c4yw8(@eC1c&ONLt6$*r{lC$ zdMQj=vCy8oQNBp@Q9%VI;b6T3Q{`yYd$hUy4owQdo_t!)1|g(1ci66i!fti z7iukSKia@)+dgTLFz2xGmFnW5Tf?AXMmB`XD{hkuYo!H0YOS22zUU%FYD40O#b+?l z;jln&g7aKR{tD}72i1}(VzY!Lf%~#(J^{7^`h>#^)>e0xR$nt35d~tXrS(7?n8GvB zz!qQumTsyBB680>K}Nh8!sx}$*ynsoVxkf~L!x+*REj2(=YU>VY&rKdrrNB^ir%K> zE$@GfEY3d3Af1q^dlFIdB!OH(*<)G<1de6xhnGG~$j}&}Odla_>|l)>H9zzJUO5kH>{qaUvo0OHRp3%!hCAaMMga z+MKSTp2`uV9o@T9P10`#kUueNw2uqLXupb{Ee%P%CJtjqxKE}^f~!T|+vM!EJc-E7 z@w@VH>SLbu>5^hrlstAkHKB7RkDC-x-Jsf%WI&O#kqScoaefSOqRBCO$@;_THWi+? z$waSC9!82VbD&VNK&YNupKtxvg(2YYKw` z@7o-#nDG$ShTqN+AahTT;ipL5@?#Z##rSAjT+g0M&F-D;mwqe^X{OXSEMoZApzOLh zXd2is{)gZe7OgJ%)4g7B$Q-4zV6SEiCjK3io|u115jDAVWk@2R%$|l`pyc4c>NZm8 zWd}5H9JpYcam`l)BTV(I8;boXeM_0n6ls@%?RkpO0)5r~r2U^sfh^g!(oTbM!;&igmJh-qZ)_aU(6MZyyhSnzI zK7bpA)BR`f|4G&Ay9&=KX^{(+{EpK9#n_m14FBc<$8zmfU=iSNb?NT%;G~YP@A3z_ z{sGNz=JQk-@Sf^B#xK#g$F#k*C`0Q+qnh|;| z-F4#7GalfzdjT7`B17;H^ zg)OovpI!YhB%@!Y{0>9UQgm6j(&BrAc4=(VSFy;NOSFM<{e@B0SlX_zOBRr!Zn<_58`crFa+>+Bms+Or z_>k-2zg7RupC<_VY`Z}7;EaR{ZVS&_pa#I>Um=xAHWP}Oc&cFf9&Q!7*0OeBk*8kn zvp^jq)xmtyp;mS(%fGLg10i7R>g1;cymhaRD*&YqZm7cga&YKT?&N8Vox4MS)qE0D zyaQHfTCiC+!>%VIBYL0?K^6G$cj%DR=PIMbEm&zS5Ay%9r`qh2qwuBkm1FDaX69~u z|K5|&mikc;$)&b9(FUKAWIFQkEbFiX3r-l@-UX=uLt#}vAp?Mvvw(%1>?8Kl(EuD2 zI-r8~Zq_q}1a;zRi_Ry+Y6!wQDo%3kR?VibEb=C-* z3J>SE> zJjWG;j9K<%Ek@c&EYLp$tX{%r2gAB(aY5)eh0|-#Y1bKPlUFvZ;?rH)?sg$tNKzyP zM&(AJ2{^m}AyG>z{NU7eq(zZcqr2ANnkl5`EXLbq`$9xX$R_A10^g<6V`2pv$v-3w zJ8BXsduq_GpTn3Ba`d{j8!?KLIDz=p*kNRvH4fx8;~s7-|cYC_RK>eZ$mAWVTXa7;Ge>aE|PweClNUC@4ju!&Ahx5-s1RF55sZHb73-l&}T+Oy1pv!KNpB%eV$ zh@oI(v2TrYxz_dgWR{tTrswP)VUQK`bX%=^iO{ga!2{|BudF~xa0GCk_nW}UtZIxANCleK|@ z-LXLSmS0rwlTFVPanSWN(r#M2CR2$XfWaL*QfDuI=E*f_f|f?Drl}>wXBJ=r1rWId zml>DvqIq7eZVIgL{1VV0P2Fo?*+uN=ahCfv%7_vaHD6G);5;dU18igY^Gqj5=y8)} z1h_r5-3r5dt1IZ@r1hdOG%vlg-n872o7Bl~EH)g0A_SGFyTX8_{Q5@KYUJ=Sr`;)u z9mP7@188vW8KUDK1dr4qQ;3c(Mh?j(kKk+tN~;Wk%_DU;6)bhoHdXL*dcN+j)qYia zR0jm|DrGea`JX9~s62a3<`E-qUszt|u6mYuN)@tij!QMx87F?We`K=RamqCMgB+^6 zcU|`*EYG4DyA_cJo_hjt-{_-?#p$-rj;6}DbQx16fmE|N%pW*^k|CDx#)ZO>=*^bQ=fAjD|v zCtz;S{|Ga0W)nag&T#Gwfbbk=XPebzFA$$T_OC>drw7th%4W7|JVi*K8z=Rcv%L z9m~pX%|dMe6eU)DKymKA{Nyq&ksiTAClYx%eM+wed4?s;n0-YLVY{)$ucV|Ck_}xl ze#CAb`!vsgr|rE)9Q4Z+>+Bc>0OWx@p3XNvfB7AlH9rS#9ENUejtx<|6K8Pf!j=eK z*)@qT_<^62i1cwg+Hd+{aKUs;Reek#X#bP;AQg2Fjmm)f0TuFW=rhn92c1XcZW-$^ zpORGV6K(Z7O?v|?&`mG12&#=GVU3UIa6KD>Q>hO_X7U))i>*V&`S{eM>|q2 zSdQ7mxu5oc)z+Eizo0P~k=+uOrp}hXPYdffa8?i6Cp%n-WAVM}=Tu&CP}Ms8P4%~b zs{^#cp23vNA8NLs0pQAo?N{6+%J(X^W7T=)3LpgtOi*3MjLY$TOBU#8IQnCWc=8)> zYv-nP^rc>NwhsWm&dqyIv8(i?sA=XK;XX$mPQTuHk?|$6XdN0L)~+MP&%9*?U8m5e z6^67A-7q@lUFhg@E1uy`-+!roPr|-gg5H7a7PHL`%E0$7>+eLAff&WW?w${1(e+Ko zOxQM|ONMR$1eKt_QAa6=J-H)>giWB3^D{hUqvB1bz5f{aFrStnl4&Z?MJdPG-d6A| zYWjX8@neVnFV%jta7(IJx;ISfh~Y^e-j)fpdRLmUbXZrN6fdp3FKLzMs!g~0+`SRY zffwer2IMvKM`l<)0F+{}Lv7(sc$_ZKnt?mmLXv2EYrzLN{1WBT5G8yTNP}$<8!VnE z9V-hhG@u#}rvh6(P}yGYQR^jpM5-S*&G!kR*pbiEyT%zJ}PqsUJq-F9QZcnP+t& zk^Xy3O-_2re%T{m$|ulF4UM~tZI6jz-);;XF=zX$MM@G|=9AX9TURdy_cOT?`nj@g zp`~bv+kx_54nu}S9{SekjkUpj9}4^HHmE`X@`fHP+;>MJkYJ?k0Pv2?PEaG%TEk4T z4V`l|#AhjO6S`Rp=g)N(=xd>r_0HnB6h7)BtB%kvS~ccj4M<&x4vksy^rS@gZO1jy zS&9Y{zT|CXQ@0o{v3?+RS`Sc&4osGP$QBKir>);6%ILaH@MNfYp<_Bf3tbsct^U9J z;5e#OqinH7yNv)mFY(4?Jkb=2W(7f-zC&0i%`?qg>g<|)OEw{;Yy)783Xb6aX{rqT zL}t)8nR+;eJ>=Xp5GfTz31N4PX`KDkI-j;jp8Hd8Kk0Nm2|Nq895zY4g$4lr#Mz*b z)4%!nhe}^i+-?GCWbr4wZ#0E;^g(^%twAG7VPRI4l)S7g zcXbsVbPT;OXGd%k1hN+)s;FSY3jj+dHGV(-+{yVZMQ&Dr1tni+J7ze5qpkM(f-bHw zKG4hR2i4OBlm&u$mn6k*VXkm{Tf$-*_zr3{4gMsiITR9sDV3PdhFZn8Ha^SsFh`|O zKp;PS--0q5($p1>(S5ZRlY7x-UhL~f81dnXbLy7T&2>MzBcN9KJgciah87~NS5OMt zmWBVZo#-*gfyIk=yHH$3ceWk^hx%aM<$pa|ohe;zR9YHci^vT1PEMb+=m8!8VnCh0 z0g48x)Hz#R*CKDdMm|b=+>lBm#)S!^)ympTmdQ4KZlTu0v7W*MJHrKH>r|dyi9@T6=dMMiuJ4fPd{aeZMhz-+%5lw z^;w2%M}lh41#&sdp|O-jvdVU=h5=C7tai~Hx*OFcPRIi+N?&HFc-o`HZ}+cVF)U83 zdiw;HIFZ^Ky114I*h`1p$c@fOB8srv{rfj+foTW{wn{hHwPu)i`XLN5fB623WSy7t z8n^`7eMC3rs^|SKDEIeXgC-~RDkK+zZ7WJMj`Rc>W^2qc&3<(=3O~e&iwGex1#3}% zIj?%_OUJAu=lU(NO%^qPhg5Y6a4dqril$2W?dug=G1}s+Fy?HashsY;{F^- z?TLyhdZ@G@z{;u<`A$;A8iS<~5X=9M|H78gV_qc3fC+0Bc!ON(JUvk_S<1HM`Llf* z0;hJhDlz<=;f5JZiVvRw;D9-Z6=NlPkr%7L)TChRFWq^vZfP>`snRDr~ZV>MTi1y+*NNJ1)^d zTLY)H7JCLyZI>R&k>8~| zA-YLWqj_leZGbJi0%SgWM%{-K0*YWaG7Lf6_th%IsN#tU!8-BDKF;gmkk`n!JcBzY zg=pM^@TNz}v88(IIwK=VSG%h@Uff|A)p;MXp*$`d}ht~5?RXBuJYTu%xx*CEFGRKZijs>_O! zNn!%XoFxY>`IBK-W=B>PjU?K=?SZXf_TijASY}8-`=txk^4L;l&0rCA0!?_K@Iu2yrfKEH+bgJHm$o;(rykvD6KEvNt?|*Qh0h#)F z^P&ll?;YHcuJ#7k)lQe^p`~N6W^*?gbJ-=ek<_N+;RbqK`pv#T94B5w54~Ymszn@? z717c?3MJdw4;?+D1_06|U9L=cy>>+p%z+})yfBm?0%%BWpS^Ey@WJR z*%O<9+QbpwqW!S2!aIoVAJ&h$ifr%pRv74387wmw25{PNi|K- zr-U{3c~9XkH%pnl$z|(yfxfJN-D{xp;fs$y1o-u6o3pVzbq;ju*tAJd)K3)7l4*bAFhq)dGfTSnKMzpj7cDqxQL>h|%${_-mAK+i<0AC5ir{g2W z8SiXu%8r247jNg1iBbE~?+S^q(}2$@oeq?`F1}m0+_KS{kadj}yuBZQxHoYp0p+N| zU4ddvrQL=7#Lxv5lM@RXYn`RYq7Kl8N(^-}ZD3hnNK>lK=P6+WU6u&?{NumaiR!Sn z^8i1(Y?cQcMT`?^Rp!Ek5oh|VN6XFfsNMfjg>Oq=M2Mz(+OXIU=`1Ib%C_Z0GESJ$ z|I8l6YOCQ~>xZVd+{v-hd~Hm<|FHeZ;<^bQt$`q>S%PqGkkbR?IYQ9qA3y*2&*}fG z@*5&XAu47CQtk}(f{5{~iblI^*ln{y@Kp$esd^`khgrj6*QT@O#wVFp#wE+&5$Wnj z1x|rhqYR8|o5K>@+-}niB}53mCm%KetPv)L&?>fT`hy42u5zq?$T$H{b~Q{uHAXu(VF(FW`{{2fJ;6b*PUF)yeoh6@n6*Y{ue8a zLAwnX##c20fg^;{6j_&G@d1;H9)O>{9biA6R{xbNY1N^6iqv@Rrxcp#nGy=4EI(|S zuRIn*MHS6AKkNz7dvbw($?{u1AZ>^4OB}`ECRqWIc_guLA&uB=@OA0J4jUM^6S?hQ zv9k;=&Sozqr!AoH6XUONM@|wK_28KEe6z&iyA?6sn4cD&1D|yvR~CP zTUVrlFvY5H8>v2;m1s#EC_yK(CgWBE^3bRNnG5kn- zy|rbz+zcUPmL?sGa1pxL7vY$QJ9d zdjAuToQuCN0L0fkE6T3v!5+HB@MD5q#W)w{;3ohQRj5$?*T3l~vL++~FerzNKHTcS ziJ{kSInD;x1gOLKU<3jGrY?d7thJ#SS$a9!M$L>Hw5|yN`siZMm$PX7oyP}^Pfc?&<$5jHZ5>-lu=oWm<7mL}l*_Nne4q7=}%@B#X)djB;zB!y=u9fZPW zGCL0YEm@N=K_TvYi_-$I0Vu|e%GK9!M4TTG?w{J+<%XLJVD9WJQ(!h{A^&Ev)qjk< z1FQgC%&LQ6+BX8aV$^jjO2t;3#?;oIL))b&Hy|b5E88DqI-Y$bv_{@lw;F1i?h5NX zD_g}dYt#su;?-UsE#J_{qV7VAmo*ojW>8NfJSxFKk^LEa&N z#vM`Nh|1~^4>=~&PjeCx-J%!x5XhRcat=gNYgT|Nu7Rk~PptJli5?MdBJvEF%T1TO zY6^0OudF#cVX`UXtk6s;4$|uWtL-YMIW!HWdGao6{K5q zn6}&)s3k6mH?oyL35LwJ>_b5p9OKNMcxUDBJK4#Gkbt-b6b-S+R2qve8InOAt8*Vs zSM(eP@_F}Q%G#bq0ST^{TRON7-FganmSzsNPR8iiq8(71s`KW2#zvUL&Em+rco-D1 zc91vd(v}wuF&eT$R1Xmwpdp1Q5b^}{dh7;+Coc60GbMIY>j43w?noy~Duu?@fm+sq^Dk*KEh|<)X4$dJ$OtV1KEaN z*XKGt+86b#tzy}{bMfM-2}0c-={Kp9{`f%$n*rp@!fl)rKI$zj8g57*U6*XobZJ^V zVMx5GPC_yxwSk8r_uZ~gW@3BZ9s*}$nlivw=N_47>V~3s)3B@UC=?i-3MeKmY5?z^ z^KzxREN-kFH@J~XNI8e_%wj)#d0qp}a|uMly4k7p#KedVr7NgXfcvI%+3kW-t zij}6?>k|XuVLnHHu-+}t35TEtLl(>I8yymWa@0GS0vmU?oo_=@DxpDZ$Y78n`H~EG zn>j@N8j`}&DMNqSbW5m1PePJj03tQ)V};KSHmVRFL}iGVe64!v;*a$Tifj~;$02fU zBw3WGsy5bA^PH5x#=`qk& zS^8Vj*GPA8p`&IPU5&Zx0&u)oAYDt^t2)DHMIX49pE?3rK=4Zg8MTz5{u^ExglXH= zhD*RIB$pSiduarn&YyIeFT&j~HHjtkYr}{&bV(pVi-tLDT5Y?Ye6hx2Ox8i(AqE3C zdbMkCxl-VBk(Ot56Hj?91#R1ys{n&E)Q3#1X(h~Y>O&86A>NRUiRwD2;Pdgri+yI! zS#QA|Kk4cd`+O884$zJCuJh9eJ`12cx|@CY1p%<2C$!0(eW&_PYSBF|@WWc`ki2^4(i3^&lL(jaVWHqzxS`w>fGE&`3>ulcK)<=y zR`8UaXjQ!k>^JPV@BnZ<)|CU8JtsO6|!r5oM2s(u{!ZdZ-Q)_o(h#n+qNhM!BwYs5R zgd?`gK9}cQ9N7|IdXF!#GcFjncIbp^bx)pI;GvVum`C{3Tvsf+c8O#?5Qk0_mdX## zI|W`L?j^)A;OXf{Gf;hjT%l~??!KXkHV~>G$Q;mv^HZ;<{!Zw;*wbwxVn$#RhuoG* zV{yAE`X19BJOB3Jfud}NHx>S9KnSUu;O(*N%UK0D?tS%&%%UwiM8~jFTcT|T%6Lt| z5t8=p!$1i0%Gfd<{<`|>zy51|UMp$n#_`Dg1qUzqVM;ei?`Pc5zwLzH!_ADt7w?3I z^AjT!27JkRadHTyngawXaI*H8YUCo`lwP@+Q@ZK>kNwxIt%AnS4oz|k*$h;5OXcG z1lUytiyQ4wkFz^SXFw&fCfy#hPc{od_;C5u5eE9}iOt z&n(!Z5QSvY?AA?-YSfC3j>M?BI_1{-1T9C~z(-9&fu!xXJvFy*FeiDf=(QvJa)}WO zWmBqO5VC3rbhQ{W0R`gFI_TMH#U+JC+iVp6RdleW@00IeR3HBp61QT2?@O+d=mM;| z^-U*i!gvwop{lk%mCGKYhULtLA{Q7dW=V|d=qFzotMyxg6{J$yN1sC z>0Y-1mr7o8I*_4^P9=fTrt9}o2m;~@F6H(IDKNF85@4F@)-)82sNPWYz7!!D5P2Fzuz=xLKu#2@Q#<~L(8P#|q^jpvb|0GVFe%wpsd0RiKLWM+h&rcPX z!%Qc&;H&S(W_47IJ-1K8x~+aCfwYxNk>!ho-R;O3CwlH!WOL#$=!UnFce{lN;yc+E zPMJ`_iYU_YGfft*lU28%vo%3p&xh-S0k>Vymeb!MhWd8XF>}RyE1*t2Lk)qQcFBMI z?BlP4^pn2{C6{0N!N%U*v5+X;m#h>^uV5ZtyQxj&Azmzds`Ctlx0%_ z_GYZuE}gIO873G<(1;P4Qy7>R%wYpGQ0j*J67yAfP}pG=BnB!oNZ6P16)}z5k}9@Rn8&k%B!g^|@k~?zSb4LKblZ98 zgl^mFq8#xVZC606eU1X#&o%CAnA}P!D+E)UD_Bt5Lxax*$>|d3uU4(zt@vK8h^If| zfqIb3`GN|rjX}^5O}(o!T9Bs~%mTBLroD7-QcX3FZdznR5#x}7S7&JnbkzkfxLqu@ z+mg_8x+Gc!gaZ;-c(*6!9sbmhA*{&eZuK1Pt{H1li!^LN!Z|AMMG-QiC?O3;DPei?IyDBFMQ_jj@) z;{rv6!?^ig0HS@!77zhX1j5P#XXJ#Il%P`|9opox(L_$u$P5@Km8m@62d zYW8Uf=&P4rNtz(y>CEvi`q;iqakGe$nRbdgSmGL1DX{7El=eH$bxXyms1Rtf_#zIAZ77c6(Y0#OE~$MQ$p2eN%i;Xq2_VUQjg35W z*wr>mKNk99Cx;qKKd%z*r|Fl*A{WR)5^p%M2O1NGt(=EH0N152XK}V<+2$5*-oQ~! z{ozEj-YfY3YM1$p$`2eNPc!?^a5(bCZv%uAGMmjs)pdwK+_e0;rB3lS(EfZ z@Lw|t=Kxl3I=brYl5r1ilEop^#XAniwPRbd3GfqidDC05WNr2JgfsG-Eg-H~FtLfC zxkT{^K(Brexv1IhS)JX-Af~NlDt*8cxcjr-pwH}C%0){^f)I37p7Rd8pwJnm z#PJ4E?dm1*u%y2oUfpO_23`oe!nb-BI~m~9mayc%1fah9__?RVVDYVb`qvH!fH2j9 zt>-c8?x8e#<4uF6MSsgd%EikAoNq;9p9PFjph*Y>J_9lA>0!xWIf<+(B&+t4djVW4 zpYHTC@7E;W;XsE8vYzMq=y3&#B|YH((7lKd=QYElx?^QFR}s)=jZ3yV>aN=@bSeIS z9T`$k$`*y}l*g|^;zWnOjGib167Wf|$77%jT;2e8zzxwPOGG>}EpV%!c$Dj-KfSTE z`uJ6P^-n8xoT2;=j#q!{^Zq(($^fb`T8WV4Lu*TfN~#B>8ujB(Dt(cJX#Md}aGD&R zAkIz_Dw;2_zWb&rK{Cy=TqkIAXlbEEG||Kksd6NHS#9oU4=b@xJ@4Tmkv;|Z4#^$L zn>f0xHSCkEI6oe3A&|~nK>5FdQ=6?^SmQm_h9{v(C=A*Iqzl{6Fq8EFqH+yI(MVt6 zqrJ<$11tC`EEAM?k{*#K4oOfl(DKoIrsUSWJDg~1N>isU9F8E;IuxV9B_^1w)+Xy2 zyN^yh^TB>&`5OJySN+fu=M9wLR+qS;;0#MHHO3xr9BmS@l`;im2|@Tui~lQM^bcAm zqBGwO^}8z1Gr}}w;%M$FaL6L6#|yJpVG-XVcO9Fk#{8NLN$h9@EypW7ugedmNzSCa zALV}a@z?1l6DI_@FzHNUuk9Iciz8LUsX7B9U5-0j8m^FVw!6}Xz7r|3k{Qn(pnFd7 zKuRcFE+8_x2A!o3o)RDjv=Q?D+si!FDLp;E8SM2u2Ive02?AR&kl%=Yg7EohStNP5Zzzf4_SFo20k3LRuw#7$DulnaH!y+H$U4b|0D*6ON3tP6-!zOq|5sa#Sr#MXYKH9>#ClxfA-A&~fx!LnofHE5+))lBFN-+&PEz9q_XF&XG8 z7_1a556Z@4=_3yzaJLhY76X@@4=rlCa%SYo4U$dfYqM4(I^(nUFcYLMq9CThj%jKs zO&PKk+g|4LR3A+n5O_Z;cW&&XUNVH=LMix`Z=pdZZs-z!G}exv(QUFUKZJywY8{K`qAmbqZVtz)&4!U~I_?j&~RD*wT?uYJ81a zkptAJ&QKn7uB`k?uE@N}(-Zl0$9Pw2f1ndjl#}H5(1ktae}=Q8_uLQrY5`&tj$lU@ z2?F;G$zlt6UvFfa8FhW-@7XpG{LZu>W?>2+NmwvyDFQ7r*FWde8o*d=^WY4{5=Fyv z?g=(QR!OFwfYUfC_Lo|XFZuzQNH}&L;DH|PVee61tNH+%(FAIz^7+CFBILWnZLe~4 zX9I|veAMM%e@)8T;J%-+2lA_DBb-rBwftitM(f%9vBl~)WDT4BR%ab7Y+ zc&0kBuXdn$)(aW}({%W@GXamt)6h7GL7db*oJ1;aGJ}z=S#kgl5yi2wg zuIFRQU%bU?(Lcs=DYgGXx&9Zi!Fr`7D7`|Usy@|HJE1xZ-MVb`taxKJE4n94paage z2sEuQ_oYas80Od^uofL1NOi-XN`x5rCuN0z9S%vg{Cs-(t;OQsT{7sw$C_RsBS>#E z-HF2wGxRIx8wD%-H_fI(ha8PS%k<#=1}ui2(Xn8a9}99Vw*08M^+eAl`xIwi%#UOv zdM58BgOM9LdaYMheQ(wHe^veQf5#}ORx=J02Nj-~K^xQJQAsJdTe?>7K3`PYyLW|> z99zh8#Y0$_6}}qH`)Qb<=(?o&(+VT^=89P`R8aitL7utbDDwW+FwgnJIf{19;xYhV z$=EG19!YR`_hYdz~D& z!`)3zDdz#MxS1{jSFTGBh*iWk$&hA=akQI*>jR7=O_V$=tFKXkw&(FQv&-Qa7}Cvw z2CLUKM5KIQ{y=|L-~0>xnQoxncE7RE69C{&ZRB>gUrIj07cp1P z$W7}|=5bx~m<1yDwhCfDyzDH1wUPm`(K%=9!cyTwZ5JZfU{d~+O5+QpD?ZTvta|?i z7TXjVnq?>8DRseg-X4``%~3`lL&CqIH_|ilXQJ|YVhT>>!^w9#2noadj3hNQU}yzo zH&5Ms7PQ40%L=`g_qf^{CV%rnD?!h)>SgPlh(^xbhM~zd@tge2!7$c~W{MHv1N^pn z|7#t{h;eyGo%UGk@{dYSw9dgM73gYxra}_%=6qJQU56G1QH0(S3kUkC4!O#L31R2f ztHKUPYo+ShmIyMq6o0ir;8);2wU?j=xxO7zqccDzr4D^Nzp5-G_{6Vt?_g0Wsf>Sk z|3l@I=+1n)&xgyUx?C*Sw{#{~AQ&`aLF;Mlv9H~5)K;?N!%Exty?PC2BdIM8UG}>; zM}r&aE|z*hEHntK!u%NBiUuaWLy3pbTH)NSmMy3gtmY=ng@ITS$8 z!gkhIO*@~zsrcLn&m2=qUmzRw>9WY}L+aiKO0;>sha8_uq5%AD-3Yz3RfbXa;a+tt zSfNS9#Et zHQ)zoo4vjuRKA1*kK8M_sH~VBXw57$OfxjySf8tKkSB!4-zdTW+H6arAkbV}s>fCw zW9YckP^@c7sdq{cW}Z{;I^Rp~TNR=LV-HovV-Hf-426lgn6l2){8MiH`Nw~)-hbcc zDMLRN_&Zx|a4O3P3S?QKIDVXW^dCeOBS$h7KJ>%6Xm~pG$F9Tzp4k6PHBIk*#8D+| z4|2jH_4nI1B(B$u?j*6SlPV#+0b06TPx-J!IR{2qhrVE^VjnFnmskPs10Q;7U|93b|`IA zNHAli02v}tRxs-fMZQ|?9@ISopdb-zT_C=X3$=Z7OYN%!Uyv(3F*f%B z0Dl0_KY?-b8L;Ehzz2~@#?W{7jG~1Z(yqjzTVrR~0;&to!5~CfVG9v(aC6aRzxUl% z**Q;&RHLdE#;Q86scErD&FFVhGx{Bya{vLv`s{O76NCSmod=;)tZKJox7EW3;9CRZ zF|g?PeZkT>#nD-Fi2>h=wp_4K2)58K_fUVC?mc)Zd9^}1Opo$qZwnUxgD2*iQSRUf z2$o99Pkt3v{vqGwsBPa45IYR*z3K@2&Zn<;lz4ek0orYU=qs16ygbk7-ze)%LuE-B zTT%cZ*ed>@MWS0xIk?bH=_gpkOCxz*;Vg^l?Rdm2Cc#-BV4DgHS8X1C`ysM;mRWl? zbdYo!|44Uyg3`GcBQxCBvu6WmR7i-U^H8cpjOo#B0T#H4*F zptj)zs7A9Npi$b)XM5q-cyJbb0FI4O&Lyw$?ww^Mxp4}gA12V$ct4G~S*Y^?#Bd4RMi-w%i5Gh9p$(%@V z8)jQBQIvkC`rowFs@u-V%wC{RVk)a4`=@poh~0*4JcMxJT5|wy@#j_?cVW8tLZ6<`)V^|8Jveo?iOyU1sct5Z) zG&k3Ib*wJ4t0`o*ezM;}Z*D1jk&3B8C~fSH0j>&x+4;d7RAcZ)sJI9H(~m*aB+lb?R3E)yDAWcF`=@A5|9LI6<~1>*|!kdtXZa zg!o=RMlhJy*y0(~7$$)Ioh382?z0M*$Z3GcEw*;rfpQ20`!!!iKQQ3MLNxGlLfBZ~;R^R*!yFlQ8 zJG@CF5!KgyJJ1v{n|c`?n@SQ+=G`3Pv5~CHcCY+C8C&vUM%Om)Xylu zo0*wZ?m!-`77=qNg|wiSYBKtG z%%Lwk!d7%cTU1uyU7_#5nY>p+5ifSt|ut9kb*1Fxicf zdaS+Qj3!ZQ*>#AdD2cGUe0pdZ_DcZp)Z{|WRwml z2psfEE>yxBA;zA-wl5w5u)V(oBfBa*i%0D-8anuzg!0hrX~L}M*$l~SOpZ7=I+%ag z{;TkR-}PI&T*J&1{NLS`MmqO}$TR+^q9@1&`u^_hV8JBgETyU>7yvMY2kns>(d;7z z4gVcIAV zUyBO(=Tz$aw3z83H4$$Zh>4Xpsd$=};~u&v2HW!^5NJ2(XGdcxNuCup0f`wtI=2Xz z%WkvHV&w&3pEn7%kbfk;1N}iSpdnLn%g*Apql7Kpc(eRJE$2GzaR>qo^C4*umgW#J zf^%lU5$w3?xaSgmnX#Vr3}8>v_3mfyE1zz0NT)hWy!@W6VHC76XMbD{M9?t zCzx5@F0`0|2Z6)1?MM%~>RLVx$=AnnIZaVu!BB^9^{`SKoyA(ugr&29Uo+K%IAJ zDl}+QCB>OW=sVqG*nNf2o>Gw6l!~Hy8K;SukIP!~p5kT|ThW z8_3CaQ$EOKCiMICkg8Ap$vUQo=M88$i!=#RMc9+Y62`oxChA2)hsOm?;!|~$?h8GtWd`lYvhehQ-hs}S#Ds$iCA1WsdH^PFppT*=Jrt(UydpE# z9}14e<=+vY(}Ee;x`|x~HLij-pbwn*Cmzt9ua@8^MkWN|r&xEDxUx4B{Zs|= z*Bjrq=xIY!^HD$HChEy^E5S+H4wVO`82gwzDM+ieqi zwG#y0A<8geGYV+N=2PqO=!;;0N2Id72k}biy&S2Iv&AVp!WmxGkR1ZWM9eEmMA`fl zep!7?jrpm*_vNRiTM%~F%N+dS&(mG$Pqxd69fk`a(z&o{ywOua*s};pRJJ^C#tEh zyKB0P3p@htIZj2S87ThoQeD|%mnR}Eif%KH7NC1ij;DNhi*B5w5^ekF+xa|?w?q~M zNEXx69&2dgWctR<(TNL41LzNu27{|a^7PU@!txcYCR_G3hpH-yqdI<5B_k7z91b)` z2xxxzF{Y@PnslQDLMzXrRA;|+cmvCSp}Lz(h@|=bnMO`Yy0@BDzKoy(xb7?PUi|8^ zj{yujA!U2@olm82HG3$xRVayXS-AFuts zV(whG5Z8)*hRdf9s4tH{ss83~)2~)jy0lH)0;|?;Ou2P;hda>g;FM^_S*J!l2T zabstHT&LB-v|5fMK;zlzW#y5bjBrns^M%rowE~Ii%){Q&;b$}C>Do!^ z#~*(2@fU!6V&?rIRwJsWE(J2pVa(1_8leddbyXC=SebESHw*M;GT@#{wxS`u^ zN1%^{YJ!1%$z%o?n*N1)(P~Hct!NHjXrE5SswUbW>j?F6l%$u0p@mh}NM@PUc`6kE zsRpKO){5&Vcst8Q76aOwI%qV*a}4=4>y3G>?uP-~lL+RekYW0n#U4Q=EI91ccor+$ zv4RLK7lE|e+#|oGJP3vFjvU4k$}75^2LRT*bEX=g8-k*Fk$B%R2=g#s@}4C=Eo>6e zcAR#30MF2^&q9a9_oZNogxpWaE>8M}IF`C;@VM1*q(@QJsJ(H*RriC{W?`R(xv@8b zj#ZL^6p@_v5%!vtzKKyrgL6oSHPVh2CFls)tV`>hr<~g{Wtui`NJl1e#zM1YzG|jP z#|#N+cW29xN&*1ypZ{a>KgWnW3Z7u#SteXd#m5ICfVJL|&`gu{Ye}*wBykkf4OGp=x+Ec@vsTqw6D*24v8_OKRw6NZ9QcSkS44*t27~-Lzz; zp}M`kM>h+gS9>>m*8W-0@KLvK>+f&$?EwjmLi^hh#E$za1Z>^D?8qv@?tZCWc9nGa zhpX*?v2@S8C5MR|R;%duJj?UVV|M$5gN!ei1xGG`Bdx+b?0+pagW^>omwH4mHpS36 z4?(Y;D1obz48VxWBN~8iHY%Rvp=DFSTtc6EP>=dN5Cs#Q#VIi}8uEDe)h!+$Ai1GV z&2YO16L z>GNTWrsC2SV;70K=A59y`qi6o$YcTip4IA(uo-|+g9L-bKc7JaOcxAkvyKBWfxDVQ zDCuIGy7eXeN^7PhNi98{U;Crv$U{zw-};uKYkChtHS2ytLptP%f0me=i0ofS!J8tYC75OH86OW zJ|Lifog#N1mXZAc>Ct5JsHrF5z}>B2;Q%cwAjC*J_9_{79MGvQkhzl}%M|ce()jRC zN1oPtOC|C(^}?Ti#(@tTJ?UhJb#dNmy|U^FKauB3)O&Pbw^zvDs_cLl8WfoA#i1y= zs=!#t!GM%i9ez}H#^y`j5qqm+x-a%bpO#n8-PBj_k~H(uvBC*yq~jako<8h^CxWi#y(G&5D&+Qvb7(pvj0GK}sc)Fv7jPrn4!=z)q+4G2zO+n#12k@n_A_mZ z0DT;z(nr6-g8b8$R5Qewh=QVUS~=7^8DSDabJ2K$vV6$(vSZN(DdG~W6oE{Bll_cW zooLQfo@e5;l!H8|M4eIEqLKgTP`}b-v$sGD)y3)TlghPBp4c^^t4KMBv27aG+ni!n zkFL|$hjI!x%cyahBrkxD$l?JS0!jpXO01n}jG|?Qu6^34Nb2D=qfn&l{wF<(c?%&?=A(1-v|Yle?S> z4TX#g+Es0g3{(F-jMvA)+;EF}oz%SS)-K(UD-dB=8ExFQPj@7R6IQWi20J@DxC=Ka zmOui1=rJ^7u5uF9*y%jJ%d3}!k#Z(@!*c_~2nV+%6$zz9_i%+Lhoz7w_B(SUoV?+< zn6|~h@a>WP*Rub7r;0&ly(s z^*s^S{r8SNjE%%KIkKyY2F8YCT6*GE(t4nFabrqGJrgY~);m2|9^%Vo!-o(505546 z0-S=nPxnBN92c+|ZfLWgB`=?Av?jo*oXD14&Anh|0_xwU9PvUa8+F*AwI^MbBy7`V za#;$uaA|%cS_UpYG!1cWz7vq5Z&W~=n~wcNFJnNc42b8MMQ4z@SLnPQ>RX|`k>-lN z;*VU6*p{~*-E|7@`hJ)JXzCMn*B;4JPSYfaRYdgoBYiVCwY7HB;oO3}sC&iH1TuoX;1T#_4<)c@y@Wry~I>o^Pc)ypg~fjSoFi9;uagrXRU&2rge$ z(Xa#V%s#vjupWAFpNXo&LXWU260Riyg(v-I-w4F^F&=?WK0;|Xf# zm1X!mwe!G|!Vj%=fe1@s=$qIxbUyOCH2`tx1F~OeV)hGvy=5s~;gE1m7z%lEwPdU| zbWPEHzhtH;QuY51#Yv0Ck89=Vr#!N2cBpWvdSnSeou>53?f6sK`qM~kTM8I<*@|u##oRl=zMe${2_b1exEx^`c0}5&wHdv zmM+ly8p_zN%k8@xKNCAB&FDd`gS+agu?#F2fy1I|flHb!aHPak0AwV`yW7F%9|i6w ze>hyHK5S@_U`^1?kY3yoko!c{O|MAQoB#UXSFSZgwTqn51u*&?GoY+d56Dv8u)xwL zmP9jsoz_!zwk$0qv@CBrs+EDM;KNJIB+ZBqbWa|49-%PIxn^D)Y);CF5K}y_xjEF; zzQ8#LVgHDjyZ=5(wHg0ox40oyPu$4JeQc9$a{Psy*sT(_f!H$mvUsqXGRNFCnF!bn zEEJ=8GXBWy_!n*1^Py$h{*bXFa_Ezn{FqBP42pGD)+;7Pis4}bUm57mdiJG|I3 zInl{kfoyg9fUT(00*4Q3-oizCs{5d0CV=2B7K%6&I=w0-f}9ofxdnzf;J610c*QgK z!&dzvjMUMk%EP>B-+a!4XfjF3BuIipsj{oI2*Yd3^%5AHp~O(N5(ERw%@R(Gtu&21 z#{t|v5k#!MCU-?y0CiD_5GzcaqFYW0Z4gB-b7Y<;znf5+#`G#5@pU_9<^kM6FTHOp zwDN^FYbu6yn>a8SN}AI`-6#9}ks$J2DuupygpZCW!MZprbM18Y!d$ zCEz2)7_*yPp}D(s7iccPpK2=_>6THfdZZQ;w#!Z(Imf0!f*Fky^gQIXk&xyp$ClY{ z@KJ#QLc{G7R@m5xVJ>JJ&MkFn2;X=fkvz`(7=h=$Hw9oVqWMw^E3+}!0X#m}?1-|) zxY`am9UB9T+c9w_5ge7NoD{a9V{%fu~X)r>-S@B zm#m^4HYjAH>(@{^K(B(~;}dSVc|xaq{D9$KKi;qpeO15}FLgpiiB0%R&Xn9K^}`n* ze+={nS`uwf=&Kdy>>3D{8HxipC}9j@*EE&5wqIK|>Z=_6*%lByG_TG9q>^ZFDCwmS zxZ`ZeWZR}|_e^PhTJ0C3c6=?JV3=~vNqP$N+)e^BS-U+fCtM!@qmtLI4#@}(Afj3T zMndzlp}K~HEM%dz20#1^6GprM62n_}`0jVBzwux}D;z&@KK`zH|Ifa?;MD2CzmCIs z+l!7H5mA!@=#Es)bKE*7Z89_R$APjPbTcaigE3||=N70OLel&`+|=5wccuIvK70Q~ z75%dSgM%^|a{zdMU!1LQ!x+c4&NI@?PAB@C)DQw`yP0-wf}Uw`GrV59OicDBrWF8S zK%c)Zwfve>`4LVbYeKnZ1G4iJDr|+`>;I!c}{7Q7$`zQ5*uWjr8_qKVAVp zqX8jIMB<#T=_Vsl|1ae&|E2G*pJ4=uabJrvIrGtuWOU=Sw3BNNfvD7auNR{IFb+lf z&5}T(iPZ%SsO^48K*Yl?WuqeqG)o8Fl&A|Z80pejpwD)$ZOkZA8KI@JsV+D|2BX6( zUTP^mu+Q(&za}yaMZq=BvwM%SE@e1jcxNGVnC%H!W_GUqn4xzKzxrp~elPt9nx>)0pWta8Z>T8M=t4L?6alGl2*@-@HQ@niBv>kQ(6QQ-ceAxx zG}Cb$MPF$c>SJ+BYZ5n!Qt*#)yV%L_`dT6N0ueNahTm2nf9z+CKWWx+ zF7*n&@MYaxi`h)#(1ldAMcO(39@DuH=P4O_uY{9__QDuy5;>d=&#ZlF$LS@^idN9q zWrzZFIqjyq&0=+;s4Y4YA)oAFGGhDM1nGRKU-j_dIK@VgMx+oW2di)Dp~&Dy5WvI# z3h5muN*SkWS(8J1I84K_*l(JVUIVY5I_&m5(?*O1)y5t=S6Gwac>z;=o$u?tO z`>4L_V+*{$^L9|OiO3B|!Ls``FF>`x?IWP3u)o^gmR?P%nr!L4AD)8)ZT{@fsz3X) zd#KIb{lE(*1V9V@Q|uG0>dx5ar3rhQHcX`k%^5DP%$bygN2b#Q4Y zsayzH{dx80_GTFugnxeZ>)tBj`(ZZD>QW!>RdX!r%pVVcGrBbZJX9wnRNg`r1D&FQ z@o-TzoRPEdz_040KZ6HfxA)SMeyEx}(K|~IxIYn#C{DvbTMEs@@q{>2QH9;5p*yUo z{5~f3CK3QG>n((gOOQ`ac3EhtxB1B@)hC~PqIKxGvS35~;kH(R;{vi){qHSS-}cNY zHE!69xRx|CkGd6_@nfaIkSnwU(2H@g2*Q7($hR!=`%>N6A#AdPOk4MU^k@4+@Aq8z zz2`zV+@~z_4tNyMQ5MbYtbmM}lvsw0Ely(S-kcG-cgtRZAZYadP2YyW;)+pipo!Dq zbtocF7ZDn1m9$q!g>F0h=6mXA3O0)o2yhG)eU;STy%uQFQx5_sQt^$LXz3o%)#OOP z=cF0nIeZ;5iy2nyqMjXh4WoyyW}!i~(z7VOKu$In+JO~nb0ZYJEU)p2>=t$cRv*?G zC_@T^-`;`*MWVai6Al^n8w*+(aOaT}2=3oX`xsy0~ni&WilnPTw`l0wQv2va-;zh2l~C{-wGKYj?{7rv--> z_KMgP7bHg^xjx(Kxkr@^^uyLvBTJi$7nSgOTRTEAW*OSDjb??&+DMEWV*DO$6daqP z$(=zE+pK}~#H=~Na#mtj+MofkMX!p^o)r`<24NASp0z{X;eqoUcH@9wrmW7N4U7RA z85}|j_t4#XaMlFw*t56f2ocVwLf1G-o&`g;zo`B!T|uh22HFFqe^0K?Z6{aTpUTZP z&0%53^{V3!Y9@*^81+ojel7tDXVy#brO@G)bX-th%sEIDmT>JEWC$Gc_%bQg)@XO=dtdt)#d4Mbfn{vZGp-xle{m$TmSM&mq0Y$fM2pnWH@%)ONfP}yLk%|3a;m?cXX2)R_`YCJZ3cK`B9EFzL^#lxV+WzRn z&)VhPfTBUJ!_K94y{jf(bd%rVF?i=^+W9O+Tx|j%L_I(+!$9LA`g#GhL=Ph!qz4!> zN`566NUrF!7S=OetE7HIEzwgW?-^~F5ny6vchX0$r!Y0P#gmw#%YJj+^jLU{_rpMM zA5rw3s+T?T>7kRZ6~?cD*!t3c1xDoh^uTv{6&z8>3Xe5`tRO0v{_b1$Uxokk8+!C1 zECgqf2+a|2ap8-`u9oi!+y&I1i?F}RwJrPfB`iQ7HHkH>L%vrS(yCoqhbZ$C^pI>? z+GR7RjvVTBU$D#lx%?L&M>J^Tsn>}V^6VRfZ~`^LXEI%ZE;&$xFZ$t?ot+q@QBR=W zhw!0A(*koCb&hZolPZ&kGzm6ZZh^U63Bj=?{0Dz7v;0XeaE9$dmm5sg#}iL2-33bp zpgEuz7o&Vyh2@xmsa|RsA!K4cABH(C*rp2;idvAz0+8TtJv zr;(3Pu1plWj^m9dVxWJneXYjEqgS1wR1#qGy+eESz>QKoWdv@`ZteQ%jx0~(Kgo?U zH`ySZw5go~8948vOoiCo&<5~VNV*ksrfV`APS~`cB3oGMo4*jEg!0ZhBc1CBg8~dV zs-(qfIV5;T{!H(%T>)KN$7gqftcduLc(Az|f(n=Ni3!%nyLTQSso?4=^>!Je_ecWD z!BQejvLL|VIa9mydH9{2=0|lBrlwO)jyCkuk}yRs48ahws503HG`O*Cv1{c$ZTGtO z#T_}uD$``({`Oc--rR=-vJ&rssKUY<>I@N>wm+RHEWh=K!qf5G&4rE+%KgA^a*8Xc z^Z`t=0>fa z=%DmK6`%K>sv|2+L^&Q0FlQ zsv4TqB>BzuBj=f-Ln3m3(kAh+>{$|^W3^&xX7Q{Ng}WJVrFdGmLaQ`5N`1DAfwl2? zBw1l|ltS=cdEpuS zTg;Ois=CFoML37WBTGpA&ddt>7)a+9HOW~rgs8Jy_Nlh>omw>>nDTUPtwS6fls37< zKcjL@`t}Ll2vov2x=dH`zLGNfeW=NGvFg+3g-e(>Y>`p;6Bx40Jc|a+7?)D<`3WJE zl1{ZxTh^hWIoX1+yM{#KX^6(`*cXE-5V~~TAP%HRSGBZ9#{TfY3$eP34un2mt;Q$- ze}s+v?4%>IO{!^^JC|n+4a?)s@9Qhtk1ZxVmM*kV?e&lIm*1(rlgt@$5W)fYs{SUW z6$Gc9i909HNF*k{O2Lly5P2(@yDP*lp){cF+NV%%2e@%+7} z(H#ZuC;};0AFFev!HZ^i)ml`8c=N&~E_);dv5=bwK!}hD&sc03%SPLqP5$DGmWACC z6de2-qO`vFsCqQ06P<)P>sJeRT*d^JXIV$L=K*3vX?Sib3B&m;< z0kBknHPyxM9l*Qj@p&W#9@myc!FaysX1GNy*p&;gQV4jrbfxqAa8k`Ut>o<|0gv={ zFVzv7L?frvdLp@|Ag#G7yCk&&S$Cs!yK5X+@ed0$&^o?xbPgK zM$-+1@bGoT;eYJT{gfR(KrBeD_Iu^tP%v~z;i8QOZ+#~Vt)*MhmIz&2!Q<_-Fu+CU z{H1Hp;9~@2&~j38lj1~Ppg|khHTzgm*YLzDJE{~t{`}*=z5hXabb4EG->Y|4S2KA` z;inH%3`*wuRPs0%I`s<>;x&3Hdm}4`LZQcQ#8Hrr-EUxb17b_X>i6vgpsRRPF)rPPeS5)7&9k#n1ZntT z^|~b<+)tQv*pl3XAx&Al@!z$i{@|aJaekp@QZMLr!khjZ%d#NKSCeDo(fj5f{1?jQ z-_UT|vi7LG?5iqrG?wDAP#)WMrEQpHmJKEPL#KFj7@a4(F_rf-5tFqxN7aK@qk|fJ zKFW{6Ufmy)k_k%>_3UXrT!MjqBSFA(9cGTWPle|edZ3cH4tweJ43;sYB#(5;k*YLa z9K)pB3zYrzF&1SGoh^fjT^Z4+;Gp~P!!DdhQ#U0>zBlcoO?*S(l3g9u(P!=8Qb%kUjVw5U|HcY(;u8g2G`ZYM%^K`qCtMlY2byz#BU4fR7cXIeK#Na;rz@y3CJgFOvFI`SFqdCdKU{JES~k#93lO zGc9C7114cq{ICKE)z2F0=N1B-U%&TlXqZi>Ua7!UnvHk`IlcA4*DO7d>c@~p=SRq=n zMLuLq?byUWC&@>>3{{$>I8aFA$XmjH>|3D#<51f7ze}GY)2Zo)ocSEnrkxNU5IwEs1J6IcKkGfRg=vdvA!9u`ss}CRku6qAl z4d;Fqex&Js<00w;BE)jkL+!#*2?2W0xWW!?bmN$3(&BQH?>1M<Te`#-yRlowR@6fYRm0R+qdG3`}@_}b@gV?Uj`swtH*k{;}55-w<Q^0ZU4tKhF!y^826V?|v&?C@$XcQtF;FQNoMt)xdBL z;VEq0d)}_>v~QGeKw+F#*#+2IQnWKBo0@`ppwMsdV)39Z6AJAef&KKXU`SLYxm3s%4?{@^^a)6oJG})Qb$n( z|6ju1ZAX&qx)OZ%uP|zamZ%xF-qk{@f22W}o0+>=xZTPw?&0wupvnFK=}kRPQjtYc zB1KZXv`AKo1TvHVHG8eI*FF|C7>oq4va&KG!p+Xv*L87OVNXmL>o)tM__=|}DK&|1 z_?kc`_H+Oz!DkB|!s(`A*X4w{vWC%*PKkYJ>;*=w8TcwdH}b}>nW?S z48V1JKg!y}i#fW{575iw!Y0rHYuLA2<8|(I)RNbWo*(2(?4Akk(pwF__T@p?5X$ga ztVtTg{b-WQ*r;#z@M;i!vcrAg?hvL{t8W#e-lUk4~Wq+cijuWP-Rzz8Odhw>J^B?ZY zmbC0=XkaxW8IQ33>B%RhxZ|v9u@}iwfgya|h?!gC)>A93ebMCg(GCVk(p&+rt4w6fKnYQq6w^jOPM>3ZMoc5~Jr)Ni+80 z|75jbjbgazyEmTE7RY5!cY^;4H;JZp%*3k7Sf7NoRP(s}QZ{&Gg2VgvwnEg+Kxw79Ed-2e#D7PX5pgf(3H zOi52$Y6sd@TV=e?pwnqFQ(G6(c>{JoXny@%*_!NlX`BQmRpGMOHcLsgQxPxg(X1G# z9zdK2FQt2IwrPjl1hOz3=&}IPi>L_5WblH@CYe>U5Gbv1T3BkZ+Ub#p=y!Yb>jQWL zbSR2X#S1E*VSu<{%#^#NV=&KIl)i_D!5L`8CQ~oA$lZB#rZxvQK&$H(Z!ftnK#*F;3>uuQZwHgPcMW2H8S@ z+mRkoqnFr2ooa`0nTRLJ7Jli*6)6p9zrzK*PSEehTmaXYd|_O{Q_b$O(o9& zy8s;paxhzL8WBuSRiMDJu7N-D5b z-(fr%yBv!K-cMVdCrMN!+7Uh}eW>L_W8&-TQ%RWcbRPV}cO&O(dYh93Py4O`L~YcM z1jEH}Rl?I459IhTq`m?21@`TKfMyBIQOG(3odmjvN2-C9h^QZ9NbuGKs&Z+P(4#LZ z;`yALJcvs=)jp8HWX;`# zrTXsVp(|651~Rxaid?-v`fPWOxS`d7uTz0C?vgz5;u-=pRK}QX)f;ZIBIh)|v*3mg z?@gnVgB}3HuZ}P_7q?xtxOa`Lm%z4zjGDefs-yivHdi~R8D)F7kAOlnFA6?Qz)Kuxt^!lyUXqY27qJzGiALaBpNs>s;{4Mz^tcfa%VDe$|lt@nQnCJoMke%maOg=Kw7$^t&&y%_A8VNlC55X zRIujQVEOM-K0|x|Ws@#QR3f6-K zDWK*sI1D+70gXX^C?&M+{Z;GlV^)IgyG&*79AlzGP$)lJRkom9C1Uim)cr4uzx>PeOs~w5p=J(-39yl;=M<_QgreXSctg318Nd|;)!uUJr*Z+PXxpC)5qB3 z(&tTpeR#*Ak6k!nJ(}!L4_WD~Q*r@M!#*1tI!V8jV$LPq%@fJ6mYn?nh40&{kj-Q% z+!I}j(~E(zWme6A>UREkUlpHz8&}&();2I6AV($vYb#Yk+NkU6;-ZZh`eiJiR^3PR zlcCYS&-I};5H;Y-q#M=ky4}}e_nzS<_$(N^rOuG`acGC&-@F&KQ({`Eub-!9M2}e` zACMq6Pg5u}Z*GJnI}~IDg?#9Jf4v~LL*o;4JGGzfomY8F9wAl-^34^17a!~GOC%(2 z$+0hKln3h$HE2~tbA>(2>GidEJ;*8jPAoS2#fcVjDS+}d3(*D)67(BG7T%h=4pnc0 zW?nnH4HuVJB7=t79J}NI4h@y_Ie>BY755W8SPwF_qu31KzD~ih zBhT;JU~l2oa$uxdhE1#l$HNrrXBf&sJc6K3X{KG4GG>ujfk?5%rw&nh7Uz)v0|y7V zn48`LN0iYyWQR5jT-)hW0$<4&UTf)gy^=Xy;=cywlJfhK@E&c(@Pp;JlTD-a<&y}<&4m) z5$q1WeFqeRJrsHezZ7zNw<0ITGqo3qGupANw?*Sw=m$|XaFaikMc|P%TnSHR(J#Z;idX!A#lICVzZ0&5ubfMI0$-v$I;dh z2>PwXIRpkkP3)bvAA*G$jqO(@q0&|Bci80J560xF2!~-z^54y4qZP2X^}?>s`&JG! zEL8n@@#jbnR=rq)Na&al`@h2|m+n!U+6KEOJ9s_Htv4a_FJgUMaAp)G$sN$D6hfTa z?#)R}8w};aLDPP#nwrphNd9}lq~a<+{pIN~S^_9T3+|mRRWOU|Vs`XZ^l@|Xa1Es$ zmQldtDQ?)Ax&gV{$3Q+U#$pB1OaRP<>o)bPYKvVjOZNx^ns#imwg5I1Q*a!5csq)0 zxN*)CUz!6T%!=k2BjxoSf8!St}M;~er8#M8y`ruuCB z+W_e`s2+!oQ3)SVB3zyXN_LDfA*>w}E1ECKh6-JHa2@0=LY+mSIR;(#sK81YQSV4J9 zT?r-MhiRRaF-Zr^+6&i!E63ZiTf7IW8>~S8931a>Fh*bw_z?=rrg(;g7(MJ#1qx6Hm>{=Yr&sI_&$*nv6auOiF zr8=NpOGx{rXMmP-JbMBME8?e0y~XR)^hk;laba=IysRum41{LVna@OXe4yp&vdw=heO{eUPs-`xJzh! zID88d+;D`Dtg!{aM)uQ}$*JvI{(psjfvW-xoKFF694Rji>C@3&miB)I{>SQzR72Xc zSTd@7ZMdg{+|*Sy#ztFAITwu~I60#|DX+p&|4%!i5DMrg2jNJmlapS=$szE)S&39* zU!Wwyhj|7)PHMZcYI(Sy^ze>Zh0aEQ_DXqKqBARaKiZc$z0>1v;5pTB@fI!iIyVh| z>>wp_EFvE>>a7P<=Kx+FyIXN1yq*R7g~Di3$GTwusogR#aen5BwaR*fD4ugEn^r$T z=g4l^_6R(Za|#I8-{Q|avUa__C?6}nTkCmo@C9^&XSAH5Rf94q)BSfuvtLD#VPDo4e6J|BEle9Nsb?Z`^ z7BsAxOYZZ~W)Z=xv7V!Rlv(PaFO-SC?MCk}=uoY9vpX50QSKL9AO0nbi(k9k!q>18 zyNYB9s6!q0 zn_>qM)+8V-dO8YG^iYNU_^%kF;Q*vG;oO4s5%26BEPY9GW_Nf+ z*-8e~ZtI6_uCOlscIYeGn3@8nC2~_keQ77Z zJ|?QHWRe6;M>QgbcEk*deV2{Sp*7rN59yoE5-JgEDS1PP+urQ%ju$A@Dw_I{PBmMqYj6yS&Q=QEl06#?IZkB zD*@;*>yZRT7L;2V(g)sUSdxyG;iGE((vKNNR&UvvJ{esyxwNDe*zrn&@Qu$$>`ltX zU@qU`Iye&c`gDELjkM|gJW(*6zuLtnF8eF0&aL%W(H+=(^c7~(0%Ssj4w>@9E_wq&s(oerB(m&|iy$iNAXw3!Zl8i*nWGxHYXl;N=@J||8L#T0phh(uk!_C@# zMCqz{_7<*2&*E;E%>r{uf-kJ&o2N#_U3RgxOW?KDL-^UTc&y1izQ7zYD_&D=&yJq< z)gAacUqi)EQpLCJA%Tr=FX?Vqbb%_yDM?GGQ!%n5Aq6Nl(cEBd5Tjm0Vv$=1DmtNz z=!PUsyFhJjIS8LF4QikIkYQTOpbvPeEeD_z`*J%^Ghnx{ztMkc%k0csmlAsVwH&qT zKpQ}LIZyqd#L`jx&l_Z7N77PTYGVDtDzGo43^a5hhIyT8yOJ6%Ama9i+SWpQ;l3>E zl-$`Iw1I9h5Hb+r@T)a3r-Qr9n6U3v*JMUD(YFar zjT#O(B&vKsI@ERkVc1Dq#vik3gI0H zDVYUZD)N68U;hnkUQ_$*hhxSY2eot>^KKQ>{DornBD{3xf)*bZPSCoCco;5wj8)gr z%B=RRzCgMVAR!xd6jhKswNxLJtmtR5B1m2_m6SGtFQA0rXmi8XK#*xI&nnE3|DXIla|;(Y#txT{5)7X<(Al*R!XD3%urpj6;< ztx{aI4jJy*<#6sI^I;e&`_1eq4C#5t7gp{B(c(*;r&xltO?U`a3?d%SmTa5_#g=Z% zrg^k9_r1AAm`4&Z5tIx_%Z1geSVaSZDSv z1>-TjbMj-Z5Tp!4V1=t6`K>!2ww{P6OXt^Pz#s$zdr$6GvR*eV*^kOYl*8F9fDRop zXt)Bwh7C5viCTV`Zv9dQhEmXgy;NqYzL5?`nc zUm&;kZjbwO^lj%*E(CDO%56V|bsXsp?*>kToSjR+@!%$fU{g1TUwRB`8Qah0VmY(g zb#%hK403^q{=acQ zDS3C&*n*}s=i!GPUA2Pt)h|mId!%azs8oUOTN&{jLZsbzkAQ}#k>WWKN*YUZxe&_F zQ||L=h8kLOG<@R9Q#x!G&nW=o@Axl@Z@I8-Rtww_D`Y+U=xWVZR%%|QAz}8v>!@># zu3r+3(==zr${mX^AJ>B;;uVDTwTW{rP7ogq!2^S%@V;AK5 z&iQYc!XXb1bX7|+ooSD7D(c<+ z;3U~Qfnqff>r0ph`Is6@irMSM2d)Dc>don!J}V>es#W7Z<|KMZo(`V(?^y@C0`*eg zWNz%xONs`)DR%echOLmOL<@F9nw+&is-~-hr;6K9#C$lg zt@A;`vMWM!8lBUmEeLjy(?WwMsNRar(oXjCa1mr*Zm{Yr2h5~Pp&2Rq=UZl@VRCK% zCUajeV^t6hcCape32klk?jQdigK)?ds0DIywe-b84Ft_YlPxdS0}dgT>e(-9qt5M2 z#p2c9`R4QcCFoEC%#{SK+CW*J8^z1z)?{D+0Rg@d$Ivj*XCIUta9jkmz%MT4l1eum z6FP|}6mmpStGJ=JB5yzmvU84zfo zVou<|Pnjl~H=Rn-KRIQKNO(JycR0Se5;5keJg|CLHCGOffI)w0=}-ijP{M~&4!J9S z42#*jQ>eWC8&c!~+RC`)U8&^&De#Z*Y&wU|SW*L6n<2!Uhv&h61VfOdgro8NQ<8NZ}NTRl9>4qfQ-k_e@Z1o+6y!H}!FB1c~JoUuNs4#r9L z7XV)>vf4YC))F(t;JDExfmtSGqKJE4_v@8I4tYbAg|z#v{I^h0Lv7mYPb-~91mDB9 z51whlnFHgXxlKiif&k>LBmleYGJM^$c6jjKTWc)OQe*@8WxeDPK4-M=5UL-(iuYTT zbFxsjM#8>G2dl?xzPq01exf}0!vu-xsuMhn!_^hIaj ze13Y;^P?Nzk?1uE$fvvXNU$ffh?TwljQ8S=&3AfUfs=?jd zPeaD?m-JflAIl1pjWYoIh$Im^f^^2G2?ABJJV{NUg?;DT0*U3Hw-r+&u_K##!=&|8{i4wguAYKJmc3-2PFP1%pF~pb9cCMz}yRZJA z6+I=|hx!*gDT%FNHD-DKIW32Q5mBaK*!kxiItWt=`n*;YEA}Y6X1`5FM5UohWS}SZ z%4>Y(^bsuO{!KpjG%xPt4`gTN5*^4alb6&)TC%lv<9o#)zvB?B1M3YBdTox_ff%s) zBP4CD+PEiCX-3aCl!cy-%eQ7ZTif%Z1O3`|M|2mppS@`%09Q+u8|?LPIQpja83U^cvooWB$tZmUPTiH(@kfitcZf;LVe?jNmp}#&&`IN&0l;3IH)2mL!1! zEG6o&hkNOkr%_uPC{mImdkAWzak^&#D3DM{V4GXOO@3>&Ea4_EAru5Dt|p?*O$G!6 ziTP=<79g$#x20A7p5U%yH~5p{)4xJ6Yg9AvlDxO2HOOsjM+?YA@(Ut5(BmQg)}h;# zF%bq;P@}U`e<>c4j26-qq>@CQ>SFLY2L%B8gA9naBGmH(2Yf%`xMCz9vTB#a@E+jA z^dlC|xZf2Yu@br`6ikD)Xj)&N}r||FjP*Nen+|4VvQaPFF?8!dsHXV+Rg1Fo2cS%9_nfyhnJ6%ShWWIEqjTxmIz zTSrCY{HJ*o&mENR({mg0AF7w^l6K7xGpFkZ^R=e>n|flGUcB-X9y7s{6@H|mlu z5@5>eL}cSeP`o!sQUtsE+0!g`tR6l3G~Dja1o-*G1&aCo++uX_u3%xgwXI4_1oT19 zOBtrVR*v5CC;HW=-wK-fTmOmFJ0=pK9~kcKM#)l7+{|w<9tEQ`#Cz?bRvD*h57LXU z;?fZ`wUw2XKGngm@7m-*Hi|DWG+a>WH9Cv03j6PWQe3S?RLO#yGf1!25?jno%+H9q|bt&ovjsz0)3vhvK4AR^G zUznspr42UQ<2t6&XL7)W-ez1DX)wYk}0gC^<-mR9rblS|4C`gj6K#rrfY&;3Vx!<>Ps z4BRJ6HYdgw)HiM8wbjd%i}ImtviZt*baiZSC;ACuFtS&V!*-co!!{K<9HP?mbm(dK z(>ofR1+Y~F)-o1C_QS22EZq7y3IK$Mrfj9;1c#(;uFVqmgnqVE|2|@db~{KA!)s~s z0UrjHcS4)YTJPR3BTz zM@+aag~^+OSJSgrJjnU%#azdcYk?VBlUCH$C1p<~*_*EF^`W7zC3ru&_Eewb@P!`x zOr-!~W`Y5Nj;9OhhogZ5A{MIpGhTVEmCd0Lz+hu zD%lBNh!dO8B9fu)7L2jgsZ#3%^oaFDa_ndk5WM`nWZ94U^{~74fJgUb6vWoWKqN~B zEv}`4&^E#bk4j~Nmq72{n-lxegn`GEO#op1j0=?1yUGnfJvY|$*}HU2pBY%)0Tu9b znXr``MmsQq603k;DCB}^R4h9SG{8~4Pa&6^M(~;K2fR?D@|Es2r|>a37{dH%@u!xo z78;4BA3JGWfb-*V2ZvqYu0trU6U8N4!gdtul|&iFGiQ&1)Fz=y` zrDf@G&=3Fa7ui3;3jAB7#tprMZ=6C%ZJ;>VnjJ+S(GguRdeN)I+{LdN@jltRtfNe{ z3u*5`T%5u4R2d(0|7|(w3ap`@4s=%)q6kTn=CTl{Y2~zMxdHB2C1#z<>zg-KaElRO zm&w8tWKADeep)ZnH)N`EkO@YPu=ZLiOViGP#NXIrDhlPYRu1bVk*-rf9qeEMp#e;t z{~p|xRGokr549GIi(($!c4A|P8(|rSXNS=pnJfW=w#S?#{UuX;4|+@$=p$^xmMmSh zD3Am_l!M^9IR@}YckmS?Gfs0f`&iC->TX4drUU`qzf1oNW1q7ezU=BxF~Z9u%jDsC zwTgGw$Ecus5yf07a0CpR-`TW+qp^8pup+`?XwaVsYXV@lNPYE_U32bAA)w|RmF{8< ztmVNnKoi?@ey3_V9p}9rjN{;36(ajRcg@i?^+nqCigU45P?KC@yiEzTI=?A@x{!kq zO{4)-a18WK7k|oW|NeFkt*9GMb-9b6)ftWG1fBrQx0Se;Ci?JUYL+l(E_YHg6GJC6 z$B;6kFaTnraWLg8cVOZCaxUuA(l%5|SX^i?q;K2IXCW>QbPXUXLo=Z(xL9B*x4V^sx?xu>C3FCRGXF&YV$ z&)JBu2o0AD-2&2gwZg*%y{*_;0uq71wKU1#(D8OtfFeiq5<#JY!)Yu9&Q?^^h{!Ku z0@S4n3J8y`(KJ9SR;grVB>sCx-3=3T2M?lW@YE%>b}}+WZ-u}`AYdKb%qL9AMRX4n zS3-(L>b%ESyaumGB02w#NagTAYd9xYWdq44*Jp`@vnIBb7M_@WQRa;bcUCFa8K(`q z4WH{^^&c+mvZYducoG9Q9g72;E;+(jyg7%UCWT)R zj8p@zE$jC)OR%W==fq_4)jkmOLCL1`AX@XMzQ?P-1bamT*h#>$Y=Vvy0{%9ysA**J zYM~`#EsPV6;TBzw>1|dhM zZ7=3sZ#13@t^cu^QqRAF5?ZQn1gtM*1beb;y0ahu1zjpQvQMQZw^ZTkOmlz<*1?(3 z0>jlpMC^)72|KT~rLDc|51M5tjl&(+Cwxz=P84it66-%JQX0-`VoryfBj&PIrze0N za5k~F7bNwjPV(wjnxyS@K48Cts_Y{BL9|@YgMY7o1yaSl7Me)wlm0_Ym@Zvx!S)OX zJvXJKqW}k7br|kb1oM*l@qJ}Ib8A7<9mb(V;)Ahjdl7#?WLra z1qzX(A%GB07cZdGEg&H8jxlmS0J1;)Q1jKRC5}r53Rvm7?T7K6y%m~y2CyZ`!lv^~ zF|m_tKxhEdHU5J^&jEL++RvxIF8&${$MQ8^w+qkq;86*_%YZuxt3N>*JLasn&|=z( z*LU(1;!>7t%exsybHyrqUr23fn?iZ0TBCdXeA&V5H*g}~x=0OBw@S|xKj}dGXt#mD z7wt|^L%_k&{(Rk9(e3Qdf`WGGcqcZsM_Q`KTO9UL~e~8d5^jfxEoXrK>w$RhQ`wLt%ynWHSeQu z=uGFS3wP26#2KVqXxzY&VovCB3kWoZ@8KaPGX(o-oY&VMc259xa(HBANK>@W{oN#m zZa{uukg953lVFE6L2sG+ov?RJo~*Q2o`FlvkB=rO3sw`NjUe8hmkt)}oyg`6A+5pn#ei99Cmn?K{@Yfb8e1G@eNfQ3>EHzfXwC;^n z5a}mACB0t+=(OrSJ*jfJ?g#uEboqL_i5hdD&y*B{eLX8rxQ=lYgvAvV#p@$zpZ0go zZ1^!tYLj#`5Z8z0119oG9b>Xvq)qjQcOE=&y0W%()eGGh%Ioy9cvmg9MfJTjFBz@m zdc&b~?MHA4$4jsh)K$Q>ei1DVd~pa_^PE#fmEwGY@PmhXIMUmspMzl&E(0R>L{R7f zf8+)GeVC0wdI2V7+JfYL zy0jv7%~n?Zgt?-78164!7E-TDLP)%gSR>dI;SdAcvWji}wuItH4^p|n-$BpU2QL=+ zh$lM6S(FNdiYm*aPl0u9q~_@?p8OQAK$)yq!3l(CrNMEcSH8*H01zZer=r@-&fp>V z#UC;@S)au=nnGe)?!CH(n7>86;{k!8(c;9uNO~AIh9}ER;DiLkMA})fLnI@GM%O~y z!ko-gS2iK-;$=`@p?HL1Mtx-8ZDsM2e)r%w=j}kT-IMo_w#Or+Q!NbSN`enE{nu%~ zV<+Q`MyqR}YEVd;ZYXY=^J-ee0dGd`wlXAjKRPe+MxD}L%Y%R&ujskT5F1Vkoyl%A{nv?ePsj0v>-tKI zy12A2kWO*bkCdWh88UYTq3oY@jw6_-EmFlTu%$jygBr?aonGfOved@UADXS@&*d@0v ztuZ~FU@M+EyR|ViQsJiUmycBW zn#n>O(t%uK^|NrcP~Y%|ankily(gr|Q(vOYvolpHhSI@w^P}BPQ)qf($>0#M!9Lfc zsUeIW>RO+{V7m@b$+wC>^)pJHCo%u_B1m&q@sNZT)QO-z!T8JXMV2;!N<#Xtc81+A z9;4JW(#&_|(e!yA0rW;w$^>)>HcUqG$6cK#Hn-d#|6(R}C@BpPF{y2t*>*nYOT)LI(&-94wgc( zN>9L2-`eztbtUIdp31D8uVH4KzHEZBq1w*~5gig0kDxv0&A?;9zTZMq=bx($e|E2K zu5Iz$g`lL#Nx7uMRn}B}O_#o5(Dv^LeXbnI@a^-nnfob*y}PBui~l|yGJ`m}dzHVH z2ZHk>R{g+Hi;0?AYAAP->V3Kha6%@w2LIx0z7*8O5Cm#`6p`k*EgG6udZFB!U=@u2 zLJ^?`pS2K>1|y7$zEgVA79-}^)+5I?-Y>pUH#RSa${rNea?4B$NG=B-)t14!JO zO3xdW<3J!kYJWaGiMF$vZlj5h4|P#bkg@ZGm`~^`|J+Y{8}-~vS;RO#cGaI1on~f3 z>_pbX9)inqoxf7!_~7eNjN3mpO>%YDKNna2jYaAu2Dq&h#?L?*C@Y`)B8wQ@fSh_F zlnXQir5CABB6)3ZN6FAex9tEuloatt67td3A%Qcv; zI?5Y@T}(=?k;(%~iWj9H``LvS4r@P|;VjmAhHmw`VfCoOqo>bD9|D6JgXc=)u^al5 zFkPP-VcOgc=;51;+lILL92oO6G*#0Jw&LZPH7tQLTj@epeEQdPj4TJ9u467bFU#%? zmBiyXSVWnBha^qkR0+8~ojiNxdX;1LH3C`{ex;Q4T+r~hXawgnjoOgGH{1m)x3*=< zv{Dz@Js27`&n8C2)q6c;yQpg1Es)ul{rHa`z9>HZbNU%@dwi_rlrNt~_w_q{U-iM~ zrcILswXY}*Q#}5wZ@F1C2--QWatDNS@!6h@g|QO8(IL`0krD*(5Zt$S0Fa&3x{@8% z)mpPzVpAnIn`*?l5s_ z9WEw`qMyT9sw`eR>_%!#$ns`?Tk>#WjXf&mG($oFaPeAEiGfya^IsHy@fUyL@6dz) zP!-qZ^yvr1#~*{t)yM$vFgeOfzka=*C_NEGHS+;Do%~8o;+f%#7~0 zg!OoGxK1^)bq5-{$WANaHy}qBgBttOtlmAgZBs5YVSV6(Ey|}ajp*DzaEFHvze}$V zg@#zKc(i$5|2tsTEgszAfjwpqm_Z#p#I&GK_;@IE_zT(j&;?XX#G^j(wPm z1D?fcFS=#)hi=~5Jd$q$hyKBHSAx{M9O0tE>2gy$bU-4@?gzK?vcDdD=yu>nr?cj_ zm~cCeu%C{NjO1|q6y3`z<}w}U4tVaDq?3Rlp)aPut;ovVl9A>VM$5ggPV5;&U9Rph z6%PzZgSG~mTG6U4lLgb=g94{H#Lo^Qe8PeJ8WcUc`at#4p1^K> zST#vjpf9Y{BBwp|{JQ|En9Y3-KPlwK5UVVY4z5=G?Opm5N2;<(O zbOQ_p*u{!f>?t^?3D@dphweYrSrm@@XT^tKr9)Rq^~OGCvfcK0j2W$HkuFw)R&+KMHKXL<|MQF46y+r_uPty_JN-UMY6tCY~eM#1*FQ6k@J2(TUO4@ywyA(nEDC9l~?YK5Ppb=QR4?Q4hjAt#f^S%NEzT$GVv;(=7 zUYb|IlbwPSL+#Vp_60=r+#GOz>wwiLHWyY%L9n*c+frhHBCjg7xsM`%SxYr>uby@q zo2+yIaz@w%)MfEm`u68S3SB);6af}C8xPKZ27Ugw~P;}Nf1l|3@M-zCR$0uC970jx`O~l4ZSWxq-delkY($4AFi@i zs6As$K-905u|bVYn8NsY4^+U)+)wWAwX%<%T2lj1>Mr}3roe~M^york%5BxO%+qqL zm+7zV6W3nWY1AgjfXkRL9fa$^-c}0*lM+mPM~fO75Z$CBWv#ntH$wKUhbO$ciyygrDpu(>#KX)s-r z>uMRvCWr2}31_|JV+;`}W%e=~2|?lugkVAS|D^bnKS|k78*$)fp-7q59Pn#!2QobW zOo}}Fap4U2JRL=Q&?BcH-)&K!uR=^vA5jbp2U1b56O`6u5fOrwSOZcjvQKWcdY}yv znm{uynbWs&D{mKr-dBs2D+`78fxe$;oy`5$BwQ3d7wrS!SWJDc0;bd`DqOiN0xCPlHgOcB5C6+>PWJP(Hi+E@q53+rnjqj9?^##n<$`@eiY7T2M zd+LUn6-rnY8DNm=?&7qSOpp`UN*0eOy&d_$V~iCLka`s)z)E_%YS{G&mD2%N*@SW* zRZaSGCzZ3&nZmXhTVoxIOsXdslHr-M9??kd7KS8VH6}rP!AnCU(P4rRdrzlqAqK{4 z1_*_gl4RHDmrBK42wnjIKPb*l6W36({Hu?%T~J^9CX*=8NI#Rva0e`Jakm1lo!o;E zTLE_mnta(xLmsbrNVg9W8bEb4=z?#b$QBL+Ql?sNQT>69mLp${b!OtMxY7x`qYpL$G({?P|0}14THtZu0}DE@KKdqu_!QB9 z>;^~IZgJM~lofb5JhBt*x?@~cX>w>un(CT<4eZBx8rd3ta>SMWClFB4fwnm0v{;j^@j|*yN4#>m;GS^Sh-_Qgi66@q!?2L8Ra>ITKAF!K!ZLJ zE3>4BbugtofO_BOAz?1se zPKptG*^4)aZCY=x$pWU7H~W-#zhsg%z0e^pqy`8hcpMa}9@^HDGIa2y>OpS4r=$Pz zC!c=w>8Brm4D`bfxNnBQq4$FKA~b&kDcIWsfbprNN$>SA)V9FCX~fs>@8pcLTnU*a zfQ7jX3f%y-6W^h34_NAiw!rQV%#O)K5LP>ZLnEpw-=B9P(4M-H4gDe~7{C<)R>flC zU3~v#@!@AD{@8JI`&6E(A60b*+jFpW>>rT5>Vp=pk-*wecJeAuOYD$6US?EKv$6CF zkk0^94@F}d##HpA(LviaBIgNppW3$RA@87t2Q;qU^a^fMnv8%1R2~$U&`()|)?w7% z1oxq%e=!hrE;m$L*@*=VHeL18E^9I?Iwr(VKR>+z?7dPpv8SI4iBm{f$4ni8NdyKPU#Tb;g0BBH!8qPzik+l56ZCrZ;&d z&g<^6g~I-A`Q}@oq7OO;^m<_O+-mYBCu_vCY=l>gE=;lm8|0%^D7h;*j(C!ReK@0= zb$Ej&+c#@14;fppPE-OrD)zK@4PWiskZ$8)RR?ouRusaWW$yOqnN+nM(0@xwfsfVR zRKr)J6LRDLTD{*Nxlt(EXH*!%jbT>{&{!6ceTp zz6QTQjlb$Z)@=9F*#W$_LBUS&WO`?Gozy47Ft9H1b5r;AT$U z-$`vn08Lt2fBYYXet{v*cq8F$DPB;R*t64dy5grUF>Rs#Y1aeAS-n$WKfM)uXZG<3 zC6CqM%hZl3yMbL@ZOxJ#;k9r=*7eXCrmm``Ni+20v5iUf0`|rU&FK;Oa!_aA!pPQ| ze6VE~;oQSobcM5(PrAbn?S|F$1)O2anYRm(uJVOWm-`UT$U~z z$uJ3;g~x^o=z|#g@FvUB&KSHm9>?ry&3bv|Ou=QDQg-77Sj^|Mcs_kU@Q)yaq&@E& zrhz%URb^iRaUT{clSC#aIsAdOEk}Tbnz_>OBji|IG)i(;U*{s|-gBkq&0Sf%*h>V$ zBmKY^yt%i8^>#5x%qn0gUNMyi@%qyrU~mZGnL}Xsg;gbfnexWv35RosS9jr_P~L*Y z1>C{;#1&|YrL-#`c79V%tdbMM71Z`#iaQwQgOiULmsI)eObF6EyEEp3N#2N$ej`K` zD~PAclwkk|4*x|o&!j=55Bl8?Ulkawfr|`T2rMn002SO0Z&+0lH5WeolO0WbuR2aA zz$Y3Klve0AI>6avGS^(aKvz^MNdNMmi-fUUCh#I;%XZC9vf?#}E!*`_m=Aq0^v-u+ zcj(oee(%qUZ|R(!E9hsIM+p||(#pUXC%DN*>2hp=b6B?YY)$T_GWbR(6n`?+fkR&d zK)tUmCC|&$xW#}S`;l_COoZ)#mmRSENyqtKtSVwaWsL(eP*5qr9NCxVkzrizwa_)fl(t zx6mS)8rZ5@khb%@8pN!524cCB{+aib-|LRQ5U*8mE>(AgaXDS^;m$PMpv zi=vkbYFV2Y{<0k5>GRbth~kaN6mMyE2y(!BqOjEM z@Cciljv%*aeU@tgXc`19D@ULS8N}bCC-jnh+dZ3#w7n5!0U__90p85pwiY7m>F*6q zk~8-^Gu6eV44pV4K&3MbaMS4<#W&N^l``_W*-6V^)xbb^JY~jP@suR_my#s^56=jQ zn0|PdtX-Lm3$e+%adfk27BTBNK6gFZwg@lJH}*_0{a#51krGL7rIX!oL60yJJ7w$X z4RY0%8Uv2CYV;zL z=wWF7sIfnD0jrCU9@)Y%m(R5<+OK7 zob}_)IVHgBaK&{_)0Ch@zEIh%naw>RfRxYV2o$KY8>;33Yd?*-Li1kMPoc{h&Li^_ zrnKWk^9GDo{2GA+Uvaa_MJWVjV~e*8P& zAUdLOoL2VFqLp#}hJ8G!(q0l+5id7K@P*MeG&rH2&yjl(AC_VXM_dD7Xmq-bTAyQ`q=u<7^4hYPUHX zw{^uZVVBj#D8thK6$0W1H^UY9t!I_=p0C-prBZi4@6AGOFQ0B>5ZYiQvE;{?p(c=7 zl%^JlLNi2)uxa3ux1TnIGBCEM>`pX@^A4Z(jxO1hGV+4phsB34xZVs>HcT+{J_AnT z9+dn2RS+!8r9-2t@gHD22{`d)eV-)te2p1I@?K&YyI@w0Ya=o(XTuD@L4pN%DTAaE z8jn^KU>a3sLacqN5$J1GSPb>JI|24g9)6b)fI+uWxjdopb{AUIVGt>#&Yu6XL+l)!6(!Trw^UqFeIDH~R{-`op@myaG#PURmpzL#69I^Mpl%UX zA2*O1wx$y?6)32cdIu9HsFKobE?ZtL+fA*7>7*`-YN4_s4_A>btv+FRQ}}~j-{nU=WjPtE;?uXj#&jeV zV@q~Tv*<}VvF-5LJHV!f{3;dfOE9hk@wb?h_l{`<3IQjeku9>U=%}J0pe*CTj^;~C zL%tFGy?=$GyfDL|-HfN0v}>^E#Wl6~x5SnN!$=>K{qcV&J`Ir`L4&PMAOG*-!#~r~ zJr>QsJ%JK(4{r1fIA*wSTN6sz?={}orVtM8ehf(L+enipPpqw=Ksm74H7(Qs7x*84 z_;xV-3+^DGJx`Rx&6|BKC9vFcpuj=e>arj{SE22H=6YMndSWKSOwjkTGem18-b8aK z;mb9TfrGj|@CZ|L1J&$Jxf1}t^bj8p-`>pq9@616HX=_e&>q zS#SlTHg-}2?9uE=b@E`iA|MBS0yGhvKAJ&=)*nKGnvXJTxIoYoG=$kxGd$ku4<*j% zi%I~DwRMTk#S82pM$3(37agPX6MrUL>aY2`AXI=woc_pBO%Q&vvpR_~gjFxNKkAuQ z(SFKH>a3!4Q5}i#-6KRo>=X3e!FUD*+#+5AOxaXSfBc_z@Ew02`%Y8}xryX)BhBq) ziWcv2FmeF;Shh3|OQgh`r6>YgUBH4VrWXqj^pJIQ>FX}_nX2E}LVf+-}e zufi2x``mcDH3ln4|9Ic~^nHve5*;+bL#X=Tb2}QH2$~#^6_t1$85QX3&XNhRV9%_s z4Z%ylJ(uFOb5<67xoCZr^9hBb^T|N;@EeVIHhSczPpzM8U@`ihzgVH92ws`L86k!m zOwqBP)3z9ciL8y7j80Am`o`BI=2sMjvFrDoM1QhQ7kb58Q8_LF3;9r@7!km)!QUXs zqpH*QI3HB)0nvD}dm0>Qwfgh6&sOeyKGyDXSYK1+1`#MjH#R!Jh(Wz(H zNGw!0r-Vccl{u@LN5kC~mlHQLhn)`XxcM(YHrNR{r3N@HLdU(;zv?DCi6&$8T&q~e^gr90XYoT^!hX)NIp zYmd$i8~(~|{Opc@u1PAMqJeylf`n*;A@MF!$DpHSF3~=nv0*aOT-H=0U=KuBW<5B6qbBIl7x-W zZ=EE}h7RhePk@}#CEQ_ZaE@nAx3!v(W*?_mtzPE|SP=F~2nZ{-&-U%H5wx-f!$5gm zQ3(rGpw>aDx}f|gkCxNtI}YQ0L;z7zY?}}6$z0(9xS9X{;jgbDW-@>WP{}Ob0s*(Z zl1&Kuml0I1bTvI=q{=jEsF0(Y2~Znq$|P>epNnjRy^@%ao^5&5p_s5qpGN0q7g>N)F(#L*{~Pv=>_R zq1{FGuB`^BDxiavw>C3^(gy4g{$pUDXWwq=^s*tq(suS1HsFTR(+5=|aNos2CO3{5 zFc5hruuT$aycC1OE;7he!T&^E?`;xsV;&}Vg&{;dWhy>s%UR`x5qu@alhSM z-w&Qyj(U!-y;!ph-jhWs_RqDbDxI>*;$&IvSt^L6a0rD0u0Bd%+-^-D(-(}(7r_zs zAjYFBZ*?QriSeF%@)(@@;`qD8hhK54F!g(mNOoOA&v+$0W?|%P)6OcKJ1wD01krw( z`sy?^$v=j!K8EEeVXY%xMTVk6|H!&wh6sm5Y_^9F#@%<__^wH2c}}seEJYJxPViI(SeshBJCB zAzQFB5nmmN%BK=gQ*cd?ZrOIBC|acObQ}HSP(Z!0;8G#9LLef_*>~n$82QO6^y7E1 zbH4*aHi^iAdef1a<2xMS?;sI2cX1|2*h>HTd!N3Ls2a9?4}DvYsy$twb!qIoUHroB z%Q;vSSInt_H;p7!M0zPEaYAOz-3b%|!v2zJ(j3rT4nNHhUC_1e&2xdXCL7CMqr5Cu*fJmb}ZnB?H-7tXb$3uRy81qom z@qZQnDgA(~_5nc%u#KzlFHCFKF)zwP7Np0qFYNbocEgBz&yeO4 zYS&$%^a%`%T+rBm!_;$d=5TC4@3cf^=dJ`DlWbcuoUJ*2GmK|&tl1E&8cGV zg=G(JtP6#q62Fv~kjqxkULb}A{;=xUEAMOG^4r<}T(0L_cAOXOAqQt}K|$H>0+F?_ zx1c;udRgczn!_7v<%dQ^m77%wENWENl+Q?3rF5+3;x2Q^@qk?GFhd=!6CT}q{T!
BFhXw!P=)k^uG=D`!W~8)(>1Fa&%ZtQKukIWr-Kt&4+S`R&?MTTh0VcI^2__ z242B4tjF^GfIqU2igmI2+XP4Yp*``z(vH^zP@67mA4!$tp=?f=Y7c6!unCK;aO3ME z&TWA}QnmE)^H0Amd?va*3n+@ul#_MQ0z4iEwF1@ap8`M5sa4W>VxP*TBiftZvy>+= z93a1-lh;KrFiP^Hv|!k*`JuHUX9224ovgB|lB(iCGijk2rvF*~+8#)w)WKrVb2(rb zS7@qe+D-3m&+O$z(sm$gdfKy~DmVb_1u^-EN_u;6p|+Igb8yr!Seqz+B(ap5kmV|5 zmRBM~N7Zx<9C7?=j(N?WKvYT5Pnqi;TP8@#Wc-B1gM)U#(g8jOplrHWc0YZyfhW|XnlFtWBBQ#@*a8dky)h9)~2sv(`b>(#n04LuMi z6rK*UJ>a|yF&VvMvpAeNOBtqnCs1t~8l+ILgki{=rAGgoc0AJJk_0rUrs#nz?Gvc{ zIe_#~udDL|Yk_h*V$!o#gEbl`2;Z#Y1MqZ%Tf2sf3EEqQBZl(cP_EJ30ws|G??^PG zl$x*|?I0E?cu6u|l5O(<&AargokHVhyEj!txNb?>%wphoM2Bb-H_Y#pqf=Mt6{HXv zPukt2?;tZ#ly{KS8*-cjx7@$#2+B{c%op%cs&-%ew0<2T^`*bIH|riknq;1$_JoTN z##T$S(QNuaa7%-`20Pd;Y`$oR-A*~qqqOY~O41dFI5QB-neOceIIEWwca3Q3FvBeb#4>RaqOvG7Hu})m#KE?BM0c44jCc znzHYwiXX9Wcr-_YYx{&!u9(Q|@(%$ZnLm3pVRF938WtV{N@0M+B20>Z?ZIwA zXPlBfgr_V&#X+%CzxSsRTK9Fhl-udK<|na%o;(4W55dMnPO2GmO?Ic4B>4elCL4945HXH)GaN8&+ z{2R!v8l5|-Yg%%M_TRk2g;{D58+Z^lZR0f7L)Hz-Eq-<%)8aqi9Q~9veD*}?r`&4q zWf=pi$lQF)d~N9&J~djvb5K$$(Vy$8931ba_vU)K>$bL3FBij=ZYqxsQkCETTx@s4-RCG6m)3pf8-n{@`2V&v0pa>;eLxwl!8CO5KBc^+cQ^>1`#Mqy| zGlau#{79N43p2;zFL~OxJ%nh%1=fO>$a|$}bl|6N72p1reIp#4F|>Aq}v`5k0tEq_ScF3^w2y<<1_>^ zq>42UZl?FL_h9i=^jpi}jQ7p=J`F99v~I=v4eo=VzJE%nhfw9v?0n6Pz^5ve;QiRn07}p8QEXSEc!-4_~3#oBgwQWUPqKSO@w=g&^ga;Tq6>vL77n zf*-g7obmMK|DpKsYpZ#NB%tE8wOxlB*b@tWTZ$G?c0jzN(8hxz;!>!}x~DDiouI~O zD^M2)HwK?sTsQULRWm}fAsW|G___4~xQ;ZMo>4e~wI_jN`!;qO1;QjRT%(&i*X{g9 z2Qr!UF+CKeEmM5m-}(2bW3Py2aWN*<_TXe&C{HhowCXt1jT)5nV6Dg*!dMGamkbg+ zmuRXvB(}Gk;dmZKF&hkX_^GH)fJb>|EG`d)pkl4M0Q>=>>zf7a{{r(L3N5`PfX0dN z06E#==$;Rb57ueG$?h#bk$;n8>Ne@p;^Sy!aTT*k0totN@%7*Ept@37*0OyqLi2dH zfackL=yWm$kSR{2%Zp(GDuRLw2^_>Aq#}$ zZ8*mV>`NEW+d1DBj-DR(crPMg)CU#aBx(`*sAq09BWP@GXpuZ)S9PUtAiuZT8tqyB z`E)qQnz=`RI%VGgtEwpb#wqm#?8itcKi|kyswg1v*l`J6>Ui0M0J6@HwEg@~Kv^_2 zrFY-I(C)|~ZvaGT9k|5UvZNO!a3%J?Q|Qpt%^ZSaPlz8Y?HtsMU>ke@eEh2T^a~3j zsnqk=Uigyv1v)zOl2$^5tHvPHnl?;G&$J?g_*_T4Zp>|N#S2&GR{ay~)+#%XI_vgS znx|ZKXx7-lo%DLv@%~4I#|PTy6Xt2k zjg68xixwv@0OLq&U@u;AJZdsq@@wlGU1*_mt*NvMRNU_$!7d&B$>9RLo~PG ztnlI#rF%DpoI$q8!)nfT&NedRi1$e9%UQ&)4aJ^*ddREwfiTsmCS^tF7j@3k07RU> zNISZUr}ma4LNS?iHa*cM8|PfjdMe3Yes^PjNJ>@u*pF-(W;Lpvs=j=R2QoeFg+7`( z3Wp{OU^W&d=59+{7>Se-#qKjnOf;pdjb-~qSEvh7Ih@s=)sgoX6*TLqy5MhDtQSZ> zw00G*G3C8b`u(*lL80$YSCva+(ctb)tO7GG(8@fGPZR?iO& zTeGaz*!HJ#>&Z8m6l_2L@Ok>*;`lFCLv4WMkGk&n$*x~W7o>HdRUK9SDEdgoduaiWC)Wwk_=87zQ1_j3fXT$M{`nJs&K{S7@G#C~Vcs7;=DV)(!V= z2R^dCk2PksFOq8dalj1I^C*)ZI~s7BC4_TGEd>N?{gvk*+`KI@NZomF&VkB)T91o+ z&}|1&Y;TXqzQCik&JIch+e91dr=RaE1Y_rQ;@Bjgu%Aj87h01ed<|KH&^~*x%IVph znl~xASF_~fxs;v+P}2c^LA#}GTv2K!6+$2@XZ3Jl3ahv4QI1eV8K6`_H6UW#cNQxE za@Xhsw-(uLPyTmpzB6~z5}%S!P4bQRURvx! zJ9AV79RqXO@U!6U_f+tmtUS)n6lf&bP; zu}JX2>FJA+2P^~Us6?I$!iaI$nx}iHOReGW$(p^V1Z2178MP*G zl(D){aV$X{m=|*H;(ANpnebnkTdoQl1gpu4MFN- zO)@4PW$0D!uMN5f-sI8^g5{TWrwO_oi&J7qL3i1G8;q%UVLwFPVyX9?gZEkHW&tDr zQDcpH$^ttxJJuM^ub5lGP)tK+3}WLyCd5L2ZzI;i>qi8Q}y_W%g9= z-Cxo-gIK9bzqE`G2v@CiwVrv^+%tzu*=uc!^Q6KTOas5}eL&%W#kOuJMoz_WS}DU* zlE;JXl5iutHPRE4+)go1Ez{i25#bn;Emoa9x~yGO z_R-~H>FFR4{D3hZg_A=^)fvR$(A>(N#j((h5S3=zkVY;({pj>)&e$GrlQyF@zGwJ` z($oo$EgC2Ydwar-bt{G-{u0Ya5fwBirZIFW_CY6F zyd+95{o3NoG)I{I1CHI9LI~WvT9%))!KYSGg2^2x~VSE6mx2ev~D3Iu#BkC?vKD725%r2dd zd!o0)Ujb7csiI@mRCgp?Bt3NwFk=^SKFjeu*?Tkm`ENWFY#-LE4T%R3hjDn?@$^Gt zMZqk0+X}lEbVdHjT8j=?%g#WnqR?5BxFyEyhl)(r4H{<3#e4Puw6*V0=Mv|@cdBAw zIShwQ)aReR2Xi?7BN1k=Qw~y7_P;3?v@cgO;BHxPa$LKk$==J<2CQzw5@YiN_n#bn z1$PAM8~9y)&E0$tnkt+QJi?GlCu9NT2vq3iDb*DUx3TGR-jsx&dqgwqS$SbRV0J6m zRDw{fNVxHFFGZE8S6NrtjsOxM(ZlH^Xnx)t0V(HfPcfBQB=HQYH87h;VkMwAnhp-Y zg+uM8?Cl44X(Ky}FUc~@vm9Elwbqu1ATdwq@MQIQ^NlA%a@H#XRcui?eGLmF+=g8z zXe-YYL>P2^tA3CAWIi(Kx1$K=%Jt95d)$$zJ79$}au5~|I-Kg|K@h*wbBO9o z?hbInRJX&XTQoYX9(}O(GX%ty?oo^uyTzF?UiDnY00Louaa_tm%sL`s58U42onl3r zj`I{YEvN~~dEz4&1;5>wG5e-vTg2qYD=R^qQ84uUhM;^A!4dgCfB*y^^d~SKU;JjS zBcX37_q19?dUB^V+^eqXWP&{dc#T5ACFm?C%xG#*q2PrwY zw7NlL$3b#n5p0Ar`^*L!Lel&u?CPe+qJaZ$fz#a4vNbVzqiih+)cBYyPmFybb4x<^?65naLb`MZF{l~5QbjlLR|dBRKdBw75thtiev%uTA|fv`|NNx^8QaK?NBF&YfF$<-30 z`SD@6He;W@fVhdn(??mc+#ri<1sN>Ju379UD=zLC3;m666yNw0zm#)S)WGotsmaeb zMqUSjIID4=;mZJxzfLyB-ji9{I1BT5Bj+NWZ)*=gAxR$2$m@3%FOb#HxEb5_^#Bao zEc0yPrAOz>Q(M&0(+`wP>+T`GGTn>V=|4I^=_amFp?oBSDhy@_$-@@Znp;={q~i;B zyDnyD&cFF0;+6Y*F~C0riJQz1i|V6txxD_a*%1|G=9*_|ymI`->M`C_FEx8teIEoexE3U5K zb5PmdQ44u*u0M3K^p4fbQA)X9EAZmKzM3FX!E*X%yR>yO;0`I~Ks;Or0JKpf*VO7z zT*dZJ-{=aR`zjHeM05Dvqna)>E7w`f)H*P%ONh-vSm^S49;UmFj1^IE=#&SQ;hcI(YXvWYX?-Oec;M8U!4VZu6P^|ek7*O8lSh24rof0dhL=QMPMlkl3cPdd0Gttfq5 zT%um{IW0!&R*FSBZj$-6Mgrl-o;@uG3mL%n`zft=t={J{tNY!$Vp0zNy>f68pmO^; zsC8Q-Bzu>IYa*=+>;8ruF(-S zZS&Ml9s2anCkT~vvdR26%cHJh66)4g7GQ*s0zz}IGS87K15|+(+Q^+{!Z~wOV+rOnxub8z5I(>z;6YRoLkur9u9=xr; zrFo#llJ-@7c<&`5v~4Z_Y82Xb+^Sd}B~924<~tP{AB>jU6Wgf}uPv^vosqT!vn?hq z>)`Fu+J^QB--nlErGOCYMCEOCM|iu^;8ul1p99zj0uB@gg>W&CWdaUkkFFk=P5#c6 zc+NabVA~tTZX#fY#AEVB9V8C#A_Y(cSi zS;9g&(kl5Smgi}zVXqHPx9GsWnd0j|e)w(i>8E~mFvmORVQbZdiZh(J)}e&*dEbm< zry}8j*9(~`U=_0j*&37UnRdh>H)2XNA;$cqdmRStTb} z)51fup)|DUqCE!Iqm|mBG<+@Jio6*sUL4127g?+nU@vQRc`c><*I)*%O>ljzTXT+* zb8^&SUoJ;cho(vl*Ggx_#~u3?>8O9v^&A@e?;=rkV8|B2YpVEWRmJ5-cIzvmN@(#lantFBf>jc=iuT zi)!hrTN9%bOREn(sO!{Uierkkni^9}uw#T)C_3L0K`V5S#@S#$)ZA@Z=p9QQC?-l5H{Bi)ju7v2%)=0LAYs{Hli|&-ot+lCqEY%E zwX=o_DZnw9S!$Si^b#cX-6~IwSsGfIUdRqQPt!pvE#!-}WQu{zTGDr_+oGlz?b}-* z^OqdLnAEVcJ_1{j$q|wVH0y`&+o#bl6oLDrG}%OKjYlf(ZIl+fEXj49Y9J?lK5o(f z%||~qsbF%S}G8pX>PN`-cXd}{=4t&NC2#^8b&3Gq1HYz5ctM7FulhAr9a+^ zy1IKpw<#uM($zAW=(WQZNkD)1Q`FxZ|oNk5N`fEJN*I zh@welD+)1+TaCQJzZGs^-N}(< z4Co=#Qs?-ce)U$m0PSbZdh0~7sspMIi$DslhBKlwW;AWrEa_!@`l(queO4USW= zPlho0^j#%ybzs*~ozlch*T=Oj6yv*~VQyQx_5LUCbms6C_|#9Ze2q6USdT>U$}~Cy zQY?%GBXrM!E@=Zz0^?07Sw%+cu`&&72@MN}Cq>9gPKOm#{`HIBM* zS{+62_PYL@P;d0Yv}kgd3wPUGeGHk(81(QyxQFle{G#W&5qxIXpvyRj!j? z>?5fwg*3@1qo_%AklL#oi0+IH*A3}G_7sJ-d)6K{)@y_-=L2QR2f)mBhoK&R4i?%x zKMNK`4_&6p(v?!^z^TjCS5%6VKIS5BP+2p?z*opM`DtFVP;zy}zeIU$?HXW?ea44R zxk)@btmIl{T_B_s@^m%_{B$b}P1uCEXaMOh(fL|QJN2?&T;vY|xq)9Lsy@YnlAix@ zX#ZQi&Rgqg=>fRbjmUEUe2=eiifS9Go5TlD zYEu6(CXIQxdqjAK-{6;wjI=SCTAUB)$8MV!sQ?lr0TQ5ig8))8%S!xL@3qce`*>0k z+gd0TsxmX&&)L^?0Sj@GBloox^5HpZ6>R3x1DOIe9~57}R|KZ9@&nZXnw&hV>54N% z{rwX{#U_kb>1u0L+T=k>%hiSweHd1v%oyCled_>F-3xNiUwsZ3Ti_ey(3(hKGjQk~ zwNN^`UlI|zI$OaC6u@%CY#!~nyOOGWOc>PHVDb1)!g&=-_JpF1NKH!&du1njThGn` z?YfO5rhtJ-xGnM9meC1A7@Ep9OOB;hkYcgsAl}DJIju`Ti~?{pw__Ry4M}BFel`?Q zL4k8AB?;G&9+-9q$INF>d|5Y6Y2R2_pT|dupY-E16zN(mM)5=dA*zMq0m!56sr==e z&Q)e~F_qYl5%bb-Ts+0BD_EOMisMi9NmgAr3=f=}1Z1f&BZrR|l zx@mV<&V1$jkLExo2-MAwZ`8YMIJm${ScI`TT#vBHECu(TV_>$<8|xmSF6{6t$V`D( zbyl_19UAVfN-J9-{kVg^R;?ZOVXyLz{h5}ScIkS5AN?IfgrLkr^OF0J%P1X`$6Ol? zd%4wWWcdY36+*OCsZK5hJgb8Wf`C1@nIg&$R4i1LLOIyO>z8{nTnd~c;lbrJCV_3N zWV|a*0;|*Ta8||3@FZh_{#_>mool5RW7o`0CA0B8!W|di&XB0PyI7X@NdsE9f zfi5IZa3|dI1ymH43_H(i8Q%U5lI~vNG%c9=ZELQHgRcG=FCrHlXUzMjgyMBK0lU zK!r8VGuw8_9JE&ZCI!ss?l%fgOH}r@8%6)2m&t9pM9YYS3<4*vU{%H?RO0s_p+&IMg&+6zj#lZ7)q_X3ewoPGOW?ck_$b{!fwq_gv`{qO;DBTThhp(v{0 z>A^qG8o*c!u6cfI4c{#zx)6^tEYZ5Ud-3RZ9$6bp&`h|$q#_N=;)XT@&k}=Rw5Qc= zC2^X*?SNSl1O?-g+V19z5e#r_K!PryK8ky`ciK+%gtfbM{te3?zQzyf-L8F8bOUXn zKcbEEoFEfEOnLYEZ^dhJ^IDf8mjr3NQCs3wYsfZ7QT8KET|Ux3b(BVO9D&^&qb8)# z(k-jJqGk{0wQ^X}WX#i~-I1#{Rs+ppy6l^C1n-;6CYjVz=->#DyB#HDxEwvZMotd1 zZgqbw1X^RL2dpU8#&p7Ih*uoyLr6VeW+%N`&GQj-Ptw%SuMxEyLBW%f3tYs6&;&hK zpxZHQ&$|d7s7dVgW37Stg0|f)z}(h^i#3kTa2CHTqZo`q1lT{T!wQm*o~C719$78f z>%D!B3;u7e83>@G7pRYg^!Gc=ue`e4?}AWw4F{fmQu3!nLK{Lh?sx~Cv4@%kJNX5Cvv*1h0;l0sZIb=`6Aem2E&M^;GKIiu+frwa*Rp_WgB5VtS;9)x15BE% zBJ9BMQ}nL{r1e?GtQl6qT;v?|YfTq__42j9iLH)e3CiczOg5gRfjO)s#NN(*$RrKP zLPH@B`Ro+73!X%9@&YMj5AznVJ^JUBI<^;-ynauLWfPL6)HVk#kN?3lvYnSZkFnM& zJ7`Qu`UrlP)(OE2|+WR}F90A{^Q8R{HyX0FC$%7%NOm)myd0 zBf8`BE)f@e`F_@|c(`f;1C*g0n|VrFMcT&^VBIIy#MppX4`#QW2B7{oXU?|sYTr(N zok;|@Q9Z=moJlVv!||kgP}2#lzPyN{h2(*?4Vs8t9USd<{EF0+R)K0)IY>Q}J(=F6 zJ(mel_K#t-y2ha35|v&+cOX?+u2qJ7I*&I4_vJjXn3FZ1Y9bxbTDqBmeKpqUVmZ%^!=xf97hckE3dLfHb5MtqeOm# zKXm8`rO~aEyMvV?I?^bWmQl+BFt1%G12tlMpz`*iwoJNNX0&4XL0swaE$asT4nVG# zi0XAqk6n*lp-VKqJv`vaD};2rcfQ{k2(cn)0n7}3jDcC*!u@rrHpyUFYCZ>A z%PQ!N@8|GA@x%0=?NVQwEbeV}QF{FJ5Y5(rK6<9^1l&8*zjCQiZl1xc#x)>;*ME?wuzq#{EW5t62`;D!!YZ5dgtR z_1GdE)nXw1s9*S-;{W!iL$!nSvq01#X7n4SoToO~_t-Dbq`0Y#ZMt^q{xj z+mKf;Q{Jtmd#SnA23*g%3GK`aL4)xm-7E`b@7f-oMTo2$>utw`L-8R2-`mck98-H* zIB7p`tMsKg~b;5HD6-@uy+>0Rb3c&5%Mu|mT|$;O`gR@hs5I2f7| zsx0?-9G3dYR-LImE3L^h?qEZsfq(UEIg^FOj}l|o>N294#o`dv6q&$v8DE>yBN1nJ zkV?u;42MnfR9J~w_j6YDMMD|DsaNnpX;uOOiF?*)1=I?=dta5zZIitS9?Q(A#=6*t z!HeQ^d0~rT8KT1~br>Z_ZFP^Qr8c78FSUfGAvAzIb1 zN%p@;Gz3%ag_ND5JrCG`rdgg{`I3ONP+zjtL@5NJ-Y@}vBlP{N;`Jk14*GKM1WnKb zTQ3K7XYY6TjgA;ogI*}n>XFu-7E{OMcD2rJeQw@-0~Z-6F58@hwX&$rR?%@md`)52 z?AH7QQucjWJU_z4w*mR51dmDSu)Hz+C}uWWCq=UyP{cTtp>s8<&uWl1kKFe8|A&eOR2@$2ZfmU4z6 zr~?E%4!4Kz7k@^hF)Ooj-2!H-9<{Z-C+oWbE%GDu{(ruFS-k(B)&!q24#;kYD^dTh zcujsab`GCZF`VW0_3Vxw&#CZInj3<^&E2&S_*3UjXCAmmEo7Gl4-ZTljD;*iYQP6^ zkCwg?5plw?$PzMiV;d2k#qENko-#U$%-tFR2xBlS^Lh^RKq$I>iX347wHC;+gfvqY zddXOVXD?-@EWcC<@hYU}uMSYHouJmX?kr<7j%OG{4-l=e-8vs8T|(ex!6;guL|bv) zlF!hc0-7r#&A&o98gO(i(zXdp^|%sN&~&hw)M+AicI0BfiX?OjSEsvo8+GO~aGW9N zC;qK1g-E!ilNd?A6O-Ik4YZEebiD~}Sj;52mRPb|FX#fn*Tiz%TYo??)Yq{Gq0FY! zIeS=<3Q|jx0?x;FRSJ;Zz)vtZh4IFhGC^4S9slrNUJHAy6_B4ky2daXblc^I61Qvm z2%u-m-b)QMte&fKYO}P`waq5jD{-C~s;fC8;%Mrs{Zd{Fd3d0WXH?fo4$mV z8b%GLVCD4FrHru(RFroTHxokc7)`btE(O>Qh&6&Z<-rRz^LDwwg>21mCscB6LU~(| z1bzPbumlCz8ca+U5EWc386(n4rT~4pP?6lqs(^*u8mOp(M-#Tk0Kht(u9;JhV~$bDLo-6J!2eza@@+bVk3EVd6;yN#3UG`Sz7zWBNj_cW5|ok!P~b3t z$zw1N9@`H5aBTV9Howu2W!LPq<$#79=N_8x)Ki3u3I03Eh{;0)G%1K>Rg2V%k;9=?ECX)@JUIftlyU&( zY6yawcQfepi?0soJBMJfC1tWaIP80v$8`E|qs)J*u2_@PTIi~1rJsIS`wW=om--x5 zFKMTOkX%ZugGfe>RWMb-Y#P|UJ4VVUx1`LGr#qaolu_zJLVe?bj6{Sp^kaEYR5M*z zyLa)|!$Fd73LeKheiWZ@p}s1^d^ibbgS36)Nv%<{kD9S9)JZ$fEznRJ9LDJEjBh$b zT4z-PeSv!e02&UBU*?fDGazMKx9IX=rV(rq5Tc&5gA#1GV4Zs*FYCV-|NRHb?OG?V zF-y1Lb{|-R_JQ2-rN1>OSP>3YOYIn?yt>}?Z8ODxRElwk@7I3-!Y=|J)VwXv$iE8{ zK(G2}K~;yY!edxUbnNi6mqUQp z8jRseJ)VT#c=@VG=nY!0rtkJdJ1ybNx^{&Vf%V4eUqf0qX|k5mO9KDTiWU#Tpk8SV zaz!_ko{!)a=wa==Y4C`JY`6f{i5IGfDmKQ+4$4|)bPjUph|@10>1oHt9$++k(|wqS z!Xc()863CJASNHx1N(TyrlRtXcY>*vUEd61@V{fnec%jw(FHwcrOYEbR__omK&zoa zmBa(TycL}2yWu(2f`ZFNrpammSLpCvgKKXuqdY@>^IOFa6D4R1H{7!n*qW>k0r3O#Z7Vmk#1>rWH+HRR18x~N zjPB2o@SWuUITrW3h||=|$Hj-9U9$#Y>I3_q&#BW&Istu`%^t)qOL87CX%#kWws|TZ z0o56$z?nFUff8-rq^>nf`=9d~*^X&-h4xTb6-;diA%|_CQA)i(u7!+%=a?n!>>US7ghISO{``(@T5&GvQN*qDbalVzdr_9Hu;G>HkknZ z-6GlUjjQ)9eTzDMM(O7!SLeha?V&8LzH*e0Utd_CbB^7Hq)E9v%?qXbBH57V+Vf`IB!JJnU2c>jY=;YZp~8$ zRa(}*7EA59!tZWAXAkoWZ8B#yMof#-v%BKAwd!AToio z^(RjK7OccGc&bzI!PqZUIDqfOM&9~UI^g)JyOfYGxt13Eg2gzISmDcdt0lL&*>(P! z#e3fe;Z`6{(l;+2{hAVI-#K*|Q{8M%dv-et3drkgHZ)|MNc8Mwn}`*!FtyMm#*+VZ z(muZrFJSxmhUSb$ddM?)M210_mop(T0b;BXW$MGa3oH%rCDQ2y$60lxUG%q3PpY`E zS@G;V5;i8SMyv;>04rhbsR{3tJZk)V*!30D1oZGM>Iv^ry1V#s?AV~BUo*wo_w$2y z1!PC;Xt*7=xywOKXn%p!n#xmDNs3)R{iz*b7F1<@8V*BCkLDfM>Tc!ZoW*8o9kI1k zmGHtdpF<%;jSEN8~j}}7L8OJ-c$$=_^8)-|rDoMD2uyaVD zDRxFZXHn-a=k6d3O=EWtpD@fQR*i1CH^bTlQ19=GON~lhqC^SF6FM z2IUun8oJit(T6Jd(5&H9xMXPBgt70!DnGy`37R9R=t8Xw+FfpmCJ@B3KCQ*^Z2Hv~ zk{y^DXbV|fL**t-9xAa^cm#J`R^Zg8!edoC=LN52ud1N{n8?gE%&=pakg7h7=q;3h z2ri1u3Aho=q31T|U{EMl7?)y}pI0jAjYEd*Xx~AE(Q*djL1Uw{y1VZs6S$xFE6MWa z%iam>Ye+-Ox%P_`Y%Z$Yu4rVXnytl~I&gvvIdFZ-xZ^0ylD|*bWZ()wVDzp8YK3Ih z=Zis2xhy+zKoW-ov0`UOvV9zyRVZN7)p*`eoneBkO)|b4nfR@mnJh_jEfeDOkucJy zc(@qWA8_HO%OQ)FWKl`en*STdB(siM z;R?Scm)Ic-`+*&)Z~o!+o&S9}Dfr)>2g%O^p`&|X*U8l@MjEM6`XU{spaVc)r`Z`H z0ifGp3h3h%Vg2kXTw`E`nM+_Nv0c^40v1JSuf$r~o1WzkVay5Bd22+V^pLN>4z~FR zzbqSkZWG>0xpU8#R=V(knfJ z;!&b~sSc0rV~};{nC4--@1#CE#pok9s$gH612yc&li)WeEDWO2;JCC3B(dO40I_P= zvC?84;{4%Z+Qc+x=^|jBq37Y)s&D&r2)iG9y}`I#4B%t3`BG3@FI^LR#uA3H{#T$qokhJcQY~&xmNG1B=zd38hIm3Q zpkEYJEZFFI%e3AKIW)snBK_v~zE^xNHO|c)0*a+fwC2chkQ9j#ED{LjjZtbYYqmy} zIMAHu{rJdW9wU9kgQ920A*%_=j^J~DQ1d#5MGi6#;24n_Ru!56 z!1@X=tqZ_8bWB?6ygbO&HJMd;D4McN$g%|y%1TW5|If{F)7OP)8SA1XlxlukA% z_7&eCLd%dF97CQ5*g<$huF173{%D^!A~SGh<$UyGg)%TUZPw41VGMSMml;At=o$i4 zr|Av{RQ~(*O+W5~m5t?&t^fswQq0z~938+u2%y$_pJQ>h+(KSwB)ZLiWCY_``KCNJ zAtPu3R0T5>2p|u$UsGvd=I+&>%f|Y1mZQxDYGQFbre33m$epS4Bz5B?D=;3Yh9UF z`h3#Eh+6rsC=@i4YG-=6#8qIZo42Xh!EVYsG0$4tl$3(KvlAA8`Ta+)?+QOos0luL z{V3V&W?^)P0;$hORQEdOxL5ecOhu`7ARW~G?UMe6C#mBKK`2*0vy z7BMU;_f}novnrBZnZ<6-FgczY{C$ArLPFk$UQxkQRl(kzcpr5{zcF)Fg$K` z%yAUQP-84KZkh?*b#NsHI%R;2KTXfNAjlhUNh|w`rDKyQQ^$z4SDaGM4Oe7f(IxBy zNyGsR<>KXMR0p2pM@ZYDpf%*S5C4HYuP_O~t1AbK$GyaSuiPG42+z_d{U}^!a3mGb zpqdqG6F|bCRJ+{CHxCdoA8@{ZZjH;L{8=C44=;brqt*DA1Lc^~jhn3Oz`HtXi~vRU zFi2mTc*W3638Vxh{^%Rg=<|lp8}4w`gkZ1BcHWD5w`lxX@y(B*p<@Y|<238*cRHCI zmnLH+tD*zDlExoPTaW=3kBYi*7lLDZc&b3nd=_*DtDp1()79kAMbQW`V5>m=mP}Tp zP9)h%cZIil4)=v=oN{^9K#ijb+R3o3)EW_1?;JSoy4fI^bKxcylGI5Y!FvyT?LcLq zY|lm-Xq?owh5J(jfwjCvpx|)Vpix*#JgK;z@F<`qr9{3!OCDlN*8^bVm%T$c^%srt zOha(9u)%#%r%HyZcrJWU!2nIt$3sx{Q9_R^L)b9{ykY4GJV9QvNkcTLb`iXk&bQs9 ztAE!LmI?xh^pa3dHT|;Hr8qfZ{7W8XCk{2xYGmc#p{=RCQL9zr6%w~TY=ZQxZw0OT zF6~ja8g6BiS`6K`!mU=ne*I;kUw9g5Y3z>Ymu_5ni7lN}kJmEYUX;F}q!)nLsoXMz zsvA)=k5OHn^U?yuCW&h<380#um|iFB&(}4V)GiK(b}5gdZS|UH5s?Ko9`LHo?G89Vm4~Jn%{=SD zq!56!Dfdw<&3!}G?yVo1V56?>3FrJy!21}Im6(#-ExB4fy{7FPuwg(}qd=UCkPtt2 zqL4E+ik1rum0hPGAGcZff3}Zj@m@XT9TRovQIyh&!-9Y!s|!rb2dlH4gFxEBt%+b+ z0gzm#Z~p*W-x3pB4C}8LgGpBW2G}dydzw1t1gFdftzxQ>cH}?tr+6-;msZ?0W+?|C z*V_?e4ovNIQPNodFqAHgNETE0)E%K+HH!@BIt;HV`(iKbi~Zj$p)e4aS&5QqS@=}=uu^+dFs*-tAf z*_Hw+>*=hq@G?ODYJ%Vf=D(?>_|jjJH@fH1-ra&SUs6lEo=EFK!sPw!Hf2T62fvFC zRAE|WAPy*}WcExXe zg9XmV9Zhd(;~n+coT86W1PXlg1;{H$FO{hrc6k38RF~c!hCg^*@vK*uH~T>Js`V8z zhWCZ+bF4}9*h!Q&rii7@!o55S?` z{EUIBbtG(8I7NuqKw`p=pu8%qL?r4n7Pxz+4hHBhYBOeCm3mi|SCnm5u;|He@0)JT zKzzYa{}hh;IgmQf5(n6+_F^0Fz1c*4F9jnF>;8=dd+&*SKfYrGko75-N#8P&dkzB= zL5daxhdRw{1K1CDJarq7BZS5=Xp?&iuV(s>90l$ul5AA`YHslD3kFy6l=g#6pqMJF zBc7;-Jmkn{K{^FNqP&R&be!cs#KVA$a-|DG`cp%3B}dv-@EP25I#`)Dih6)PTuTeg zbxscx@U5k4qZ>-OKrV2(lfLpay^$zu@Hsr>jqq;o)C`QpLzdvMph;yRFT=0J#XGTS zT#_J--r#mtTMP1z^_gN3UJD&XtPIniU5Z|4=1H558mn3ucnZT_?Oq+n#vqt0%Kwq} zr+1-tE{v-z-gE=Y;;98+r?}=zQap~;j>UyttWxR%mJpr172h^+Q4jOB$mMsTdUgu7 z#d74zS{*0OvfYTCdr2|M3#)l+@_r=N)G52zkXc83-&LGzaZ{^BC--dHg2`+2KDROp z?0{*Hz3q;dtuFSs$GL3SO7A!Z9>c!YKNZxz_ViQ`%F4~Qbu~#vA*w7YHFXXx z#Pj?CL%79fc(gP=HyOSh#Bzcb6{5@NYtCe&y&cAQ9+0du2s+@L>Spu2#> zhQqi_#!$Hls$MrqI#n+oaPWJ;iN-9GWM5^hL*jhJh71z#4`Yd+QPiiZlKL$1`0OV4 z7Q#CzvwtpLzCKJ8#o1LzLCiqLyB?Cww+cXOgekPG9@>iq)QpyhfWpF>eU;n|+^Ny$ z-)^_!*q+~v%}zn6QPfd{F~q96&{gnJm!bH7hztt&E7J`!!&B18c^P6Avq zXC(a87WXZg+TTH825Lcw*_`6f%-L96U!cVTVVGv;GkLUw=1T}<&DtMHn&Z8GDqwYz zcjy|o)=A%ATJ0!@Nq=5S3`NBW1M9Z~0rjNG7$RVkcYe+$yhfwGF+vDq6#`;dsg0pI zh&m}#Owrx?OI++ziFANM&+m5+BIB_O_l8UM+-uToMP(+6hCOdc&SP7mzyHUAX5N*g(N?r0cI|6dzftW|%-;@*p-g(xyDdFst*= z50gdA1S(t*RnCeIeqfpzYxNz|jJ>50kh8rzN(t01M8K>7#`Qg zDo*O_$55s#(mxWN@HMGe0a@tH04QBq9B}E0K9iVafCnqACr_S9N18+VQ?=*OwGg(N zXP|3+p-K0diJ2!_W3cL#dZ|$v6f7v@om~Ru$oUfphX~zrQF;FOn^%eC+$21F6WzTu)y$$V2W|-z(U#z%V!qrJeWr! zMH*0u%W_hfI0nG=xV2sU;E7cF&z^RN)-l%}{6YKO1@hm#zEchG?qCUts5rMo^C2^A zt|mbu*kXOYUr6?pox7A&WxeiXP+mTM{pxLFzDbx3X}YZ}W!UdXU1AJ#M!Qf)b(rjD z8mDpi{- zN-$%dcbS{plI>bCq{whVuuOkpNpAXc zl%Z}H;zy9C)LeuK3dP*Yo4RU>gklQ~EoMSqRc_7nLhkH6(5`#gCaAf?2C)M`)z7Ql z+Y5D|d`EVNb;$@pa#n|X(Td*`FYbFmmqL%zly<>V4DqAa4Yaybj{`=`ie!?2dWM>6 z`mbFFAZE;f{;QXi$87ysX*@ZVRDAZ*!m@KeZF&ys{ce!;?NV1L5628!xI6L%?h^>7 z7H-#c1JoS|61|MvCHd=!QlED6ejqZPf z-|)BDy|u%1yRB9eHmnjFjHa!W>||S)oKduGVC4Fwc=@NpOozT!neC=DQCu&jMMY+9 z&fpXn-xaS3SqfJyM3@LLS4~l6D*Ye3OizFU>Ea?F5{6SR7%6&hnF8y}M}>ajDFDFS zXf9@w6s6;c+kcR0JIAJMNhjP5DNdQ_{wvLhKlhX zQ;h3aNbx^8-616S8?r^`*{X`OrijNm#J^yT7I|-WPGr}>UF!fhyzxLtxVj%$ z+BiSAiG%$9Gx%ftnsi=|XI95hr9Yf6yN-)TM^7HE_P+xEheNZiKOP=7z`*4A%F%=% z;0PF5u#)6?H56R>z-crnAwurs+ogoMoI&OzRlt( zw*a&EnFtK{&BEE}$C#O6@ii2hz|S<@Y7T!^{9oyJvWE|jf~KNa+})LK^6Giss34vh zPf67)@OzjbG+L2^4(I_Rb74>I$zHL&j6UW9@PeSpT948@Z%NC}$|0Z>1X4K96v+~v z`zutt*L;6pf2}n$TsVM6z>?h`_(PoAb7A+*JqKGWVMbiykBXO%pw;pPv|1KAxRQ^k z7>8N=e1ORToTBW1n$MQ{Gv$&eeiz-A2^AixATZNi>1)%(3he^5YwGFwhoR267}IW7`1%D{P%HIK{bZl4 zmcHx=W=pxClMUgTgdWjkR8865B<4BcXG z0z58wV{kq~3Kj&GEdg$D038|5>FZh2I3l!pz0?|4( zYera7bJ&ZA;Qw}IQVBeh6rrNwxX=fv(6@mO73xNaUj^&p4EVmf{4StjH5sXXT_Iv$ z+y$UNmJs%IMius#)cyb?!Yi$Zk@PqI`tOQF89%mau>N1i;7wiT0kQv~!rW0gJwx{X z+K&x%Z|MhkZUdrl1X9GyVp`l5$8o%d_+bM-cl$Acv4qEnj%yEnxmum%88K)}-x-VX zXRb0(9{M+7Fi?|$i@LP*az#2A<)L?T!@HOtWd)?6K{)}>G8M%3tgH|h6AuRF0#3B+ zWf^mq3!q|orgemPl}8kkOS(tFtwUvfd85Rn4o#$G#q6|3OOw(_^43c0Xaao*WhLl+ zYrG@utH7WnYFV?;?Gq|u_Cz@9sN|y&7ib2~-IK>`1%=1DRZk5pMF)H19sMzBJA->L zWee9%bq5-ZdC!7wk_FToNk@;loSpl*R&!v_{K@lS@$5*NMABNewAV!wOTB@^hjvNo zXhxD1Vl`G)UyZ(SEwf-y)nyJ0=&SlPn@$RZG#|C@6{PT!^wWRy_vuqUdKrh~j5F=0 z?>=rsun~r_XjFPC9-#4Ol~PLQ?xCV^Rs;7yZAYv4hG%=w;y+~~&y>Jj7i^}r3%C5% z+*sU_Ye_Y8h&{3pE9bzn!zAinC_D_6CazdcI_I#2)qN}^q|z{1yg6$D10?A^p~Iy_ zGAi67^Vr>@#zL>>d?vK4#3HJmh3Z$95`){%;iZK}8Z z>I@sZ6Te3n5@=yGFB0CePy`7|9$FX++xqgy{h*A@?{uIl+~}BcUU<=44XGd^1#<(m zIUI~QRL^>4Pu!56mTtn9bQfd%@xO~#_cn_%cg}0zN+a$wjCTsJYXjmU`XDMKs2J|g2WmH zzL&nJ4qfcp0FS~*$N%l!pJ*1wv+V6I((B_VJ}(Ag6mX+=#1Ki+b@bn2k4Kj_FV0bK!-n%oXd zNc=-UcuU_68Y`*-`@1}s(fR5_)Hvz#G;kr*HHbHMq#T#m77yi7uivZmtJYnW(v)l= zIpFF7hYTG${nCD@BUcS}duE8BLHN&u!T;kL*k_Jt1wz<}6c4BJrFdvH`?ctY>7&1Z zBFrMJ^tC2(iWYYXX3GRjlV7A0pRykL9XJ*ZbRg2>!~J%)=P`9sH&`l~yn7XeiUvt= zY9C=T=8pHc;|N=ILpL1HY-91%_LLW^VnmZwRgY{9(VEtQe5Nf3C8`hP33VHHb&#b| z$*2wQR~`#GwU@g$Pq7MGtK`-U1J)*>Ho&g=B&0ZY^bDi=$yeA4>wfBGkdjP{0qV`C64BM7tcu)Z|26FO&iY2nrr8YwEX$+wbx~&~##yUx~ zN{{FFp>-Ypzoh4ir8y`0EA}CvS~(Wfx6b&7<&CJtF*J9ad=kSOqc9Z0>Y6!{coO4b zCos`N=iulvG(C#*PVG1LTqAft5N6Uimp+dH0zEps9l4{Vo{JB4DyfQ}!5dP;_U+<> z4^kO$9YxW`7K9$Uf!9Re?o2*AC5d4>*(LQ&E~ZUtQ7)=w;HVY*H>)AiM@Uu{60vy{ zLYThy{xa!Exj+{~L1zVy%7skYbFy?z?>J%*#}>yn@!g&2FeM8Kdpj?`E$kov;-C|- zZjjb3i{^Et1z4w;1Fj-1K)bkHhAz~Z+(ddJpQ;QxNxfwk=BXIm^RDF{>==|WYVHd? ziaE!?$--`U{7W&nYT{lREe;@EvU&2cMA&&F$tmQe^cR!H-WWwKcPl#KEPe8iJ7hPx zYoJGwQYi{LWX$>^QaQj;P+@Mk!%yd6>oxoVyMK%T@+goAr{-rtzA=hDVR7r8Y9n^^ z5el|`!idXDl8cYOILE=yyBz+u_y7xR+G&smC-wmD=y_ij*|FU{kEMOq#>etbgSCKb z&V)Hd-m*D&-q)nRc2xi47B-d|Oz)f&n1^n}I~t6fD{dW12Rq>V%k1%wH~Q@aQ%$FD+)t+U=e!E*+i=aZii# z#x&@2YfRCT=sd=6r(`MMulSysU3R_f>}q2H#tF2h^uWS~Pm%|C$8aV%+!_jvHeIqo zK*oL?D=KY|D-w75u>cXQ>BNTmdgq!AW7>fW0UyL+n*SxhZvCO9yrIR9%Lv#Db!spX zj=_XAUx)GpF@VgbS*8&yXT{ftF<`+ce?dLQupl>zU%&jU;6Fa~Kw}@I^#119G&ly1 zo3SqXq12Qg-Z*0&xD$*zzeWXQ(WFD+z-4TYpZusagVM#iDlcn`HN8I!VEuIfk7rS5 z+{t(qov!?cz!9%xp`P0O{Fa70^VqLCBp~n_{7YoPFH6`>okay3(7l9dNV67s3HJuK zb*Q(!B@Rz~?m8g_-+7*ddxEF43+SW(GmigmSpRhb-q&-P^2E1_@Bf8ABfEr}EkK1} z?BTeVOe;OLs&iSJ$XU{-t>R2}{QJ|DXDKtAsVyXrf=kGk zz%g*gr0MB3;U^O|NNAlM_5AW#@%~fGW94~+fq*5n0JZ{y6m0{Yj?>Ywa>nk>sAIG& zhf64_lvEx(X5M<#)vlfgB6+X_lJN z6p#=B^kxicG}Bx+_6|Mqxl}Zt9bqQQU#`oL+~}rD&{j(R8)v zvFYX8ud>Pwkco*5h#xXzT{GsCU{AQ8vNla+Cm`5;k@Z+Q+_(v-2WR;eJATSGltbI^ zWZ=(5pDM_c<5FUJ2he*NPK6mvjyn$YR{Y#o;AMp>eiW(He!z5tSEZt%%T5WLHH7L0PdAiaX+UyNBVJL2>=D^HkipA?ykDu5*PBW{+P{~ z8(qhQ>c_&x_XNdrnY7j2tsc0$oqP}lK0M|KugJZsC5M6j!1hUxJ9p!yES_RBpY3tG zy`SKp7k~ce>8ZT?=I@J_e{z+Bwx?!ynDi0vlJ@&|;7Ks>M5xm0gbZpteZt_Y23#QR zMEa2fYJVO=A^f~}`7PN>5NGsa9ZjF#rAre0i-((M(0CuAbrwr?Smlc3kI_T8wx9wN z5Cr~9UnfGK-7lDzx&zHxgecsYweE2!b^wFlf|6#(t>39wC53gJ`JbuDODXpmXLo4M zY^}8XCyp~~xNRZeYTs?q2h^x~xk1!F&7VC3MU3>J~$8A^1EvRSUt5sHG;MQ2s9hy5}7W5c_h`^=_Bw&+K zC$>VFi9`woJUbJkA3ktYybz#P^O+)x{6X9t4(e4OA4qytjt+)5hBt5U@YU8IK|dI^ z)LrgSeUiz^7JgStQkP90>M#ycHPT~LmY?O^Ffe5o3aU1if)H4J74%oZ*=T)*_T*QQTb5+NO`YZ5o3TK+gm$XkEmUR*ui&`^#VGEj__x}L3{Zg zV!d61n&&5|6GcaBmM?VE?+~1pR3+?I%afpJp>>!9m0tc?esF*Eb3N^aR&kjC!i&a` zvOW^bWt+A4qx_F3@PGQxbX}=#t|qO+fo&s8-9SbaaFFM*1g=!aimr_KcR4v?TS|1oS8vx-FEx-h! z+#uWM)6w%r9TcI9+;InFF1zMX(`n@MTFD9atZmOdINLc zBhLj2o*`XT?xp(IeX<8Ouc4xqHN7zp|8ep1bC);}HD(F%Xx45cI6WghEEbJc8hg| zv~cIRY+C0mRc;mfc5k!TJaMc98;EnZ3+qQlc%FNjfvs{$fDceDOcjW4!jwZM<$9py zA3z_=n3iIMvArV{C7OB!>efNiD+hH=CwV6LS*K6+fZ%lmupvaF7jXF^mJb<6_<$aH zuzJrbv2KAVXLuz{yNV~|KzlbHgj`ktR-hx|6Rw>Ac01INKpwi*9-QiTE8b9m4eG^8 zj5=yN9Zx$Oic5oWvmG(NHu2?fWE6^QbZ=-Z^V^bwBbJzLh)<5}S0dEDDF(B`$0$I%slXKQ!w+5Fm1 zJ}7?KCGFDq((p?bgl;c8lWBdh?*-CIItsuyR($+wG^~Zfh8nRWICfnFVu>Om=+^pa zFQBe-llCy)BN1Ur03Hp{$G~-Aq}WSZp^Nqu8*MB4=tywHpYat?iEmYmj?g)e;{wL3 z46pi~G2cCSie*6C>|u|j4>`u6Aqij-i?9zJ0!&My3;?z2KjvC3u`HgOhi1olna6cc z&ugj0(#nMZI!Xf(!j1vL%7ShCp-EMDgDEUcBp&>Ok$!N|)EdgS?SgGJkpO#UUvhRWP^xJHebEAP*xL78&Off_;Cs(2P6BUR*@rViB z_Avm~4(3Qc^_GeQG1(@?5_=IRt*7A3QNbr96)|U2L{}i+pbNWT_3SUAxcQ|(5vw^= zfaupZz;(nrm6G;=?@C*zIdO#dMDSmtrvMk=tbP&etKfG*W@*4IJ(;-AWfEpSJR(f0 z9O{Z}za+#oAk8pM$x1Sm9Ki_!d`0o0S69r2vIB`4+ZD`jTS$nVOHN497{(Q|KXHDe zUXICoQ$y;p8Qe@P*$}5co-BtWSk%Y}wP-ZpjXP)&KA!1s&j9>iDjmj~B(AZEvWFAVl2}+2{=-aVT**%yNWhTtOJj$V>lr(IT2mXnrh(1I^ z6=`uG8$9w6(k+_EU2s{OOn4{3&!10#zqX|~9SH7df#})TZFYx?(hy(gIdRjuHKQ|Czy8|%K5zw!3R!WtV&*&KhA3)%IY|sFS_T}Vr zookIc5TWl7o3u7?+T|w-Q29jO?gWYx4KW)ONPZS)(F4)uRMaWDSrBSNdNRqqPh;OC z5|sveyq{x2B5LR}0-g$#rIgx}#Kx}U{mtti#Y6rh3x$_|fhhQolL>_5UkW=9xzm?s zEtL-Jx*oAb@hHGLf2P-|aHD+unAg`V0Q8ZiZAXa@#SWy%>LOC5ecRRBCOs;+eRjCy zxly=c2>!d&Dh6uU`X-GlSyFi#oI_u|q5WuD)@Ekw+84nLc5c81j0P7|#}Tx2d=UG{ zZPXaJfq)uZ+93>ZAQiI^V|x*9oto0b=Pg`JYV2n1bdv{6+?h$&)3QL}dbblGWP9bH zUkM6G%$U6eEBiv}^qc_EL_F$>OiTzvqq=Mr#RPgZg&yh2;b` zKzsPRzbpRE-)<i$V4>Gx8FdQ+X9H-|B0?LP#Bu9e zF4r;>7?6bhRA|0{b!Z2|6Rh>r+Ap50!#U7wrQT_!RH7sdcNbZ)V|<52pliA4yw%M_ z_LLkIvZTagnd3E0lLRHe@Jf>>hyhhH>;j~0O|`N|rOr;p3PQP^XDb2xY|^Y2Y`z(A zHAsYJ4?9OA()-hrhT~a+K&=2(1!)}KYl5ELv$prQiht)SY6WT;z$yHc8KLAmCvfon z1;7?X$qGGi$Fe22rdVWZRiq7l8s>Ir1+|^*Hzy4!#DIUe zW(R4qPy8?{iOor*3gPYnJ1zaNv(UGlebG_*o>+;y&h3gB!TAE3BY1G?BrLCt%Lo@d zfjuX?)0-Rti^Vh0V?R{Ep!Z^kck(Bopx>;dRR#gNzK9| z0U9B4Jsk=mc?min`vU_G&`DC@bsSjDLNy~|6Ga)q=g5vuD{R00jWI@>OSX2YL8_s&stN`feI?ol3}@k4#b%0g1Ud{`~Saij|e->er*8G-VS93Sgku@lX5#VAqXp6 z6^}=cufrQvm){aYUh2}x=ndfcspMG1`Mzkw(`%4@A&D#8uGji(Iwk! zx=0yudxTJkfPkD$Cuyx)8?!*dQUd8d&W*FbBSjX;iKE@^+O1VdUk5eRxzsLi0qQ<4 zw5AqonMxy_a8f{4 zw^`%B0_823Y+z!gUqMtLghlO>cxbdg{oyt;MOn?5`r)FHXYSR$6k0(^sIG{|V)qW} zei6>BY5v5ODY3p5loN9qKLEwcXNLiO;JK)Guk+V<{{2W4fF5>FK3XfK%UNIJ-OFdM zKixAvrxw#7zYx!jYLU|zGDdjWo_blY&4&-+@Hr=6q^Qi$HM?j|MoDx+$Ut~?P~-;@ zI<`bp=_T=0?lp}A{wKLgWbH*?*Tq=r`=q_ciThWrp>bQj`B8cWrA&NN`6mC~V(WY{ z94w=C*@dbtlTo5AYZad2@A z%@=4}4XXEs!c;~!0h+q*2#XiMI2cHL^cr;-R7(9`Ldqna7z@|(3f^FR69|J1#8dw> z#W)2`ngZE=Ql=%FX;AVm{RHx)^GEAs68_7B(730fcV5K)Ki5{HIRtQ!A_3Ks4s{W< zXiEpWfn^;dX+RhhFJbha#vdmkqaGTpZkv13XI1et(`sZ zOKwc5b%()P4^LjIm#Tz**y(5azDI2+s^F5yE^)0$vh+udKN}GVW&Gyt@=cOC)`iIa zxH-9rz$*1u@GE_d1ucWX8e31-2qSXID!Kp{p7V}qE+5(fs$|2u6Jq-6<((SRchH(m zj#o)iB>fl`zMe2+n=r=5!s^sY(E)AT9R2UI-VsCmPEaOmhxUWfO}SeFT`0Wj1<3Vo zDXUWjj1Cm#A;y;!rcK`gr9vR-IZsYvLjL5j@1N}Uxfr_qI$(8iQ+&N4<%*p$bdUr* zT<0xViq}AtcFhA;D*_}jh(*{ZCN}t{QyEmhG3+7|aoX#CL;_ej#D-=a>yqExI;|!` z;KL|%&Y5oHa^g)Ms^}{_g(vtrIe@!ds{QmTfuTM-EWl&?#+Eh~G1Qy@zjt}<<~*)# zULVZN44N@RL?gYRAN-*B!4H0reze>npY0DMGi2`P^TPBQIwS$Q5X=^9JxPr86R}uv z+xkIDEm_68nlV2S8XGg=HkuwH-0z1q^n5V(^hogl;Tz{op3x|&BpD$9;h*Rv61yd8 z08SS2M?%5av1?qxF%%1i-W9XvnPFolTrpOb*t_LgA25%LGz08C!a6aY(lv~9k19h5 z3YTz7nKekPC^&E~xTbYWJW&fS9IJS0fn9OGYnXnm`HcPI0GI9PUr$yhAIDC|bJ2;g z>jPwQHQqvmX1T;>9t&=PcAx_dkKD61Ocm?O;!6x?GlwGsdq(?bxXM8e2LLXuGi z{B4SArU%;HFZ>ybJhk$DRTd9kdSsHErI@PO>BJCGE8h4Vwsnivpj4exFHD$t7j=yv zv2l`TmD>iq{)=U(Gsfv6_+n7qs#>e>`?ZRWOTrdS!UwA{`wX7EnmmR~mv?`kqE*Li zeid-gdRGC{Hg@2rhIAkQ&y_@h&u=>JUly-vJa*Z7I4Ib)6h2pOb>L<+X-sIP{PmUd3KsA&I z%eX{`gAu1ny)oQ<@eUxO05#>C^u|HNWmfer@)}mZ0??%cwyOUl|2inKbf2z$=m#I! zXML-*+YIFrc%a(D}R5}0`?zWZRd!h_hNAG1cDZR&74w)Z z-nD$0E^s!WAFov_5u1|Xf*(Z;?>v?4+@&rfCq2vF1?F0!Exr$j`En26a!{7rC2QG1 zA5?Utj#{#)F)S+J(KhNr-oLY(`;z+U8_C8OumwvnM*Jxt))x;k6h3wBbj{Ruq#@dt zc#JB}8|_VnVA#C50sLs*r4)P7zexwVqlv24iHQo6iDnhbH9gleENnH9COpzkp*ZN#1|u;0`7_-t1HFN?dkA^MdymBDH7xwMv7xTR zpXN$lm3$O|7b}uNqTe1cSGjBn02#RQ#FtlCTdJA6v=mxRA0J~0=zETK=R%Y9 zdZTEWdro{u`6puu#a{x}pwh=4O(ougk6;;(F7lRw&nD;6|Ml_-1Ok8R z0g^V)emtPR51xLUiKPFY9s|(tS$Ku*$2gpKiUw_9$w7L?BTly*%LB~$05IB(I&ZW% z5+b`Bk1TQo1{%h-0H|3kH}ChM>X^PCb~kw_0Q~KCfPvo z%QIqd7t=bv!G8e+7(vggjE5%6&C}HT922BVK---urMEW)c zx?q6@jf^A%@1~y-n$9f+M4eAyaZZn`ZmMp#HQcPjlC9~G+ZKR27vg97m=jPQ`~VBP zhMKrSJYxnzKdA;VyCI7EBen0q%XHU*;oN0+5s+xE{sQqe58o-i^Bupm$76_DTuK%< zhdm_j6l!Ab%AS7LKJasSNUbueE2-+uQbs?!^}GNynqpWlDJu|SN-r8`(I?H5_obHd zAp#l15A)Ig>h%{w(WbEte+ci9PVJcj3Mx2zW2txI{V<=*vUSTYgg;zLJP$aZ%fo^)Wfp6O0cm&{9gz+_b*G^RzDi&mIdxI zWf^r3EX=0HBNs&eNubi@@umZcqjoCEX>LQ@oXe7RRas z{hpRk6Lz4^t{xD6Lhv6qMYz2b|Lr*9vw@mq%?-GXxWNFJ$^7Z$CW?GGE1>$+uH0mUmw{r}V-+%J@yW*Sw zA^z;YH8R-)adtoZ)354^>+(0+S2Sy*#J3re_`*}yQW%WH-Xi+p7j_L z1tN7OEm%EPJ?A_3dEtU)37b0XaKZd-i0cWNb}2%2X+LT^%j^#O`W*PE>9{z$%@0$J z^NL05Tyl*EA+3#493J{U{?Gnd{OND_Q61>!0*v%h?OYi^dJH*qd-M`yt7+vLy8lhx z3~M$##dVsQBVF-_5RiMCF$aY~5RKt-(;&~WC zO7hTN_o>sMzArDV;ZI4-u|a2h1+IC7t56fpqeqLMfrhN5uXWm>mT*e5aLpBN09!XBe|6ul2rS)Mfgkgia9TYuTh5dK2OG zh()$NJ_!pQTe)NcPgBYzCF#%LyLt_FWmyI3I>z(3PuDWAI?pT(FD>;RDbps=5CY+; z(iDT4q#UaQixKz`a7P$^LP*V-kk|&P_8aLh>$+L*UO)QgAByyk^q6RiEzsefVX7;4LL#Mr73eGY z6Y@+=fD3tF=N94l|?IT3AC(A+0wTPC*!Wg;o7G4}$ zM>#6>FtrEH9&iwS1`3!$$+qE!H(JQOdQIR2%BqPw-e)!gEGmw{+<}_wAN_I(4pCMW zBz^OY2Y1`*95lFrD;f4|J@7BQL$-iZFC=$h`U^z?xhnqXn;)tAYR;h7rE)jR~?t}>^cyKwf_UK``A-8^X{X%C(Tx z%bgP3IrTZQYCNRufUeaI1s{kCUfyiSgWu(V; z3CC;5e*0G*=PUuDNm`S12tze6dxv5axnLU>Fl_NYPYF}70PhNr888e$u@U)%prO5j z9hGoF8RBH2C(fgst?2u7CdaIl)^-`-Z{Jv=c;gdiAlT*m;+d$**M1xAc(n5kE-m>c@_w4`fe+K+=er{d|z-A zwRgBj`mP(gJ;X3}fVuFzpS>dDJeK`rZ}vusuA{Da6Ah5K z)3TtHU7Mv0v6363TVMGpso7*E(6@>h>i{Adzy7N5S`zTAG?g1OTd69K+%;PrqKq@ZP*ffJ@^O<-YR6V^^iXX)ZcgZs#u(HM_o^>z=s`Z{KU!gso1BS%@# zys(P>N+d=tLC*^aZxw1Mc-#3K1zdr$7xvPC!%2ZR+3@bi`6S+ehckeBQ>`u-pk)+6ACw6^<8Xu03E*vzFcucM&KIygh zbZx|LTbm@Ol77NFO+nOX&B99{K-63b6s^Lj#Y_te+@)2Qyo6SlFcred4OaFSF_D~t zm`pxLizcFKB+E>KoZUWPX1OJP*dSeR?PV!+3A*%78{K*@@eK35Li6L}yeIvnx!(iA zt5RXvs?-9tbnpZK0ImvJ`>=K#c_S#JVwi$Cc0Hf|h z+AR+|5CcY&mLTn@+IK^?0dA(eh5t)KRGXj2amRoAjR4Ycx^LG57Dpi_j0+J=8vE`i zGI;wCRvy--pY{&uO;=*nt=1ibpECwfxj=`~s`bHXmfTyPAp)!oc?+CHOwjTY_$Vm6#mtjEL%hHUTc|pg7{_F;@C1d9bo*F|_|B5`0) z?+f%BUqCg2G^Jg3%4M|?4>?f5WYJDKz1l3@YuE}X`b7PDxAMiuX4yy;R7V?8^u{i(y&yE+WT zlu{UXb^dhTB*+`3Lp2?o9~(+50w(+$9e1)qWn)SV}9;$ z@JUmHd$IXM2T9Q(su3d_SYSfxMX?84Kzpo*mGTa=OjXL{OCj_Y8+5#BRF!%iP_2_c z?b4o$fr^jKV;+;RvL2$Nl)F(4yy6?%mg%y^V6jg!ZC2;jI@wlkIV+3@5r!?4&b9aa z;A!0|cT5MPU9}vT@p#}6boM?hI&@f1HK0KTqYK!H_dk01nNBlKM%T#Pc#CI+t79Kn z*)3r;w6)*h3Mr~0Hn(8}AF%*#K)w`28SXn-?0oo(r@~Q_fv{a+%9?`aNUt@ZX#6~o z#=@uTk8~-L!R4y3)#$V?TFxgCLx=sKcL*4$eId_N(1?aeR!AD1%RG(|5N3e9b{rCg ztD5$87g8NkXMs&6q_o3bbqpifLL?WV`ur-x-|LQvOFiDS396e0J5b@v`s5zukNZv& zY`Ioz%-}mn5g}9vA4wg~!vIP{A=F7YDo< z9nyCW=PJBIst`zcBtF{XDG(6kfy*qnVjvR0Jh93~%(@_4vBb{^(#K`9d`)}l05kUc zxBs)3UrO29^Tn-=k;76#RF%K{!2VZ!U`^FAX&-3HYVY!pxY+C-z-*ZtPSvcZX&tTt z)LGzd%4G+_10L8)&|BLj7(90pdo5-F%l#H@XfdLwsiG>!V9DFlGBMe?UQfOu_C#Xu z+T5}}(-oE&Rz|l?4M>hGG~I*vm^69(TXhUQLe+lrBYPJ@j1Gu=(}51;o|1@}wexJbtqr9MD~ytYEHc6{(vfi9ln{>hW#7A1WyqhR4YMlI@tS@{Q=%f6*M!44e6!Ql=}hc(WM`A{SSYP$=(@)=qWn~$_8 zbqmg6Bs+l0*0tkP3s()*>5%(g<%dfNEK5#JsKFKw4rj_3 z*b$AHbXhF(d(%76$fP4qEl3txGp?BWivDUj2)2yb9|orKtrvZ6@BlD~H*)sNGIHeY zR@`of#v-Y`x-^s-cG~>*kkUcAHPG1-6( z&53zI&VEgI$}7b|YLX2)B##<*?19slz86paAzHHeT`XlMa#haP8s~96s&KIvrqUi}l;>e5+u$P* z&wW-p9WgnFZ6!W?`ZnKYeeQx7Sc5~l?bMBMcql2I*b20IgAkK6wc$MZPsxDtpOj@9 zNFDpvMdfRshpJG(w)<8*>ya7bJf`U!Q`E@J_-@w3G5Q*V=>>7VA`e?1VUNFFL! z;}@kGFhGY4M-NSVN^qxNK2V!F-8Cq`6oH*b7CMs^6u7cmb3_UWnyqy!TV_oQW@lgI z8q@2ZMfn)QYmZRII<$53X1Y*Tu#c>hG!fhZoPaiOz;#H%4pyU&+BPA=2WYyJa3W_; z*e~QkI5{kWX2W#6Od7WfHeU8{w3xfHAMh(pE}eenzj8Ae?xci+FQFAx+h@U*gV~)1 z`n#4F>&E-x{f}V?2D?wtvJQYoIVOI>PCG_pH?WZXr^!IENtGj@)smM%!f#jL+EvYY zR{p87@=p$w6!WS74O1hu4j$jngwP;6nh=?#N;`jbak}^PZWXI z-=@lAjm09wUF$9OORxhKw)(@sN};Bkcifz0)EHA!_8v^w9<42QN0&Q?V!BqIIWJ$tE@U>!+-Qt{Sq5{5}=7I&-A zO0$Q)q7H#-P7p|zQQY*UZ?k@)w0Tc-*qg)A#^d5FJCa+Pw`jVxP4w=G6^!Lv7fU&U zIT`{>bWqr-i2oP?#xi(JS%}J<#QRF?`KhzvglRFv}yFLEM;GJJ+>Cwv;Q zMh$!mXej0IhIPYy8eGQ`rV%qmV>@R3{h|wCgR5o@GmY*CY(V^tl!8t$a!b)*raOS= zK-`NA>_bn~3lCH{6vh*WpOcSXKLMtX|464UEL5J8bbbk>ql{!}vKx~Fh_SBeNA$k~ z`{g1mrkh?3JxUdPi|9^}B>^~efxPJt-Ui(fE5n`CrN0nY- zCo&~lI$xv$1r;v!0KV6E-u#Ol!#&tQzD(~wefhkAcM>&`#LBYJHpf}PbZ;%Rs~IJv zU6pIO(60QV!_E1fC418Qqz-Yk)9)e*|A>p5=qQteN%${+Tl_8c7_Q`UVu>$7ZTCpg z5S9|y%DV`jF1LaozIF#PuQQ+`|EZ-VY%;UW3^RBNW+-m>t8Y2Db8g(2Y*GptBW$61 zW5)A$0Q`(SGR+Y!;4n+l1; zD*IH?<^>cOwalRxL6|of86C?aAbspd(aJW$m_6iDK?_J#kc?sd24S7l7zc!3LMomE zEhS+ZI_8blLu^Mfv;vShFMKTswCQ7Y*n@WWL}&1h2iX(EPY6vqX7t#U*|4!MrL|`T zjK`OFN2rZ{g{1Y!S$aR|HFix&cy7=hdg)?Rl09tFSa$$g-zV^`l`~P;kJ!1KGxJIB z6%Mbh%X6b}2Eea*OlYBW=x_v&3FD@ZfN=x*ox5jUfR;l5=Nf9S0B)%&ZI{5(91$x{j9@3Px=eHFy#`XlC5BP8SO>_x6hv*TQ|xtgrcU}(34#h7qGBy@PpP54qO zZ=s3tLkI_~Jm<2nyQLwt$fHo6JdAGpVHE<%Kxc>#j2ZGFl~Xhd()NdlR)F5H?Ynx* zGspA{Sno%Hg}@wxB94EhIY{Uzd=|MJ)TtlJ1tWG1eG^E>J?Ob=86M>j37ITMI$$LA z{rvcTBWI+92+_ilt5zKJz&2aB0MZ0c(%CgGf|p(;si6Vkw7AgjiO1A1IDo`2{q$bz zYCJf%vhWU!!*=cY=YF%_^g_Ojdxwyoj5hrT{^1XcAKL%?KUybr9`R0|t!#g`!|qpE+yZ;PDf_ejH`4{6{z~d z(pV|yF58z8e_$FtRgCxIC|ddz&<*?hAfHNZFDVc6*WXF;?6)t!|Gqz8s%`A#H7qD= z9c3?Y#NNA2llcmA?H_Ij7D9vK#L2INDDO3DHGMfcvr&Xv=o~u&5~V@F$N1E9Ei#kJ z%s*h#;0*P zbbwVTzz^30*-|`?%DoQ|JpfDUZUI=;FeFPPr#h9n3$@#40Ww_~j|BC&9cdF@#_IQ8 zAtdT*CZuGdn!Nlp+0}jX54(N8U6R|IqZ{p8J7=H(AQvbE0GD_SnUv(I2C%j!6Kz1c zFr(~BR&VxxtYefwMrb0o*khJ+9(CDa_=6NL?=&NvcUWGlhhDx&n?E1wCpuG*QKfKH z(m*g9*1iACI@H(SIChJD{-|Hs*G})I38Dfdwz4hqv2!k)GVD`sLaMzr;@xM_ zl4TmD2$=$$E`rAR9aj6Dt9k(%)GCctT;`64BPv!_dx1W&5{&CH;7I`|Eo7^Cg1@p| zug_lpE$C+8*u`e=JQqY)>KK!8LRIF?!q16XUqpa+o{K<3^RNs>cNK9D;WDs3 z6_>^J1VJJ1DFkdswmEQLyweFFqyerxO^--7V_u>?*#uplE#qG8h7kfM1SJx+mV+3B zhj+;wZ6@J-N_3j_T+lqiob5mxWvg75t)lFWfBI``PugcuzFxlAqmeKPg6m5c>rnfQ zK9Mc8*+bRh%CpE(F}snyF&XJDeGUprFbn1JD-o&^fK-vRS;g*y68%!OncrtW zI+k(>i^A~%Rqr>$>XJ1El&7*v+?s6KdMh&~x%7POi7VS7Ibq5JG@N`B72ll`p}um4+-_I{6Y%>x?^V$psm z%0+-0ds0`R@MNJ}f*#XGQC&C3ZO5xYJWj_aRgLQAgIvS8$8wRKe89EB+^Dp^ApsDu z(n#OrFN?nn;^*fWFh4&dN@XXNt)pjTQg=}W4qu*41>p%`I!K`pVZw?Lr-*}#gx$}f z-vFG}qCb1$)IP>JvYxQ2I!UCZA49n15^l?jmZHlxXHVAUMolX?ABZqt&c}A$OA?f~ zLIxiLJeOj8W(ORg$Kr&!EtH$c5Of4N0k5R3h?4sbg@HSg0^*8iuK;`tiFM!0Tl|R~ z!2(?eNjtduZs#$c1_cW#eNd$E_?$|%J4sV#b-1JbFvHQKnq}}ywspF`VUDIy14kW1 z%sl*Jm*@}9;^M_SBHr7%tL7ndW@n$?DmGKZ5K*KdlbRK$cOL%}S{%kYvjpbs0+PumixzV`Eae z${NYrgnJX$YHp=(Q7%g&f<%$?F{l<8V4Nf`*aj7B4cajb#Z)U`8B~W5UY+UaH?f2s z*@}8t$o@P>OJoqGb&n=;_=Z^ge9o3&^tBy(xt@+XSgAfBTz9xOkVrVUJ0+oVCcDyO z`z&1dLZot(ILW>C-!MhPaZ8WrDPFMkbiEGpo5_XBY{G#~f{9(Jyno*<*S^4H*^cM2 zeX}s3b?h6_&^*1zDpiCb>sc+5b|Hmq^(MdUPpwu=ALjxUBT2HI3XQaASV`#@;;}k= zKUNg0OiVZzRl*B&aMI)5p5T*v7m|sLR9(}Bc{ub?Zn0lFXUAtN!yrpt00nly{z_yt zP!Q2~pZuo-ex}?~CUwK=660j_)a7FTu#hcteoe!>Cj=u^w+H4jn*&bNr|ub0!X1B#SvB>=A(W*anO{ zRfYr_nagluEIZ2Bx~$m@D3YJXhAzc|wOK4*AN_)C6iGnIzg4anG-zr9SE=hxwXlyE zP3!b~Gi&&`(HlclIP%co=yB>ck_##Y-;INqk1&heq_3wQAxleo~L>ui;;jK@U-0$g}J z{8jN+f8{q|3&0_UFs_=P8E>3@!Su?1#)_vvXQ1DPygakCQfvMBZ66$7N~^20@Yjm! zQ>ZDf4 zxUK}>^DCU}88c~QqTaiw#r_XjH_ao$Gb1YFhPY%_*4UV-CF|#r-qhAFBY+SE0>Xs= zC=sMUvvZ37HG6H}YkL%=fzfzwRau!H?%VfeT@KVY048faq-n8gE^Zq~ca3JhQ*5k? zJ+%)iStyLa-LtBNM9~Kdn(Y6nec>v~W_Uv-f<>+bK_H*TEJbKb$b9IGMyZ|Wdl9&! zzEOj=SOl708zhHo;)O%_3AcG6PT%CsO(in}Wil2iy2T!JB|HBtBpej)& zK|zbk1U*Yhl6A(on7Efs5sny)89&_mGuSs)d2WQwUz27^XKg+dx=J`qryzr}(K>OQ zboB4meqZy3V;>y7fo6vVYYd zy~@i=nP{=2OgQXwo6Z%zVG;T6A4C4-G&Md(0SbsH4tOOQ)czn02^oa*F#VJB=W z1jQXn9~0#y0I7BPGmUSd2y!jz(MdNkB<61hEB1Alv~A(BdbW_01>{ezswl@5DYi!o zIZTk+*;u=Wb6&}v*k%ptVLG3nh!C2L_4w%6aH^$tu(mKt5vuvJo9N>bRq$?H*X07_ z(@h>3zaUGs@k+*3d-Kj`7B!Y^CN_PivLY_Cv}#e!M?pe{I2ew0fFN;xt~MijSdS#JAhS*}yqsOXq_f>~m^c zS;32fR+2+#=E(OxIA7e}OhYeWGh?uwc2iIx7WM$6dQL;F21w8PM2ggmvqO+f2MBI0JwgC*=d+l6Kg$&qyb zdb6K!1r+SmElW~mi;g{QM9hQM-`B5S(Ml`)@Go$w-T6Uf|DM!jhef~S=nrm#yT$n4 zlpC|lt8=E~ZPGynN_lGuw5U|bpi(y4DI%D~i-Si%{!y0kbV{%?C#fAy%ISs{QdK#V zVFO>^1}MMb6`Qx)oj0?ZLv0RISIK^d+>U6%HKxl)gmv#y{vE7#4V?$zm+RLw65ZJh zXy7e-QJ$Q2wm^Ecp8O^$Qbg}asSZj|8ym}QRuzXa%LvoEgz)y}+%`4jIRKk6F3geJ z%&=^7`!?zAemEIFSYAu2>F^(Nmmk{@zSPCCbS=Ne&7@ z33r`Xvy9@CQj1c~PmRYZlpL3n!#}G44yAMqsSR+f*mES2TlklZTG@zjuBHn-(iz}G zS`9%WRs%!IX?C9?MeODmzzyOIXY@2E=>9o`4|PDkD`^V!@a;h1ye8lKnTu@vQHbSt zXKrFr;f|2qS}X181aGR*CjwvUT__79N9meq6k{{*i&u_=S|t~09i>@<6LO`(GxXaF zYP?6;E}LkGIOF!3>Z#ZfmOW8>%#2ah^^<9WEZilz-twwjYB>b%LOgH6rI6e=?f916 zfk_M7cvn|ng{QPP%BzlU_g6_Uu5oFA$+FePn99aT4=5aym$!#v(enX@xw-Elv7>r~ z7f2nUP{{Y4dQu=eR=~ZrQWrX_O7y()x<=2_$+pc@?+0Vs8S}t%=aQjlSS>C(1|!p< z5TIH|b13%~>{UYo)LK}n6>K-iX|@SNjX2=`2N9WK;}SY?mTd@rOwPgWYdEf1RlS1n zNm1nCaNMycP%GK89Ut^3fE1VNCx zH>#uVwxc_`MFzY?6Oe9D zXXM`Fe`gqv&-2TpYxVFah1~lfx;eLUsjPDtPo-@SxrK!^c?5RLFe*xvQ@6L8SP_DW z+?;+CtRIOB($Vw+!HkGHz$6<0{CmGf zZ$6~4*0}PcvmL8Nvl*@NxYlNUnt!(J)Fy65J%fjcEL`QY-X7|_Sp>_a)}A8O6fV00 zv{u@PR>;gcf}|mt-xYDfY}4n>fI3__%s{umF1%E?XlHaqSZ8|!^NuK7WV2o@Z1NOD zrE18c!Eja$1CGR_?_NLSui=M(ftaS=_FWz_7CE5dD6R;7@h6kDLEV)XPZIg7$GgV4 zJYdY*^;oH35&gy%sH@~-X@1pco~lV_qg~HJ_n$!5AE3g;7!B&1x|{aAYHIh%fF~$P z)pr&C#ax*^u{-QDl2hw|KFk729gvmscwr1(06crRTLX70EX;b^qZ ztSbU^0&hUq3d5xN%-E@7l@4uy#_Vb^sGF+5y#FQC7`CZTMG$L2vlqUBF8=YP-Qp4L z7DAKsXq;r%!d~i>I!MU3Zg{khU6zV>yfg6qVeHU@X5~~(%_CfPM^{PO`bCcY!6%Ix z;7+PnaX@ksj<1sKov-nXZD^6|nI)*~ON^dqZpFPOneEdPL+XpI_Tr)dKa&5#kMzI1 zT0CL{Br-NU`@Gt8n#rOgsdjl@^mGb%yPf8PqPkR%rt$;e2jiDqv$?f`tz4>8#@<`VT_? zC-3=*^D(5DojS_f=B(_tLmgQJR+g0Y&+UL?3M4NA`7>_Hv+ifQHHOxhVoR3Y*@^Z- z)(Oj?gRA)xU+mL5AW7=k4ba8^5#Ig1>_VmPVz}pEcc0Qdh~RH4UlbwXg2)2vkq_sQ;sqV3xM1Ewn5i3w0`GGjLKi|pTeJNV>r^~^g5|; zTPsPTCa0L8-dG`e!&(VTo%;I}`?(C3rBK|h&Mg`k>_ zDPogSn9G0@o^^|oXAQM|vjP*En#@BQPp9AiHK1NQ)V|0tlLtoSwe0|-u0lMYb#!kZ z0gkq#YP#MF(E_qDWL4K)AVqS4eIjFnTLd&NycUP516dpt_u$pV9O{L?p}5ar;X|s( zGlU(XOs3+H(O|_aSHH@$WJDKR8NXo&XCJq?KIBTBwu)US&|a5G_V_{FU4ABU>S$m| z$!ObY&{4*W^s3(di8@}Q)%luaWd!D6Yt<(h2zZC8TUY^Ma4@?3qkYP_gC2pXm z05d?$zh@T@rJ-i=06OhSzIxN(7S#~AzIrU&!P?#q6EGB*6Xv>mRRF)a|Cs4VYCH(Q zRAB)Rl}`8EGOOK?j^rZ;HD>!rFE2X%u7RbED>uJd>sUpoR7$Q#H+8$CiXpHfETwokUHo>?GA7Xh7x01IKu}%f7zMC z(F15{biya-~aZL@ZW5|Vc(uy zr|t~A5WUHvj%kHvHi2XoeH0i`h-=9m)=oB}H&NG!+G{7LXwzw7#rU$M^S-EBx+gV_ z8|%uMk@cn(Km`VaH3CtTpklH+pWCNW<(3GHf>@r7Ewn@}hTp>pUXYVg45~1k& zNkz&1_ace&Xb{p_X;hfmv5J({l=GQgNb{{^LnVSirlKzgE()i_>h}ey&dgd-Mny*xd}*_HCcAAiY}I#Z$}gI3lteu65q2czyo%B&cM=8QTTjV8047; z?Vl$0sB>r~LAK!+xp0fu5;0o35VkG=Psfrf`Oq;&Vskn<*>ANRerYeou1Q}y$W*5S zXwQ+)^WrdL6k$ohAUsD2UWkOM%O9@nLTNH{>WZN^eqdkjIUk&^ZZWAzDiq3~r=DNZ z+tYW_njr>vkt;zy)pVNRAw%EK%un?Bbf-RxE(nq@iidprrPwDb*bmKcHe#UgFzfZB z9G*WhIl){$uP{QCHwY!P=*`}j;{LJo1i%`G8;H1?T5}qjeC!S_j!Z&TdIA{jWn;Q% zGb_N}ssFRlejpoTy5cq5PwcdZC!VAp6leBW!swRYZ-(ZNNpZvrpTPJn)as`nw0)3XFugZeau!W)G9E*Vl zDsTibiGdiCZEF0;x*%Z$QXUSNwmuSynxHX7{$Nii(fjET=MIcs@Ezrn`&?qyk&LId z&pd5NH5Z8r15ne+Qgx;;S_|3tkgKoIZ(PI^ zy=Z`6MK%+6aEiL@t=%(ym!i}}&K6FC?qRA_PI=uVn*7P1D%+iY2k6oC9nDjTZT_{r3{s67k6VZ225v2q z`1(9vYC0=op?Prv+>uxnNjN(~tFdQbz314BZZx1+r|q3*$E@yfno{@fh$?#@aWSE6 zCZAevtVqm?B(V>E=M!3flw|1^2f(WkwYjOG?aiHLW+^nhfci;k;7Q0Fb_`ICKGaCe zCc3Vx(T#1Jn$xqb5JURztVppH3nK~e)|M=ANqtdAMr_|YH<*|o;E-PmrWf^_)u2m| z>{7k*>^;HT3jAYV1W4|}IYUbxFwgQLCpFEnlS~CHi9whcv!?MXvD%l>Gb*iD3I#)F z&-ou36U4I?`+}*axW822?KfYhaULLndy| ztpPpmm_B@qzDv6=>fkwM6%h-|pol-LtspgrwFMMcV)u+P33TbH^E0Veu-uVPUf@U( znX?dCFxFj{F%&p@9qk40;W0YkW=416mJZF>EY88s%uXm8s9l48va!n=`h0RgxQ?f> z&7&&@{o;3RzmX&R1KhSme(T=fRq}vLcqyO|plM5KFbX1G(H&+q$8|E~J=+Sdy$`OQf+Y&xb6kn6B4GeNGgYMt2Iz*jC%ZU>5p6gZl-q7T;b{rXnMRw$=k9CN@zz%m-#K+2e9~F!j2I)!vR&kT3e8 zQ1^-qd1_kX2N@mhyp)Rk@t%H@&IgCOTS(8SgXHVS&H=lY5`e-2=t5ULN-F z*BaQ-ZBj(0IU20VF$jNdqCDD!tEmIdPN-VL+H3-Qd$$)Qjp?_LUfSB_)OLflqDiF4+qxDRva+!~!$-oFg*zJ?;R zMTyscf_~sfy42cy06BJ5$!bc#su9gGH2#{XWt4j^RD$q5gUHy!*0}0cG`RdO%PP0F z16mvc&-+IV1sIc6oahm6U}A%MWuA=EYlFfL^{5-@VkI;` zhh;MWSQ;P2SSZWO%Nd1?>z|qL8@ONY=dBVF;XtCZ+h#_Nrve^us|C~ByU5vawxLE225S%YyaxjUMSSR{$&_m-^( zaP=1UhrpSruiCbe)9bvCoJX%rL#ZAH9DTtvs#2i!-Bq5Tg|L%-gdGirA*__-0}hmk zD>(c0EVbU4MH|NJ{ipD08HO+n>IJnwD<`#caZHdt?2hecZ-P{imgZnJc0eoHP1}XL zlj)NAnNkjb2U$zLdZy=Po2U^A?7d^*Et-77Xd=ftC)p5#wAmsi z%*s!7L{ZhnGph#ZX*i*=8$uQ=I_ecQ$Oj0@qPZtKU9dyv#Fk_-WXVYzKy~yhhlCu+ zTwvI}`Uk^IDHU;GZ5ICn=J~3e=jL%&DNh+EE3|$&Jw$=mpD=AMbCE1yl>5yQBo(Lmt(vg zEHY+X!5~g+f@JZqr)H{lU?rVEZB;!~1@6l3VH?`EbnzaPOH!%v{9Ev4Sa`UgHku<3 z(wFbW@?l}u0SKvdQ_$xOIUX3dr_|iEOAp!blDk9`Ei6f z^{DoyAZmbaj{}Fkb9+eJu8+{=Q*+1a-CYG-TQ!t(MS+l1c9U~*Njq_N7CsF;5IhJ8 zI}b?0+pDPJZO?@>n4UVh-6Q3as&J)?TIY?4YdZ8RSG-U14uy=~i-1)Q>nfQTK#vEV4CE?>O(a?Cj)4?n1-}9Se!6P) zbX@gX{o*db>*%&OamU`LK>E zxe|B1l{@&1#C6lTNAIOhh=!R*-87vg&n%YGo!m&c*^BB({sdb#cBdTp!+4SeDst+3 zn8L}~$*slh7$j$ip?E7)B{)-|ebjzxF8d-GW&mHc&{b6t!q^odc|8=f-VU-Cs7emZ zc&^Js!KDllCi|+|Ncr<;g=D3L?Y_506^pgoYCGH|QXR?eR!0oe6u=mkCZAV`)BvV& zC!7_yt9sK3PBB@Knuudc36mqHHg@0Ux_6k0wlGkDz+EawMGeJxdtcT02nLp_;eHT> zM8D%g6`4n+uQ--{51KH6ETqJKtA^Q}0znW9&~5Z+Rh-L8>YI)-Rgl=UWF-iUurAa; zOv~JQdAV(@dsiqs(3@y&KY+KFL0aXr0r4#B??FNiDcVK`JJxYFMUFFRx@AG{p9%pa=`A=jGin7M&`|%AXlZT zX%u510Li?)*kF4%alNNVtwFWUpQHqZWGBH+1vb= zJk{Y)$l_v5AY54Q8&=iR11QLS%ZZgzzz)Fr>s+9*2(S2ch=n4TFx_F&O^|G!u_P?Ven=<^yYqhfFnV)0zp)<37t-p z*=AeN?I;utQ1$E?$6R0ce8NO3scJS?=hmqy=_4~RZ@gHcfQe*7at)W8?&u$&BC!yI z0XKxcO{-oX1tK#CA8`&9GLeR&!v(Jdi}#!6e-3bo=O5@1KE;=p;tEo+^9qn1-J&_@ z>tO;&JvCw>S;2uoS5GKln=RlUzrKh4B)ku2yUIRu z6GC^5qz%=BXl$*J(cU|%h{=kmbuos}wo|XW1TuDtu5g|{X?klLL%r?FbS^>YtVo+6 zNjI9dzNr0npnxeVi!yFSg`MBki{#@3mCD93Bx5ERp=ZXM>khMk#kInLZUHuq;&XsD z15QZgzbVY{>*_n5+s_A0X1Ns2XJ_YFG;>Vk6wc6V8x@}*N9(ksHMN{j684@H`b6`R zO{oeau<8^T@TS4@H8sY+;#JTvvqM$k=mI%dagpS4wZnmP;Ks_K+T}bN$8iX5LOf-! zY&`ynT0X3Sc1+$a?kIL5w|rf@bDoaKcA^J=uWju!^2vrBF{r7oWE94^;7er#+<_I4 zJ-}|!RP2W@@!^dxDZK$xm>FRu*Y|Yd3T+TI|MR}-1ql!Uw?!UV*}$XDKkYT-hEq7n zEjc>6Tc)gQ#KyL>Xy-K)Y9A1dpW4cpa;1I4W0#nOCLUE+itJC(Ie5qBQjiR0W+J#&i`PqqJJuU4^pZu~D+;GP&(w^ocR<18N z6#$Z(1R)DMgAa*)F0Id%3S|GqFJl=AF|aW#OSZS}c|%Ww%m6 zvIuV^O2u}N=mmJMJI#`DnbL?4GJ&#A&op?3?&%JT$&14+(ATr!dEeBtaNO-pdFf@|G;lpJ3o}a(_F1-5=!UO$)o*Q5$qkY|`eoEECdE|gr z%-`$2Uf`{(H=!XNUcayrrvi)FF^1E6$swBuA)x!4?%~chr;_siWTSS>VJM z9|eb}-8!i%2)+=GzJ}(^LuP2IO#V4RgxfF8-Hy~T_`Lf_O?kON7O=*x&}bejY_19k zrUs4A4FeQ^O;CCnXs^42L7L(!sFJ9M`WA;-lV$nYe5`E(kdOiqmBQP4x(4COlbZrq zI~ub#Y2Q%#J5?JVPI6W%U@CeGS07NpXjuU*xtDknYh_ELvDK;QXw$h^fV$PVmcjt7 z3bls01Xe{G?wk&T!xc7vG?{daQia2Locw-$45{pk+crJ1RyPbr7cnp7OyO5OB~3$Yhe9B1%4((-+=yt;)(=vK^(P z*qGwBbZ;Qz5L`a0*PzE7m(L!8>^GRN}tJgMFox$rGoQB;(IuTq}!T2Q`& zFN56C;vvA4MWD$7@?GLe;zz)gy_EgG+K_Bf7Yz>MZj#?yQp8gKU@Wavp_d`;VgshtekAS{N$ZfqkNG=+D9*<)0}@BHbI{Bhpd5LsoxQSkfJ!NQXE+O{zbX zznAP60Jp3UCp(^~XNX#N-u+QL?*c5){h%SHLXd8Vz87H<_(rjTyig4a!Zvw+?0P%r zJX+5GthU@2Ig9 zaXK+8{v0$oK6&?hn=6_~>6L8nST%c=8MZeY96bn8him8UO)C6yPLys(hxTt?f5U<5 zZ}@9I_;$k#q)*^pOQGMNY#w_7B`5Z~#1Tohn2JDp95DqR)$Ao|PX*B8q}ISqGT!Ji zU6xn`^em#oR9#>8dQ<7;&Sl$xtqDH50N+Kr` zctkN9n;k}HXp6EmEsx0E(Jb897eKBMNvPrOoIl#5y(J+g`zCU7b1kVeE<~khS9VnQ zazjGZCMrTP(DWl>uYsQC86SjCCHS7fv0kW)Q!DD0mEI0LSvxu!XXCRSvmLTa`Gr-` znmvhZkNE|9T(2J<2Y}PWBE404h7}p4L0~SWWG@0g;_MX1Cdw?wU$SVVb|FgLc5%1xCwFYDGz0G z*c@`NuVlXz)?yDYj=b|EJ$+~_rX_@SKS}PHoV+(69LY*Zv3frytMUjU^f7PvKgjtuvcEbk0=hgK<$SQ$-RM#WG4^gBl*2)<-n+P${Q~+Y z3J}FYSR<_{w5|j&TpL+N4A*Q-=x#DwPY!f{( zN=R9aY-3Y&hM`Di>MY8cQJ^uy`=a`oDAvoLws*J|$6CsrYvpV&_Kz;uYa(!B6 zs{AWMpCtHZl~mAxjhhS{+K z&Sf*K>Yi$=sqDr`R!*l_OZke6`%K^|JC;MTVb_6FF$Hb?q|-Bpqf=mkv}EX$W`mMO zXdgXZRNre-W&RBZ(-Idn`!qrlv3lSgUt#c|MJ#l=0NnKf)jIb|f?{T?mc4R??H34? zAdw=Q=8?HsWE=s#DJjY(Np?$)Nz=ij@}QzvKxn&ut9o#O|8y;F#OJ`qtCAiTv8Sh?>K3j^ZT!lJ+u$=u!DkNnI+Cq1uE^KWY21} z*WB2#hk&XhwR;^H_9{R#6-iX6VC+3y9cl|}&cThmUq#Y#%Wps4(DK_8O4N^o= zygmVvRptrs*O{5q!q-d&;WQMAeCsJPE103Dm5t= z*6zF30e5#`%e^fr?@Jf;Qj}3P$2BN7y5`o?WMn~n!{J~enO2ZaA7 znRnKw^6C|FH3^DzcDpZGR~%`5aZZRZ7N>B=UWofIl9B@d+jr@fpgPa18m#{$m#4fb zGyv3mcq5mlZc)9(_UB!P zW<+k`QaQ8@yk+c2M(CHwuCwFtGxLJ%eatV91S&ct++ZvfJIzjzS2v43@S0N_2usmX zB7!(VXp^KkdtEy|ZeE;ydIpM^YE+UuRV=q=oiy>7YA^*V9mTLbPUxD;Dv`5>2jjSQ z6uw)CrDwvn9QZ>9Y#$H8Ugn zVI{!Vfn{9*iQROla^ZugW7`)#bc5YhjUBzXt@wlG)04&qyCoFX?2?uZ;2#C!sp4@^t>Remrt~H&ie&#mH zVYXnmaoag|`t{SJM8~GRaElA0a=Gk5g=h1%Sh7$Oou2!C&sJi*tS?^8sz7x_wX1`*1I9C& zpcuN{FDK=Ytq6-4@w4z;(1YInhM)H^sP44Xov7M~qgg^_6<#@>W3Xm`+^%P*5WUsA zl#I;wI=$6~dOYd?nhs{^d+d0(gas}|ob|#P4a`GIoyKd?Mg*9o4UZZl3Ch!|s{u8pG-1%ILVt?JFORmbdBZaxzb=L=(vxMX zL-7{wAQJ-j7hY>qe}GOR_txN5E$YZ>N*2merTt>1j^EUstk`{$ZQ15!=<<`W?KDmL z7CXYT7P8fbq%GCNbD)aK)PeymRT9?iNGJrG^aS$-4)zA%~WdUU4{J7);t;RG3FzgrELMGX9_Dw+g33ykVvx zpUGwM`YUXVtWw}jU8%`ku~Kej+I&`}t%trNp8zbXZHr?DaF@pefYuN6EURfc)@%z6 zz(M*fhBuXBa@e<4lOEX;FY@+!5;WynjAecm;u(2?GqQoaU({r=NJC7_hj^k*!pIW1 z4C~Jy)>Tk{7XIwiKL)8mCpw;&lCb}x|%^-FOQFyxq;r9CC7ebl)k^)a779FFVsR(cBQkX^aRF=PV(*E>6O#nyJv!tV>8^e%FdQV4B)wSIN);r^ z50%S%VENt1);YUyLGgG-$>Uy!Fk>fLr&_zh8qXSnwkDH$t&+hxBX!>-byfY^R$Y>) zxRHe?@+%}o8`DM+HAT;iLX~$N_D2BHzvLcGQp9Ke(bq16JS{@P{FmxbSyWr0m#{zK zMPT$j0C((n{iG#c6_-lkLz9)%5Uk7Z?!{ZPWAc%eiaB&E2HYbA9YCn`gY~qdMGVRy zNKnTXIS_qFO?iOk&}5S8St=MtyS0`FF8S=?9@K719Tdy~IP3zMyLcJ3RY9ak*t4S5(YqIh7Lo=YhFffzO-f3E=gBF1%)KNzr;R!* zlY8rmL#uV01N>~=O_LW@Zk zIIk9%pz3<)=Kgbd{Vf0KuW6qJDt$V|n+uIum*`spEx+Uqq39BDlGw190+?5#@&Jb9YX zCuA9dZGeY&>u^8a-(;;Pxkkf)%wsno*_0nx}KedxeA7HNc zaPc5W_=W?@HIfMApY9yx3}0PFV|0s>Icm6ldCBn$G(x$ckt z)vGrQ5JBL@i0qHTl$@f<6qZ7Y&#h!YywVl<(I%mGIILjf|8euD9mD{#bB@R@OuI|{_ zI)hBtuyzWyR}<(K-Lp3M3eS=$6z^ak;9yELN%d8ARK2Ko-B^5;7qmSOnlVzrSd7cW zc2u`(+D=#e${W&spG<@PbUQSkV2TtU=(gB z)mh|Z=7)(NL7AVHE??Oajg8%Es$kxiR~u4+&FMvLz~28)rkOTb`-mg9kFvg9)A1(w zXW|6EvmdaGD*r22s-5Ny9BuXY$nW9B=Z>|`IqdvOyizm4HmUYLI7OP4TTZfhg4FLy zm9R+A!5i&Lx2j+!oFFyx@j_~SUD-m{{}0DMU{H756ITk^`Okcg{)*sY62ECW_t3xlbfV(pfNt*|&r$%8urJO8m4g!->7`+i4CXnQ z>(ab$lAvg3T~npMfkwvz%?O~)whSD*>{1leEP;PW)cqdB(UjY=(RH5GeUUU&fJNxs z0tsYDflKv0GP-+P`e>;59YvzPvx-w|2Q4BjO_|CDZsg`IbX=SHlTYS&Gn+f1uXnx(_;CmC$w4 zbfY8|NdiuxhQ=MZEn_%8$z7oW{PuP+lC0f)`zlLKH_50~@@?u-B~IRn1#GCJ3BhEu ziE6LqtA4QQzs6ALXaQkcSI*$W^RpTzHl{e;?ng$-%L^N5@Bbgt3-!ZiJ{-rD;1sy{ zxKF9%Q027*1OXtjU6FPc1JI#|UN<>>x)WL58VnQQf=J*%C~Q~6e=7#j&Y2CKx5HOJ z%7#bj`hc4!g|%s{ULXbGs0X+Fxk^R%Li2_cymMTW%QK^2tD;h}scdQ(TG!|a3VGnf zV9Q>~CuNcPp#|W1I_H9`kJd+4A3c(PZ`y~c3wZ~Cpl3(rp`BN$dXtSHHo0(IFa~*? zz37-Z$+R|*D?+JWmr~sK9r^39dk5YtsFVF`js+m?`rN3MjCippIQ!Av~A`k zvmopkPJ|8Br3c2$fG3(&czY&vtd>ok4 zk&2*_a7>>ap_WImkJ!RU1lMaMVu4AKM6%H(U#4Adjxl$)V62B}`whH{?9So+VMyDo z+=I8I#(W@pF=BKk%4g8AO#JV;kY{|?IfsffmY69EMjivO3vf&xZw&HSk^y^VbD#?# zBFxCuSsm|9O>?9``nnLOWeL7}i`L7AfVktXTz&(UJMDEl2r)1s{Zi+njQEoMZpwEe z>{rz{EFg|by@cLGuc!-@a*xvo%=qEpg1g5r7Z!z3y5p#irMIR~AV=SU-oP>OsmC0z z@G9F0T3WY)cYQ<0z(ZXeYbkNysA~%&+@$WTgQv?ZWG-^d6fe$$JyABQf!e^6*_9;6 z@PG_~-ZIK~rG-&slp?{XqK%)ati7d36R5C*?HBp>^@L$E-8Hs*1OGs3C%}K9f=NtH z^FU{V+EMg6-tx@PhEkT8W{M=eqKyP|;z8bjCR~jVJJ<_IwglzWIO|pVp!@v5$BH zXQjw)e1KB988j=!v(qai17gUkWk;uQX75d{<&BG@F7rCo#i1A}HQP^PPK68)G%Bzb zimpYPsiGdrGCeB-$<$6_cm~WHu~+NuxpSeeM$<~GlvJI-NR2g4#1hqrflO}6yD85F zcR=6+?1dU-nslRDH$iRwf6@i4$~Mr}5sr%gq2}+t!56$pHxaUo`jEFG2I~e~pQc8$ z_OojoZt3iyLJkd_3aMoy=gUEO2Z!Oo3)1~~yD!@NcF2%H96*VZW`unyxT za0?z4p!c8bp5w6gGf%c; z0cF#3OUZ7a=~=k+-g;C~iP^x%%m&D^_mBXZZ-mi~ox|pa4txQI?+TAP$=kF+$yP{7o2kvmplw+&I$No?sqbrkIe2G5-Y{Pk zNkdPZySbL7L{F5Mv*_8TUUOxSizjT%lTmF zhpsD+CQ=TA0v87ZiS&AY^9l}Ns=Bfe`t$NLvC@55wq49!#nTQYT92JdO1jG^)Vx?$Z3w8=UqOXT%la1cHL}=Y@ZOuLmXupG z6iI_BYG^|kQ)&Rml|T(J=obC zeJU2R5Po5NuRE`J`p&od5TAW9frBPNF@^^SGID=YJfvddvknvQm67(Xi1Kl_(b2E$ z>Hu`lmHYGwSld_KDN%Uf!kE{tMrshsyaFf2x(i$6P`*hfhgB3!a{8)z4=0-_b58FAoWzv)Y$7{;r6E5yZOVasHXc~pmltJM8`SLagr#g*cS5`Ycq zo0Ndgw4%Ot`fIkmE`9Je>0lGsj z%CRdd#m9`9Jrs!ms2=C29c&l(t5cs2Qe*SfKMs6J6=k>4Dv6vyi9ZsqVO z1uXn%+`K7?!*O5}w9{k}F3ELT;W(Z){UsJjbGb3gE;M)namWkN7`r<~qTyN}dQP%k zI-$C`(w9d6PIpTf6S;p$$_7SuUN&C)hGiK!2#94)hoFx^)tR;n%~w^Sm_b zHf@UM%TXNwPi8Vyfu!c8u#>$!9_n>T!jSdso$Lhl3stvcYJI95fqOUJUA74fU^4tv z$eH0m;+!?4C&Ue-AcJ}-Z?h{vbs&(?>$DlECbeJ|U>z^uCt;9O#$ax-Wl>lwUbd!i zQ|RS~jD2yNrC*(f<_JcDk{rTx#DBem9$R{J^?-S46s~DmURZsKo(F! zqtzcOu8?1$3)iblLS}XR2ElgX=8+B1sDh^@vGQt5k;MHT!-0#=JUGV8YM&rfPvc`S zZ`u56iS7JKZDaXtA6fvR;mF2rtp_mwRw|{gE>r0kZWB&(dY)yQGskE!JgHHP)>c}8 zTMaEa0wFPFJi~9nn)s6PbsiJL=Ay9&LKIqpvT6!}xgW<--!SR_>RqO=o!z}^ka%~{ ze9wFHX@~ful8If+LvC%kv?U7o0lOxYoATus42Rb!Cre81Hfnz_W9ICK9V5EBR}<#= z=H1J?emb>oxwhufZ}txeuJ~;23>D3(4Ev=f2))NkXnXM3p)X&uDA`_5>dt*yCkUUX z47hn?qY9tiyn!g2*G>eMxk2~j*XbacG;%R1>blb-`ut)fGHZx*zN!*{8W(TTjW|U^fe7tQLP!eMZ4{jGZNTY zfB=!CjWmdw=5&}UR1yqe9pfEtRs7Dk5oq{SE3@6AvkR2sQs-Ox_5QEIyD!vQ9%4`K zq#_$jr{FwW(?&@*2%S4vq3M1wW`$M(j;dQ?0tF+N=gHeuCT~GpScgU%?BF^4>lG>H z8WESac$MEKm;w1llz`lO8jlg5<=POj;9yPi#@~e3Tz=-3kl)uSST_f>`;BVkErz&~ zBEfcTwrzXhu1HeyyG+!Fs5pJzI`kH9-D(->H9I}ULQ!9+R!}lw%qKBS2fhkZnHS$0 z%Rvac8#Jz<>kA>B;6hrq-jUFbP1SlbWzO59tplf*aMhHU>kKv{6wA(%t2k()XJuXK zo*zw2!zTeKmKx6?Fy9P!=Neg^`uZIs{)VPnQtU6(zGPF?K1)KSd587`L}r$!o^U-^ySL%BAyx9rxrA=Hd|8q>7(OHtNd@dQvwnm{=V&H3V3l z$Wn(3{rr$M>LsUo{rN9f#-bXHO%_}4KMwDH1E`a`8;?-AmlW3cUtjNMr>q2hw|md$U{`v3w=z|K^Ra5*Tl zh1RV-E+orPTD7>-Dfya3!e9p?Ka-Wa`j&R5pUHpWXBJ=zAE_HT*MK5e?Y#?dkk8nZ=!kAGogUD5tf9hS_(FZPxa|e#Dfj4P?t{Hg z&(7UB1{JriO{)NHh;0ACJ?Q>-2_RX?W08Zg-KSounZG?eymnATat}!wuXHkcfKjf7 z3g8)Yl&R86QoJLBp4|y$Itpoi5FmF)^o+DIfyN;INpykdG&MbnTm;?a(q7uMR zYgG)HT15mS4zH9ZGU6Y%KA>H_?vW8sDm9y*+h-CC2p@l5uANF~Iv^Xj$!0ZTqs#=yah>%ZvtyRE&?NKCU5+&~pyZqTDH6XNk8U<& zyh)|*{V`=-v8ZYat1Lr|-LEe~eBM^Cc}Vo1i(AN@x6D`=ntBFXOWjT;Ts6kIc;W%nN3j)& zLM+Nw%r18AGqxT4C09r~mIZ$xy+^lfRx&_W#Q5w4s9;2Z+J9cM$+0R>o;VX-g}s6I zeC2ppg0w7&oqC8183-uqI1piPP1Jt0UfewvGBLnGXx{y2`7hxAP8W#9RC4CmP05dj z0aGP`1Vf8C9F4-ipy3SINj=Pz+VGe(EJJFZ$j(`HCIBU|>TW-(E5g{8id?WK&f=9P zb(?1~1g#XZ)X@8GX&e|sm!rb#$EZl%hXetmuo+dl)_qj7Uns{7)G5rxbUI0vZmr@5 z8M|9W{O#*M=s@FdVX7#!)0-@b*teAt}Y|&U)CKYd4*gJ=e&9bdW z&k8p;%(LLU2y)B;a9&g#(}(^4SNOjz97El>Vsrxk@L!?J&bfqU*hTkYNSj80Y)d2| zb{NY*J|(N+R9|Lx;?x;3R?3J?&uOWDppd;n+;5SXuqD;$NEx8XG;<*QqH|xN$wO^t zds^Pbot5r-#9Az*xb(QdEmn3ItYgL*sg&#}CCzp+qNls(i!(M`j1*k;h=~qCX;ztqoMV!A>g8mOrc;*&<};d&})o{_t0?ABOx(z6&AM$VyW(%tW%O@{+Pp9wUy6 zwZm%JV!BG=+<9B0szaRG0q}H>yxhoKsQiv9(;6PBXt2OPeN3e6OZbrDpRu$B0>f&x zPg%76^Qo6BuN$#TTu|fXK?rLXVcO~uO#vqbiM&H{rbOhCvVQCKU@D?GO-^d1ewfY_ zmPI~)eS>L(*)n<&haR&XRMm#F$1>m|?>ks!j&}lCwQ)`{6=r!5UHBg0K)3a?1 z$#ERk8uHjx?}hC5<3lzmYO_+lSs7Mo+FkW~nI^CZnh1E^z**l^w%;JY^3%Cdv>sXs!le>?ExT&GD-CauIeD9t`B1sgUKaU2hO-PZkR79b%XV`}0I>G$0Lf z(?V%i?ff7FQv&EC6(`Zz1=IFfb?GhU!ecpGq?@IbQZTvq(Ux{MpVWFDA}@BchX{Z( z$Vm&s{pDZ;*q(e8BVqo5{oL?I2a}?VyoW}88EOybE_iX(JE5REtjBO%M+bRV==e6B4`ZcRQg|BP4m&u}(>vAh;_aq_cs{(+ zAr16#Hc#frA-~b+gfi00Y-oLzUQ%a~nHaAYP!cPW0 z2CgT$^cX!ARNH_WlEAYvk9!U|mCiRMMx+l7r#L>Gzo`*vUX&g8EOC_pdyl7=?m`uk z7wc)9yOIz>09`<$zlX{Iq$&}uzUr#-jE?11?yX4yVx@T>ob2Pu2oFh)N6*IecI)B^ zl^s1*)Cs@|rSiNW@?2n9XC)GZ;@~;L4*;N&=)NMdnTDB8WZ66-e@vCzhg#cJ?H24g zqGfuKeSby9&H^*DC^)3s!tgjPkYP#Kte%;V;84jGNubY+?7z6}LLCO;Fh|Q_(DS?t z-ed$_OzvV%9@_$AU^vupLz>daq4?Mh;mYf8?&KYIOz+>ZMH;rIvHbn?|He4sjN z4|r9hU-+~WNv<5Jep-FTp#`l%7BvO8yCfXu>tCV=V7~$CU!fg6zNoWJWN>*-jJ$dG zG!_35h+;2O|HkP-0`1BLhtxrL;pWAr8BRT+cM0$dNj*|RSfG@Oo_qHY_9jaJD& z!yd&?Gs14}v|yM;JvQ3fWal_Z7py(FtC%V}qsQ4^BWJktC-C}D`TxW552w<^xJ6t6 z(W=X&GhVK{GS&PmDa`Dc-EZx9N$7w7;k(Z`dsR#2&Ccrb2ET`dW$R4vArn!$0v&~S z43m$ed?%V&|ce$o|T(`1oCyEQGi;o=%bvtEl}BZ}jU z9jU3gj=>_u;I@O^H@dzSwNTvJ5!CMB0V*IjgY^pGfQ#}n9SKkVqV5Il{e_!I z;@9Fa__7p-FIly`95?N^ooY8rh4)I~!prenH&j?~ZZ3!cHPhp*B30Ge4yw<7=j+x{{>o+an4q@6Dn!R#NF`&UP11t32_Cq9La16kJ>I7 z$#bnap@wN4IHV&u@Rz+)YN9pw>TanaroSWz5Zbarr`hXJc(ThmV)7_aq6o#L5Q}ak)Og?oX^7;hux0JuswaSR$nI&R@T` z8;jGrEQ4~ITe$H?GU{DOQX-1M@^(3CQuEvVPXhTUM`L)S4lvAaFo}NdLG1-{$1ir{ zj9Dn!dg|)Xx19dSWEdfMu_~>@WB?#2>{uB&Bs=D)z|$zi&~~jm`Kjy%KjNqwmn#fE zvm46FS7FNul`827k@$@N9RB!^EszW_%3kTP)pzxgPn_Yq)?PMz5=Iv}FHL1Fg5~rO zz@X6HS;vT@vz5#6*}%E)rhT)APH2JpcM~^l!~9kiAIf=NAx7@wPo#&vGq&`gwXtDZlQgRws9_6Xw;1@YYPh;v%;~X-)MQsy)JL!AMndb ziBN1DM{PtFKs@vVB<4>&5u+FgW4_dx+qD9)EDxxmAh?3%y8+^`IV=?eNs92|B=wyS z$K^Uxi_W}XEoIK)adlhd+g`l-S^KPPl6Mh?_bcmmiTHU~O5o(y<=3!_>S)jq>kszs zO=U5ui1e^;Zy5JD>R7Ii!)xAy^VFyi2Q)j-5K?Ws3*>~|CK-3z%8?#QoB0iS?^{{> z|B~N66j*WFDP2rOn|OAl#KhI2#R}d0R=<+qVVoT4g+bT@c(b@ns=-3@wq$wL1s8pv zNRE9n5&nrB=!QhDaRNA`O(jcOLp=S*@aOrtFf#OEoOxHeahN2x)=P<3v@)!?=;q9# zvrD-N?vb}p{v3-eb$Ax$wlKKio!nhW03(MhgxGJD$9_zbk??$|Z_I=p^~rWhJeC-~uxhVq(G zx>Lp54$JyLB@mhBREz2nT9kE~2w+K$w%R5HEub*4&9$#)wMNzu)-I6?N#=(OB-$x6 z$B86Fy=bZ6J#2;ujU&+DMGX1bp4Q?R`ZT~#fHI%JJ(~0&d%G~e+bkNZY>J0$ARcE)$q)CXdVedbbd$$>Do(k5n0^f$*58X2c=3yB)A#aL*jr* zq(T#y>=|r<8Tt;0>{r@EX_*RH<0Fx)!=3y_&*f{s`F85iWI%cmxCxV7Q?hlS_sch) zy(xKy;Rd;1TKj+qEFC$PRhH8OLjG*ma@S9+AS;6WAwuR45B8JSGI>8fGcW&#vD!c615AdL5B0lOX&xf%O1CLW!$eY~<%26F%&0-7{Zq!PY%#Y@de3Bh)RhJ8Gm zd4C?PBcrq1OX~)ikxX{IfwJa&UvOCJOvSq*_mX<-!&P<*I=B<2meTr=J!<|j^aJ1l{pIYplwYK^n*rf^fT>j>u>;=CY6$0 zG_*B1>WYYC_*FSGR_Rc{V(&q6;rdNaxPqCO8zxwFhfHKGA}a$nmoIXDFb=zcs0||p zP+vvPwYWJ9Wt4I5cR(&pasno=&vYV!bDm4QB%%Y3sf#ijrZad3(G$=E^9OTtN^eTK zl4Iu}H9ce31R)TkE+2eK;Ds*NEvV zwZ~}c5^+;45tU$??s9Z`@IB@6O5K+8yobZAR;3aj3bi?!#XYNf)v&ifqOe0|n|mu}pyRh=Uaas!UG)V!3F>D|c)Do}3)^g|xaBlGWLeOeoXv#hZ3I{oyg z;iqJ!_G}=fS<333l#$NI?RQyqdwPnTaqZHT`ggc7B_TCs9*MfVRTxWA(;a_krM}@JqJAW zQ7+MHx8$S?H=WiP4~|@~O4Yb5bnKE9j0gT^8l<{qr{$WC9&pOveh_}Vp--`LY__IU z=#du%&iZIY9s(Rq^FKk8O48$70ro3M9xi7ezWz?Gf|3h?sDiP(-QyD`NX(HTx@aF^ zbK%{ZlM1A0WHV|%-tMdz=7~MQ%77T&`}^?SKZN{?9eS8cPyN}Bv($&Dtn*kpIV+}i zgR1!2yd@n(&RZ2&G6l7Xy8Y+iOeRVk`lB7;!e^gLxpf4moq;plU`rXybmbgs97v=? zBT?=#5Lm40)hajeP)WjB+fb`Zhp%ru3=y5=m2MT=%5=YJP&WIhM@awhjH4Fy#8I|I z!oBKTK@`ef$-Tm_BP6%kqrXxKp@T6MGbEq@Wj8!cmNdW+f;Lq^n3e8D++rT{Q~m;j z3!=V5Dc<%hIrMj+;Qrmauk>;|74e&X2R@`u75VY-VjK+vrFXgwTF^SQQa=GL9uHe6=5ZO&d2AGqH; zU~+{ZcO!mWLx5e`a+ftOaIvq&ZsJ*P6T77;__yLn@0``r`@oSo~$E=I+Tb8W72v5t5L?ZZ-cy8e-R* zQVaLq!+XR4_fZu9QVYiCgHT15=R|;AETry`Few7*<`hx^WA7P$eCh}UMmCsNphfGV zI1Q!nj1j8*Xa5X{{>ISQJEj;O5~PvO#ZM~nY6q{C^CCbg$_+Y#_X`CgB83X9e&5jA zby0~`g@tW8Fu~_*plab0Ss9Y`Uy1+PZIYlg`Si@;eEuNVZ?tSG9qt3lPxax{vP`qT zd`hEw&?50~^3Ma@1;UjV_w-uWBufvqtB;^GNQkQ-K)iSuS1m%@c-!r>KG>ex#=K{Kq&@~YiFfa6FHB*0aVSrn?%{C_~Zl9#2n+H7=`4(8YOP_ z@#HpDS1mU9U10SB6k(cCcez`P`USNYWYs;tt#bj%EQ=*O#ya8HR4Sw)Tb;rSP%F3e zT~R(1@_|3`juCR(Vf=)XzfJC$wyShBbPpKMQR!}R)?SFMy*2{;bTlfq3|*xw@033K z!Vuvj_ud?jx?y<|`OoMh-HQxd+#86Ij&{ukb%c@~bcKAir3Q_67BNbaodoSqHlhbK zA5~{hetwyhIC^954(NQ@ldURV5$YX2P~}3Yjod5n6Wi(r!-)N*+z>69`$>#X+hhr3$hDFp8y2J*^J{ zn&ARqamZUvO&7tHW6O3`$zhj@x(5RN!7`w8XG3x-nCePcXMB^Sd+s4jGh1HLP-Rzk zpHzZW{sP>$SA5NINIG;ljn1kbPTMlmr6|#64ktvi7B_Zyd06W+UqYu2Wm?-Q8fr)< zbYhEzs5k47UuM85SWwLJFi`~-yx4;f5rwQm{`R192C7oX+JSb*NwVcw{R6iKzL{Dy zTY#wYBtPR}_1ma+F%Zy%cATScHBH4lc=z}iuShou?U$vi zAB8`)BU`)4EH;_r<-=8nGImy^$jgK>9d781K^{?w5ppvDawx%UZI{?IEdaD$7Ro;7 z6b9wN02o_jZ%SQrdW!XRnj_=$ua+7$g~BL#3Gdz z+6^(CnK*s;hrfLNm;C?X_y@&;!BV#jG-Y$!eD)sXiR;w;34KnfwV+LEOuD4T)s$$! z=&N|hN_weo>l-9Ubi9<`q%t{3Df=&f7do%V#2n}axy|e8rq{7#Flz5?iKDhb`<~-!I7__2 z*l<1wNQy)wHP1PXoXo(+cF%7BU0#l%rKB4|!P;6;^M}98h;f|#w|d{d(s&^IgL#aU z#fMxHHVa1CzFYNqKxzYMju;$bzs%KwhSw6k{pcIK+s*B4iuMN+D*97(b8CVOhJ zOHMDzrEMth@pE*w#%j_#CO_Liu;I*X-iS7zl6LsZOig_K3_3}tC&ElQ!4~^CQ1oNDIM`eOB3IY2V87s_5i^Ot+@rOIQmyeVM z#PVN`h-)2zy_AK76|`BAC8+qby4At=2uKRJ1~7O;rNfxkEr%Rnl~Z!D_o^)tLw7yY z?1nDIP?_E+0obdj=b@aCyuIlznhtP;P#msYvq}*cXoeJ^yPO}1f%yk&&Fu`3)F&-} z{En#rc*luC+3uEBng%*5B=co{ZOP*F&|DrkMY%B>Nt%$pNU_Q;Ww_Zrr-MX!^{CJ! zrm8Ch2km!~+LTSN+8UK%N-of0vuZ$73`y%Hw`N0%v~JLVNC!V?0;gG0$@VnXIH=rx znN!huT_<@d-epl}!jeObj!7U%Oj~W45V+z`-+Bn8iPRvp(-a=c8%OdF}_1C1#P(!gYyvZ@5 zJLCtTHQIT{C%rtNlh!GDo%m0=VRhg1eI$emVR|h<{y9`erGcx|T4;4QxQGI(?dV;V zb5vjS>v{n;iaNDkQ=k#=XbkY;rBv^9DxprL9n76_Qz*Y6C|suZgX=Dt#Sq$hY!?FY z!q~rR>sfkX!!0+|+YGgM*d6<3olRV(&RD2!k9c{WS{&Hj6X~i8WHw*8& zd~2Z_LIL+$8E3u|0VLT^H|2c3*ynHPHMt^9&T>=>)S+FbJj9icc!^IAE00<@$fpBP zin?WskLk44+{O&jSwu9_^@oz~AQVV5_RLZ`L?Q-XCyWk1Iw zaYDKOjC|^dNH@8zhMd?r!>(o@fNJhR#fDbL_7%~mk!EfSaB^%9WV@r1HsAPupwY57 zn$|!tGTG6PawPd1?ilFT(d}F$Kk|>Rt~K+aK_9!djGDk@FY~S*_BhtL!4)+);%sv@ zCs|o|K*p1niJU&OR}H~D13yf zfLvo@C8%@qix;8Y*!9q#nHU!!^C{&pO^(khDF)4$2r-kw0>GTL29(E6Y(#ooJhxQU z)^@wZ4|&)YC$&MJJVsyn&K5|Wq1n~j?&}$c`ub>2lG7UUAtf}=H2aY)zXNPN3@RE4 zai-w4sLnL6=|C!1-2%jFf@{aHGntd59D5w%;anGF&2$0E7Vks{L11Pp-hIe-v=`w> z$PvuLUM;usQAkQivR(e8AK3s{s-Hjn_xuCaK;nNLTxdp*oqOAi;Vc33P{%9R*`7@g zzPiHVCE0NhisGiA(dAmet4gdRuDaI2L|2p9`@j+4^W-(&91aq$Pp0ux;I7sZ#)V5)BMBQEU zF2jSx89>qxW6&#ZU;45v&B0V~EiEND7&)5gGl=X=pttT^k7KW@jedzq4gS}!zhb+h z{5~B2V24rSk2_MR^o|KvZYe^A)GkGsq7jM@ExP&C>-}!U*Tapbq=c@oCEMsS{k9Hg z!^DB?Y;21zj=b?{fjf}vHk(c0nJ2|=LgEL3^WE@oGGwIkmWv%0WE`Q4=D z@;^OI?WhmpSZBYZQ|LQemdX1B5Atgk$+>CmG*4PL6|IK`RuU_4yhQ_alo*q@*hqtL zmTGx(Xc1zdTC}o$t#!B|E>s5sMKphiB-!vWlW53BGU^sWLs0)+)jG(8`O%M+>kL(j z!S|HCaq7qikN|SYO>C;~!d_@{JCP=x6)4OS4aSK9H7z7 zR2N_v+*-|P`9qLzKJkz~PO?78(E$>$Qx{}IOLlqW>n~GP`M6GAYi2ceWQt#}!O8x6 ze<_nSG`e61%o)>=uP90}s2?A&Dzfcd1^?=bHA6zhJh6IKja^$lps-x%14ixYu)VVf z=nY-@;n4rbEs_QnQ|JyWe(Hcm`kcJirA67o@*S-eo_9F`7zRL{wmWvgzNXi`{D!|C z{x!U2rz?fQil}i)KqK)LF`8+u5o?j0n3vgi#8Kj1CmuyuNSS!eWjAQ@>wOr*faUgmRnX6%B_;P z6Hc)=AVv}uBcumJpG0ad*A^6RST)~g~8j{U`VU;Xelt z$s)LUMTW;@k|Gs>fLQ2GnFO=*fsdFV`(DiX(lxY?Q+20M04!CY&`PhltOKK!fBDe| z;YrmgXp>p3r-K?9+@%6~`T6T$U2ely$f-`ftZn5P_)|O_>{|OBO;R;F$Sq|8O6L(= zMa-e!TuBgi(?H09>0I}O_N5UD9DD<+P8_Ukebr0GXRdX zPSjPYZTCcJ-?mu0$o6Ogl&i8WxTDZ&OvCTCsRo2cuie)NxpWY-h7gZk@=%!v1g2H3 z`9;d&to-jG8I)+dt|Y6G+)(>oP!@ScLV!{qykhkh`4|%<1V9OO=#;la&iWVnq!m(g z)-cnxm@r?ymg}bXk_$ekZnF#o&c#|F5jgMspxl~PHA`TmI?e4=SphNL52O+wb+j&K zuE&@Yse2bX%V6c`VuY9f{s|oiyFy9U|AmEhkZZl~&^q}JaKu#^RD%wjcL%TFa{d-6Vbv#jmPIi-ReH&z$1S%;$8D%>k^Fwvu<$w< zDhG!iqL}riY%lG)^A)BTEQH{iP5oHRtDQyDII>a&Ze1ah&C!bz;GUsM zj}hynrW*%)t84I%iW^DWP4X1M(mWK^!@y0J_PJH*(ERpbD#ME^LLf;B*sEw z$$-cWo(6pe&p8#;yrC#gHU;Db9gUma-Iqn>S!xK`_vW&-W}e<+xtt1yIO42I_ik$+ z({ArsGLrr=yID^*m6c$$>2j9NM-6dAxePhif50MZ&)sx(;*c4yDf37uJo`%=^KVVX zJF&r$yt;^s>QLmj=fl|*5Fr;omW&O7?n<2Bxd|hyPfgpP>FiB4Hv?U53+&-KTE%vg zTZ*c?#5Ai|*bJfg48J`hvi`fGMB47uLC!sa7W#2`{ZL1L+5|Y*(!Lx%=!itlM(>5|8=I#i%V8{5)22e^ z?3tR3fLjNz_CXn&T;Xe&ISK1E;MjRNWL5z3NSeWx9RialoXB|h%21?Nm~V8=r1X~? zpC_SUa8nV~@Qu1fWT2duPiPJ}O&s_^3 z)?ZSmny5`Nwn8?_YvqFJH__F|IOS7JN0)9T>_}<>S)ArTjXEzjMa=JU0vpMm(ZLV} zTICP!`F+eD6;thDrbpYRK0*Bdgc1{#i(ISetj=_~3{pp;tRE(2MqxkJeI{?YFcoPS zo4PH_F7cLn>bwfIt`JKt>!;S!`FuphegFE|TZz3!aqK3tNExO@5<(ycVVA6g**hxu z)fc&;|B@uO#xSCW0VT<&WETk=O63!6*AHAqMUXRp5vC|1tJv zOR^+Ymgu{Gg;LUTfs!hCr$vhXk6V3HY)~7*Z8|o%hljM3+@kses@`tDH6+QDKtclv zl|UjAC-T2~udRD+wL^D{TuLfW#5ob}=4Pr}_pk=XISyb4up_X5d7IV-q%GyB^F`6W z$nCbN$#Nk9Z{v{RW>6`DJZwaMYEO0h zU;^P*VBa;tONq)&w5hT4-)eB3PTJdYiji*TU?X4+OV7*30!t2dAI!+n#kxT5lSEY= z>FPw#);l;Q-nyJoulr_9QrzRAs6Sh*uEn9?ug~P5z@V_GJbc*_EW^7CXr(q;glaz) zAk_vA1_1f1n|dW$3r<)83w629^%@UEszCj!y}%OX|%?J4>jVU&@_-56%Gfe6({YnK1y^=GK7 z4i&(_`>e3^7&6$U1snl=NwAx)rxyF?R5-$z8Y|kBq){cM_sL)3dCECatK2YDFC=Es zaH&uYeY3IxXV(#DvMDV1Cjs5m=I5!_dcv!@6ahaySY{TCq8hl7*hM& zD|BGEF9Cjq;LcfRaDf_tscvJ$R-A^EbLPw-!6DfSw&0q(Wzfui*d~KeD+g_HEa5G* zZD&<{J?7C}u>~^erXwW#5ypwJdr?i64bo20k4I?bf@+)di_V4nz_5!3f4UV&AvA+X z&L>+XfoySnm84{zLV(ypqHe8;C+mdDj*VGPOViYxcz$SKZa5S3fP!73FJdWejq`Yf zXCJipY74@cT&ruC>EIcVSB1e8KAZRB3aL*{NRk(1nV-`Zz4>wjKw7cqd7HORdTDvF(13ChB@r@lSb zEOD$d_4H%gAK8^TjtJNcTGym%e&r3&*+{8yuXzWqO;$JnP_1N9_Uw{byS2FUoFNT6 zPSl6)2(EiOflbf#D*p?SsxY2xZHnZ{*x+UDabC~Up4(zl8GZ5B`u+YFwnyXmp=-uc zfE}yMCQF;&|NQMouYY*|DJs5{_wGf1*QDxnRWmv(n`SIhV@#Eq5`3*~s zbSsqiob4&>!#?k-nZ)AhF{;vkrSRA35?>+`LZ1dt=aXo2(uXQAr0^c0#5j07zsK+x zVHf1*11BluxhPZG@;<1~_Nnk#D62F}g{|sjB{eSEEO+q|w(gxDB5fZNxv8i)E#( z+>ckiLO7B@w(Qbc*FxP+y+y0a+n!hy;YH=-Nj8*&4eeJx`vwTV500b(Vk4Ymeaa^3 zr?wCz-`~36eU2&IA|*xR2OhUiQXch{{H_1nYN-8Oo`q^jdFL3C-Xjx!mKYK=ZDF9sO784 zAL1C7%X(xL<=V-M6Be9yArOZKLbsaL8$f{{9nNc9<^$Z_v3>@-D{8ky?p3??<3@b* zq>dxWDdseX{L`yxE&s_HG=DN(a}X}cUU=r*KlMpi6V}B;l3YE_5Gj1pwYflj1@N3f zUT5MD8-rkUE^8)b+5l6@CzK{|b+->agPqZ?#Yto9Z^GZWFXeC1;`$Lq(+Z4@P|ZjH z0XvELDsZq_J_}qI6;4G8X3w_*0qrcV2Q-;_1s6UnmApgeCv)h|m zEXk9zU$fk#{N1V&nLHD?jL@s}vW!}p;5_l@gM#KnNvfH2o3(%8v~aE+ZBgOPtIXv7 zR``07jF-s%;%LKDFB-y;EHVJsNk6QUMQVe=9A|Y8vAVd0tbes2H8_#$x)}sui@(Wa zmz(FuZ(oM5{uzC%gVWemYF+^4_oE_fOovuVH`!f126Mue$Gurt;}ADHsTY#`S4dTo zzvg~wCk5N>s!0*e(0J1tkgV6lM@hd74|ll*7XTl!Yk(G9ql*UsvPno+i5rG0xOaE# zh{j9S4QaTC@$NR}TYS*qZ5r4%0*Gkjkvj)qMM#>I^x%RA8lD?4TXFS|X z#~CU3LGHpSPNMVABdHsnGDZmz86e zhse@9HvwHWYb?NN?d?Y=3pRcuK^;wUgUx+6{9TTfKZSaWc?za2GA0x}C51=i{d;rJ zGV(z)3Fw5%y}uM^O%Z4=dR5*IxpgPUwB+$>41JZa!JkS zG`V^lk&B%ZSadLNJ3;lhYiEd+&UBYD%BBIcN-0}yeUhHrRLkQb`=SNj&35_qtYJ97 zB9zc0O%!`6&@4wRQTW*Km8Kqr`hD71i#B|C>WVRrmjtB%kt%u@ZrdFd4x!09i$Vh1 z(hM%uUF#SvK8GaGrE$yYCqqCWu_Or5zq@ro9`yyj!s7s!WBp=?bx8W|Gd4WTW5NV+-C$4asCUT;=abrQF1M2Y^let;_xeV%UbYS82!!!agOcd?hX3iox3+JCisL66|%1M6@=aN zn|eT43e>CWVFiyw76&4=qp4;?-ha zfe{2lvx^>E5is^`Hmik;gg&fQso#Fc$rfjHZIH9C+gXtS$EZu*PEj34f#jIx)V1KQ zLLQE07j`Yh>LhF*Ne24LhtkE8P^0#6ag};*1FXHu_2hd$4Jmaz3k#hb!0d0n8NT%` zi|l=S=HkjaFVx#4#e-TE40MK)lc7;fah2YA5H(A)c@Fp{m=$z|n@5p&q;qN_gyG^_ zuCBF#x#!}UF)E)axiiv+N7G(f#Uuo@9k=ReEjJGC!E#psQnF93z3hj5=#vm0Fe|q> z+*k}K&r{*rX_PG)<(Bog)?RJgK?hKj0Iht(0@S ziam1=R|Mv|a8a6_VDLq%21u<|2N0UUpy4SYfdA!oDFCxZ9nJf$1+}dd6y}}FX~{Y? zPl+Z$mB6e7C))6IHg2_n=+ePc#4UvX*7EUDEmHeQN1CYo=^F-xI~!rDF^-}%Z7KZM zV5r?XlIm9zV@o4I(!xro`rI;1WY@+b{LLYGZ30!^DpnA#`;t_u86lB+dlwpRso>C? zVoV>oUu&-cu=P)_&NeV7IBCa}O!fHOScum(L$DRHmmHPI5f7IyP|v73pq;g4!MM@h zZ6l2m)9%eSWy)xuB=Gl&WiOb0>ul**lhUy)U`7&^HMhw6yt})s8l58q0CE4!t!$m6 zBxSetHQ|A^p?3h2K#P-{=iye+906dPns*AbR6;k#(9tf_9T3%@%0Bu($o~TVBl!rc zAz8G_M)ssgO3FbBQ(LlNOx7FbzidC;k$nMTYRev86wrXgbhK0tfIe%SL56`QIFeou zvmQFOw=;`TY8>m@YF?^Ma63xwlhU`-bMM?Tp`t*u^5|?BfF?GWZV#7Kogj{uRhDSq zE~^o&IM+AP8FC`kQ+JLnd9=^yEV#8tRz-PO9dMg_sp7NgBJ5F(Cb)#NrbBrBQYX%t zTAa2CvmO;9wtsmF?ZwEB324Kf3IsI)qO;qO?9bSfc*%&~YwE|svcfju14#HD(Wlka zX@$lswAN?JxfIKySz}8W`|85ImZtphLnyDR(^!Vyx@d%Ach)S|A@QJkFaP)5rU2t1?0L!B*Skn3t79K&2d_yrvC(?APDv8x%iFgu?LY?l5wfl^i{J zPOEK$V_JG~_(KgWC_f3We?YQ^0l#a0rYLc^yH)E}mM}7}uJm_SGckLvwM%`Y2Q(lu zx@->>%$qEvlB{8e^9@A&%+KMcufH?^p`7P)hA1@su%D&#p{zwo+fgzyV&c(qf(qKE zc87Ye+rtmo@B}LYpfD9>rioViH)Y8CkaR3+@0PYJ=ERl6!p%N^cUYj6I$?$J$OhGsi>+wiWyeS&EDnm^1p;BWz%g~CQXl5MJ2e(a?^*NN&wbLs8cuP$XI#ZP@n!i|PmQ0YcmOJVX!%FINY;Hwk|7MA5R$PLX{-FL^# zn7VjEcvnJ|d{!G|(1x&^Q%4=2OTmoj8sD7alUj&l)nKSX7Y!H`Vs=;XBed`fYP`ig z53aA4`nr3O5gXixRJ%V+hI;0a72U;SwzXR=m ziy+MZ3iU>Z4V)TlegM1Gk5mp|iL!k(^;egI1BzE}Et{+FY~_thD~n>W7eS71>m78y z7r2D018{o$_$(!+3QX8gveJIQAt|=CvdWe#jh|%M;QIT3$Z9D`YO?Qf@t93TP_mOJ z3WjWesRJes)gddg`^8_Q`gts{Mc5q$x=Pq^*(O*DQs43#_DKblm<2E3uFXl%AF`?K zWtj{Lgy@tM#l3y44WnaIktNremDm!^-!gsQ&DL!`kySqC1(PEPJh?JJy4t4%7BaIi0pHe5~Wiu#XO zsFOukQ{4frD}U!CJ@pqATA~o7543@kYGff#a?nPVY_ZicjG-wUb}q*li#+gIgj%cxJqFWBAB7GF_GQdC~%3cF!DttVr&8@;IHH>!Oc+>6l&WfsB?Mh zjO|VkfG`#1LqPxYY2&qkD9WhQC0l+o4ZEtdduCZ^Hy+2oEk-cR(x)jTQfFPH@z{C@ z@##0Q*wnrL@}Ogm3hKBAhHHsy^ad;{wL?~ zNiiM)BxhG09oTt>!5BwG!%!&u&t>n9HhcCyd^(~d4O_|wQ1g>q%1qjgZSN#iy7E-% zGeETW*=W2ecGG(;IJ9|s#!wCBTfb)wQ3p|^rd&8Vc!HZsXb|QFKC6H}LSm6z;{y^O z)|@!pcnZnwoxL02B$OY)Ga%emsWuC4f-WAi@(eaJhm@r~&*>4C8Ym4px@@k9yf8j4 z?}pmt(kkdSWYLi()Ev2IU=`4~;q5mTIIPlKR2Lf(R4&<5L$99vqjmwqr-LEaP8V9%mS}N5VX1B^ zqKAB&5Dn$z;jJnD&)vudF+-b%@t z;9D^{Ctz|lZ|F2UAdGsm1p~>4)(L% zl{8ATLy)x<+$bdmbUAtF+4|{5<6evPl zD{l*LW%)~@%~r>f99!(T(y zQ|Seso2^fXT&L^CD9!xBRa4p8V0WTEYoIaQFF0{6|47p1mln1sXx2z5dd%EiH(@GzP=O#@Pu~MNYW}nwxIjk67P^GU)b=0QLcNeYd#1)V79H* zmCeo+l?;?K^XyEy zsA{0hz(bf5o&g+GsqzVrVhb)k2ejIFVz>fR4lN*d0w7)N)l?bR)(^e+|NZrc;qBio zGW3{%drM5tcsbfs^jD%M3mBN5V3MALdE@~g*(}Sb{ZOdUG0bTquyuG4lEPn9)?w0) zkYi?7#WPP)5iPv5dn~}mRlb5nb&th^oG`?LfR<}By#~!H)w*(I3Y$as^zS5J1S|@Q7DN;|J6UA)oC8Z^`H~S3pLyO z+;U9*C0@cNgt8COF?-}ly|_9grUE3VrTPN}I3&&5C@{Q3coJE}15O$#qgj- z-Za+2bB>Y+juiip9!DtMsm}356-F<0Wq~h&UTx^T2Z}jvdmfm7EBsSh?xpqRN1$=7 zC88G5D99wB!7`>e!Sv+`j*mRJL6Ke}(0`>jWcB_8uGjwiA5k@54tQsZK*$BJ%rCda`Ci z{e)S-DgnydMd}B|Vfad%CP#hWvolVr=!@I{QeE3DoRGTVkIT@Ow3%*U`sB=o6%_h{ zpdr29VZQ2j=dbsma(=0wcSCYIUI{NoSeumIhkBv~B7Y&_Jl!7=TJEc6$4XsmCt zMb?6&0X1R1yP0b;;yRMw?4`de80WoK>mX1zY%QuD%PH*o^3gt@Xl85PO2E^RD12yzyiMc^r&Sxet41NFKg1n>T z3Izm1m=bJ3H91$jZ_fHJ96|_ro#zfjeA&j1_z3lGV_ZRNk;$860p*+f2Ez~liP(-e-3e)NW z=(yz0QYy>2B;Bq7042(EV<5}vi-yCzhA@HX9G``Wc8PRC7MF_bpHL<*!Iiv|v~EWR z#UUrDVvOuGug}_k65CXuo}zPw>Xh25qJa1`Kj+rR)6CkaR|N$7HDhwfx~fks@3=c= zDv2_Ue6aTpehlC~c&kaXkn7Cc57odBwRn9=uy?@ANgcMFfkGXUE?@Jwd5n9UjW%It z_haAy4!{KnukC1cCH?&@!G#W{!3Aal)wGvv`G*wXGo^K@h^Gc~k4V8NNzvsp*WBoO zc$ehX&wA3PiyR$5hVo&!tmn)qWp@n5y~8e)J0XV=P;xlSY|`tQiFfF&oN!<*+Qm|c z+XCH@Z!`_47k1zjA*zuSG)Y?Jc4M3_+l#G7%Q7%`qq0;|UU~go$K~){r)F5`0y~lp zou+S<7VP@vbI@n|%$72kHuTz>kKB6 zEE%>%;++G=BsFN1TxkmqMTc4nCeH=eR+e>GTxu3>6^6fd>)qdEnc{)Jrgl{O- z9d3P-J~M!`VJjY|`B{cQVX_K!;b4bZuLY?jh?vd~D*3!V79!jsHB7_x?-zjnPi_PXsNE9Qoi6ao1VCW!PK

MmcrSAt1=dxs^0NPn3)$^cQvvQS(EUa{e-?IM!u0w4r ziGxQ?2CwIks@Ft(1p}EB_1lk1KWmgj1&O@+2SB zKHQco$38o6_iOcmG8j!@KS_@meaLF?S9Fo>565B%dHUfm$g8{K6O{`+dJW z6#)ND%8ZyIL|`JpJowaXo}A6*+E5y>vzb8VG^`MDk!*qmASwVNlv z515=6tG*<XH!USOY-|FmZuaOXJ{@-W_L$$pfds2sHW(+_ z2O;Y^u7kgH(Nb@&?FR?@?)#Ia9w%~ z7^N<(Yfch^`DZQzAO?IkLtnC;r+(!vp6t%?vGV5&y;(cp5efZ8mvzj?p*daAcwV-o zy;7d7qtgW-)2jKlB3WElfX=U2+727p;#rSoiqMywFW<1fY_+;uxq5$}4$sekZpJiO zmaYnT^rgPn<=U^;tS%yj+l(>bz0fnZs828P#oL$UuYGAp`#Zb;t1>Zdrdrs+fhSg4 z2zi1FfcfSvJllW?k-`r=9Hb-Z19obdAWQbz0pGgqN)PZeiIzPW=NJr8j_In)A3@t6 z=?LOzxSH=Jy!KAL-A1yT?dYj}zaD7mAz6EXpu#@q26WGK(IJ&2o{reIR=HfxGkQWG zC@x*k!2`PzCZaWk&Zb{cAy35YZCd8jV53kU?VZ9*weFXzDt%p^!0#P;OM#)Yu(Bu`W-lV$GZ2=}L zm#c%eC3zo{xe!qw+n!QL3sYB2F)mj?buDE=YsN&U0hI^7#5OjBqZ@DhOdoO^v<$fQ zrLCmD&w$$*uq#x3Yd`2F;T}N`D{X}r%p9Q+bhDWr=Il!!=_Arh2w3Rv(e&=msII5` zX@URx_0LIr_cIuvzy0vkrzQdBV>^EoW@IM>`rZ$z-c-tCa~xQCTxKlY`7)^8ZbR5I zAo|&kaY;_ukgukMPP!P#Qrj02zvP3nt-2j0`pP8#w92&0;K5?&*zJyPkG$`~!h+K* z;83hkgs0ia;y0?m6-Q4gt`)!HFn%1Ee z@Y^ay9uC*q>S)0Y2qB`L1rR#ls19(2CwwOq2`}3+Idq=Cy`0fN(E{4tF_ghdlE@)*@Sa!IM@3>fISFu-hGH$87-|1PzjGy)(?4 z58UhaWL>*_z!x8`4{y&RHMR9Jt9B;(mwAFO$KvIkiYHh)y!1-u((oiPlW+L$bBAd<4f!uF~(QeT_ncrsaL=vl;%kz z*x+}vc`hX@=$*aJprj1z`OP48cdW{kgW?J17LzNHM`W19#%P1`8DRjda}1!m)1Hw) zv7?r8cTz0KZ9mH)bO~i5QB^YIu`mNT!sxL9cnx*L!;HL1;Q!nDP^L4~;o&n+upn@h z?Lkyyi|2*bp1O{zgya-_@ciVOzpai_U@c#`hE7+pV|4*V6<$Ld|#*gv}tq|%CBoCms&jY{UpZ55A&sB!r+nHZ|55q0B z+v9>s`RiBz!au`b{{{clpMKz^mdJu42Bo_8_vrHka+I875`9&2nW)QU*7KZpF*>Ht zC>;Gsh)O-I`!R3eh^=h2)6a8P4V(on(}c!;{Up48p;;c}Qu|#h?`Uo<7QC)%^QFcH zs#Z+giME>oPn!qYfxrLN+h4-lZ_yZ-ur}>{l#K9^4M2CKoR14EO{CU7>pZt77z>f& zzdQx+X&48^+k@t zf(~d_j2E!jVFyJ)shT)gnQ_m5Ms>7Fs_CG3Z@W+#5eo;sk0_;524ZOE0*BbITDs)s5@0Ur7rzt!bGmInS)jhj z>h{`$lwi;_&Xkg3%fMeBzx@y=&c|<`sHo8dN7q62?)fD66@g|-5oS4$*^!+)SK2Fp z*#uME^e#aaj3{9Awea`pdG%Rw-kjj9gy_Lk*En;W1cM&QQy_s(e@FD`?<_EY-9~Pe zi||!YiFWxNpU-t{3^htI_pWts$je`ZEH z39A&cFZ&Y%3b{4k5p!~iJT3g)7KOyYbQ|oWD98F`eVmZFYaGu7_KgF~5#2W{HmacX zB)hf=T@b350;3BCxv>(O;saKK4ht?)BPS}S{XX80w8jDXC|EKr=UCL-1Fw0ocpIMq ziS))@NiM_Do_vIH`Y#uiKC@IiI$@)oF=wl0O7(-mV{%5=`)YnZ=F5Ue{-$Fr*&y|i zrDit>oQJEt4!eI4{fPD9P4R1Z=u8l&tk3*Ed%1_$WULd2UmS1{o_?@N5Zqt@=*hXsmbpYm?2l!daEi-ib(dkb2?392SNwkyE^4%l}y1VbqsD3|`YFF8!jjM5SdIoT+03V^juXo0RIb^h~-1fSDnR{d} zyuO(%8%TXyc?1aEYLO3YW_Pz(Ag8>!>7v=I_*>7c5=JUn#u{o;Lm}z%x}B|0Fp@)zq0q!J$QBv~ zblA~NRfHfBLuy{76=haA&HXv1Q78#9&rtD&ieX#j>z#KDha#GvK&5HDK*8P)D6C|f zOG+}@*uw#QcvZ@wwSV>RUjhMMRE~o5JXX-gD9>S;G5a^}BTEhMSqOfE9^AaP0J}@D z=jMJW&P<*;m?o}&dJrijfq)=T!%i#c-02E;SEIolF}MgkKMU*yi3J^P7&~t#pYdT= z*)1C_l;&0a6DE>c8WnRGod62p-~}pl8>}|=_>2P`CVEsw2#VURl*L{%ELqodi+bc! z5y@o4KBG6_pKXa)2P-P-z~bah4dc_tjGBigS~BYoDId&55T0p=?DETh;`|#x2cLKU zN`9hE%21ArS)C20_5e1Vp7k>zDS|#3`r~PqstA4ujgMiJ|D_G8wA#R%hweo$D+;># zzBOkmZ31FMmJnvM*@YAGaCe4x;8H3sFSK4Dj1ZI62?_J}@UT(KmP@Or`4QwMz~Uo^ z>ic7Y%}S6xu-IarSR7xW#VPw22Fh-hL{REhJZn8TsVE2gZ7r6(EfjT!agvFgYn%ft zlt>z=St{2PnjO&{E=S&SeR;v=m#5{oqL+j)EnFxQ0X1Qe(omQj-^3L?A{3zBzEfCw zg5ZT0?$`K1iyqlKl~UxKD;_8JG#19Uq@wICNG&b3P-wBn<ru zl2QG?fv5V<7JZ!A7ok+D-mDw!((P?hAL}>hNu%h+g--O2s(`t!hJJMJSoDNEHw_tV{nQ*h-L^`lmAuih%@3NOOYm?is{Pet)=odiKynt(m9wq^ z)wZ~U(S3TjLj*c}tuJXLV|#}R^T)EN42Pq58>u#i#M^df0@X(MyriU>!tICyo4_OF zS6~=g&@6L_UQSJ=B&Y+7aT?|+;l_W%Oy_B)bS3%`E3G&xig;Hm{H!!<`p}LPH0W}(rtobF!Wjkr)QWvzy9FR+6s^`` z0s*|B-tLNtZFJ+3G~sIsJBZEK#OnL+Qq%k1*K+IaB~XPXe+mp6IMI>A-ga3Jpb$Ai zMeT093n5=xK6}eeClNQOP)hc+L^51fAHG8-+h%^j_;~6HE?EIwF{&%Ht%htejXtBK z(w+_K&{icNR98MiQnSzSZo~&0OHzo$#EN3>6R$dj_7i!|-n56LO)Xa|>c<0inm%&R!!dfd7MP123XhQFNw!jeB3@1K zYF2tl?T4^i(9zOGLf2sM&mKqc9Rq5$Ng&ySakHmoQsaG)1P5@KAobIx!)=5(7 zwLJ!}*}0LkP9>tIlogn$lOCViuq_LIeC-fQs)Bad4s^NY5Wu^_!5Meo9@%~i&+qK4 zDPRL@ebm$i(Eo<>H};(2c;OpuJln8>30lXJ2b@8YZN>mtjGR0755q4ue1xK!ZFD)u z4Dial39RtVHXWR9`^0=p8El5e)O2Zlq-G0V3)CPeHCUQl!TbPcA-yb$bdSs=-g=uZ zD4}EO=G3=&{eF1+5~z182i5t@q9gPWOClmrMROhuVpu6hX;LzJBov3?K*H|QrmDD> z0PhQNM+(mc?pF0zdU(_%5`WEQta>hab2)6QoonR@@O6e*AT3geD+WLuo?bK63`RO6 zCaQ{+RzIO)QAr4)B1F8;U#lq-u|0eRV0@&;?Y9n%TEdTjmUM~eMV%+`2-5<-yOK8N zzAH>bJy6^f_c6^kLUdpgikf*=(5OiYSVaIZ7bHxww&m7G9IxcQ+{{8@N`8!yx3mh4 z?}0Dgew_Xr&flb{mGBj8=YTltOBF+Is^`jAt(sS#y`1eL{@%*79Wv<J^Yl9Uz|5bgk^=NV>HpQ8z&P|4w~AfG&Chcg!|oSqZ(3MTi?`J9wC&;wM-SO^6h zB%!OWBO3&+XBqL|zJ5k~na^x_%BcmW`p~eGr-rx~*X~(FTJgKqTOKqY0k(O9=S=T~ z@05mNNqnF>tk(vKHlV`O&3U{a1oET3J7TWdT8-hbX&O#KM4ft4+qR!iBO{y$rDVsd zx@BnP|0AR!>3LsFAG9DhJSXl4rfo0Jzou4<@}guTfX(3tlH@47#{GonhY1I{ z^Hlw5`aGYC568it$hHd<0Sac6BSwowWDG7D=8C#FX=N>}uokre-W?%DscxVVjZg7d zX6T1dGOb?*MS0qrcMpt33QS;14u`;n+idr#K1^XN`ID8T@mHy59@DEbHs(UHJ zx`Z_O{VKY79XJ(*;R&-%o_~`*hR!H{W+%%K2mrzve-dBhbaN>RG#274<|<;GhCa()Ia(m~PpX04HVjTNG9{HA8QNKb#de9~jJ8 z(|>ZnLj&!m;WXktviNNpH*WdNkDIKm+hWfRvpr;J=~?tIFX+rr$$5oZu6=M&8=43( zMeQf$UJfdg;ivp2kKgttA_>=H+h?kzS6=S3hWgUfB}FbS%%vI$yoUHswS3o z4hmHlgaTj5#3qoDph9?(gLHj~YR^)a4Q+)gk3I;`e|`?n&(HkDEZjY>CoWM^8?n!_ zw#dgSPU>n90G&Ut#6P$Gg9Q8)!;WG#o+xIwHV}dAQ(lxutCGyL;?Rw?=bqwb9oD%z zRCetoT-{m0i$GNzq$N`&@#=d&a*nEn3Fa@MK4{}pXwnA>R2ZG7pLf;hUGbGtM}aZn zLPex=5l(ICsTZ@}_Nh=oTu(r~&p9E)-KynR42B~&pqp4F*gIaSoq`F%3d>EG)q%s%L23FXx+*US;2Yzqd2gqaF1-H9 z9v9N;z2DkmO{e-lnIlcI$0m0S**`K$#f0QTmt2=hu`cLUTiKXZ^wF4$IVKC>RS&$s$ z>paLl?qdJpbN)iHYHMHR>ClE#J1dj#^2y;vv&vc+@>IJgolCs~YcOJQvz`xzbV- zGZxPo!G<6gS~_mdiQuBJujypH_uKIH>E->WP%~EqLp1deG%hy6ZU3EcThk&#Xpnjj zgdmg1wt5eC5P_kvr}}byt_BF>k^B|L9`mKW1Ejr|j~TDH;e=e?l}%_haj{O0O@oE{ z&usnTQTy=6GZ4trN^!=mse%4%k5~ZgZX}X$Qhia^RZBdS99#2%c92K~%RjsVL$rEt zS$H>9B_0n>z(fetaX_e*#jg!@gk^$q%cGGRVTRzHZP@oelC19a=M;hc#N>nzXi2Lu zKwo*qvwHg)M#tpaVN=+26~y~FTTITtDbT=8*@+62o7&4tDQ!3ixa{)HwyiCwF;KF1 zU%e-YdmOxJaO=1JtbD4?j?oUzQd{vrJIx->Aw8ZFp8e43XQtGnYBO6V>I#~8I__%u z&eno<$GrWnf_0#p#2bOQs>Cy*#W@c(O59n3Rd*n7(N3cR;w8@6aVUFX^L~ybjl(JT z?_5i(fl?kEf-OuzcyVVC(LF&dqWlaLh&lW$`Z~40(t`y)NYynRwAIZS#4qa=x3Ez( zi`_<~CVhooSDm3{#nf7IwJ3A(Nhugm$m}6kok2Wu)aq=86#NPdGTDj+xuN%P5UvC9 zXIZ$lA1CT;;{a;7MUDx{(TDod!YtuKf*BdXClM-%Jb{D^IwAK7w{GCg?=sO=H7P2~EHllbEoG?@Lu3}$b$%Eg1( z5-&QuLowepNlpbv+q_6hbI@$;!Bf1PCA@^ExtoZrxEH<0-hPxLFl2iTq0K1~An|VD zCE}vIjHh-RhKjNvV+>C&OoyKL?vpX}0PB1c|3o^;(x2FPvQ^Use?9z1TT${r6%@q& zz@at;W6~m4aG?95Ny4*Gq7c6bL${cDswg!IbrXRt?pUhn8j=+n8a!qzYL-k;>au{) zvKiJv9qH5CcnLT)`pJvt}dwuM4nOkv{y|0q3N zZ?d)O;gp_F4|keI9v4qlq_gqnpZ5_C=mAAQeY^oH+o0=}5=gjxj|SG7dfh+BO&$LR zK;3jNGBvruGO@-ns=|)gsLqX0js;C9RH^ofy;8o<;YE?Le@SIRW)-;lMR+<;Zq+#) zIfMo3Q?@rxc}cStD#gQGYDAw(C9f?Y0+Nhh0k#haGU%7{4s zPN;s?Nu?23nCRy~+Y#V^VMXL1(zT;h4e*e}xao%MmLrK28G?kq19DD$`O0WkwQq|1E z1XyC$0VV`HJfPxycM-zftzVIc?x|3vYzGLW_yJD@y-LU4r1UDN_lW0eL^iADG8;3g z7{O=+9bX>$@J=$g!eNK6RNHi_7=~o^>Qo@;H5a?emm0d))81KeM0V(X`uZ8$A$Qar zw#eY#hBtZw4QQ977{F1?I(PLRpftULH8J|;)JE&7jP|pPVBa2K02+D(Y^KOUlrTNX zoQ;q&oRJ)o4cG~{l^X-rLmr{WzwwZcp+dO~?p`Tv% zS^}50>UG*@1-C;VB|q08B8rG3LiSQpQMxY|E5{io}Iov2gcL+w8iXdlW zbMTql9$5H+b)ejZE5~$_9wY@Xj@C4-MgoZZl0Blh-a?k$1j4+B=mmWPF}rQSX((#a zb0L0UPv%qfr=4!Lqd|Jx{?~QsFJw${$E~ylfL;V zd_BF^{VcMGPRzy)_XG_Q30-y~$LB>=XdL~bGLG0$Dg`WshSc%!(xCtw$vIE4!Oy_t z2XIF&Ar)$1Ceb5mZHp|)p3OpeL1iE5H#dw`ZIrCzZtp1;!@lbH(q&z-(njr^rijxf znazvVroPpdBO^M%m9^m~lJ7w-9`j_o+t~VRtcIS3RiFdAf1E4v7T`EA+DLT9fF9lX zfm>uy(3>}kgUO`bl{@TppM++ebsm#vjD{3```zUQd(n!Z{p_*=w+;y_IOc8J$SoR9 zXPO$Kq|yfTG@XCKv_j40*+V$UDU!P|K#klYnD~cw&)Y+l;t^9R^tz)VWby8 zHfYgd9sn+d>0i3NkI-Iu#4(nP6G%Qb?g3tYJ2ByK#oI$RR;3OnY8B)7#iu^VL$*B| zM^(cu)x5^j86;_T<~DMu)-1nEv_CG5(iUg}b}(1y32>TvHMOwK&5C#o6InNy$*dCQ z2lvjA8hIfoiPHDEiF2qoA?0BK1l=@QNuM??QnoCCwL<%q6B4NwAyO_!G-LU-kn;y{ zX4nE+H3HdeRTIq?8{o%FPPg{9)vuT@+X4MFd%LYqj5yAO(b_1o$dOd~&`7cx8(o%L z?@(HmT>3mIFC_s1wFY$)KA3!6-Vtu|bf6GpPa-*wK;$D+EbigD0dSm4CNvL7Lx9%L zBtc^IWtIvi%s9eOn*h*UBHMQ7m#9QT7p;(c2H!7(rfJtlYN>lHF-2tG6}3f+Q*AoC zt!|1qO+Ns%uE(&A4CONv9sNuxQsyBwn+M9%5b>5NEc+>3sxF#G-ec=vS}L1^t(vv- zx&p~$p=~w-|6}$*HUD;MAvia5QNtA-(%x)J56mjr`%}2lCa#2T&aForsU+~o=UpF~ z1g|q$)ELBQEG1ghtN8lx)^6pj!m&_a@3-Hd$As^H3WxLE9aX!Bc0wSum9iqqG*LBb z0;kqU_PQ$9+N&Qf8_x^m=^BOq6|zw7>bp_8C>3g^x(^TQ8x>KFv$O?YA+3u(?xzj= z=)5&3TR&*sBU`6|L(vdU;R@P-1+0mo-1b!TI}1-`u)73osZu~d6Gm1}_i#HdeJuwq zP^_k4tDbj~RrnC3NggWrhcUbUq)l{V9#RwF;lqKFlIj}u)WxFn*K2?In`3OY!J&B-!J zREa7f@(*+YTTMS$#Zoh0Ya`0FJxSI;mB(>4I<}QEfYLVGXqf!*XlS``?en1yA4vcu zPL;)Wg}Z@!nX;pAI#T#aFkT?4f*@o1$|mf0l3YM4l6dIq#PRM>RpJ*HLYJqN+R7;G z8IP+96~u?`N7Ue@$Ax)xETlEC#mdBg$0@aa05ojgG;Zop2C3sd>_4%U6Fp5XJvM12Y2b&4? ziX}4pL$d+894{q`T$~ObIVPt}zq2TlG}68qKKiyElX~KA6cI)kt9;bZLvS5XPM8KA0i*qU-27M%D^gRTfws9c2%v<29u%d%jCJSxk^0(K+)<@M+$!(H4;(L z9(OgiH#|e+@1Qrc*mX1{7Qtc=TNISMfyWTAlU@UOhLXGtih+?IK*k9 zdz`fCQK%9&kqp_HdE{d~O&*m(9+^_b5AFwCC-$Jqx#VC`WQ0o7UvXWp>JZL3v{Zl4rp5*28uUlb1AjabUj+4SP4>fqdE) zH2{< zGTS%bmH!3&N1kMtUI-nDhlK0S$M#Ssf?5Ep$o1TQL9??oLc-KnXnf*~os2AcSBnSv zw3~K%Y40b8EK+8jOISqu`0bO|-#}>RhbGuL7VFiGGaiGgiv~zSroVwxNaVA1c$#cm zD4R9VpR$zd3cLvxB&dyU=!ap9MT4X4W-Ca%XE0y+@(@_5-9PkWnTM zc2avGI`M|$$u1GS!OK-`0_AkfIEJ(Rc-`Mr#ja-6Nqu){a&<~j)8>XZALV>q3zaA@ zZILU=QLc654c{C}B;_0YmRf695#g8E?rH2W^cVn00`d)4ZN>({1Gk;?`Z1K=M&u71 zvw;$iOif?G^%elwmd~f^=S%<&X!pdhrhLqG{p8c^Nz1?i2$F=jKFUt&K~!1pkyuI) zBVF!C%~**QmRR^m!lqmkvrV!OToslfpjc(kB(l!xogMsk;KB@7#Z^ypSu>a=QDUoj z05C1-6ZIq$Z(U^ifjr`dJfohecT3GZZ= zEuD()dUvuqLHA*}HyxLOA_l6PsUm=FRCx#stCe@}MhK3hah9RKU{}3R{Vk2fGr8Y|H}XJa5Qxa&QdT#irtSJiM`?7PE0^)xvm2 zoX}yNMVz8Ow^d==&GB(tsJ`Yy?=kQV8%>vCyk^%<^oUa6JdI_wp=u*!X-KlPoG_mg zyzH~2Z<+fRPE>mi zPyIMTnhdi&{@m{ZrSzRp)IvSb7An(hs5hfJ>L@=a-)fx)C`%un4z9UPF^#TnASpnV z5zEN$s=-|f1MksD-C#Lh?Cf8Iw{@{GFa^lL-V_fCrw^{gLp0!NFBhnAT-~niB|LQC zR?~(a&h55P7mNnxvnO>;kqlKC9-J+R8CZ7=Z17hxS(sVus?qbXoh9qZ*=kx3vb(M7 ztG@0lISnO?;~qqok|+9F658_svcsMOPcXT~#;Gk>l{Og}2@}!-K?s&>cE%2_ZHeV+ zdd@f}vn+KdImM}mpl*#>z9{YvUm0ek>2B*NMaiTU+vBqIk3&v^c7Cv-x+a)z#au?p zvNVE8==Z}5IV^c?8)Oy_z+C!I3(%MvRw9eKC`a@-c3jG@0d7k3u=K9HQ?|For8|I z2S7RLOVjSO+Y5yD#GBsOg9q}!Iz^Zz^e0$)GpJf@x_v9it37eT2w(HcU_jIe0NN61 z(f6>xzoV&@fmNK?Pj!*FHf$N7Vx^{_sn4cch!OG+AzljTn*ny z@@Puib3_uR54~iEhSgQNC9U0CBr_bER(AIGedsO!JHW|52nujSgZ+x)kU@;pOiCLu*d~jC}el8$y ze9X<6?vsRJ=w@g)d~)Z7C^xd1U6HLAnb91zg@E~v>Y`3biR${1T%s(SAv+8Wew3q0lUDpAT4^@|cI(FWNk8I*KK%{gc}Xhl zOGfQagTY|OqV@?sOl=GKfUsex08C0Rh-wbVZCl8NoKJf}u`kRW(Id;zGHDCA__C}z zyy1_iuM0%g3uTT#L6~_>f0iFQP1fdTi3(O1Lif^xxt!noi{r`>J!WR#)sXQ}NI~|) z8|V_6@Iib^&>c(%FrYW!&JdQSM>Z$>VYZtO8X6hT$^1}`WLNhn51rp(jgRUHXzO@T zFe^I$sCKC@pnN#0O6br{TcYX4^ipeXRK=4efw7^YceFdQff}xpF#Ftbw4 z)E$X4;D&K-|NeWg-^Xz8`*wk;Da)ViCmJL$O({_(4>*(+Yp?KXd;cO_XWL}JQ!MtN z!;_Q>$*^EtHm5sxDtR5l6}S(bicgI1CxtAW{IbA_MN<1qse3QaS=?`6t-q@~i|38e zv1>!0eI`m*%iRV812;uyIvMcYG({`=ygdVr1JtRK&g=n8ZQNroQG%*Va{ufX92&TY z=tbLQuFpuxI$!znc8zF;swHc8F%Gh*HodBDqQ{w+_2BUelnYR3<|HgtG#f3 zI(I>BGD%yRZGl3z7DgH)h{g~VIjY?;kZ}(r>vUH%&MgTq$f4Pq@cEShAw+ z+?*sHLy|>eM{COsVt_a;0glf*nu>0zjsb)Vi!@5%CS;k2ms&^Zp2Mo;ds@sJU}Y-= zSXSa;wm4tI6HVMv71}}4$gXttcMiR!dT6wLT{&?ldXFJRkcm{C5o`5y8mQ0PPM5$# zef2V!#DSc~3;l!C>cN^evNx>O({9M>TY^y}E3A92M_8Bv4wF_2X~G(N z4y&|#z?6tg0s^~8_VA<{`6Df|-HC>I7D3R98XKg@iS3xCF4Q zU9jB)rSz0+rnb_+)uvFFj&Bk_Ti=P0Om&)x)LxmOz^3obtuTGv$wN9w!=rCehZ8V zHRg*ni)N&}Ln7j^n5JiK*)+lk^C+&=?3 z5Ma1#d|=S&spXO35^zlnWUZIQFz;#s$$+$;6-W8$a`CSNG47C6Hm!XkU5!d7S9m(G z$YXipv~KF6!!!!|_xZDLKv`kDfe()5WFKW$vs&Ckd%vseti1gqO%>5slKhb4r@*Y$ zYTdI8Qh59QrJaW+RKsDTGReqSJuj*SGz?+GsI`G^Kl#)wDJAVUVnv4-jac@`y#BWkA(3J zQ;bo{r*xT^CwX@oPGMFp(sfgX@|qdy<%f|FZHCRNo@eW#?hi8D zR9#H@Ei1fSUr;EMh)q6a-JKsWgVV`(a-J7unccMy=W&4IR_f*pJ3Q|SM@D&@o_tW!acY~gY$VT(* z3oX`}IvGlZvYGg?+ffQNfz1s-0nc1#_aXa@6dwvm2lPzx5IAXC((k~%c~aG%NZ5jR zz!oVW;p=*1rQO2P1_X@vzkukK$v?_+W#hTXxm2&e2Fc_p@k=MRUf}8_DWdVnFhQlE zfhLrR`Nh^|esWhJ+!iJb#=E3jBVu>SMv&6*xp`R#q}_InK;Wo0mydtwsA@#MS(sbKC1ixe2g(%*iMx& zOf-=HcmgpTQ%0Rp93RznaO<{aWqV$}xv!b-Cf{!vs!|LPY#P-SkK<~&#gK*1?%dF= zY%_vrS8e{pLAVn4+B8bcyOiBg!r>4h+=Bs^40NJmP&61YzG0=OMAv&;7wTSeTo85`Q&N6p?UtX(TmRx5{;}|$j5+4{!r;xIf)z#uz~*H zuLmTf&SSj&+@Y4_gB)f_RUs88M<%jBOE6U$?)zt*xbL4jf&ewF7#-P}V#)@)3b%T| z10iB|(ZoB3cJ|at)N2$OP-P>FcJF`u`tRZG7tpN&G^4nJTKfL`I6?ON37I6TPC^3X zs$6Vt?t+sCtZiR9u^nX2BU05Vn zI@h!`M8dP$0%esJpbgSdbl53=gxovDV8Q+wC_wbB#uN}#_1xrCDMy_=BS9%lD`#-% zF~;A;nof$`Tah1V)J)=7TeZlD!(-wmuV91w&|{jluKE>2HEzn(BPP{vztpVn?dSSn zif0Ei!ZdJpyL0(%bX5t)Xkoyft_5IsqDz7I+31mu_6sG`o6ySMDi0!oY9!1bO!|TK zR_o=HmVmEp*QH<&{ubuOSRHi-5;ca29dkOm9Z;sy&lcP5d^nK8ywJBsevN% zm9PF8%kks4q&c!$hGe@$@(j+kB;L;pNO|@#=RG6->zJhOA>FeXc6Zcn2g!5=G#Xs7 zaDT~h8Rmafy-?|?CRVQTz?N+VcOUP&0Sf7+ZfF3QmM0!97$bpGV{D?RqIDa)TR;$6 z*`GMja!wU0I01(b)#ZU>C8Vm}CL|MiQI{;=(bq>-p$wB}bI>yMyA zb1XP#%{Z`gUep~uLhYzQ@s}8R?(1qQA)i}A>kGZJ4h;IiSKoX4!TyGZ&x33NIgwDf8k{A72#o5ErXafr3OVOYE6;ZJ$BR$u{*T~oZ=r| ze+|zxw8>Dz{hFXCaD?IoU~URanPOHTd|}Q$vTD{>v=Lv`xe$7BHoFR3(7^IoRZK<^ z;f2I>3kXj-ze^if;!nD}SBbaOH1+DSA?M>59@$kv33)EC_ai7En^?Ab;aX;mCs$CY z82LD{Jdk7Z{=*}@GsxMjt$s9WAq!%QE-b~1oh-dJ=m|pf4p;zWyO<9n(2C% zj}y5%suoyAO@;NKtF+Vxu%Y)LE63QF;8=C9OzZL}`I;qOQ%$Ig(NLTjqJr^4Q}j$< zcG8OGd&t70PJvMyP1mp;(Y?xr|LYIKTN)wAK?d@y9C;%I4zftc;HkPYtnbWzaDtYIw;t6)Qt^qJvf9Jb#y6yQGPckO zkOCB8pY-z63_u6iH~~w799tfYSM(W7#^O)>le!j3bmWGy`PxgmKIV=I7E251p#Kh7 zwrc&QGJit!dkIF!^&r$($!)2M1)OCS4x;Y!mNcL(I-XhCXV#dkqkyKu&US?ZRE?51IWclnXt0fH$Ml_TB3b?9%`1zcs3nUAjDE&3 zR1iIALU(pB0OXjwE;6JT^El`ynv*-MdQS<*uW?F4Kj1TizvKbbOr^@J9HQ)}!-?>r zHe1_HpkRa9%}x(2^bw%A4Mmy4?xm!4)tMEwI(BPO{O-WM184wAK(@c6#RgB$s6o`W zM&c^~;Zuyo3%A`<#IV}It~i$H?gp~~-q^SWV9=+@XSnk^rGbq-hHrm6eEZwVVyjOY zSI|y|!h~-W5O*ctSP6PaVT<^b9u0LKxstrwtqHk{>V^2m(^MPeD>0aAPr(fXba4&j zCS34ll{yQNP=Yigc>VXlFZ4c6Bz*3gA=vpk5`rl^V+TSHO&ULc8;sI|Lq?QbCo!9x z9uSldrQeYN8sRV4%}}kmONjaN&fw>5(+o9+2TAn#A~vg zGE*QaT}+4UDa0{NTdgtEwoYEDDAQhy>R*J#;5^8($o&NLM|_a*KhU#oK}Pk)9!EY3 zu1tVon0%pVBTF$k3$faiSa&HIi@@Bsy^SKma2wi>m@fAYSdC4+H?GPp0#-a@d*m6z zDq8z%ceWW4r1$L?7A%8WTV`tzMQOBpSh8$njA;~ zCkfe2$rYAsCtcSs&;-QewV6=&fc6*d9V<(?F}JYAfw*cklaXIZ;yj1!&No$=Ji9_2 z!421e8T~81v4qO=VW8qes_mfq(&ee-(p4r`EV07wTsgayrbO9y;K+TB!J`B;wKvX} zF{v1>qNM04+AjTZ8qEIKR^oOvjfASJGFj)m6J?zA8jv5q6G?$0xbhpi%Q++Df&-pNJy$=*g#^8Pe1v&fTnh1JLn z+v79n{!y1F5F?7aWBU`u9+e2zp4jybF7O@#M>f;^k=5mE zwFR-|qaq*l5r%$(b=)AO9WOVe9+qXytC}j31h4?8njUq{K?Ja75BAaTCX#DgJz&J+ z4Q=GfMV@YDp_ z*4=?o7rAu=jv(ekK9K^~lJ8h=s|gmE%d9D3I{VRja1{@-9Z+X~i?odfmEG591Wgl@`HB!fLoJH_l!)6q=|+09y9 zdTh6vmgZ8id>r0BJ+&9F=wD0P=EE8TCL*>FD?s1mdGqF-97H>P=6#T$2p064*Q3u| zy5f*!*juX#6n{SmR?wm*1$9uEag9*uP?E`icwJSe6`Rw=^Q?mP(3PUWF2JT za@AWQ;plC1$Qm0S>^f1_)h)$BY?7hTZWx(}G1huQoBS@k{y-^cvTal(?*cmPVwPQq z`5lzIb>x8K$`%tQdc8XYsGSzQXCL_5bMGtj`~WQG-NK@lvez`e)a zIr9(-=2?EY(=xpAZhrxZst4&_cWtvU;RJl*TNKMm)}5;NcZDm8EnZoA;AN2&tl&}! zv+@k3U~wZx@S?q(J7{uMt8t%Ys?ek$4zyv9Wm{yu-eDb(zJGyC2+;vrtlK00diZ+k zvGedipwchD5&pwBEezHt6IsaF$pf(?vVh_&JXtp>hO9_*{f}^q|^zA{V^=h6Sg(Rs-olN^0ur=kVOo}|o&OW`s00ubX8f9$h%BiQh zV+EEi9()KT%S$kgyeL_TpF`>N)xV?y>ZizZZSz!g)c_g_mZoYrn6(^L>$U*NEIo=V zNq?{nQ!1G|g`suM?r&c|2G{b5aOK7P14+4$C?knKJI)s=UyIs1trW+&_ruAbT`Mo5 z8XL9K;Fu_x=s_?K6HN!L*n&IRW8(yb5`wj!b3du6W)J!K>nFBeR0u8Iq1|2& zP;8rGG_v4f!`Mk}lkAG^dT=-Gwx|dMyhD+ zrD}O@I&*>YgrduPV@gQmx;lXA{ijkNy#DZVy`wQ`Axg>u;2&;Yq4nktr6*OD?I;{| zI`-bHlcctm;6Ulr+V$m!x!K*9O76L7cB@F#)GVI*YTljo zAgLp~Ax2BSW*h>t!O?0CUbVl>W2y5=>?R8WIO0}J$~NlDDGhbMJY+*)SnjjIzDlmN7rBR48{dEm zQGy;FOHTG%904IC@ME(jp{^?F=M$~O0J-Q??bqr_-8wC%E8OR=Ml)nU-K3J#QWm>6 z#Jpw_ELcuM&aZD0e5}@lpR5A5FtncUa-PAq$)+{i2fC&5h(>wl{UFif8h0b8Em4vK zIa5sY9f~1xsT&F6P~nLN-BH@9#I7w{Re{*W#peCvBnGTb@=)Hv-ePLntLi<>WB_>W zhkKD_Lkz``TE^*b&{nY=<_JZxK)2koR@}0xKlyK<^GKY}v0TbS4dn4)-J55FbvVqT zGl>oIt;EfB;b7d1Y#*#+pB$)8Ymn4VIAk8vC97B0$@RwNO;U~d`g^Z2Q{x=7ZhA-9 zxig^)v|T|kQZNj`i?foG9e1H#OeWOgtoRm#s>yz1zlRJal#qyiNES&#$Wv{_la`wz zHz@a|k?G3X1wb}BOsHmF+PY16P8FCej7ecL_5{FKbk>Q=vio;MlfcRiQA~=&VTd)c z92abzp?rv0tB2Xvqv=L;rD*zQ1?MB_f*cxd8UJKwn!;j?dXW{CpO4bEp7}JnC+Y7}_)s;Yo z9h8xu0RU~zeu3EEJK1A)#NwRq5ushK{YV0~{^M-(ZIW5soj@{@v?yu3LTVkLSK3_4 zPG$1AwdX{65Y!p=5aHhj=P2V@vNYFe!%lLIi;$^yrfsJnduPBE9wUk^<2_^GPe#?Q zod)RBAtTL80y2n!bSIS@$FBfLdrSb6`HV>a4o)XteiJaxz_ zFuvfyVRe*q}o4zdnsH^HS2wl>8@whaNqAhZ+%sS9|p;IOW-r|*gc-)o27I-gwe zV$)Q}<}Zu@*BIIKrIhleLsORG7OIM8$Jn?8S!#zpIFvV!e5Jjnv>m0or%X# z9PFXhcT1SpsICivYjo0LL;hPE0}v<8qX`Hng%cR{@t2({{}xQ2O* z7lZdFSJQq{dpok-)u4>^{{~8P`sy82V{DGI=5hfQiR7?PYED*RQVoE9MI9q9CQQxC zi^6QdxXzbpk4P@S;vE8`)CI<{!+v4Lr<|PuBVVRAYUCi#`Z2)+k`(zDI72fO)~bI7 z%tiXEw_j#JyX=q?oLCLUa;B`V*XtuRj7;eKEN;ReHFTS!H%fb}+WJ+Fn%U$SF`4`7 zd+ER7{EghgC))y;cpiEZDu+>iyH(FvKl0^)(?W>xd7f~DRg7h&&iY#wPlK~7GbVVFCCH&~4@Ex9S`1{`VFA{q_s;#Y0VgQ>s*$9+u z=Ev;m47>sn^~*5Bvrxs=I!wJsACYy7W&0e1|GM~fn9i{Z7 zn=KOX^|kQbuYH#>I6oHPeX{4>j+tiIY}&i+#3QK;r^2%kp`f`W1+b|TNd4{;K;TWU zDh}nAEC2?e#Pq?il8EVbC`WoOA>ed1$w4A#`34Oh1DS%H6z3+a1lNw0-YY1O!E%Ac z+d{um*oU3zm*Mr(q$SOfSrG$;1*DqNgX8_LaH#zbVoFhOZ2E9RQ~@(@CM_;AmPe#2 zEia2m_A+j|PMH+n1H0AJi4MR>X;t}bzuTySlggALkl%Xh#7YSfj>Aaj9qor`BpR}`mOW&8}TuT61sgtCpS1lvP?7O<)%vK}T zn;eJgUcrCgl7h&C!IC`>bS3Lqj(ShIP`ph5{YO^73y)LX9#FV=?y$CHBU z5*VV6*kr>xokxcRszXd{w2ImLy;~q?nb;K|PQW`B?kf@6J%+HxOXPd{>(?*CsloKa zQ-euSDp6rkQvnm;yd|CftD}*l#0avMc)2PAXirH zrV=L-RS^!&H$4+7&T|t1^?wrfCQG(t*LC3he#HS~RTM}eHAhh(Kcq}BZ_ai1xZb5V z_lCznCK9u%8fZwFCQ`OYW}-(DAdm#i;ywIV?X}Nd`*@^86RU*xGV{HN8}8@qb~Tzl z)LJU@K9;@gQ}c(-+6Mi#cUZOhZ&>~ho?zpw?fPDa#Mdi>vEQ9_U%}5 zZZSLuYD~`bxc=Wf0w; z7yO*uIzZL9&!b6mz+RARGk<=hd&2F2qT>^~QOj^T06Reh7RSV?Y-Pnp$Dom!lDlR# z=w#%2chXp&{81HQC5`>mjHn%*SfQv8`aNO(1mRFXx$Ks7Nogb5Qgs`xt0W{IZ17P= z`y_1iaeJd|I5%u7ds|Lbs@uZG;``qZKm1|(ntSLsDRCfGO@`+VRNkQ`CN`x4xm}}9 zdehrIl#8@(sCf>KwL#_9vGI((gaM5j=ky)&U(trGE9`5qU%RTPDm7$lqAaw{NxcDw zMkiG(2%g6dx2@};wj28l7ARcHH7Zr_f_`AqSo4WR4+i-op{8jj?6!5-y{aN}I!VL07(ieYluWY1D zJa))KnW2nXE?Y_o1*gX*7wlRMs)#k&@?o5O`dtGzoqlfVW?p|1K&Cb>bxZ$igo$(j z=CE&@R%x`{t&K#n z^hF^GRFqVQwVq!wwv$=;qI8tch()4;5pW$#^s8CzC?lI+SKjf?DoxI>B)#NSPA1YR6$W{&j;kUmyr%C|B*rn~c?6z}4)8tN%V z!L&5o`fx{SS}=@Hm#gFHqIP|(niV{q75Iv)M4DaMD3<$43!1^7cIsO2fDB#$mR2hX zGjL|%(WtYvt7*jHba#ZqCz-bC(NmU|k~3OKgWX&gJpCAuX9kY#M^aQk2+Yk@OBl=sbxhHi;?xj$T zeFeuLsYV}w#jns-ac_-|u2I{bu-UX(NO)07n4?KKp;W#XzVjW+z!_XExx}V;GyDN< zWTX=#l_09!+e1pawYnVSTe?VRl+Vx}Mx9*?^}o@9KM*E9tpZSs5qKt$2>NUzw=@}C zIb!ZZ#C0!!aox1*=eXvX@nky;ez^Ian0r@GRw|4YI-oxk-fe~(lrpD5$~y%IadrjZ zziA2C=&{doEE4Ea3`#)$i$fbG?}V!5Fn?;rq+4B!-B2xOv!7I|#VqADpb%68%9xc9WLFK6r!vAGC;M)1$DMM4)3!D24-$P$c92YDu!S0yb zNeRu5qO`Lqhs;DvHnh-$rp=w&xM$6aMO~w7UymvX_aA}K_TIAE6Q7HtiFf}cNadv{ zP{lzMo!IQNgxGOLy+9t_rzR zBxbL;WuEn>+&~ulhu6>F{nzmRbE$r4o1KXHc8x=C5@rC_$@yDywx-==grXK3*sGd8 z4Jxe%u~-lb9I}c{zOG$oZ`tZN!4>c_txDdaGQ|srcILLdwVc3UIlow}A~kA;bH$X! zOE3s^M2oEwRQji6h8WJFv0t1fX}-< zhqmD+rXQ|qvSs*Sqvbtml`MpPNsyOh|=jXVkT!ClU){Z}b=zO<7bh|5=)l4LzpFb7KD&~(7% zRCX*UId>7FIn#at?Bq~z{@g4vFQxe%_ko26ESq&gu`HEVvLX;?pJ)YFp(xo0SGu7cT4H&YF%Na zSH>~{+-!kAJ_C(t)zA?}7D6axsEwTE1VNFp=a`vY)@tl(0op1*R?=uQDVy?CkGRKE z(UB3s`FJg4$6&U70yzE(oNr}5^nl?z7H%`+WV&E?No~qTuANRqmZJ7~FZ3PDXdE?= zd-2$$l*5pb!N&14Aj_bDSAK+Ts^ma3CCDq4jDztgs6>qvah7&=PfZo@JD22F3a*X4 zDk)r0LfYHdrl6~q9E|VXq}{R$Phq*&6<(!j+w8TAiY91&gri&jQFo29wrVb2bP5~I zUa0`Z$@l>Hse|J7o$3VwCEN}0rbbWZbmg{NFu9`R-d4Dfqhi+8n*q;I0_q^ytmD*F zYWdzp(^O*?AIk2%7C4^;a|pe|!~we#AgpYb^O#;>v9V5hjsThFxGb=(Up5eS>Ml?T zyD9o&D|Gm0<0YwPURX8bAbZ(tO1bYpwP%ktj}EO@z*8hQQGYzFd6gtR6|^W|6x2EG zoXd09B1f3`Re1fAy>*VQq_vtQ7N=j(kk6X>F9y#arK!^u7kl8|zF=as|}Ku=$Q z7&WKh#RZ6`;@L$}B$i`hanfj$6jtfr4UiuQfriOGJ%IJdm6%v<(l9DzMd3Wh<+fA) z=c&k)8fj+w?CVudz??R`z0`_GwxZSiGG~4M*61jKf z@6vs=yJq1gH512@-yv91&g{e_t6@adxh3PddQbM*KJtHgv6uettM_s({-j%KJ5Ks3 zED()5;!a;=JO}tCw*Ew;-knCTzb0Q6Vg~Pj8{Yl&{cqp@URx|QnI+CoO(=q<1=kXl zOILntdPw&?U71T0&3k}0Clx$ES=;U-3IYCL7)ib zVnHzjDd{$8=&#t`Hv{pXMF2k6P@Kt9r3CqOpA9=nYwc8h_a(q>t z=&GW$BZq!b5(l5)JKLboQU`DOnEf8jvi*kHZcp3$m42d7E+o4E6TeZc96)owu+X#X_^!^M_>$KG=yi%ZEAHdogGp~ zNoVybqAg^~tv+UujQ3Q`ydDw}k}*Y!iVIuj=xbvXvkWlM1#deA5lgv1V>#twjFbU_ z7Mr}yyqS=A)m^zb+q@sC70f9&&-PmzaIjfeT5g;Yy&zl?TpCWjl-$PwfY0*a87MG> z?Jr}83A=Tp5SFB$ul&~+%mh|D!Bg+>tlFn{_YUSDYuwuXG7jNkx-Kh67dIVA7|IuN z$&h+AF8!(!faH=*uDNqV4u!4P&WU83i~-BA8d&wiko_Nw*D7J_Mnt$ee5W6JvBtEx zgDCDG(IV4Rclf%d&t0nJ56=dcsP6V}FlwxhFJZ^ikenMT%B)0 zSfa=#4ye(u7GE4C7zbSyDTy1yJ-u zvaKgRxD?&LMPF6NyU#oT=5h>^`ULBIYT===)S()YM3UhJ>~d>Ch@BYLRY#voe3cQ& zr|lQ-P0;BV#uBMJ1)oJVC>iAKx=@+Cdw%doK>{dtvQi{uw^3lM#<4&GbGKjZ=0{xI zY-?bS zj`QLkUZpAG37ePo21t`1r43gt0o*Uw9k%n#nKgKX7YwiLs2j6{Kf;M4FZCli9WTLm zR`RxX>c}1GXe2kRnzBMok?g;j8EaJqf+r}J@=M-3YbLWSwYkPgtt!H>50JC^6e$ce zEw`96gi%x7{ck{NcxV7X1D_dja&;d(#}L|;$W-u-hv_11ryDLwp5olxrUIq~#*uDO zhVr;18?>6lMR=;(Tf+oQj+~-C z_LW#vbvw67-Z4vZC+8wUV4g2)2GEW<^r6IYP*X1hRGeJWaz~H2C0u18AM%PBh<%Xh z*##d92(5-;S8YN{6NYn{=2hCj;T0sXVQf5R>(pX_ce$1S9oQ&xaV-6HCsG4Q^!@3s zj~%xjeRq2!wS?IZxXV%*s{YIp6<@m`NP!E4+J|f9gK{4$mf=mdO%L7W35|ujssqVy zns)H*mas*^FHQG<{?B&V?T;tDIRZ{$-D9A#CrA#-&tk;{HXU7)1xu$Y*4dY5=uAST zRlLnboiZACbm34jv+*#69JqB>8ZxT-7-3X#yzw4+n?iz*HhcdO~ z1aRW0u8$8ckTFQ5e&*I~;M+2L0ibHWaf|(cK-|_@ztXh@NfiLLpF|Pt3Zr?uwa%JS z^Fk@HMqrg~429vDFC*RP(-uvWI)M}VRAbzRE5TViLJ9Kr7dbEIjqV*gtZm1Qg9NtkE4Kq^r%l5 zIdn{m%GLr(x}6qtg&L|YD-i~>asqQ{#L@h_|B52yA6|c{KsH}4sh0U0YAAjV&uN*)(~n^Vn$bsQBA#@&xi5-x|giWBe(dI@cOd^K`AH?wLUse zzIT;lclIIV0x>MHTJ<>$lU<}2-{z|Xn?1LBuTImZK9Bw(nwgp2#D}w3{W84%3do|z z!#u-^6>7(>jnYA+6hPAhR(Pz5fqdjt6S50a)?}dr+q`fi4l%|O|3<^{f? z1xgkD>FdYgZ_|k$`Nc3VrBuZA8nc46lvq}x-4*uf^Am+k;vQ|CQKnk+0&T)LRqR9| zTG}*LHeozVEw9aYsSL}r; z1)+0z8-mCI=K!i;$y6WIRor605+%jJ zyQs>F@wE>_U$US22CX3S{}UW`*`$Vg|0ft`p!KhDNmeLbjt&8=r5d%JKvAD+JQZ{G zqE{aDQ@q@crIB2(!u((AzDTtabEJ}D{{hmJVmw01plKucc-=L=KSQi428)^@SfdTi3@ zmU5f%Br_oS$3=rGBI*jIfJMhEnEg^(jPc=nG(&E$kmRyik6YvbwU+FO zGATABbrCy)5IVu)J%Tz1B?Kqa5+gsT(|lcQAR~IxnCw3*R2MRF4nUaTpEotkm-uT_ z4;|Y!B+HE)#j;5KS!*W^bF*2HfvWLbEVn-B{M#MgdNoTI)s=_=ZaSl&zm_xk1AAhN zZ-Fr{@2HLODSr*${ugh=*BbXUGIv)(?-bc1Jy6dMI5>QHi5f(FW_%E$v=p8eP3lbz ziT-3LSmV`Lv%}bLc z_R@!+kglYDT`OA;BpOl3k|4uQoGnlX08n(W<;xouT{zZWy+PrS$kliY06_v3THK4S z_lP`47)XOFe^KUyrYD=+=>6@yOE=k>a72uCi<1hMgai`MCm*AxK7>2?MMH%C{y&B9 zrcbqOsn*h_Mw=EX7tzAGwq0}?9v!W9W3u2q%ujdOXX=ojIU7|W0qowLa27qZC>dd{ zoUK+MM)RdAddYeKgmE8jVWEoh&*yjR1Q37dNI4&`Dmy;ImAZr~1q=l+a z`4kQc#d-v3_Ji|iw*a@$y(EqDO!{X;qi1xx^7 zR!{)z1UH^;&3Gkxgd`yu%eTE8Xvk3&n5R*>>?R3D-UIE_$l1c3q(E)C^CyNz+KoL@ zr)c28Ol;ILz3U~W4%+Wa+#q;^T0?quMxgc_9zW~-^q&t@uD`py`v(|`tt$Uw<-V@! zT1&O36O>(;fhMYl8T;ecloI@P*6Dd6X>9~_iSs8#iI=+J zHHuT$*ZP^?4nR=mQIu+SFC9g!reif=_(h@Tf&=^odD7kq7Ol4U(4u|6aikwfLax)n|w?&~F`rz_J>!*JrejgY||a~TnzXUO&Yw8J>@K#h^fP%(lR zkQe8u;7%!}wSxjAx$eL*+jg{=foHioG(J*y08zEH&oev-H;ggieCJS>kS6GSUcYWC z_GMpI{)|+$L3KsA(89dIia=;=`}K)L0`hrwH5OV+*FccP#+IaB-1x^p;l)bs4JHB_ zstITFa9h;*wA4Gv>$mX2#i-rJKavY9`>I$QhxCIg2wFCs2@G1!%mnD$RqaIuVqprs zV^4GdFK?l>l?Nrolblx<1}%t5UehjT%#@U#r>@kNn;SVr^~pB|s*H+{Dp7ynJvcT1 z*~Mjx##P+LG>+!)BH8ZKA(bkNHSt_3L}Oo8TC${A zQ^_GcpnTvjz0)~@?}#bDIE2Qm2|5)PWfaZ!I+glSH_f8XI8MdH{cx1myC2KDMe?gD zzkm_7eclhTT_r&^o~S0Zl&+k#D2v){5%4gqxSCM0UXz@A30PNsQD{`T#AjbjVbupU zqdc@yXY4oe>|gse{O|riLS6%#f6Fm%S3urXU7v{Gt<)2CkRo!-yVWNx)->#7kl~Q= z$=jau>xco2tHVek@MKC%a$qMsPy3R`^hVk9=Mq-ZpHt{H5t=jVT50%Za2Vy&x5>8Q zN|4|O-%ZV=fmVKuks=2CgTtsQc&z0$Qs+K(un0Br#Wd1y-Z3~A=-#||2CM^=mf`YTvr1N2uWEa0~ zO_v2np;%o{rpDU|Lg2V!0ic+D|&bZKf~zgoF4j+r8*q)npXCGdjrrPD;oDlLzW z>!d^pRM;Nyb7HW?2mgPVn8nV9eA}fY=qVJW1VzF#VI2(j8jJ2d-&k^dWTxQV0su6$ zPAzyiK3%ec%6nKCmYBJ^G}Id);EagwPGJ)`8}9q7WH@=RUG195hTQn-ErerHr2R-T z{V?ak{0jXJ{q3{-%Ou%+VtJylg^N)7jzGt{clp-Mu8*W}Q?>6f zR%8hVDcAV0vxLRxMY_CERZEQA1VCH1G@(C&p267+rJ|C<^XTSI@dcO~)a%^kB}bY!HgrjxhQ@n&^ILN~!nWxZ~ zxhB;Dn@YI`Y=h9c`XyL(c#E)6?2!L`Bc9R?Gx+$@z}g%Oq!Nrppc4km-$@-lOwS#= ziAPu4KSGvwgWD*J&Z&iVxSjEnA;RENqjJvSgV%91c=Of!YLNs473OIPgzeOWum+(U zxUS0mH8GKd2w#e;JyJ}ME4AaY725^9Yup@p34xGVWu@5QzzANxH1OWx0oa!P6!IAZ zjV`4iFw{BNr@ZpRY2^tr*MzS=!@FV4EwMUsbzWLxBuo%apFC9^28-Uy%=SLzuYtee z1-Eq+%FC7Uk+e~#yfpWSqZ6EVl4bfnN?1OTaUtwEGT-5ZkAReeG*^Q^*$SdGIr z&C<;c%S6T1$~A0yY@L?Wy6$utE0t-Qzg(kKGisj9CV^`l9^QVZRZS(3s9sWlHNg%U zBOGZ+-+lc4)9~m240eWz2Nn23C7Xev;J&=eMuAt=9jjXXjgE>eu1w(xsIM{E>8_lc zo@V#RhmPKJdr935S_qtr6C-WM-i~i^E{wL|vsb!tA++SX-Uzl71 zTUoYLhECQ4HP@6XB(wS;Qsv{*t>Orekyo#Z-U zdc)wH^-&VxQN;yKfwctg8rA{ZetKt+hJZBu>gRq_4}tMAKFO=jpcq&7;O+^)xWe_C zF>6{UsEy9k3_9>i*EztK`u|CR=Nl+-&r4Lhp6-mr{yMz>oq33d_uojyM7RL|E^}}8 z5+En`b$ICmrh6_Q3*84BHinx!&RWk6#o5XMI$bE~5CC0WR0MYq{!&GndIv<`%8Ak` zW6X+&*gQ)3*Z&RYe}LaP-1+1QCl!bEak<)9!4J<6H`Usq{x_ zYc{RPTkMBRvSCM++IIl*RYk;5?wrQ`@4tC(ED!n3WrjrGsOqfJwM*)?Tm#ryS=1^< zH$u%fF7VK?C18{~5g;~KIFf$@(cgz6XrNMMWwZM`)=QCX+*A(Gy%egwM2&gRBZS`T z^qOcd)RV5b^l)q)T6x3VV-^|uy<#K%paEB|m@UbKr$Pq;k`VZGuTbCSd=w_(aq-9t z>oCrg04y+0D3p4gRCjLFU%%k5B-5lBM558itEhmE9!Cxh1Ludt-ee7EiLPkHR(`B$ zRt-b8v5J1?9flN(1F@8@eB|(V+Ly0tNXFqA_*BMnfoi2>@(W7qkp#ryj95j79t}kJ zgm6Bm(TByM3Y?)Lp*ww&9U-(4}q~>7Q)7Tev86jj?fr-W|8{Al_;l zrjYn&b$PJOr&@Bs*oY`Llu2@UgN@#iWy+{#15!Ch7k)o2%O?4Q+#`MMA zv869wFx}y@4E~{RtD!MKE^4d$Fn;b1Y@F%BqRn3P;zkZl3%PHqB==G?W_OZOm6i-( zEe)MDa*r0%EsxKtg||hrC*gq&k;FwIPTZ;un<~HK@PlY*e-od$oo?YK{qDs0a8voU zzVUIN!r0jtl&ShBZxlq)qL8|glN2d!=@UO6cmFXb4W%t9f>cKMK3Q&2!-^@0vn9`A0WX-uGNmY3a__GxciFky6JRHkan zq<}6>kxEw9Qyv5*e!LkLVLGQ)q!t!>Iw~~ebE!ZOPrp@&7RGe1%g$2nttGE+gn3e2 za=5A0iR;wHWAAR0#t8l$U8u45XbO9OI2bP~x6FN2EuY(x#BP@brkB>aYM)$`EjW8a z^f0j9?S{>)3lIsbYF}ImR*J(UVkqg(f zP&xprh$_i@y{z6|mhcp*fu}rKVJ%#M%xRli{xN2c&q;bP%t_Mq6Fk9~ZQ6 zfYBB`v@KF4=F>(wJx*m!)W2WYhXnD1Ds^aPJ1XrSK^dmjBZB8kFxbRAfUs#YeH|a$ z`p9&^xV*8C16#!BrPnJ_%E0|g0>K1mM4jUKrZw^n1lPd;XWrEsv7NF&1IAd%!VY>A z#gH{1)}(vM%Q+{rT?qM%z_R$tP93!!kforFISUDNXedr2QBUq;Poku`I&tbUqXfKM z2|KO|%8x7eaf?_%w+>7SEw54180Z1VBG{C&pKxVaCZgcBL@?a|c=iXTSJ)>%i8r^! zMiO8Eyvd1eOENh~jBa3j+?WKIn3)6F7hufOgX}86NEYT0Oa$;8%^i+@9r80DN~Ex- z-6~zd?03R&=e_8#G|yatN6U5@smGmm0bZNgt4e{PA_dfhj;H2zR1XyJ!q*+)aBy@O zgrz9O#NRbqif7@a^$q_HN)0dmS*#8Kzv8yj1m;>SScv!p;0l3FCxlu}{2La>zu`NU zn+pOZcec`#E=Ptd&kEJUoQsCUV0}E2G|Ds6ot!eCt|jHo7+DnrpQ}B~t0K*mO1+S2 zkdO%NVRfUj&j7C3q^co{D*W}{X#Z4~U}S#6)FmXZY?hG)#1%c4tKJiYCmn+MI6S89 zgiWNwnspO3qNb-kg=orbCvZ(UI+&&y6^zL3OiI9)@7Vu^@0iM>lK2XL6bLT3Of{{e z?h&$(D;Di827;z{3vlF1Z}6-4-!MJ`1Zc&}5FD_dg*}@C9xS7#t+;e2gewlHDa5Bd+g@4+i)c7d*ki~aAldhz^KFGGRtck> z)A;T66F_Ir;3~CdMm*5vUV}MR=c{^M^G^E)JvjIoEk>Vw6y^;JS^o$yV$FkYNQ#Bc zc8c&)-cXryqZRWN5PUWolFRrkhWUgn=a}WhMP=!&YwwmUgAc-A{Ds}62_n=!DbQW6 zJxTRUYgCnMd$GW@kx?Z-BUP4^o=|slHUoXZ$j}PVe)X*t2h6|b3$~yx$1bj>N@Xpc z{PyMS83J6Qg2cMX>$2<+41;Y@4f2+ZB4iyBD3!FK`0bO@q+>r_6Hw9j>PJvZs@SDcWQhmt%*dHJu8ve`=>-oy zuTflt5@aZDj_>7WF`d_-SM@Z2H=4!0m6|&`^p-vXero!B$d7=9PuhWuh1=F7i5UI;UB1PK zyD_Rh+zWWlT7fiZJ+d4ma2bzBU>D&CxDIhOQ zY11`pOZ_N(hjAU11VIv#ua=4UCaW!nF$bQs!H>d-bhrV2vs(%6sd$t(1bhQOGan4K*t{%J#^HS`fM)dOq+(*8|2sZA76^`rE@d{KxDd# zJM}OX2M@+yxt)k-NJ%K#VX=$kz}z4K;Xc8m6qBJ51>(ps=1M9Es3hI0s`J2~?eKjH zz!Ur|B`{V}H`m&bTD&d+nw%6BzHs{7Z6S+9U3FLeGSS-*%q~2D=JJS10^;nVtqa7} zc@veIL3Qiuk~vpm>))&j+?NGMq8l#v;aDS% z!!m1c&b4Zrtt*}QT>O9qkmQx1*#)J0j^Tk_Y#=v{S4swZFv2?Mbrt*xoINA zVxa&zhBM>E9L(gatiU~`*M`2D;$+xrP4XlU6~95;-h7=URa9BLQN<#vz~mOYfkntntSiY}KZ1rV?*j7u+oHW@+$1&HF#{&ZTZ}1vAG7=>Uvyh411k)ub15 zbFjs4QppS1dFgNz&n8`C?tg(gOHbn#VV*9%W;3m5@-Fg|fh0qn*(}UVBx~rWrAxq; z_g|{`cc;{y)9`sS8Zf>EgB(YWEw|@+1%wM2!J(B3#DNV+hotH~c`O zYIr>+!fKaE64o}&EIVKf%o^h<3>H@)%#+TL*>%`w%bf5bJFuV&ks5V?`Yam|6cig* zuBDtSV!TlbTN1rT0svH4cUngN@os^{K$VSaF$$2Q4R#H?k*#Q*(g@UyL-^qhW1TP9 zAScuVbReAe0Ue0QOgZnPdQUPN%FW#&+)gZ&DhZPzWzhXft)HFAK2EfV@%~vJzX1!L zaOo{ltB83Pxmsd-`QYv5^{Ly#laxwEZ>?1PhO@(cZIfJ1D4uxtfVFfTVrYoTX*f6q zFV;#$c(^!RnzYE_OU2}^bp99vgYYTKX&E-tP+k4>Drcoe0onA%K8VY#}5yeeq2 z!yFziVFb4!2+3P@(5K^VQHMyT=Nsx~AT#RdV zG*E!Zcngi%M2QF zKc?t|MEp!9pR!|X5f84)fAIbA@6(g{@2|gm{W{1m|7;+fm`F@eD5N>|gfnT~s0y1{ ztQ_28v?y$z7w<*2JG88IXOWr$tq&y2qErfT`T@(}-Ui7)2mmgrhwfC2xxE`M5>k zY?;HL?2B4m&)6S8S%n90sWL$?zT{KSWczU@Qe9`YityB;&r+$J@Ly!sD!N8+ix(2LqZrAN_mt=o+5e2W8b2Rd6WLY?5&MP&@X z|2pN0uXVLiy(wyc9&8)6tL0*rKve-C;&{snh>qfRrNwlihooRuTz$l7XuMC}!t(Sd zcR_kMC#8!JotV4>5?;L7EpNp|BJe`tD5dLJh|5eHc=L2#6sa8)H>Ysp!)oDDw~9ly z;c4rib!)o?wYqdKi&H|M3O8^}@a6PJX~IA z5Sni3byhoFRXh;AxPAFiL3zg0ERi%gvNONR04QnMe={6-}j66pYaNRt_9A(dX%!GHO!XNr;1s3%OCo`NykLR zC!NER_4c&wd$dX0*a)J_bXDElY~l!sgbnqJn@xvUDIb6BZlr@%x8$!xUAm2C&P%dt zPv39^>U4C;);lEr;o68K;WXQde(=RxI$Wu9`1AuNAG-9YGpkEtijwGgn?aMG1#{UFb#j9a#fD^e-#o8#rzM!(eiXo~PEF=)IGCKwI#u!2u$4baTwUdLhsB60 z8LK8bi(H9j8Qj}6p=nfTO3J1KPQD8W#Q;*aJ9HXG!pFA)xu-vTKP#2^x9qI{WSI%B zeoy;Kw`~Z>k7IWVXKOZUt9SKWz3~d0eZh_Dobp3Jg$KlGB|KIOptGQ;gJR87I2JzX z#?Tk9nV_GN6A4K{XA-6=BjrVv^%tYs-}IV`?g{6zNbg~CoeM|xp>SJ@SiN2T5^4;P6rhl zVNzs>pAn2sO3~7e_1$Oiv#zz!Kc~=7vxhen3$6dd)C|^nIAy*!>lU3VJ2ylg@^;4X z00T+0RK?EMKzrD=6J~v5!`$@I_ zgoZ;HsW_W#yWD-D_>$_FxRft0OTzM4mw_7N^fdm7c)EXj{W^UqVhTzyJT7&jD5mfJ zz!lxRGKOgWgi^g$VH+pur~-^6L+R2mKwPK}03!uLD4$fN3YR!#m^esQXc|m;uf@2^ zcVDfuduZk1X;jM@rag&2`$&3@JW_8bI%X>gYtDmFAWBZV;o+`7kfo}5VkM(N{lxyU z(DC0R+@x*-CH*~(Hu83#ca^Y2QFrh&$Fsu_t!vd4!s4x*@=h}%RE`-QCpX+e z`L#_4C31Znx#o8%u{ry`U%RUmx>5ph333cPe)O>i9-&+NI9zM&&==S75f7v_!|DC`TRXit`l@<^PBC3giBRA(eZ7g#FOIu;6o z2cvI^+?oAzu-~MiysFUIkR6RV&fX2Kob*_(VKs0vL6-Qv5LEMRBaDB9(gvZT$b7ax z?l2iNE~${99ZC7fFlR(lV~Q1+yQsX3 z&mqm42ujfqE|3Q@8NyA|^8$+y2A&D9i#VchIBE4KD`;QYPtGPDmf+*F@dVe1si5FI z?cGn`|1=oLmM({xjPV5i#R~J@EN_?n#3fD{ELDeI_6!!x^^2O+KjeaECah5A)qs`c zDyWeDz(x;2RJ}&32-B*Uq{$|UZ2ar72&0Ncu$QP3;J3z>8XcAnM(myU zp6TX^#sXDdhbR46dpe=)pmZ5gVRws{Aq&U&g9*+_79y$>T9fQZ!8@_c5d)<(>dq;S zD(!Z1n7Qx$i0iApn-7{h?gi5HTjfMtD-mAo=>Q;$&M=3tGSpO9aFiySc+TtL>y}#K zTo!w$>83cmGu-z5zr0Q;Kd^uPgFOeiXOajxQYduqWbo@5T-#j@ z?l3+ki?OPb7b2mVQ^-{)k1po`-5owX<+he3C(#x7+5L$m23AjcE5M+!+L-rQnjhXo zNyEQ;{qhXp+g^xng*N+D8A};gYscuJD%m#GqKTt@gFY5-7#4DqwvDAN5ER_L;XYAm zI5zSkG5zJ1bDdRALlG1`j!U>OR`#ZAJ@}aQ3J(Un9J`-X z=~XiJ=q@b~7=mAqlou@&WpBExBz*3}eNtV^sYd;tHN(O8+nj`BAqBX6fD}hB?AL^7 zwog!_!myhRE%vpd)L#;dCd(Ou!pZUb5lx2}L$;+mPk6BQ>K5mZnGyjcI5)%80kCW* za|bHiStYA;!L$M(1&cm*(!xQ)&3tTKSwYvLp9g|5AbOMYxT>j4hyivD5f*&P#SXja z=P3`xSm zi8{nW&|Sji&TU>dK)IBqoU*mfhC%VMhS95DDU&4>(n4J;1bHqln<}w>3elJ1T;EPr z)WMX6rco8OdkmE0Y1XGs5&knt1Duv~bSsu#mejQk1qFc;7;{On02SMEvT4q{{~{Hb zZ>%r>@%!OFrlX7T-o{%*ebZ%gLG-IOZ{Te1shfNEUm=|F52h%9mdb8-d$>1EExEDD zNPtSwRmALIUgo1<%x(8E?doGwwo6r4)zm$S(=AZzZh0)=`QeD}Xkos8^B! z?D4|(b>Z<=-Cnx@q28fX&JLqED~Umpgz{7<9-R+f$h*afE+s>#cC|doWMRWL&-y*B zW@qMQ$AUUVjYIDY;)Wl(W$viEk6FvYQumde2Q)vb` zybIBuQUyh-B@@V5g=?j}M?0o>h5yd#Txq#ot^GLSDGLyUMDL+!KsJ>!5~8SE@*>vm+F1E(p_U|Z3rrdNcz#|9ERnx9I(S^A4e2Zd`s*E))_f0&?bVSxZ!DJwMO z6C9x%Tz#sM7U`M6H#% z&f0jt$t%X#AbmxsfiX5i2X$aeEtN1IkF*sd27Qw1+R4t{K#ylA!`WBHOo-94vMw~Q z_scv|!$6JIgy*p0;j$G&1sj`=ZmaMZ;pn=byfX(m2w~f{6&gxRFG}6vcSp%fWZcyh zhNJiHsx%=9=m>A^i*ur=Z z^!X`EckY(AEA5{|^Hpk!1r?#o{;N7F5K&9#{b(Q*Yr{;`>QVqHqfYu8_;A9zjE4t+ z2i4E^9t}HxwhFCeFPr7dJ@6uX*QBeyhHlJVLmtwWgVKdgZZ`eyD?rCSy1e^TMK`-} zYts{3CiNP05G$Bw4&y-AMLtXO;O&813t>e41cRQPO2)NH{3<0zPNMD!B`Z*o0U)Z@ zuaQdA0QQ4o*h-G?ob97VsG7^GDdg?66bx4L(K(Yqy3z{a1{e}z@)9jA`?@0LIp5NK zW8`r^6~0!eCLYS{3e)w3EKoVZ_%kPWEG1Orrmc?+J71}l4yk-NYnMa-@ddenlG~!9 zbwG)}p$5e6C97BAM6KjUl$cw94#n}^=KSMy^(0o(`DdCpg=_QZ6ovC!G3@jiti?Pi zG$bSj^wPa?hVstVrY#an0)@lcH| zq`KmuYPCvpsk~jQvrWCsuK2p>o~t!A(PIqEuNYN4IrLZx8dI>WxI>W6&{~JiJxyWK zm^CXF2m9Y{#?^!CkNwdD-e7%{uprm)@JYp^vne5@p6 z@=fg4s+-jo)T{z9arW8AZM)k?ui+f*9sW+jeTyDI?XJ1&FTBQ-q?V^F>N0tLW_Ils zT|sc9bW-Bth(I2{?(V0@>VnXlT7396v^qbZ&v;cof7g8R-(ZfB*g`A^oENMD-`BMdBmm7Czfsmza9w-Du(6ZxRBx z3KGMG9`lU57V7pPbbYt*Mc|ZCRGnOl&%^58hgAEe(N%|1b0!k~zZB!!VYh3pqm2NLM1I0@iJKr^Xl3 zDEj5Gl%QgHf(r;*x8W_2@Tf;7N$<9X^$|BY}`giV)QBwpwtL}9kcG$ zolovVqsPOphH`3v09Jj>qkbfxA%ghWnfM(fJnYBsP9{uGh3=tH0y~j+eG-T!5l~Eo@^66Ijekt54?&r zwiy4sMAcs=<=`Huxwz25c2cEX%00kU8u7rwIibk%V7lz74PtEPxFF=fDK~gpzji{edhre zIeTzw6g0q1zz`0_0$&T{mr47s9WIG0_};dJj5_b~f@XSlLqc4YcJkF}tIU-2PF$#Q z0&-&yWD)e>i7G)SUM(OzV!UA!aqmh;4PWKrsBUI9h(XM}ck$s>IIK0(mHyy^55f<= zm%dnXrz2uYCpMV}T8GOhL z^IxR{QK2v+I0s|2F5bBdkYhPrRMywM2CIsJ8X4WRP*p(5(h~@Bpt~P(y7IJ1O@|J< zAz+Zve3cdO=XOqtF_%?q*DGh&36w=v(yhVKmT#PxA#Xs5KV<~@DOBc6nOAor_F3X4 z&2VxPseH1hUMB8N5n-{xdbN{tb_0@Bm+X91YcjlC(CRZMsA!_RPu3e_powhF zf@+?0*znuo>jw!hrg1nZ<(6YKP|)lQefs(du%<)8R9c3Um}035Shy>0#2$k3QIkv}GxA(2`rk81go{{dKdCE6NQHyGjYPZDA9xqk&6ghhvK0 z+iwGOf{nAMq#0LvPZ|{VNuU5}WB;lGz07wytJ%t>e?;E6j3*t`Ti#Vb)`)WIO8bJ0 zl;32G9_$JJ`1OC#l}C5|DK6JKb+C-r%jXEs`2V@nL&IN-~$cAX^S)MkA*d6=DUGFq7IU zg*=q=C~xKg>E>{~6tQvdWVqQI6Zkw&1r*-G2b97T+38{G3C@KXH4H;3Af|w*$=?!p zeHgM{5!|P3{)jj&kEnQr20_}e=JG9%VA8yHS>$)!tX3CH;c!RXUT%!O37nZVFce3b zPu?m;_`q1Ly*=7)Ih(_wOU+d?Sj+bCu@UiuxI~o^Mha+@t=t>k;3_=uz%Qec?b4&` zE0X_PqzcII64ASyLBuC&)?TqV*zj<#692uj-8OK_;1?k+IUE0zxF%oOT%c z?@k+NLF_j3(WVtNsHQR+ojs!0WVJoQRZ zbRdkbqROZf^m6Z3*Y?`r-au(|AZ%2(16*3XiJ??w1eES_crT55S~`yndc^f5nLxSX zRkkOzg8KLN>+in(&*6Xf2a=m3rpJp@rsW){yNI{NK*BZ+mpEZVm4Oy#n%e?oODvNy zQqrNz#^Aea+?Qf#gS=q5%ikF~^sr1bC1R8r)uVy0Res&(M|V}c#Am9I>4@^q4ef(5Of5|v^g@T2jY)N7VX1LQnDoh7>A@#m z_$l3FO5z>f{<|+xXNnB2z}%x*xKY8? zy}Bx*d{X1UtHzv)H5Mm3r8YRSGte-k@%V0B!~a8lmrG zzb`uoE?cfDfI3ZIewnhpmD(f|MEmlRv<~aZ$!kz_WfH-ke_kQBEPx3yo9VC)?WduLk5(~YGF!_RnKQiIxdo0;qv|m4(ASO z%0m6;X|DvCWi_UeR>wnqYe7IM8-;`_FSOJr$l(OAVscCjK>2WLaNmJ4dE`z^2(@|K^@oP!@&)#^!MVJ7QnuIM=(XBTKsuPXqfikW=H}p-^KMsH&BhzP8G) zn({VNmvS`^rRrVcQ`%+Lp3JBewjS-13{Llw;-_T?+)o|~ZrZPGo8^lKL=Alxx$4|dik4}$LSw`aXvq~#92CF#8bWIy1de=Y=xq_ZMzt(*9k>BcHVU&~jn*=-nVxrAK=5sZ?7H zV2X`dc1Ra7TDF}E&8oT($PbNFz86XV6ZH}j3^mXI7P4qgxoz+%30sRpIpsMOI6mvf zg@-5c8MCre(UI&gifiO<0Dumpdal5Q^HBI!=x!?KnW`EBO@`#4O8IQCa#H z__qzarf4Djs%SKl!>T2De_OP^(E+EhB8$ri~H4-Z|LQ zUS@G&Ipr4{N|1#{R^(T(uaqck#DBN>56)pjb$wPmt56S}}@tZ5p*U;(NtJeAcfJ=j;VpV#$mdtOUTDsOQ+(4ArtJY8H z2ZRXvq^7L>L|Z=HZPx_VF54CT+r&{(UP~%}0LFzD$av{>R@M7@vcc-T=tDcLv!@A= zJ=EAQp{rPqHdJkIy=Iog=uU}J7Cf>emei6DLw3jI-X#t)6C`lJhF6g%6)qtq+vR3L$F&pUK&77kE2nMieF8yDU1o~TRkATAzZ(sTpG z4eJ1!JlU5BIC8B1Q%0+w^4FB5cb(!_D4eZ@Y(weKI>b_kRrjoG2P*zbx!tyNIk`Gc zwN{vvGVp~6ZJNGK7fsdE0Wb;x(2p!4{6a5rAOJQZ>X(oQ2Pc6A*o>qzT;Qk4N-faq;whcN7vXT-;a< zdG>Ly!Sgf!Y`ynH9c-bo&1D{jav&NI^%vbgi|VB9 zL7vWM5_bu~Ox)_rzY8Cv;u|j16p=tVkEM6|gU?m$F_2vt3?X_3u|Wwy=}(MA8*a-U zPb*H)V(W`7o~1)OhS@z{@;np6J)iD@jalwpuJT?&x$I=`PFO6A)J`l&+C=nLs)n3Z z*TlY|qpdU&X>6nu_}UFzv{>GTOSMNo5Gk`dc;;wzp2nBrmi8$2zVJxx9et=j{vw^v zuz;w53Fpn8X;6X(cMF&ZRE2A7l|b+=^zUp{Ue$sX8eWdy*-U-vL)Fg~%qS%pJNxL}t5jg|?_Sv#^II(he;V^e?+;-QcDMe(vTB_|avT z*JZCx?OsvQ!Tr6295wahrP^HWZN@=4N%I7!H{GZ@?h228zU=OEG|LMZHvR1mwnKqgd55eGKqArNMKBY`P+GfCSkF- zbh2vL!DWhR@hQu^)e#irm{D6O6EX#PU()QJQ;KoR(i3IzMBg`1t8P@ay?45UoTW=J z1k1W`Nv#w9j5k$jW33v#QK9VKfFX@a)g^VbeOW9VyHX92?GG5W=$7!_(XR*P_|>AM zyhe}+1KqAVkhM33z^kIYt5}xqMDp%S47iU%Rjmytk22T(Gt61-cSr(Y-dx`OPsdd_8o6k&>MwlBTm)BnibcM<=;*$?W(}iRXZrPfW zI4|HMrjMR9JZJ=@>$HmE(*|LCDoz`m(>c41eca?GnaIW71>2eo78 zZZB4dQcj&&X)0Z+eu@gz!D0>6D3@Nn2V!~NefA!nx7x23giXD?0CK--!8#D{EzQ2J zdYOcXU7K}f>Q5KycUUr1iB1VTjMVe9J3}e$Cd-2W1kf^={Zc+j5)eOp=(etT@QXFD z`rOrK^0ul@OW~4UrS#u!^;E2TaQ{+W@>fa>D9^d#*Cs#bsbfu>>+8SU)j`7R?4`hBa8tAKNIXT^Cs-74*_OZnso=m* zlH7`*WQAUNYG=nZynqx8bG6zQ<4EIwG3l}IE2n;t+UrAv*~3vkF}2Xn83e7x>fK#| zGX~B{LzgFtfnw&ec0`)>>Md;3OXES$7Smf-qQ34b+_>=TNfty?Vg;%~`>5%>x&k(O zy`~^8E8OK|$`4-xfu9TWCZw$`nlgXV@)iu0wshrcpygxX#OmeBuwiaZ?GvBp=1D?X>jXy@us$$1d+R^c)c1>BScE z*X?$GVE-5Nf74Gh^%&?bj`jt_wQ=S;UdcX6XP9eU90t2qPdky6Nh6Ol9oX0T!2)x_ zmvc}C^&BGj^N zS`hHcPPcL}>Iv&Gq36uYZ0R2|5?s@a4ZHSC>?@LYy<`1XHn=Mll8!J=deG2^LShb> zck78eC{lWh=2P+;oEyGD6)fQ;J<}Ixvg!0s4%HnX#*KJh#A9>21DVL?Nn^5q;C(w$ zbyO;G%iCr6i~XJEc5h>o5S6!!bK!16a&r%P6r+3<^edhpK_-xEHrq2#4|tu>T+qvM zRJ=NoyUya-7Ilu6zw*@aTZG0(aA&JNy;blAflCNEHju4qxUd_cciu^`UgiEsQh+0b z_dm^kLY5RaY<8HtHW$rs*A3S=8N;$;A`uCKF9Ak3a1OfQ%T2c>t{Az*N{#Sr>4QA2 zVBYRj8caBGEYOpI8{Az2mBPx$YnD5Z95WE1zWQbRahVx@zXdFul4>2`Wi;Q&Q!ryqLvgVS-WmSp&W>(8&>T2$~~!VeeTB;5tbe|5XcfY)CW(g4pIV>yQx@FvipDVJ#t!R zj3pha*M+^}K=bO5vkl`FY-~Z$yg8slkx8XO{}Y!_9lTSHMQdE`4(aXH{7GFCqG_Jf z>rf71AL>ipH6v!KoOgt){iF%Wg?@o(ct~VM=yxjBE5no&uz`?kkzmtdVICFCO9ISl zH=VvzmnBk1Pz-{13pm2rj z-Ye!Pp8iHkj9=NMb}S0aH{_G2;{pw+%Xfo0kU^>TG}5v0Iri&P4})LDLy?S4*tCKl zaI=c&1>k?fXOi*>oSxJVTLJ4dp94U_s_uy6hsQ7Br_ir^P?S)6H4`!b%+~ly5~Mnp zR2vT|BWJ(>El{3--R4r}9(H`0?U3qe~g6zCv zFGCx%NkUR9m^|-K)UO%a9^)7*O?p^T>x^{A=rmU9S8aF(bWQz49=nuFCkJoXC=-MO z^8zf;&{<%P(PXtj+e!U`OR8U7kVz~=spE|m7C5{!HWL;b27XfO0Tx zgdajgT9#rc-L9o8OE*lEu<>LB==-^^k}`PiC&fMugLjnJebIUv2=2((4N3 z;)UT28tBGA?h{K?dO$G$Xv7BwS4UCE6_gb4M=_jia4#*b?R1j>X~-<-FjePMJESgV zfVwM2&cWdm$YDexB0}sl&viybOAa2+Iw2dc`xT+gBpeVTDehumYuAIEs8@SOEKQmw#=ka&qS*Kq%lk2T=gijgf@m zG*-}UE4k5}IB3iQ6i2>adKQmkgqWI%CCtjDVB7#U%F!8^L`EJ7W8H|1K(pOh}IboipC^?Njh zx~1Vd4SLziR!mN7pUO*Cxtwxh$AX)$|X&bJN_36KN0E2tq)Qvb?_6^#z zxCG>}<(wt&LHquy-Oq*!f+nimG=kU|U+n9V_GMt#3GNs=rGnBY#W>`M!q-bjTSTJ| zrB-xup$w@LogW1$#$lp)qk2>GsZXQly06{}2cS*ASzW!|c$j<1ThcDHg-VfKR-mD1 z(>J;#Hn>gQ+J?rIp;|0>QSpGl<O2K z+q5Ld0$nZKGpBs^dFK-*VvFlPfhu7|5$^V=q-~Y&EYvTzJp6gQHZx95=X;n#CmrX@QLciKcNzFEi zktCu1lAT)(Mt1sLX^CV0|Oi{+-BA zUZ^x|R2-gkIE9J<*=3b0zmOjaFgZ0>*GWxn?e>-`__Euky^RETK6^ zNW4jCJ(7s-azMs472DzUW911&mjICR#}p$5wF_MonQ`w3835sfXhi^BGBdt&;fL|e z=)>YSy#7-2AV&q+JhM;`v)tU1D%a2c{CE5{@HhHjUtpXw#JIRH82S-YU6v}TqmaNg zJj|xJOv(%_SFpxG%qX&vrz%kwm9KXu$1+1t*Y%kG30n>Q#l{~}Cfz&?d3b_rmsj^A zGMSM`d!lvGEjkzqATAyVorlZiO!oyd-0UN~IqVUTbXsB+;loSk3b<8osQbIRCM}9+ zj5shou+!Tx8Nm1jAWiVDpaX%B8K#m*B30>u+Ak(xTUHPTRnAHwz&e;q2J9#~3B)O? zDQV&SiKjh0?G&VPMT0)erlOkIQ6SOD^LYb4gFkxmvyMLS)2fNzF^m}Z{?`^t-M<}8@*tIEqtu9Lp$iKJy} zE1wW>zj^&Re+~RidVmuB7GE7yh@2TCqnsTIs4geA11s5B~9 zzcXpIYkz?1cPARHQpr&MUfLw150vb3>WQ@aGJ;V+CqfBikeQNxvX=Np7%ql}(*4)W zEkLbxmjlHX=M~V<>P+#MMD@M^AY^fv+E@T@uyh0cIKWh7LSIlyUe<^7Wn33X0+gb1 zbya%|DYNV->EjCXx_}ku=Gm!zJ*`yJ2V*?KP-ULMD6>_+3N#tEKiq7#s@pBBb^vH3 zPvnq5(qzIb$^*XXk#o0gr9KbJKDv{HZId%qViay$eC{5B-*OkM#7}y#N&e1)On+2Dpz zmI0-D+L7D82#?FV&)@$O61L*TPO!0SJ}67x`z`D4K8&ip&+T1F;nSj)3+WliimIuP#-)cz$SCw8CQO10T> zhNAQgtVAs2~pL?p5vLpSRFro~l;mXlDjlVmO#;pXiiLMoJZGw^;D) zZ!g%(IHy>vWK;-k=M2SWT4&ug?hYKDm3Pj;X!HUC{wRGR!9p7mOBWr<)So5YQJ9=v zF(+x7gcGiJ_B`s z7hXTb71-$8hN1-rX5ih!x@JrUC+p?f)wQDrV4r1g{*EYsy-VjbhAtc4V#Lk!+}BR4 zyFw=nT^V&M-lEf69;*%0yPfSfGRdF=UByG#w^;lpfk|VZoY=F0at&R_b@jD(L=&2A zR!Ndqphc0+)xJs0wk&q`o?5Xzj2BQ6@10!Er=rqTl6K8bS*nVyb};)mDXmm$%%-0* zcMPz$CAKOq;R-nlK(OjgVq;nQ<|w!uh*BFSKiipppm<}(S+y-n@A{+nAHQm=F2C3h z(JJtrTu5vh6cJnGl?RsE-A0At5r+x`HR)x19xj(Rx@ch;lXoGP=IT8{Ek9RgOTpZi zZ2I`u6$3H?ZDA?vW@pfqa0Gh z-PIOEKpb-yKCXVH@U9qZL0ok$Ku-B|b0rT<;Xz4J37%-blz6>4Uv;6+(lCu{l4kZ* ziTvFjUwgBwesGPuLY(2|Yde=rdpNmdmoH`0cC=TS95p#Kx=m6*L^9)&faXLplQdty z3a@|UXA9ec&_gTY=5U=6XWqkrv?pV&SdZ`&ofpN9q>KmlKWZQjrCi#50$?Wj0S11A zg29HXJ(Lod^z8gt!8K6Y>_W+37^yi@@OOB;8@?SI?1w9`jWBIqIKsb&1JtLY@2=C5 z$pKJ@7`t=lqh!vMsX7o(PH^J5OXvhmY13w@bQ100n^X>1k}r4k#iFu;(nnlk@~gw+MOY54R~1Vg zO0J5pS++rCp?bG=URP*X*?)Tg`F)4c7!8Z3?0G!5T@SW8=r_iEcw!kWFC30Sev+=N zR8~yPi$s?K0xlhQBterAa1$1}+AC$>7YM?U71Jm6Lm#EjQKiUS#Y8GGC5%e>4Jefo zBzq}o!So|KE$us?Ur^k@n6)Q?nbM+~_w0P0B0%=`;p7LtDlj-5v|%ZrR#r&S)7if% z%C2buDJsS_Jnh)dmR+PLlw8;V%hk>?Vqp1_2#eJP@Qmqfp#_&uW9tK05yB(R&0i&Q zvWs zr~@DetCspCefsf z%qR0HlOh}7&0_@+*4L>XuBU!dUq$;2sQgUbUpIsowMod~8#{0lmTiw2Tq*y%YnJ8E z4&RP9yq~>|MI4v^C;z`i)@R6UMd}?(R7_DN0eg|w8OaZM+xAQ%I1$t6OrzFa8OlA5 z$nl+1h<1p2&up70eW3$2Rq0i&;Vq%>Q(V=7q^@Y}Coa{^VH!%7Ztefi*qbd$b6jVF z_xTh~^^A>VP4WRoZOwTTna7fmkr^9e$*iccX_G|j%bAhxB%7Ni2rk%25Cj1d;9^#P z;l1X3$Io{>3X*IFG~%!NQI#1P;ePxq-xA5Yto!L`sf)(Dv$xd@Tz;=$Z)4hEU1BaI zL)PI2>0RYul8_~B3Kcdpn(c~8!ag!sghj)+gKuYN`0EESZchIW$8Rty*#p&SgLH!lO{t5eGos<~L}r-{HAQiKc@%$u%g z8308?==|DvNloia$jogscsvD~~Fi7phs!xt*jpZEEZzNyq}uFlK*lJPze~2+w=XIswO6 zvmqeYH&COZ#UXaF&fUE~6#F9>ktqW0JmEG_8y29oH~S$#=F^>lHOZ`u$@ezUUK#L4 zn9Q)X2)w5OjcN?=FQb(k4SHGiye3h7FEA9%c$)lNJlBd_%kn>xom3##P~c~9#`tEK zL2WG)4?9#k6v6Iy1fANv*;U|)T@r@0*)ac~GckR0p|I88q?4OW9E$uZPnEN7W(Wup ze1~ordI{(y5?cRg7tjN- z^U4TWv&zAt<8kxOn|A=-eT34=P#G5>@G~Y}<%!cJt6m|!7?5DohBmso=Q_&s1UR(K z(j()Uvuc$shWcRgwBUef8G_&6l{f%(yJ=k^rf7*5exwcvJXO4ccmQ&iz5-HTb?B{J zGtY|$Rn@Lh4SvuAT2~Juc!u87p5%zXV487|CzM<~3-S~PaciZ&e3V!)AK4uPrC}XU z5TLZ;DS;eS>F~3I@{h$4kO`YBl`& zr_&Qy!i6drNZF>MfzwI7ZHFA()2-=zleE2RP%-b-m1@WS8MCqco6tfkl9~oQE7T#o zN&|{>H`0nl@;vqbF70mi(7X3-T6Wm9JfN@(M&7wEgAK7;p5xFkmbb`!AO-Ku?3C}` z!7LmOia`bE-}0R0;cZq*f&G99n=1bUA;3#QLbZU*KSFyOu2E>MSPcUk(amZ1)hHjW zxolMWQfC3gqcn18X$aC3M9HW&NUOscd5e*Wy1MS#lULu}ZU;IJ{Xl0T8Wfq~L*2N7*CJJxJcWLMEe2V2Yn!tMxix!~ z)dw`cLI0Ftzi?H;*IT`Nf2S6{FA21`!l5G@&7kL-D*YsY&aDPFN7Xx6uO;>fD`Fy*g!-o4m`PoMj>ECRJOU`cjVB{6f|f#Mz7hScc`y z_nuX|j%%umz|x0i(0_k zxKQfqwCs>&DK<7@It=DIAJ>~LspY*=`1QNIs1}=`!w|~%?T=qSPX%{4ev_W2<6U$T zM!ko##2f3D4IsdeTzIk)pkbbV_gtpoD_SuUuc4e@m`H5aS(UTp#I1SeZn&tr3cLOP5=+y-PV_Jjv@_3hIl>5S{jsTXaG?PR5*$PYe~cWU~B}1{XH)sKP_4J+?rd`J-Ev$-*GVq@K$>I)Yoab;i-;sa^gM zSxZT0EO6MfIz7^4Rl>4cv~DM~f}YgeAM6Uh{*??ze0J@?YCV|Z>EN~F-0 zl+5!V42djo4xu?gScf`LsvA48d7iqxgB-qN~ zhQh7wU7}Rs+r;K)iK;inCQL??LD#`biKo=1mHk=D@&ogU3UZwzh8p#uHF(dDUp};a z2zD=QC`nLyvgJ@G&5cK!ElGBCM$(qFiP0CQXY4hjEMT*7r%_S@RF!A%({oTTf<;Pr zqa1|j$A?uadH4L;`mDdbY_8i41TOnSY6*utNCL8hi#o3XB!F;sJ2pBzRlZ#brfCv^ zlRx1L)bCWAsgs-;#SC!RGz=x@EnH7`pPE1b$?h;A3p z7Wzkv;}iSwd_EXURfZ^uc))~bnT@mofmXP`Akb-t9CD**R>*l+)R)}qggT^E@}n9z zr#Fvt0_=1yPd=xvF{4+rom3-9d6?KYWm0NzbImyHWXTRb=3kPkyrtDp*!WTwxGKm4 zpRxD_6c`b?x8nPp6A|db*3aT z0je%g+5oTbzFT%ZuV1@{&L7gp!V;0ARnE}eG(57`Wf{TD*S{nRI}t%HnJlrFpugkN&MPe zb{`ARm8dkJGmap$CA8-CE7)>MxV35@S&-@oLGUEd)uaohwe$cqjj0qLIah~kN~bRO zZjmxxtW@vRMY2m#@R?dPrJPufiw^9pUC!D(+txOU;+`Ylu54 zHI+x*4X{mh799D+Fw&NnDj0?kqi)RSrg0%#XB+w!NGPAa!JD{|vf;jVq9^E3Dn~fvlsE#-|itigy2?6X-C4&gmzJG?kBSle4K4 zG!Z%P?V8>bBncNpIV+UuXfb7Z%A{uW>BY9({OMtl`9>4?i}3Q3(>~bvX;SD)EkW?E z1kv>NOq^W9Rbp3&(+26+l6qeU$v~jeB*W?03v1-ew)-<|x^y|0lJk9mfnLYmh}8qB z?NfuHqaWWWfI=K?M0G|VgP!T&yZ|NC{3eq<-%6v%v=gI;e>} zLL*sz)T&TYkQ*zy_N};ZL({l&h8_q`+<}aW#AC8dPUTNz`_fISl>-CvL)M`U&!@#% zc1t*$Dqrf*xRW4eUT4n+H&+erYG;Jqp!`YRm(F-NIg-7!p`to1nu%Igs`zTUaHBT~ zTFDAZHfbhxSeRkA5GvCq8mmwYOe2*UtM)AK;g_q`=MJ^6*<0bWd}_0s7#H)ctR-|etQe;r;vJjj;H(ev)p*H109s|CA@AncNf$l9%mT_1vR=%8Ue9i~4^ zoswdrVVYS>9ir}9v+ccVHx1_~H(0wV5Jl%ler)eCof6Vt*psvogH z*r5;2z-J)2pbcu^QlG9E^S=$!vSHZ_G5~B!@P#LjsqD6JFhPNMMNKvMv+R6pe3gMU zk@5qR?T;i%x6>Uh|Kg;`D4sA~-Ke-TIS2|UwaA!C0Cj7y$KR*y-d23}WG=Ca;?`VX zyJ%ZfHI;w$midh%+~Ad9dd+g{RYKV3J8_ZRHCrq#7%qU)gm#9!x)k3P*xmu2wkNm? zWpEa#1%0A|F7fvQOLDQFPf3 zPOTtwq3aIHbf`9lI>@^$v^-N>F4a^Z3{`VQz}SNgNvN%IxWZmJaA0j(TT$)qaHwaO z8n8xqA&~Wv1$^cN0;771LQ(1O@Hvd&ocscMBY6|FJYC0hYDy);;Zr{ZSH`Xv9c#;8k>_po z94=E8SP_n2nU9UYsL(9sdLj+(U5{Ptz z=!dOg5W*;DPu4UTFy#&Qg9@UsYycFUun#)=GJFIf&~DTgv5uv)Sls{>TPa zkOg1u>Bw^V8m1EKJc6Uu-u3^pB;^>+I?w`59*i zqvHN zcuh>ZZ3@^qIW<;&;_MU@nx^H+#U0RvVMnW|7$J5pvGiG&@u;+I`gXYJ*n$c$UBbnb z`)t|(Pdj%q@>v3QiB$Q-f2-FSozZ63l#c3+!HF|w(JGTIk$#%86}9ZUk)c2zyP<{vUjn}`qx_;8*13mv zyg}x{9>ZVQ>i$dmJP$i;FbSlt$)GYO!+27&DRBLhlNRX=ZFtzMx+ueN*bQI2{_L$% zGX`&E=`9N%E5(RnhD$nRapZTOgqNRN%tgjuV1A9H#ywVmMr#im9Fyk5b`nBw2>C?o z26`3@aZi_0g>wyxm5d#;J#^Z)ZRT0c$KBX{*J$~(*N-XF|AAlm=UAQI;gkb9-P_By z+z8@OH_@Hz1kzdMsmwqLkne6fErJZ~QqPlm(l9|)qt!E!h0tNyNwAX`ex`55E;sjK zrN_msuM5RnWkwtLhwV)#?di!&S;d-Zh8r)4?2LMVt>y`eI(Mfw|y>?C( zX0dmUrW^RVc1jmeAIqm!4H;7;!?N#A7x^d1|83hs#|HiY6yoJ`!rYZO&cds5Ipe@g ztdpwUgS#56Ld$FvWu$%8QMTWKDTDa z59nCge6A1F#h9VkVda^;%?{{LoH%wz!lminVl%^sB#b~=l^dJZ10tS0x(cN@q!_@+ zNgo$8xrXQclI6vlacuH!XxjX=DlmT-#oi0|(pNQseZUYW%OkIeP+m_HEh6Wu0W&mg_joXH^_kVjB4PwtB1K{Fjgq3&=#da zlizhokj7D^dDhl9VHf zcG;o_hClFXwr5pCm=iO7=fAWn4#=AgUqB>@Hg%}6l7JxGPYTb~V8UJpQn8sr1CknU z*`;ogxT5dN$B*sV9j2^k=9M^`JbfD+I=dv@DNn-3TaGV_s^v(Wn8s;gm*HPYmw~VNw+GKln9rP`9UDEUbH4v&| z894x<#TXg_@YFqk%vhv{g;(MA1e8g+&91t|L=jE{Q#eFSR#1w(jw^F>aB)>c*M9J- ze-Vo`-ExN%IpEt>ojvG41ox{vUsna6bVEOR{R*0O>YDxT69TRZ!=vnSGz@#sIv0XI z35INo45Nkz8&dxaC&qsQ8xVvh#pJF;w!jW{1HELZG*+3T#Cnm8-W(Rx6kUrv<@ zm)ZX6i#9iUp>als8abOA-wO~Fx}dKCSKG`eDrEmp*<)@q3BMZv2yL&&VHtd0HKXo0 zW|SYke8dsh?-h!1pa9R&sRTfptfQP57dANHlVqRhrqgs=IT*r1N^pI4+Ey{j9j&2~ zD+M}LGgLcMp^q@uM(7?{GhA@oFLEZ!38rHpCQTAyPB%qN3^g?b0Whwg^kUGh%BI54 zlB1=wc!z}4l*r9#(T%Q@vP<&b+J<_Js125s71=2c5+AVUeYQnsmjLtom(SA_Kk+o~ za$D1EB>mWJDaI1&q3o!gT&yV|adU8Ki*c zz%jll!qF-eIV!=HC*M%B4DX^qHir9Iq3hP>f>2{pT8y(p;BiZnw^2(HgT%oHC92@P zWoH5$;TP+NN#-R9%nyGU{>IjeJkZsws-(ou&*D})=(DrwAe5KF>z`FSaj3bl5f6+k zl@3Q_+G_T${s3uTn~W&OhBr=M*ZK*kx9g_^uG-kZ)e|_d zwvbikDZSZ)uEOeP;^!K+A>Q|@y3;GVvaQQp&qw7&LIo2rSC4l$Jqm9+jvqol2b^bF z1g-=wW&9*}Hh1tDtP_s=4UkTu{F5A-WYI~CxTu!(>?PG7)O{R+O?Ifp+->Y{Vf8_J zSy%NUH>^odQcK9!Kb#)ug^#dagT)Qg@bgxyz7@&zDN1~$2&Nh%6RcH)D{fHL=(fl5 z*Wm})_fPU+7)kC~L}dYS#Ps7kh=Dbi(^+MP`LxdHsnk!Cqh%sYzisJPuq9E0;x`9q zas}72CPf&RKTMUc-PXmAzAj1_U5`daawBjbqz-5sx77rAO3rkPrznEtQ1S!O@Zhmi zS?pOsO`{z+$f4L|lOQVRfLxq!Z8`GPM~Pj_GS$4_`(F4_j^z;AZHXuxaeAmvX(FR2 z5c}G^rNDv>~f4&GLyC6ng)_2>DwLb9-aDB zTX&02A%GZp`jln3o8L&n-j6Mlf}YN7kdTG&QHw~o^Xg_)5E8XpvKY|xvXLQjgl%@_ z@&yvR$SpOM@|ME|(qy$9bpwDXCf-B%!?{zePFl$yhS#5=#k}SDCrq^_$fjqTy&-F{ zpnZNF??>A<&smqYgH=QAy#Ge+c#sxy>GyI%wm18az`K&i0A0P7aawL;cNkGgnj}f7 z6lYQgj+>`pVeG1tw#L%u@(w*9$>wcZSTw)8K-@$1$7|*U$y9rP(>}BKC4qRp=@i~= z5u=kD&Iis3N^Tr@4Oe^MqaNosXhZrqYfBh{XmDvaGGKeib|4>%4Aq)$0d|a)`tl;{ zxW@w$g><)Cn?xYy8oo{*je*)Lzi5ehvYU^9=~Bn?l8{LKmp&rEyGzZkFfVzE{d93Y zynOiQXQw>1=*->GMkQKwUU6>7rak>H^qEG1MGP|3UaZv!_u!ErNLTp*N|U!xiJwwO z(SEW+;q90R_xF@k_ts+DdT0ekKy#w5KVnGZAASbw$LDe?r{vSQ@lb_hlm3E^O|?ouV*Er81=mAeNAw zdR7y(uw{?6CCpH9L4^-X-cH%SN#{8CS{ZuNWx5ANq;Mz&J1M7#2IO3i0* z3A?&NCx;?>y|ol~*i6y|yMHSK_l=a^78(?YR^JT?LA>H`StMC6`a_6uWOvW`3fE@# z9fKUX$S|N4HMN%TEogDd#@q_;r*z2;FkR6!1`E&gvSL7S6$6o9f1M*gKQPWi^bn9O7ps%-ST% z0lt43owK&^;Vx(6nt^j}_;5KFcRzrZAq5;<(2Y=33942vDzbW3Wpj7=?L%cvb*Y$Y ziE&TCxvEi3n|cTjfLJ9-(K$cGueGoZB?U8SLs&vBsm+ICLEzO=DjX3Ti|cx{I8?>9 z_hap`=ZP)qWZ4-7g$UY3iGf@gE#Yt#Kh9gQpnP$9_c08WevY0`ht8D23XU;ek^4w9 zmn5rPW@RN%u*{WjX5uEh4e~y$<1p%iwo0iHK?47xvpIJUZko)b39r8gT|(jzdqA?- zZ|oxBh_c|c0Rm}j$eNBBO5U zvTR9dlPkLICpoaz2XqH=101CmqR!$%@EdA6gcEg^fy;Y(^^G4x;Y>gh?;R>kFk8Cq zhCB!=P3N|dPXH-dD#^b4mzUp!cmMkOk*rGj#akj|UkR44?_+r|2us!MAMHpxS{)@} zTj%oB07Dud9EXvmPQ-7;b@}^SsYV3J&`CdUA1BG&6S*n(#1nJ zv};OlV6FhqE@ca+RI(oB_a5yD?fa44U<4Yjz?v5fSd*R1MD@XMu&KLDvH0g;Jjk_$ zRQ}n!x!|VFY=TJY*tx>TyI+AakT9D|!gvrefc7hvF=qcZmK`j+>f5~GQ4t4Z1Vxxz z^emM(aZ8d1lCB^k4;&%f4|=h~hO>j)3zjo%N_T)r)Ti;u$)K`mYAOL72&^&V1>gN7 zeEauc3vbXvBryQqp#W@kmct*U40Ocj-$|mn6pZZ)W-Ch(z0?Gw5AmNM@}*u6ULD8* z_>d!xGwz`ZQCwLKQW8*790itCuI9=1@)=0|zraxh1dj==G)~j6D}{7gL~3ig$R@QV zDk%(5$tLTw?&ZpFITbNr&+E_9j*{S7cj`W54=~9~+uG{t%-`k5DDu4OVUE#O9LSUK z=_hOfw~SJjNOkDz6G4?SVJ;`LIM73)F&J%5fdL_kYA-mn=1WxH6*DbQ@8$C^fO-xx zws-QUpd(;-g@cryY*)BhTL6W~Se4~FRQtYnfRoAjUKJ;SH8AN zVznIjVt(b?V8`eRGsbPm!^(34WMLA=c^Y6rKG>Jjwc1qz0u4hw2@8)I-mQ<`=T9q_$ zDTFPO~7_2vfP7($D8VTR7_=pOz6RK$;?l zPrri}$$2Aym$G?irUY_Rqk^L7qg1EdVc;S4Fx%1z^Sm2d-AJ1E45k3;%@f*{ zay}AzEKoPI!t9MS3QNUk2)PPqKnC*-+-O$R`*1)PEtdqqC!TxD(DXSydq1W7EPb>> zVZ^dzNLw%3MTKpN)cRR;7yWk5)ow=#Iu)*H=8q;sL@ zzJ#;0(+1EZA$Jz7BhHX8=3Z|DyvOh;66)reE zw_^2;P{m$PgWc^C+l>Cd?KB4(7li!X%YaKwCS@nDT1YJ>>yg>a0=Gcc@Yg-i#KFc` z8)u}P1u-bgt%uZ%`fl4+m=8RTaOpJDp-5;|lZ&FBOwOk&3fujgB3QU>Q3?dWr8r}k z!*yI8hJ*nvfFkvp8z-fnKMTO8=m)8yuiWVH6to&lh`Yz|hRvY$Z=yWq9z<#Y*G`FYsVQg>s-nG-M0qVJQuq#QR*t}YN`7D%_&Dz)9P zND5C1N06vdYB^>PJO?saC=eK0PJa`A_*d!kqN7nd7MQgt@`{CtI+#m9s~X^aN#e${ znG8I+q{E>8r5Sf9HTPEfR2)EGNNc(uSOIY{dR)m>MrN)6&cxCx@nIy#zk&=ZscDEb zUc*anD`!@3(WxJ|VO8zRjWhG`l(HB=84>sv@4`u%tNsGxfTHR>UKr31s?A*j3%#qp zfDHuI)R#K|%x(yRWh-Vm?c!>4MT})>R5Y)!OD(fHB-)`VZq#7Sl>|6I-X<%xwp|Ok zL~F*JlaQkwpOQ_GW&uh!@tOf67?p-31quolCt1ZQ@YEYRY2IppZhqFLNtRYUv#=!Q zYEdY>`|-Cwwu$NUGZfG*x~-aEvl*>70ZI2%`%J)KjXd}uYSKO*QV*yEq|fpMtKHTK zSE~wBt`wlTv34>XI|!-L)Zf{ zJo#58+13Kq0>m@aKF07&&=|}uwb}|dI8CbN3!WLExlGv$TGRt=mcD9qW{}mWwYiTX zMaj`T%*+ID1fhXQi1tAXQMWGnrwC zPpcCTd2>&(X%fwi$_1bSsmbZPe^D#c?OClt0Pjc%$N*YCmLA3=7&F?0J!$rx>Wc@_ zlJ27*^*`{uOss_doXg2l<3_pj@FVq z)bi7+1pu;SwZG($)`Pw6+)cQELS6C<3Hodn1kpIv|M7q^d)ChE(VAYhJyzLB`Jk5E zxr7V|s~>b_#!Xp;vT+I(8ayrfiBrT>xcI3j!!0$qQ~{|76UMqx5-bz&#!=(44suZ6 z;XHcmFD30E78gP^e?7wQXBzV5~mDk{$=$LdOO z+GHxn>7<>WSjp2QE=E0S92e7j6Sc%nj0V0^5coBgBO7p#Gl0@}*7&Z0qAhUUz2s?b zg`{gyHA8V*)P&LcTM*G^WfsA+a&P8%Oniw4{7KrUEE;jUE@Q!?M+#~)#k_$zwGdwc z9p1jTMV{_aPoH1ao@r;oZ^rI+#35EQ%n_VJxS+U`ttmB>4krC^j#PRC-i*N^LT}ev zL=DJ*#4^OSQ=BErznV!9rc~{L04(dlDw*jgG4KnkcIB^Ru&o zuKFQcRWpNQ^TPhK6!8vJa|`69Z<*z3Lq!5OOV}!@qQ)4mQPpUgR)V|gR$%0~sL=!Y zH6`YHIH)t|3)IWZ=uK%~eIW3b<8VE|fA$fw<2q?^6+0M;X&GZLGOQ}K^&vlMJky!0 z2pNk{+f&*3>ClUJl~mrdV1!ahi3terI(AMt>W0~f%4 zcjggmj|t0s#dbvK_YG582Hio@&iZzZBAl$v3gEZF7n1I(oglJtLM}NV2q8hp8o$Z7 z-0r3xk@Q)@8m0`xL@RVfA43lCpa$5(_`28@MwfLph{n{GV8Vp)ESK-Cl^Z7Er(K)X zU}M)jhNlGSt)-4I|GAcvKoHkJXu;?!`3$sv7c*W6@Oy2BNYT)Rp`})?Y(msaRp#nN z+KWn2G*hG{_`xOz*uu*NC7{=nFwX{*3R=yhjcovQuzb3O%n=i6v}p!CQgST(b$I#2 z4rN&$11aGvDAN(*p{g*BgR-5O8aA!o^_lH1xxCTs)1>aSZ0w;^45?V8AhJddn9&)@ zDLc$y91+yx1Ma$l9K0i=&!BR6jZ$}Y@{oftfx2cozNtbjgC`7la$0PuX^V}$p|7z} z*t3d`78+Ce<`YAB+@=2nND0F(Cl(L9;;Q5dDHW8;l40 z1@_Xt_^a@PAJ~nTB!s{bALuUGmih`7Y3I3eeca~?U`=aaBa#5Fz`())rt{v$P0>Qw zg6M`L>7eexRmodRhZ`|JPNJb7Fw!E_c<8y^)3a<0|QU)2P%#ehdvdc*P# zz*1rmHh21pYAZ&psL7vCR89e%%k=k0Nps4PA{n!AjYPiQ3lu!mM0Ss_SR^2r2MY=WQ|F{@S;SlP{x zv{f=2w+y(Tr|PC85EpDHj#mW9vJIVzqa&plg4ISj6wWhfzJ(2?& ztzOpD5+0XPpLK&Wd{%Qv7f6-$Is2iG3*W5Wkwrr3RRgTM1}V(yNBYx zfha%M*_-MlYLixukekb_;yBurX~(P%wHuZ#Jz^y%hF0)O5x={uu=Gp}q4L#_+9Qr! z3=5WNKb^k)`*7I!?<7=wgbW*RvGqx@Tyc&Ha}0;a)ok#1%W@YQ}!z!6ej`}*66qLaiPsw1QG71zKtNPTZAw#unC z3J+Y?|2r*`X8KiVLt1L7&B`4BdVQ=WA4vPky}4#abq0`kncVJgR!+>|f@xA})$YYr zAjhz8V5g>LUFkkP0J}LAa&|TK$Zp+Zu%29}_!G1XE5Fs}86BmNorY817wbR?#oH54 zH1$L`yeQAmvpXLZ&`q#M)7fhIU&DV+pC^VIv? zCVIETJz)YlXZtC$43*DxhfNS5Yxet7i=MOEJK{@q)M(tyWuQUMdF42uH8Okp*x-ZP zFm=P2%+HNjs-m~otUz!{5|R}Gr>q;)*ABpzq3IC<$MMRFJ)paTpX9apx6cp)QMJ;ARPf=nAMyB~>r5 z`g_%LM1E!1_K&4XfMir@#vALrC5oIyZz&EuOu>#c0Ge?^;S^2h&Q@@IZU}WN!m{ zc=ESX$IKEan3hm*j1)>uUL1d;G7_pH5z?-)gBszt9RLktzr_z4eKu&iNyuiC2=AK> zorgQxB9zG7(0sR{M3ynERP4%o(w#O7>;P_5DZ}2DJH8mLcu)6x7+UCQ74R@ zbDRA?HJ-wCF+5H+@Y(|az`o2ed$q@;oTJ>)D95?=BW?jozCNqWq@tlr(PY{ri2$1x zi;h<>+;X{-=EzX#Bf80MY=O z(F!dnRr`k=i2c;|UX~hz=Aa8CjB;+ELgt{-CFi>OMohaUKfnFXCfF7=W?wuJUC5{F z;x?2QxiH?%zzw&cjiOk#(O&l39}~OvrJZz=3InoXj1jc%cT^fKBmY1s;krd9%xl25VHg#xkRa8Hw9-9fz0bR}TB^nUtx@?c7`Guk6I-r7=U zp<3ndccX(j%6$k2M^f5G^npF?R)uXBIk?~@0W0maP_Jy>I~MVWwiJL8h1K-L@dH}l z$(AhrZUYxlJN)FzY~QxB$K_D*rjLXK?@6=r`W#kwNl0#)?(%Zp2tut1MM+a@_dhuqWi+x=?FR3hURev@dTjS?}OAcbwZ{6%NgIf)Y#Y+|2#6 z)7pfJ0zpzN$vJaC5zI;4n1S)2FM885HnQykz=*BTP!$$vo)S6%q_P^_T+~g($G~cV zNQ_&QCAQ@~|Eut7vJxxKy2A_~1_#!APm(w!l^m2F(dlMTsxW1$9pKlz2`yhjHo~|{ zM3~?lu-0!Y_hYo=uWPee5k`is6hR#%Y)G;0UjO6eSL*z5sgK?%DMKg|e$q}kP@ABK5b27n6587MlN=Q> z{v(pwo@-*5A8}VL5IJil#Bp;%D_*rw*b2WS@KXsu@Dh6M0)u>DcTZlx*~6_;1T7S7 znC361X~Z_6ju6~gX$yeCyWvSM3SmL!-fJDh-qeGv8VF3RM-&6#o-|pIkmsI5Q*drt zX!Aaw56W8*xhPMQNwq>)-B}<29V2hEO1dvJ3YUDHc&=RudO{yW#hX#i?x(hoOhRp;AH&{Zo<7{hKmgUds?<&=r)XIaz=2a4+ z5n>DJ@@u%9%XQ6TnLpjUMDrG z&LVGE9^_B8Xj_1l`ixG@0%V~*bMoL2blyjMMRL~*8VO77jw|47q%bYNrj!@pnVWm1Ife0njPITu(pBX0;Q4c%;$m@W2vop8sw;K zFUcYQ`7k|6@E54<*nLD>*?C82=$~hq_pYW9J;wZ&IT)sFhUB&FDb6u*tC3^cn$@9K zX177As8Wx>mBd->A5BFrXuHM;03rfsc4FfNE)P~2JM)QFT9B)^hc(#gQ-+@PPhFnkkUS5SE&`4RkH;cDg$c(<-ubp;geT;Dl@1!qJR#w~n@^+~;< z;jxw|i5Mh)iiGx$xW)fTAgZ{mH(50DGaw2!A816fvDB-2yru5Y{6@qYBni z&>h|>bc;l#4aG;Trs&8~=?vhk0#eOM&75jq-yw(ap@N*!!nbpfk_zTSFabJ8XfHr* zOC?VY1Jgb`;YDYK!{Q@6r5s&1T>F8TG8AQ~&IYM%-7d>&A`66Dq?riUI*M48ZD#k}0g8HkyM7^BXjY!QW#RA=^)-UR)Y_bVUKk*R5ALCxJ^ty@L+sgHU8Q zyF3aXl~K6OUe5b^%K-1&qjbF4`HtztD6oJI<#Q_w6+%<)0t)uv#73sRg=Hl(*uqQw zwy;E|y&e1g3W^Fo_LW8bOG%bt*d76$XD_~8w(xA-y)lzM(Bg$MlHJO?S~6O|zmB;h zK~zv`3`=#>z#x;1el>A}ZdTXo`8*$_8GeUJF)u7v;2Q>>=_~ zjK0jwebl0*`D`cbWIF093+lsEl3KtBN zCv@}0*v+P~7~G{*`NQy63Dt6qwi6}UDcM9myF<0A|9Mspc^V1Rg<1;R(^fc$thp8H zg?V{#WApnfJ<1fGRe{!oR&+|TcWB1-z&>gtGD3<&^^PWnUd_k{6SYB_k1=QZB;a>` zFWsYC8z>*Mf{rrA^PxZ6R-+MM6lLxFS`6lsYO#=q$IB^wgyaCQKY4@w?g-=8V9&;(1|(lik-^06ez0}^BK9kjhOZOR?+Owf@zh^|8 zyAJFuNUW$W9mAqF@}AJ$A&{4HA17I(-_0UwuFD;=0;*$WHJvVCR}KZXAAVkP^?j=X z<6ED?6MWxXRJeAbzDlCz`lbt89z;WnD9M04oK@@kX6sn?uez+K=w6EX#z!rd<-9*N z_b|=zM%5rielBoT8MqUjP$%)-RH2ScwCBC_t z)%!1hOyMsazX1v8Ng3AOzpPwBra(YLcNF603dBmE7U_GftX5{Nz@`CWat5ksKIBt4 zf^4<|g@^&J&h~5<3ROZDU|Ev>3c*ZLy(Zf#}9r(!(Au1)(}u`uCWWPV+1No{T8@ z!gaBKWucC)GO#v~S|J_eH^913F3ucPt1Ys_G5?bd2Ib*>$Trow5t5E(IBl{pEOkwz zpd=v2$JMTT1?f-aVA)#LG~UrdTe5Ga#!I-9ls$N?m(&KpA)dkrlG~vl^O>tYgq~`S z<;^pKQi`D`UX+J}1;o}{rko@7JfeJxajQIS9@-MAI2MAh16lHfswvq>tuooH1_1^s zwr-xi&s$VV-*YTc3$A(JXVxx=U)|~Z-w)saKBRWX4jC332pby6<2!!n)B%nkByoXd~=S|WMcwQrJm^(2$>ScG3kMMaOo~3 zd@t|&0KBuPb4Y~7&iPD6x1Ns9p?v@KPvPaa79J(u-_aMj1S&X4R4Wd+*vLsJxz#Dh9&+A$h;j@{30BglwW_HgA6<&Y+KzoFMHK{|9if5iK^1J41Tu;#W zfo9wc>_l6;8dlLcjtH$c%5p*u%*%oHLa~iCD1h9W<6vYhe!y4b*0`%OGEKQpri_$) z9(P)Y6h}q|#9|jDw1wX$jiqz0w88wd9AgB$ra$yvhU^%8j^3P{RQbG*m<`SS~8mk9LQqLrJbgl_78=`RIaK9mGXl`8Rkn6Bes<>r2K=xJ$d7%IWV>G z1f=f z8Fn#xw+#;m&dXS`!}ORHwe4_xrJC{d#Yo)v{on!^#6!j7({{UK>i}>V{79&S zkz-!Rvw=rP{V6n;WUCraoRPPSZKAQJniaTs)BRgLXg< z?S-oyS8A37gfpc0ZYi6#Uj&S8=ht94_2Vt8Dplbk@$e3qOLrRYX6T!?RFWCr>>#UG zZ*G?{c}l;x9neXw@@~zfbOcy{X`w2J%?EbH`3Qq#?D^(3CGhEK5*qZLeZb4+&#pzI z6{>?$Tgh^_cq+H&f-IZZt)xXxC-!fEhwP7dm7!K zp_j#-nGhJ1tuWiTWAwJtE4hg0vllrXve^YpQVGc(BOZu!=ToRg4VN=&7UTTU;`u0vPDMJE%Tgc69j@00tfM z?b$|kQYRVg@vOH`GFNSh1u9q|NKs7{FJ>#@JMu*sd)abV4W0Dvn`fdL>7)o8FIiCG zy9l`de-Jt4PB9V|yr6d<1FZNBp!MrayxWnEs&X{YCy-!etsXf=JO8SLw;EKFW^1<8 z_cva!^3dHORI4Y;lUj()W!oiy4%HsUM)BngkoT^`^mL*B^70F4+9W(v$HbsW)Lm5S*jK*z~CAMwh2o z_mir1^w#f@cx|o+9xvPymsSa}-nIE{y4;xlb_6&JkqPA#eOW181S>Xpe5)*(>~e|0 zm8s-BBm=o!Vn-)*K+kr0$%^ChZM~>KPnnM*D6asie%atk<271RiB9%99CqqlRZg6< zDz4{aO+xH1!|TVVgKkx3F9AjVBTsu<+POTv2TT+^={CrM%FTth>X$zm7`D0O;( zo-=q)ocMyeS<_szE}>7pw6HpJT=$wLk&C-i1EyDH2l@uBJT+4sx5AsWkVHpzZ^@};->Wxs+JSPy(|Ki*^fV8sQ$ivCXX0PTX}W^;e~uJE1vnQ+nB|63p0P_p z8A}h7)EOG|=tbS9M&^bQk}9T$T{xV9W-3boGq`L%W6|a61s4poeMx-RJ3a{n%zJgn zq$f1=dglVSASVopYU|tr#9hc5b&HLF4z^9mzm@DDO^pY%NL)fnK&($&OG)Bh>@&&t zsw1P%7Nx?b9HfY}zeZhPhQ;Fgt@%zN}n~I;-si?^YdgC4q@=PI{Vz2& z9+E(X2YLyVRSLThgInD=80dOpGnT~GS26qCK33~Fm(W>@;JE7zO-H4sxyplNm1u{! z(Xq;=aJ;N+AvI%z3UD@~#u1rr*JdlCtr+a~aZ}n6I;o@x4laM*x6MK3?%Az7FvzZ2 zh{zw!L6HhK-<`Vr@|0SC>Gv>C_aBjilVlU^uIC^G?4KN5%hkdUL>?%7!}2>;a!{=Y zK*K$E-Z8l$_zdS6r?XbKncbi2a-~lOA5ue+?4z1CGlfYCY&yb|LVx0xUusLKThAF) zWZW5fa+-U`ohAXMCM~6a#AHb?Ws8wwU&+O`*vh?ti0 znFb|JdXP0G6}Z7JE)HsKM(uQRe@tK=XEyXD4e`sCb3(vLpvD<} zh3t8A;Xr224{VRd?nX*qvUtUCA=xY0Ii>7qn+9G8 z_mYr*FO)i4LOucf%@o7_6kd`iiMlfEL@OdfbV*3|+;OEPSGljS0egQ#N!ih%rN*f& zXSwghShrF^xF+7EUfvAo8>O|UA55PqKkL*Ef!)|8AI?-E&)_3+-EjMR-X)2Kjq=qnn} zYjki%Bgd8m0XZ})n$wr#f+JB5m=fnYS;3M)ZnCZ=WoHWn>fKQfVPxnwFz-Odv&>oT z%OxYN*C;XF*(o~ua%a~~!cB4(gbzu|h!|ia)KHF1Ni{{3BS2*`Zlr6=S!VJtfR5p* z+)fQ7kuKvpD$3diUOLL?%zadfZF51K>N@xp>5s5(#0unj(w4~?I+DaK<<~@#Mx`TB z{c=zm5MXe?NEx6ad$5#QHJ~gFS7UzJ?p#!)JjYZCf=X{$1kj-jktQmJx4)5ed1fOq ziE;Q4V|_^Uu}z9RN1~adaB#DXi`UNU_MKIRJo|187xWd@OeexT(}o+ntdECwWOM># zZCYq(v@@lm-rL-0p#q#F$r2nIo1ceo|4}^><=`y9Z-uIE;5Eg zHr1Q;KzfZ`qR&L21TM14N%ES3mB{++O|>)~86CpH$rOfUu~rzDwa*vGqG8*)Jan&m z2`zK5TSPZUi+lQp$Owt%-c9CSQRIRv= z4(kG8k{D2|4s=30b$gYh>ZH@bq#V_-uNMaUX+S{LY|-@0-svperblm+2vY=7#`=KSo|vV+3Zppd3Q6m8<~yPY+^hmFsV(DXO=FC5ckVlB*rG5o+g% z0L{gH3H`?c({au((1EWQRcCbU(glU<1~lYCKI~NvEiYkZ>7ITh{{;De3jT0$HFv7k zg?*LS-9gTDhw@fuJ?nCmwSQr&3LLH999mD1?orWuwg;AWEL>G-sljQbHl$7OblKG7V4%Jrh1Zfv*+VApCJY6s;`=RP;e>E4t^ z)~TWOdfJIbQluorRKmvdTU(1mb4o_-)*SE;+10oZ#J35p%-ik?2njvmYY7v7M<6C` zchF!>+M*j_%R1>JZY~^>5quUzlI&y}kO8zpCOV zCg-sNN@tV{bixtKl zOXd-jVWS(sp)Z|pd z+cweNbl^+!-o~1K>kCO3!-|g4f#r79ZjnU}NfhB}9NRpoj~I)N745NP7gYREo$F*E z?Wox%O8*O_WS?7w^3sE{Ql#}jN{cG0oeuK9P-0h(u^mhOxVHCyCy7Qv2fcpV;~hl= z8q|M^H{5cs@PzXE0^qE1)t8TK`5dc=#lGl@x0s_4IdU#LH_)i6 zEPW$86fAU#4XyP9p*5)vtrwMnt$~G=XKXm$2(Zs@49wX(#-_)nIl+^9*$5p!qa&7~ z-7)!`P;Qvlg|3@>!O0uS_rU+Dk1!h$YE25~Cpb!FdCN@I1)5!gdPdIM+;B(wG!ebq z)#Ygi;J2qXJVwvy1*Dj^woP|XIZ|5*%hKi4?w!Dd9tMN~ZT74P7B@pv&EMXQISM%@ zV4#dXv^9Id{xp5fy1Wc-p1FW3JO`?ep)YZXcU3E*tAsoV4C(f9yA76&DDWYzBozkQ zm{Q`H+^MbRD%@y8POPp5bO?RN*E$vB%5JpAaad5bJEj`>bWhYsCqD+~Tq<nXORrXVx%moMWDBo`=z+<} z8%cl-Q)6F?Gdf8f6p0tE-7Cn!*k8ma-R}RHu5saAfPZ zg#&BtmAcOGh+4~3T*$SL8C3+)LCp3n(ju{-Mm>mr*$`oY_-*HB59mC08Z==^a>Ej> z;#PqlmkmrVl7dP4TE(3f0N%Z5(XmWx2cN)rcUuw^y8*N?#SVfh>k)V?LDu@`d$_66 z3`Sn@%1sS}1nP|@1pxH&oivU%ZFS&D58fSZ<-Xo)1?fOhls}@3&>tRL34R?+zf+4| zM%q49P71K2bEq?juN|P9U{85)*{Z9P-y?_tD!O5tE!C5uaSw?1xblraU=J zNM&x#z#@|mB*V)V?j_A`B#74D^MP~MO95^aLZMXq~6n(F4llAb#i{?2#RO8`HX%8w!017iexE6U~$xAdQAn znX@NV?>>I{2)fEh0T#kg&z)6=Ns<~MYhLolrr!DbQ?yXzz)CQ_e|`OVkbnI`iN5r$ z2e4@-sjsLrc6m};DMM*O9Is5RAWI>7h%q|XsF9)w;6ZqESz6wPUPplpqQokXIL|1c zF9-A4o*I;QWcLid|79QVP<^%Y6HFt9a8$=Qt}*eaw2PV#$TNIqG63J!fy_k^U2=;b zEZma4;L@rN2X3D#6nBcMt0!4H*L+y~_Vq(&&!3*3gB2EI@zzEj z`mlD&$)o*1_UpTkm7z0b3B68=zm+NzW9Q9WDI!3U;_-jRjIxNAP_mn&te<2Pl?RGa zG_S6b*oUb@att>=^9FXd5iritk|Jp2a-GPdD&*0_n3HU-2=i_TvahZFmJQWDl1TdU zna(%id@4^2PcotmQdQuY3= zanD^lM_kEcvY>DSBq*2ZH%;s9j9QTtE=%z7v6hKxk2(g5@r&1=zI7~LwnYc%u4aq4M2C@ioDk}AhS7tCP1T{#WIjI|KGy@WNQwB4NPFs)>&P?G56p5x18llm5+$}F5xwQKMcyt zR=q}+gL1<~QrcFL&(=5Z=*KXd)OuOF*7HmG*oTi=k%uMSJ|^_ToJeD^O-$|u{I ziK)F&x@QB_{32>UPI-JHxq(Vkp;qpJPg=l~_4RiLZhKa@t1jLNK#vXubHNfxeg_L5 z?|%0B%hzwhyI;Ki`P+XuEmff3*DSYwc2D)&1&Sl5J6KeNtWnMf$o_V*7Dxq^dD-et z?N3>GMwKU5X~7?QrqW*3}s2jM@7=!Tt~>EM?;)T zRY+ViQ&4w(q{WE?W_UxY9$orQFFd@gLRQ@<}%FcusESt|BvD2_ooq2*Y%gOFo+_Z zRCb_#s>|)rWUJ5GsAN%v{J?^7(Pa{+S|(Hu3}xd%)u0vFqC$6hk^oA!Wk$bx{rvTd zkp4(=nLhd5kf+`cAOiHMR-<0R?aey8-m9%*R@^RNVUC0kw4ZPP9?}w!vZr46l63U? z1GHjuR&ke=4&f;!$z%Z?M7xY<%w#DPw&3;I^}aE(>uRkWvMH6`1QQdCO0}D5Jeic2 zq@Q^}XHmzEbS<1ye~MMIeDc#9m9S!~Y?nS@cZf=+%-b)&y9CHClThBG0md8+fWCtJzL(McZ4LM|mj!!36rT1RDFfs?Nh zLK@`shve_4uRn!ao%|uEDH5$`6n0mYH?afU`|Nf$f5Suij|pdIC&?r77@cMLUfSD% zu3dWu%j#Rb?Ax%j>l0{XC7HLv(pU8x=U{HodsyeGk(S8#y{0yf-A|$FdFCk%idw%R z1!&==t;Ddi3v&R&J+}#(P!y%?$#E^HJ|ZE}ZsL2PRJYXtP%0-uYD>C8^-vx7(g#x) zg?QxNQ8`>? zb298~mS9aO{4**Ad**uYHI2!41DhQY&Ll#B!ZD)-)OeI%u63-g)m^7vIto}l64=5^ zN}3h6AyE+d1m)7f`RNbg%*Uq6D1&2;&u+lwmXrIvPy?c_P8V|1Fmqm%@yU>xfDN|9 z0b2~Y{Q_{Np)y(s-%1ryW)zGfgLisk`0?1M%t|#hK?h2jX3A-S2WZC7%T0Wjz@%%d5-x! zMIy{~yhy?iE~Qs^xI;xNaT#+rDL?C{QBl2sBvCANZrZE~reZ9PsZGF@UK4IQrNWAR zGrpeMU9BfQ2}AELu_OU>H3xM!t!wR<#_W5eR%g`tik2YMlp>RYC4mu$t5YMn(;bFM zc~34|S;}_sEJ>GayI@Vfw;gL;c{sP4e7E5_-1USc2uV9ONlBfBb5!NUxx7eVrGS(U zWEyI$1y?guwY5f;DGpIm$n(SNd6L(#MUidWUVs=U`|J{*oQYn0=pS1*V>`1wHW2XkA%CG{~!@ z{rBO^XTiSs%9c98>kEppf?G~knnd6~X6&7!Uu;E4evq9Cc<7=J&Y~byj%S;A=F7C-lWrfJHalSYMMzTwuQS~4kCtK zcQ~M;gU_|{uCo^^5^2}QPQK=nhz>Ye6pTPP$I!@*F6{Cp4zU7-Qx{BS*3JH_iWWP@ zdQkZ_2t*8fWdB56$nN~;@}DFJ%?8l$&6S&666~`^sh=RANsq&@#Ts zzfx%m?gBhfJJR$?hNz;uQrwZmyBz(B{zNs~QNHX0+>d23n?j0R44Rzq7;bN}4Q%>> zvi62`<)IAD5OsL=VL#@`kf5~6G^3Mjbs6QngZzSxhdEHhHRHGWiFZo56yFLzXqWkCvzl z3%aRE@W+vTN*hG4Cv{~QL5j0`Wz#4Czur2a+r@q{fG522jmz~_Ag!bT?#A| z?B$J`96*)$99`8q>m+piL?-(KElwB}OWZwU-rv_;gdh}h3NnVvX&hCxyH0oJkp^aow<0^Oh?w<5|H_}p97zG_lC2E8P6x?z7{)G@)Gxoo(jTtwvbew{F?iFVQhOrnvfO6OXn2ZA zy*MgZ7EePTA@vsI$<`|Rl1@~BSd$p2YXpocX>A|;sg+O*y(BroN;!GmHl*8!I>TF+ zEqUbT;%A}UGI+ugyMf!GN{`whpS0JPgs=E13WX56Jhe{Y9do-R+H-Rs$p;D$JFq2y7=NN4(HyqW%7#oj1)NNW zjE~jQHmWa%e)m08!QZ?jRP-DHjXf2iCtUoQJqh@4hh`+a0pN#t0~4`I2v`aXoI>H~r z*+83xmm*Q^c#Iuab8d@p89k>SeL^_Mxf;1^pO7G1kXL2dxuHll7n8)YMLkk3I6po( zH4vw7(E?Srk-e?dWFVoqPgS~zOR7`iFb;cvPzi@V&|owB#rCHk^$;RklMXRuZl^k9 z=jGX_I|nK{yUwm>aKK_mMS9yE>XHw4T2sEunZNBIhDLDL>?Bfx3p%hjm4+@=!j-dfQ&wv0>QJfuHoT))SO`&zpw6GxJ(wzXgYL+gL{2z|Hld;)&IpDmx}d?FHuhRlC6(~7 zBL;!OmV)|@T8Fg?RYi!2s{0cidB7B47iZHi`SsMRfWFC%rynfTs*~jU>~>Id8rI74 z7&VE zseFVA3DELKiaoo#c;LAWrX#9SL6mI`jQd69zAwB=9=!wm*;x36-5(UTpMigUHQa$N zdXuPXP~YFi$70M50H{&y9AKsff+DqE(yhJbT(BD@8Wc%!@({V34c)-mAvyJuY-iHs z=jG=pc57wtvabVx{l=E)fLZSZ0*4NkLCyz*j$<)EBGQja(ROgG%ie3?Bwyq{^??jK zm0QH;y5k2~+HF&UH>j7bGO+MZe_ zH3Fa$NAlf1#ii6f&g0TDKP}NdxFuw@Z8pb=0;w5xOv`Q94TAqIKb$YZ>nG{TRojE? znW0h6!@M;G`++JvJloL^3z)7;rVh*1h=5QaUVO! zb@#~|slW;FkTB;u)G%bP8FWEg9;ZA)jDEmhHu<;{85cll=j?n@5}kIVjh|Ay?b%)t zP$E!Fl$Q5mR7Em~t=YqQd_qvNrqeBYypWgNBQfpdFrdf|8aWykF9F%%g;vjpg&BW@ouq9KBT?mE?RV zBYGO@C>G0_YVqzA;|anVtc-if8xAm6`GV)s=d}{0+6vdjn8@dGl2f(#8J>JT_?4Yb7b+Ue5FTzy>y<|ou>5186v!PKj zO)zAzX{Jl@ncKEFohiVMKEZ(+a~*k*Ua&T?K-tw-Pmc-`Z?fDqOHB{1w-!bZBp#4< zryCAJ^6yp#C4|GmHwO4NSykf5G2}9Ovs)r%%X|?W-6@~NIm09X z@Zq;J%oQYRKzO7d2{bDw740foSqYM6WS#2{JSHH!BtXFQwmzxTByZL{DwB?3B8*RI z13l!p5>a#vv!sT27Z2$UF}0|z@C@|4e^A&xAeI%b5?P1nw3!}-Wyq>3TKJ{U&}LxRHG+>k$GZ*Tpg@|*ba5EQ zHJ{9|vRn^}PhSRO4@}_PMz+^sNhMp1sT5R?h&zI!oqxC$I+;3Tl6~*Ag?^jiCsk2y zCqfMR6alBTUSid^L$bo*d?(PlTKU-=xFf>5Y2@;7jgSR{6FY>U=6QIU6Lz8lb44Vx!2-VN?pS_F3`luyYMu<5egwxy%Hi-HD%lYptvF`;qxe{TPF_|7zKoND zhGpfazLu*(Z$qbWSGE*TJZX(kN)}No>U-eEYdZ<$U@KUBXu}1O4aimxm~udu2L+RN zKYjh#>sRvc4^VrkG@{Q+fKP^WZrocoTQ_$J${CdeXAA#5QR|oevf5KAWHpIDxF!f=(o=t0-q|x zQWDGn)N;Yo8BI>JzR05LpnkzIM(gg3IO%o@o)n2)`+)wgr&*BsM#ItdUi*zS$WoP| z0M}K04DFp#{z8GQ!F8)j6x)IBf<4GKmK1D(TJ(hM7U~xP)yKfGxCG9^o{M~H9~+kv zT|Ay+G<RL0h^ zWLDGzZ3yUb9;CP7Jdxdv#?lQm8tBH-*v#ry|1X{I`1y{e-U0kmK9^lzLGPqE03WW@}xa_w;4t_Q+*QCgDjH;9+W(q zJR<77&G_yUiFc-!{A?dxBa1=uw`nMsA~zxdwt&DL^?bla?%cvQW9=d3X%-LK04$Fv zQ7++%Ar2=eZt~Gkx{JzzGF3nijW0O6m@bOP2Vp`;JSO|36J!iHH*J+R#eNKwX}E)d z<>4r%KOv3)5SuVow1o@RxKUoka{?Tft3;LJCAf%jC>x%}y%kRBMsr>XNagC-;OYRG zT;AiJ0`>#<(_N+4YLD)vp}d@n{Jbo;tIFjSuAEDEngZ$l1v+51_s|Ek?JY&7%YLT%t3!uC~4f&E--sKs(jP3~PmqUB*{RIAIxHr7k) zY87Z$Nj%uqlw_&)*(cQ%;Kw&q4@kz0S)mfM7A;UL+qF$ngM|m4In@(7$hBD=gKnp+ z{`%0q?QCGml9FZ#I`bKZs$GBL8pZ@-wC^m?A@$n>2{M}=#K7-Wddla`WV^ltqg5~a z$mnWPCz4#H!TkZoAtklhr9|pfBL_64OT8ljc#*RKmHUwp)Ob<3KYf(6kL=l^TV%sL z3a3Qbu%BHa$y4O$W?)Y40nApRVR!kv@W0y%qfqVu#ib5(ui^k=y8sKIXPCm zBP13KIf-c1R}2i4vgn@uHuP!@3OGKk#6gmk1n_=}WFK9I3}Q_}lz*{@GODDv>jey6 z95>qWO{BnrcN7Llsvrho|B*P05@G_jZ5QW^q#m6G_=aFK(8k*=8DnAU8P7AVC5(=t zDA-4*Yd~-X%U8lo$1ngTENX$KM(~Y}$iSjA7pS45Xfe4`9o=$&VS1rsZUuCj?pNUq zh$p~0RH}X`d>4LS{tNQ|3`&5wt#Xve&ILEY@}Ky;nb3fRY}hQ|rQ1D;m6Q3nd6IUI z7$+kyX97dAIoOE?7S7qNEAo1g%Pq$!H*HhDJWLv%LG&#HhC3Bcv{WOd#1c;=h zvx$3Epe`#aVu68BvuJ5PZ9Nc!%q8RU5~Y5+b4@ppBpN;QfA{mZ&t88QBvtyu+lO+5 zB!x_moZ98Ea`2j+zX64jg>ADmmFBu6D{e~e!0;=2mwryvgokJGQmh#b!YEOTf-br> z78D`|*7)#sOd47@ma13`wV{~Dc@;7_q-q0tw~{K!Dw8W1i~!AwOI9e>>L7nRGi?P; zYImi`t3=(#A`CqyI5&>N+cVVcF$y;aVnwb;#aMxvFXdzPC!p9J+aiZ6=HZ`KbF$d8`1HiC2@*S;bkXdCrGh#uL4MtQfm3|&Hx)6WL-;PUdgSc64;%1;h&2RpvBxU&Z^z}xZW!D2!6n0g2R~gd*Fi#U}^4-M9iZ442L` z*-68!XWon5y&dazR5c{vIhka5J*pr+hq3H{vDj}y|H;%j!DiZAh7FaK0X;y9a7$^p zYlgZe5e-d7+vJ7c4oEe&D^V4KxSz>>@?OJ#wk#IA3z=!T7>w?#() zl);lQY(;G`XAPe@+)ePSLs^Yr-;l;0Ggw(x+c-T;^<5dx-b|JAH!lO`!w*GQMzvvq zD6hrZMQ@C)%!Ml)&+N7*)HZ8Ulr53nszY9BPUgrKRHS-xO}U#+)S|_2QZp*&Ws`AYi}Fc(?-A~s z`k5{)Mw3dQp8;`R-EOysH50c%H(urPHwfw*4s%twuF3{{65c*Rse{b1qy$#7%yT&T z9I_=XB;zc{N!+oM=e4Gy>j_DYaqpn0Sn%r{^^b(rf)Hn)-n6)bVe%}opbD!wUX04% z3(0wp)+x_;&a66$7r`5HSvAR?QE`X5t)2bUUtUbv{tq34#T3Nw+cUSZCCOLac6b$0S=RR|5oqBX%H- zl!R&9m6^t&+sN6EEZtH*BRE(q8#9Fk5dMs?z9y-K^eJJ01nHwOVnB`l2pEU7FGg9^ zSdXZ*Yz8UCBC!zP(p3Ty($2BOR*={iCEUv0!Rc5MK&Vfi7NrS}Wmm{Fq(4wMdwz}t zu{l{Gwh_L$1ZM(9o&F#n=#hirFJYcze*l+CGThED7GBqSvm|XLYeC5qr;Ut!0M(o< z%3(rVz$h00W8CSnEa{M(D_yiB28JH1HThwivzcm#0{m6N+0yOk%s&MLc9K9uxLPu!*U zPA2Z0^id?|f%t8c%B-hpZ2?v=gjNJhAv=e`AVDq_at$XLokD7##p1&@_3`AFyhIS= zt|vQnJ;*nS<-o1o4p{QY1DKjU`u+DDWS$5IgiDv4Km=DxmAsP_+8h*D1d}k_Vw@d^ zfK^RkZ-aAC;_q+6+pne8A>VFG@?Is3OL#9%LlEQm0c+!MgQW#7g*3$ zPUzs(9iV_!q{Ga&!ry$)9tyZ+8Z5KePJ5s0|;_o|dv~fQL}F42Vtz z9=$>YxmL3#xZ?o_e2KH{PhnwlS-MW`9><)!Kh(X7ec@tX+ z7=KFoT1V>|ReGYViltv~Y!?G&ZcqF_g}<`H4?L?ls6d+U@-+z;OmxabMC9}by49y8 z|K;0<{K{_Hhv}6ggyhsO80{VgPRRhehVEd1FoF?*p7TEHERlBvPZK8z&=#^xIf%j` z3XN>qDtycS3-}*~h34#bs#qS%;42dGMw501g{fT6e#(&PupZ?#RMkadd(8;ZIn(Bz zpe{G%d-JJU>jeV>YHP-80{)aI3(l$-v_Z^d%2hgH%E%=w2S7K<}IcIA@`C=SMK%-fAQO|V zvn${PZi;+@>&cV^OC?#L`2| zOg&~<5?uRT5wqZ;S=I;qc`kvQ2gX)gys{asXh(MOR_CrEV;x;bMqM1BM#}kx4#mGp zG-No>7$g8}cB#D5BCOpOs8`RMZbh|B?LN4+`q;eKCKZ3S#=&pcLHLdBxc;7oXE0)% z8VsE!8xA(`ek5_G&X1Pe#i^Ua?+rY}uyiuqZ>*KW9zC%qv61L~HY}Ng7_^@8r_Sl6bb~xlPZhgUP^pWE$eT zpN4OKs9j?pOMyWLHA)s08)QRn9WoHxJ0#D+DcMO;$PHeU+o3Y#C)Hfpp6KSP(&E(9 zg9{QPZXsQCYYV%!LynL>wB|e^tEy8o8FtW~tKy#Lh?QDVkup`xXor+Ew_mfPZ3HJYS8H;J0j8LKa7V;$8BDNWxZ`@ov65}K z-hlaaP`)Gswt*okHp2O;_X!K;e^wrK)q$(VgQG3$yMKL^3r-adI!)HNnjW%^(s2X- z@u|mh?T9p5$i`9_uIK&e_JNp5yfc*7C11j=v4>U4b34cwk{yCcvP}po)pIDuoHf+4 zI^pzd<#rfddU1(;df=_>o|CwZ5-7T=gRc`*iP9sJx)DleWIL8X3J~H70XK-8AlBs8 z?Nv%3_wlh{^Akp$pYUrslreVNa;pv2TiPVCo*z2n>C<$1l3gz9Ys;a})hwa8jR0Ce zrN0;T#@cdcuy8SNpm#AlEN$r`4YLutM)r}4ICY?Gz=-{gJo~bifr)~0BPxw9bj#>n zkxR*hjz6D1Th6phLM6O4(7ZmTBDWs zJOUjlYV~RxF1HhpwoEVziE_t57B3@Z2?Dqs7fbFZDbD&WiDbO&ghN$D5}`wOU&qTX z{{{RH#?SoFKzg1ep54pqP<%v3+TqFp3Sc@ohrF75_vzbT!s{PZa2^A2d%EfFVn9Wy zj~35Vu~7FeW{wi1wCv`=VJaMm&vwQjwINx4$;ws#7{32~$HS)eIjt6YP}_oenW%&e z&m@2wi>0Nc^AK0eA>94&7HN#3ttX|Q5PgqNJrd9WYy-|JS;Vn(#AAQBqUpqWwghEZFnV8ZCsb<2FmUb4GXnT)TBv<(-oam+W$*!~OttB4C!}Nr zGyy=wBmz#7W>*2sY=I=$d*Xd{sgQoj(~}0R22DD2s>Gb22AAJQJ(VgRr%wytOUFOm zllatL^$6b#sH%WXNTS@WnB_eNoEr>vPG=tWO{ES^bvi5j+zUCx_5nvA>C|ZRciWEh z7sDI1pBRvMtw1z@2xU-Q(ENb|cCy0fBoaIdhoEfj-sF+=P$5sm$~|V5U+?}U@F932 zy%cbs8I*(pWY-leO9w(!SU?rlogMa7g_;5&=(SKLGxdzXHvqDx#@(~J09QKfe9>JWg8aT7*sEj+~vJ9fNA@kOQpf`b7)#dcu~k zCifkKY~y=uk++ZE_rZ~pZMx?{^fZ95E^9r9A>p)w|BNDV^hw~wIyAwUs+lW1Dyu~$}-BsFzx+zq6!A#g~ zU27DA$EvOJox8xt+^!%i!P~@xJ2|P{(j3r9XmBc=*1ExvQGH0=$g^2dEm)g987h15 zNqyje;I4*#l)_7hVyGq>>^Uy#2WJUGjStdC=Vd;$&SL$#YR2AB-xH@WJ?}ApUQFa| z1Fo!rJP%^VfB=dihg}+$M)!RAK$?2T^P)xUX_(+aiC!y+KPt&Tm;!TA|zuOB%1c zUEX`K;q~L!kCFx}PdsoNEl2`&OlKZ=UmJ*R&|{#@c%IU{BxGCM>5raWqiZ6%(j>N8 z$bz2L#`-j(j033Qi9CsPBB#W8kl^eLR`?dR%}^fhh@a1ONO#W`~6 zQCrb;0tsLh(OOYL3v-FPoOBXiMiSyvztQ`I(4pWVo-M;tg6pkTC!PriP|KY%1Kq^MX1{lB(w!6E!n>>DaSBHa!pFrhU0n^3+as^h% zm84|_al^zZdzy~uB!e3tD$K=^!<W|*;9%wG~ZYw+$yPibKqq1{a=2UWo-PF~`ST? za7;mVM*i=wzgMmC#wSx~V*pn$F*vlrxkey9k^7GIN!1xxo}OX(SMA{tyiOEhn5|WxBA- zE<|Uzb%h{I<3Y3Gd~Ay<&Meu~+`|q<4u^qbMRkE{reySHFoX_h84F5roeL?Tz6fS9 z{ep7pk7zWw(AWy7>fkF^i4KOXt;`Wjmi}{hlJUI*%*h98zCUzkM`o;DP^mHUB)=^d z2;)o_%w!a1O>3;71Jc0)ru+yay8Nu_9rWmk$JzP8$K?IO*uAjOkf)GxW&OE)Ptl!5+dh$CLSu9=q^0)bz&_D^yC*#p`%O_o4tVsNigD z1MF*3vXZqdGJHThNTi?!g;?izJ$HPJ>7$IOwag$0o{dg>b1L~}3Oqq+06#*;P^s4420m);Vt zp0-fkKc$Cm`gE0=q?aPydk4h~zul!fXD+Gyv-6%QDZx;kCZr3L1KC1&lFzhN+-p#7 z;j!Gg521!h3S65L^_?MIu6JgGObu}OPtZS7<-FAvQYcK@4I;8H1fh(F!<$BQ|NR3K zjjx*V_JPtsAmPKXZ;CuGTMM+p?Un+)XX2Dnx_|-fCk~FkeEv1l3BX!+oTo{xN!Hd} zAnj@B&wLB2bMQE|c2rD*Bk>x#DU*ur+3i!Yr9}UvL<-dLqSt@Ly6$e=ShyF4r0a1* z@|&!9Eh`7aMrup#INmIUFhz8qJtbIC=k&Bedn*@RmfGG&=g*_|@59>{muD9%ks9(Q z)d|MnHR0vR2PNp(5^dzubEFR-#*RtooTg;NhHo9_SXK!^82h{5wMTrDb7bd}g$rM# zumK>Zgyloxl@ezV452yobh6UGVtA5GuJQ%1zfAYyq4rg*_1D}gT2!k)Ep$kvf+7le z>2xhx-g^IUfE4-D<*8FGj4Jt+WhnLA@3SDdf5W3q*<%Hd4#)yd&nlL&!2+$j$-kEr ztm_=j_Bnk3k^(6obL-utBx7U79 zHsGNfqiiMOtx8X{$kL;T=_ih^YAo}#&a@?E^T4&zOwSbpN5BwOtd0Z#6*0u#bTrPE z(wd5fsYt=5g7ov~=Bw9T-BE1DA)imuhaNaH(%n@mdh}l48b8SHI}&c@VW+?Ws)LLp$D(LI`elo?Fh98b^ z@S_jL00sBS@4{=cn+N8@)zvW01JZ0G$E-nmB#E2TEwyRtVO{p%BEdm1v&{ppB-Zq3 zk|hi;`UALd+a<{w2I?>U9LlcoFf8U7Wr)L5b?RK>NYg@h}d0%gaR@CHDHgPV7CGMm4D2&$ND^H--T+Ni>DePr5-xo?TqcWwSUHf1@D zbC~R8dbuU4&~250$#A)~u5v$Nh~V~d+~V*vbff~z%q;nnrPkF%PN9F?6N99%sO`iC zg6X?#!z)@G>Ajw8J^%f;!ry-jqWrRNb4bD|Hzi9ou&($ z8A<$~_EpE)jzp3aN6|8b?*BKMV?9jo#kyXSkbspGZX*ctQ1-d@4$J_vg2?{K$~x%7 z6G|=bY+Zi%8;wMe*3({QJ0P7=Np2xeucvHNQ?K8Uvb?rG zc7O@Ae9A1_o2sZh+a}{WQ!(zw%^H&15+A!Pl6j(C7WCw79qG!2s)KiDe0pwiZ zJK-Embpgl#^IEn*v(MH^d{F?Z5$-gGTBAJqu2|er_p#1Lg?n{&Y-6p^qXpq2EyipN zkM2@+clg4;oC2?rzvVA%P%@R^k;{%9l!9T;5i0PWWBkwIdmekJ}7xW!PU3R^cI2-e@K+akF=fo$AfUl2@ z>bmK~KxMEcBd~_T1JY?s%%8)94^~bQ31C(O6yE5CUY?6tPUBh36tKgvy4z*ybVHWF zjm_}9Rn0b4fSrfb8z6%n@p`g%=IKP@dH3n-=dXVZ?|%OFwH>hch=YEahTKTpD5wL` ze-}f7K;Q;wt&MBrZnyww*_9O4gpD~)u9=8Gb^4fTtTmsQF}e%0koAO3xa`(tFzWK# zujI+ef(F$;?cy2^M`=uICHWPtOeBG76yc&9#(g&Gg~TmY2`)MlBaz$0%#yD(Ozzrv z?US&m2^~Xh4$Fc2^9E^C$vh4Es{U%|jWfvKBs7}>%z zIy+Jvy&^=wu-B%9<<6$G-@lLfUTdT<)Z-Mq=AP?TnnkqB44nvz4zsPKwYgszqO z4c{8H5N3mNb<0T_&Xk=$r4`1f=)(>>rWI&;dwfl2`PyZkwd7A@n@hkH?8&05^!UI zm4lL{FDi$z0L>qvCD=}`S_BFEDmenyoxNQdx9mTKLSDA}iKi>OiznSs?lrplPU5t= zKy!q7JuRz>MOgGxO_PR196wAR3$qdtx3(IO$0?4C?)075A+sBOdz z#f#Tj5CXqqhHh-z4^DKS)Vne@uyr@}%!6#c#`g=89tu-SI4e;Nz+2j&aaJBZTkoX{h#s^4At0 zj`tlOs7|UtoGrCWJiu0&*472(eH;f9 z;5fk4=cuws9xr)x0v{@*%~H&EIOLeMojWZB)oL~_$dFMmUoK~7Q`Bb}_8j;a?X!29}@${P%*tP@HWq#7jkmttNNzd>B#W9qMo=D-`QD#X*( zZtfCzu)xUNp`>s|4J3X6j?oc@51TwyN3y%pcIYX>TmD)}jI#scQ5n#qFCOSo!4c0{ zN{p2ds*LG%SN`(?6w4r)swA+c7F@?`cb@OJs?WMmgmwbI`U0d6GZ&=V@=S67{`?^8i0#wcwT0+H8Ts$e6@awm|zNZ4g0=(1{& zB|sd?K8uy?k|(Giqt#9K*k~`ufJQ*Vw|wY4Ddbu*hqZ*I4)A27w|o#zY)}MBU~Yox zY}rbwFJAwwj#h78fHO%ITHEqf*ai;K6KDJ{1^>RTzf2NJpvWM~akG zh}8oY6zTI#C;5x_0-yR}_8?|u7cIH+mzPUR$f;r-hXbaL9V zO!m-$#+TJf28eC4;DkD5-4SS5$*!zC+TfsHz{hc99I(g~eSA@{eM`M=ZD={AYz;%H zDf*Qtmv{d|r$kXXUkO>ZbN>cRIO#NDh{l48j`#cerw?^i}MRp4pa>FcLa z;mb<_HK_C)7q_a#LUIe4&bhGtiJ2D_*4OgMmEi;6q*zytNQ9QB-O4vf$=@6Ny?ueB zN75#s>w7jifH|us)l8H3q*~Q&_YM`B+*DnTtJ>G6cQe6ou1@ul0?#m5uuL2 zO6C4w4bFB;gBwiWi&W0J?mD)4cbVqIUFO(FufjRbeK$<|>RsjTCG1wOD6T9Cn%OBL zXJ!u(LF>|Pux*))_W^Q&9f0U65hb_oSl|47gd_7rN;%7+#w$hJ(OH%(d89b!Y%vwc^E=0L)Y!L4N6kbprs|8uD_lC|UqF7P=K|0yYH<2FWRf=vLF zW6cc7RPm@h$zl|S%JSmV`f!^rH}$RLq~}CdFICg7vA|m*oU9Xu7Yy1iHn9{lkAHJD zlh-_OIJY?D(I;Nds)VC9k^D3+`7gTcFr%$#ktZ)>lF+J|(e%_SLdC;ymg;N8uI&hC zP(;ekuPb&=WE58QKUtcn=D{ViZVbfqP87l-yVoUgFB9d4%z39~c0iU;#zsk(q!Y<8 zm~fFwFjlFdk+{U6Vgn^SO})y#U^dsE!5J`YwSY~Gg`Aud;khlS6?Lq%uT8$M9ztm^ z|C7xU9?AgcAZ#zS64P(s5K|*NF+_2o=MQFezP+nZS_5gDa$de*w&UtvT#9pN`67_@ zMAM;ZUUsBpDz6P}SC05cgN1=Crzio{Ei8r)`rQ zeX1=fsv8ahC3r2zMLqM{6HD{~s2JwiHlynU1!mKzz%;#dXm3l)FlPM(@G<)o?j>Fj zU#sLe#lWgqFPFRIcvFLcDABUP+-s7&QALi+0Nbx#s(%UVvfTHEEb67~k`Auq6?W^Y zDz%dB5?>h6TOu>Afi#kO}Ym(9iJ)Q>KsKE9@A z^{PVWr9?7SO6E;e=}}O&eE_{LXrf_-Ne;=~+O0|xQ;Nl!Mb0phz2!SK%;3;Uo_|q& zQo7*AV&71?)p!Xc(yyOp#MU2Qe|9cI_5~0jP0B8Izh%$!oR%n@Xgth5sY;XDag<(8 z%Y7jRM^DP)=8g0%!)+^-e9n4AC>c21ofKNh{$2xy7=bDK3#d5{o>Z|X?M%mLm2(Kb zmC~@^m`~UW?;Ke^NMiS_%({mgkSDge9$k)%0N}Hw)x(~2G|AmU(P_5!m1PGTy9yVg zjx68&bGkpOc}Tb5EhipBw?-YlS*KNrc~#V*>8)G+fS;!|+k{lTj;XV=Y{dc{_G+~Q zd3yPTpgGwVqw8S}N4t)%+(!;jr3fst$cH>)Df3+ia&=7Ltoq6*J40!_mL0jArN-ew zuo(p9k&^-pR$_=3Nm)*xRUWFc8&@f+U3xuqOmXfU1ZSu>$*beOsR4Y}Y=TIOH|=V< z{qnA(vj`l(sz%mr`W#P5x)+Z#`dppjS&y!--|M-o5JIRI`dh1S!H^67pEhz)IZi(I}<+b$y|7aV%Q&rU^Hl03Ldt8!e*}eWC z%!?!?NIh-A)>1;Eqf_odNwZ4h%W3-~Y9L(-ARA`13M~-BY?}~eNJCO`0iea5r(zv3 zxL#e%9C-6WgOu$Z1Nt%rc@&{d+Yr6_Ohnier4GI)xo7C7G78Rm$%_a1jkGGj4&*q@ zzCoyVJwo<2)=pT#!&SF?yBqoMQ50j6B`_rfBzxN-_f>5h zv}-tCre`^M>~^JTX)wLxPcf*pl14Ez4e=X8dI#gBjH1SGT_t#v1*yd z$uV>ddLMY+Nv=eaYtwp{#AcQa-XP2}C>-%*nqWb*jB;T7TX_4~Wkc{%$IWE3ZM`}q zW#eUN5@Rcr7Z^A4w0`V#jYqb>xJxypMsMFL3d#A*d?xf^7F7~7)#rLcs^L6VSG;PZUbP6|;r$hG}qcr)2D@M~tu`>(I5c zL`nO?kusz5N6w4kiS=TuNbR66#SXy+u(<5rmdV1z`8leqQBXHyjqVP!N@AC&Kdyy5 zgpDH<`NYo_`qUzW&*z&TXnX$%^G-lcaoA#3dImiYGZ1M99?^ z0T4_KDT^kSTxgsv#06N&kSDn#ftR<98Ds}1qx9Z#a$F=0r+%1ck{h^svMQ%u>ce@L z)m4mgpMNabSMF5PrtLkuhAD~J7d=KtQY7t*L(MT%f4I@^q<#tm7wg(-8+c{Vp!;E= ztxt05B8xsyd$g+oO-`*hEUF_9fUGd@I2p2l>yzj~p_wEqo_+5kdDXyju`dg*>vdp| zW~mh_o2J|_qd^nj-bl`k1tRvygKqKi{qVQxwI_A9**9QovE;Ax2M}oUC&Bxq|T&laW|5{8=1Rs zvf91#))0~!DF|}UNrKGHmhLq5nHJ!N=Sprmc&?8pZ672m@UBT8;<*Z3OXK@+V1Ng^ z%ex=F{^<2jit+e7VLX1OPFve~0##wTqOh>AO~C7=yVcN(ouT_at!+j9*VG} zFfhoj+=I&~8P$t_9LbtcciwIJgWtLsO$zn=*o{!rogL!%vXWlLJsGwpVNFZ|=*^N42AE+WQ4i;ufJY%ZW*WZ`T-StB^_zrY7n;7pB#eLtY=WW7kA_outle z$hu`X4!Wpleqy4M-tl4^O0}Y?Vx=;HPkUM!Uxn8sY%Z$u>$ zwMlwpl*5-<|?BK zv4IVq1nb%EA@M9|rbw-P;Dc&E=y+P-kAP}yE)O;YT{)mB7};Ht&sLLYIEFz`!Mc7b zFZtD}sj&gDn%mlvJRX-0&=#8<$qRwB$mBW!3GaS;Wnq;CdB^+v_BI}d;SuM|%E!d2 z7QN-*@2zSk7Bgz4t3BM$ju72Q@lT*s+BcRnn?l1ZKJg z;wzIO*{Lf08bV(Zq`H=Oc#c40N${u-g$ZJ-DRzKha*!f5Ws>amGSM9rlVDpb<~@EH zcN_7doN6vWS*@9*xF#)q8^sof7ZBm)h2dz-pK{3pl7>u2x35a zJ;f011bqTzigYXGUXm|SLl$8&-lrsLwC~td+00fKo#d0wDJN_n5Yv0cFeJ4G&?zk* zFNn1ANhaBNsEBie-hqmo5>WZ<N7|>ca+Nw(#G;UIC*e$o3Zr;|I zP))(}gR^7$y-DtZAnBYHqED=21c@CBGU%qRI6csKWR;kZaqm8T{dIW#QpMrvvIus4 zVFTd-22^*pa;g@MRnk3v9Nzw*igrnO4fI5(r0Ss)ogs)egVa|;p>JAit!&4@;>|G> zCqSUp);@gN7YLeET9n(_9@%?cRA5v|(@^`BFRpg{JEGQqMQznzVI(0t4}Cv1t%-_> zDQ=gVA_xXt`zaA@mORc842Z&J9}p_5b^6TaT9go3yzt?zwECSH3$9u>t)BL&I1cIT zVH(|{>?EZMk^3yIxf6zjW*}@l$Eb1zcWjH_}A$xd7^qs5qA$;-Lac3a=;ghhT&)(xzgPy z_K`!?7o95v%zadt`i3T-Dye#Tg1$IgHLA+1$}@z}N|+uai*?D0(ymqM5ef-u1J5Q^ z;L@mSjf?X9CA@uwjN-xbT9%1*k04iCqY-?)vNMHZ#_B(`F4V6wP1T@Jd{I9%e~fd+ z5)P?-1NOn|CuDCYVS)7Lz6)8x8!nUEX~uy*5QmB5$;;qo{{{X*yUM$@gOZnSMd4D- z!P5;{rbm71w=KneVj=|hW+I+^th%Z^kJ_+V)aal;;w_gaC<0z|etAhABAwy^9_ThWq2qC}?64wIz40c*gL-(DpL-0ahhX&MMOr8oO7 z349I0xvopk2Ed0|BI>3X1j>=T=Ita%%tSn@^&0(m zX|}bfgNS4e2-VrUfq+e~}4KlVj;wRNElm(uSN-djXQG~*RBF;)U2H~r4;gglS_^tx- z&O9tUcPkGLo>T_x_0Jc~_Mr)Jhj~&|F1>Ab-&-kQk0;Idq`*yDq{OjjJ;#!l2X`Xn z9M60mDZ!q33L&}i22o3;1q<+YH2?JVXL7uLz*kCe{PZ0VK+xUl)e<TQ0do>1BmF2lGAX|ByQ?o%f^WJM4s`fBm!n;#_fH@F( zVE7|PEl*n=Msk3iylnepJVClq8dW>$l=W(_aPk=kttmafp2Ch#P(hZ}+hw}Os+|LS z5)T}4bf!YTce3RDCdG!==PO297fcuPnkg1liz?VtNBv4E8u`!|45-VQl`d7Fd-;?a zueQQvCERm(D&ysWKrn%e&u&q7S3|55c>pLj*#J8WUEndf^HPF4d)UR0ZERtVN=lx`DR+T5w3`zdXp_TIlEX z(1TMlUtni_$OV+NH3|D9l3PCx&xznRL>cIcvtvn+eiz<;e_8KPtlIlR@+lh#N{%hX zQRT=0)t6eK)=Vww4YU%K0$~*Y%+mC4ewcoz!@~A1C>qkXM`J!?D)HH1 z2Nfu8pIaLx7FGJ|4|e1LELBQm_30Tr5uOHsQQ;(D9QoiMRt`i5+{lo8*3^0XeTty1 zI>B4P3^TPXFEqG17D@;QsiRQ-Eml9zI+fPvy<2E9W>O;-$pL&G4QG&AxH`HV3P`d;nWAUHHqXL<*FV+hlggEib6r)XPgwP;x8;urZ|c1vzCq` z7@16qiiD}myDL{ecj}{H8|4YOdU;n9r~@BOTQOk%HQ@QzVRex>$*Adehd#z*%CJ{u z+WQHv+QH$hb_t6Tn0+5om_3xGG<46=RYtxJuODAtpvj?jLN_PE_H3L00|I5ZNcmo! zz^oTcWnJx1E#?x=`|@4;FQhN_ROAW5FBw9$**u}-{PQT)RAb9s(S2~|+NFECtpI66 z3%0;69xe@37MI1QADm>#&$`{_&_RD_t)|%$+Z)>N9P42*bP!a4`U=f{QaWjALQIYk z=t~x*9JEcU!&2kdaT?WrHa-SDCZw}EAJy`Slx0AY{g@m7Yn3hJcBpF*^}Is|XUU|N z(Liz7_PwKj)q1*XB~job12KEDJtH3-ZC3yhO!uS;cN_CS0evwXtP0dGgfSLSkyLmN2Kaz#{pfPXD<6?WLwGr{+Urz%s$f7xB9~ZW@yZ6~HD{BKCDE%M;nBlgh?Aooo{WD=pugID5cK>ys>YdEy%fcIqF5qOeZoyrq+r z^lwNsM!O5aPL|4D&yt<^87bPaeJF9hrsS;Vo5E4;Qeaf7BzOJm?|moyCtKxZaLtM$ z`Ex7Nw#dDvrE8R6!+kRiV@88V?@dRSW4TmUjpzTtT`A;UPkUY1F_)W#nA>60oya zPe3TQ&JE?QtM(IhI9b)rl5fGQ#;vb!x`VJoVbg&r%mjt--bBqBB^^-YcQ`f8zIgkH zC&))CDPPi+aOgspdV<}UbFw>qZMI{td)`fu0?RqcUQvNr1*;oi&((6^X68qFNK1$F1Y`rug{n%Sv3vUR2QQX2v4iRG^`&3m5_MTN373yX=H zLKoGp>CTV6)R36*p}Lvjp^lQ2T>_)Zb6^6b)T_>C=4_V!9y?T0imavu=^eSMc|BB~ zn_fW)O?KVK>O@`YCG+Cs0mFg%1;B;SMc}De&?kHZ|ioDxAhl1O# zSIh5y5?+6$QqYXidd(IT#vS%(>_$9czcIX7^U7LXk`(`#{RQo-D22(rldEaCLg(t5 z8L01m_{|SF+h&4#?Fs*qMEwY-5tgJwTHX@w0T<=BU*IT!Beanm#sZ#I-Nu>tklYV! z<(r!rD#IJ3Z-~c5JRYH+vPGu)kj$paKb{}EX7jY2(B!D$RNhtAk*77)1hoW=HNK1AymkaTxF_#iDW@6^KMA|CVLbq&R=B+^t8_Lo=&e zpb)dk6{7LVgarhIT92qnCx(B5SEP@$6lhcKNf`;ce8)xo&nH8i9?;gQp%h+c_+eFB zxIn?sbAx;YD4?TgFzXx`wiH%3u9X8_TbHFpyL8#Pn$`KO!+Mn?0#dyzKO-(*)|N2< zllDx{sd}ynqYdibOdV2zZ{nh0_OH6Fm!;7D#kN;Bc*c%WyXR6 z!}6ys2~niqY!gDV@GD8z?m>jTLKNU`N;k$5CbditCh}h8J~OQkJ4aL&p)WB8I|4 zi)$E@RNeummU{I-*aAz$RI& zg%H(MwCi7F1-QrCQrtA_p`YT@zPK-V3st&>N6s~>orSw{$I0yfOPk94Vt}_Sy3-cPpb*rqSU{V^q$}WeBT1^ysqo z$R@!aEB9gcp^U^D&-yC~-#kdzvPPFM4wtf%)p?iuduJM2Yabp%!wRSQo%scrX(r7J zui_Wt&*Z0{W%p?3(xv8?oc8~9I9cO%V0aNM=LYfB0tVSt_stL9KK%dx zzaf1|F;4abTIxo1YE_Q87)_rVg5^qWKXo65LGG|SKxz(RR;$4BVIn>k;RS@=nlPoO zNk_w391bFgOb*S6aR|5e^3)|`Ux-t<6*I6`e$t@EWuTot9Zvc8f~Iz}SE-X^e9236!Y)?lf-(?oCE0Hn(Ow zIL$CsPHI9{WlWW{7{On#l&X=CQoIy>WNCoHDNpN$!SU)+dtgHBN-gTvh?L1T^sJaF zxD2P~q@FkZbV!C%900BpP!yqPGJ5g&f^ZTM_l`v20)5c#kNlH`{NSaX9)e8CDtN;| zba_(5)S_J?<2bIrP>P zYF%8fNGig>L_^;w4V#p7s2zx!CVsoAcro?t>RMHqca#Fa^96n3i$?zCjeC3O-d%_Dw5{}?ZAXSw>$$SbQ*Ab_)#th>>k-@NPw^C zY&{sgSV{Ns>(|gi1T*U=?|%IH`?sGfS?d?7#QPck{LMe>-+W@HbPuJ#bTvvLUb;CK z9c|n|B8KjmZ0Ow&K@h{ivsMw&{~lgH*B;*bz(j9XwLcva`NA47AOc~D>yCh?tBhE9 zA6;pM0Ogh)6rno>3elerg|twb=L$EZb0XU=vpn#kMJX&R*z2TV#< z39vTbObxoggcfmVYoVXaQ}y93ETDjPU>0CqVXGQlt1Y!A)PKwg!-Lk16TzZ#gwLG4 z)Ga4TAMCoJ_>5*_$7>H1<0FHJ_PANApOh$4{I1vlP+NQROrPAiW&N{zr@^3OT(#F8{iD3JM3Z@M7f2+;R8}_Jm7ob{PAwgGne*2insT8AqW%| z<7tM|PGwFE77UJ^7Z}(Uxj}Qfg4j}AN(v9F#ygV2oxcIl96qhog${wC$V8fo{*`?M z1&W^85?{c|=0C_^C%I>btm>T9anD*J?@RXh8W^qK{oCtT;q6P+a+h@DP)>nloU+>` zoBinp#U7lrYV0v>fB^2B-UL;s{D2CZtKHYOse}TTDyATkpkT$)?-G`Hh z@Z6u6mH5<7>vTOq*s8H+FB9kxF+GsoqtFy3CK-gSk(V*Zyh^>T4xe12>=7WWy#U70 zk_QEjAPzm`>FLn`4O_tAWV4S)1)wmDPPsDRko(X@V@Y-oafTFe65j{2tT7qf5>c%< zI%1_T@F)+pr6{07O6E2aPtdaP&K|aV1k@&YULv*h!nTe6qLnm z5l~hGdTU&~=yXVc9?1WIOI$A7PW4}!^}YTk@DKJV(G+oY(z%uzuG>!3)Orf%rB|v5 zOkw z|H@K(&NF~F0W_Ld=Q6(nx$HnjFh%m@fiv}L4**Om2 zt1jz7_ zx8`rPn{p%bzKz*p23EV26H%d11>a<4Pzdf$Qmf%?PJbacxHLflNM7KduC^33SB>h~ z(HE;hlWPe^nBOfFqg=F4EtRU}`NIZKyiV@irW)BE2BqE+v2px2KQ!><&n*{F&VST( zS9efZv&aFrc|ILE5pMA=nV0w3F&ER(jO~26JfKIKa80W|!Uaj9U1lrDf_|~(1T1N0 zf;!B+mYUfXNOzSy+{DcfNlk5Hgl-+|24q3(H#?(bvDW~d+Aw46;7(QYjBE?gV9%PD zSUsvWzp=N6Hr+BQeBmq%uY*R(2)h>_rJ*zBBSt89`JW*>;a%Wa=P@KSKRL^~l_0=G zUg{sonpcWBOZ`_>AY}d^y!|;nq1WGE9uMw(z?~$~A6hDR>~+Y#wy-OD7yunGKG`)8 zH0g=vujSM$-5SG7oO{fACMxCz^*l-IO&pXE<2q$hm*S>Qgrn5Mt=5Uqr`OY`Eke(dUgfut;Gcuu1S{};mdatox+Y8lL7;?u}SCP6+vh|`|MQQ z=gL;sh_;#p<=T}ix0GAWOqwN_Zxp^!%~OYboQT&FT}~FZkifd2`^7b0)L?XG;>sX5 zXQZIBY|sWh&a^q2KIuuY8Yxw~esR_1Yc}5*7#ltS0MDRzA%ZP{)#EHY4who$cz{OK04zq3&!=xcmjplkS*qaI06{>$zkdt* zwIvuWa&;d;G%_pib~S@`yh)P=Qcsqh)3 z4tkCaJDBEbscBez_#TfrtlYWYI(4SX%}|RX>RG)?Y1!JtS{B3=kN)WT>=y-0$tzfI zuHH|p568W;^WI59{3GaJ_tWkwX;9@{dF~AAdTNbW*eH#TX@-Lxy3~6=FOG#x(i>7} z+!)0$N+Y0IRk&>Af1spIXT6{GD@hhuul)uXz$PLnJ*+_3q%w6N5>{R7~ z@1gvzbH~GzcE2@W*y-@7WPZ?IcQwYlp(qPa^1x5HIoYX_RkX^p1stfzmJ#=}zdE2e zgU)gXD~Ev?CpAxjchyv1-u)ctGo8wGjsw~XjLNE_2 z4>`+uktC}7-X3J zECD5Q#5e*|$s}9h(5@9WbPdT48`>x}l>h7HgzQF32V$oAe!!`? zlT#&$*{WRWzNKbGy4izE7ezLh%3Y-jWut6%0q}EyHZ1C6lU-3b zF?%9|5qbv#8+&D4xTZJ49o4}ZhDBSV*zN@E=nY-vmUK@!d0t=$!A{Z*I25SD0(4av zdrA(gm*~ho$hI&(OWw`Dj}=T0%-8AltBXE=32IlM{bsFtnFL52h)H6&+$@7q)M|qj zSPYZA2kzC4Ki+w3p?fL9ojWB<0YC6oKC%X*--7*`RC-mVB3mQRiU87yC`O)S?shP| z;7o2&`Y`=Dc1Tls)bny3i?oPA=hwKf77)pDK)-t3vSc9^WG&l1tsgn-rYj+t5O z+(#$}ne13sX;rDl(@SI+ICIpbaFdkJvszop7qM%Psy+S?NE-%m(nZYW$aZRg~ z;sH47ngPlZ5sa(U?rJc?0|#Oos)`PY0qd+TMR$__l{)(}o~#*CHxA7>YoGLcXfBOr zUFqg3gup^SFmXL{;es!>6}N=YcLZ4BnKG2a-JVgA=iu4eaHeRrc5FGrzjg%2TwO>P zMiJJzE#YPbh01XUlz2cYZ*wg8lvwbvG7#id>llCs;%f##jBdn>P16m?9kiH6+2_s( z1v0HwU94{L2D_}7PHs38HZAV|Wb0g_V@yC%?s}w(9MTqUNEY|1XM6&P-HxNXYPjZk zUd0~cIBlSoDj!;#5kMx>jYeLUW$jISFMLDmR$F|%5)H0BeMws@H=Qh1RVIC&#L)Z| zg;WyR59+RapQd3w&-S7*@DGOmgbILNlie;Ks+Z1V+2M@KgaV2)oFvs*b`Y_W2rfDM zKFCRdP9sN%NI~2qfIc;{JxbiAN%?74oGxKH%M^|gWY!guL$YHIDabDHEeLe*mAAWj zMI3=w>EZb70v5|MJ#vE<23>OU>=-H-U-O|O1jlY~puJ9;Vs$wp9g$)$mbYzmvzXC9 zz%YAF5Jdm!6%qHnNYffLw%=6%?$+*p{p}?8<+|thx}NanV9wi?co6t-_puPvG~~!b zP#PlO{p6?I+I~{M3T2@bq^Y9bX$uw2TQaEiJsE1mVPkX)cpi4NejJ(`MQ{pI4rn1jee6WKx2qVo5CRvRz{Roru z3h@)xZa}Ux7OVx~9|NhXOQl0wsou$j2JmQC0{YUt!s|y#SHu*iV9JL< zTKWi>7Z#TTGR<~12WWn#ftoIxmPAdm-cf;x0>i6}r8}5DBr$i{(-m?k^n6#29Z{>k_?eqy~;DQj_}e#;k>qKR?6TylUl`!q*#_B3sIsv`Ua}8>Cf0saJmD|N3Kl; zPgVcS&Mz=dprQuyA1B~?N}x%?-0@K?_{kFC{1_#%eiX#4EY>8wrh}^SS4eysoB`>M z0uvz#DC3VE?24DKc~Gm-3bE-BQncEB9WvB##pLaJr8qRum$%4F1vg@40G2C&tP!nP ziD`~WVBNQ9XgcG(ML()pBEBZKWQN27&8ySlk7>U%kao7TS z%<+Dyi+iW0OUU`;Tu$K`A-za&ym)Z|>d)2qw!1;EVgjLxQ(UnGqzQpnECW~$IxJ`Fo*_xi8 z=+s#9l3gja)`6VW!j+jR1m4zp%4lDgDchMUm%Wz0n~y0toGB&8QJSQF_gCS22|)Jl zGe{$Tje1}xFR+V*f-2MNM+7jXR%J9#dCE8<%-BPKxPnSz?_&>~Z|;XG3dW6jk^GTu zt9}q1bV*c}BVb;*L6Q{_l{J9`Ovcl84i?+4=c6U2J@ha-)Q>-6!ymcbV9^XX925w0 z^gYOK2KFC95@gt{Pu%f?Do^#GF4*#X!U!k*mf`g6EZsc!nv|+7Tr3pf01f4PYiLvG6jH0DVRG$bMrBwDkt< z!wPnJ!tC5KjVj&P@!cmFwr|T>8F42icq}XQ8t)T5T|g{2fw%6;ue8(U^{aFuoF!FS zWb`kxG}4obscw@8`;^BWjXd*3J_X?9QXShFdNd;wnPO0Ehb&4MVshB1;h9@HBY@-hy1&kB7I~8u15!6TBKA0kk85m zZ6~hfaYr?@@J%H@SvsW+N+D1w*!`JP6A+4ungGr}g#W0+rG);%9&thw?@Qv!Pl?QG zYP%oXO@tbT(iYc(E?|EMrp5b$NtNYkvfGG32Zkj*SM(jzL8B^#sW)Lx>%ax`kzZ*m zg}%OmynSp@Do>1HwQ_n6k%FaY&Ij$Eq&Gt|eL7i)Sy1d@c!whec;+a-Z#xkrpr+1% zbQFUtAlpr?q;y}J)YFsv%bON3aol)?tpOyjdGO!#chD+qJ)Pf`sLG=+|boo(_Gd!BpYD75rrpRwlGOf%R) zV_4i~MxUO6g0K&OrKt1qUF=(T1?i%=bt|EC&*5&}#tt(UBm}E#EUvrz!rY719@iDa z>%q|zrVsun`}#);hX297{@D*_+n^gn0g&3kb<8~%*2+>dOrfpce3iRE!Anq`sam6) zXN)X4U)YMHSJNeXu@AzufkV+L+OJ3FQc`%dm${1u68&L_F)0{g*6h@Gd6lF)Gc+8E zw#oU0L2x>u^I+UbM?uJs=;$YfQs5@mmKabcU|gjF1n_E*jnf)x7plVQk(pkz!(4=c zVAI9C6c__fd(S3jc*nR^T4Vz64NIR?LMym=-B`bTUa&VgOSSVMU-*g=d zCYNlFYB$gt@037k&khhO0|;jdfEu`KhkYoeH4h3a4%=`(Ku3@u*_||3J09cN&w7fY9b;ck} z0=D%Lz@ooN!L+FXEjs(F(|I)dLlC2J8U1d3PpYs;3JVzYRn`!K+8Kr^CV`JdD96zI z%vqcRo~<+-lD5Tz2fyS^$QG3m8Qy+(5_Nq5c(FPD%Mq0Y5eQw<4}oEnYG*eI#Pws@ zZs`IaPNex@?@kofjmFKZ(&X*(@!*x%h&>oFHzBxr2}fEi|M>myhks0$Axk~$e-{c` zY?M4dUXq$s_G+pM9r`WDsd8LYd=Wy4^?@>SP-&)(=UAyW@3v zKqicy>-suJR$^O{jtqm=#M4*&3dd+FW#Iz6#2l4wDRg0?o2%2RblUd>nvb-Z>O zhBG<}0TW&L8uFyi;kc-E{o->T%g*mfpTZWPHWn=q1;+5^)xK0xU-L1irLUu53k_t2BthhK?fmxg^RGz_kN|=c8#TLmpRZt!w zEL_qogm4&wTPF^@$QtoHy&MifYWP4a(sPUmcfCAb1n!MeO+7VKZc1ne#6zKljGYQ& zO)C+~93=^fY9B~Jx8fcqq?BCRa$|ePFW((wgh^tfMsZ755?zi&V}G_g4L68ocMpo(xv4tlBaCEH#f0r)lP#^8|XGKJlvv=~7OC5E1EMfP7E$gF*Vv*xI z9-&+F>94xAJpidLS(OsUPI7@*Be z?xG|W4eLMs(mr!WWe4rR(JW+s8SfVgncW5B2k41?Y=B zD+{+0+^=@QAe^?R+1O9Q+aE8`NZ^bSWCkLnVYS}N6K4w?u7Gk-jbmQQES)i2VF_`K z?-6wrFW|#>NPa}QXwZyYb9LR3cioZ4I68RLzGo{32@JQqX^v?Oy0Q>*QGSZ`wp(|Q z@b(xL^jcUBirdblRc*fif+ohAY~dc^13_x(B+^& zW+ZlPVk+F91U2FnIL^9DGW(QNnDy;8!)kt_j8ji2@+&$wyl`6>d3Nd>&|AC%Ii-rheQ$#P>4Zi>2b9z zz+{cXhvZ>+xpz;+u|^13o@L39-*4^8p+7+UvtqRY_0>~)1=SuK>9XU_wYm3a#Gpze zg31Ln9SROLCO3hEPhWoqHPp}EK70N6-Ot~C^!A|wZV=bB#$Wc?nQ{+o9qmFYgxA91 znP0?-yasTW3xiSsC2{~JH%=J<{+Q>cBtVW5r(M@}n&XPu@F?KA?p^y&EgYyzVMWuO z8$8Bw`>ZoB`H5q>KMZf5UrhDtEMSiFL+X`o&6+p3$injvb-J0+ptq?yI$>ajKkW=R z@Lj7=9BnGH(RUYsXAhnqe}4N#NMCqlsF(`xD#VK20~C4EymTC^!D67FtWk9*6n-7p z^?*DIy>>=6YsTrM7>mjKaoNW3c=iBjc=++`ISb(jLodZD6DaI?a_L{tEkmUg`w7qWO|najWAGGwhK;o z3F@Sej(%()V@*q?mgB(gGi0OP{GsfsBUG|dRjpv%E2&yI4+eo!P6PJ(fCtMdgmvGG zGBqxok*NmMy!qT`t}xV6&<`pgd*%wXYC^_9QA7B{N+)%7qN0ZUOqHL@FW){5@4KMp zul6RlSUlWwbU;2TA=N_vRJGX|M`~Wb_tjLoX*+zR25^h*XjxT$*C0UJ+epcI##FGu zP)*s`xVT<{{?5T>Db#~E9U3g6fp{)_Db`a35y3I}E>+Y802~aKX-NLtusUL`bi=wz z9-B!?$zC{M!k2UyPYwg8dQ@s_Aoe)!9=j{LhW2#jAhcZkWePq^cN-T5h7bySY5})PK;W*SLGrP%g z=CbKQzXg{EH~M&JjrHNK}d#{jjH)tby6}%h7Oe7a`n8(*r4)IbbuS2 z6#bq(u_T&o>BJwDmB(85gvXapk$@xVJLm-2kPm7v_+Y*^)X&QvvQs8|GU101O=VfGdU zz`?pMN>Xz*dALz`5^d#8l$TaIHxPvSC%a#77G0(@oV9Mrr+Lx1N@?A{}75PSn|@q?97HF2q- zhDU2hwt!?=Ha=9h5nG9ftKPM#tTKScr&OVqg-G7HCY8dqWad=V-3MT2n5-_;5}Ygr zj9q%8|1Bgi*aPF9+F#p^M!-37kkgFAMF~F4u`rC5^VVoF=)R@N+Mi{Y&C{A;ONkNM5oM1W znR~q9q+F_ACU?Vp!grM#>&}k;q7yueA}KW>^?my zHx0-o;4o}&)ZGH8g3p1VuOQR6{_LTlc|ml>Gbz>s>R)4-qV}-^?%{N} zwLg?D3L&bqsgVPtOC{)}5A?6EzkB^v;%5E9c0ErbfK>kI0-V-TR~l34j9#4q$^MKsL<^#s9i{ZQpBq z6l87U15Ta8b24La-@b=6JYc}fgAiDN?NUQ2ExIZJ`YH}ML85=l?b=?sg=x`5sNPzn zT@Kl}i3MuUM6N)&sgfRsr_KwRg>1ZOPHxyPXP3R|lzYZTQZvEPigB}n!W7hi6)pZk z1C?h&=y;r-rUnq3fj`>Li%El*7982KEq+YZk?52u}7l0(aHO3AWFgNOUD5btE zNVhlyp*9QEV;H`$74W29ban@YC6@Kgy&Mbuz%4pp92PP3JllABj)3OKg7O~VppGQ4 zSiV99(@#y=l3jK=1Of*#GeE7UFDwcG^ko5Clulo%lhaKBn;GYVx~P>D&^F4gCfPU^ zQX{`u_W~tpaakod*r7r+BsX=8`>?2HJ9;qKUbjLDC?;ey74xKd7Ue#K`&1dpoV8EMFYT^J}*A0eff($@#lluNGkrywP4irttFam zM6(i|tGWST<%C`ii&|TJk<_Yt$N?D_souG8VcP!Swa%E~ySQrYYNZ3L2K|FmN@0hL z1S*u(e6VU2WwXYYu-`801VBN6vIgM?dQ94Z1vGWzf-%La5DY^+efak0@cL_8#5ndg zXBoiw+csnJqR&+30Z3HYkK1tQXdZ#UkVWWnrT(Dn{Cq$B@Vlqe<@GE6N>85@m_f@t zfe@48>ja(co+n*FTFL+}PCQGZ|L5?ZsS}l|-7;_LUk5E{r zR+qWoA+NKsy;g;nS}H0|>Uwl^2p(;;9_PM*_>@2Q0uV`f$;Me2}!>W;hmf8AA8Yn*w0fYbJJDdoum0nU0s{ee0Mi9ioGB7>$5#a_+&EJ2Xa#$=)j#{AVXsX2O7 z!G2XqMC0P^v@e3RYi9xuT1(1lhT41~Q(ZH7iHm&ipg#g6L~TQ0S?mIlrZzkReA+ay z(IcD7;_O0wQg9By7UkIsoP{rIxIGNDB0|YnKB;pS(~;r71^5h3B-dMYMCqnf2}1C3 zUR?&1Hu4LYF)kfkX$8HP$-*{K8GQ3k@r{RL+>^6|{k$w}ADc&#jT_-AT8BwzsPbZGuEo7-( zJXG0nGo1%#NiO~QEg&NRe(EUzsrFfNUXmeHqIRLFVW7{5{S3gE@LDKJ3AJ5Hzn7MU z{GCb5uPv%sd$q7iG4d}Ov`*~@M48Z@;6bkkK#^1TNTr(_IdV_%P!EMQHjuR~Di#G_ zTn;nj=!Wz`g?MV>2tN$p`ObGNN>E!^mHYC5w|6DmRFz0LW?FL8r;+*yzrgLq?m>+b znPb$?-AO5~Myqg za)2t!GFjCFFb2BTBbDeH=VeRawP_u(1YObLkKN3C#Dn>Z9Lv;K1nd4x3Iz{+EF%)U4)Tk=tgxRM~CoBb$ICQoBmYhpI2SeQzZy_$d zP1L#sFlr%rkfLn+qT&;E866e{{O-=l8Z>f^LRU9BaXaWBSG|+^9%|J(mrL7nKt%t@ zS+4Azguk(K7L7p3AaW~YfqAAy9Gnyh%FDw8d1=<5)G`e71-7d@r(YKEK&S}zm2kzk zB}ewdoj@U<;e4WI+O)E-)TrFfMzv87>i`=Vh>_ZkySWi-Co6Hm*qkZRfbS5iSIiB{Y(wLybIJ;$=xW~~zW zo;M)uvcoy52cy&}mr)k4g%(oNitWV3fUriTPGmOyZ&Ac#4MvX#3J0(s)u+BkZ=LW! zD6ro1wW+eYN-RhYTy~&iF<643v}WYyW>GN8NfD{-6tXTjX3UMQiz7{mTP7$_@^*89 z$~|R)B9NGtrfroI{iU?&s+}im+1CKXuyx-mzIE;&KhCsfk3!*nz54 zsoU6kgAZJ%Bc6@WC7m^c zQL`5hq%t%p&qj3MCZvD5DVCv^-P&uH+5JV}Zb!Nf4#f>9loZcUjUhFc6Ddk8I^sx+ z2^GnW+r%{SnmID^(srqMa_c|3{V6FH%vF?J6HQA=Gg%y;5DMo)-y%)Xmbyeur3UkI zq)vmqh~hCBmkkR2oWzBfU6N1`xp*ifeLa}PxYUSdXKt2q@9toE*jqgoU*Xo8{)8ma zPxxzE8JJcLvx1~Zr|0Eb_UB=5&!9L{72=4Hrg7Dm3lY340qBjNxqN;+T#!+`(|#Z6=Ks1A#7nV z@*Wkod7$oK`MX z7t3-vQ?KPh6AX5#s8(Mce`=31L-~ z9??c=L!xAJb{V~XkOKIa(7FaIG%0Y-mlyRwL;FY-vX*@;$yCX5K%FgMStXj>5z+*~ z1)Oq2R~zsh(yha+N_GAKYn|$!8NRaVn7LYzqJ6oU#E(9nN-lFh3H%{xJ%5y*e>nff z&O-DGraqT`bta|(>3OB8kUldK#BmDSR2QaBYUssizrhb|fs(IXJz4?Q4pV`o1%W-x zXel?7;xJb@4MDg$sR~-lLwzr2(A01SPK(>x?Xp8A^+AHjulF5hs%OyGc?eBm$6Bem zI)ISYmxCB@EuXE;?25XR*)>JGn6*OxK&|0~{1#^ojt5IM00Gk@!44RbKz}F6Nej>| zthqu_0Q6=;;f$V=O+9l`@7^!_^E>^0ITyIUO#y^RdsO*6=<5M`g2;o>@CG142x9(9(tLRZ8< ze~JCDNe=Dkvux8Bv;Ekb-LzA}iw@&u*fgTpz4zomcQ4tF2HkU70;_88uVra(dB!kk z+cNz#71+@H2ze7Gp$N;+$(CTPvWF?`KnR1b^+k~+T|yd-r0bUNRBF3adbVc41TU%3 z3DimFD-IYb!|=cb1d~BDT&wIqXCOcQ9R{3Mg&5&KC$k43HVEa>kx>AZS}>5RNSp7_ zd|h_KTOt#1=zSX_t|1+vVAT7jza3JqF9bFdwF|^@$t-`U>|la1d{+YH4EVnte>mYK z!AD6xPL4~9{o(VHLnTojiGyPYk@nQ zzR%AkND17h&>5ErczjRtUtYq?OL`fP=>^wcnldlS?$Fcl6f*$$9(Sx(ue&+gE1MUv zW7p>14M4GPq{mR+#hu2Tjf5Z7Vk}Feg0xh?L zhhT-X*UqIGYJ(BP7SCdkGE?6G!IJPQQg1ERjY$|uo!?%FO4h~@{+oUe7#gn;=bQdF zoPT3S7`&uCK8XP&L@H2E2;>R@`Dri_VwvSule9-ThRjTZg$nLGYMP zW&w7U>9Q$H3_D}bz&Yp(GnQspeYm26SctffDq`x6jibrBe!#nMAy+taNn73$vt- zTaTVJ#3)iIkhcjbo!bRYZYCW^SYUUPV1GpQ<%tVB zUK7g2ixxAML#cNcP8g`Y-#g2B)75EvZ2aaE>h7F9e*NiR|0%rv7Wb@jq6;-{m%X5> z1t`guw;wRoV+$R|WvFx}mrJ^F$|mtZCHxiD`HU$^oV#bo%^-E13U-4rcI{NE(=x_H z$ZK5=1M^+=c|>QPH-m{MQTfwQoaV^TNGx{AuAq!^nySicmXNS#{v+%H_F5j2`w*kV zO=DwOz@=RCmXdSZXiwxS%L1qpI@OjM0SB=b;)wwj@Gt%(ALi?)~aM-WETug9n}Jwenn4iI;mf#^0gwT$8u6!c0g>fJu8sm*sEGl_~sL!eOSsN%i%H^UO zJ@jjtke1UjyFAiP_lV?Q+z|2s^!@;K*{b4Q-DGog@*t(|yL>17r~d~W{}>L`qMZ}c z6m^Q{H&T}xjvwIjY!#{@+UA~uxQ z;86JXd+=jEef!Jn?=G4KA_d8QzXqjh0Q{^7g>8|__49na2ct!ONZB{Py@ z#=ja$%kIc?kLvSt;2j&tctc}4y_A~#&`xQlCn9`$<``$%^U_pjy#VE6eR^mjvRB?w zP3Z;!B3ah{+hsYvNrt|`N>G9nuC`%};S5b%8BMJc-JFfcsosp8;)~K6fOcE@>u9&o zjcPjE_M+9(jfsH?=z~=sat_1W0Q!@*!xn1!&m}A38~AK?QY?8-H+nNef`F{MgB#;H ziw0#1M(}L&$uSwTJR8&=fnjUmRfCQOLFD(iXThgc^>`H$)9ed?3=nun1)9lxn@&v@ zh>c;s3-Jv#CZ)9w9!s}rnw$SoY7S*d*QAtDb0!7Uh8=pNLQ3apaAfo4QCIRW|2Mt1 zM;u)gxd$&6zCG#PU}S=c1h;XY5=@SWp_s5b2#PGEj{%pE0}5JZwB_hc`EC&TUF?Gjtzo_uML(4i6W#mXIckLoFd6-G8 zkqs^9Jr(j(MNOieOSz*CA0ufY#iXgc-HP(9Hri(=83A-GZDxT0LJVx8NH3Ajc#`qj zJPQ&m?ANQ`)uvjzEqoxBu2-=6WG_>89SU{%GN~(T60>T5O;ChRKXh*9h1|M#ku(Tw zK9+2!e1a?66DkX8UzPYWpth46~&4gsP?c}xPe90T@t9Whu2e30{j3>ssU3>+O2Of?aEb#Dgn!&|?&u16DAH@hF3r(aj z^VHGoBWfRH)SX5O&0z4GoetemVRgLA$17rb7 zF=AbH>sTMUAyvpPJ+vmc6V5PN+B#s?CF^di3G0KNa(%aF>d2bJ$)%nocB#Ywmv!6%w(RZ-?*xI}0NanmYX9sPVx>sQ8qUtd-(z zK>ILVTzmp^-O&KIxCNRFGe8V1aVQhyT07-THpe3Q#5O%f?VoJ5>n{E{FPAS#V3r>) zN&@sr;@3ZV{nJGuZfVkB$hfuFLy1xXH4scVG%bx;_Og?T=9#Y?vvY5IKDrkqtR?Wu z#Lmk>9$o5fy)nyDU_sSgw2FLqU3HcE?WC)*s8CM@i9Zu7#L4B53Is9M_8>$WJVj+L znZry<#W8q+?6-rg&E&O`PV`+>m}xJmtjUZg&Sb`N0l1-nm_)<8^AA+T4!C(e>)@LnadtjuI*;MZJycq26j ztf9{JIkk3n`*}?HB}KI0tLFmwJR5rIa_2-z(w`54@hcU)h8wz- zd|W(LwT53zk_t0~h2*{HO&_J}c`E>fX3nPh;_o$}B$9HcBF|1TK+tU%Lw$1eUdKxt z2J0~nl6yFCU(U`OlS+sPn(Li5`EiCN+qEk&vi7Mf88>h`?b+Et7mb~wICR;^?>hB2 zwie5?gSW)$0}b`dFvBFNcZJnkTmW2-H|Rv+_?G98?(Xh$4!}Lw?pz@g2+6ul_U;Dt zY}-T5t8R8R4RR&=LfaJZEC;S5`KDgIc2G8+Y_!4eNYX1P_vw5q33{gst$_@F0^%~% z3CgF`EDM9Rq0-*SOT&Lxqc6Z{glSaGj!3D-*N!~qShHV{BRq=H)jQVnp^7zn?1xY)p z!Hz04hLJn$U$<~QVddPj23`;KrGYiKeC$vJ3Z~Rcck{YFUZ*9?{v5<}eG{~T``$SE z8TXZ7V(JP0(c)y3l4J2zpehcwv|;PHU7l20v?cIy1iEIa2`O-R3J#kS87pnBsSS{S zP)8Vf+0j7}p0r1omWT8OIC6FzowS%i)6xN}EQR+Liu6vc>KMMxAuo+nRRBbFS?)<(Z9~vy#+i&2ihU;ISnd zn>>tkd{k4DJCZMT$G2YPIvs-lU@-$;><4aOl{(ta_Y`Ohv`Cq85GKR~r8gE-B3mf@scJK}>1=bp9 zD&Ik>@3XOTTF8)uOExxllwoG+hiym^R9J0WsydyhZGHl!>|EP>j;jFF8;+>MR6)Rt zkcnPR;5zbKB{@KS*cB4LV1WXpqqS8!urzAo=mB?{0<1$MxLLg!N`pxZ64N=EY>!5# zN``4bW=z_LtcIj4oPJwQI*U{bzt+YVQ*dgeLcZ)bgIk#Yjy65$f5D@uXON9(W?C~~ zwe4AH#seiiZd(T+Ln%fna4~q-I>}edo{>1eb1c>?iqRv?t$qYKYNaw}cSF17nhVPp zR4#r~^pJhaq^k^!1?S|0UA|}IT@pU+!2xOY!Ct||yWmM7S^75c#Zyjxntu7-GRZAcz}PvN?5W=xN+h{ zo4cBZLX!)C12R0YOM@PSg`{mg&VWQX`ohpx!l;Rd-p^)Rc(zu;Mhq=UCPzL1&DHd% zBq8&6DtX3ed6H_##)%UM(9;$s$%(SdX#=oQ5+6^9iHF*O?)LwuX|*%&NA`IY)qk?; z1oRfeJ7^X{LFwF)m+U&d_&cv?=Cc~nb4(wgFhg0=YaN_pgdxl0RNY`3SC_d8GkOrC zPAmYOuV3;c#$Cr@1ovOj000vVBeGaRZhPfucD0!q+#8qf1pDbT8M?z*UJkEohang; zbo-);qitEDt|B%gc0zj02Dk$%BM>r)b{y}Wqtc3~e&^E_f>(y#{fJ%2KO=PB4aMAL zJi}8m^zs*(yIK+`Q#4mBrX0YN!!>mPEA`f0R>hNTyE_!Dxz?8Yz2%9C5v4a&!UuXI z9q9_j5sWs`-mt!eyzUu{#`F*VCj213`k%f2(Req1{gHiDr;^P6mLOXq@8swhU`lym zIp9>>1>XtZ|Ni$=gjAbqD3E}U_TY3Dm2V>j(=khmyPO)?F-FO?+sEOX`6aoWa z&||3(f%1kFJJo=%YN|#JrzH&gvNy4sR?oLmZDW0?c+(AkGIy9#IxIZmpvqAoD=Nr`ju*_*itZp~(Xb16WSh07w6t zfXezg`c2nmc5p%kXbmsSv>f$(Kr7V-axhw2kfn@OQd6_b-UINpGcu1>{RrgYvuuRW zzm>bnLMH$fic9E26n3y^4>{eA_9P4uf)UB2Byf~R^6?|TwE)ZA?KZv}zV)qd9sKn1ww3<{wgZj0x%R=gg8(KxQ+H5i{}C= zGI4Jli!;=jZz_i~>CTEJrRA0^$$e$>BGvV@FUC44BzNk`xdoTi07Vd;TV<1%1=?ZV zD#x*dBL=|UPRG%gA%#~garU9nS}%5Ww~v(B2``b#2`VpV?Nl_mp`(EvC+AbQ<;E^( zZ))$u9v2km?BynuWH)!00nkR&z+Cf(w-hCF%Hysh-|4mh7OQaRzEVqTjuVyC>i-^~ z$ZnDqlVlVDL=82zg{61H^J) z6ZB`9K_D();k=lZZ!i#Q-MdgVtVw5Jdm%__ka2JhTrBC3SZI~C)Qv-)aH_1>daJiG zqa_#&H26)|B!teo1nZDUY`CV{?DD^fs0HCJgd^u*M}o@TER=p*>6ykPAa)LFB<$ z7{$DAS}uPZzMu3q(P3>VJFpWi_7qF#saeOj?XXiy0FcqB<#__~w$aQm5bta(tVZ)= zGMmU;yaxRn-_U?HRXgWRp6>lpcJ|xHXl=qxSl-)YNa#{CUR7zgutL;~Iir3nXKefN$^b!0aYNX2X2E2#`wcSljXVnGNwsvgytd3Axv{l#_ zMte6<((Ppc*JOcrKCobq=!xp2;>6d^X}C{#%wLl)_G?LuRXuJ2 z=mf4hg!(D{JesAm-TMjY%Z&ar>t28$h=k6TW}{XE-lYF+c>QVKIuJ!_z;|MAMS>}i zb2y9N(b~S?WhPrYY)0??>Dx;Nu9`bxogA19Fz47Mx1hGmezFX#$aO%V*i=UEiK;`g zS8}Dcwo(SmQ|x#eUo&g^5yO+DK!9IKNrj~jZ6Er)+;O5B#a?1MXq`=EQ)Cv2n^$_tr^{H3&v)6wK_CunYfF*Y2KudC* zeokJl6^Ad9u=PlLr6iajKnGNb9nPw*s7DD{qkz$srScT5-=V(TH?lgR84Q&(E?1Db z%Xda_gX>kcIl<{CL|M1Yn3VHOoKXYC0W*rbDl*!!J*n00ENy(W%_srLX*?``2u~(p zN10`~h#166G&&84Yx10IcG*!Dpp*dUmV1zaPMuqzlo-Bd(zO7jMmD_p&{LL8Iv}1V zDxjyl6b#2sX<$qCU;!L|8O|dM2)8Cr_yb-@)J0gKyw+oX{n`gtH`U9LvuA<-1#}p0 z9&&hj>K&z?aN0gmadPLn>>5hVU=&HoV@mQ(UIe`UG@QCP`?xq#UJayA;{sTZ*h#vp z`~$W_6YFeDjVIl#R-sDDcLO??B_?3a4AJEaYK5gvYsnrV3DgKxP-XGWaF1n4n2ePx z4>+L`*=KDa+jjHqM)_o9PWKcrC1EIJjUZ~rY-kLML*l>suJ8 z5CC&9P_Ua24@*;ES6nG3$+rIj=F`2?RdDT`Z<|^Q9a{ae$kU>|%K2*Bwk!iNU>Ftv zXAZw7BhDk)L62o?7a!RyNz=u5Tro*p>BdZ?LB|%o#0~?7Ma31ZaR(<5i5WL*!88^) z+vU_HZjyUToE0p-5;={!`EVV`M27zQN3Z`(fbSkofMAKQc6YJc79Ep8)x?kN;xv@*WY;1|y~4`Uxi!g79N5{Y zx*mcnF*gQbikVWS^w;Yn6H2bYnx`u|=?sDU!6Xhc5{A*e*V!IM!Z)hDgS-LxO}lf9 zp(Y7%X)`+=cO+_17IO{@COafB{V79lX45Jz0T5@4Nw5XrloNvPet<#X>;DCi>VLj| zjz^~LZq99>WQ(z)z$%dQsy1OwUa&UH# z3TWD{lXp_tNqN!R1bK*WXRh6D6cWskLan_^TSMeWGB62{*7Dhv(o6(a3d*@m762`4v(qZ}FjXZd0LRfk4Gp%lzmN_+s>;fS*wGvMuX(BKYn;)@o&7_dbG(b+!$(s+N zLH;&;$6nzco;<(l;jG48FW=&Zqf$%PXLWFNdMrRKNM{fPoNEEjpsm#ZF8PoA=g+|Q z&03|v-l9YpFshX&KP4K%9+@R4t=>g`w6kM>W!_D+?&>fnblY}j>uvaeftkh-(JiA5 zZNTDbJ9{v~y-P}cLdwD8miM=2qYA=GKToerse~56H~~dA@1{WL&&kUh{h*N3GHZJw zTW{HAokQCpFV3bO-B6=P-K|R`_Z))&cUDI+05l(KTrB7VltJE`s-1be4AXj$YkIjT*HF^W;Dx|hq*p%Wl!)r*{x+OkgWi5c zTYC8c`i6mV5AMLcopgLaMbVRB<&#s&_K6&g^1$*epcn2f2-@JO)<6e$FIziW<|_Ag zx=fB#ER$3wPsI(o8$O!_*lVjL_rSTpEA8A~Kq;P%D@6{Cex>#h=md))wyVH(V0k4Y zBU4?|w#`nYe^)H*WWR7&3Olf@@dEV(!+*p1VN;N`g?G#jFSR^F2@)^4BLi4zZqT&A z^$t!>QJvzEyW=HGh{~2jT}(X+h_0lI{2<&_mYqcYI`i((^}S1#3beEo0+Io`Cpug= zZNyVReQM)Z%C6fN9Q-|Ucd!d?5Vx^Mt*3y+!h$j4HsM$&Up4Cy$n&Vpg_szeWN)Fl z=i~DA{{U;?e_Yhi5*XU6n%tE3^siyO!d`dwf66vcJY+i%VuSN`>MPBkN({KO$ZD2H zVUD4KD_b;PIpC$$@=mH!4m#5g!o8wOClqFsYGbfhvtj_X>^Jl006Wq;l#+o(?e|-^ z91MBMzWW`vFQgAZ5nx;11+p*by7KjhZ-06HNtU(xSL+IW{r`p6UtJD4nyj#boi}yT zytSxh)pSKSr-aH=RD>(=kMbxi!RyAOmnuFx z|2ddY7eGS>N@zUGZPhY#y|mcj0IO`&$d-)F;OA>%UQ#U;ZISya#w^rZ=u{k*C4kgh zl>e(jK~Ah3vGy2FR?tHSfjji_*&@9HfE%)qLWdNEpDdM5OCs1cg`%`I0DC`S5+qq5 z!81eZ0B!EHV097*$kIj6nQ))k{qYL*TvUf=pTM|pFp%lCj52@;(LMs~vPoRGUJ@+R zmnw5}#`huxda#ySt=gKyNM%Z;s|qinZOb~SP;zv-gTo~qlAtqv0rONgz1m4d79G*D zOb|g)g-j|(C{ci;g@HOODANlHEvizZeMF(Q9(it8kedQ)vy_FsYpni`(?gms!Mxkg zeWqkga!DfL4Dv;0W;hk6iIn!l`bZ_ly>>61SL&Q2i*JPbJ zkw%0vv(Npv)$vB^yoJVsBAKwA;-NfyO$xEb8r7L?F^@P;=w=Go9;hZq*#QDzTAA9gdmAb?poK>Y$ zj@Bm^U4&zK4>jUJ%`(8nn`bGMYOG=E!NmTqU?O8DPg3yVKhDIr+YKrWh=%lpmZqge z+R#(DIC#-26bzvj4@)rkxiUh-|CSC2DqqDG!ZkWJQW6f3wD0ydq>xR|>sqU*4DcZw z*uneO8gI^wR+GiI-$OJKu=S+w12jZVR=O8b6~JuG2GTeZrNp{{HFGFpy>3rfy;!Uh z-~s8vFmhm$00Qjlc5;y4u>&JHQgo^#LUm$H4a!<|Bx=?E%~$qNmuAat!xMeDT}EiE z<#{|=nChp@KZ<&qY7R~DIQk%boNTKl6|+)rq1+4{$1l)4ctT&=j?ESsZ;FAcuhmTQ zY-^(-KER{!3b5Tz8n>7ccg3D{$|Mby2slp0I8sg>LWMob7P5x#CX%1{MDntB?8&UE zO+o7pHOE#vAeUqASYU-nNE1dP$l*Z+wstO*-6GNJd!@)E4vU9LGR};LyX`E<6AG4( zt(iy~D<|gx;teJz*^y8Z$=Lj};2SKbkw)nkEW;XH_4@=XREg+`;%xL|H|MF;Yk}5I zm2497{!)Qujh2@CB_$*8kPicerjYJ4`-k)L=fFIu17YPztqG1+ZQ{?MC^0DVbJ_3S zi9-*GV;;z%%Nw%(V0wg7u3V9MTy6^wNhAZ5b4xfonokDy7{O&;T|;J7i8$!N;ZS{0 z!Kw-UVUrY$eV01-Xd&m)kjU4CTR!03M%eU$2!`%E$XK3cX%J0i?-BD*DTvv_+ujj! zZB9)<3if2=`7%IZVM#Ay*-v)HT~GCLjC>?gUhNUeJ6RlEUdXOmYYyWut;f|Q1;hkF;Fw}NIi}t-GmA4W=5`i0VaXP6r#K$xGHg(crNEiDJb+(f+ z>g$J>2SNC1?rSe_i6Ab{{tB_IvVRlEY{bS6F4{LxOS|`m82q)ndd-HMZOWCY*rnoY zq=Lx<+9X|o>6402Lh-qNmhU2fQlTmnyayfm{Dii%uNolBvSSp?2}8B}4Im)f$a!$% z;xb;bzzyeSmhWHaDsOvskSeF%2LpOE zQyJ8R`|@l)zpn;b>U33ZyHi6ht`rznvr%8tZY(_TNa)n4NEL{NB*K?%4FFB#6I2i) zrg+SgOIOl2m5QdJ@BE;>4g31QFVvXiW^$m1(W ztDanItV9d&qOLpa5Xtf1TKy@hbv72Rg8ajEO?32GP89ooMa_|lO?}HJNi0tlDe+%` zUtJ}RqUGXdJQ4h%W3V!HZ!8hpn7*!$&@DYDIZFo@mffdyR1Lxf<`()Wxf!GaOj2X- zCE;}mDhb=2SAgaDD1ZSieY?K}Y=57 zSfIE}`8KHmWig!TJfDLMN1nphpQ2y(+1I~NAD_2>vCjN|Osh~ied@PYuWodW`Cu61 zPKe>C&SIO2%K$aM0fcK}M_|=w%PsryTjAT^(;p6YPnTWQKP%e`sM(0QD^YXSTPli6 z6BvASE5=&yvtX4re7;P*1iBlGD|ARD<$G_<$~CmQSY89~M+bUWd$zbLk|K6>IXW0a z5KkMy#imFOM$(JxeaQnb^&!b^4me4-3q<8z(mRQ*y#6fkhjgW-YqqFK0$VTxj$$`V z!0}1+Q$i?|I*q5U{Ex!xS5SKlkyu8=1{~;pK7@yES+sn%jUfp|yq{4wB?JXF>&zMA z37Yp7MeZIEpb?DGwp>HHcsb50=AE*l{uthVsXyP9nn3t*@OCPgiL?tw;B84KlB(&8 z3mO$8KkHAg|D0RU{+sj9X>Cvw@)j|lx8|!JyPX@Q=!kUj8R`u^(p$8)k`x(FDslrg zO%$&=11+X!Y%1q=JRJ6d?C~HmKq;8iNEwvUTjx@gZM}T}RO+NXJE=8qjlRB;7ojC? zjGtf<&@)&+kc^lZ7{*MS1@iw^vmN*)e+}RK1B5;k|BxL@qaZMyrsO}CK!dVm>f!PN z7Y`@CB*`j<;jx2QqdNwILTmx+2R{fu_`whO>LkP@8CD4=_9T-xw_!ddZLl%6Yh_}N zzYmJF&G|FXR2v3GCK!=zuqBJXtC1vUkSnC(x2y&*OSMW>`7yZ0Gg?S2R2t=r$kKQ+ za6^-bRa9(RuG%-F+|V%XS9SHW60}Rlu6-N05OS?!8HqiG%o{$LF%y+o|8jy8W%_c`WbcEk6PQzc*70nJ|RaG$iV}^j-gCyUM>u2w3xU-%YCx| zaEp#(YvbB(>cc3h6%E|y`5k&(j!ilXNOUP28M{5KCQ#5Di1Fb_=OYLrTvWutLC?~1 zlXi(!#de({V3D2!Rc$ld*7bw;1r4zBNVpX0PmS;fHBvwW2hmLYt&Ev>nm+6VCG5`jOIm@0i0tcbuqf(X5*{>HuukA zs%N>_u}c(K`*^2+9k$vWB~Q3)2jciRB|MVx#Q~!n=^GfUL5m8`K#$<$Ml_b|i>kS- zUO`HLJx+a=--g$ZE{EJfi1HLRUI5IvUD81=!cF;*RS@Vb3Fy@C*l(fpciiitdr@

Rp5@H-63rPkl?5M!`%e$q5M^(XmdeOwiW zW|vmGE5kKAE-6r%tM7^P*A;VW?H%bOf752qV_m&Nekhx1rnkn;8dzEqK*B_d-#M6ZDSLGYoS|B_wYx z;8qDgjM$9w=+*E(m<;?*#~}F*HokA6GJ8#P8hQJbp5HLNQa82*-V-YJ31gLJ9|0%h zRiOII(ra?Kp_vLeiR#UI!YdU&>FNQaLbj(RL|l@xzfarcd)=DcitVn^s?da)fpv9D z-kT*9%k-#H(Dv>L3yRd5v$kw7>_9~)zV|gDP0ltw5sG5kHk8G767T3$bJ&jBjYjhOVX_haPixS{t7!8AbP@HJL;7 zHp~Zm_Z;ZTn{25kI=$3X%^VjXT8-z7IcegUdyxVmi-~GyK2PeD1`xu zANiQ=scEboc{_|N(-Q{a8U20T)~(f&*M;PXT2=}bnNdP)seRanvOg#sK}TH5+5oma zV}p2h2=0t6&`qN1gGzI1XnyDv32g-H#iM^)XUZ}rAh7cV2OrK9NTex}1o_U;pxTv~ zX(8oN!&8{yIEjfMJi~qmU5FN78#~D)GkTJfcVsIjoh@Klp>+JY=>mQIiTugyzepYn zs<_;hEUia!wufxF1Pop*xcCiItw+o-b+Diucv{aFop7yiP9muS*#3sAv+}tUrWRLK zAAk{dy2wvKhx{>Uybybd3I$l92n!*_v)aQ5j)LZ%pd)o0NOTnIs7u;1NYaBBmOJdK z`Vm#pdZ6@X(@6o;#>#3U3=pkKg8+k^P>^)42!%xE3t5e{=DJfYIvgR7C*=k8a=fzL zcgq6RkFh>DO_S5evFG@jXM1Q>hh=MV>$=(bg8^F7wL|fDl3syShE8~4EP(1~h)*{nIa?-oZ!oLHcn;dteez#>mamw2iVcu7F zjYA^L{wD@`Ta@pRO?yBLXJJWK=I01jLRr5TZu^{2pVJ?t!8%7@h$cRT{U zam{L;$u823CJ}1q*%hLHB0J*`;pOFcq8pZ5Q3zc7oC*Y2A0r%tDk{WrrxRi z&)MkK>H3(B$FGt*Dg46TK0GyV(D9AsvRgk^UhLcgIR}F{Lk3FG`MY2`&kxm}O8>H3 zJIpkfhs)GKf~70v_^Ruyt-4Hy8Urj)F|lEYJa2jC5K*_95M4H3CP-hGthQt{juU?X z(!2chu1bA+xL~47%9E&A}X7G(Zc`0J100`ih;joyJdE%as0)*NPP5(T>q z_>iQ>M(S{?@%lu{Gk`qR7S@VeNbz#{R}R63Pg(n*ke9xhP3gIOc7q8RZnJ(V0H$}z4Zph8FW zUu$-B8{~YkC%9OSnHQq-z=RQq%lTvD5rOU7Yx z#CK3))3?_+c_2jwqb(@1cMhu?>g14`-MVj>&C9{63f_fp89i{(X;+;j7H=uZMSV*2 ziR759OctG4pouip8BeQGNzUgHlfcs{qq>xBB*HrJ-hD4`yA(Bb_C8m)^Qp>;p=xhv zOf|{!$@E9zzh36vp7NxMI+JVcHBiXXkvu1+$lk7v4Z=GgLTs+5D$6Sno_zrAcMFUR zHy5p|4_QKe%(9M?`}jfpVSs2MtswMma<<*6?UauFj~bH&y{&FcM%|=2sUDLzGmLqnMtVw3Dq0=gsb&`o>=(y=xewJ;4od-D85QjI-U$sgp;F!WO7vF_0is9k_CfWyU{x{UW?r(Kx6l(&`Fu13Va5S?!}g6-j8YeAAsE znskD(i32vmENDX~_Zmr^84-<2WS8fPy^?GBP@GnfG; zfeSjNQqGiRo}Rzg_(N~|bWxAd=)gn*qBuxlf5Y^eRgm#DY_jZjGwf{CYR3|=k( zg7yqSxr>8txlLn}VYRoQ!5ah4GyMiWne-x&*Kl&Vgw{J@Sn`@HfXdZDuEhM@35~^m zy-Ga|J!wd8+e;jw-$yO*4er|Ypt#9hO-|&9QgJH2JrLk_!v{@yovOf=}!c8j=$zU`%fffS9ijzJq+BEVX zc?uU5gEtl_`*9cv&n>D|P^|2vNC+P@ppg`DyugdhAv#hAu=_FVnB5p#hlNpjJ&J@> zmWG{i)56hm_8=?(@4{)cp{8sfDly%u2 z5&ByaK#j5YJR^=%2+GxX?{H2~uvL0vtt*t&r%?}jfp@$0J4jHM*){Kay*FEmm=h+m zLh>sii(~c8*Pp(ALeT+G*Knqsz%v-p*CZb{nCfhkoU@Y0VSu(#_7!3qKCj&5^}kp& z9FNpd4nw>6YqHZ5GO2ODAh#?tH4_Ita_&~5lD{2^{E#MG7Gj9M{w0*d)?@UMha9S? zN(%xDRcq7$Eq@>WJ_(T?5*IAtLN~i+?-b!@cOoZ-c$V8^0*2ABlT9G64U&sM^=|bf-TUj~5;%M`(7aB12 zaiP*=!WOjQzNkGP(0mU!6zY1&Z37HSAld3B4X{pKTW}%zTG2W3iqXw7@eAZZ5+48h zPbyi7dRCTJc~dcQd2gn04-Ewt*C>&L>JQkOkgDb-Z=2r&`3&&*ZooAqwF3W|K59}D zQ>D31)!n=F1I-)SINrdcxK6A`w7Y{B!)vHjjTn{!>KExU zU%D(_y(PbhHECN>gqi*p=+ zBWZa)vzJOv!J9=%@3O|_#GcYN#*Q)z{TI&(WO=S>QUV!5Z$JPYrA*JzWRK=uMFEzT zPYd3xa@`9hJ$Dwx)9JNxoWy3iUmj%;Dfv+Vf~`wKwB5xDT0 zr!;^K2x93QkOo2z6!!=}NqZVYClN+R377~ZwRroQ=A9@FG6ue& zx>7aC`l1B{9Kwm{kEXE>cI;%EzP_G{CqmNTi<-9ahi`v*``FQV{&P70CheouD%W8_ zNK{ceB}K%Si)6ke3~brOsM5S^@+g3E4Pk*g6kl3v80gF@#Z9ZJD1eVepEPWkD*D6X_+3 z48$&UDk7&-2J1C5al9#b%sWCYTwaZ91QW|reM<@eDhld&M@WSy$4r~|)>^!U+&A0O zDn+zZ4eb#X5l0?*^w7pf?35A*Z@zRQV3b?rv*EMw_6brSuynxX9}X4UaO*(;hdBPm z-XjqiJ;d~Rs~We%zIrSntWkTrRY^}XnF&xz!9xDMoJZ-G#E|wu{i>rpMRKXMtYeEB z@V<<$1TFi!WNV6oQ39Qlll$6pFnKo6(5M{`ti#T*^H5tAJNO`909~J^hScFqw6ZEV zxVhn?oMC$=*cYHIqz9y496GQ}TtJ%4>okVI(BHiNYr3v*wV@Zx(D>yKIr%X{!Z4su zYv4(C-#EHF6YN-&fGTBK6BuD-UB>iM8^|(KiSx<^eBn(hZC}$Ca_Ew4Af}@W+b1<1 z$1_(@2UZu4S+pPUcyPwmrv^bW$kwti>dN+VvY3JoJ&Y%|_$)Olb0UbnFoD%}`|04m zcC`_*Z$w3_T#>a|A(BM*i<-6sYQvH)0B+^5#8hf{U=0l^5^p^wNm4|Gr!ZJ6d;wzB zvM55zsSEat^yJ5o3BAgQBP{{;W(gSTxKLQezO>9TTU^SM>;VUT!WMO_Idp_Hi8H*_ zm&953Hb4I;B$7a~n1GImwczfk*v1{}iO=?m9Ks^E*UvY(UL#Bb;W$9$bm-Uzme1Ui zfVtMFdwA&>ysAqN-R{Mls=GCha z8D)(pjZcA59&FufObTx~!_uCuAIXk~*JQ4CDqQo4I_4 z)~)D!GzMW(h=d{}0>H)@YYZMlx_VIRqO)^xz7BMx==VyiX~RC;{JlH{Lx90wES8Rv zSAFpUlaI7>&Kx46rT)}hDqerb2&)t;BUT|UOoPQ2Xzc)x#gxvd;^0Sis&fQEfC$vCPpq2y1Ym?Mhy4W1m}S5fmD&@r zq|$~fzi5jmAU?z(d!mb1r;5mFZvHY2>UD6VE$>w&)LI9FH;Rs+>m=`nSlGw`^{Nz8 zj=ar5IU~uNZjp**?@rag&gM$0DBu1P_(LiPz6gI~H*xe?&}==+P|R>IOzTCv{r9dm zlefe2UHH+t4d!Zjhr)voP{?bz3P5hylYKCwYMnMvkYZ6!05%AKt@lQ26Sl&BU_a}M z@N~Hn=wGS{@`Eo(cB53(wo+R4;6|9{viykyMDnt%}^P~aN?k{UY3(urAA$jbM7-z0VrnEW0TZ>M9w<9 z2KgVt>o4qCht}{2Kuq44K1n!Mc|VITA*P?CJWoHgz?M<_NSAi)GQoYKi{b)gqG6JBt0iIlF@-1G|I zu!X=nngU6@qcABNXot0FVQ0OB@9Dy0nN^mnLnxYjI;R6*7;NT9Q6BIYc;7Xi?2&ECSG|6AMizlYZ^;3wUoUz!G`DO z%6=%B%NiY(F1Pb4Bsq2syZn!CaoeKfTg#lG`bpyXBUdYB;kXGuOUtCrAR-Xvg3R#fvI4SOw0OQGehVUDte0xa8Z6xubVbqzU zsl;dbiyfu!uCYTEgl$DTefXA-Vn{v6@`ifhsH_Z02VPfS2hwoTaA!*016J^cN84KML|I>fLR1p3=t`1D$zBcspg>NH(m05FK{iz%1knL1Yf~ z_whiAlx4Fk)$v`3H-;Sci#$7Ugt8s2>96! z8Y>h(MmXQMh>m~>u*w%1e$mXEU87h^adsnByA-f;jD+643a_6ggJ#$(+JOQPDxXR( z1+BeA2@wOK4BOnV@cR28X|2Fx6%bJ)k$7_ncMNT;i5u0Z zgndecCi%Xrll~^?i(^PkD|=}DvYjQNe^yDL%Q4y6*+{X6y?m#5ZW-1K2E!C`?p&PP zCHT+p?azEaHesui)8&}SFFKdu+a9~{0n4ay@`?$eLF>*M6SbmFY3;5l;z|@oe}yCi zh&5UH*dWUFGXy$Lur)Xo03wN&{{?E-k_^jw{6YBozZxy}013q&nsPXEz5*KA%CJ?C zU?NpdpNL^$RNN^^&v7(ei}OPZga~Y~_w| z4ViJ42mJdg?`$CpT)FdZ(MRBk-=WRVo7E##H)!J;7WM9@0bgObpP!Sw_+%;QmbABA zcs>t-mM$MSDs)HYz)khbE+87wR}SUN@{ax%Uem_d$6BREY~@y2y=8%E4t4mX=2YOt zEX#Rgtpo~%=LNXSiH|*GRUR-QFrO(cC4H!&!l(qVX-11ZV?U=`31>}*>_34-n?5Cm z)k-dTFBIS_7Ufp6KPsii8FZmH`ukumYS<(3#%PPq$g($1THPOxfgfQa~DlSZz3+S@P<=fe;_($@u7Ud9*6$NmYc&pinO$g&Gdo_lqU2?~5mGw#T$P-bT zm~F+2>Mt$w1Owj-$e9G2>$}+;v=q70)Hi^c)Ltlx=PhmJN&a^n+bV) z1w-=w@SUt}BcDoX7H$F+=?l@EmvadD!XqKz0a~*gMdC7Y)>J{?Zt<+KoF<2KMl6N2 z;Im5!TB;cO^B=TmS#e|{2~>9{x}VVe2XZC0K%}OWEMkTOV&O&zgT$!TDMjc8F32=w zrQP#1W{!J8NLgevozx_O*SqiP%^^&XzuY`;1FQkHGDZ%!OT>UHcWQru_4Nf5-hLY1 zet7|MdcUlDj|A8~$Q9psg>J2T9*qE!Ow>jKMwHhJGbhZIdvl&nCyv2vXR>p$ZPVt7F13JS>$x2$2YugA#t>M@rpu+5y z^GhPd!c%;PiamrAFmtl(aYW8w+-gcpEPyG6LVMy=m*{%bEunF3#!_A1YUHJV2(QVf zebI>n!B@8al71%uA|qZ15;A)qVRo+~DWO*YA%TcQB3An&ze^;r-$)>^*}X!AFLN6g zG_)D8l|m1UHiD=`Ad4(R_b}Yb1DIGF14i)NX=0%cZ5A>iKcRB zba6mkPfKM9iTl0Qw!Ac(wI3ywunCq@#%+FHgF#%n&~>4O`+3^)6`KF{1Ak3VcJHt2 zrY_srBoPdGr!)fT!K%;|Y~WNB)Mb&1Ts4t7Lm_`_K*QRl7}PSldeT#$+Sf>AkjF@B zv=JqQe(;%0f&&t7eNX_1R~I!T5&^hHy3=LxK&bqu59*K9y?a;mM>T(v^W$`U$W>DI z8Ki@ zB&u2McB}G$tiMn@!w;1QCO?+j$6W{TQXRvJ zg&P7iYC>$}-9ryas#}y+X}j6022$AP>V2*1wG(x!*hfvCWSVa@uIC*64M-jI9P}j+ zvjQbW?RxvPtxXtr0-3ZOXh|h@wQw zl-6Wol~Arip=E~4Pyv`SGbba3`@V_9`K1MF*wtDNh5||tzu~B9pfgX7(CedGKhtY< zIkjC-ILr=$>3WCWs8P-ql7xvVn0&Ci$p}0>0F_zFaM3ral zx2$pew8fr>rl4wy^ewAxpcqs@L=K!W^e;?w%-chHa&4nV!9s0 zWyvZjIUnw_bR|KN6ne+YLBq-0ITFJRiMA0CgjW4V)+1y$a{K$v)|UEsuu&sH=Gjx@ z3Od4z+Kh9O^!2B2e+jRtp`3hH4tb^bx?%V9(6*2L1~eRdV@JqBKoA@T62qWVYpMDr zG<0=?HtT9hmP_U;qPSJLFh1k*AESd`(WN!XJ4ssY86bgI-o^rm=Z4Yt;076chb$X1 z(@2;yYH|YR&%Xi+`hlqv;75c)YcJ_gY|gDd6zgZPa2nkx5hnL3zrnfzmIX(xQfZQfhf^o(} z)+w>0w?%5x?H~vYO$ABmFgUlBgsG?ekyh$2@G=GNzS$wWlHQ_kxejPEYm>r&oBo{` z7pHIj7$xc>!Vc7>b$5wLz#3Lz9ov)ms|g8#jUut>t^!U=GrsN zjwMnfK`+Km?S9G?Tp>@0TIL5aWD?;KUgVgr*n3)1!?6YueYX$`w4!$|f$@rtNhl{Y zhfnI@TC*~CDQslHWc6ukWgV6!fgn{RFMdb9XdJL=YPbSxH3DJ#;09$5V@=`&vf-)9 zjBhnNv`>l#f`YI-*R%=;uuV5hi3x4oZTtsw6*h|~qQ}PHa*{ZmRq6v~K*es&ABi(B z>LhGCXu=+6>aj+=?#``VR@egI=!;gUK6RuNq`IE>`FG(T{}H{q#$iROk#8S6!KRV) z1z8umKiu#G+RB#splU7mt0^g6udd8h@2aK^62|PEroRiRSNoXYoI^7lB)Fbku61;e z=mkI#v)bNKDH{Bc(z<<(tXX~6Y^ZDG!mT^W%If?LlaXgt7eHCN*wT1`D58R9Ot9!0 zT!~&n85JK;JEqrj4O80hk2XxV%M3R(UylQEflr~d(;b<|%%DG_b$ThoVEyl^ItzG2 z6`#h?vW0uNIwz+O@os7nC@5mOtk&s~Y$K!2)&X7(bY2=Etuuf_m&ED}!kx?nP!3FY zxI52|-Ovz~Gch=21R|TkakC+LjUbav>m&#rq(f6}W+TL-z~IGivrzb!Yu)Hr9;!!a zm$g1rgx-O?{(VvU9y7d+Cdf+oO6_~N7di&@rrdDOle!GVXr>8|rIduiC27)Dtu^(m61FJc*QP- zeZpKLy-%vjiYB)@Lf+K%M9+GVYq8+*V62GhAECA300K?ZjqY24q7#zYDRUfx{yFkX zaVbmLr%kfNZ2< z=sea`1Odadr-FE8jbU&-nP~6T3Hp^pXR=_n9Q*x_ho-t?cIzrx;)&{?;f@pDK7RYT zjv{cPc76|#f0vUn?I0}sXIm4fj!>mrIRbdOZ`yLgN?@T?Xa~%Nd!v3y4o>gdjS1Pv zQwwH^EMjlSzb%=Bkz-t}^^XpiO@gp6(*sB$OCC}~RG-%09AcKTQx*y^6bfTVpFA3{ z8?GUfq?l-XZ$Y-byw|$dM$u13OLZ7Q3SjcDr$GL@x8J)XNxCbLwomM&rEWa_%twf% z4%RL83AJB3oNX~w+qZv}eg`mq&Pzi2oQ70>sY3huU8M|#F3JcbKjvAMO zy}TtJH%mJk9mK;MqD!Z!SE)Kw4M!(T-WI;rYCCD?XH=b{sbk>;55rZCEWlW6T4bnU z)aaWtWH{MCzPJLWYiIyxyc*nH-n;-OLgclUVifoK904OVWV;KB{MSM4+|4#b>crREJxKl(%?Rg>gI=E`-5`Oji zm)Ads^h;v6y!{qKu%Cq2KPC$cHZoL1lV|O`FYsr+z!aIwVXl)lig&hqm};i4`CqS} zhqr|GdO@0(+zcJyk!NcswMGE#n8WLl-e0~QzWr@;8phoJnAAKnJeHh(ly$E&AX8DC zRhERVxOdDEsCbiXleN~CB0yF=rOV~;n&ExJp5GNc469A|9$_Olnu>UUpTAjhb=Z3u zCT-&b8}?)@X<{@$n=(P`yM}(~Bn>lTv;5wpW?F{|CdG)rZQd6m$Y$hqR;?(ho5J3FQ8)=B1+) zRnPIq)4&w?mYy}<;x(r>x|iq(aVTHjatr!73r>Qal`9-!QOcZH+GZg$HA2OA%x2TKKY9e{`^b*MZu^!g7t_D@RLri&MwAN}Kym-}G z)P1*eT;!^V3Uk0JW(|8_*x}A&X{o46icbv6sgNA7AgIY*-3sl=ZnnFgk?z<#1Gf>h zRKpKI6{xS#pM#_*22?(u!YrBOHI+oRl`kvX+7P3a@K8)1In-QXzY$hdWN)qI(1xT=IT1FH~bN9H;Tb@BfU%H~Aqwnr6xJjVi4p&z-tYK$y1}%Mcl@OUbF|iyrM~ zW1N!0B07R;G5>p@1xwGN$e}G}xzmu2NksMiS>6n4r}W7&r=fDjL&31MGZjMD$dOcZ zXD$6!SD)(`s15aB5p(8I1gL^IJ$PQC%cI>PNcFN+VF%@XpinVhQ-$EYx4U4i!3?;Tq2>~w8N(Y;wq`zX~`Um>zs<>_$~X5vC2DeLxz zDk*F7HM=Wj!0fxM^RThal(Q>lqUq8xjX!EYft#~n^$I(N(YuN@-I^*);*fA^Eqh9O z|0PID@d)IIZMABLxjusPryGZQHVfP{vuf~53{W#qd#`<`C9YWeyFb#Zg>=Yi?|^AP zEtq#3=)e%=$t3}-1ld6Be4pp{S4fxCK$YH|Xafwt_s}qTlT&mbW|}xiW`wu^<6%zc zT>u`2n0~62%Q3&7g)57RsRTN#J|-<{RQ@BIK9A1okole86O21H2bbXj!s;rtlDfL` zcQU(7KbAyW0UINwIK{U21OO)$g$M$&z2Iq;t8$;HN+oHv-=P?6FrB2jFW+j=pMzYK0cSz@g^TeZ)Yg9Ow8c&Zho@v4+#a5VtDqjE98u=Jg}d~3Vm$k@>C#*u3@e>nvAW=X(1V6 zd)et-xoYo?K9df`I#+a{OKXMH~|2dq0!;`Pv2RlHi&YD%XVW_&xSwovCZRGP@PDX}l z*`+*51-P3FjvEYP?a&@E=VSE`yr#3pfYnuTYX8FhMv_8y=3VlfVvaZ)ON!!U-GFI^ z&=PI4Zgs5=n-bEyxy=S-7}r}!aObLZOI@2?ZA&1)?=otQ(#&Qq!ag@`>RbU0R&qicIH3v|_6RFXT`_*q=x%7JU`o*lKkpL)#Bxiuh+Y_mxU z=!GpfJ>``FUU~c$_rCrpynTjzE#A0bJ5tM_u65%Ce^WI^&j}vcKnAgB!7By8jCK&qYoB7>&UrfN5a2z*S)m0B$a|st9|}H22!?lZlrR*$MS8 zS=(!LjqP0xZ@p4$Iw-f|@=8^$u;gaLK;U7Ic&}x}U>r@h;F_y2W&M;pQPzYUsDVsJ z77R)R>M|T?k8INu%qsZjcF1Kfy+}~$f$(C{`*xf<{t&ROB9j=(@6A3XN0B?=q_L`? z2B}RlD7Fk+%*@=K0`$OfwG$vZf;mQ3U#1h?(}7gwyf~U!PKpy!qiiQnUNB5U!MelQ20M zct)NQ28RG%o!MqUrLfS8pjn;Z+n>?s9Znj*O*`TaR&@;&JjDQ{sx+*wqvoYT@AXkq zvgJj^R;{c}3e)J|@!CUt&}3DX?@LYdnHC8Uvpz(+E{AOVdmZw0ZU#QukfPM`Cn`J| z3>x5f*a|~7X#5L+&mHR{)o_)?oPqIl{BEuxL9YWEF=0#R2{SCYKZ z&he}SWd0k>sjSnYJ@l0+(&C`9>y*{Qp65DY2^^PRKQorWaZwhSf<`1}K#5^gN7#(z z{4;o4cY6hWn38A{!|5pT$%c9uZ+!`^N}NngFS5JA;cAf}J=t18-^`K^xsqkJe>Bfh z&pqeiQ4MZWx_6kJ+20!usGEMU6Bk;lrlsRGD*%%0#D%>&n~4A6KLiuF-=(s-JlErd z9*WHyVKcU#zzlnyteO{1sp>mtif2V(N0{1=4e=^3!Ar01gz*_TwgMB>Q#Z&hWO+1Y z9I$&BmtEFNAt6e>pmnnu~QTkji+LLExOOd;89d2D?` z=-!U?UZUoiNGfmY+Nt>%`d~m~aXngPNaHvBBUS#3?l%TpXQvV+XcMqEDQnjjQN59p zga(UUe!c87Wt)^ZH6~anKT|^fQ9ANTmJc3+jvijHVdh$mcjZ3ySR%t5!-otofA8-5 zxw-pNc|QSawg=#Vu(~9aSV~-|6j>_zXb<^FKxgLUc+zn=)KPgGz8Y1IeLh!~A~c^J zY(O_IjJLn&3LQ%1r6pUKaK0`>yL4JB*+^wp3oig5pbOvkI+JMQMVmG#?w~KkfoBu$ z)KF9<5(5X)5LuPw)BmsI9o17DJJ3nB#oF)ic{m_wH9-=8Jb9U-<%O*JAmgc28D9&G z(-Xo>p8?fB3qG!e)OOauLbTGn%-C?ZV6ux4{EFanPm3JH)(Vj2s21)UbT>ItEH&o& z)cEU9Uw`7}9gwZE(28FgSTjIL~-t1LIs6CRpxu52)_>ExCZOlFsj9|bhSq(sRFc78p%C3NRAnZ@}&JZ zOl~={S31(Y!X`6NitHf)J#C&FJc!K2R2%#`*+PcHsY$&l7;K&7IBb9{8nfQZt`666 zb%rD)>?941+L}_yN20EQw8etuO1oa!g`VBkLEe(m@7*6vw$3_3y4D4dFmsA)yiqW+ z>S~x0ZI8~;D&~u7h#!NY041)b);>+%(6LYBqPsB!7QmWyM;jKe>HhCAgSK%-TAywK|k_*vFH+3DD>_@I@qK zOQenR{|6WwMuiUEa`Oef_FWEw8(iVi`bG+8cL9(UA%sfphi!(fS)BA7A=Q~-w{NO5 zq`LOqDUZ^wkgFya{VsXztqUFfP#5QYVf)=rE39wi z7?7cpnYBV`jtcx6n+Xx0+6}Sie8w;Gd*R>z@U)P^+y773yERFYTxVkM`70cx*@~b< z@Ex)h^*`2Dw77UiMrGVOE}0c66OACaZ!#J8ZMkol3kJXp1~a&0FaXS|YW|nbcl>ega1rAV!BU+Dknr`hD- ze^wg~Yn(oZ=Vx;?n+`TPLzt-kj~Bw(hEU=`+x3T)yE~+X9HMURn>KT7Xn7C7+v7K_BJ=Wl;f@ zS8Q|iel7w`wvWU7GdA)v5atV}Ezm9*J#uOL-OgwQ4;F0k*SJcI|1hYoAZuZ3et>k7 z)Kyk9-r5+R*b1MotT&Pk@~PlV=1~JdVE3=$EEzl7WRDtmHo#b({KAV|i zfI-Kp*OT&FveTy`rOt;T_C>8oEHrOb9$&z~%V5E>4|E6HLARmOKsV-aQd@5Izx$FQ%EJSt#P$y}tZLNR$r|?hzWcNcy zLpwwvo{H%-e%pXcB@sD!nRaI>7jWv8+xBFKY`Dm;bVaglI@41J0l!C|n~JdArcQ@u zxE1O-{js)FKz>gM{#p%u(%3JTlAnfeet>xi8taZtD=AfcNuQf14^z`Da)A1Jq$6HQ zGtPP5{mv#Xx}BdLe6Z5D6>u60^QK3Z{<{OOYh8!?ICq#&oHy8eqGMMkL}Zz5xlHqq zJ>VH*MDT#Dfq)!>WUkJASc)qBM|=^;Ee>I)ln9nf2ELE!eqL~NA*Hx0^)cANYM;8* z%-be#mq7IyatNcZqu!bFv>i|bi(J&X z^?kRPghwCdO*YaPQidpjMmytn(f}SW|7FLTQu9BUuNAh@v=i9#U<2KW;k_6eaANKD z){E@{OfVr^!APO@HsAt=_YH-ABd2xBuwZ#E=l)PwK*1(G@4g2l)tu-ku=L4l8rT_l z4xP@JCoonxH_YUuGQdT4dFx_qSBD0nP?T)tJw+rm1-rN+Jr1UXd?m~d$mc>5<`xDK zXO-n!**{fiHdKh&IaXC%>qz75Gm8`Go6iS-mEVVChZR*qqtTAJH~WnE9+FdcTAy-I z%r-OvFnVP|hcp(&)|vf$B*rZjLKD1gF{bDuc?S@{1Jp2dWRO-i=6+X5XhokzToF3c zt$|Ihq6Hvu&hh*P7_{}a81H z3@vEObLu$`$#knAIiwgj>YkKbAkzeMew{*5a0X4!|7^EsV zA-9TXEL5y9D_OM}{e~TqHBu}1Zc17^;Gg7}FrJ#d2QGKb&vb|sf~hEEqJlV!_dS8@ zv!kM6QZ;U&K0zn++Ol_%)m3_^!JQ$)&6Y$d3m|>>pRFlxg}|Q)xcW1{rdJ!G7%4#z zBX~n>?#K}B)%NU6Bf0uOGhQTHFJEWOh5vB;-cE^m%{kp_{4XRKSNZs`4;WTRMPC(= zDd`s`<=G%G-*?CqkewD?P75697LqwWAA`et9|)9?*IF)FSk++Ebuj7v%H^6~KYsZF z*0B4=!#?S+bECur+JaCbWl)hb%2rU#C+bbe8l_pFWI}|5_{{p{Pr*n?tCZga$biP` zXBK-0>N_NLD1lE1n3r$a?fjbUSKORk;_o7L8%FrBAU|CJ12U#&#mEDl|44xwS>;FE zLK#)x1Cnb}7%BnS?u3f(QTB1`&>6FJ-SuG@TNY3%n3I)GqV~6HyfBA)@~s_eum6sj z*uTI13`A*Q4{TF|)osOq*Dq*DM$6$Ai52@Pd7)y8H|JBpdfhdSl==w?Wp)xZ-?*^@ zaLX2Biv-Oo{tc<)x@9F<2?;wyCDVn1htR^N5+l3YiCh6BAjD16BHRxTPsE0W=2eh(LDwU7wgG-*NerEPa zP+^Cxlvm4M13u5%Dhs9xPOrp?VQcpZ)4yCm0jQQ$v?DshwkLHx{zO8##RsHn5Q|5} zk8WnK3Zb)9n|)T-k?_?jE|7zCQ`kio)-#VUvHC7h5v=D?)nrY+2;I(lA0(-^BOJ}Z zq-`Ug68Hl4{`x z@BvpzAXkdiOhOWgu-xyFLEMV!;u7pRKW*>(LIb7VI$BhUU#WfNAd$WNWVJ7pPf^1o zaj^UV0(@?JcXM>U6di+&%?_{JXQX}iPBZcohrT9 zjoN)VZ`ON}`zt|ubeUYZ5!ojH&*ryeVe*Uj$Bif4?h%QXGDv=g7ijg!Sn zuc={bC-;x=#j>nGxoshmBX#P`3pW&gPOf zqjM}tl_y#dAs-d3#k^7;ck5HgpSgwdNKc*%_o37vupKI zCL*M!)AyI~E3e$oBJcnJH**7?w$q;Usz8&) zJ#>{QWM_vYM^-dXXfQZZLCyQn-%N{EeN?<91Fe0nV3Lu-OInWjh7V@h7PLWf(tDSR zUYjP&OS&3Kz`!!UEa`EC&}*k|xXcCe(w3_$viUr)s{kOoBwi&(FqC&MarKJiv#Qo-NOBQcCH=p(jjAtbSImNyDx1&l{5i>8sU7S& zjcatm2HH!29Y(h;icDRvI+15})hianPR}{Hsl!M3Ozev!G4eS|9vx~P&dsna){?D9 zcNmf*?Uoy4H<-c248sSd2$SLRiSQ(#KMBPF`JzI(wytFuIl^oRqCJCSnkD^|F{kha zpF7vV-hi)Pjnze!Au1RpF{<|%aXfexub;ep0z(u){M79od*8P z3|&YcFt?g8LNw5^LwZ;2{3 zl!Y2W7-qei1HC5IyX}1)&0m}0hxJvpt?Gkq1Q7-DLZx}(nnn-LGK>pbCd>5*M*>6= z)HiA^-5i?Vt2T-grnEL-4_sF9c*_k~&;!YIZhRJg-hkd~Jz?A4ZD`pMh`)~KP8+1u zAG%?52a7~V=v!Kt&2;6a^RVf4L0C5)gciDnNtwu(JC7YyXo1-|OP*z05->EI4XAmd z2>>9TSwSz=?Twh`Y9vB$SG_2k+^H&xgI~3eJ*9dK4hLhFig&0Am z?`k>tvVpSG{Ujt~(p|X);Th*X4A219?OITMSKV+)dy2tB%cCr^bVIv1eTzmPkrjUk z{DxoC?TrO4hpCP#47o?QRBptkL1Vi~I(^#F@;X%gney2H$zmtUFP@S^6@KT`zEIV> zb8$lx4Z2)q=c}$%dCHS^=}ICnAWs%~8sWs5BQ!*4=L9b>+qysx6(D!2->H)WpIT~X z#A_(Zk@}Z%qK_*8Y@l95y9pOcpfuVN|5Xc7G*D)ti07z{;=d(Es^s4@j zq0m*1(a~FLRYG0NsT#M={ma)lhRRXG(%LSrl8rN;3E$>x34Q?>c}o>VxCXjhb)Hhp zz>3*9wjQjsNsxm!LF6>3+)3WJfiz6nW`OpZwm7=^Wd`miu_{rko>6s`Wi@siCNpJv@)y32+{+OWb|dwJl6G*m#vA zhxHP$yrhSyF@Pnl5NQUpD@DW=2E=w?Z6wbbROjUvI#SXxO15$zo}jm$evs@yj_{i; zs!?r)llCzH;^{0>@d!UJA&cVr18u`gk}W3zKyKkNd6&y6qXWx{ANnPC#s}f;ixZM; zt9gbUa!*vuf_AT@3k{WUlD>rdAgE!f(=g9)`8mY`U3d=Zq34A<9+U)nYF%6~sgy_8 z`^1RaHUDII8d*}#V=RX28NuNq^&^9`;(Crd{Tv=?KT(_>a!OQ_km8}jD7rb;ie5(7`+%*5#F3c* z6ZGP$%cfNJ!PxF-@!4ByZ;t5gZ+@8G_`lH-;Q z_>lSQ6%*UWCRQ*>(34O})KV^k2r>xXY2hPRJ& za>TTGJ3~D|b$Byl`??zmI6M^;;);^#anqIXGh>bpOmwR*L`G)+>B}$ES4b{AWHoh# zJBnd0$0Oh>XZ?-GDSC=X-ff<8r`oRa+i3Z_Y<;hkPEvU*HKm}o72M0x3qDCqE#+gb zHqHm@po4sN>zrM5e?5B)RnLg&q~Zgp>;7b~v$}{BTDT7`A>PeTRISvSe;_*b6E*OYJAPOq{+K{=+e1ee(mZUg$wNxOu_V z?7FusH-JZ=l%}KFhEfbqlIfXxKE-6Kg705|2Y(YFt&l8Re9gOI7IGip?b@yE9`Kq8770(J)x7$e$ z3cVygv|xl+m&C)4DBDprRkTWWr%8mg&RU~&l(Q2#KLvHh#6(OB`O~+bLwn=1w?Eh% za+0fM!;bKOZE7BU!#lZrqLXg$T8?xgM3?>(luvsCTCz=jnBVlM;GFY?WtOFK5V+-h z$O140SuPT@Riu(>;imrYQIbK76_G)kQ_%{0Wx`J7F`fyr2xt4p+TxcFP}D#eo2Egv zhvsAl=8^dxaYbJmH_j6^2u90eEQ72Z>to9f$5_X1%cw?Ddmvc`L#vEr`vn}E@0)Wh zaj0YKLAFX8RW8&h7rbS-1^}z2PdNJxO7aJ{8}z`o{&b~)rz+B0c|Sgf@p)tvpQyAe zkxJFIxd~(8?4erWFHN#)PUiqR%O`61*g&ud@uFInXlUNi9k!UR0RRe#vI9CdplgP0 z@o}+4@=2{niDjE49qEY))l>8fIkWAXPZ@0`&%GUFNP*6Q;K-Z=y;is|P@OD-qK2f* zegt{K2tPn>w%*Z@sKCXgo_B{cTkg5lOPc<43iJ2l?97RA?A19^i-TGvg1N6@T{L12 z@+GTtWNB#6Fo}>-0P+BY_y;$#P*qGXnKv1e78p4Skx*F0A}o7Q zMZp7}@R#B3rwljpG{%mSU0b(8Dd2!@Nd`B|MrD@4y%3H$SJ^%j5v~eZlIQiOmtTjY z+zNEs7SCnb1aBq%WSp5s2$wnuP?gzza5Qt+P=OE&s$`MS)U4KkA2Ladk=@?~`GYkT zW*s+KDp6G!@Y@`bhj6^H?;;vuTgJK}I2mjmABgSWqMOr218e;^#s+I-=W zW|wuVRcY4rlp2rA^n_P)&4KaEs1FZ)g=$cu=r~5=Z4^ZH&5jfJ1u5 zn+RcdvEQEJ=uisMO-|XpYfCWaHKIc0=0_=1N&!}dTUty1NBHjF=e_VHPZ_!S9{AA; zJLpS7&CGgcs75)%d}3O9;b`1${9pK>e{4{(cJY!3W`fU2yvl37S>COoB%@iU*j08} z!u$e%Xs>TEw1uWObHpOs#9G9D`TFEQ%8y?@4BxW{bx;Kc)CcMOwI5jLswMI`!t#?MiibX5;#YH;am& z;<5brbo0&|_|X%TV50*FVDG4^xaqRm9CIZ}1U3M4%k9cMKr*}`wZkZ7uOe%z=HQMA z6SnYQg}?uMTcEi&uHl$D_kse4;}OgUW+G`c89+C6w&Utr$PpmrCwhao%;t_D+t(7h z9?tZo$aHVn;#m9RI4BciD0D9Q&1=<>U)!WYr>Qy-^K@%oAolnNnRe?dJqhY zasjGaibpfG<}b%{$J!=xu-4l6tl9M3;K81w&Ju0w6dQ~lQ+oEd1{+efcWU%*y&GHh zk~9_)W3NQcT_rEIgX%0f4K#L0x+p7)@mOdUE)e~kLVuWRrA#nZjWJ)3~4{dft+*&o$bz$o#1j z(%7Q9K-em}X5hBN!QFNSSfZ4g?OQwqcL9T^y$-Q^KLE=(MDJgfPBT0tk6)2q`IYVO ztyjE)fwcPIN^9GUDU9MO0PL1`Q|%0E4uO0xD-%p9hzqh0RUFleCD#4;<%9RqNGW<9 znz^h=OYNXOrz0{Ii;@R+55;3cZ3%&{nc#p@wn8JfS?XDEmg4CSBNFGdyl0CfNxCPb zK&#g5z@l5+0X%X$I%9!mW&IH4QX-AF&{)pdrmuilk7RNPLlycs2izEt{~SBmZT=PS z_pg#T>_Vbdf+nNfqns4#zkDOEi6k?-OGyU~>0rt6Wv>C}fb$V1q`Op`Qis}eI20O% z=R`VQ9Q~sK@bX7=H)}uT=?N4r#y=a%0KGpT|IJ!Yt!`6AY2_`DLOTVfJ*cuWT^vn=fcj@0TW8q8ASiI z@`Ie=Q6lM%_7R|TuDS;efj*vA%F@!8Six}Fn$H)A=u1Fjb?ic0nHJ)D&k-UHV;K2NUxJVj_pxN1+NUm@l< zL!cJcRqYAbmArd4i5uiZ7u5{6Hv#8^8mv-Zf-dA*e-Q*so@e4W#VMYIE%Y)_!sa%&rMEl++It0wP_U}0&7Dmp{N)=OAX3&OafT6bHoW>XxX>lF0NAHasS7z%tu zd%DUhwxHZX8nPfoJtQw~1;tZ-DL4xfX2*igach41E*k0|K!cY=TWUkw5TRQq5 z7C-$d_JRI=vkQ=I3dB2jio@imYkl}j6duT=c6v#UHte$FpU|?nbB2bd<$g+DS`hNK z9v&fozB&q?bt;T!Z*;ApzHfnU36-*mFtvr(UFR54wUtqiFx&5RiY^t6ZfBcv`DQD0 z3hOjU5nx^KSzVQ$@?ZsB5reToBG_QkpRtt)~_*3eFB&dlqP0}6-|Ibd#C zo}x|%K|8M(JO-Cz2hD}8`Qn;&#!BmRy#CwEpI-m#+s|MBExe>g>;ucmt;;2=xN~Pd zQC4Xg8-xyM!eo7~*iVVI2N#z36cd>;z1xb`t8I|`MeSh>7boR!1#zd|vB}e7u%kf^ zkUo?%wY10uL#q%kmvYAVES1VuL0=snv$E zpCMwNK7(pBVki0xYJr!~j9it1*2EhD?%O-%0p!`FWw%U)9Z`)7WSs$ewSEiXMzWZ! zPWVUp1?ykLK*LWcD|Fz949()PR;30~9^pZ4uxC&j2RL%5;CezvPDZ%F#VMN|I-ItPs$`RQ?;RGi#UK*-{F z%q!1Wp21m_ktqVINW^ioFtx}sNrD-*{99_UoHw|LsosFQP@w6aF1&_~Ii%O@;Xh#Q zfR=`VEnwSyxf=#1^nH<^6$@K;(~;$Y#T;vxbugCJ5CvY3JWWhFaZp$hF@$5aeIatH za6E@ZXTWPDhxATw3yTjGI&=gxaBV|^^GPAK)4dEOl^v{q^MC$d#Axe4z>Iv;+;VNJ+5C=S8 z>eJrQZSn$Ow;q%P9_#P}2;QQV6VBvBqLe%Ww`X~V=s!4CsGua6dVx9QS!*oI<(Do- zdAG~x!}0~yVo56|$Q@cz*mNU6Qzea_26j5psh>v;8W@31lT*9qJTO6<$2y1?Z9TGw ziB?tNfR$QRCS8UTdId1lS;0B-4c4m59u<4nTwN7|mgesf*Pwjsp8{{Df?rm96}K!4 zr~;Smz|uqI2JBocoP~|{aElc;b{Wy6q$8?Ll(77vAYh@us{#}PYyNI-OT4kglXT?0 zI~E#SegllDz*UJ5V{nhRR)>6ObW)^Hkxx#I8P)BzBC-dfW8_cNPpNU`jljRWe3X6< z#~%*U*E?4tBx+1(cFa=iaF~M%Wq&(GN8i>@8Q!*q>!_o+iKt3U)=a`w?zlBFk|GkM z5dhWz&_dnZSa23)%51D>h>w!CP`ERhK&gC`voA+g^9Lum*7l3-vN|+IvYr@nu5O;- zaPu0cFUdXka0h^;l=^X@V-f^=EV0w=WYOc@rp|cGr749WCk_)jFiEck z3Tzo>L^WjPKa~RCiPF=&2e07$j-X(-9AZq2fjaPrmAqqY&j0@N7EotloVceN+9NC&5pM(Ty$eEy_drQ6DUm|Uu8 zNt+OMD?P?~a2Z>i>Xk~0GRn0hp={KN&M^Z}@v*;J=Mvk-uPtyh(M zMnmARx;|m0aAMd;z&5LLIhgeD?>NpV_TR~~OEZo1Owo%eBn{_{-Q4p4P8E0eJx6Dc z3FaC+Oti?(=56xYN{;9lvwgMF!f?tZ5H=aw5};3Ae8z0V#(*2lPpr3CD-r?ITKc2_ z@6%I47CN}MD6cA8sB@UZ2yPNFFQvR%LA>#h2ek;*MP&*@06cg>lZ=17(+OD&Cvyd2 z`+AKj>1b*1j7+ zBA91(E;p7WS3FR`?y;dy>^W37@FfPmSm*BG+6JC^LC}t{)l9w7s1v1h>)8D)=JmEf z>XB*JO`GTG?!balwvq26H{^&u2YhdWD(T?pWh0pWh4=d5s#bJ%G-*`HMMqNCfHbt+ zCc7$hG_t(}Dj2qPwY;<2t{^5h)Bsk8LcRTrzB5%;7{-w{HrcgV#fE@rwXzKe!WpJk zo2@UY6z$dAsg+{797CFB%H~MZjsOu@C@HxM3GpINSY43mX@;|0P#9xm!~*j zzBEHsrzJpR9F)9xwEP5~kx7*Lj^1o@%OeIOC_}H2I!rp4&T5*mJ7dD^Ik-vZ7a$zX zMDAW;W2M^=QjP618#0>VG{wv%FSmPktp}C1{jI6iz5dtm_EU7*AgUpCjuhF*70WyTKAJ`N?4c3g(p=me|}HBtSTB{B<;aLvSvI1+F~uZSl2p|n)CB^ zJuXDKneBM!&1ku9;(iF>s)aAd#p=LHVE4+6;bskU78i%bN@R(If&drIDYaw?)K^fj zBeej+#Sgys6=s}$xZE=kAUEo#RzahZPCVqyQ{t6@qQG6X^0QL?YFX+8Pm{3cmN*q*pTBy3$6G;elU23ojqMeS$(adjp~U#1J^3 zdYB42{DJhy)1w1JhKa=<8aHuKr9h-tAV%CB0e&m`DZt=5duywaQIT+YGkkzk^=GH` z+4NM3l_%SM2~W_Jdq3doq>rLAP&Y{m+O8++{@BQWqp6aW+fhYOA9pQrLk>}#ax0bW z2{asCY=3~YA9R=@rftojCls-JR`^uGbG!zI1!BBKSU>@jBFbZc{KykXHc8E-3j;Q0*AK0&dE4^s zf5(qKKmy~`vl(=S{)g?;>!5Jt&1q^QRiXpsHj+Ul62JwH*hWUW=&iL)h390!vz5XD zjhJz0{4A1GC1#xM>&H-L{0R^6g7c8xV$swBgkU0S5DFW}z(rcA4~w%s$sKkuob`vD z^@>R;o2NUZz`Xe1Y1C3ul-?pg9rW?bb+Kd>wjp>l$kl9%L& zq^x~qA5)Sgsmlr9gU>;>pu9N{MH1AM6&2+&s;LTe*77_6B4`~nNABK*9U^*1bt_Q^ z<7{wCF%27S30xuhC8-ND?od;|r75=DlR9(G4u|N$TjP<}aSxd$6o-~3*wv+l{1b7` z9c9qure9*3yxGSbE95dZErAV~O7>d@6=B^qvmO29+%kn)qvwMnPE zz;H9*MOjqJ3UJ2$fWGbB6VNV#{$Pa}2#c#6ydarn)x=VLv}0#ID2b}L!j@U1JZ^ZC znqo22=qiv*S-GpO`bt}a@y>r<46+rj#WY%rvrfdgP~KhEvr5jsp7rzv*L0didGIGFl03ehp_%}?JyFAslkdi{UG%ddf#ydfcx z=fIBB!0CpfhP&fE?7if@M%V8<0}DilX&mg<<*F&8(bCorZbPO0b!v^LWq`xS2Obv? z`I!6FaZ`Q$isI1)m{}{OjF3F6c6XvYQdP#F|0rCn&}N~m?isPi;^KHvh>^Y43}bGz zV3Ieq3jvOxXxW{0U2sJ2*-o29RvVbhtJNxCEl{`^0KINJ;Lkpl!1nURDPdO?MMBJ? zMB7TTaJdtNLJtza+8P@6{I4KNT-mn8;93rj2`Qj`juHd*BnD}rx^UCAr*pWfAGC3% zp&tZ34Am$TgE)OiSr}hIzrswPBrR=KUwLp+zq(>tg0tSTD`6kI#KD(z`WgK6m9@Y^VBR^Qk{x0G zv9ilEJV1y_SGiz<2z_bqfrhel#vrJdPPo}%%t89*JtARq^n$yXsa8P?hcV`-1k=h+ z^!<$#Ph}NY+PJa0B%2EauBl9zDi2?jh>ID$vLj`(RR^Og%Gum81#$Yg?D^HH9vO8B z&6$n@Aq|Og*ki?zH6h>>AWM|XssJ7%qt0v~J|(aA6jjibKh+oZ*d_d!Gb8p|RQ=p} zw2ZdsRNd4PcjR0q0|A|s2E*s{`P4^-P2(i(p^$THNg~C_O2ET#Sd?Fcm!IiR&$}r3$1#QSvBEkiFO)>Szg5=SjWI^t0;wF>oU&maf_LNFJuF}2qnjD7}nFGSHs(N zlMC_d&XSaP_vR+Am>%xPKFxVk?_FC`GY9t%7-!hU066KFrUs`OIL%&UD6Z@fR2N_1 zWq1OHT+vLr(6hbjj-*`WHEFr7`ooq*tFUQ$X;c_%q23#khX5P*dmsycnfjy_O9odk zT8d5Y4;r1LkD~@i61&Yd4rCO{>4-~x94M&RxdQ2uFwkEXlQs1pwF$3^AaCy@S*$3# z>XJ|2U*-eW&NMTmd_dgj&}v?N21ysia>jy45(Pz4W2_i>iyktUr3-Z`U<2e%d$$ek z56cnZYRxXZiq~$oEw8)%=Z(q|rJaB&3EGKLEf=eTLV3hsTrniOg^Wznf}!dxxGcz1 z4I?l}V)*PkQnf(R?Hy+{aI@N0XHWdBIsbrY4RDAzy5+(pAfY$$z(me&XMvU8dqoYc zZKkIVNN;CKDN6Qn+d3(lo$o65YFl)mJrkS1u97SS{I_)Mo&{Bx|8XxHt6fv+ae@o3=#$b@{!PZ z;^V3k;v>?v?N)fSL(1hD;jXI2K*|(knSh(y!OrdmWfPikNuFp*SE@m2yQMq;@?W6` z@b+8Pe%vjcTYOBj$gy=h0YKfO_H?E1B-D6PaYzira-f&Ot)-s)5|26X^{i5Fr8gi zw?UuG(0Hh*A&|-Y1O-};LnQ*m%LAm{_@3y4nRkXoE0IvOCNB| zh7yWz1(QkAx-RC^utdvD$}g#X!6A_2ZkANn&fJ@nJIS-V=Ip9-kQ`|G6hB`JCH`fb z$#HhOOI23&47IvS8rmt))J1TxO2^!7?p4+8a=M4Rd3moRfCc<}iRlKWQZb>8D-b)C zzTBBu){J>8HEepDwurNpS@lfy}Y$+Zi0aA;9d zVYSU!r@YN(1=`L}kM@JN-@kkn(wFp(BXXGZnxV)Ay&MjY!uev>ta?g_W@U6>q)?)j zhjV-7ZGhw5nH{e!$s^d}NZoDzpc4%@-lH)GDB^+BjC(=K#NB+u(?7<90jUs*e0k`= z&Q5?*IoRk~PL^F33$tQ5>tUh-h^Q(rH0T?|#k()hq0$#^Hn6;>5&rHDP2K!-pTbh9 zBtq#-sM=`T9T@Cp{Z)lRM9+oQumOX&fjP&(5jc>Z^;mf-Z6#&J9bN#oeO<5X!$P{h~9+eYV0q?%?6@eTMFQ1=u37tFc69}e* zzL*p_A-F%sXO7XJZDZ%Ry0DS<>DeZF_&1=hM|hdqwo!#ZK$i@ec9YBJS)@v;>5bLe zc%TKMq{eaxNxcuLn8(AyhKm)b^!&@$&|yF)#&Mc=N(16VA~>kJ;1Sq$OQ5CaBsxjG z90?YeI~BwPc3-16o*ap>uNSFJR1r1?lm^swwyTaZYl>=O?NhVimGw#=^3mLW~m|`;o$_%P#jJ+>>4EGC zj#E4s8Wqij07XE$zlL)q*!#Wfu)O}e#2&kWqcf0`lWw{L%Z`y=1x)s4$5WkZQjV=) zuGMC5gTNlyHYgRxMT#W3(4I;QM!tp9fs)Hwv=WEjsb&(Pl;bv3Enu?!VU9NJgf6Wv zl7ajOoIkJH;1`I}IZuYVvC6{{Is{y{<*NB;7j`%z%>YVy&8UJ@PHs}6PA4Q{R@IUp zJXX~<9f^g5+?t0Xu%SEw^IJkPs zw1BJBHuAcqnu9q=tU`Za7!6iZZjT4sXFBb;jb7G# z*-9;|E-*2$?G(Wwb&VaEl5n!)53?^5SS$btrBf#AcKmL`v!fA{Mcjo2yaaYzVA;c4 z1!~>f)^F{17Dl;Ht+S0A-&q}&8w zBpa4VghTIoQ}Ah_v9-^(L&*lLqXGpmjZwBJohf3kvIp%Wj}m1ouBX?ZORn^m#4>fW z6Hc$V#e-^FUt9omD2sBl<*syZOPZgY{vpv?B_IZJ%7BI^t3wh{<3^+PCZQ7Q$&sOV zaw!y;dLzxWR2B$IyUI|`C$zDPyJLbd``YDj22#j2ajni>1>|CH#7rD08Y)h6WiPJH zTvEVT=Tp5M=^PJ#ujEZ8Ssy?GHrm6O?I5nPM3ROiI8GKWkSkeJOucIe+&Jq`wstQd z>mL{c)=3_)LT%?oG|to0zyO)MsfUy>B`J0?zTyfB6*bx5iszynQAw*=2(>#*$~(op zV8HQIY@yjs%~+$sx4_{P{p}RDfC!(ojbqt81O!H$E1w|w__6JPIoNJ9 z0P2I4!5Z!tD1A9#rY!->TZtHpP`Ozgp>uI6|9uHJYV4o|m#I9k&78+FnVQTXyG!b0 z;$Q055#{5;<+2JF=(U*kC3;9`hfBKM$lVwzZGifpdMFU8BQ2{x$WmXy_P)B5^|hU^ z=g$S_8=S}TXcdJ{o?fro z{_e|&iAd2JCS^jP>Iw0z4I-{QC1@m3b4^E1IQmKq1n`7W5ZJgwy|AqDt(p_7&)hNI z4bEi2)@3X5s!N%~2MBpo?Md^C+FgNJacZ6UZYya0S)f0#DCY8n)~6gS@DW%~s>z*J zWdZ&HF2Tr=*nvuD+zBh%mP~sqb>?$=`@QKHQYQMR?lhI&8A^1ll91ouICn!cU$2ka zxN;>{Cyj8tPj@k(Cm(elBE{yqxs?8_Xl8XBw0#L6!XsM%QHEu7*Hesyfz&{oZ5Y|Y z?J}Q30wz9?4FV;kfYN#A9ZY@`D!CF=6T#1}B}ura%j#WNtXG*#?!5CThw^gL9lxut zOj#J0V}Wqha41R9Qkl}YP!4;zrPKIBM?GngLJ+1h8q>=c{2KU;9Z9mQ41|0c;k%If zWcR^z{1=_J^#g3bf=cn$|z zxI9UTE-dX8HB=6FQ^PW+e#U5?521H zkxkdW137L~S72H~sSE}hwC!l%%!(c^Nl4=o-Nh{VH7aIRku(QUK3J2c$qY(d80E?q zadkad&Ba00w_PvtPj8>Ue){&~WRdbGb0|}ycTaa}V18>!$mpqqBuNS)#i*@3lqJhq zS^`}AHZ(($2`eYF#n}6xt>NhBqFT=?Rj0s$ zlpM?s9K`8aOf77<+FmE!cD9AH6N=G%UP1dAH6cXOH+s*!KRCNyK*7Gins^H?Sp~ZG z&+OohVSDxihG6h_TRS*{b!ekviQq$T=|S!%cfelRaRW=)bNik)wgk}szpvrje_$6$ z%?s6VtfWvRJmHK>Np}eRIc>qhz>hsyc}nWwM=?7EC~p&F;$0bO-46O#%cPx2-7I#< z0>g853_Q+5husa~Ol%cY6fN+|6RMa(!aLTVaiS8}6y_?`GjoU;tPY32-y`$>8GN>o z#+R_i=}j=y-T*(9jrzm4xXDZP|>j49$tQ%q-mV!xN6&7;+CD)5^2s+ z;=F3#5u@@^RX58_v6}CiDYy4N|z0^bnYHHf2j(vt{fS7fXD%MTfEsBmNj# zGL&-!d)Ct})GRTAz}UMAJdl{gL~5$%#vlt6DkMNy$+2}R1LT^ogAu<=NR_nS zIF-W08c*Q%Uvk~NYwrk(n(RZ&x@m15K5a*?#su8Z!i39aI}Hvxb<&+Va)G`4Zd3^4 zDdz*VZIBpMs5tgP#iG({qf)k>dMPV3slFM1CsK8`Zr{_st!Da}Rs{+PHI;8kPk;UJ z?c-qJsb{7@cc3Zn$oOT^MsypGKvAv0=h!xuj$M_)NhxTF3jHyFNeo~Gao1bQDJsA$ zml%l^koCFgm%&nTz&EYbqWYD>lg4g4DLp&A(D&$Jl6nQb>JmMXZv~eq%&6)OBNm+A zu2U^X8BWq}x)dd42#ZQ`$)n>a=m4kG9V!@z0d>V51#^Zk(^S@ zv%*d+BFlBbd6#k_aKKcSf41_)sJcflYU9~G4(e2tRy5R%io2Pls?b>a7O@e^ltdz; z(v`>5$69W`{NTo>-wA((0HqCKrul1#&jqVMn3-|8!&632dqygkG%o4cr$aRx9y|xo z1_mjkZRac5*J==y5|9o_d;j&*mp_EJPe5W?7ft;L>ezZDzQNgRO;eQj zYmoUKbR;}aoWua2ajGm>>aLO>;Es2DP8I}0Uu&q7-^{&9C zE~%HejtA2aIgKE!%8|n!3PS88NK9CWk{TiBK@%oDh}tHX15B}23xiK+l{4de8k33! z-vg|Rd5|! zrHwGVx-XhL%VyJ8d9a9Xsn2j$0!7hLx3H5ne@tZL*ik)-Uw}UFo}Ly^ssn;fq)UXn zojuGY+t2l*gA1Bb>4${QK|zX+8e@p^<~c|%koA#!w6YDi4BA=r3|v0-6rF?9wT;SA z(O&@kfAE@t7tKYyBn}WOx^Qx%RjZxm>SQ)2jB|!sGeejlEK>yvDG!px!-ozR-w;;T z5?k2}-tJd$qlLt?wRC!$b=6~P%rS>zv0Om>reM(gQrTM(HGj?9Jhk3qsd^(a?M015 z?kZ7&s%CfZ8?Ur&1Z|15f-Kc5$9V&RewWWhBuEQ6%R9pR%0l!E^zt;e#2?+*!z$Je zJsTW|_E}+J+>_ zN+29hDh`T%gB!Wj0Ppd9lJ!-R#ElQmYN}{FN1EXVxfB)%@H}zOO}jdMXT^e%3|}5k zNFCDseg~Btj;Ze9PKJ-7c>ti`6R*%YvQ}+}nSJ!!C@Sj54>r}wQ~o^b)452Zr_hTZ z(Qc}&2D{5illo^s#d@icpsp@~*e}*k1#GL%&DV^B01e9`+kc|zw*{qhxAkR9h9MEo^C&yL^dYT+DQ$hGX0}b9BGt9qPNB~UPB_7ojViSH zcqogkBqdpL?9{2u^U+{}#OVlG=R^!)>vc~=N<}sG+}f?r?Yo1EyGjQ#ub3&!RU}sc z4A45sm0cj8a=2T1UbGHclhd=7L$~dx+|JI^}SOj{t4zh=)Qy`_{^W#t6C@(Y~n;NTRD688JJhM0^3#+4+=gGWNJA zMIaWmmSNqz$W2oZINPWa_$c;z<0M#~wcCPdGPh@oUP_**xBbhXRSqa}IFHu-jxZqK z*du&KOSEh49>D<2UK${$krX<0NWOD85+PY2>%tM#vh~lH_%ISGSSY>YKsAY5zI%#y zUv$_4>4VkN)ge3x*YkOuK9ZjVbFf5Kp9E(xVUH953yYz#m>5vh17ghoHbdN_wbW1zvrHi3!-|GiraLYVK1l~*@!MJ1)JHpYLdR#oN|C&Q3jG(=}=^7F}e?BVMy%?QA0yKI7#YsZ;KYGVuokx_FOZ> zaL9s$DCq{t!Jfu4KrPkPBhr(F@>jZj@wti-&KJ~l!w$~5MR}AsK)c@#!NU7m$kNv6 zM{(!M!+I1Op5rWu4{Tly5UNJ(I#d2{lK-7{H~(1BY~Q-mGFwMTwld&dC-wUVwhtzn zQbr(!fk=!*DY?`&ad_GN=mVRq)y3`J3KRrbPPAH@aM0Y)Kmvxo#|rvLF`csnmU?V* zZP^3+;ikD!-4HE%QYgYACk*ln9DI5>^aZFpY})@VJ8qHiIVZt(~@=cE<&S;$vwlc-v3a+i!;v-J{n`traZlqyiJI;|Pz98*fq<%*5H~!#Z6Spp?%bJi}OSDv#aeO%rb6TZZU-b@Ey4EbiXQ3 zd?DOkk1zzSy%`S@(({4XO{ExAb`S>zqy)1OS4soqO*X(p0WXO4733P8Gh1-E${u&^ zk;{naMl_y0AIn;XuRWVTk~z*N@~t`~B-D5V)|x$_H8f0==p`aYi@ZO_Bn;eB1o&ENkm*0i&8v-;mKEnWs zM$uB+I;v&_PW75}1vNwndFWpRFFiN}OF$#!7&ICOKh+u5hysx0%2*dmrix2AsDgYU zOUS-S36Ek1W+OK(kZn$MQP+3|=+VN5vIdF%?fNV#SV~O};y$WN2`s8Dxy_O+E%_7$ z1T9wbFR};$+Flh?>E-U7Y0~QE*!HE8&Yj$d4>*iuJu`2pc5PQlny>~nh^EPSMGWn8 z>xDTm&F$POfFIGJ+f3gKp01db&>LXvG7=`xwx?kO3!NBCJ!S88rxl(!bu9tJ(SH~8 z`-;W?C6qp_o!BzKWZ3%I3|?3&~NlUuI^sa*2l@8HCx z7^4*Uq2VX`oA4ja_(M_#3*gGFt@v&zJtC3Dz(}0>DUb&0k|D^dPle^8MB-yr{X$9` zbXc$U`~a(pIuLFb$GCyb;FPJ0lFX5~$x>jo3EhhRlo$(7YS%kG@yu1;qh*4$|o*{RN=h=J_{7a#+MmK_nlRz^@8z&t^8joJ!s@{p_xTg@dl9N`u6%|oSvm1NNcD!wec zvJfmg-m*!P)Q&ELAAA_NQv@I-y)fdjR~(cF2fgt^B}*uSAD_X*mDm z{-s2pL%SHXV(nM7gC{u4x+Cn5cGN=5<6G9_Qq(mj14?#&)wDd6P~X;E=`E4=a++~p zRyMuek=J!pC4|a>^=PKVyFei@p_wh$LV%3Et9=V!M0UBa5)|80187O)B<%($h#I+| zxrE7d%zgmr$fP9WFHE{PVJ5}{y$*5+DA@_nadjoOzPVg5d2@Oyszx?+V=Z}ALWvY~ z2-V0NNGYE+3mkFS18;HTxiGgkj73Pyet@xfCYAKT)s9g1eR=2-$;Yu^HE6)>>bl|(#Tg5rtlqFE%EMKni3X)T!lzL*~r4N+G9um?%3406!{*^*CS9 z_J{kmPO?s?+W%6|H1Cildo#W?z-yd#zx^>BO`BAJ$YRv0OeZj}yF>O!G=qHOFAwcK zN9y;IF&#dL)P6N49qFyJttC=_pjA~4>tHgW92&PQTGYqJU@q z!XnY}s4BQOkIb1{`4#XRFxluNv4K^Ms&Z*CR7kNKh}i7H3Y!W{Qq@_kH1l>T%T&zk z^aSLHyaWg)7i}&$Ua?X?T3daRW@MWq&Da9Gk6;EAyuzzc;7JU6&KLfX)av}kPCcon zB}27KPy?lbr{?0PCWfO+LG`q2@DQ#I%wo;>d;re$cYO^SX1h7icn)~!^iY@y9=#He|a zJYd%avIg*mL%cA@JIwz_z?Q7tBZ&{Z(w8-L`Bi}jRyQ;wPJ%I^*qY5i5ddvGL$;O~ zkdMn#lu|EhYQ-8p5+!d9lXvfz*%3BR!HJ901bjfl3RdyD^jOASpH&s-skq43Sb-KL z#ml9wTrW!U*o(ST2AcOSQn1F;4xztv)T0?jSCi$AF6HGkkj|ou}DzR3o6|sR16DmmBf3OsCmbc_8qf>u=R?B_tbqqJif+Jcq@f?``2J33HnZf>>ff<>1ogE|Yf zULz|uaOZGk<~2s;HRvA0e}0Ip=SN%X)|171&QmW!ze+*t_>kP>xj z$qMS*Zp>ZNI-*B^A%H@;2Ji^6<`QQ9vs{%OZp}f-=KJBh-?5Of9ds_HEhzxjP$J&- z8w;&FTf^&?3KSkTuRn#z+s2!`j-|Sxqt8_sRZ9h1tS5?vnv?y<*rV*jJ>2vB0ZC-m zptjZj{qKhF$}jyM?E}j|RBqt6{9f{rAKB*hsnXbX2Rc!m3k2hS*@NmF!8#Wcl#Oj` z^$P{ht{qB&*0PrGh5s#u%gYWCOFNOE8pD29sT4vVFts|$lrn-`Mb+?j!q-S#iySX# zr>5^^g9B&kx>M%K^mi86r2Yf^J^gfn6ucs(R<{+?^Oo=N6d`z^G-GuDUhmG`>?hT) zYTYnQ*WC^)^wHe_H@u5$`bInGtO*L=?m)@(} zendN;dr9JEln6+qZ9hWet8#8ZS2*aTR6-#YFdl0p2m!M`YjV$>t8+{})@L z=z`9pp_LZ*5}1pppuzFI*r=M#W>zn$%Ok2XvXmjP^=g4Hh7zTFXv*`VT4u`0*LGru z4;;Lu*p4Z|ACn!cBQLn4{t(`NchY_{Cc+gzYL`v2r-Z6K0S;f#Xe@mi`+w_a@|9AP~J{(sPi`G>km2QQ9UQw?FzT1;8-B@9}?0Nrl}aFO3ZI;blafq z*J0|A-n9U*NtI3P&fuuxwEfvtksoXlpxBn|Z_YXTyRAjNbC(d>mp+7pSIw1`_JFN5 zLA}$2NGe4qrRS!C5e`CnLY-_GRNA>H-Q!pm%j7Nc>M=#XKj?{|FMjw}1g)aC=?! zBDGJPZbwpU=L{M1->Hq%2tgcGw>Ec0gv_F3AWEbMwyFq9*hp(&u_PJiXS5O3nhe_= zpf~vOh^a!y-C~=fgCB>l8j>F@&kUN-`2-M3vsiYo} z4G5JTi<5d9-iqAhi|S}debS!3V-RS{pG)eXVT5nE+-UxZ{2kk{#RX3arYsLTjHTx7 zxtg>g(7LtrIAyOLC_k8OMrcMFzXY37F0#m0%4$up{w-RAP%9uNC1oW-hkcGZXKxF- z_@Ll)?Ttfx&&mL;y|i=)UHk*l4f5NF2PE~ADJRW_6<3}t`$LTfQzY_(N*6KnLS_@3 zpQrCO;yjIcZ}e(Tp=1E8Y--xj02F+bKGRn;^Ggf#)3={Xj*c&HKYRV`?GM&10o~Qa zVb*{qa(!B6G@*fp?ICqCZL)p3Bzh^IXSXiBWCU;r-{hD6^L_Nt2-dXhbWB2SEhp1* zSN4Ns@_Tl?XiDG><&0hr&X-V&$ed3CofP$Jl}+|^T5;Kii@Xu?t+J0iox3chR)CV} zp>W^Bj$i5JFKDu?n5nDw#B%3E4oHaR^aPDbY8o^;Osa~mz|!ED5GaPoPRNJvD{j61 z>o-4;(CTk>cVx{1aI%4rfK3k<>HS3r$QVj5y5}vk{hN-wpra7%qSP_QxC$zXEm0 zzL5vFxQpeC$6`TIjxQLtT}@`BoHtd=Ho&c_KiHsT1xUYAbEEX}Hw@3VIR^F;r-Jgu?M*6jm@p4L z>Ufn@Apjhk%Ys(HlV%VM5O`OXSCjg}Z-xRJ z9w1mV!wgcaDigxuyOi9Yy!|}=9*#foZ$EzdI*lR|zI0pBBYaR_7A`rE$#O(v%aEY9 zb&Kk)vkFpvAu{mR2U?qZWYqDjez^Hg%^5m$Z@U^fH;_JD!H~mF4{8l(OIx>O70SXt zYWKID4+FyFH1LrqH1ST={xT%N7 zX_b`V9-~7imIidyaA=~Hyxjm7I<9qliq2j^-_athq$p$ZJwx0{f3}V1;7(3(I!~*t)0s@o196Zo zO@omqAC{X1_Hvy3|3y6xs>JDLn32^Rr>v5jI!5}#yJAI5ZD%=ftSnN5fYgfivL!|r z+@33DkQJWi1fI#Ref$OrJ5v()N)IBGBN-<_y`yA1H7rC`D;zinIW3`v<$PqtZ$XXQ zxls_GY7qu4a$n-JMp`0|N=O(r^L|DTydK@MLDUxGxs_PxILy!DcmS;D2NWJy3ZHj+>7i~x`T_90zZ{4Pg?dnB5icn&vZ z3^>KWZLsg?5Yb+{2&_J$6O(%7J328K{Xkn@uq@m05r8XNTZ#)ykiXl@p`*bfT&;rA z%^D6mV*Pq6=j$Zpe95^&(IL5X`c9NJc{xxvrBeOoU)1^4;Is)R+o+Qqn59m{fCC!u z0O~M5DCJJ4kNDT&uT#|jWqA3eZH^`^(3(MCi%eAYCnVt5ABJd%I}ZlC4%@3y?P1~7G4z^H`1 zXOj?ep$AsG*Y7Q4SK*E72226~;5{PP$Ms>Q}`z0yN-AZYVS)x#;vh zm1W)KQF;%o@H1-*?`8jp<9!xu=6&z z6?yms6<50)*?tlvD5ILF@9Ta-u989#^f=q>z>N(GSiW5#435CEk*w{ajdrwbveO)7 z)NN@=jA(0!$1Uq-tD#n#0^9AgFSG*KZE`jvhRfDg3M+YPXV>tLXzbXAsN|+RS(HMn z8vIn?sOOd{f-5-$3GI&x$Q>j$5f3XB`01G>%P@s?%daL+6#pi#Na)5z;Av>EQtzIMZ^EJOp(+TKDH{9@v>o%?dkkmph8 zm}riv{kLFT^a+aTfQ5i$I+0Z&iHS+5x3Xr&nNor1%qmu!Kg#xS zbSX3wFM$gFX}0t!l;h+kZk)?6S4f0s&Gr!{oQ;m$R3C2D-`jj0zk2(W6Om8()t+jk zb*Hi~T%vTsa5nNfnAKvrwhh#rCCdmZoa8Qk1kK5_lpU^CK9uVp@WSH+tgP3fWif)t zoz{n3lgAi zENaKTLA7#LSTyGlNCaU=2w5zO5L=7>V}_ouHIbS|Hh9-9nz6I_Q!5Tu83D}P$-uEl z3$qSBwAE)VUC%gOy!Dkl^+=~$imM)qcFy*wQV4@V^pBF! zpt&I@hojpI3^TAn-BJUWou#99xV|7d1v1^9}i&{0sR;0T9LIgfy;p=df#Xah{=x;Wx7`HaPN; ztyFXv2U&=KssOt|7+~~R@QRU=Giq?Xa9A>HZs8wILdligAPCq17?Us}aNvQIK&eyF zRjHoPoJntf#WeH;H&0m?cQ*Le0$0uf(yTER?_U>P5{`ZS;Wt0@0dW9jS2Bcjt;_*5 z*GcTWnV<+sO7_f_>SEDs%s-my)KqGBk3t=^t5dZG3I`0!=Kk8ZmeMnl?o2SZcT7~z z%3?X^)CHY!m03JpL9n!>w<$to1f<6ztQoHk$1LW4N8h6=*vim{{X1X=4nfNliBc(= zAbOY)d<3Y{83I}n(|_b7^9WO>jAWxCikjLxBBs+0i=@d;Iv6`b*C7d??yuUCr`x15 z36A+Z1Fp-QH15bDsmOX$jSirChML>6ra*ywP}zMGZ>{W{rfFE%Hl$G5Rz-Gi9TR{G zV$uU5*L4QRvi26>c!lYT99{3-#$Ubtg85ST_8-^>f&-5|3*emya|BxM%0ZjT5^@a5 zj;0O@BvZFUeRae6YnJdvUo=dU?k;>dqv9TB5uvP33K~aDx&Xz5=2uLOM_5^Lwo#Nd zIH!;H!8IVq*jG{>Ey}vN6*!l(a2rrAi?;3PiKs9H)gah139G>5-;%qJFcnC1roWs_ z0F)W--3vfuq~3^~H)MyF$nQEXuphu_8kJa_RzQnGtpc}RiL@1QfNIWtYdcTFX4&R| z^0iH6-6!M+1lUS~r8WzJE93R2__Twzf=nRZpV0Mcsn2;EuBdcPN%2N;xLA?cq5aa1 z2=fQtFWqNJ|97~MS?q+GWCM@G3jDt|Yx4%s*PQue`Z_>|uL}>0ICN_E>z#fbOg8>g z7^%gk3EeCKb0i~hO=?>NZI`rzUQqX}-0Vj``I*9zlPc|zKN`**bePdLd@9g&fr@P5 zs?|y(!u((X>t!1xjUO{6TBo5*85>|$WgVS%DV!{3=DwbuE1+>Yk`w}e8FY`3(mo!L zaZsprv7D}uj+r^)Z?^8Bf{3ec2R+7A-J{hvI1`gR%1cl}6m_b>Q-?4NOi95Tn_=)c zT$NTGhdj(Mh4%M611rz3@3BEPZfqNa@G#6s$_e@$R(pSvgbgDDN!dxcgfCJ0u3!%c zP1EjFu3&!H1Bd)}ry^sNI!^8Mg;bJvp_HBbPDiUwGQxQ*ADCm`X2UejI-KZ1>s(Sv z!09TtL)wKVKq@s)Z=cht5>7CL3fwDaxlArdCP79Cc}=7&IE%b^wFNctr4h z3TzCc$wmJwPHm7oT8&ykE&_$vK}@KU8!KDW6;112>#7K`14<`o3D36-0j1b*(khR5j7 z0+Sq)X}Uc66pL?K>U>kN2keI`2Lmq1@H}iY+z=B?%he_56>5xP$@>{<$wuuzN5|uz zLtmM2MAEp3#0b@LzPM2&8jx+_&049ND1~rWG#h>RW~dRC>E_KKWl^T1f`%y0WMbq@ zgT0!!NRaidPFdPZ9Briy?Vv$0YH)l&NlsqujJ#XJrZo7qy$0QCs}`0+wBzp;{pfN+l?Su`Hp{Xt=JLo=Qw z&njyf{gz+#Zy!Klu#{i5xFZ@8xu#pNFTmK_5myK1RTqjC zP6%{EN|$=H97?zP?6PmkcfJ$;;UCgJ?I^>s#6e{{EG-z_8S@g`><-_64 z?mU?8{G{x5^kB0Y5@C}-NrJ(aNDm}`kz@`%nH`<=Si^Zj(`R1&R6oC`l|)IRb~$=a zfji+!1`_t5Ky*&fnSwVl^;MS<3K4CQsbWiX2<8-5u-n&F-o(~A+B#?S2lgJ9jq$qM zcYw!pD->p#>FB9hfJ_oFE_Q7p*0u1H^z>L>)bg@$5#9>Z1k`Nhc+Xfv01s{8w_#pU zNDz4fFw}}`fEDa8mMuX)La<3>9S*T}pGpYW29y~@+>8uBmsY*E;b&M8Wzw(}4Tl&z zoiO1iX1SE0wfmEo?7K^9-)u-rG$JK%b6-?w2XPaQC4?AGI{-mMCit1y6`1-UVSjS{ z7)*U3yCu7t*~l5{^@-bVuOH$?bxekuTAor>8?MUGaX{6!vkI7ur|aFy(gtDEO;6Of z5fh_}R1`2>0IlbKQgxtJEmtba)tHeqkC8Q*oTs?e#(NUwv!xR$LRBtt3TCLQ)pf{G0IlFE1Z{H?R1gzI~`~QzRv|kyQz+_v_#d2w#+BrD9bS|zJ@0-rW zQ?V##LC&N~Rj-t@qJP;^s#oflG@VRsCC*sEOjx2Ud3;t2vn5AOS}9peVF9<&Nro=g z#h39R?p8TI9?!!(`WQAGsInaaqKYWf<11*M_;2W784*OCq9JMz%m)4_t$lHNWlrvGEcCYlc>aj*f4;A&z^XH zvkwV=x}?b#hviDqHr2Vu4*6Nhda_)n6zAZ4o>XK%MKDJGgUcPwyT}ZTt|AF-&QRd^9KcV^d_6z*} z^0V;z(aTpaU+E7&dHv+&589Ob@a=PSXWl-;_uu?L|K!KExbA71C>WGbu*PLt4_jggqT7%e>-T=e(~}X^1(iP`+0c#^XsQTIe+~2 z)9{anhjn9LKqAzWO}{3NSW%CgY;~)}ekM-bR7KTVQE>_MT!|Aw7i*9#jIr_mrR&Xl zWJ#_w!T0zTMt0A%rdy)k386LrV;T^AvGDK=cQ?PjL}cU)8Ui^_^Dt1qNpE7Y7Lrxs zE*4p&ia_41|25}3cD`eNOFaeD&E?+A@NhRfc9w7XN&d*}XSBSsO#u%4(l_ zOgl^#IzF&spWJK$NvB;IP6il9Sw~0voTsQBpnhVsrk#!KHGc+~qbE72wZo#EI^v$P zU8F68XQt$vBzM-JHpGamd5JV=QX2+?*bOEfl6=p-u z43KQLu3FP5Kv!9PLjM%p=4+JaOCw;3krvxVmTy*Stq^tn=$jwD{W|{{@`t>S6z=(f z+QHTo36EdJYgx3Pu}bFAb%>g)g(s|I5nNVS$wd zPFQ`mwX1j|gRezF2UZi68`QYHMb$@*4GhNom@5gorV{|R+Lv6^-LR`IFgxFH9MUU{ zD#^2q2ep{L{LAo{f0_B$%Fql)Y8aSH>nu@0GL9UFo*+FS_ic8ejPMw&QB?2TfYZLB zMp`eC`Uwa-hW&-7vCHTHR;*h3swJM;o!4E>)1-RYSzK%3K0(3F&ckz3)z`{Tu~uy# ztf7j(D{?rHjD);+zBa6}iqDLE775u;k}A4j5*+gE*o;0dfnAdA0uW*ESP2jAg|nSq z1DkGbuP|^(*{rP&`wZQQgV0}SUvB+PAMGB$Kob0I%q&c6fCgw2>Usp1-8$$(*bwZw&E5&Vu>O9LLyvE|HI}7Wou~*m( zHFadetpy^u(y|7I2T;Uz3{MUGhlM4n*H(DEt6g^0eIV!lTX=MT^!BwGJ<0VDq#>D} zran^}Dc;7 zyKhi>x5^GA5Gw!SM;bEf(FpH#=1NHisFv(xysfTR1Zcq&X z>Y`d6$c}mO^2gzac}^N$fNk0EV-oiDap+h4MXt#L5NC*xbQgu4ya zMo=fqU{X;})u43IO!mT!lL%y;aKPQz_JB^IWLwR_O1lBY)CK8K0+HgVehEyJ&4&J` zS+PP+Bhz_-%u6t@3p{2C=PrSaAZ#qnIoz#zg&w_+0$?~??b%=1mT7}FzC;#J6xGUhEgCyH2g?iUUa3wLwI_O&-?7o~ zh;;@D#>zI?-Pa^Y3{2?)1+3cb>?srZ+3RPZqocz8`RPU!04z^)8J?lT{e~cD6Ii)xmIOb+(Iq$JQ8eI` zHOlL`=3rQrE?n!Yb1EljcrYGe^9G8!`6p0CKOg~dVP9rMZC3eQUA6(~XQ6*0Zo?^U z6Tn~Ao(Dl~9cWn>n%OopbO~5h#M~xe+wgx0|0O?ADAE;?okf`sh{I~CJOZQ#P91u> zE(aGX=o4(o1mpi(_-}dV{~=gzZ*kyLHW7bj?@)>uQ{o0Z2Wr_%)mOd!f)R%Za-BRngtZnd0aMvskLY0@N7k zYZ7W5Y{?9vh?Z}B7#oGv8`SHT9vH+)&d?r?^zo{eGd`dmpr^>$B3804WLcs)LzWF3 zC#2nW7M@*jey46`C^|=K^d<><*HHH5?ceh4t0D$JslltM-;_lJImYBBJjrbXY9`+Z zh?=?5w`#l>ALCt}Fb|SVn`???;b8aal0(*EK}iAxB?J0(hQ`y9EhDJ06VV5C##yVy z@`Oo4#htl&{SISN8YhO)Uq-_T0ckdf)$|oII5Lyoz zvMAL+{tYmX!((^zGdWoa%ov@}DW!WBHXIUcGHVNhmj|N8a`gQBO?dr-b$af}FJ$Q< zhki;2Bgl++0M_iJ_R8|vKsrOu%onf{)ibKm(Oq_xrSQZaU}f8Os(|lUkBsd4i9Dq( z99?|oRSG8T{5iErbNc)MN6XeH%+1;d!kff#<5lax-znj$@anc}^@8cl{vqc5H>dai z6bz035?%UcFWC*$&gKa2kIynOQ@pUh%hdfmJkV#6oeSp$%4eWmH04_Y6Hs`F+H%10 zGfSeO|3bYGK^I3Gg;Hg~z@&)80>uBAoTMv+@Y9e9w;I%>ZY<<-`6$zy- zR!wPA&Rn=xvICp^LbJET36&EzE>;3bMfRTAYVp~way=WwH!QA7@@5_EvCt$@)$cx( zsq4@TvG5}@_F{t_sl&g=aP!e6-#Q9vLx#A0WYI*9|iXpxIST{*6vE|NH`ULY>%9GC8) zdL3?4FvugEv_r=piIiLYc-X3ceET`!=;7Pn$nURmsfYkzK%c*R)t4j}0PtQBnUHR= zy(PEl5tSR|;;ah$#YJ-1R1k(~$+93%`>Kij>4`)^vJAY3WEmO|ofHypv$XP;Op^$g8@P^4vaE5sHmV~R+0K6yl3&P#mDDrk~jFA=< zf&#G9f~Z4f+B2q7&7Wnm2R!bY7GU+BChP zdGb8buIr`O?qS~lGg8^fwLMoy_peYzPaBQ6-(`zytAoR4m0u6=o=xa0XTQo(jh=T$ z0?Pu6*fuq&>ws0K(M7XE6^ZOkw4JSh03Kh?*=>gc$rb$4H7*V!Um*Krqg{C8R(zgx zM3lRVjtGf$yO&0Qxg%`=iDRK-G2~NaTi8>t`*p+(a<3-jv0xrp{s7R7MKEt{J)u8l zqs<;IAsCzn04r@FZR95_7sUCqRuQTot?j#>`14f@R^ms`1R6tN)Fzns@Sqfd5*+OF z>H{Pv@)|XsVBd6cgs3r1KIg~q?Qa;?KCAhG20d~m!uP;~H&hS$HjC9l^$g(6sh8wm z{8VSFKHg}(oN!1NIUP8N-|T|m2@HNg#;3KN$Q8}LpC7ubhFlj9Rrb!4lCtDO*c zo$AZ8>cLx#CG>9ID(v>fK?ohvSVI3{c6yM;s^n}rRjOUGaVV#Wk5ufEUEU?~O<P;X6RgGV zX;*LW_y7Vt+faJSFkJWq;584HSj)Y{00T1eH=hCS95c2GGyu=T(6ew|b{laa0L+re z)9LCGfnXtP+T8H zHdJekxfKS!@r4?m4`2b{tYb68aR#D`V2pDGS&YFYof}|%r;-k*bk&@dvIuHYCz}sm zJAEMg)Z(+`BU&jaMHUQox?fx>^h@is6#oah!75a4mkb*%m4ABs^!-1+{zgtQWE0?y zlc&qk2|R5br2Z5q$RS9~OzuL~!Z;a62$!#;9MK2jEUUppopfwPR^GDU4^YfFY75s0w$*Zu@+)BFD?y#DfZCvsw6K`*P5O?fhy zzadIR-d|dZT)G6DMwj{nM%XUrGX*-9j18XfkQy@0pu6Slt2{JQKf*8+(=KhdE=5cs zS9I^c_~r)yxcuz(U%&Zb{?7lvTKpexAD?99o7xMgFx2lkROG5Gkq-LwQ(@?ilBI#k zA?1~`BnS9GuyN6cXUX(${gTv0OWo0p_cEa`G^6`035hWue}PK;UQ<^45(>^cBXxu(rYtG8F91=AKChOgwdZ+37b!G_?YwfZfq~_EAx#bmCY#ov z3unlItU*W=Xvsap=&Hvv&~A=hGFc z30I@K%0-$-F*?NezPU(dHBBl8>K!ClQ|Mfw)l|5ZLUE9|F{C3r_$$a9+9%56LFS}k zUEQU@nuA%kSN&_%ppPitpH^MKmh7yQN zYW?~3_aX0P+sgOq-~k17Ckzu2upn?ETi}Kl04;b>-*m|AUZW%jnf3@x0!aoeHEUoT zbhfjpN9G=SX5O7;VQs=alX?#ZX=nqX0-0{PF->fnRv#;E@01x?bw18}3~ z35Y2rcr`A=nlRI>+yZom8kr^Wdt=qBvY{l8DCV^oKp7#XKXk}?7-T^3INT{)>Yf7) zu&d7JtaaXN3tpa1OFdfCS1_mJb(T|QL7`=PZq<;&lR{OeWlzIgXSLV4R#Ns!LB?bO z!ZRuveN>F@2@^qdkfnR;3&CrtUf}sBxwy8=7jH6+Ak=Y;t)!7?>lnl?g}27zJ;}F( z;FF4o1@&ZW$x5he8c|Ccz$_rhA79Ev4Q%0T==IU%h35~3Mmz=LRC0p|D9~eME@c?} zZ+?((AU3Y;k?xKP-p&eQ2hpcgB@I#`UDZo%o$cg}Q&E?LKzmIMAXy^dp33Gm`hRjS z>L<9N!FJD*H8e%$nF6$EnSH&;_QVX)lW{6{sa&;1%pZZ~d&f)o{nt==TCWc@ zVlPt4p|t@XhzS-t&ndXy6N=uK-X&1LJWV^h4n90mE0z(BL|1*qjM4!h8)^%QW7H*Y zIN^|^ECM+o#mYI{4Zgq5oWB%~11ei*oB_33kvVjS4+8O7QXVGR*rO~AV>g1Ha0dH= z8O08I)&b0jb(>Cw81()Nh}C=zCgW_m5)>~Wcp=ZHA_ltjn%Z~<`Y^hWFFa&kcxSvZ zv+5-Bq#!S=H&yrL9!>Z`6#-qa${?!1Dbt1etJfd#BfTSkR5tFf-ag{Tz)vhpQL_=+ zan%d*ZZ}1c_Q9FdUU&x<-eEaxA&9!_I?N?1FdWS(M)*-*yDGA1 zTc-j($CAZ=1gb*J-{ih4tDYG`BODRme_+AS|jb9Aonw%4hLI^ zy5E|F^PkAB_n$y=Q2P{eCT(a{=6&AP+dIy=23)IUgV#hoSK0atnKwXyQ5)pkJJ=D5 zo-04agPqg^OG>21rQ$#L1pk9Xe^bFD3xE1N0UZNvZtMvhnW_=3z1at~@j>0QZbuXD zflEs_j}DFEAqrs>=p0B7vgWJfK^s(}3hdp3&4qv%pf8@BH!2e{#pEEdhZ9jRe8!Mn z=MWxM9U37Jwwhvhfb{%2yndDiLDesH>j6wB-w2!~DS0u7y)cYuTNS9xRdIn!sb@fl zfE?U2s-8(c#_^~R3|f_i3hcANygKThyuUh(M6iHXL#jx0=)hXrdY7NJ9g!gTH11N= zg0qm@G-{FJt-AyYl||z#&{yaMKLH)SxCUbb2Phin){3;~c3fH7v}Puj_<=FUoc$8) z#$!UWo|K0=%Xa7p?p;s~48&|lu=7m05}m28GqF|498ggaK*U)xW;Y+EBX57?$MEfM z=)bx_DStVsL$=%>ygwDlZ&|kED|;j=+H0-7c+_`!RdFraP`b zJPbZ8?+F?ir0ChLg8(t{=F~4s?DjlA;A4Rt@(btKfM?jbU91GEGnP@uF~f`X4c95g zVhcOTk;4HAQWqbz^wYT?wxvjkWZg^pz(O~eww;*1R#IreIMy=nibw}3ZN3bzzeVqL zWIZud4rP)J5=S4$Jk|r?O^!DRgys`X9hPNBWTol64BEgMXi?E!8IXU1fc(Yj#=+Pw z&#ua+&31T^ONHt--%ya`dQj)xHy&ESwy|p0I^%CNfXvTHEy=j`dpZ|rT?Vk_H@c51 zF+}ZHWR0OhYenv)Bo($B!n3)TV+veAxK>OS@q~@cR-gx^$i%lQPEOG!$}bY<>{@ML z?hzerc`F2>p*Tyck3oUYlfa&ReNU(}x2hvowTFH>G~Le@$FxiBZ}qIs4m5$eWJW{p z2r(SaO`!0=yvad*lqs8~x=S9V98F=g)M6yH* zMgsoaXE|(k%LxQSkJs6^XoNs{6NiR9993FI-$&;{6#GCvVee5LGu#hOp{!JHm}Sp- zClgRE-t)~281r-?1`%hkf1xt-bvOe>D2zM4(aM+g8^F}9GNSpwi994^y8(G4) z3gJVmsn;2w9p)G+$e?k7& zFCIRnx~r%OJo%*Luxf9GhUYjdM{-l;e_7DmWv~Y?F+gqa(6LF26xSA$`pInIdcLOm z0;ngO1&tS{Ap%&TbE^eVFe(ZH9EF;(2-V(EY3-gDNOjifK{}H9?zN)oWLd%ks_W>W z#@+??BnY8x2r05^g*)%8-2*l(hH$efZ3TZF0_EiiS@gjTw}((6w#j<&QEhy;N3{|M zeDw-3LfbhoI6Q2dyUl@aS#z%H&Gl%Dv|ezB^4zaE)84XY-9$bJM_MC9a^s91j;%D+ zY5w%6M7CZ5elhq}?;_&>B(WhiIp}t*AXWiD4)oV0pM?1ld#{KtD*o>`b>uX(-WC31 zM}KyEDMA0&RFwGj>(}|a(5!m>4lSf|rD^x>zB$PrX)oT<_Xh?W86* zx4wNr1e@K(IYC&Xr%^dQ0r7UWLzjegJERxvq`ERj?jZWkmh7){JeUediE_Pgt!x{? z1G9p%^GmAZxb~ZBzottq&wO>vK?|Y6pfC|u`>I{tT#yUmG?7Ynwb;F-XN6g?PD616 z72W4DPNwMxG9E*>cBz$k z#zcH6rs0UJcdn`@Hj?@!z1tHHl&&~^V6F=-rbzunA9(yyzkHDu_foN$i#A+@CR-gd zby$wYSX5XmPXrW0Mp+SCC~WT(e{?0GVu0kk!trZEZ`LN6V(Prbk#xsVSz`^i-}G|0+X(iRZ5a+^53X1 z#^M#x`nA`}+OvoDg3wClg9J;5K=kXnd!Kdz=sLe7{IR)78Bj7g%?^D@epX0T!fT`M zse@v`yI&cI?BBw-zX4tvit1BNoz&`H4i!v~&{VB-P-Frz3V=STVTdG$jZQc%g8lII zt3X&1mUy!Dt=`T;U)+QY63T@Y6Z%Z9OY1M37bT}T$52I$eT*9*F~T*cXQ*k$$G zp(5szoivpi7TT5lG`xK!hxMa0N|p!^lB^Y-a&TV{n0bx+8uwAziOb}Q8nBgp;H-r9 z7|+d)_7Yb&bngHPVQ7eor1oaE(s`u*Wl2>9;z<-4`}VoSXegOkYiB|LLo#eDuCtdI zhr0A&E=wi8MM-%R-R0yYutteI%4~5j8)`b}mLnyqYCvknhnzhR zRkgKlSsFZ_-Ih4QFVPMal?)jn{%FDMx;#P=L6&ciiD)y7K+9^-DwN}9L}+UmVIp37 zN8lcS=CWeEYL8#VDq6S%CZ3eVZV#@0vV5C9u!WHj2p+2H`Bvx z{nhw9YeMc5tkAZn?|taKDzMN$CGWZ_g}!gCF`t#+S$Sd;i0w|9w`$f$4|;ZldVog*C8GpHlA?cvM~*y zP;4c-P!#0s{1T|W*0NWuAq2#~LmMPHnN=Uo5{>nthB%84hO>3g>yP;{eEShuI@U6SJB%7)^YR0P3K{ zWOP1-DHITx95zGMJCS+aAu}3=JZI#u;5+|S3N`2)Oo88 z8qky425-*dY!=TiGahP?w_+_^_}mi(sFE`7iv-lF$_!bq`A@+_Ss;i?*HWqQ_oV?j z)iV3q>vD&ruM!VR&%OX;8h9p(k$$?OqNZ2S`Z+(*fH6&sDRQ`7afpMseIW?a@5^e&4+ba0}fIS2@%PZDPxuNjGG?v>r`)j?s)VY|0e^i`lp^OH~a z&Tz79hQrw}MX2?7&h{j#=As6Sa!OpxN<~&R>s)~J5E>JsMreC>4xt5*pJ7C~*I}!m z7j(y#qeYJb8DX+3n{a{8%Yo7L0psBXa`5>@A1Xq&ST8~nS<3{Z3|MP|fIw{;R0E_Z zV?b$v)p)Qm`Niv(fuEexGq6HzPs@8s!8HoR5{||h74)dl`vc>qS0}pFv8%# z3oJWpS%S@g$4%@HbpNbcw}>>S3?^N(X=2Y|UyZg$QEh?JtM}*{+-%@5l-Ubp4XOK> zYF1tVuSk3_v~WJ*UduC2v**34b#j#ii`~u{^MrlQGO`%u_%axG7#$XG2M7-^OBhq_ zfDs8jn5Y)}K#(Xp)p}AA$pQ!kXcxT-N4DH)sy4FuFcAhSqe2rFBF3(m@^`7gLDepa zR0y0lgs>99nujZ)2#c!u!&#mQ0;m&CR%Pmd*GpbidH@2n=$5i*#A>3G18}xBL5Nm* zzAz3*>T_MKsdnp;QrIC65qX|ez!Lh}Qrl@8W^_l)an~=fJ&?fF6M4jGHz6F7;JrwG zXpJ9<)M)h{M$^9zCi*xp@OM*Tx4cI|Cc=7J{hVCUNEzJ~Lmd{q8#|-qzMiJbfDukn zRges9I$hzaKy0}V|0Fy|mAQ-tqpDfFR!}kzqR!mdI#O2Ob0F0_OvQMQ`ZI~ zJZ^ObOyD(mSZ;v0{<;vGkHezO&N`z$4S4KWYG6K@u}}vxg4g&K6EWH!0;hsO|| z)hL_k!Hj5eP@}w{gNr zqx$D$^2?LDa~E9g-E(f8)D>b~WhZ}D`*{0V;3t5>W$hfT5ZDddIm(BP%t9QBO z*dm=8#nh#c9K4vFt6)JK7CG0`7%us~NRc3M3KXkyzFyEe=|-gX0kpd?_!dV=DqAvbBxoEZk61%qA5ifeh`W!E7Qj|B^7yTb&9Fk_ybB z&`x60bZl*l;4CX)wQp3d2_MBa{u#ZoDn?JAc9Qe-Kk0;ju8oYGb?F}f4z z0QC%V>=eY@t^hK{3X@H&z_S0OQs(C2hI=h>9NFMgW zPO)U^BULff!?{tPKDASJ{gfVbG6R*W9r9yB7-Xr2n_zX!C$Are*Pr4|{yx0@?zBUx zp!YT}#P^*jDY>Y7gQ9~&03e#4?r`5z9%6uUqDyljhl+q3*tNHn4t#Fx+JMFEHkgWK zw-%{3y7Nnh=|JQfsv;VjylFC}Ipb|C!6pilrH_ z>2lw*0~J}o_N1Ts3)&?dYHp6?&G3FUEs!KQ99$FPEW@b=Q9!kTySv80+W$LJ6WeYi zZO>iETfp8r5WSLzL44*&ooT>+4;-U1O{tMifLy|DG4`ko)kfzB2 z-QXzns>FaID6t8L_uvSTa+ryIDyJe0(U~l7OmMj@W z7-e6oJ2h6)aQ?uwqCbzZ& zCAO{YX2D@RpwOkJIlEHRMbXmGZ-hj&NWtp-xK8kV~x~S_lp5%Q2-hkkxOPG{`5X7XT>Pcz$GB zZhkWwK#!T=iF=*4FZ`*e+4DC-_^l?)sbpCyj~%O~yDmR+LidKGKpuNZMJKeGaap)pnL8HUP;f zL%H{sqD0?)T2qaVE47=eokT{}VyD4Vra!DIwq^?)ayfA-L&4g*_~&r3rFoG@OIM{A z*9?E`JV+j^5uqfXmlMic-YR1A*GvI_Ogu&GIW7};fbF2;&X{ocO;gd@%a*+zy^vi@r7T!eF{1%9{T%#2r%=O zBx*iP1a)KJu#n_midPL3`E{P_^sKSm`XZA0x2JtJ6<2ly%o0|Xq4B0K=?<7*{v34! zn=$=)Q}1dHo!TVXCVZ&Cua#4x_qf=PI&pjeA`_J-w)=2N2XY%vinY%%_$fltZCP~A zrn35H_b_gE7&bk?fzUAx#r^8O>uONDH*|*bOCPJp2ddZ89a-p5nP{O-9I05g>_r?4 zSOA;QLxYc|HYp$B7UF>5?HSP|p9T=tTS-#rq{jXsh*&yVK=(KXt8rFW>?=Mb#$4n-JHL?Eust-Ok4F`temcW# zVl)6(uPI@Pv)7T4va+@Q(L*_}FJ86I$~?1aKdo-&*uc^0yxiQcpG zntP`m0?ijvsJ{Of`SAOEZL+lpm7B}t4>_?x!qp9)pb)J1fs0y!!kvncNkZX5g#)SM zvR5n{(R+arS8_)2Iw~|Xf8GQaOO_=0L8-n89v%s*Q&$f=z~n7tdQu6S1;7{F&=QH2 zcqdO+o*WQYZWOwCX$@?;#co*x*33?tC604{XaW?dR97u3suh5G*me5VcZk5eW5&|*;-1+nO#uSOM0gB3Bgldd2W5l~;8E;k_w88A zeXZ4oM&gQAFIOgf14f>LYIaD!FJo4h6m?c|>!OTn6F^64umJd+O=dgi-egidHJN zjW}Oaw{_@j=S4g$m*3J!K|ZmNybSF^>0gXXa7Qi-X6SXs19Bv(;G6+yWD!THhWi&r zKAyB^^i^x?mrIDLm&d8l2a4#zN7ivyb8FoCjltjbex`@J3MqXXTqz}lj;x5Vz1MB5 z)}Y6Cej})YapLm8E#^7^4j12`8emayN+nYR*jnur=<=|t>njf|Ditq~XW>RpDA!50 zz>La1T>`89!L=}PdB^19Ea84{8vlE!^XU;03f3Orm?5`t2&-x$NQKY3lqDsbEnI5L zu&+)4GJ$#mZ_U*rE$GV|R@K<67W6EyUAxCnqgb;XC5O}Zz8C(&4nj*dkss`X=Uh4{ zrbv2?p0xLu-v8fkKMs_<9A(eK7bL5K;66QbS}nJa-DCg&B{Zs1v}7KcDC$svN>Vlo zI()&8;oINH%Ud}RHYwdQkE1(`itKT#NIs0}?C@1^_MOl)9H!N(#s3Rj!8j6P{9Q|I00EB<{?f<*j?)Y=SPmn z0Bxn)aW+2`DGcxRfhls47X`AG@&|N&TvZ>`j=ih^GM_MhMG(8f^~!)iI@qxw4+miC(T(Bav2kr<;{Wf8K0z%hHs4pqqLGmD3Bfn1q2r2kX+-@a!dT~gvxQK*uLzRsZ}_1AEfG$s;bba!G@c%)Mo zHz23yekq5l?8_F~AldB04|<6tJMm*RJTwZ4k&{n*I3O~ONyCt-M9Q9!6y5bmkUckv zpG)cj6+OG$!L4l3k`Kdf9C4Th9lgmUP441JwJ7W-TNG?u=ub%=gX|Z!Ch+5mezvb9 z2Kwfy+FNSMm(9-&5B0^pFXFW;klW{Np#udBIq8}SkVwQ7XP;yX zDbZ!&?|)WVvFcReZ5(zn_0E3v`p2BAfQI%5LIqwTwYX4i?XV$kc!x*AzF_r<@hpWd ziL8sBH?&zqEgc;48gTn2GG)NUYd=seYc!QeXd@EV2HBeY1Ap^3;cx!NLhrT`y{SOQ ze3P^@Tj1)m_UodFf6C__r7RraqkU;O&i7G?r=3?Ja*(9uv`Uz{JPg&EfeH+<3ok3} zKHIFMs;Z@=qX<{uska9ia!U)98wlvTf~my9@lNZ?6~}JbL=r(0)bvelO64k#YL&+- zFEeC+Do6k?jG zL_(*yESk}%scNOdf_BqaSgcVrX^EHuyW8PXIrDAY2UP%9m9v5EnM~!ac!RDAx3u#T zXQYj!FUZIq(cm_hOzq683P?Fg@~D8(03QxAgktLKn^|NMBnwL%VYf>lfjX63s#CUm z0e5IS)ihc4qXQiP_#bf3?WjQ-;3$YCt!pPy?GHtQ=Y2bCPao}iIs5LpouK9Bnk9kx z8=92kj3OI3^}`g(O1B>7jj)&JeQz{eb!63G9?BysyK`BB3#>ZjV`sDupO^ zj2iVIVQ(vD1w7Y{hv%1fkUp0h?|1J%58wR#>6Q>Og4V9f{)Z9#MBm;o22TFmD!t1{s#W`TF;gf?gswX{F=3=$Wo$9^e9kX4uoP{_F z{iI4`Y#*vf?TRpRyxM%Q-XFz5rbY+0J$>gp-wEIQp5$j+xCWXffD3+1<7#t0mb) zQKx-3Qvm+x?a$#ggS`M`eCA1R4QkVCkpOa4+I4T}%sAUi%Q?wuDD)Iyl+lFU{Ysni zu2CMMp^AZ+oH1}G^Xdspm^VAByC5-({bjEJ&0|^oQXSeHzkK_Y_=F#$#nA>W=}w?K z_G`;Nh3Yt!WjiYPtmvC}8jU8XId>O#6iz-mSY0T0-d|okO_dC+>C19OjW+fqqo~_i ze4bUAosHWluZg`V%V+~qk?@yU6}BdTtK{v8wvIgCa?TFPtXqBBx%t$_~>^4o36 zg1fG=S|Lj#RrL-sjD&|Gaj-&c23Qp5slkYi)7vgF(6muG&WBEU^S~^g+(>%ny#En2 z3N&C>wQTU{$W(1{LDpw#RP3z?jMdl$9H3!jtri|OTfu@b0a{xk5KjP_)sd~eI+xS< zp0tQrm26TAM1kcrZRw>{HM9j<3F~MoNOEn!pRk>k zjdtzY@OQl`AXJ@tk#cKA6xPud8*2JgRcbi*{v$xTvhuX-A8mML$%O}_C>1In+XYnq1Q)^OT^)`@=A#_3cjM#Vw_E@z&Lg9d5tLFj)x?^Wn&(GnR`t2EkDu*yJWCLy6 zqiWX`J`{3ocO^TjyWRSwWVQRIRyg@@wiM#oO~EljB6fRLF$_!eC)q(Y>ke6X_p8)Y z5*$ZOt?XsX}Sv`!@6&~s5~xiSyB4;l_s^%FT<+=Jo-7h;_)qa;u{}g zG$$m}rLufs427dD4jnl21RelQ0_)YaOs4gY<`Y817mCW5qMVOVXV^J!-eqrlHiZpr zv)pXtb*Ub_sQ?mkG%3~obxIy9Z=k(Z76$fkVfqC=I2%QPhj8CsqZ&1%nYu+QkuDJm zm!SOZoEw}|rHX}4`;Yc3nv1;U)n|8g`T$MyJN7bvXFbdf9z#+L98H>5xe9q4L?!h) zY~s;+)s9GYXPzVnV%zc@YBBkVgFNIjF9v8Ol$_jVO+F4(uZ|7>3n+;=pVv+29fV>k z3hwk2HI=rb4gMsHWJ()nur+v;tQ9y!$Ywg-1D&ZB3;{OA^vR{+G0xN^kmDB8v>78s z&@_xxUC&QBUiV~hTi7737haEoIS=oKq0-<;OtWP=gJ!TEq z9ZUdi?;55AstCZ90C*|y1uU}S9NE8st#2pC`=7!h>t7)>v9T4`uPXUM)A!OM0X@r4 zR;lDDX_C@4wy<^^DpxE|g+i_FKz5r)_1@grjr>LUph5lu^v1)&Xk+dRurx6vYs?kV z6j)+K_N|;@u`g1Odjlc1%~8oXzp4-PGS5p?TD%Ddp~7|j%k!WdoMwRf$Spl2A3Tau z(`Ph~rPgw>vLbg39jSa0^30xh#A1cI61J`vbn3DdcIkKOuBdbq4kL_1$|ee`XuB<1o{S>MQ9<(-3K1{ zUT9bV0MYSIf}Kjx4jb#OhG|YMQFC<1Xa6p`6{eynpA+PHBl=jLDHt^<)SsR zsHU?d^J!eQvor)7sB5%ImFmc<70kwCoQ7I}!%=O=Gvw;TIXaIR~0 z2UOV-^#y!(`;Gfh&Kg;McLn{sWLCR`Cscp6&;4tS2lh;EN-^3)V^wa1qS6}Or5+%% zyyRd{aZ1R}7XCD#Q_m7+SGtNI!1pc&@Pb3v5T}464D6#q&2VwIT|_K)@KrzS_4im6 z8Rwc`CplJr09PH}H1Owg5mfc5x};80Mb-RqU!t~RpYItxyB=}XSt_#%T-)0Nm-{3K z7J>Dl9!|>U!~hLJGo7{PbuH5Fn0iFzqR9F~4+?h4Npd)lP)LT803czVxZ9=9uFOur zkQY_6nu8C#F{7~U(##cm&cdE6=tJuXrea_PTlj!Y)x$Fi*T?!UN_s2m(ekaPC)zjK z;nLwGnNk6%b;w|c;>T#=8d?c^wic8F%f}FsD^(SR(_i-RlB4GIK=Cb!?aH zkb%p1g)NWj5dcB3-O+R;t_35$Nre{c#H0C0UKv4bsfH%YHrtt{^JDgWC1E4yvgHm1E1w0RfxF*VMW#HyK*dF&sMblb=N%3Vct+0Zy`?5c zCIwSUly2(KQrh!RuX#jq>(?FImGf3myU|-&Rcz5xp*GwNis?GG9UEFoF0|!DL z*a?%~NJc5ZwV+X>Q?C+9F4tnbvpoZ+^_j{CT;vT9OTuW^W*KhKqom7cAH z?|g^jHmFv!1H6J?{UZt9+p5YQ9jt0>$vhV2h)RYvW#{KdsUq)TeB}AW3N-YGY%)JuOUsS@NI5OXXV#umB3GXtJJf<0G_m{JQk+Ib2Cf3^PP)fgs=Z?J7He@3eKZ z0<4Zy8aK7ummQBVGH>hBI(wYKxW5SAwZ&A>lsdkqWXIR1XGr+Gt4Z(=So8pQJ8370sq!G})u}*0k`a&lLv35ee=(*;g`nma$g0lp@ z#H49~X5#V`KU2SD%8SVDy#+4>*Fc@822wVsIu|_~)d^{V1J{|;mIpf$_b`Yxb$r>! z+G@Gj?|hQYbnS^oU6B}g$Md3gr0iX*C_D`uXufk#p#CXS=z_a*#vGN7_iFT{&b=-h z1;w9>A_s5YB|vNXaZ*pXe2w5)!OU!u+M{|RbO0#Fm4?b7aL~M`(=?h^)jg^skf`7a zjkA|Y4~k|kZYWGeGCWjO%(|bSzWo_2>W^Q)lKrCIb(VypqLqw63SO$~sc##4chM46 zNmFc8sIpqjud&NX&}@T48BkNhw7sZ~Qg|azL*(fJe(i_YH6lVziRim@)jE=y8^E?DvQtMI?u;k>cs30n}jOFyvaeTp2Y^{wsI|x-k9kQz3d;U4OI=kk^%H1L z;MDhCrZr2C{NKrD5^)+$gczCLfA;#>+mB(L{rYn(h2OvZ{{3ff zUmA7tPKoq&40KLklt){{DP>7F+M*%`dqm6U0lAS~V(g;g56p$1AW0cP@9r^L$vzMU z>(M2@sFvWUCflAt*PG72Ol9)Z{|R7I|Je(edKQ51kd|CQ3fhwPH`Y6P^RdEyOn_;j zny@#d)C?f>JBOZ7_8U^~EW%|&sftN386K%)k zQ)o@u7?iH1r@a2O?nMLyB>ViRo&iAv-1L^zG8hReoFd$^RHfDWs9`rJ7jaj)ETRb; zYfNkUWt>cH_g;NaG=*J-po{H&hw&2ovmIiIqy(q-8cYPinr20dS)%j=@CCNSPN?dw zY5<9o00a>|*cy0aM4r^s4yrX9B|Us);EC5rG7qv=Ua4~CV=&Gpd{x+wa@K;*Nbbr4 z$^aN&oOZzf$4b=hL38`6s8pSo9tyFWBc(3#s@iVEK-DUmx^fAz4T4npfupx3zklIu z3x*$VmM%$N{_eXyLQw83>7}(^c2#%=;OqqhdnN9Mn9am{J9pAu)uRc181}L#BiG$hc`G?N4iGOE}# zgj<*!wg40Yq$NSy>jHW<8mb%W|8pYh-wJfg=c1Z1_)!d~J5i@OrKBhA2=224J5+Em zwyXvmh~y_MMRX-Xw#NGs(4DUR-ggxY8Y*}3c$Q*l@XDcu(Rj=fLb3b6eFIeITK3nY z4wG4$59kuvT9|euuokT`1j=j-yMi53yK+2Q&sL7%eM9T^f*foi!m@{KKA$*qr+VR` zD#!X1drhFEWP=M_Lqk}VmsiK)LgI%l+&+8@{43u)S4h1aX{vdIOGL&23{(qIkOpCL zhOSWYPEl?%7bhOrS@P?d#vRxy=pb>yZnA`6%W7Xt4#yw8=kaxiVo^n_uU>i4pnjID@009>uH^^;gfg_bVqKijO0~>-JNsm(PkP2{dewg+-ByKf~7)Wt- zB31FrKo`yT|MK=n>O?;8rJ&<#lFRML6D( z>NcuHV}7ZqkFIHasta0-Etw~@1Sd4Wdv86}ioq_u0_+#4Rm__Yv{A*HK%5`8nEvKM zE|c=zed9?D3-S$KG>1iZ8ptOpbQ`7SH-cww#_htF7npsZA+bDyI-~)`+6VD-6{%7qjgEzm!#ge zf|O_q8UgZ>k|Us1cd9ii`CtlKlj#*$biOHiN@@KJWc zCF#nWw@pCvS@DBbq~gpuzFsQ1?cN2$pw#Y#I#ii@8)!D}a0Spp z?MA-IQA88OilBU)Ej76tkWD!k2kpW!r4tHrrRdtzlw1kI5er6LigYJk8kOwn!M4Dv zLozr#V5c)()M8#$n-3?%Z^CP?!{2}M`iJoP+Z^?FXD^$qmF+pKCRV1sg14;}hIvQ+ zB&s9wGN~yONN41>4}mi%2G?uvw34fw4GM|o`uV`m189S_M)cd#S&sU1QDy^n@Urks zX)gPf3Qw8#CUqBEI@OTXYBp{Rpm~s2rtx%_Fl^#eS7!Tn!hT@^Kor-8O}g>?I0&go z_yLN9Z#ONyy!C3(@~Ucl014%16Eus%tP%hydJY7mP#u7PoyX{^QCYh7fS;HFJb;3| z+X`Ybi7hopP##f9wP>n1zv66>(Uy~%&S>`#6KW~QfXG%bKa#Fq{n%9oepNr6EZoDA z@QRrxaxI(F;yCx;3^7jG$d}%A-XN=K1%BTFJ9D4ZsN5O7XB2%d`Nig4M&n7TO!ygM ztfOg|8p>mxUNWKLAeOIV#$qXk)(s87|lwiTwLI(O3yI2W!}jv@D!Ir3%_=QLMS=je1+pA)`~ z%IjIk4VprO0WvXJM8lF5sy5dbEfW&7;#);Af$!4oakI{ZJcFG9)W%r9|4{vCb2U8l z8oa?#@2a(we+m4+Fjra7}!f>W|IBOf=1;%6mjgfy1Oz-U592m{huL|^YM3b+QFzlsc%R2Y7Qvb(Fof7+^* zE$&s7t$5}R7%p9-Vgi9mfmGbsyPDurrPP!injEB2>-FH zx?hCXKcmK%e}0Z1ge)w2qkVu9aml1+m)(GH>&)X3>Y`Db z9EL+0YZ#TuB3|g2^+#)U@2*LDRrZJkdpS?Fzvlh#&eP8TNkF#06*XhAGt)F~jD7Za z0oy9=1BBv9=zv@ak0oV!LEy_OP{;>Szz+IR&`EIgC9o4V{2mTM<#jHR^G`|Y=7w-n zU+Ho`yIY(@pa-yG>*)isx%?X%{YG$TEeK&q1KY+;NupSj*GUl=j9D1ZBw(RhG9J<9 zkVM8=RU`A;C9wEkytRb(&PvrQIF1b`748ixK5a*17>!r31_!)=Zl#nX!%%g*l3?w! z7aLl|=W`m4pi37KzGpAo{M&YDyVTS!hZglBkFU9c*blsCUI$TK2IB3?3Uj#(EPjFlP#YcAO?Gel@S2MY8-4FfQ1a=#i3fWtwfuB>6| zd;j6|5-jIK4c0o8LJBp9SVP;vbnmb~rZQ3oDi|l!1D+@ykZy9cn|LYKOuqkDv>nj= zMOpzoo3_voJ#aLFjRDj~Y#%k3v)k9p@;1=kIS||+l`j#|I(Z>xW-ShgY79gRzk2Y+ zKVZ~C0*KV(hIfNN4C4m2qz$-v3Y>k$EBojyn@KA2z~&YP27MW;SL(dr#AQfC{r2?! zA74Lv|Bt~iNb5EbV6=|v^qB_lZc2eChg2aNp(~PyoV$Z@&u$GjK$h5Tz6o#az`2nd z$#K=cynP7~x%=#zCJKX9+>Bx zRb>>G#CLZngNmt6AMs8H_YSGpRDs;PoS(9En5`muaT#ZgrPEVrW}U{yBQ*?jwUXe~ zvP8~)=dwy~l^6T(!`sgtH=kd1MkjWwntiBBU-@c9@U;*fE=do{iU`brbKVy2gu@v| zB$Alf0&XfW6${`}?qe-)eTG7+JK$jmcHt0P;UX3Q;4BPS^w5t5JbZ^-MmFb>oTYcX zlY)tDReQc6VHa+mAbXX3j=@8IToNUUo^4LHQfJ~gHLgJ*8^i8ty2Me-JC(@Q@4bZT z8IVUkO1VZ9ALMGEU?;=n*YQ*mTBoA}9#c+dS2;|m{z65m#fpYLF>0mo+y{8Ruz&*G>8M=$vd##Kn25hz#kf(2rvv;o8~ zbpKox1oS?7GAN2UTpsP>Ax=&xPlPp=Y^N1?={R{6w4ej%i)M?Z`G*mVqbscQ7iZ1v z{Ny&X>rNLDcs%u@hm!=zlGA|`d{Dmm&D+n(D)~5n_a9z=2ffzc%m2Ryw%)`-E>Q8k zR173{wIw&%wO-z&#G#8*j)H;rvuuVPLq0TVm^E^a^ULzpufp4J^81$piFJLx`x?>R zEDJ62EmDXJEEynZ9Sx71&&Ggg?2VG#YNQ$uCHFNm*)AF5mM<6>)j6JYj%*_i^`UO* zcam1lCuLo1==2P#^5_U?Xi3Yxf5HnI&u7-?zGGzu+c>i!xJnyYnnq45#U zZ=_2gkg7)gDHE62gUZ7QgxRg4&L%KO?xnF#IGa~u?WK^yz`>w1i^@R4Rqw$IoM4vP zln!W`GEaaBA?%;qbW*QXr~pna6!#=i-0CPb1rHPi@cV$%1t;xMSdOLvUJsMvUkcEU&|84n3S_MjD`0a7Z=vb zO&TyQM{0}7I|O=u88Ud-hJkXrl&-+0IemVMP_5On)k)$uShwhgcwc*^mJ$xwYo9=!Atux?t@&Q{e0^$W=mICwK zrfDzD*hcXncEBwVcPuW7N}{3R$B*AWdHWKgbgw@O`r%^)LBayJeN<%=Vyd=7nsKS# z?ZKguig`>vO2IMW#~h5pvA4~aBzLCbsX5osb$Yl?7~UpNjS2#xb2^ksKYjgIN{Iea z(vh>QhFHofiA83EnQlQ1`0`hMcp4*6;di9V7y)wjtB3O%vv!fB*c-b8WAL(Sf=AM} z(}xe{@CLVATXb@DCIlD42E4K^aYHQLSpn^RgmL()O@=tE1Xf_w;fYX%!2^IKeb^yn zfg2`U&g{5WKJL~4dTNXkv0d87x09&1&+^i8IP505P_4Y_k*FXf9(LNs`M|ca!|IzK zD9gedyLY;Rf)&bdqN(jND3$VP?AJq~p+}I-cK~1wmcm!IkRa0z@|4R}Xez)C11z+* z3UIsAEkW&~GdlMw*Gl6cNs<8u^nfw$KoHumpF(n_S64%=G-{QkQTgdbfw3?-|hw-8dov4$kG-EE}YzF3ItA z^I~1)ta~LE^I5`9?R55**tyEisPS1ANJF_JQ%bi|f%4i?iHApJ3m({IiViO|3X7LA z_fZ5hn{J9>3{aUa;_wwRE_ml9Op%!_4V43#E2_AkD>r(4vYlq!dRtj(dW_!7lLSx; zn@fKKOwZaHn2lPEJ;NvFc9i*RZBp>mkE4|F@+TUA#eC%q*F9Ak@wX=#oHJpeN{Jbc zu@N8*JfckRIp=Sez|pa!!f1Q4IF!VFKdB4XU^!`>kq-HH{ng+7UHH4dD*O0f>0qh2 zr5ypRSa+^jRGZBW@IvKQE_7?}-K0$}OJ@r?%HDK1lI}i>KSy;waCJ}EvoD+pLmxt3 zT<&ZBdcW5DsxYoV>*>9g>~||5*7dS)1*tHjPaZc%GYx*lX+Yj*k3|Ys$eZ^hxn_|b zv_A5$c~tk{=>B`JE&Y6fFnyAT56fN~?J1IoJr6~a=m-FujZMyG^T|tU7paaw+Yzt~n zE!+ImyqR@^I1{1XQVVGHnhsj{%4~l7Jr_JMAX%{*(=tgzoWZT;jBNvBZZrmc6Cu7? zJA8K`1So+4Q`lC(;b;x8&K1z{73&fynl|g!d9V^v~Fm8C48HnvEJuuRgnB%#l zL@t+G0WXt9xi)W-h6CjwpI0F@s|4zu&6+h+2-Pm^#R zj!Z;);T-f7nuF0e_Jj}K3gj1M+^J{N%z4L>kSWc$4|+n zbl{1zLX*vZz>uLvSan>V%k+0rvtW8;;PVJd?l6Fl%Ny?psA}X7{GV@WL*WW|JkjbG z0iFjELO#t(=a``Af(LkyDog!nVYJcsZOdUKSjDz$lKlR zIZg5;ugD1O@C=WK9axgqLfWr2pPd#Mn>;SaU3FM7^|Iw*_f1_jw3PGc(?UEzrX3e3 zq~Zo5NF{{8m5#vkbzf)nyICM(RoN=-TUjM!%BekhUKE1^=ptVq7$lAm8659@@UHP1 zv-1-BE%PAx-){AfF`ZlzP1mR5gAd+-5=Iir;Dxv-fM_CkKvBbntK2l612-2KR!SV@ z2vC;5k`6K>t6-_~60R$PZ9|pHiHdJJ@{@ndfb^2`e6R7Y zB3|xJ=sw`e&MikS1Q8$WLBLD0SyyPLbS|yd(qpm0$Sm9sG5ZeYic|hD56`_1HTz9H z2ZjnA^f9nnoTz#xY>#>eB!M?2K}G9_Ts|CZA5hK_Lf@tx-QT*hv2t!D$aZC`QqBU+ z&8>$Z|G9PT?!Y5Sif|&l*nt7YBa?}>I>+sCsG#9wdm1ELmOQ{ts9v6#!3DLSwb-Bp z$ghPCndpe;2M;{g>nFkFM60WvM7I0{d_Sxag@tBENSHTi6a~sl8n0(TDFTOuwIHN&Sg4XAv9-e z{wi6dwume}e}bfdAE0eK@T$;LhEkC>842FXRhI=WkcQ>RL#w%A9;)i07_8UHB(i=U z-fS)wy$`e3QkJrlyT;+BDPndMP3}At8FJ3yZg3PA^ZkDKi*K8qu+R4A9D06w`oHuq zUagAMQ3n}LnUAx07K4uYIqrdj#&ZSVY?~@I4~!)21}x~^E3+y+j_8vDsiO_oQ&?T2 z!K@l9CssFf^ICV+pmpzFc+K;Hj8My|Q%ifnE3$=vkA5+d1nhh^N{@!T6f27VZoT5% z)ra5~7{miwbgOdyCDj?#8JTPh9FR$t%%FGQyc1wqK<>|kJSeKjptr*JvFLS3#d|%y z|5c z_cU0|_nq&A|CG-TZUfi_66*Mgh}#QYtkedt~5G^#o?6$ zu;fgOi6Uj(zf$O~Z0z;LIB;=&<|TRS9jHlz)$RwU9dvxm;{$y=c2Q(?8W|3ND@jnu zafKJA6?$O0Y|j22Wlbx3w`Z@is#ln3u&y-hFev>fktR57h(F~7jZ%-6bEzY4REL&Zc0b;@2 z4`|+yw+q-?OZb%B+MDcnWRf<9kiR}c$BQ@2*I?uZC!i&K)k|jV-qpj=01AlJr9xqV zRCC^Kq?6X{AG^C@ab5B4NIn;?Wm(%3lkg?Y|D7)B z;5U825n}bjJ#1>%rej)Kx>S$s$|qNjJ#6Pj4c9|tqT0)2#ND7sV6DCN9Ojk}H{$|< zd%YjK|M7;9S>iiJbX&RC_1=W0$AGzU$vRC*3^6tAY=faEwHE&OC}q|O9v&=8)V3Hx zQg(6$;D1l|%^o$Rwc@6|Oy?v`EeQJ9oK&`HF@5=2IbZqn zA^5EGA?XXq$#xVzIA&I@QJi|6jXtmE@JMuy$%uK)PXYO3uHE`s2s z0jbv0P3Drk2ybw{8u>*c!i!3ma}Ft4e6&j8?s9!NWz50DzpgJPMW?MzYmcGP=vqG$ z&?JP6kNjP|HUO3~iKJ^qs|95KopOU+F?y9>!$Wsbv|#JcHrp22rrkr5^T+PTRwx>3 zJvkzY32wX_ds$_d0woj)Gc7NGa*YUKn?YU4#uq$wEdvz>VW~U_Zhy6jw z%-Tr`9MbdwVh&JBDpHw5;vX8~DW@L=5u=o#AafSk# zO{y~y6fJh*exJj>O2P?xTIF0Csbmxm+i#o8g=Ipt_XD$$5k`mPRLVZG9Il(#)Wnha zq7!6WfM?mn4eEE8`(U_|%Sbq`^==ENjk!ufffRHPu09Z(nX9jw$arhY)%?eeX{6@& zRm06T$r{><9_$6Uv`7#wWLI`KSZcDWseYdA2?o?p*4vf`?dZ+afCSmlr+8l+Yk*4A zE)Vihk>Ix7TUC#72GEl`V~MwHKQg1(wFSNhi=-U}QfEjJb_4uAw$}yk^lCe<+;E7VK0v zp3^les%Dx^K==Sm=d0$0o1DK=5I2NmK$7ojkrK3H+Sq_q11A&=et6Hr-OeW%Tr5zJ znJ5w)?g@laB+XhqaFsXi9HvQUpeDSE>}Z?X-u({)kisEJR+O6w`K?8`kgjMF8IBAl z2w^_Wdqk2a>vMqmSB@$X*}*B>Vbg#kIrkL?3E=5L3_LAf!C>&d@oYPT@7+m-IF2fMXp#@!?4@LsY6`33Xns{KBW!-B!U}3~ z1#O?%VfTg(KM)LFKXJV=B**)N_9^nI()xhMs`{jvRvdzQoK(D&#o`by)`;3M%buY8 zyTGn9&X-`=WXUc{@YmuK0~W1B=$NP!oQ6Ep;p#4_`y^!?D3yLqGjsDbRkOEs6?|et zZQ#J*%CWRpU5P z6Gi3F*0s2$AX}EhGdNTu^v{w=HW>LvZUJ;gOoaKPx36Bm3i(6+Grvc7{+gu%Eoy&b zo>+BhXf-kD;4r}HjpRUQ%UTw7C~oDI2nf9OXqH9NH8R?TUZm?qHCHTjNm}Q!XG_#! z9pON_k#kc`X;)JG5HSVfnPaShFOmTA%@1v1XepmFNQmo6GNk>JPAelTY0|t8W!OGR z2KWN0ExW7{HNi>oZk99p#05&-JwMA&RLz!($`LxRSk6)=0Lx}cXs>4VowBDb)YNv^ zNg$+~nZ(O?dtx`vG7%KJ%=O=Y^v&N>f(*@6NwGE+K)*Bh2xpF}eQ-4*{Yggs=m7L( z2GvOZ+qh&tlT=AX7A#VAX!dbch1$}Z_aG=fVor?TzJPQoSe5Wp0~_VuudSu-1hK^n06c1(a`tK`?nYB#(mNX}C_e9<#yo~=1!?=!6Pq7!Ub&?~XU z`4rrzPqLoCGGa=N@lxxEBM@(w$&HDI-ip?$_p#HV@3NxHd1h_4N<8R2zMidNj?k5* zx~#gMy!u6OT4)rYcEA)BUI5CgP~e-eL)OF8;d_CzU=&iRqt8{MHHzp7%?vW#U4TjF z=^T~EMNPJ1tH!$MH9NeKsc*Ft3cp?>p(S!>YKFvEs*bS^&8c5ygUc2>U4rWyK{m;u zc}YU=nJqMpnUsu233A0daUUDZLuDZW1vIXpmfhG84iL7;&mhBxA*eA$W?{GW9zIgk|+t1&B{`T41 zM?t>$myD$N90p;ktOVRMlPFDmC-h(w_-yF8T6qWLv3&p_3lJqVAw3C3ni6t&lQxjgqBr zTaP-he*zhW$Yv#r2M+F@?X#=G{9W;&_ib-vg|BFU`MJFwJm4&ehguR4#1-TdH*VZ; zb$9HkLbn4z{xUyZUC=ET>!COZNujBnB|e+* zWM+~P88=&_NwY;3IGS=UQnsAYQqTeqAi!NsSi0(kGv#W>VAE0*unIo#*n0i=^-C`& z4$|HqAMJ8+qSSTKzLO*=aS8(UG+F#(bB)2ZCm-$$;&zA5^}+sNcS9Zl$5kl!&|0iq zrB0Fx2r?GE7Nk9~qcX(ot zCqBoGrnM})o+@2v2N}~C%jqwf%$_wZCt`pV7@V@6V5GrF@3JbHoyCC1b zMaHr_qgsXbl^hN@sulixgIYJ*Gu&h_$^oEvf@shH5{l&d(5Hs71f!sd_Iyh9o=^EP zzc+<)XsI>#ksY`7u4FfRsvBbnX87Rj(8n#@o0H079JzF|sBT8Cc8!jvk~HJt#HM=D z0iZ%_KQJi%>_aIrG{+3olTRo+3u+{~#!A#<=G3cdAa4wZ{(yC&fpc*Mk*NY+Q5G(F z#ML0F1`Ri54b;1OGFP}U)DBYfa%M?O^=*?@*-SlUVHPcsA%f4DN{>lLSJR-r2Lg^g zuO{1x7`B<^5~{D?(Um1V{#@s}z0t z#Skyollq~t2!hIE58U&G_QvxJdD+$pl5*dGNoj*@1yje8mprGm)y&(V(V{JRc8pb^ zI^TCtoFw-{YV0SS&ORcz48&7%+CbaGcOC)N!+=&_j?`vUMf;tAP0l zKE)Kd9Oa0U*RRwlAwQQf;(htEr)b5KI89N7fj`*p_1*ZZv~=|4DfL zS`Jh<%K{{{<75`ZpZ#=gIdLk|1&WLw(Li<(F7A0z?d0hc$N5t5V{$C9F)=9v#L@Z95EXc`%s%?s6xwCi zB&#uIKTyj$FmEUR1}f#XK@VZ#+3v*bpc!M{gqS>9!2`g0kD$#?IJ!izd<@zxWNHJM z*V7baTLK$I zB0>zE-Ka|`x3{}aQ@t*f^AF?xE-D6rg2NL!Ud*$kG`pk;NG&hFY(mhW$0ccBbJ-#1 zHJ}53pBM_{Y~28VfD^I<>Tz@()*@z;79zeEzWZHn=Q>L_qzKKzemzhm zXL-kCS*VaeN5&1U)fHJAejO7V74TEFE!#?RGV8%9aTQs7nHE7v$NCqNynHU_%Uu_B zry5{X&>s)3ViGJN9c@7ak?X(_h`XH~z`A+Yf+##iL|DZ>NcgO^A>d;-xuYb+yQbFm z|B?14OV%XUdEov&g+pyEg6bx<*I?9p&?H(6ej_4pOcleu8Mz{XrPwlYNA5s?g{ndo zh@rp&0Tc>mnThx6^Bq6m@%SNO(+!FB-~5Nn7~K6#-;gwmrda}XSL>-2pE1c8Y2r4w zIx#Y{bMV`|ImO&hgDF8zb?%&Q&!JUamkbczbgEKR=ClrdW^(zUM8-j%%DC8P^^0Nc z0*PZ;Qxhj!O-p+?)R_~y7@n>w7o{=2dedq13`+A5sDhtg1MfCY-NQ^l4>>I*3s&rm z{RYG|T{5&79XoZOoT?;+0Ky0xmQuPjg<8&JPqW)26hI%~$cUTzl452VpHEi7K*Cb3 ztS(|p`AEx7e#KvzuKX%JR7^i7f1;9%6~nY!YZsL}m5{S(#I(5{{YX!y>rN@iT8UsO zeWWJ%s=y>nZ>7L39H0O{#lDboytckLup9ETZQ`SR>X3lD_C8&t6bgL)T!F6(lac?m z8|8v>*xnGfV?RTYZaR$|>!hshWdho3CPXFYR)69sw@eG0?z)9$XC2by^-|w$PN)5I zW*NhDNFBk^%>XS^IR_lS40{ys%bmc5C7Q@PHYcRhi0;~H_`R>8vF?=`n@(dE^g(9* zP**uS1E##K$81Ets_He9Q8{8y#=Q~(3XU9XjwQ!gMD5~Kb*L%~ z`RE=Z>6T9yaISKMRvj8l(=q||iVBg-0dAWUH}PZKCpc;hT{XL}?Kc>=GR4vcFl+kxA??vw(7+s5Wlfd^`rteyi&`AQ-jE>WAdw2_CQ zHP^ZN2H49fZY@WEB{qpBylm5|>jKnvMxAnIw#FEPbDt@P48;N6$*4tcoW7gTF=vW) zT*|w!;aPm*5eGuGli%TjWusn5TU}}F5f%2(q&A_Z>osJ*(~$!->7t9CCsIExb#icD z94v0sJc)GA&~L7F@aT1r;`)7T*%nC!j8XvD3hJo_L8q*+Qw-z^?D7;^8$X~{gPyQf z-7xm;w7j{fW%cC=mpNT+;eiUfU7$vI(gTR$32I4>H!oD(iU-_J!~d-xk!n)BShoJ7 zPyxT(8HUiBe9OyI7Qe?=vY)xaK2`|zz>y-60ci(wydTq*)3X9EjNNYi@uI0T@ERhCV8G&_jz)sb@1J7 zZ#{=+IiFP-X&UBfb#BNMhT+gW;$%93slNdnB6J1_FW8n2#1%S4^_)X)>}9V-a@f$` z0d2J~hV03U1;q&eA9&wEPn2C{(qV%nU7+l8Y-sDQG>#^H6L;r}>2?>-)gVPtK+5q_lfaPlE z!RUaso!KZdmavwS0m?$aOW&1ujhLf-f3B9L5nR{uCO|9gx#YzRQE2(hm7j}93(d)m2*Dn;! zih<+zUVmksd_9Ekq-CNNzjN9ND8osGTOLrOt?#Rf+ZL25QHu$wp%)r?GB4b?zA@#e z_@NYZsG`wrcVm z@!1ZF9sVd#T399H1JRaTx317+A2;N=l;ZHZ?9r{u|Lgbf^Vh%+-1JQ(=~rGEIry~O;NTFL@KE$AY1PkF@1&R z#=zqTnjq7TUMXC@ZT74JSFQpHk}1)Pt0F!)flG2Tb}7gpkqqvo@>G2wwM2=Ow=CBp z|ECp$I|c!{AX!$Ev1t`$?$p%JIx}*_8Awes*e;ay1~toaII_7KZOn)3wOAy$cL-2s3e+M zZ)TLF`M8|?1-2+>w(Fx$*-?1dqpDciJzxsmu){OYFx;{4*e!cazs%aD&?cC2X5jRW zwz=mpa(S{4d|0)#6N4o%rO_vhQz?5pZN@najl?SjWyvc8ToGZkpa|0GkWZ3p4|)yH zDh6Q>5U8|kapIcFw^XV)$9=Ge8^Md94Na%nUIF(V^OY^U)%B3v)i4j{$I@ZRfG(0? z^%Vdmv{UZQ+>D30A?h1|$0R8OF6ZpYbBRe?5!H`tc&naPQU(4U@}N(H{O3m(?Hv+V zjcF?zXFE>WCwc-YhccU&B!9!V&%^KkT0x29sC**os#fjjYCit`EI=SWK-Ypq$rb|| zTQ~){QL?oT%e1(5Oideeq+g0F;*cd>FD6`K-(Wf^z7%2-ThKo}q_? zd#7+=7!}5@^xDBz9aMD6nKp^q+Qnu&x2c4J5HGh)P`)@XeLq$A2R!8Q8 zT{id-Wc{dz^v2!WaI8j$RmaLb=uq~Beh!ZZC2bUVm|cSuw49z@I^p~+Ucos`%SMq4 z`3O=jMlJwl2Tyfyd}Vo)H4oB3U868C=H(a5|yt65rFmn`$?GeW>Ft;%9)5slGlt{>F z05xt|5)p{>o~`{A>$|IqbQbKJ1xp7*VySuFd0S)&KOK_)Z4Z)BIyI21FHI}eY3BpZ zYY)+P2^oBNbL<+e8%WK?X=*Vwpjn@>+DxIBFp}Oc3HAXJX8jp z64^IyO{sd#MXgq4>D~|MD{MH?2$%iIS)O4BjsCJ7n8~|f?wy*O6CUZ}$-@HXib>Lw z(w+);zG}5ru}7WMx#dWb1!Pl#WWz}N?=?@jp$0FE}e~}>%{VBC9VK|Kt2uz>JOhTNZJeE+I&Ou3cD>&(<8X$ppbG4HVP>0)8x7#=C^?gZ}RiciV!Y=aPV~ zj`o1p(wN_2uV$`FRB-we=ID-!mSm}xb3DR!hnYU=uwDmdF-zCV7QjA?*&qT=)V;yT z253-ugR+k&)Tr#h!J{Fp7MMv&onN=?B0yD|OdwPX7c-8}C-zUn>-V{Sz5rnB$L~M9 zynX!sP5Axa*x4z$c|R4_Bi}P(98+cWy|70xD)E`a8Z>fz28Q7l$@g`wsg&IX`(kxB zPHTZqP1(sSvy#3TZ*o|}K!mv6hb+d85>}9dju&LM#gU9B_DoWS!RS4B1_>=j*q$@G zfj}ZJ4IELxW0fu7V56T06K{JQegH}4xD*ex6w#6&T}7^!MCu7Oon%$NY^(4p^>If-qNv9)TAq8) z#Hm~*aWcq(#C@w%0OykYye) zqwsRbT00O`Yn>Y9mC>uQ=0#DG>6NJlF)>hze7%x|*M!w*M18EA+?$Ux)-F}P)u&5| zSUA5dcD(?DkwSH`@}PLM6ZBc0UHS+djgTi_ll#`Mvm|{4xIjhCS|Z@WRLBA45rlN^ z@YtE#Q0KX(fo}k)o;algbsAyW_**zO4}bhMs6HF>b@hM9iWctVk&HZ?rU>%DvIA7O zuWs7(I~*rphu6=LJACv0BPYY>FYF!(LWdA9KNTv`XOZb~*2U_Ec`;+}#AZe2b)_&v z3A~;_8g^8DvIkBN)Jxp`MdD`GtK;zT8b)v({U@>G+B7G1N2@NTfsB>?71<3 zHoennE!_9mZ=4ST)`G?rMi%q++=ok_}Oyh4#?w@I!AL zRn%Yy9U7sQY({H6HQ-!9?R;UBhc|@O%xThZZ+*=A_VC0;lS5g+j2%YMshA{<+S*GO z*Tbujnrc$Bp`)H_yWva08aBzIT`=yhc@wxlf92*e#P#tUsH_cT4BXiE%yklR1Y$$fd2OE*1+ z2WF>?K7%ajv_BfPcW{C+v_)($OTOlK)*a(`Y&nwH6{-o^Z&tfk1)~686rYQ(H?>*R z_ICOWxOM00Lhm`2>a$Ix0ijV0@Ms*S+#IZr5$-!lPmMYqkT@`8{r`OZipGg>Q2gfY z@817OvnV*T*n&q=w{ZTHeu`yvuv9VuxfY2~B2rHW1c2!q{{#Kw7ZYaN_I0KGkes~E zFI}NZF>rhUM%Ok;rVzE^KpbeXDZ|t%xi}{BkL33a2o4DmSJ6 z`%Jy$@Kdk%E67P(F`j?-pXCABuLMD+$t)(scZ-Z_^l1A9KF^} zVl;Qji)tyHZAMX}tLm##)e!wTexYIv@BjM0{x|%wKhVsgBIFz~BfyZy*m3Du+ z_!50b`n||%XVvoXz@ic|*~?&cp-;*6AbkSiJBjKIqYI@A<1&?Qiv9M<>%YAIOL+U? z`_Ckwo1rIj&~ZieB+~|qO=|D6(Q@OoK*xMghE6}a!JvW*-3_XMqlBBfm5FLty-<~3 z)!5S;RGZC94P;@4n!SB4N$*#0pF{NHH)!Omw0%zdC&~2@bYV;~OsBl&F!K+NDsw=8 zQAnVi%m-%Cxq+4G-$YJFt#o0xBr!z0{*vjnA4$~fh-E9gsGNItTOuo|1Px^ZuN&CH zog~G-AgfJ^V%GF`t%a(~J=BIKoEO(X0Q&{3U?>7dNLKAc+0`f}AqIT{xl1|>gv<9;iHrmiE|0FvRq)bl^!7aGnW=t;!;b=awqOL4keh@*1rRtkG;GpS=h9w zj%{w06nr6HX249k++AAHeNU50ozWDEVJsWF@as|JgK9#Q5`I zAAZDF|68|&IfXMuGlaF@%7-7zum57F_NFIC&+VL&^}3@i+&U`^&@I3qKtS2m6=TDe z2rgns#vSyWMdjixhc4Bdw8ZJwLt_2?=NI|08jB6g7_M2a(Mly&n&=w16P~W z_Ro-}l?I5nW5T%1&XQfj-P+`m!8O@Ro&IfT$51kO$K1Ek-ZeW{oYZPNW!BANDjMiY zSvWbelg?N#;YG?q6(dYnq^>`Hib1;FG0@AZvZbltWA9QPUMXpl3q#>t9|1Cbi9JOe z6UPu>PM1@tW1ktVIy3_aw2V+2x=Kj3U{@(@5uG?IFC1+>?t>zstzw7lZG!96Ns!UY zkqX3u@dC@UjVayLWovbH1AMtyvkpT4oOy=4M4)z`bf;}Y-=Y`H@H2OlH+2Nxdyiuk zTDgAs4RiL9uR>YsduiIsf42Vxez^SkAN();;cr|FwyS%T@^ma6_KK}?J7OoV9N z2<00f2lbZ=M1F`)ZMC1y>1B9Qq|pS+Iq=vBl3ex%qwDTPYD4;$*3Lfyi$qd%iRx3+ zGS>CQO8^Hf{ru0~KU2Y0SU&g6I}xx=`eQZD);gk<+fMP+%g1hCxcugp+{|ImLWocM zP=aX07_V{zPK}VV2E{bc(t!#CQe`-nQI@om(Kero7GcUNX%x%t5N@mkJ+)z_(F$xJPok|3Tp8~uy(=M=qN z7z?9Oi9po?Cie<_x+%AlP@mEZ;P*K)R_%OC^3;3$58{*m@K#A$a@f7>om z&(ar#=X7nDhf7p-L_6*b70{o(UJ-b_V8dA)q3zIN^qOwuz=G?XF9|1{Wz6}tJ>Wad zwbNsi3OL0@V9QtPnpEmRlTG|!mkfzys#@b@Sj$V)obuEd8 z0BEAha>jP{-8%g{_AsB6fX(@dT08J(ODbp0nv{-)*RK`u`T9e}+$1khmJ{+8fn0Vy zY00dplZ&Z9$A|atY^EGCe>g<%H*`N>WhHocm zXaL8UkJY(316>|#WKECByVffy(|JyXF zWU?`-Y3;-et#AqbMblur!?#`LUZy zcRFYsVMA_p?o|z%Z2ovysTQ^m8}GYye5)Sw&cAxP8sBzITGj(>y^x-4uW=h77 z*HGF#1yszDw_`*T214NOnK0c`z0H35nQ!uXL7ARKKVl#Wg*qw!Yysv5uu<{Klm#1-Pd9qGO z$3FygIV`RwN7xt2(S)KEcq|Z|1CUOIs$8c^ZK*ot^{NUvj)aV~PvyI@<)zlQK3M1m z;8$)P`IU2z)0>F5{Uoz}k4mAn4wL)|ej-d_peE4`UXcT_YELz}Xz(i-AP=Bq-MX@{ zReVGLjia}2ULRmIBp8ikue%>V>VtKu4%FfbV)wIpEJ|0y`X|DwbQ3!@a($@I2Ad}n z`i!m;3YmG?Ne4PfgaBDUroR)6Xg!fbdXwZgE5OOak_hFclM~0qy^yEI>u0Kz83{4 zOKMeAl7Z&5=_v48TAu$l|LCLoiuRbIM3Ns%e23d~OU~*i+&NJPP*sQt9ZLgY5LGhj z@M%|at$d_od~m-*NnFwCk)luauumCV)p~7ILW6lN52bnL)a^x|QwJar*S>?N4_f)~ zMwqENcEyqX(&1GsJg|*F?OX=c5eFt}guZ3r%yfC`V8|E`1?8BnYLwU1G7R&4QWauR zdX<~OaTE!xsSlRx7^YgN1Tcb)5HJ)CC@y>J7vc3A3o5QOJ40R;JX&V>Sg(MGtT48A ztjkbo0@of{WXjZO3OSxzM_9+j)x3%wp!MVOjNz;u63}LY6AsSmw(t%k50PO9pvz_` z@By=d)&b*S7WqkWB@e=I0Q+eQ27IT&ncgG-^CLYzc9T@b9sQT0p;=qKBc$1@d&bbw z=@km#vnAE+@IJOzSF2&0bNeJNe?Xt_qnujqaFyi5(s2X3&~+v0cnfaVp5cTbadgzN ziR0ZTGf0x)YSuf;LN#eAGNU~Niss4(QiVSyRrpi>nh*E)FBp4h^oY%;Vu@;b4Va*c z2?8Jl;LS^?Cb+Z+X^Zs#LW>O5)+!vPS4(tOY`T|&E8a4XMTOy+wygJLtQ(Vg8Jij- zG^&W~0*Sog7m`f5ut*v)$pbg*?poC--#!NM;7gckIq_rNQ^8K~=@bap!9Ck}VL?rX z5^b>#Vo&%IbQMiVh)VWmC^8KiTvxJzzh1?*VgC9S#H;e%W= zeMHi&xi`Z@2AfKPlu+5WDrybKd9HwI-zZ1#0PW9{S!~2XPg*UA|0m_?UxnZQ^*QmZ z-IpZw)?If`R>LqmEpRL{MG&-CtNyxRPHHV^e@MQY{VC807)?2;nQfMyNa9`>s zFU!~8>bRCF6LP+}$o{w{6>Mfr9nf%`dajUt;>9T@hH8PB<#s;5>6UQ6piM`7W60dx zIzr~vXI1EN)B2}?$v{4_3qBn=QfN}VgJ#;fA2{%KsOB%YN?DgzPl*MXOeS$x^&>)@)bVmpbyR2nqRGBjQ8l*g)ZAeQ!&V3o&Vx4}f|S`s z18e#N6#pq@arX$@ESkVV4a~mnJ{V_N)hx2Ig480UxPt(S7XIw?^QmO3ygzHtcCLlh zD62YM_XZlIb|TrO(!l6kh(EyA4ii*NvIS?y<;bo$tjrE}d0Ur*O zQR_20fRM@4LVieVoemW#Mg9=o?Npob14M>mAa0n6our_km&kLW-Y8m|l1xvOHkHR| z5o7@O@`G?*R1m?G-==R9Ky5_N!hwQ00x*(XD-#Z0iCf4<^q1kd+(KgZ}E8T1tS$n9ks0uWwP-*V+=%l5CRvxYC`WzpOdw01j?@e+ssdPu{|BpDY zhlH^V++UKp4yQT`Af-`)p0`p|1iruEdNP$@iwczXEF1!H_F$fUR*$X#F>rBXYBS)Z zo=IGRKZfO`OxV3^;61C;JW(+&+H& z8vhM)cFGYd7iV%}J4Vp?Q6|iGBdc_Gn*o#FPmlD*MXpJM{8Y>|GAa44qOv(oIQG%(jDlRC6Hs;8y zb&Jxpp+hhLYYmf_f5iCmo)4~2M)&9JlEKrDlzeA*Hu zFqP`?R1Ce^h1vKXO!YA>m0tz}YpUkY`@dRvRWi88wrPahbc7fwHeTmrk)92>D=9YM zlVNbo;1{80+o7ZpP}88hDvndh78_)9Bc4fZ{IBBufi0 zR(6qpcd(NqyOpigWlnc0XJrc#uPCqCA0Z0=M`0)D4U%_s{84kYs6A3JjCNmBf1-$_ z^v*CQ*H&e2pWY?yv_y8ohS*03#e5Wor`D8DQ~^CjU(9<6YaFH(cmfu{12f1zcc^aD zTA}DN@eY{Am}U^kG|1owt-?$_RV(y>|E7qF$$4lfcL2zog38?FMKWb5B+%ariN(HT z6rsEuEB>L;5A|aAKIYH`(AAXcraM;-n1oN{H!lWZ242k+!sLDJmz$(3Rti=M?*xg! z#h(5LRRng$+pZ5=-V@9N&@^eI%PWIaEjg<(mXHI&uZ$CFcO69VyP;Qq!Zab3lS-&B z=B_@~K?TJSljd?BS|x%I{LEOre(&{5Duiy6`Zp_(l&2GJDQ0~;)#y|6o$97kjp+&k zRjnd2K88@-G(4giPjEYDqp;mxM-y`br^wQ2zdW!#cs+n6P=Q{}V7nLffwiVSMu{CC zqU7XmhSoVkA6wr3dXv;kMoyOFkcO*)!u8}mKbXVi1vlq`5H!sVhYFKj+fu~~!?OfA80%uLqRKm9 z5abkBvZBZ66D0%`+YhNB@rfKI1(fO6?Scuq93Gf?D0;F{qX*lbz10&Ly_G@IGp7I;=veL2LaoiQGid}# z)Xc40Ir7AoLT_3n99|}gFD^Ivf*EDHlD))y1O4gSW!}+k>s&S+1K22KoNUn|+hfW( zDKR~hdSKp#qVx1XS|4EO^u_SEk~I;bsLxNAxcY?+l%3yo1}(+3wM^yVFl@qNLQ>ZX zN;u`l-M?-Q=|W8;NfNR%d)aOBM5Y}EPJ)uGffF`&47PBvZ17`V9Jn@3mp>1GnJ#}) z%rLOGc003_g6b#8%5O~im-OC2RAgd5s%mw5u2eZwm5Km?I3-Tn2^OEjNoM{h;r(-9 z^S*-N((6CIe-j|$1`RjZVm5?-r(K}7tY%F>b+PSwQf`pC4h7}f-GDi|5h@qhPlad9u7)9a`!D8SP-06{Ou!uV zvc22UTl+I>;>mtcF;8U9Jk#WTxSBxMfb+W|`pl%%bvWdeW7h8_*W55Iq&xMyc03*G z+-H4i^vFB`X_Q{VK-WVe+}`AVcEPDsRGUqcO3MEAw2NqT8U73JN0Q{aI1mf$$n9&b z#1(E6N%VyfmU}A#@kC)Sj7U1HOTg+>!N!&#PznT~Uil)Ts!`OP`EL-8MQE$a$S5@e zN>+KkbX=b0Km<9EsNpM$Evf)@ZU-m7i2!R2+C-XX5WNA^kTG=a#Ec8j@<>$i7tHrAwyVM1n~kVsw{l??S>ge6L)uQz4(Q8*ZmJ>jF>5SlyM73OyAt}ob9 zGZNcdCP86*5bslu&b*8L-a^&eh18*mavstb9qB_=EKXeLs8Rg(MUbTckym+dK6aT@ z$7ht2M6Pw(Q^NBU+EQyUHHHLMo)r53GyFw9CVov0+pjHUS}=1pz38J->E`rAMyZ62 zBqnLvoNny)&{E4Q!j+LqeUBepJy`Pws#eA!Lf-}Ge{YA+|@Cru1IG(&BeB{90; zJbD&X!#kaeFcwCJNJ)lavksCv3|L0+1ROPmv$bDX0+KGfgmz(f=orBEMOFxPbKtUN zDHe)7tvZfXO{x^cXp3A{C@QC95mQ69xg(u?(~Twt*SahDeSzu|A#l@dI}7k$iBd|R zmC#sC%yHB~#dR`2e*G-zWWpBkVqC<{wmF+WVV4;GT4QjP|y zyO*}=>0yIPbxZn@bSp`saTZapVKd&I%ZS{e5o2eg9GO5mZ>~Vq%58&%x!P22Z68PYxu+8 z(0`yKr|`jGXzMmr=uN)qh(uDO+u{#OY_aJ{(wUUidqq#xq)<;4$ycye{QmpbuZiIC z;+i1O@ZTLh5xJ{tkcR3!*ay=GCImY%2o<4eGv6>doXV9mydO{?k9!xgK3bKptglPt(^I zLL{d>L#;<35KOBhJlh*qlX&RxRTj_yg-&HDs#1C7diS(qYvRe!TM0MrcL1jz>u4v7 zo;_iid+$=B`|7#b;2y$HcmZo_dGaS=Am62)MAuLBk_Cm2#(g!nhr|#cb49g@wruBy z$4{u=&4>L*vYk@-FbgItRJfq$mM(M;I~7G*D;6Lh;Euztx{dmpKqTmf@i0@McW$?< z=`EYcn7%hB6o+<^BjUPT#pOSSWN`P;j!!zY_Bn7aJ!NITDwGfERR-Fn0KDr{b-*%` zZd*S4bnL-07$6D|7}d761-^4LS)wN#FBWck_g_uJu#==swM)FE%XY8DdQRP*08Aw0 zAheQ=%AHy2{6kb0$ zZHlu-!Ovg6@;?dhKeh7*1$9L$E2XDeta%t7a;QMpu$r*Lwj$(gbaJ#c5*_DqxMY8^ zt7cIi?V!HnJH1Oy1x5k+q-yKneaG4LKx7wV$lcMmv_;F_&nw_YHYxF~9Sp#Qb*Z`} z_m}s*0tgP3IgJ^Du#qXcsSmXpToy}4J4g}OI*xQe#Vt93jc@kQ?)GG!;-#srvr^-z z+F9aC@NiZej40J{DgUV)351vzZa#SIfynNFHg%gEn4roZ)fqCiH9L6Hz>6xCFf8q1 zw*i4jIzfRegxb~e6-gzzmp9qAheoBL#K!KYEjzK6veAn}9-4&-2s$jW>bsffj}Gm4 zumj+Fn4bT}L$Fp{jzrD77L`rBJkCP?@H&^rjU#U*3SCa=t7pCF>H;ReO!n+s)flxU z(1GE#GI6uio|4fMOpefcLiR`823F3mRoNcs4^?%~od*ttqtMmkQ%!C+r9mK^Z!gIL_j@U7-6_v8l6Ywniu4MNYOi#mN45l+S-UQ$AIk^yeuE?VFk^q}PqPtP%FKUFOof=zjPiV^DkTLPR8>M=5G;_JY=@V0HN>=po26Q)1Vp4KAK7e9O zmU&t>75XOd3kvDSA(pTySzBygKzfQ;k-Fjd9x zhS#6UT0SOZ+ga#Db8k~3E{-+8A=>TVA!T~1_$NK8XkxQ75w60+TIRi?V$$a_u)cwA z35s4&AF2~Ls9BL!>G1! zm9*Veh=L7w&>6DqxUD#lvR7-; zAP1Z;4^8<(>y0}UNt{|gVupXJ>0`QAVAWi#ipa!Ubi91m!+D}+qovkXpv_h**&q%# zfmkTW3UIVkt8O2&!@AmF^btO(gATeTZp3UqGG3J?N=#Ct0&_mo2GMPh)QQ1ZtzNg> zseb)L$@Gd<`xLO5I~y`<4gX*^OXW0`Dgq|#a;ix901w)Z>5jT3F`Hdhdv>>yLI+!3 zLfx}07d%qyS?{&qg)Fn+;xvndo-lfndPH+k$SeQ z+{P+h44o~${q6AWZ-bi$kZ*R*-Do`rKN~_kC-3#)@lZ3hTI3*5$3`Mk0cMyU(fcXW z&ce{panSknsRFw?-V{b#xz1ACz)@V?Z*4hQOHatuOO(ntbOUYxD$TP$20Ti>8}|L1 zHpqr49^S*lPlv3DtLi2Vd6lw$mbwqRVsUoOmek{6mR2cw1thxyGeBbP+Q3$A8iM@( zZ;bQ$A8dcOM;M=NedA_L`=tms$M!_bRv2P>^z`g;R-o-lIb3YAiI>~CQ={@rAdGo6 z0jPF$!vQ|JAUf(fOD$kbq1|A0_mKTGhsHD3P91kUhPG{VV0fdnessRzP+uv>o;ZK6 zh84@LYM&4`7(q?m8J-8JXCK}65*PPc8TMpWN%eKf4Yo&mMvy*Bi}62%|HP-p@FJ@g z5_FOJ0P;j^kzEgt%T%91YMF|<->qUQqxW~C?TQ!7y;dHOz&gjiBFXF_sr>_^A>(#! z2%UAGne#@D|Y>ly_o+1Zr8VaG4jTnjh+U{^Io~wiq#aAkzm=5PqG43gPh;)23h0@p#RR<6c9|-^wh?Izr!fzJ+)GX> zfOo&bx?X}j(1y1FHCMve>Uht&LWP`VmVfQq3vy?Ygq9Oe*Fx$KsX3)|EZ~z|wH5as zO<(^}{rx^huK6o`brkM&1I(2hDrr%El|{X5y`p+KQ&qN(ic~V}gx$bz|9d09w;zEP z45K#CxHlpMH*M0W6bA>+3mmMtaz+a5gJL?Nc~AJ!2s@_L7JZzZYEAf*u_sTxK zCyl;qbh=JA0{Tbd7}=v$T-{4g9?kvqV8i>bF<-v>mRne(F0pY6=nQc^$wY6gT)eAy zLt|M#0e}<9iMm#S7J@+%=7p_22%(&&-oJkT4aZrj)hl_$_aRxoO>)5QJmHH(knJJS zZ*K^IkmZ88ez$?VE_VyPBW5aBq;+WleH*gjzc8=}%5nQ}xld4v>#kdyBsbEtQt1!5 zQ?95M0#M+muIug=MhHMh;fd{Z4X|#{2G|cdoD0I_yg$`r{6Sy^o=QMm%3|5gRLf)D z71fsxjULA%vb~E33ftd%QB` zm&zf~T@g3rRLIuc5!BNFMdP{16}l?+DMoz)SE(!b1Hp%o<$a0G z$p)oHZY3G;ZilVpPb#Jj--H{Bk9!hnv_nYN?oEy#NZA*I3Aw(soGkT74u1QXHO@o%j(pWUCUih#QD%K(8ILO6djl0d77kV5^pcfOdF8*YA_Je|Y~P zI)7hi#h_6MX6@|1$&t&|h1caJ<5HXiSHLu?c$$xs{K={*zdR&IsnF!;m*`LQ>X7Sp zZZJrmc4fzYw5ykfB>*_ox|IX@HS>|zh$Ok-%wq<3n_wd>CMZO(2lvQIS_dZ?n3Z>& zHUW-knY5(*C)tt*QpV7d_>2hdE*?Yjo1_Znj+ItL49H-SG)7q4E$&-|85jag>0bt> z$&xmLJ0S-SCmE5Wp5o;t<5`)*d<}fay7^S>a00fhL0L%>^qzOA(J}U6`M%_KP4ftc z?e!}WZs42%iOE?O_SK@G_0->dbP6O{{bex&+e)>?==i|kqfL(mu#Ju3m43fxb_l{1 zTL+b87;90R%a=4)| zqR@`IMMy3o4x*jf z)a7(wxuTAr%4xbeHL{dPXMi}>RML;np(pZi(H`apUX-%53;_f?6qr{wk%zVhIg)Rc zN)UYhkF*16g%k_`3~nlD%M8}7ev0+1D=CkXBkvN+-QLxwd}*IvlC8?5rs5I>d)L%9 z2lzZ7gse|GXJ)iQ($j*%j<0;ce%LdXm>>7--KIS2RaG^#X2wXR*yZwF!o3C)vM(;M zX`P@JnNCgzh|~u8+Ta^E^wRR2oChM zM0#4Gxid>*B$=Q!+B7kcm)TwhHVP#~2Iw6}RY)f&w@bpOZQ;D8riHg@Q77n_OC5u! zkf$;5BAEstEsThzz2Dz|2i5*pREkm38w5g$1DCw=*;ImXVJ%--|&`qf@O3Vc2P1ad9Ay+bpdFfwUL}eTUuW~^n8XHNVJnNxuo#S;nDe| z0f@qn%@(kznd?I0t6`41s9cjBvCxaPqeeZqKg5M=qrzITtt5AL@GQD%<3toVM6`7B zpBxeGMJtQ$0vapoR1EJZWHbUWWfq#q=D zU`Dml|D&2TD)WgVK$TFzR&y4|<@F^A`-MVzELSbuQbZ-P>|&-K43Q?17>{zgp$^Rr z$g#8*ikFu>feR=#-NPl6J{Aa&9Oecq+bTZ3BPo+)2^awjaSQ_h+s&>n@Pdn#79w-lj*%()g&jO#Q)gY zVJTZmel$ALte*Q_bIco1J;?#xl#C_?0<&S-bT{YKHAZDT_y>! z*LYDA(LLi>qrb5Bn00PR`%d6Nvs=(rg#>8cUKQbqAV_qNmk&12SNxTm=d1juU%q}~ z@JJ;6*A6QY1l2|kW7`jdCariq>qcu}Kxlm#KBA6E#%aIPkOPh8%{XD0V-Q0c2O5pM z|0;d@*YIu%i#xS=Bt^eD#Y92~RG-<7fs^<3N}uP@Sz3j@5jYCu*;VwJTBbBTACjrM zBI3|F{6oNJ`8~M%F{kDlM8#>I| z4lu*oolPbaKz1_IY1x;+ov|@$tVhi11N&}~ z9kG>~`AMk^syPz}+hdXxhoSnaN^g5p=4?Td?8zZA4NmVib6w$;WGh|W$8Zsl8Pwk8 zlDz=mzIgvsF#>g_gWD)SbC&E!mc& zR4#SZ0Z#GENC$2ETQ{!B`aL~`en&v4Bum$9r6dUh)5ko^dH*uJ|1kA<{yx0^3dJrv z0HB%>2&gA@IuiEOCSqG7;frJ+Uzy$yG54P$6_H^mKVRgGva?^ZSsGY+`doqnYv(Oy zAjJk#(Jw6-R511sDQ~kDVVaA*_h=WMveA$HTVNX0C5O$KtkPFEY`xU6hbCt*s@x&T zzx+?f-Hn^MVn)Atdo;CZ@&NKco5?=QY1zX-Jy0usf~FRbN0GeAVPCx7yeS2U{=|iP zxu$gs{7mbhMS?b1KFV__r^EfT-adW*0eYneJW?2aMsJ<0&%upI7lRqCw;&mt1s+G; zt_PH;VAVpO#6tZI<7Movi_GEjKL7Up3&$*ET#qCqCt&l5(-x|s+)eDpnE#I&6 z_EZFK9NnZPd0|#zpIkm%HQ6dC%oC6p+J(%H(6I2skEO)dkO)a*bpgV+Qt4}}nV~~q zD+4-CoT3eSPImPL?x|o}SgTa3vkWQiJ}?M?I4XwjdzR)cRr#NA_^EdsVA)Z`8c>lF z7F(W_<`!F<2!On8b&zXK{X++omnGa>i>f6HN6v9Wh?Vxv28aL|m_IgI0qrS5exh|h zmGT28x<(E{w$J9dfE}75zN;`OgMuAS zW)ftMKy42IkV?5Ut=$=DjuFJ*^o$_SNyr%b$y+4MK00Q+QgdNhE;t8Ok(w%%ae*Sc z{E4+>S74;Bm!dpa>c4&e_uqa0IlT$<=kUk=fI+2kUC{M_LW(Pms=VE}`R&2QwM)Z12xm?ppPua28>Y5u3 z-!tzkxMCT$ag#b-wHbjHBJ4t2=`h{A=9U6gnta&tP{(8wd{ozL?E|E*!)&K?)Gmp& z@Y+d*^khj`bgrPq1<645Hk@i~8(Mi_Kvmr6S0tCPX+PUL^jS6x4nDHOEgnsIW`-Ga zOOi8m^&l0T&Mc{mEz3Zxb-p!JFvkLk>|IA8=pZ6iNp><&`dj%&pu$3rt55>GSz_Eh zrmV&8gWtr4Hq;S%o(Rb=FNcaKGX&uc?AI%CR)sytBEh%NQ6ZA(d#OG9Xp0RAPqc5b z9@`NrFIX3lYAJxbx~j~g;&lboxXO#F5jBo`dg{Dc)rOTWqGN{Z!M*%a!|a*jrP@k` z0*D;C)CqX;=`834a-CBDceb7Hpa}GwX~X8yx!c;ZcC!r~*?gummpkwV)_G~t**uaB z1o?W9!iBxYi>kJk;)TrFYfg+tN6B(GOSkm%=j($-s0r&tTx^t6-}x*&8EW;KcxXW)a}8u=svp zQ^h||4HRptd{+tqd;fB3*Zc@XH?;4wUAyA?p{o0g7OjQKDyp~8k{L2hw<#*9z}%}p zH7AOpR3%c@P!%^VCZ)1g*2#@w7ijca(`1%-x^!5U*z?!k-ZP}XxvgXA=&0(H%`mxn>@wZBbPf ziEo31D8M!=qi{-CwT*B+S-M15YXo<(oK}A$m8w**vHz#x-=)jQLqC9zCBwV(^#kzL zbJhYNTs<`xa2o8Q-aeO``ReWS-~Tnx`#*mF<@=ZN-yfKqK4iD^7FZ!c2=U)7xgA;6 z186O`0q|yWdA$6wyWQkHcBU(HJ5HuMN#nB4mS~cy;CVKD7Zsa=I_1dPDBV(@I#(q! z)$3_g25?ilunxesYI1<_fTo4#d??lvfE#Ugn@wbqi@r$Y0rHPz^Y;Z~oh0Jme@Vq4 z1)Mb#n+f6tBdpw2Z_w@v9J`TP%1&f?32_GAdsBf{yLJq3?Ko9wnRQE9pZFdU!JO9Ity?KMSwYC=|Q?~;G*$TOQi_1`4r)R_+FY&I6+ZU)Gu{F6XOcDRmOjJ`?|L0)B z#B%aln*s{OCu!pupYn+|^~W%G-Y*&?rM;fW-8bcvBsj-)*$o^B8jn1xieD+P4k~)3 zA4tGYUXn*oM{&K^Pe2R%{PicVU#H*spOgdF7MK;oTW?EfI(Z&q&NfrisV=r6CCxkn zv6O@L2C8r`d5UBO4Yc;|leGbG3bczQL;B7TIzkBlyrt~*?An`Ty#4W9czzFv367?+2xSVktjZMSSl;_ z$YxEFQ5m^x4n4}XIc}#aeJs>UlAa#W;(X-Uy*ApX>qYhLAya^JQu0U+k=cb+benCAh1pdgoai|>2--EhWG44FI&bJPFdM-NP;aEJK#klKN7~P zHXz-r0NF=~1)R!{b(eY%x|cSnXu@pOOiXB8V6Xk*V%o>4m|6%!*)CoF3$)|pkvyi{ zBL%4oW`QqGH{8QKC)1m0x>??|QRyNLn(#1RykGwmZu@Xim3kXjp#I!-^n)j#frRSn zk~2*$bkS6^wFu30YcEDcmZ7V}n(qL#hQc^Zz`#HOm@O8Ko%aho_{P%;H~x0-`XCtk z;&8~Jfv+2}!2;w}VLw(Hgrk@L^fu}WLpqIN$;v3B9+Xhy;uvHOt95OkLeZpq!U4s3 z2~d*#q}@&J5&CXcOFJ*`p$y#RWcE$HBUOtqfxI)=S*40HZ5z*Evdfe+%nLn8^mwCS znA&hnO^n+JFrP(%Q++#>uxF!#g^%O@P2;7!Kwc~3!3U?Q1?wy}_?QsZ$reK>GZnt43g`fw- zM$!fk5puq5j3*$UxgL@v^cFYvR`cET1r&lzMPcup&s3|%F#CR>3b`7R6i25qp!1Pb zVSt`kNDMfhC?HR%ax>{So&cXo8%82>UAyGc5EkQhy?q`aF@HJIBXfo6M^s0>pbT%d z=_4kr(+N6Z699Y?JqBj6GR;zR;ZN*R31lnwmQYO)8?gxlrG&!gH^yVYi?y8PSlC$@y;v3|sl6{`q{ zb;z4$o4a%9;52VZ&?WiZdnX5$wsqtzB#lgmq9&$o(OIu0ZgEiwUPrg-T%adysV9B3 z=x3LFGPKk$`D^&Y-?*%*(4S49_KG7vh)@=l9IpxS0AJ8WY9om+j^9(A|Exn+XpR$l zR|&?3v^}z7*0=EJ0s3l0utz*oB*smijciA4W!k7y9v9~%qnbJ{5Kc#KYh4SiFg!r0 zzU*|q?caU~soqEY;IiuMj9l?aMlaM{i=2=+_55<{! zCL#ZZ(z8*2nZ@;uI{YOy7N}WnK~w|1T<$oI60#SzAejyQ_JX9_G(k-MbAH%h5=ZibL|YA#QQ~?^{YCmse-FFZ?1_cb8hWmuC;6R zP`X@A+d(*p&114^OG2 zvi7>p-N`Z>K(CQFyZKNcbXN;o^$t4vLV}p$N`Oeqkp|>wHYcu96#jdQt8br%_s={* zlm}*SF_|YLH;~K;umGyM!=pN0VGm8BJfw+$na7!I5Z@nzn@Zh~f24GPFzU6Df2pWZoF!aSQs`AsU$LIJ zWDoX1Eu*-ABx(jv?*J;$e!Y1-BAv9VzNx*=0#g!WK&3~Et9Of zgji9hC3`;)40Y^S@3Y$pS_%huuD~;tc%-r6kpb?{O-^Y)MYfi&WZylUZ#7qW{~?kB%eU!r*KbuVPb+|B`^oKXr^4F$ zw(=0ca=zR!A2!Y^8b}6Etd*2&$3s|47zfzv1gy-}b70Z(CH{*^g1T^HEBxyH2f86% zKemO7zNC%I;=|8nU^=*UF|pH!?s30ZaBL^V59-`acNGzUW;NXwla49hgCcPykoU~U z)*?KPxG3DL=sj?Q@}L%dFCBNdDpN^NLUY9yt~$X}d=FB_6}@?&F0X>27fjJtnm=v3 zCV+%v0yzuKvj){g`W;=o3!IeLH;*$~tk(1#R^p@O=7-K+OK5k59ZAvwQnN_mGZB9H z!(Z)66_vj85k7(x-fE zBcL0KB+Tan$14n_fF811M@a$oG}Vm!$Eh6!kTqJ|m$x5-S+f;wa*bJ|n^jH7kL1Tc zO$1ZB206wC+s>3j>L^T6<0C0#T_Jf$%LFt{vRZ{gq)tRQb>Z1L2wnJk6t3_w>0z7H zW7q65-#R)PB%aJvSzNGqlzX7{YX<=j7=czNy~`)e6AH%8VY*w_4IRXKeR%ED>{J(R z(8gHk^`&OFRL{j&8e0jmzxY~tgZ}^tlfO6H4yjlhLlNqr+->Xi++N$s zrC14|f#6lLX_knOfFGU+zj41qDW_3P8Y0ed>XkN{ICmc)j{=*W$!*4uX_fc0FZShr zBYd3T;&3Yt+)7@MV8GA3^Wl2 z!ZB4T63^rkVSxw}%s~w%Y-^RhW!BJ3g!ugsoUKBKTuH<`*SMTlpTR7uUX;V3l$As9 zFPlR4qbc`>Yg$83aRddT+&4dhN3Jil$sn$rZOhoKmPgc#ZpVl?nf~c)-@bDliyB5o zFnzP#46Xh}%`GF6cYC0}PR4O zgdMmV`pXL&Mka6Ijb5FEXg_~+3BWJV&Y{Dfa*+x3SB08V-pO&Ks|2yiloz@l*s_HM z3Cg0!;UfY0cFg2r^vU89yANRZV|Lt~7+2evbQJ7eO^cd~(xzT5C-*hqtgSJfj}@xy zUHc$DoVU@&~4lCG{_$53inD#ypsyH5Q+OxtBzP@1jZ*hjGio9V5T(zN`VHT zip<+iS%Pa*CF93bR(xg>iHTOdNe!`BGa@|L!46eLw}|DmXKqE3d08bYIJu}B)Rm>5 z;nc;byAgIbDcu-4!j>C=d`D1nmi{YRS^NNi*`HJ-d&3K6&Wq&haF%fSGQ9s20`{+8 zf9<3mSj?n-fyxBh?-D`o9%@llIJPBx1Rer)fRg!A+WFlmOF>0_IvT!1L!L#;)5O{x z{zCE&CrGXUR6wi0+X(NmmNrj>w9`!zJm`1dRps(l&~UnC1(rW4O_PXEw2yHq0K96?TpxjAz$7 zq@-;2146B2go^lO*S%R_Ol$A)3fokP+t)Cd4*&+UGXbv9?cE8#AWtLp6uyQYowZm- zcQkq0v+T(eo^S>hjG#yH*e>?wB$;a9s~-@B^@GdX=kK4xQ1grT-@X3g@}j0^12C7+ z2efj!3$fDah@>T`8M~7?$7AHC1nXk*38)&i*ujo8ty3(g%Zw=J-gc5CK5{c4u|k^G z+Q5)dI_Mm0>(X@)#J7FFz&{WfmYzkT}zc6=sM{_*>df=U#|n>RAV3c^TL${&FDl>R;_*OjeZ$kzqu&rL}TDGRfI7} z(J4P*vjyPV_G{K~USW~qb0`h@+P*QhYK(5JEf#ToDY4C!xXPSWM51-Qsv$GjBCAJ9 zG`i{ltfjI3+DjzE_ zbay)*7j%23p1a_oSf2|Dy}5Is1iF@K(F`GvL<7CDTm+_7s+$H|yTuX{DrfhW3p`D0 zp1aUh1pbWN3W-3Rr)|{2m{G#!j>Z6!-K=C{fc*3vZhSQc0J)+~)9$t_)Qj?hMk{Fh zTWe3RSyYh96}&phcojd>-PxJks9|wLx+s*BO6V{|Le3#lPk#Yara7>vAP->gJ|=Z} zTNn}#<<3*q4jve3%)m>_*|MQFmCPT-HOHATtj?ucH{Mk0Cj5IVq87p2 z4e!6S@TcwCjpVmZ^}CVjXSEEuIctQVMcY#?J?Wp0mzHQ(r0`2zaX=AHT6$9fDaZTA z>1(LU!U6hb-x(lHRd%u#CPs-88|(^h`q!WK0ZdJn z^UZ|Q!;8vN711&f8Lf_Jl%(sH8cg=hUx4T0roro#I6V0b6qOKsW|ll71nAVx5H+=x zUD$c}blW&tLqKUc_Ug(_R>E;ciD8saeL#6Ted{cyAt!0cluk*iWZZ30ZSS*i=5FTGE760RVv3jw+m?_$>1GyBB+5(f#~B&0u}e}J|@dt4?a7m zZ|hzr|AdRhc-cjcHrg^hZADe4_H&kg?N4Fy*oP{KtvCQh7LwFP)iIJSpv&pWJqDf% zU|1FLT2h4!14FMR5-yNbHJ!kBI@5Xor50cRcrL+g%wtm?U^#57>U`!j$X(*oepe|t zj%A5UPGlzAjI#Y8gw3bbbQ!?c6h=Icl=v}P;C0-@24^~Gy|X;t|OD>4+f zWjYU1baPrapy}%~p+@Q+v+{;;T5_j{*C%%XoV90Jd$lIb0D1(6u*yM8%_>nKRFaCrPidwO+zFOrMRPE;sf$W!Z()#Radwe0fsM3t`* z^$gG>@%i#C`(H@E*bf^{K9z8jx^y^x+|MsO+oxex^>SIg#ZC<%5L%G4_KC@ocIrb5 zX4^hD=(drbtg4Xi8xUr6^tx?_vePtsQ&kf7xj3y(-aCkT68l?EzA?)8nRz)F6jQao z;>wvEWV4v=t*VtXx5Whtz0)({BQI5c=q;VNUi)-iiv@al6wsg9M2*ETpg%JSgWO^#AoMvD|VGlfSV2-@=6=cH&D*# zs+U_cK>)}z;g~pZ5?9&w1YVOuF$f>xNdwZ zdMXk_*4q>)8@ytpPR|KU zH9xJ4RDy>=nN;n564Ec}*kHBl7+ODi`{=tdR2bqi)l)S?_MFcCswwOUf3H74QT z5Qsf#nyyJLYL0Gb4Btfz$1n&cD`|)|gmYrrxcxMsWn=r}D(N2@RDTHRs1)?zaugL= z_ozHdJO`jAhGSC61O6k)d1ChJH3Wt+NMJuR)>^C&99O-|k0n*LgV_E8Orp$5_*(OsP#2{p~@E{pe2EXODKBrO9ep_V6+t2gI7m zOeN@HBXtIudd$$5^GaX!#@Ov>YP?pG`_$TTah%Vn&SnzlI+EXIIRNwKK7VBdq(DRP z)v;lrHc>`-BrmLC0FZ9d^jnHa(2^dPHqL6h2X|#CPIjkxY7J?%Y0fl1K-M-@V_McT zxJaLXq=2%!(RfO?g37+w)IP^Wh;@)jbedF;vN$Clx=-$LF`~z@TyF3rXf8MC@=(=b znE=%o71%X;rU3~9{Ut@EGo%%vnXc~&Cv^4-XfK%Q!?=N~L(atJJkkMfGL2*;*S)4m zbOhZbj~ewEw&rgGSQrlr*s4hyLL^@g ztn@#k*{g)IeP*j3;Q~VgR!S!a@KUwBZRH+XLfDE=o6s@tMSI?(aHAol__)fIiOqiONV!Py7I??-{D?NDOW3FkLG zcw<(|nX!Hba+5~MNABE>Lt|+_+Nf<|UZ!%=EjQ$t4cRbv$6IRQ^RuA%!_WCUpGuCJ z_Dy3A8?>>e_0lI(H#V@^>0Eve;NlbSpaAu_excQ+&X7~T_Fk9 zphX#!X;ej)%PMJItyWMoAS&`wqBkwCFsNd?hM`2lcZuG*)M(ga>Gmbic=eTAuStO- z{HYxn)*W17C#}Qyg`+L04a~B48c#&=WGPu#d*La;H>q8Db!4~WR2%%fQ31Vp#C#RT8M6A%S=~!kK;A#>n0h8u_NfTRQ4beh#I_}d3 zTBe&MtHnWPkwF=f z4W6hQu61V!NHOBnT}G`lr)#<$loTq46{MYEDm!TAqPGu~UF)|E#SPxhmhQUP zOkZTF2R(b-_eyF*sQ)oqlpQk08t93g4h`tvnBaV@4kibc`JpBu#O`c91T`q@Ct$j`5U#h`UKuNO8!K);kCP1N z<ycufGlHmlU|@e2qN_2W^yb zuu0k`&7%M|o*`|>;pwX4%Rn6%c^|Fj!$J!#C&}NMng>RRUOGaOXIHHIZo@ffoybF> zyc61$+9w zac@1P0o+Se^o#Cz%}A%X1D`0ZAa+|ySH zr3M{1$lROc7S6}E-~_ZhWcft(W%TQq0_0PkNhM|2W!bre22B8XobVyYMdp1pVT_hs zKa=Y|O)?fFMNo4oSIZ8-eVhGYg{ko64sf@fn{7QNxzSxcDC}2a1gK@H+&}73@G}z< zQ(~tT1kr^O+}CXL*g6f98pheCQ-$$F0A2=Hk^4f@L&PvM3cusC1xv)G8XX`Dmr{jS z%yI8J#me1>HXRGvmB$8WgP6Fu+#Ok@OIeVT>#&76;$Z zOqrXNIycF!=MxnG4KOUp-<@%E)O3|OcBLbRD8vORI~7Hua)w0z_{yML%0sMB0DxLM zp(e8v5_|>rpR*)`ovjBXec{Qacx?;yI%u{U;~9DK<(MSDlE2t$eQb3r=wLP&Uj+(l zms@Q42ZmxycqWyW1fr^wVrV5c|CVB$oW)NwbeFTc$E*_DY5f7#s{9bEoJ^}~OS?-oA7Ef}S%@5+?`(*z^=qKG;cw-v`P=mNzC7_(0Sczy#fG!%O#}@XZVpIV zN&Zst;X(&0mOR?ck5J!bst@%go*0Gd9@?1Q3sp*x}F|EMCyAE560^?!=@Gc6TMU zw4}uM;TR1UwLl6zaL!#7s)1m!0JJYyh*D?TJVhu+qegRCw}-1;{0Fa}gx5%B-IBcN z7G1YY$ccy5(A#JhzXO>lV5N(8@k-m;Na6`O4Np(9R8Z63xv|womI?pp%{hp+m?ERp z!+B_#&Zs*x7b*ZWRRUvZ(OdHr#^uUwJ+`=;I!8}R#wvl*np^5G7B4TEM&hIO`(*Ku zCfrs?dN#FWhNwB7x1D8*Epc#{oMlQ#w8Q4@$FIK(uYb9`{b_jpUBq?8SB~}`N`r{? zZKD-OnrcN4%$St#PSk2DwI-1>Bjrw#HuhB&tvRlg?29l7jtOPqa_2q+*(ooyH&oI- z=)mEbQ#=4Z7R-z*7lf1Q1}SZEqPNc2D7IWT)$WKFT|3BR0-|8*>e z|J6tck4Edk=(IbeDf?D4=IFsNmd@RV7qFeJor?#c$?|A$=8XW4yR0*G6(l*6ax8Jw z^1X!NOT1SQ^plDcaA+J^6^;BFoo2hjR8)nK(#qZ(+Sy4aZK8SdFvT9C_c-PHN62Or zZ}!$qrnN3z+!GVKYC5UJ^O+{hI?g2`WRD{pm#0L!1#;JG+&f}o0U2kg<%84Q?@#+8 zp`=3BbYqn2Gp&rGycN`~fW3$hNv`cl7Im$Q5GVqh^imtt zlLTsXdLP6U;_OXX_SDG*!D`L+>;dbc9R+y0Y1%-lRxCK5J2F zGppF@`{m`aklV4l*Ez}`d2({$1NRH?$~b*5nuP{5IdAkyrInO2Lprc2rj>7bRYOqZ%d- zrE0yl8&n#!tXSY~f!Uno)aRB?T>&#KX+U|mHb>cFp8<+jNICXfMwCJ|>z$~MF5H{l zl{TfsZu`?@E}AvTz5`=0!R96vBw657gXegeTi{(RM$gJ~@lB0s$L0k35$cI8Fr!@Y z7@ODL%`9L!NA`NACoiH6ZJ%+l7l0IlF+pg;Y1=PFf`y%4Dmfc}il$soU_bx#PJF0U|7ns!J7H zwjet}%pTUiMMHthMo}Spc49LCvSr}UA>$w%e!k^NTNxu;gFFXg)1wLU{f}Nhh(Qfg zkqaRH8SgMc1o8g1a8o%cd8_4wp2Vd%)Qfp>xr<_nlEI|W0Vq^>_Mb1nITMhjvqFG< z%gp+iQV^bJwF(Wkw;DwoS*Wai8>fWcRhG5bx7X8<(;f{?65!FhP&)^9C5e+S+5ZeS zRRU8hM~k@sM<`c@oCRREaGJS)E zBE%URYJlAA`z&&ZLNl$ojWO0;V59@W++Gr8>T1J*jqfUA(c*I6455b3_B!z8 z0{iit4H0P|VX?0U7*35-1Y|mGy$bH_#kLm)Dr|sBq0GJm3dhAT)H6dH$-C1E==yqlVP>mcp4FS}5qTN_&QAF)?te{U{zK&mm zsRfvdkb$9KmVCAL-sYyRn(>q|ZpRf(Rk4 z{+Rg4*(C#EioLwR$^ zHH;q)I9JW-CoX5GvO@ImsAg9QLqNArlDyi04Rk0M`WtNPc3>Ra!|7;0(kO{-gk=to z=x#!fLmMmhf>Fzk-Y6;5?kUAqByzglX>*SIwbvXP`+MaOSiG&1^(BmHFVC!ZMx}%k z7O=|MYRM3BG z)mBhaG?aDFd0Xyli`ng{?ZciFGZk$)vQei%H`U94;ASh!#qqarx?ZTO=|(%iCT#XP zuPuZmP_cB)WQIQXK8+oBB$blaY)jyv4E`7B3(Yh2+glYYnJq(NAl=kXxsd1}kElyR z6_M}X5a3fJh`*e$MJ7j!)U)|cX1?+)dgCZ=2VF8ibj6a5z!dAZsvUBuIZReLehWAc zVgQg%LD~(-VhR1tn?17*7wiGZZv*7N1QHFMi3htjH!Lq}XOw%V`?=V2@7{twQah*f zq(<-;{_NuyI^`UCuo9{GOkZnscvckf>T*BvO~OTI**rPhvL^t;YR#VF4#Q;>L|;h7 zI+~dsAumuxU$E#jmDTh={?*T*5*(0BU3YsD>eT9FxefWJK`AoFgbqGGt8*SF@}K~i z+c$qp0Cd1R;-bbV9Qx`28`LLXXK^x+S5!1xt3s<83f;?kGaoA10Y&nDsMLnR@@Uyk z`59)vLojV&e`+Bww2)wiW#9X2g9kS-t6VJ@|W;Wwx=U9h=3Y26Ty6r&TnuykaUnl^;%wzm%3l4M#A7naIoOwjS3#CRCsUBoA)6%np z))Q=XGq?)i=uux=L(-J(Hl4H}3UxK3-pmKDe}R9Meu?o$@&_Ykg}qcA#w$!O3Jf3z zA2IbRNp7MJXbl#J$x~ZnO*KG$3iOxo^2O!t{}o<-YLSRIA9-sSjjwy;=r#;Mbr?_F zpGFA*UP$6fY>?X> z#fkAIzUa({`B#8+BtduzPVRBh`W)Sqc%x8`8ZXbg1hRtR1+W(j4rIzy z#XFc2bP?PDQjT$wIWc%yvK?(hNuoefekNUaR6s~>Q%^EAuqp}RwM_hV}@8a zSH$-!X)4?&w|tfa5^WgC-yD-ERV#^7ruc_Sb;2lNPs>}A&x})OosvL-ljKCT4p>$6 z*&Ez?$TA6T7kjNRBww>DQ#WN7`yi{1&pC#Da*ovM3#`2O9nQry5 z^4r)y{vvjZqcGZ&{4d}i@Ja&k;lb#1*jX!UYoNHm65K@!`avf59`AUk1u%d$c`mOE zuS%g%8Wb0z#SquFRTNRRoJ#mxE!W+>$1r}XO zU3Hp?+mX|L36s~>839A4TKwKP?OO^e^dLl+(|kc+o`-rK+H7d_coPs z2U(Zf&bY~e3@L$z8>xX=vahGI(x{Po<+2<3SMe>LjwiIjm&_a2ZdRlHa+7CK1()r? zf3?oxA^{ESyHKeC#hSyM<6I01~VJE=Ug}-`@ary0suOCVn z(2{qfns^jo>o33n$QjYXy;yCaJ@QHEkxju8EY%m{loGqf$^^-+jw)N!D9V8Tw${ed z>69JWB>*K=Y%Y~xp^qgveJV2sla5M_Tg)?C)*^-(`uX3V@o9emUc^3J(A$D$6oOjG z>~BPW@&r>x)x=g`C-FxvskY2x(8j8<{Q`^g0?os!$xY}(f7`Fv?2r$t=qp+61%emZ zCMTIY>p}ZNYG%-Ftg-~?A!><1SEWHwOCJ9-1ZUaI0nt#ok+$!ez*M|$uc|7**B^|5 zSh>STj&RLSNAbPQKmuBjmgJNIf@+82)Ix??4~aD{nU&nX;<*B2Nh0JuW5=_AMs;FMYQnaTj#sS(@MLg;GgDxEu|yo#?=t`@#Omj#`*xbomQVt*e*!=%Eh7?A)~f|UrozA$jv9(Kxw zVpJe;uOc0m*RsbAPW+fyI@wjxf~CuH=>q+Ips98QaDV@!iz+OhJlNy?qIR|-@E)%H zWd~e)F$q%^yCal5Oz13HlX6^2Sdu()_)}CIN&zqC8f-hHP9@@RY?`aNz$~S4M#D)| zl3m6jFDSCqwTCSG5*>6MXe2KPstDQA=6Piy6NZgal^I_6SeVVV3bb$aImKU|%Q+F( z&0|_1Skm?-24>FqYeTYbM>A@4VYMbW!5fBfrhITnC9G$MDfmrol7~_;VCVzJ-#DTy z31Pi+mC9>b@j1c_|W*Rgp9d05q&A_ylm{z*LdLO&vl3nH}kHF0M z=I^bZ*?&bZh+F36BYqA15bs5f!7{M@rhKTb=fL$I*fw5JERD1hL6#*2d7nLJY~a+? zRfCal8Dtwa(|u&)x`if|sbXKE3cI6+6^8rZFT!`p1{#SJU7&sf*!E9M_V_k6(7dQQ z(!GHdWt($cl3kW>MI3anuM3pqKj*9&Ic*4SvKD@q|N8}^eZW{s-CgA;g`tMfza{-V$pzxJQm9 zz8S`v5|$k`(u7sfELQzPdSG<&^yW&Gt8A{dPOUvzdtF;yqIn79=)t68lA}oujuSMi z9pOc=q}B~azftYAmP&^H=}|+2FnCCYrghZvd6j4c*pYi>+M27^qHQ>|!63;+qg%u& zivT5H0<1zL1<24&9w`G7Oa)SbzOkvManKIM05ufiG%AC5uP+pzO!*f0SCR z{>^1ZJLn@|T8ehV60r_*$jz^Eharm*_3Av_VSWRP9sR-oZ2t@V0KtmBbwE;*G+I$a zoV07DZajB71~|>5R*JtAQ#^N6E5b0MmkNg}xm`%+_LsMxzyAF7i?^Ri=rYvb2G>;f zMzEJ;8Mu|;I-k_PS8WQ}!&kMEhUq&FD>5JzSqP7U4l8x?7qw-2qHWQ;C&zZI zwB^NCf)uR)NVU=S+fceQ;qfqbu@g{^?@LslbVdZYJK54{Omq^mtZmg(k<@Qi*!8$M z)oG*d*4+nPz?}mXgC%TE5!&83#&Tf^sBY?$?Av_rpw76$+Mpf@nfYN*U5*c69c0U3 zMbZRF5;VaU@KsvI|49W(2)5ByyMo)Cr@S(HZfVLM(S%9HSXQl8CO9O^GE=8gjjUJDcQ%E&uJph%q^bXlexM4R|jmWaHH zPzbG!PU-od!t1Xts^dYw@f9ixk?3F2|FaElrBJI#OM!zrZ(u5;tLI>dm*@RSeE#TT zTN;}*4Hf@L`GB6KA6has4N0c1(qbvENC4dFyWY5MSiNYGxUv%|X{jVYlY=;AALXFh zWWin3W=eR#OJ&(tPQDfX2BT>xR%U7FUmv3`a*P1Z697DzDyj)5>to;^{Y-~}B(T5n zUzwNzh2dM|;2{Bn4TK@D+BG0`*I?7Y5-cuJ%y_L#2E>fB?+pSkoN%OQ1Rq>8(^A7J zj%@-88ap9Zbb5?~1V<55;f|Txe}DZ#lFea8KT)oDalU$mmYR0HXjePqm`^9~6o)zN zrtg|txRxL0Po@|SGDD3~b#DP~-7rc*w^{Z(0Y+G|vl<53Wh;6)2Dk@d4{_8{tBzDs zOvn1l=%=`sv(hSZ;3^mElDj6gJ$YzCU%P|*Q!XVeLti2VN-C0 z&f*D}p%U+RACbK$_B}w}#KwiHSc>N>S(8ICH=77t`zS$d*pDk4G{qsM*bex|7!L-p zXNDuu7=X)iOlmM{lZqz%`IJ5I8_D2t)SxkYSEak{hf~DjdfJum93D&i%H9otDE7Gz8`0+zX=m~Sonz!|6nsFQ-zHX~~URA7$1abaHIhdN~M+%mZ^Q z=#{D$DAdUvfbp>O6za2f+L6c5v^fxk_Kha~yBo$V*^SR+#^EdfxZJ8$0(Ei@2mF06 zFINbYv59d7NF5a*D-lgb`it_A3~kh_Q4{-LXl7ID4IJF~82?)S`>)l%!`q*~eDnG_ zy4tVb;-4>HT=sRQwF%DEooPPWMsm_j6UmgLT0f0>feP*5Ndgvt<>Ap)Q4{%iZTEmQ z^@G>nyJ{eDcF>0{N$-X`8QO5Y!--D81C-}2)AoA|pF=N+;vlbW#@44UPFSh@3W?K1 z8n{iTvUYk$mG3G`5MV&>A!Fs*vQom!!MX)m!Z(qKImu#LM&U6;7NZH1Ov}>6{(=(+RhXAIkaed`U+QaGc4_IQl-U_ur8l*}G4>IjC%yc>jmA^Zp3GPWhJK826)ItI2vgIin zG9&z;TVxm-h}OoG-6@+ux^mkA<;j6)GK~UsEY!2TZ|#sQkm{+D1BOy!2FKG%ScVl@ ze1SiC{V0&DoT$pJ%92>$s7<2>+2+uNv)!e*PsAGZvMoOV8B{NOqxYsfDyy!*Dd?lH z0}ED3;Nx?EXuq6thGUj!a0RkVpJ{S4eI!2^C2b9DiH?qKBfy&N%32>)O6Cwd#cg=r zLF*d)-OjrzqeAQe;Vo`iITQe;w^t78l@)UNK|Qz}9a}`5&ny7(#F8iRjw_24Qq~XI zWhGKZtf?Y_blf=gS!GKH2hWCPS3uWO^8A7LYG;cOb*_X)|1 zt>Ae*BAs+gv(I|(6*VzeRtmPGa-k<{$~FfQn5RRk#~J@E+8)mhLpC8;;5*M1lCwq5 zMpX>`AjB^bxWnw=ky#AiQzLOxh2phYXut#6-;sE)B^!n)HxTbZb{O=VY)@2}8_;QB zj(9f191-N8IAElBd@HCIYRhio>RPB0ya(=R8;5?xxoEU}SX>GXBW1Qxzb^#%v{X!a#27vFr;G7)|r zpdOmIUAIY2Ly3ND+}#u?ZZEyu3-@6Fp}|F4+Zz6&uI(&$V8aUVj?*O@+bddXThFL6 z-s~3Hss=b#d{QpUuBARYfW1Hwcq*rHblKfh04jK{dWoD8i$E$q44rCM+C;CZqDbq1 zu+5JNRJLLK!{{d$d9z!yBmN3?a_biqxR%bDwF$|Y!!W~N*35~ijwvbYzXZl~x1*CS zQ|!HCcY%HPjOc$K26gt7906&wIeJxAF`d(IbSIVKV1y8u$MB-~TTBvwrxm z!Td-L0Dg%eZMB5AM)?L@kQzp?xd6rfcEguqi!yv+wTWL1OpQ;6l;T^0aCJCdK0h6C za_-$G7hfz+le0Xxq7(Dd4O)W)4tEg6Gt?Yf7<3qs6U&_r=6-h%V^~&0;odL~5E#QB zT(cyO0zZLqD@d6x+f}yfYzI7sp6DsWU$f8ZM&^wkEj!)swE~W%Y^7RhduKe)5ODe755vFLAN?=kANA`q1o15!lYKsoDx2mO zkx9iL-70&HfGe|%RCgYm&Mz(NEwoc<2D!0zZLoapM&wNEc0D4{W-b)kZeVBiYl6J; z$PHBh>{B89wW_qZq`8%i0-jop%NhHXGNrH2b^MKdTAhu1cH#Rkj3hC z`c-le-ou;3hkR0$M;Js7Mfr&j<{!d;k^f!L@?75DNIS~Smty?m={5Y#zz!r7oGq6_&H57GJR;30RRCrWfto@V$K~-Ud zi6J9DNRe!@fzzFo8KZC$=DGF+au@}bWCuvDv_W{3@XyFW z?PX#ML-HYbGZ0lckBPZb=_D%C?BUtu@sx!=OHD!rupW72Ns2bqzc6?vl(RsYYiAlP z`KYrdx4T`QE6}8`^F^|PjjS#v@>;H zORRp{rWWB^yz_VEE!(Sdf!lG)It(iQ5i#QtbMyAImoLNXHy7pDz%ANc_{>dg)5hYY zgf$=r*Cvv6>&w!>qVh5`3JeNp9?&$4x3#S*43xtKtqD1E>sC3y6+~BivSl&1)!d0Q zgk{or6=gov8cz)*e68s~1gZ#e#i-V;TqLxpWvv{+CAr3^hLX^dLlah$6^I&BQDQ2r z59^`B_N7-zWlMvhm>)&R9Wqq}ugJrbB3tX|T(CHwDtE|#HbBjt0?Y3qhOM&t4Nu)a zzWj-E15KL^WE73$F-!Qv%g6D>U;@5nRTt>_sM6dvNT3~3?@Dze<|b%|b{bl9PxpsR zmVQs0$D7J~SHA2gpi7tCo1ja=5*Cy~hmO+RMp%etQP2khIhY&Zp@z1E+yJVwyA%w4 z+iueVz~WL_pGU58ze~94cDG)rD)%IE`p z|Kms#{XlY)0<9s~%{aqy*fp?T+6dyelM7HLoU*NPnWA33T2xhzgM0hw_y3{_%WBLR zH`%cRZ3m;s9WqZCb<5v+*v7;T>x_^wtMGpxMV65dP%8yoKKZ#k3OM*lxICl?oe_cz zMOf}Cr)672a{dW|`&yl1uI1V@eMFC0urQes=WFSt(jt0=E-o;t=yDAd`Wzjsn)SKr zBNMNN4Pbq>$DK269Gpdi2Rf{{`ku;Gz~INXtWZm+(aC+8$VoLUKH7$km6T7tGjBjR zS3H>=sBX&m2oL;^7y9lf4SrRY(Je5|5Gmj z_^2=kD{+vA!79GO0)XvhKq$q znU<~P?73R5?w3*#$#WyDSXM7g_d;r3JD9EH}Aj#gr59JFZH#PiS$C2=S91lWB>fASVG4 zvL7n%N1D;9O+d93$9d`i&@t3Z0itwheC65FR3h3O?83zn1KOFNt z>vX9#_@w48ZL~R);tLWE4iqin`exA)LpW_AFqI9J=1p!LkoC1xA&N}{$<+d69dxJw z0~CxdQHhndzTbWlUVeRf9BeIVQDiS73d!0&+tvIxTJ6=LKgN;sdE`%}&OL1!)KbjsqbSX9QhDKE!tHs6|rves|!d*^;4bJ!V%nw^tttZ_u2)bs9T@|tf>UW!*v>| z6%D+GkFNm1k)k%-T2~u&BAgJ7aPWVGb$W-?r zv+>ZaLUnXi+gEjY%Uer~t0%d&MMY}el)Y%!VF@LvK5Z2E0y>3rIEjeQ@ymj__FBy< z)&o^qD0L}31Dx)={k7K?Q{h}9;^c^s4}u*m`@>qX@Q#r>&X$U#S`q~0U3vMe%7YRF z3uCZP44_%Qt*Deyk+2qGbX_Djzv=AKv!KhSY2ZP#MCpFir{P+6;#8T*z zryAF8l@t{s2%B+yQ~MO#ap=3X=J}H+O57pae%JIzlF|yuZ_Czz*QY9(D(BPc6prit zK@}r(k>f{|2Drm7NU7~0Tgj18bhh)dLw!Dc76iR9+5ktB0|zITkDwQm)aGGdC82HD zW$PW`SvkU-Mah;jla~XqFUaOBE!<;CvszWTK(!ur*Sf}Nqt8fM0e?dxudG#1YUD4t zw@_^{7fpM)d*XC<>ZB)C81m=clXGT`II0)3CF!NYF9~!%fT6IA1)#Sr31F`+s!-LW zf^Xay9Pky^*&Z|QF0^FF_RxT{QwtbxZgJ$o5of{E5n`kj)e);ziZxdO1x9g3{ia?l zZX%cg`KqEE#JTowUQ_UeR0YM$(v0#>B9!?n-i z;(D9ffD?#-9N(3C7q=L^W!Ct(fD!D?dnT%!E;2Ol!ROc)}x(qr-Z~ zSYZST4?t?dN&lWAD%>`&$mcwWjEc<&c#9Zq$OBz)P)t1r%aT$A7&%2$@TLVL% zwQ$IZ`a(NgY*RU#(z9V8DjiU+)lFRZuzvyrSE@xh;5!QN)T#y^R}oA)pK-jm>}Fzj zZ4Uj_1T?obS4w)tzeMVL%bWnYlFaFmMqfP!tQjA>_Kj4qGt1*F{y>8^Wzx_WYL)0n&ZM!*bOw=p8 zn$DLkQ)U(Uv4cet%_!$E?>#aidzgbd87g34V*w*ehI7SC4%6d;6NHBn{>vT+a9oq+ zD|>AREo_6ZLQN=a#3`Y{k^rL#owTwty>5v4=ujbY1+Q?`k-M;&LpCU3bzzEE!sEym zjjWknRep%6l#d+UJ|hX$Ny$RKLaT@@FhV7RBK>8aI>|E9tO7GzRXIY4(@ zLei5OQh77CQIi*lP@`Xu2)wiE(KBFJltW1=XgTM#lJikU+(|xrhZ>?HV z7iNhBr8U8^3^%?B8o6k)&Jw7T1-h>UI&CW_fN&no(#13M!S1<4*=vysQ#AXC)V6LD zMMBR$+5VCZ+1qL%q_VfvFVg1Kbjfxvxo(=W1KejecVJlA2!7Vq45r{xRA`bb(Tbp_ zd6}dF(|M>5+Tr-sOdMYDjX4Nto+^o%iSU9YiH=|I-&Mv*G+ZS{4N`=}r-m?)S(o&R zXVR`wQOi!jJ8DN|zvk1Ut<-+Pg0{hh#(1RfY|}| zwlEF@p*Eu{z)nGlk+)psbu^EoadQ(R#65Xc}J<0L}??*)fccwc#!$XWTa@yZq`ViX|dfEw8rMQ=5 z7@O%cu%|u1_l}!SLF@BraZ0BB889Ed@E(YL+DP@uAo>7d?!8SrsA`7CO1VC&LrB@A zt&kj*<-4PV5@!h`C4}>EE$&`w1DcOHsrmTw00cl1O2}a1Y02x?&K`*@siz8Tje;cU z7OpxMbyd0xX=Su+`}3YpgLz@7UDTz$>bcuwF+-IwpkZZOt3v~gQj$49Wz2pLH%SI) z&BB0GEwGNv<^>_7I2AYFy?%Jsh53pNX!)SCoz+|Gq?koCbA+YOj_`yZtiwKvB3K#> zG2&aMnbtZs&QSOW9X2(AXgO#`ki>$eE`Tc~APSD!(CIFiiyW%!UbUC{pynWOMW}W; zzM0V~Viu7-1vw3dBj7q*$p9W`d;%ZX6L^-_NZwMo+AI+%Y#??EwkQuzWOp|iKx*m3 z+gTrlGx;4O148I*l{AF*<8Fsd3snW=_>fywT5AQhgPd_|b&I^6xFm$#X`N9tNn_c2Pe%S;pg~0zMPn47ebKb7L27GRI}F4bbTfYer}(iPh@Ka%)*XBD{*%R>BF12MB>9m=1?gX6Nlx6{tJ@GOuH|M{#Sc;i*`8;^fJxp zc0yp<-i zfwE}~z)g6KWPjNTbg_d4W6D`EJK8Do4&u}-2cQ*hvO0Ej3w+wYCu0N9~C z)BU0?Ar24IKskcRRF=DX&Vre-*ijn_nnAW5Jln37f{9T`W=^(tj{V#JSIwof@o62KEeZ5leh-yGqRQ@ky4%^S5f$y8t#dlX}uQRTvF{ zJn8>H72L@ynX1^7uGs$>Ea|9U;Gmc(x7`W=H%ftE`nY&|d&EUOICWid2vmS`W2~KK zcS{8s3cI5$P-a_4*f^ZpWQn!V<)z5U_vGX)&KNVUW(g)A*rUW~e&P;NbEuMMocGSq zPQnI0kRP2iozZSs-53$mHgLH0%mgRCpf89yL=+X&z;NMmf``&-5vh(KO`cRWcTAn^ z-hna=Uh5!1x4;u-m#Z(=>X20kBPwI^*2XA^-{7z?+df4}(9A+@4iF^Mn50zT{lgZ3 ztv$7CFnXM%WWc(#b7FGCp-55C3qkm+Z=eI}(*ORw8<8^FEdr_yao1; z%tPG4lRCQvAhp_v!tbMonttxkSjh}HWg+TWHG?y=FRj_tzal$O+2ewgrfVCaRR*+v z!tr;hwiU37ENP?`;21YfPbidKRqi^m^~cNRz=v8h;-q$Ou;_(AU6Bl!nSgT3f^mVv z%6fB`5eRjH6HoJJ$W<%^0Q3-)O6hcNvPbb96m9vQ37nOXAMvZ9aKHbt?T5%6y*$ns z?p=Z6uvc<-2S63=g#ZZC*$E(tz)eY1@gd58bOaTPweLZhNHm;M67&6yJyr!J$VmcK zW-{0%3jq|)0!t=kit>~Va+2xBwj-p4(ikf?tVs0ZmWkb~aBD7+Vq_Oe=RiqhzkT^U zy#4(9|Ks&H>H}0VCGQo(<1WLCM94Uzg*2x<;32DggFc#2SUknd!QL^Z2v_b-$a`{5Fj`lM-X83o(AAG-}~l9XfuzhF0cYC zz`07BQ0LGIXsy>g1DJAjmNa6nc|lD<+!>Jy+Kz)Sg{QCW0MKEj0BVaI{gK2V5ELzD zpuBgN8fA%X>4=ehjG||aJBZ~wWnKO*YH`Ih?%08X2qZb*p`f#Jr)lRIoSs=b28|#Z)cwac*+1G zW6}?qqNw!q4bL_`tDS}XI zVF*lBvOAOJ)tdazNFM?hA}(8}nyE{pZr}JVPE@*tLmlU^<8y+ZvK)1Ca;L_OT;#Kj z1pyRkl_yqJkg{F{ z(!;~>I^Yyo`X_~lnneF6iEKgo*%8-7py%^|BLa3?49F>|vg1ocrRP3(SWduFqJorljdn`nsQ|kLuv;US#pJ4Hc?*t{PniJabz3)_m(}fR zdtr?dW=Nf+s3?_OEjc6=OiEc#a*YysCDJTbl4$Fh1xbZE&|3?#6{7>2Z5XkOh?~KL#@( z#oK?y02pVApFnHoT02W+t|5*Q#cUX(btz%#0XOR294@-umCllT=RywxsWvcA$q7Wx zam&3dis{Oh!>U6t*Yc7z*r#+^5}_>_h7trlx$U`@oRaW%yc{xJLC%}xK~2uzud8uV zmr4tXPeCh$iSp2+i$><)_s2(ehb;_du+)>pnViK4_r%L@H9t&gor<$vX2N=8iAXS! z$}%HFevn`}0zq$q9FVU!yA9`Vk^Qa8;)`NlH>z1Q8HCL*70%VGyWBxe8ucT$ab7`v z_q4`;Ch-G3Gfgg_`Q$7B<@Xz=2IZDKwkLHYB+5t!fh-ZBWYR)8O&* zL3N4K&k|4pL_^m&fm(GK5v0ag`Wn zKa~Ifrm0NNnFA0$u=xxQsvCD)guS@l`R2GjV$4~PyJoNzc%nO6&l;n*-0h_m^5$? zEp?DfrM=5?^86|S-3`L?vxQ!e606Y)A#Cqid-#T;ZB8D!_bMqbs+11p0zs8pFDe@m z%4N40jlSCC1-6PD`9u-}^Mh9&%ALKSLPa_F+i!A9lCoXeHZ%ZjVrXWVo)R7|0Im?X zqTUYb=*LbaxQX#Y20Xxl!JnDlz^H6>c9PVpZ1${(7hahGpx9q+@xga!+FSyIa%HE) z5z18ytm9TgJ2`~_UD`$o@8efXVLD`@scIrCcS|$V2omZ zPGOdVr>|B1!6rWs#bv~Yn?eVa@XC@C>eBU{=YAg?t^wtQ2dfW=fZFC8W))NKaMJGz zA|%%1w&!4}R=9W#+Ro0cAT+IBjjSjTgRG`+)#||R>>4)Z2}xBk0_mU~1v{5s{}NvR z2vACAmhd1N6Eu@2vLw`6dRiBCv%Be`A1cugL0VqznEb5d4Wesu2Ob)SHP}x2FP^p~ z>QsR|!zI!wqdtmcWus#kd)PtBF^1{`Mksa`jbQ&)PRN{l(EnI0&9GEw#wVv#e}Pg_ z74P^E2> zLKCuwAetny~mcsUpdWk@{%$m|-bT}cS`m)_*|TpaYIgM+6gM@I$vbWPp?`k)0heG77C zSF8#7te7tXX;%w|{l_8rp&I~zJjCIL5r-2Kv zqzL0l9~HWm60`eq&!6Np%MXkkb||!6ch=wQblpzV>fvy+liOYb9BIw01b434td|c1 zS|?BiK}$7hhyoUCXg*Ad_MSaaS?5hODjFmPp+Q<*+L=zDz;dXDE`Q~0H=6^!RE=sS zm?b#?6;}XlHEPy2bRN26Xb7e+XB(O{YjUzOA+C|iU*Rl#8jZFJ>z{=l{5{2PDyL3A={AMKmdac>KFyoxGVWH%CeTDOy{sZ@OJ%L zOz`aEGTm^I(DSzS2NH68IC5D#rKgtQpuu56NmHp#G>F$GZV zvLl46EoSBJ135t9$9Smy1f9ubF;w0#)~M|E%J3Lf-?Is7Q0D^-Ia@scRn<%jTp5%# zJA1K;Gx{W|zkFyHUvwPesTVZ|rKmU&DB~^c0H;Ov+4^V)F!h=J!iVcTh>b2itVsOAy zoMh3VHw{_^BgGYl9<2Dz0=U)5U}u50D+QC8CTkOt^DS5fITE4SAx`SZ0x973?NU>6 zx!OZ_!LrbvL5t=_d%}!j%J%%8ee-W#zKIJn0*hY0xIBg48t}688=j#CI!2&Y*I+kU zxrWtb@1(+%bEP&OY6%}UmEnlE7gIUUG4tp219G%yfv_*b%XeS^mx%{sf_i@(Zzxdo<@J z1zHXu4q)IZ)dg9NiS(o2qG=1aG*=YKeQ+d8qcoN5REW;;3Z$kiajsHmOA4QO>+KcEX zDY1{aG5XgqA(KOqj6YntxdX{z;4O(wl9CbvO0EA=$r>j%?OK&PwmAip`k|;*G>B7s zV7aW50dQ~(uFZivc@SNvHwn1~n+C{6K~JmlpJX7wsE~lN@p6>WmVG=>>F}t9(fYCz zHnA^s>)i$L%2jUd$zC0LIs~1S zDz*lbpRskgPNCJ5mszo$Ruc`a8B_cXP% z^X&&Op9jvL_xX!lREJyOzF185EGWoSK#&Q`0hrGN9>XO`isQ5*y&F zNT6B^%2ET77Qz`+f}bs3SPTHji5f#Y|CwR!Ij8y=fwdBD~rRh+}+));# z_p`l+|IMV~|1*!-Q>`ndjU1Ub63V2ig(?BG!mECo6Ce=&!s{iLcqiBk@Ff;q`;eQ$ z_5}0fDgxXZRnlr&GIg&llxF*03YemDf>Q|)PZK+-LyUH|jZgY|wq_q>*Tk-`{DIwQ zjZ?0DcIzG4S0A{oRhx=9rnzN|^`-?_ss@#E7CZU6CH%u;pj7w&d4~fd#s`caz zdhyU&M5v{7zB-<#zO z5l&%iD$^b$-kLmLTQqNf{`w)PQZTRjL}G%%c=pjx26@xYIh%Y|1*<)ZfMyZ~$%F$- z3`$G++1Xg>IEt(pC#sb%WweRQFhy9Vy(Z?SXK}RgkXRe>+!8zGe zs&iHJ8iEW-g>WAorGx7lgoay^vu0TucI1ZA(xYbgZh@-xTdV+(slrHJD_fHRQ7m`7 z3ykKl3f|~}_4;XuUm&5+*hDMxBCJ;ogewwLi)+sXed;5 zSF5ZiflC}Ne;fWmzXPJWg+49BO7$mi_GD&g5r9+*6>?=RGwL5((TmA{c1HZR2`#TWeEG>j2vO!Wd zw5|OlpXD_{gd82J$$*+SbpSGGKhvptLgUplt2U zo^z@G))R#8An@R=j_k=XFB16e+TZ@`%g=xSiQ{(FY0IIF<+z*&Izx~4*?D4UTXN2{ z4~o_#$)1`SYgH`JAIWGBJXd&_sk|8E-o19{RZwx|83|RWL@z3%t2S|~`?6KZx>Yer zmd$~|!G(LZ((UapUcL@5pU3-<6e~){TU>7e`jGHqqJP?W9;sUdw?|2Nh(I~yDVjDQ znwz0B0yW?tayAu3B8zwXGs}XjX&KQkE|-$K!p}f_BuV{{n^2bYO0cgS@iZL;hu?d8u-}7lp*{FI5LrK3*KDuW z^ysrehy3Zd{B?N!ReZ2bl7(5p8Q)mCH!xAdApPMvo8?ydbO62MvOY+EsNe_GyB>DK z4g&~@5eL~YNZ;K^dP&pjED{Ns?nOiwSdjK1K4sJ#T_$B*2x+jOY!&1ISL%5kL#$WTdBduT}DV%P_r66Xy!m?qn}=?Pbb1R_#h*qNtKMo#G4 z+s|MB9KQci{Jjr=;Fl1OHd{~7tYvsyBs$dr2e<_6e>5wb5%DZe31wkkkyb_QPKI4Qy_LWB@&5aiahYFxKP%ZHb6!RA1BwY*i!YnnCWeTJ@ssWXl{T z0)mJfess!w1oj1yxmc7{GeV46^xG#n^rolFW3)NdBPv|lXB;?oBF-uwz+o011C^w9 zFLosW7&1p!l4ZUfIxIEZBgZVE|s^jdV2Ki3OW!9E*F_9(Zg4@oKlQTgP85hvt zO$!dIiwb}6W8ZM>fcGj9X&tcO;4gYo;{k2shukZrs~tR0`f|s}?R1FbIplXcKfNKr za9MVoBXT0KkrB|&p%%of#l+5uOV>u$(q+8%;2y#U$#&i()wzkbOUXTGJ22i6E*bwo zgjE(6?UX03JvmI#M5L&oZ*mvL*KvDT@umilaX8 zQsN(b3Vr)zFG@4enUaZ*VA^4K#fc^A#fst|Elz}65*g8p<>XV6O}Ep=&|z2V7}Z;} z2za!mp{g^*ab7aia6gkG++A2U?WA8KTdo3iieAfIkoVgj8JD$e=ThPh>nvI0t>V^u z*}ew(jfnZSk;OKrAzEJ zp}M;3#cHYlFxZD1(pflqK9g~X7S0M140@ZGV>6059ZZst8>gITr`R)Ei87eb08et4 z)wrgyzH)1fEJAHK!)sxv_Gb4~tb@pryuB{FU~p?-DRT<$9hRVpD zem@H|qF@&s_v)hM-8-r;vU=tz8b!nhkZdLLAv}ohl|KQo_)}DO-@pmtE)o=`Ibvym zWFKrIG)~I{wv;#mOfzNJtlgl7&<)$lK6~y|K;&X5i)-uM@z@r$fao4PwvyW%naK&r z@b-Va{5F^$n%V?$Xw<6uP<2uINlzIT^tgKln-Laux64olD&?u>b5}(GuU%$dKz1rQ z5bUrP<>fq|C5?bU1IvF*o7Tu?Qp*ekw}KjqL5<-lKmnq+Io837=8E^RXrvaeqq0`C-0T8CgNvxIy7ikkzDWkS24tb!WjSERfjrKN{uZgMeGbQXaU*!i z-O#UwC?-YEYDL9j3`4v+PB|8QS@0z72Z5@|u|8Y&+IpyuoIW|5c34?1ZBh6ftsgngoz~!N*rlI4X!AUl{Zg3R)LgIa_P@L_LN{{MZ;A> z{~rTE3fWjB6@#+6Wp|51r7A|M9UhIkv|C(K`{y2p!qz^N(WCT8!g{(d%nS&4q6I8n z@N97a8X-*y8a0!?G~o##wW*5}8KfpACWkHt2bq0aR7%>wq3><*?B*n-g51vk82%o} znU7vRw~R^o@JXt>JjH597a2DfOb=4i5MmaJ$K(8JR1KrbWLx`<*Db35t3sotBqH;F z1gw(Y5jiH+Xne}mBHFYzB^;4kN;NFCr924d%xNReWiOY4B?cJ7;Jfw;O1Be6@&*u8 zCo<}A#1T_bO$*X#IYsU7s&Pwwnp9lhEh3l7QIt6p0_D1CCs+D_5hwWQb=-#pXWns$ zXPhbZoN7yr28OG$UQ4cW5bK@^u7F`~=uf6vQcUJH?}Ok*>Oqv1az=WGhpCo$qsSXs zrM_pbT1Am^w{J?@XB5c~IoqTpai)B}#H!0HJ=LkRSUVyP!r@J|n>o*xqnnZd^Bmn` zY;k3qcK+>bp85j^Q&Ptt+YaQS_W*j5M4zBZ*U_52*H+3_YhA`4B>i4hfN!`7pd|5Y z-bT{;t>Rk*e-{4^Xw z1x3@1$6@QbZ-ndQb}=vpl=6g`Wu?So6xNcxqv;z{N21%DYd1YI|kyUNv(q_ccs?%r%&@iYq1WmmCNq8k+vVi#yhx(Wv zm}ib86{VkT!Ah~)i8rr?z?wXvfIroT#`OQSxexw1y#Ip>gc0QM=;U(kjJ^@~iN2kU zTk#UWq_d@6#Y3E;c~$9vwUWa|m@U_5lJJ+|w$C2uz;&1P;=rumO%cN++?{D9*nD&VJc+- z&ksRnY&&Q#8Q+>Zv*U_1!=fLX+}j0=EkL$T=}(ubee1Y!u|Ukify&V}y)6{;Y4zR? z+MG4@m+TQ}<+)0vmxQ2Y(@EA*(Q1YvSF%Ac##j+*TM(SLcslVgEp0Mp?&_~ZsKrgC zDzKKHC+E^mJcvjN$3wyH_dnX&7N zkVMlY4=(S1whY1f6i~WKf`M_+tK}`1S)L^mAnn_> z8wNB5${UOhc9x&=hmyX>rmR>CywQ5h>2&v2&5XP#Si;?qnStORDJ9X5yGp&oguZH> zz+E1zJntu~;o#BBgGohsmh7Fl@)f@_uEgHVldKC9ebcl6-G*AO*)_N&w6z?PzIPr& zl%4taivB9f*-9a3Hqi||{mVeCgsE}0+@n_*bM7Ks*}sI3djwG?E@N}ioH*yNfqy$R z7Y+;>FDs-ShyZTYEpsF45(0gMs4WTWKdFBN)yaW)nh64KDO>=kp$fdyL=xYcsa7?P zS&NdVloQ1s@!s(wbmFkj*v=f|K{w9_gQ~y^Cs12TK=s~Pt;6-O;)AojrGobH-fLZf zOSJ8?A&q2(2ZOl{9u6xYqVTb0PDphwQW6C%D=a%6B+Xaog~^uLu-TsyU`mz zAm&ibRW;I;kP4!j)tFM3+-XxJ(cubsmx@$aGeZGNvrczzEg6gzCjhGPo1VybFW>Sj zQL#3D`fo2^zx{72!t?)x*Plx*J>gf`G-pZ!dbO)#DvVjCmpD6c{m_h_!$V3MT3Ixx zUTpak4$qLXdVgoQvL<0&NU>17N~(XGVX6OSJxVZ^10~dy?#XJ`O`vy6E{UTZt=a*{ zm`~Dsw-<#(>lFY(HZ$NI12n_PX*`CM6`>O6Vff&p$XDnkT^U)bfvU*1mMgW6U>`L} zyTSRxTp%HVjtVx%jL02Wr6MZ7*i&V8)W9DrWeMWk}dfV zBO38>$zr6*6c?Diqs=3Ek_{s7p+Aw`C}#5r$|(iu`W^M>3Ovt{#LT1l90~ckrIOf^(hmifD+Hf#da}E_Dd5=S55CKiImQJWnWsyX0>C3Mk2DuwDYs&Y5(J~i#Y?YQoGyqv7bdnk|t&j6`kz`(fS)CjqN z-KmdYuZ7expbM~?`_BfMT&sIzrPJqX&03cv>X^HAZuXApYX;?hpg^U@nOnSJsSZqT z4eXnB(u7)S&IhF2$RCAio~44o7_is6j@~_ihnEX6@1aJc&Q`*(QNnW4QSH{qClwjC zGg%IXD)1R}YHA->dao^QiA?0{pof)ASkaoj$!ag62^T;q&@JYP355(JfP5^;&dbk1 zqtmGAq7|S`Vv^btuet7OF=yLCxgf46zGOE!cQ(n&u1PhVn`?~0VK{8h0xv?>(Fnef zno?f@<(_JZy;KdnO5!|3u1Mp2hH79X7ilAvkC`PIttE?s*KXq7n#@0W8c~{iOvb8! zXOEI&sMG<1A*FAA>OE2y1|WAZnQE!q`X)u zx?&ku;AOUuP}p`!Xqn8Kd-tztrA#BADB2ex3CC#w zys+JBU=P(Z+PR<6yDTROwv%3y(=?G>I-kjXW2zH^&lM(eCCXbRlcT~?&I2>1Q zl<0Fn8HZOTc3=x$*rrH5`fNxgP@}``@6-@L8~Hy&Nk7Lv+FVv{d^ZM4Nu4ycTlElQ z7Z@766CXtt`W?8teZ;-0K7%6vO`3jfRi@Buw26Cf0)1g@h=dv{MZxf~HxpdDC>J(v zvgsXAFBhgm7dLl>$KRKVw0Zp<9J*e9s{i~*u{U4o&p$96&d*=IdHr1Z7vJKaFJFYW zKYRJv>xc21w;#Ry{`L27fA;!2%L*dmE)D8XJ(Za+Fb=9GZP>ckalD}^7+t-Sw2bZI zPSvUGnM#>Bq5Lkq9KozA-oIo`s0-RVkC{n<)-(mcOm${d>kSls`5SL}#pePp*B^r_ z!o{{5=mG|p!68Uq1OySIrV1w+&nYobmIh3*jEU!dPvW}!0j9NQZ*(w19N~g~6ES>WM zSaMGE-cuvxEULA$y}w+NjaA~Yl*->p!a=2ds5xTTDj#wU_L=OwdLr^0 zRZaup$sQn4gAc1uK;2$xtlN;Nl9O|d=?x1buvL<3UkoGY?%K7_Y9DMUXIY38c~qFH zMZE+bp2i6ZlGbd9I`7Voi{uH3L*`vn)L1v%_GzZod9`{|!9mB4Z3+Osg0#|-l_kFb zl9%mjFA#9kWtta^Ra@0GQhe;DwKPoZeE!mcNE3%emm^IC&_e<1?a^Q{)(f?&?y%}O z8L??6E6GLLhTLWOT8?2rYhXSASznlu6Cen&Lp08fgWcvUu^+&w>d{qyS=RQNo7 zV}})#276b3?K4L<01;R9S|XW>ImkGRwi#|2xM0ur2ti^#h^FZgWhqxGDS(e)ko?Qi z2F5wu+o?}$7H3BMgn?9s84$*d9E9YOeaZS&?RaA2azK|^RO*BO`t?`V%eMFMHDAcr zQmETgeN4}C-PUJ%XxCKbuWp$GVxdQQQpv`c#`YfVKx=p1I2aLDfiDhvW%J0&_!6#eIRP z%oSsmm7w8j)~Vv)8a$)y-V`ylQQA1CXx39ITkKKHm~^P6xmtdDTm}-y=FyX;d{&k% ztlfK+US#sv-cPEgH#pd4{XmS*CJRP#1*~#Qp!VF-Jg9a1PCIwzWsR{vP6oKdK zGK87uVPJmS54R_X8OH~reeH|0x(2PBT}xspP;(i49Ihc{8#Qh$9_^uo(#^O!(dMe^ z4ICoEryYPo*hsp3z+^K}D5S00?JV67_YNV^c#+^8R$enP*8eW(qq1%EV+ zre);dG*-C@^EZHi)=cQ3+A){M48)e_6Kv|5iJj~YFVabV*(2)!#aSUF2}C%R5zs2J zgbhm#6%`(~{f>uIGm>v^t4AH>p(-CL!H4eIg$_{F4=p74M$iV&HqI-$zjxoT~0J>kU_P=F9(e@ zyUiqqHY1;~Qg%ush7RE9e76XYt6%{9PI{(5*kF(BX5W>o_Q&I&&*X(rIsWyV%iB-G z>z|S8g*&=o0C7LN2vG-ZH)7RVm~?MVZIPz~$Im+C?Kt5y0V0}HiF>;wML*R~hWFb% zSKA3v_=6vWAN(MG3V##dIy_CR@ws#Sul;FjddX=EVZyD!!4vKoVkyesfO-c#t%krK zxgLAkSAbOPxIcU@k&kN3%cz3V@p|Up}+OYUH6E$(nFM8{T!-a|pWu1uS97u0YFl zh+HW=Jzn4B3vyL;eTh32$&s@P_?gnc0tPznA)%#UhIyT`vZR8=2obSs#%R$i;*?H7M45l=H)fyPz#s0@UWMoqK0`9#;6o& z5z!@XP0<^6!_|7qZ@zo|j$gz3Kj2sW(?>=bUtpS63Jv4jf*XcnLFFkGJY{AD{`(+D z&Kc_}RS$%0&Lz}8MOJdHRMs?RDxp&Zu*tNwcYDOarrS5EjXw&M|Gi1tLU9@!#-ztQ z7X3Sx_43>yN(sC+6Ug1QSBfP8P?RZa1B(w{Ka}eDe~OD{QQypLo9t|b6iqnfOI9Qj z5!BoBoVAD~1|a5gP@;P5IFdQYYO(2{%nB5ZJ(ti}N*)GOy1*quZ}wXC$y4GQ^-4L9 z%L9)MfDy?}#i&b>u^`sjy*XtmIuX?b2HOk&HCMu~fs`C5^tVFpY@l_lQd#T<$DLV$ zWTxmV6&Xo_sBbJckaI_#ih(ncdA;MPe$9H+mLwcQ@HJKHEb*O-q0}K+22fhV^!4T)s&!wkM0%)Y0R5)wXk7_|`D#sF3jjSN z0Vf7yR7_$D6&E$_G2zso>d)hBkA(v0+EyLuc+$tT>ui!pD2V{#uxl#Zv1^c5wiC`c z$a(};Y@RC8LgCvjE6tdONTKW*X`g3dsW)y4nqx_GaCRJDdS3_5nP5Ood?)ISoU#LG z+qtzdsu4NO?l~5^qDej}khehv=@`&Km58m|6bkEiFDU&+@W3zXWoSWE9ts8xdQ`;|<) z)Hw;2`W#%F7`{`WHYtdGT~XLh`vpUQFz<3vPlm=is9qOyvpiYxO5UHq2?b3uD7?N?UqN2`NqtYr^Ho(LIufEWOJQ9lmU$8i z6><9wz((=snYUV%h!AK{tsb>@1h`_9DmD{DnL#XSSsLiz!dQ?}vg%BUMuR+t8&~%> z^|a59%)#&fCH$>^yN_3e8DAhHYQ-9K4dcfN7iiIcI8J^aO@aq!&zJ~v(iuB#!3d{! zlr7F1$2ig8uABDynjMp$6)sAF(7Sc6{;FVA=X93tfo=!ji^^YFHDs&}d*~XjB?OLR z03qIvrRT6qt^P=wTfppTiDy~Mv_M7Ka+(UxT9P_k9F*AD=is6VFXn!?eq8eX!#T$CR~C-t8k&eC4RD)kRU4m=fJ8ZKPeIV?coJ zw*t1(pbZ;xI9W#IQnC-h%{KBLu$a7^W)#hX(=Pf-XD9mYe+d8hkN>Ejen@sz9N}x{ z*UC+}7v>J-E+@wVKdf>AD403yrX+RyTp_4C9uYnZj!#wND0J~o#xu6|t`U^v_z;EV z*KEf3&M}Tn5C?;!4V*E3_Ra=6AyGEQdn09X)+qXe+=rZ_Ov$Srl|=Y`%f_xrspbkY zK~X7@%(X;ky!DCN1;bP(_kl{0K4``j^a!KAn6qbV5RzOQQ2mh@@1T${GmDaw5KE1K z#9~+1coLn^zR5X5S5u3)B|rWC$FJXnx1YX#`1&e`B~l^S?( zWk!SwNhqCPDJhW+ktV?4xEY$4!@Nn;CBiL`~JsTPgq!eoKT$D&kBAe7uA}LC$0`eyRm)E!U`c}kc^@A-yyeIFF z8N=Rdui+a&TtkV5hNvn{w9)O4pD-k2#eXNyb5>s>Gu27v=S#q)tU7081#7@U8kTh) znphp%9U#1N0hf~BydcEh;YMMn%!BD6zJpW(Kl+iS9V--sZKMLeLOifM;Om-@DzZ&k zi(q6z?7DsqE?=vfjT1`sSC9udZ>Wbd}0+IOJtYeNj-pho;Bkt zi%5-z2_>xIcET{RME0uW#EBL{@-CL$Ml9LD2n+}*M$UjU`EXa_Qy`AJLnqrNRpaa$ zU)7A%?fWE72u#5OMEN+JVbzMUn|(e3>HGZr?mo3Z;yRp8x_r<9g7xv+Hy`|7{;lx- z5t}%X zR-<9;8l8M035tQ|hTX74jw(M*a)qUA ztixHkjFTQEYwIp83oIr^Wm(x$zoCf&mJmp105w3$zbg^+i`y?DSWS!CsW$WYU?)+Q zu`Jt_0IWniLsccU8#;vHf!4A4YE=f61hHr-PnKjk*^hwgk7o5<jwMS?IVZ= z0B`mSh~0*FXzSR)VT($ORZ@R|62n{dLxJFO4sbUBxFkGP{o4-u&{bW-I_aWnu_k%x8%x#13OWy{@qi@i$?dB?RQStV zPAAPT7H1~OJW(OT-6^@=Oucdfgy|>rFrf24UWrlvl%Staa)kNl?d$ORYqXW5imy5F zl{jlH?xZfTcJ#G${gp`QU2wxdQs?ldv)FtKX;o~iTnmN^p1GBCQn;#Ph!h$0`ll1@ zYUweQA>e%`<3kOUnR1~ft4^>6^f<;*EkfA=N8P%RQ9Gn115}OK6)@aVQ;^oB5{clJ zY$4?bT}a6W40_Eg{hl54x1{@|rRI&_N05sob-PE2CEI0{Ur3_UrJjl3sZ#wS&eq~G z1z8GgnL(E0gtG#b&Wq}8@s>JTWmY+Z*kscZV1pHj1m21Sf6JRBXwQe^HH1nlZxKKw z*V66I9h++;0f%`RfYuztLhjn9KwUVv1l!>1dMjEnaoDqI@CQcIFF;+v3e!2Ey10*r8q9owo=%#FqC!Kw+AHpR3? zqHpZiHrgrOLnN70?Y;(Hh87B#DHyP^iz=y9W6))Q=FQdSONe*EG^x#+;+RPQ{Bu(C zTnV4aN17cPb9fr(%1M?*XgI$?yP{zSPLiYt5X+uRY}Zm{l};-W1^JFAo^Kg_D=CoX z4XLJyzm8G>(5?{ptY)s=Dn?F1s8901S;NB6JYeU}JXOBHc#p$NUKN#~LS-RH4Tt(#1u( zY!RNT8^ln%kge#lKd@7?9`NS8=l-xPh{qAQWVORj!ZpCRSzZn|?^GY|di~a*?O-80 zTn$QmOX0pTJcX7;7*YXB(juRLoV!IN%};aO&8OFwl&~Dn0?+`Iw^qUdC3WavsFWX_ zK5JJNNe(ONl>0l6vi9qVj^)656}2O_G216)`fN>nQ!ytR(@9Nj16%p#gJz?{)>9z> zCNcQ8Ovau@hq+xtkz`w|KcA0*@3ogO3%q}9)__1j5nb?)N96rYmks_<`{IvlQdJLRi~W!z9k~7CEg(=;4CfR zOIW}U>O5bJTp0+1bLxbtvVzg6(+w$kzR5U%V8eOs zqymP!&N}UIkaRTYssD(a2n=Wp$XkMwK!FaA#Eci)Bi^vMr7Ej98s5FmBD?G&ptWF! zz0Q*2!^z92OQ`l~D&IW#AXihqm?3Zpr||U_pd(<{E&Ya9I$UPX5wQV zsULLfyZXc%Vos7P)!a5c1UbcX8mi^50rWDr^2jY#&)W(~G*y-A_m}rSd;K=NX5`lY zZUA=J@o-^6pvq3TU@A-&Bhm45y8o1R7_m3-k%bZiJlN$ul+J+bhb+Y9I?z4z2s-3f zvcPNuCKVU(L^iQTZ6Z7y2pukABc6xweI)&%Ku@4%vO#Y_SeVH-K{JceNcRojOM>s+ zFb1nyZrd<;tp~a0j_51^2NKevK8yHqTS>KN^HX`>**#t=1KgqQ474naHfq6EHYNPs z?ePI$;zKG3nfr)+PIo`mX4T5Z_y>(+x)gL+))d8r=k$)`2C%q%Nn4fCL~aRpy&{Wf z<(*#I)Ahu2&CUllQV0UgT)M4 z6(871T?gCROApAHqVi^)Lq|x-s9d)E9tS*9h;`$x_ahg#W6p(ksvECLP{Cn;DT*?; zZKViwK0Snc(*-6s-&}S#U3s9+YYtmXl!jNjx=KdmoVE3&>5~vi4n6?JOyyQE2}BF8 zt?$%?EOXa0Q!(-bK-a!zqo)bpNNG~nB!GN6I5I@aD4m_euXXJzL@IfZp9Ksm_lt_> z4)(Cy9%o zUj`bDCHP_oH)&C39aM;Bhun;%Pif@jr~ThhH%brV(0=r;GbTj4M67EUpASKkDqdN? zl;dz`8#m7CwgS!c{2bcs8aHc*F5wV?r;aYP^GsAC2>Ojyp&ns<0j_xn4+SQZdxe8C zK^z*0tyPmTi^e@5q%gdsloduBr+o%9U(mFU#0Uu1m1;k|q-%CoJz*C_UxjLgu+T>; z9rjWOX#|jcBgx5j3zECv25)DpVawX${)X!83kc|p!-uMtEr3ZPW~h&bG%~u{%Oi-a z!+FE7m7sXp{WeO3L&+m={n|SiOp!EfG>l}47F$)dM;p@BRHaaE!Fsd?-J=YJrFno4 zu9UD^_DWrOACwu!r(=wxO5g6L3JC!Huk0X6SC`Tqh@miJg`tEtE3MTc4NY=eomchc zvmLLx;aXsG`5oQ`8^p^p_RJs>vl3y-Q=O;MuyQAhQz7J^qy{=_!Sp!umIy09&{j$v zgJ87Ez7&`>>q)XlLNI&)mU)|e1A!dJdF28P0Juw#!;*kbT7ws0D6=kG?80>$*C8{j<5pR8*|E<|#J)^N?(dxmIWCQloVZ1m_uxX8;p=yP4=XnvG zR#JX7z*cJ)qm^S?ZVP4`Gc|au_np>_B>nov!FLT6Lp1bE`w>%&(xoRqfBSuS{gq-h zueHG<&`p@x_s3uwacIE|?4qM{;9ZBd12%%EdF`gTon$?`U6@*M*U0Z45M#2538x-l z0+HYZYE#F4;^K_MYf>P=5SfkD%3o^^?0=QH;S}qr7hi&?24hJ8f@)0I{zoQHl#&&_ zzu>Ro`@fM7AMi=>{!XuNsT&nl$m>z+9rs6?)X%|Ir89PQ#C*S;Q0*=DcSF`7fUBs> zt(OYypG8%mE73ORnvO`MXvc?dch+rjIGW@JCS@U;s08(_qsLKqF4?b|mau@mj^1v# zy7Y zAc$a6n42(~?27QDcNLriIYI7;T_rpN2nH9)M+HxKKi1=ada_IvmdVy$tv7y~yKFAi@R&|ecxiSgV{ni`hca4jF!iTUpzi|&|-x2f6 z+5n4`gXDx)lEPq9Q91ik)|?rZCMr*~XMyf3&Rq5YfkWGfADRy@PT(giB!+B*V2`-) zrl~t9_>67Nn4Pa{n!(&dNtslH(Jpa<)}uYbyl_$SE_zk-advg!Nu5v;FyOSG(u`x% z)yV2L!o1u(9LQC=N!{J)Bq5SGW)}eXqP6_J-!UBBn1#lxL?_DB16nl_=^#5Os@^z7 z3}p$;P>Ph`HaSNfBdw_WB96sSwR z()z0gOKh99pjEpbI|gRxtI8^>&9k@QU@7ByJ_1g5^ub9YpA7g6YUlS+&m=h*d$-mJ zPxfPZ-O--)DKUYkZmQ4;G=RFn?(JIH!G#iha^VIAfpXG8+RLg zRHTNPze2acy=|o(WBq)Rc2bnPT!HO8ry9<9vQu=r{dJt-Xg$L1&?g<3k4i0!7Ro6~ zY%|WB{R2{45fv^a$qmj}#thK1PwbCxhEX7rs*hBo*WI;QB4&jM9z$J2W8JQIA2ZB4_6P zA9PGZ?z$m<6@{#6`L!F_d#o_~H0_$swfQ@DxP%zRmX-D)T*>)uTRT2V>MQUAs2JR+ z7g|pOOCS8<1ym*R3ph%ouaw&s6wD6AEL8EWs>vVu>6+niWWn?u{t0`Hu8Bdbgz zi4JB}f@Lfur7p=yte}#|?g|UfO(nE_``2vZUqi`(RP9>#^9F4{m($WYrD`@FNVgW2 zVtoe6ZcBmb+f#c;Rx?cvUO~!`8qI4MYoC+v5ps(wX zu?Iy_cKU{-^rA^7t20L z#|?xxYhIvh$AKlcU9?8YTkq$uzkK^Ty#Ms=tMC3gi>2Ahh7T^V6Gm}?p_U~fHL7BD z(w6l5OKEesr^$DOzdQh#adP4RZTyQPw z8qGi8hvCoiq<+VIc(ae8#j=rq1!&Ecx}DWQ%k9T|s?RoQow_}7y-d2cy@}FGtrheR z%-ZeewnzsRzsisBhE$Ll#ycrZtYeFeP7}I={tSmGdAZ~hX%iRI?ZJ@x5+yLGI^_Fc zN(z$&(wN4%sX-z>(7>=Xx9u0McJ2WwxXKokGH*%tDkWR2c&KGb)jmkAXKMu~5W|+Y zZ=Ud`YXUsfUud%6A-2ov3f$ ze)?e_QA&nG`q2)(8GY+Jk<)CLk8t+nJH{M#jqmJ!LZO9RRQuQob_QjpEXC1~ep{uFx&NH~n;JRB#$$yLt?)&VmO zpuhr?sW1&Y~e8iL9aS zT$7L|4M>dVX#Kw&TdH^)SAu#}ucL8(>8(DA>$J|nXn7ziklFgWb*A^m50LNW4Zbs` z`hu+H(6MZwKvC`Lr7167cK4^@Eh7-tf`^tI^2i9Ry*TV{cicC9&=MfOZwSp=+*RT8b?IXi}W**ND_^E!{kWkDYGWTQl$zfKipCfMX*e3q93C7RbF3B)XvpENW^R61@`M|D7D(ND2)& zKfC()KqAsEg{Yt3s)~sZ)Nj~WAVP>?fJ+@aX<$|dL%P2QjNaK{7iTG5q%J zGg~M3T7`y{)M-yY&w&C*Lmy6tq~wtowG(maS`--U;)q)72QgG=CD+IvB>IB_wqLHh zK`5}A826PrU(@0O1uCN&s&`vsfQ%Qe%UsH#luCl0@__k(0*@VLF;aNsFV%b~KZLG+ zM(j?Wrn`?TPY)U;e3p-qsKW)$Dep+)Yy;5;WPo!Ji8?^HQ7&2%bCrB1{^};nG~O=h zU6@xYOLT!lS0oHc9Yl$y?LZGw_Zx7qt)$T(HgFG78}R*SZ$G0t*jCa`1CEbyWwVTN z+SDT0ln&sx7+1OA2i1Ujt$AhFgbAowgSB5ViP@fPk5*1N!nZE=;qp?;B{elWGLO1~ zajYgTu0n=})@my33tHTV=6ihJMRSiY;}j{sEXNfBdvnn3&Ek zeVE|d7ua<|yGP+3upyJB7)w`$8w;nV74YCr{pIETKSDGAAKyN|yo8;M zCK~l+Xw=nn+pJ5q$eBv7KzKidCu?b4tu`2|9W%OJk|xxbK<)sZwA6>iiw@|?FIUf` z(hV+=_UyWIHXAL}&-GlMa-;-)UhyTPUQnSkqAuL$@msP$)*`zxgT|$N%HVt#V50dN|WOLBeURwsZbqz2^aMu(M>YlXnU!ix{U@> zH96oRnolgv6T7xLM>z4(zj*yR@I#hJR`hLd(vFaSvTGXk{0712MpTGa?2cK3^#k?u zZi!&aG^jTnB=@MC)$z#oVgoP_|8a{f^=-*{IS9n8gnO1Cw54F?r;P=VqF z+kXsXvQ*j)xHOv@vJD4lA+JN*EzKA)?mm94c)%9b<1v-({#j?Bl z50ZTOCTP6F$AU=!JZ`PMtBnw)KvW4NUOAeNHtY=^!y}9D>K+zD*Mm*T^GQX9Ez}T* zqWAH2c>7bnIGCLAf^_T}3zcxxGvm-dy<^NY;F|Eua0+j-sAfmCO8VGGtzP=X!}l6( z@>_xAG`s6!gwkd$34^Os%s9p3`Pv&rF)GRIqC%z?0_6xcLhd+2oWh>HtU6=3D)2Aa z$W#(IOM$^zPCO*do}=Np(=@6D1W1wfxki)_kQb%6aCJPCMDvnTo_JAM5RVwsG^|bl z0<^ce%i%1=@r$KD+i;i=6R31{dzJ%4EkOqAQif(z-`@Q4cR6fAn(y8-sx=2P!fnM zVP~{;3bjQ_oScP&TErem87Gh&ZP$>^|69h)x1V12t>5|Q%eqP4>C9^dt^^e1tX;W)HkeEd_nSxMq5EHiQ}6QX7P^DDC8hq zThbZhMAVX6*yL>1(OA!rqmNwj>T{&S3*u}$0Nii&rOKp!EJWrFJc*UQ>Vq2fOx`ht z+9{4JMa3wGUhGySF69UKAHxrS_(T2lAHt7+oMSqI%aSf=4O~%h#tXdQAFjV98Cq~! zGrIqCeVLXWWHk(zBsS2}5gG|LtF4@5osfXw#0Hb+Wme!6JfANp~vn$9Txs z^txpSrocDw0tP66prgPsa|BF%bRaD(Oq!N&3*vRI5(ox)Q~JB?`f(($Lgmx$wk3D<2TqCZe4xTS6 zp3N+Sk%B;grBy8M$|>t`tT0`Tc>5=`10|}+hS*IDbAdT`SF5SVVVP4Is=Sv6+Pl>L z+++ss;#WVQ9cI$capuemgS1FYPm5h;@k@*4$XOOt>~zA=ao1Sw0rkzR3#Z=G0`G5J z?m#C%h~9a(cHL2SsK%zH6uo4qiU`eLrY7{%Um1I6V4^YTmHU(YrG_VV*toZvh(pa{ z1qiaxz=DE-wy_Ona4gyiQuDF`ZDVq5QNk3B#F=d6dr?gVqV;p5M1>|I&o_wV)zu-} z2X~5XqJBXM(0Z9V%=g_Ox?iPGf*3Qf*Q{JR-6axKMtdVq68?xLNFBOYy=@rir9wE- z39l0YJSwfU(*@#7mnJ-|t?>F=KVr_Zx&t(9XE!_Ux2MpuBLtUXc-l7p1aIo1V@k*9 zy5caqNdna;cavzj$~catRo7JqqlCS|9^8$NB}lYt3$q+Ri~@QnYGnO5wXA>f`kVY~ zFuwa8c~{A&hmGln&^Dtiq4DCP4LiOtOfIjaPr?RA4sYV&!s52VAd9eePcI?f*gI%| zHBR1y-xTgrqN#+s`=ZRK0y5{Y{v!7k1$sH}%+-JO-+58rO0oE7`S_W#>SK=dBc)Jg zofnL9X2K4@^i<@3!8Y7&^u}Vlp**pC4w)=Hr$DG=T{4o5i~g-2&842mm-y^JfH(}g zs98~Bu$9I8CY52ZgCq2v?6U|u5W=7itS!^2H9gIr;jcwQxc8q!vEYyP`Sn-f^>b|% zfV}r1kt&bWAX{TOTdmE$(qcQ{Pk9xWnuuCxF9IbfAKD*1H7KFyW2gOX_Dman@CQNM zs_G1wog9dc@4P|Z;C@1b-~Mv!Z^sO0=qi-0Lq7&J2&~9;||2YTJxey7MF_> zyt9u)-uK?rR~nX-1(L`O%G9+itX2Yr&fX*d0XBqAmO6qt&j*O;D?;mbeyt{Mx?Lr2 zRjZgHwk__4oHf!aMXgH@1tOLZZ^E2F`z0BC7O0^jp`K9k*Ip@H@ft6=yEVaL! z|0J{9noEwX=x2CPSvE*1P=gX=lsj8i6Bs;6_V0Rd(j+QwFiT?un|L0}vtTRK6y+{W zasqzr29IKRVYa`;#)4cM%pOmY9K~`zg7}Kh3q_^>M`7L%W4zLr5|> z4=3-EKGP`yL8v+Q0w5_b+5o|ZW;~I}=djaAt!xqBphlbyyHPbTkR4aZTY6S0>CQ=_ zlCWk&r~G9Z998>48!+odmyVBrXaHBUUyW%NMeFJ$;I+g8bR1vo?@*CifL$Dn-H+>8 zUinFJ4@?ERZd4x+)ceB$>;*DzB2*@BYlbX*peOokgEIdyeE&D{_4k||-ZK`;%MrL| z&Hw_dLJEcyl22_0x07UFa)l05wVC$6PbbdvSssz$7%+JDt;(F$k`XVbjB7n~YO9*> zNGWQWBfzc>6w<3KkpEE@wEW6m%;1d$i4r$xP;q%;7*n~*4^|};b`&$@NR~H9@V;0w zFilcxcU=j8u_xQ3=qf zz4;Y_BQcv2r_n6P3E;a;&UIVl@{)362}N8YX9X2E4K2|lxuV^^I8f&b(55#Q>*o@1 zdG8a{m}sbjEmeDf^Er&@ixD~!o1N=$?j-CLQ@1O5Jf6oZV}Q%#q%rkGT4uf`I@lLL z;Ya~S43l~&=8u@qC!QZ)hPN*-pbxVLAOT6Xo*eUcib=M!l)Zx;9?R7p3GAzrx*;6W zU$DtMdflMQe~-`cq5ijOy}I!EteRR^6(S(#8gyJ6LLfg|T(wLmDz)4eOw{ZdO1_of z?6w^2p#8{)u19l!86r-+N#f@(0s|;Kt8%IVz)L?x5@`nv6wzmt{{>Sic}nX^%`Fim z(O?cluqlS}M8LAC3;H{af`;m8{F7Fze!H6luN;snWas zr2nJpdb7*w)kAZa>dYWnCAHTSlAL^)I^IlM>Ua!thMHU&9Gz6aBZD0$&p8%3&~yL{ znV@<`4RrVf>t72`V}2*HqHN|t(i4Qm@5Eqr_`4bz@3Q7QU<66PPElB81~=NndRpAyzS>MiKJeG$Po=v2y@g$gy4K(h6^l3M zrFqv37B1|(-yH5z$?1DfPi)bYJHS2FfwI@=BX6*YJt3%ts%*9CF+h0|-T6G7jMFbN(9m z!Qx0$7>;_M%#16!x1eko+#2D5%Z6D+{s>8ql})oA{=R@TB&%4iW?_R%wSzfEmB=0L zbX!icfi|}HpT_$LofC?S_mZJ3Sz3EHWt+J`*=p%*ghS8y;QH$IpL56KmzS+qt5Irj zgZ<|D@goEE?T9;RK7n1wCfR~9Pz^wa1=^%zXDzJx=H@vIAwfw$3%VGyx`RDmg$rQ8 zUG|ay-Qp~(JhJ80j_@V(yMZ%mz7W;wUHv#i_4!2Q-oZO{GrZ%lhpfjWE6Hdr5>CLw zWjkFd3Xr|K8iW(=bMPT=Bc!>P8+++5kUcy|zb&8>Q{>nO|3;70 znS>(S27pU4nOm+3*)@eLIfF@%suBQUl5A9xEX(4rPFfu0>YiQ0nq+x1FPAEGRS)=u zbQB4S)=ibA@XhO2)SuJk5BFg^i$(~XxeThxBfzI{EFBW?1cE%~*iHkxN=|Kf8ITs! zuu**bG%?p!rd=KOvHEJ!6Kj!_>=`PjlG0o8=OaQ{mKNA$xkAg0NIPAaO`6$2g607~ zx)TFt`15Gce&_{||JARDc5z==4hH9<^kN4(dJ0Jm+13^+6#1Y!8^XlGRI&DiN_ zFxX77M-FOBwg^x8?vX!0F0CimPJPAlXV^tb-Ex|RBA;B*PP60@XU)8$dU0mH!ZbQ< z3;WO;8vn9~)NG2vtetk!+$DgbcZpQ8RvpxEQgL_)_b`wXEN%lxaF8lw<(=&bRM%^i z!*vh)ZewVqf7wICt~4khY2mY#B#w|l$ygW4odg0rp+V`uSh)o@OzBK6f}uMzA!I8c*cAQk#TDzFNJ8dfl> zS7`psVExV&*@jT8S;7FOBGrC^nI$6hla5UdT_sEANfOI+4M$5_c5(b(<6jxds_2v3 zl9I9pV_OG(JTwRmnsh81Nhs((eWsz7@ zGE`w!#xO2FfZP8`c4aS{8row-r!{f*C~)0WSoJ6^NapKDN9LkXQ5p z#!Qj7`mRvPVi=#ZiVW9@vCQgJ0_J{WCzu4V;t=4J6%U4#?5|WgT5Hi>Re3v@P!jjT zO3oTizBx~`r%AV+GMXf^9lA=rJaBb@S=fVC&aa7JVk|4G`r7k^V=EE~<%16rUMvU5 zYYr}00X+mml*+Oi0G+ANxpVaM8)(ko=5nZne9s|DxNLYQ2kropA>#lw{MDTZp*$I# zF#%1nJGFrN0|nHh;T+|kw}kviUe4ZFpSp*9n;WdH%PzZU=K$3OI|-fw(O8&x^;F|( zD2xSVz|)ZO>S(=9*=Prn1g&lim+6y+rn)t6CHaK&Ldh;0STHm-2vCn3=Y70tXC*=T zY^`r$V3Qu()1`P-VJ7me0)`ACwmsAldaCPzycz1c>gq#02$nG2htmZ`?h>DP<%pym zRp7}YGx!5DL73P8n5?MZi+0dWmNyoaDt=kc@B*D7DxpL2mb&mtP4wZ831VQeZV<1w znN{qvAS`hVFjIlrn8#Cj^ppne>w{u=RYH?dN=6-C$N_zgANqM$H5^xlJJ5IRj7f?N znPB;Qs2208Pcy6-DPJ35OOOUb*JrjASYuxE>u8HB_ zf6h@kD$D;vQMs~Cjy}dnd)&Z%ra#yqXN**6KE{P!U%pCJD9uYL0pxSJCW(68hh~>a zq8v}1*-|xf%TyU1ijz3N-V+Sr9Vw5kg;IzX;7_BpO2S{^~mwS=~-0EzAIk0M2 zM<-dWwR3)FSWj|uWy0h^+~7IfZF&sYp19q@e9ywlpiDLMc7zBj7|3n`=RE=z$c!Cs z;otoYnQl=8^s!9kIv&|0+3Z#lpW z%y?xv;)Ek`>;VxWUR=GT#>ODp0V+SwB3y5aNPpMr0TnD zx|5bK{4C{fmjwnkQjXeAm)pD}-O)OLhkTw&*)3s!L9`sYuw8QOjY~mvI;!;o3TTV* zMd2dk)I5&VU%`NecDXtaqmt;*VmM)dF8QG~kuGM1_T67!?&DfRGV4x&Q?Fer!=olS z6CB|*LyGDisX8^oEY8o?49n-_UO_~O3QhMKMm!1%&A*cgA4p&t^%ggNzno@=`X!qW z7>yFkyxBA!P_Fag8G(?zZk@M0BP)l07k==AAKH7ta_%l`Z%kZCN+9Ey<-$}K$Lf?@ z;9(=%?GTNZ1e6aM$)|k+oWhTYC2D_Psf7O6}6k-h&+U2kQ- zU)6>hgSJy?)5wp18V5-+idiSkb{VinOpg5PHusiYvxNnTmV;W1so6Vlrgfw5DKDN{ zs@sxI2}SO8T%wt>nQ>XZ+Ur%RdPEAyCh3B@588#I#EyM=_PbVr>-gZbXu!nQ0w8v& zonpg&qy__|U}11_bPmxI=%~y;tV(wr4}h+`u_e8bPOGR;hx*Z_eCFBlt)q(@3 zg(PCd0Fj%wuoSEC7G)hCHmvHuR1fUFeMKzc*B(Cr*Uz+m5CG;=%_Hxx1$N9uv!AJW zs*?DOe7&rC14wFFF9EyJlG`%kQr^X8O&v+}tY`lrCG?-)zShDsy#ITfZ2edC3IAX| z^gAppca=r69BM5g234{9q?$JV;GqBn01xZr9t5pa0t{89%wk*XJZ&{t{gW;`smzYF z1O_@h5p&$zW@lxqJ9}Pu@+io*?nC>|&iD>gwK-0!3zOAwQR5+`t;3+SXd;6TOf{x3 zv9~tS5T;6>Aw**>fT^84C&wyVw=HTIn%7I+O_*ooEyc0>oz-c*E_*O7jC#V9jB02V zZhp@k?GtbJi}3bydkc`ngIf1!3?!xC*6U@WECSGEwo4>B(H0~QKGEv41bMy@2}_lU zEs*Sajqvoy7Y9}cp-S~h)C%zJ!DU%W)C4ylLgum`14es~YM@GOF=QHtPOI`X))CUm zBtwP;N1>b<8$P3wIuOtk@(=T@36PkQ@52?*qy4a>ldEJf>O9=SeZQogmVscn6fF0< zO=U(FnFX`O(|Igts$nQWj^sRn&tDPs8PL zR{KGnhT#)t3yOHm(8aQqjdnV()JTZw9^_KOp&f)-FrDlxc@_s;a_rUpBXJhZ4gkbI zq`JWAI>p02eZ5On_e_0<$g^3l1rF*qaolFjcOw&OIfDJ?gN_xAMf)O&G+O}BcAx8T zX2`72BA1nO(bX|~buQtjUrq{D;Do0|mNE8OrPMG_hY&M|5>*_7J{Z;6AC7R$cN=cj zi=6DuZboWJYA$2xz}ogm5ir}R#`&Vi7m&1+)9CQkWFs)hR&oTH>WyM7lE>UIYOWCt z@3vqe9ft(Mlh)NT97#7y70+D!4--8Q8kO;6#)_IRdb6hlh1SwlV4vm)sye|94~!ew zK7@!0^ztdPBP*&8w~<>?mYtm$k^r|CGy|D3Pw7RG^!X;BC$n`5Dml+@p5n`k@*dKi zx|47hu&xe@40i-r6lt9!6(t#|9RL1v5Y26({_)#q;q|8qBXO}uI#H4&o9>plOEh>P zTpA1K;oGxSy;l=MniW1uZ(t-f3xsi9GPD9+aUOV-)(kPS)S1%2(u3AVXf|**lPUF! zosExOevriX)!mrT4wps9mIg2o3XTDOYh>H14oqW0+Oxelq5x}Xu*&63q0!njOjVdl zt3@TLR_DCqt;id)VBKffnZ(9vRKc10DsQDXMsEuxRrgkCfSYl3eMC0ryj~#>;RYLW zw8PzqYqK9S7~t68C14Of@+{Rx)dlb8b^M?asHT3W{OecYm7sG>DdJ!#X^`941Gu@X3!WY0-#v5CsS;6Q7M%!$r1uhWNv}HKQXjn9fM&PVSh!CO*bn%g>h2S zfY6WX1iTWQj?t{FrpHJ#XfocksIiTCgNG_e|M}f-I;XJyt(;2oKMUUEX~}~{B?&+y zAFi?0-DfQho4g}U8uIUy>Wtx>?v)Mo8Gmh|>Vca7@DMND-wa6KK03x;{(v>@E^BCm zNv#E|UHSSjJ&^S9uu6nCiy{HR$sUR@93xC%DZv7`#qEk#z`*CT#6gz+icVrRGQu_> zkXUiOVPhl?1&`hvGTxSEOc0?10QtyKUwVcw7`R{%7-QUP>=zqic zi~Ohm`1VOwB-xy+pNEP7T}n;_1wSt^#%WC_1}Fd%o}S&*)bU9te!Jg5qa!j`uv5bV z#X8oEdBu}eM%sC%d#<{-IPWuqLGq5psMXUQ`AZN60@~S*qEu|>rY4Hd8`2+qP`qGU z-_dUvZX8sjXsbL=B#v;BwQoo%K)`oQE)=%m{9Jk-VoWG$o7!;_K(Ut{hGeIB39FVS zX>wOr+Vr?btEM3b@1`Z*IkQbSBS=V!SVO-ZMmO@HA!)XF&?E#}VuW=$aaf$>A7K;A zA?4N-dxqkc)Y{tvE*~JL)y`Xqr8ba+s43l^ubo8PCng1`Qko;))C5WwTZu^ppH873 zwf0z0<8(aeDym%NS_`bU1VR6U%y770az!4ctsK^>or+jIr`1fl)_Gf)*U9tPY+|e3 z%(SN5jlkI74laep3@XNfA9%>8j9USHm^7ReIwT>~VJl0Ywl0od1ePvmb2}WxSz(uP za+{(?BJF7^SES0p*HmZlwm=R^poiy`0Ho4=OqFAARO`Yrlx5tJ68S)KroNgQoVgkp zB%ZNl`aJq;qfcm|O3pSiZcu9CUD9q_g+)}yoz>qd5}oRzGimoWjFK@S=N>z4o7E=? zeRv?nrS=XGGH4Vzk$X0b*b&dBRhI8!k?fiGkO}u}yu4V!KOtG$S z7^^^{(3?DPl0s-bkht0N%k}_J?Qof8KGn(rxmogsV|<9!1)%Ju#zHTsG%EfT(l_G3)nlpM1ciXff`?Ih1H#<+Ox*bmrtbqFp^Dms1OFwFxE^ z)R<}}1-by_w=CfR0y)7Ri>k9g2dO_X(fNR}>27Fh$-WD~C)C#lh$TX$p0=iOE`T0$ zs8!S8IU7ze6ZKH18H*Bl9~@Yr)Zb~j8@1)mzHyQBOROqqA*_$I8dSkeYVmauXCwYh z>OG4az8^rHMb6&Q05(XXZ}sI+XqUG+K)9God7~tm_2oXM=ggPK?|vO#zr3tl4MB4l zgV4Gj){@pfIINX)5M?*eNgBYY0C1=z0?@3(7}nMn<2;NUVYg?=+otR$39vPtzD#tD zTx96tNxi*zV-D-ij!`H)59>L7grd^MJw(p>$0k*Ruj*%j z9Fo_4nuJlQ(viUCa*K6qhd1n1^4-;e&TpK^ET*X#yTh?>TJVk!9Z2L4_9x(d93nD3 z9eqHi^hUKZLG1p}aJ$I{z8NAcTd<*Mv7-Sw!Ww4_vTD*5uVvuL9E(=9qHl8TijY~R zk>hrsrn1kf-0$jCf=|9%C#WFhPpWckPkfLw%NQRRNkaA=4OdBr4(-0pJ&M%K^K$E= zx7eRH_z+){htyV1G<*Ym@RR6ehol{ z15F=+%}gHehMF<}=@>r)lD8_T)xsS*hO>7^|Ml(n2f^IGIDfX-SKey4)-I%DK5^aR zrSvqk%)cYgU8*`%5KoT#(Pj^I?Nxx=Lxw6x^1uP!wZ2RQ<-p-d8FHnY&9CULB~thR zfFDp^(AQVeRg*-PAOJg&3NkH86YT_GEosT{ewWj;ww~aB2>&s^D_JzO_nO&A&Cs3un;WAF=zrzLi&1>f5Lv-f00QGaXUZf;nfFTgJiIUBC z(OSEGEGA3bj!l@%BdTY|!!`vv^0M4o7dDV*X-2F)L{pOv{SU7~S3=F6Qhi*#S6;-M zyta`_#Q;e$3((4r3-}M{OWLd!xP4i6`yP_nJZ$Wq%{4kA?xrvU24N|W)HpkAW-9W= zkO!-3a9(1Y7Q`)hBe|7b4<6rIcqUk{TOP$#;tQP%p>GSczi-49vk)^ngNi^ThBqHF zISdV0&qw5aaSSpbL=^F_Z=OXy$!3tK0jWwqM;kq!K?(zTk)We;E46__oW%w#QSFOt za&>_$HK6JPK-#<$E&kT ze-!@Hf67|}@Me=5U=Ms7Dnfsm{pT433X1zh;ocvhVSBZmg{3W`IBUv-M2d;6RFyLe zr>tCnj(N4qaxttN)Kyo@?Bs7o@S(W>dz|nEyK_?15TVtgUx|LeXkW^%CO@lgZZpc^%pNQl8IB4$rYx|bSOc5I#f_|JkVQ|#zAj@tz;%MOA#8PrXwIa5erA(38E z&osJqPf&15z|67+vXR=L?mZL-Dz??s)`kdO=m%8@ z1FV;_15m>uLQ99}Z1NxnrAO7{1~->uE1M9==Trnab9w>%fyu(xAN1=n;{V3Z9q6B& z96=$LWzCVcjwq*iKCgKv}l*(|QzKgX9l6wHuzo^pKq(tCHk~+8qhd zy`g~#{EonS7@}!(NdkNi%m^B2*+)rUlw7R#8=$dAsE)FQAsbS~{ZHvIfDiH6pTg_U z!s}<3=Vz03KxaY%JKR@%Xt+%A5b0W!3C_K2Xn!P4(3YoMkG#_D5Rx3&y+}x>zy!l1 zb32hXEKlI*=uxR4Dyiogy_Zbvw!8=WLu-OTFWWLG8f_6ki~XV`SzkD&$jGL*+~_08 zCVRMa%zSo9krfX^vjNm*2yO2}*{TyXm-dPtBG>i}J5&!E2eR~vr@(1NO$VJpJD03n z5-Uj+x;#>MaMkGI`fgJK^fDgcVMWO~ZS4RdjK;yYhc()?LcZQ&6qwxhXkR?d+EH=RlC$n$Z-yC> za%%Hq-)6TR1h6C8KUB4#&e2xGU_GW@5l0-PB$aBJqibs(N&; zVfVQ($0`R)ZIEW&)RVHsDR+pe?lqP5;G7NY?sT+N1`yYPb^rq$DtLCZ0Tyq=;oOtT z4^v`80A!J7--z6 zy4Iytz00c;G9Z}iwU?x!i}uwe7I^2vNsy3HYHIkO<(pGUO^X0tK%u`XFZi*ShuLx5 zVa6dDTDwVA#bangVbJm94KL`mz8H=Hv(dQtQ1>2nw2M{Wc;9%FcQ;LrizD3L)}(3L znzZ}-e|Y^=4$ANT7FiJ(zL7-MH6cXOq;=Iqw!sL%{S8uhe!eW=UgqE?(URip^3ZlQ z^l?A~MjvBG`>fR1!G?P~peOi3vbqkg>pW7cR96xU97WfFun72%tU(xH=O->pMgA{a zuq0k|)h2TO42j_-v55rV#!J*q`FD~S z|9KYse#lEPu7jKwvKrU=IdHtU9@5kxUSXJ|L~}ODr5seZi&53jZFNlzmY$RcNV;0< ztc`%LuqGNER|%pCRF0a;>cbmQc7aNhEl_8&6YO!-8H8%j4w`m`6bS4nG({h-&cB+X zREq#KLkO~zhz8l`aX$KqP!%2y*&Wpg8xmxN=CME~qzt}Zv-d&$HKrCz8^jIVGC*pM z9hRVO3H&V%H@Gm9Bi1qXy+TB^q6l?b(EeWl-=jbmn9iG$7`f>stYa|FomY(=v%iQ2 zvQ;AQKY_;f7Z-K=dHbbWejL;PxTqrAfaMFVXw@3NV7Qw~1T2gA3p8T-)ioIE0l0F^ zJ0rbIDoqC+n2kDIwS^2d0;34yQZGvm{;sDDr5pGfYX6I>&OLfNBtF6*8?D63n%+^3 z%<#t1Ae0>cp)xks5?w-t`)fRci;CqlatK^wW;kx&l;M?ufwxIfSL&X!9y;oh4&E<6nND zhW9Pi@T{8t^!0b)^>=nJa7c%ifnvT^M+}WH^GH@RwE%iqzq%aP%x>oSvxL$9$2ihb zm#t$kLZp*8KHw;L;qixYXycv;5;M2z;H%a{BPmy74g8`Ah2*ku7a@t{$3OmY__G}K z{>Sj6(@FmNW%!@+mw)s6hw$SZ7qh$?MF@Hq5*(}Q0POW@n#dt;IDBSXS?xG6IXS#) z{&>0Ct2`@tTdAjPTC)Gt#RqM46}Um`O(j4)zN2E21Nhq6%pKpxM;!n1`g5=N^1Yy6 zjBqxp!@|H)3pnw`Gmo3YW+g^lZr<*YADR`#?8_&6oULZBr2L`vSvc178v4nsKDa<@ z9Ipp)sazTW_U^UQlT^zNG#=AuN6>0)Ft2W4j>ic`Zd*E6iI`Q`$RPPD{>J7gd_f^B ze^K8l_^MgHQ^Ovt?6#bG?|Udq6Ww_@;1<$eUjB|Vdeo8$QLh0LZb(*I*dL3hj8Y~r zco^@l0yqHRoC!d|3(X!P*EB=~pmh(uDU+(dX|ki`diX$HwKZ>fdG(<#U4@~Cyy}@a zyDB_^!8fxJj^0el0A14MM-ahsKjbdS@XS1CL};Gdnj4^2g+fQTOH!d9wOUUXSm}-E z&tlQP0IN)asJZ21t37&b{N)E z$Waa!Bak%_ zf6ZUR_kV-G=D+>PcYi}?1)zfnyMx+zds&9$?Oxb2;ZVWuyv`${k*jvPnA05D^*~6E ze(+>jz)`Zmp0X11#yLSN(NSc_PaERo46Q2R$4mtELyiPL%w5s1P6x!>AH#V@e*DRA zcq+dC=)1oPufNKl|MvA$8+bi{p|W?27HYE6TgA+VLmg(tJydLzX}7^L2b_P+xI!?d zfCC~y5a??#rd#UKANYw$3ToAVh&gbRHSWflg>7g7pB-N={Bj1KN-aYWD|O7`7?D2p{gwtnu*n zsT^{{41A=IFwj%9V@Oi_iZ4bA2vnjRio;T#By{vJCDzJutRN#}tDq;%9HNry9*jTl zP&Hev(xulciBn}(smv8>c>BV1Pkwt@o~Ztz{Dv9enWTIw=L01*NJjBa_?U#P_Ri2R#{jRVgCBys1r(8L)Nl8#bYT*oVY18$>`X8e@M#{yRJEQoX;+ zZLg8%3--UQMg=F?XPEZLWg_2KHS*CT02?Ejw}g{qmv?-~FUZSrSE`Oi9f}ezlSBGd znLvuB22KHNfa!@SB~za&ng_=1SvJAbW^Ih?$V9N3y{ar%V(#-4(eA*!Cl@%csvSCg zSN}Pj&Cc`s`{~UrJwNoDiKGmknoS@ie zg40sTmEd%-%)5>qOe<};S$Dwb&9LF#To|R$_ESe_TmzCctFIz%Jto8}wOb_4_Bm{* zB<$oB&NV9E9+u%f5>2;5q_lmN;f*Vn2k^wTHz6DvUr5nTp(hx)+F=RFYK-3C&!I3n z!=%>gqijI9Srt%fDVK?&bDS-_r()?iEvdH&$LL`0$c(j@TokPg3@(=&i-Ct6pa#$E z;HP6N1GL;jGpx#x_Yx{t4k3=27{-=5$nMH2IY=c^<~)W2Z3&ElD`a{?fI;j{iW$k$ zjmv_uQhc&yvm1h8-XR+|E?#s4&rBL%QeRf*XWRgbbp7Dof=!l#qf4_K*f1iI*9J|= z!aFvY9nsPaE^1o0MTBJLknts)sTm>OU|5#-0A%npWNn)!U?oZlG@-Slo&fYNL9WWh z0Pr9?1-)jwJn5f94KXSS)h)fw+Yx+;pqguTm_)$v939-FyC{F-37%Qa$y638v6cXzk}6SPw-dk!4J7I8ZWg(u@Q zUO6g$#CGCuA=5D^Gh$r52!_<5r>)xFmRvyY$U$tNkpsb5smuu>(l`VL5iUYS`6ScQ%n!|I99V4I}%`WGV&>_G<81@Hkk6g&R(lM|Y`Or~X$u zT<#8~;SGU_=x_PaH3yZl^a~Ea8jj#$?zx#;Se&Rq9*+j8iopCt7A4YfE--l>5V*4N zDJglcNJu;lpldof9jG9)izZ1%mSt#NuzS?O9#eNoehL`I4ktM#wP_*~H4}D@sa@e+ z#9w^(w{Ks)|Am~2zkC1b>&I{3y#E+9raWZY;Vw5^p7Fe_2(2?av+Z=W>t1LGp=i5v z>NKlUGwA6`)2tac;J4~RHam60y3Hl)yL8vQGT&z6xc~4_?m-Z94e4<|57;Gv%=@r$ znKNiX(N+M%JYcO0m5;DJh(R68u|`>k+W8!Z%LZixMN!Z6a-%!I)YWo?H!2v|!Qcnv zIhQs7s_c@GhC|GHIpIM|MCgVeTOTs0Xn&O@qU?tixpf06DAcLMTj2-gH<#1uUwr6I zbo!0U%i%Y%*9({89pcGYt#emV6z$=u}=bq#+V&r1HI9yJK6CUOdEQJ2RMD*{%>!)^e=u!*_>u}4!l9RwTS#X!f`x_RDhx@t;E$pjY5eeUO)@IibpHoyRpf(q5fheH+6o zyRV<+Ny@)>6Sh}k z&~^`EoRqR5_ffuKZ~Gka1lcjD)>0}PU|7y@XI6uTt|B28PV9OY@P(7n(NGBa*c&!f zmO5%xQ^1hNvDE0VLGsDkwrI?_@i3qZvZ1;lJ4Gcu;qxAo6@ z3G^5=#Ot=*@5yWV50Hn(NJa9BH$xBeZqAVB)*F;{EUW zM!rX;`^I2VDogPCuNDhCw=zciwQ2HShQItvZWT4+o%vOu#+eFDqQigSEV97t zBkq6#DAemv^OtR28PyF{;W!^dPL#(d_K%e{r z-^!=4a5l&@Dz$3Kad!fO+}s)*3z^xWmNRdqr-s1F2jSf#Dy2i-YtfmXY1p*SkRpI;i+!CWyFHNE{npD5NWB&%veIl6qlht& zK8h-U7dpfqR>p^G9ZL0HhoGb64OVQ0y4ek$9A5u$dH>n#muO3T{`R>w*2STMQ4A|J$-CT9!*O((a*ktCQ4fD^;Izl8ZtMJl7B$BCJQrw#1eSurQl}zSsb9 zWj-c3o6ste?@7$V5ZxeGrDkm)0|N?u;+LBoN0R4_yMDrlgWUywFsNy?R&EZ|2c{fm z8B-mce-+}D1Uk1`ImwQ@=P0U5_)L~44iHu=SP?IbG*EHhgTy6Uk&JIyAt?8_vO2A!UGkbc zJ3HcpveM{9iF-%?7sGVh>~cYhBd!7V@rl$Tl@4Qwl5G`?0Jh0fS}*Mik&$X#$$114 zZ>PDArV)1bN**5kv4&!o-MLF$Ss6JZ4k|zGqJn4!*iKcy^Y8v9uY}Q8%bI6O5MEjE zKRbOfh<6xzIir;do+JZe#s1A$m|TbZsU(g9AmC~)D@=43B;NM(Wm*K65@S$QPc$hATMU4HiZo68G_ERPyAS^(JLgQX6hUP-w@6eoV*iZ0{zlIbC# zqXPld#wIia#*=_Fyw%qiXCKSIZESu&wjgZf2m;&flOEJf*(VY#vsM-WP{f*akehP8 zxd{moTmj@8UuX}-0QZcQ$GrK%M_Eh5Ur1cv$V9hA422fIdT>b<;vFr_pg!qBi30 zi(w-rJPo-G262QOW5L9hCkYKA*D%r{Tz*tP4{u+C#T{a_bo#!yoYN#rhxr+*adK86 zzV`$nnj}fDLNP@W6Mi-DMYMhGsx=NlQIqnCwWH``c zhId?cG}qWFMEwC)@nwdW2>zqsP9M6#s+)dT65tMj>Kd{DOMDS*#gO>q#7S0lV= z5SS02W0rI}51ycJR>6latS*iO=G~;3q1Pof*us(*bF5s!oFocmemM_K6 zUOx%h>1JE0{J2bDLpiJsjz|o{8NOscaAYe18Y}T~ThV10tcJdga`sc%t7Io!nIJTl zdzSxK#NR+j?*jFW{?zZNx7_*9UqnJ=fK|RZRCkC)I?7{6%t+wA{Ka2{zxa#1w!We3 z;2q3!U#Z&!52e*ukdOJ)m;l?{-sqs@Wj$*amAUn;J~^mNg=DR{ALW!&9~u4fi2_Lq zAQ^Eek^&tE1%yW1XxVqwSM0sk#MzPkm^E6v??FX+m5}DUd?0*bLh^sqN!~4!kqXaRJE9sogq00-W0-$Nj5vY>jP;*#kOCkV4b`OV`%?gh3J8my}`3x!wOoF~v!1hj61izK@?>eXZc!V!y zI`)^cJOul3D&oi+7tA<-^L-*K4vKA%HJhnuyB}Ta2lNO4uaxAnbP!~gXy(wat`MZO zn`!T-f$oBBDA_jN;YTwuRZwt9b^cD*s3hzhcHpM5&<+jOC8|%E9|!cHk}Q(oNq4Om zNBJ?Z1heft5jk_1Mj}eoK#g4`$VR)6&Mh5|xf+TlPI0dB03p=!B#lJ6fm&-b^t1pt zKBZ^2006_UX-ygF%4L7pNhwZgT=0+#Ge&l7!QnqO-f>+M z>Iu<~gM9iTr(%<9i2^VN3;3#RZjDV$vO9v-gB$VHl`7_&bWPMr=V7^}sRjhFE=v&> z46wrFrp#{MS9j{>B(=WmxJ&AlhFoV;>#|FhPAIi$))oi%cO@}m z>uo-)Vp3p1+GB_6H5t%@cKf@q7K*dnklbz-_;G=1xw9+V$=A>xa8LOTg=E&4HO-rW)#X6Q zu9lK$eG%UNbb>j{@nbUE8KgLh0(^L#yh|Mbo=LWL2z{iXqxW=U2Z#6^!Q4I3swXYt7uRH z=!mGb&Fy4ie!$5%MqJ4G28gr8dO?iDF56HwGPUeMoy)c2+qZ!qa%%9#fG%N#y(L+= z64SSn@q^lTpf^(n2tGNB6#aJh_<>n-s!Wt~8jl~6Y(;zy2L94q^#z4n$31|+=D7Knn#EQ2Xy`U_>Aw8YoESCeH7eA#n>trvl zb$N;RWC$>$Gk<)9*^gfTXfyWzfv05WmfMix3#E1u7NF==*@mawQmgQlkJ(UDK>Qgf z17n$J18!t-s+xJoiMg9Wps6y3G5JllXO}DK&;?Kbil2Xxy`!Kcc z`MnRn2S92P!8Gy(`mj7A3Uz~*BWO*FqxB!kNu#>Ny2Hgae^lWN@2tprRNzk{djgRK z6Ki=l_Lrs=^m6STyDsIT6En${c&meRn{_&7B%FLgHV=(l-Ok)Ii*2vo!3f(-X-!Nt z2h5o6a$hem)@s}ovd1lv9n-+-Qp2GrG>qAAD1+p0@?B;1Nd~Lt-+9H!X~jGc61JU(Ea*cF?14g7 zX3cn1*>~*v$?rnO(^G;PrPiZPv<{rd8^AR-Le0WR*Ukm@5+qgq5Q1cqqi<9)xpZ|b z*v1n`2k$Sg#uDHMIfrZdxGMZ&Wx}Rj8H!5vw-{ZTtx;qz#twrd=FkoG$kM6FCOgY7 zvfAPiN4}+4^ z0!|pN!g_kc+eOk2%n7>W^DpeRbvFqGIT%lv=1-8K?jtJcj&4$*kvpmmg0PUO1w+#6 zUl_|^t3R3Bt`f8cN{qtyzPiAzcfoiVh2c&~q+f?W&p%mGppVoIRW-PB0D`0IK{LlR`zwOxtvs;L9nyH@8_@$t#`BD3|e^YI={HhU$yrfet$o*EcF9 zpJHl}U<9bw{>Sk8OP-7Wf@N$;iiFcR5nG~qY0s%Yl`Rn4O^`?O_AZ4S-oBFkkV3LC zL6?r>%BSiOdLt;Vb@lqC9FOt;=p5+*45KRJpn=0Syg?_~Wv&kE?kd%A?}rmKgAQXq zY_Cf-D=)D^_4iblhUEjlygr(*&`jt&evT{bSAYKYhxebp{mXZM9o~QZ`tj?Zlx_Vb z{`>mN_dk36_Vru+{PXvpzW)C0zv-WT0WS92=lJ~HU+eFDayrcKBj*xQdN{cZu#dPN zqMCzyTtd`|v13;A+#EZUhM}#N?P#$cF`0vKe)Lm9y&I8?qL84P%#}-w{qT$02J=IXg@a{MPv3Dnm95 zyR528ZG!D=xPe+~dsQK|wzO1JK-+aW%1eU2TYnv_cfu&RZ!p+lQ|p0D&g!U#+X&@1 z(xkb=DvMqvplonOZ71%@Zh^>IENgFQ;N0L)c94gapg?AA+Fq4UB9#;YV%(T8ZnJB( zJS!U($(Ott2%z00S6XliaKHc(Fm%DGPg*Y^il{8?3wHsIKM3YRg6?fG*Xz;fRTwZO_FbJk$4a}GgK@12u#!?zIURpS$pERI zq@=C)+QVe-=-D(ll9B|pm)BQvq7|q9Q&qEtedw%@ySIActT3&7E&mRg=+CGt2#}kk zs3+s7R_UenWdohpOK9_6w(3M>VEa1z_n-!FHS8N;OV)Jhnqm#_$W8{065{8qd=oql z$kgPcl$UA1oEj;rnu5LmrJRr-h4-I-_gAl<8;_cj8Zh0P#z|_;hT8stYH(0|9cc9c z#$_d4q2K+8)X7Gh}UYGHzK9aJS4z0F_N{{gs zuMjSSb*v64INVjN(QuhM=1*)}wWW@L309j) zH%U6G#3yQO%AQn#o}MS&ZR?M&)D5UlTa5{d+3v9oBLvePgTsM5Fp1?Il@(=`=Mj31 zJ$noua7Md2JeuX$fR)b@tJ8YR$oW!jJ&diQ<2@$evW%h62eJO8)~4<~NuGLjorDfh z+BBO)?-a_znY>VO!gM)Jkt);q$Ohlku9!v+h?U6KLU!b+x?ndCYvy2LA%!dp^}2S8 zI^d%)T<;bVSg`-|#|4r8h)0+x?w6Rec-m&{G3=wY4M)jAp4m~5KvFpBsggYlVGp`S zaQlL~T`yLmKOL>&7MMSJdP>d?HYtK8PFFk=P>Hhi6`-C>>QHK_Kca*8UR?J-q5*d` z*n}0dpZ$02JH8BWKZi}_Ey5@iV&naG8fi!(O2F;ZL)Y3xZzm+FuozWVZ{jiCY%}t; z!%+>s>LoA^az1pt+a6IJH&&ABQf8}Mq;(IXnx-s7#PtWi&>O+OP+(@^qLV@5EaIUj z6pK9o4RC%2pR&6D^s*lS7%Af3*@_M|+ueA1IhkHGU&DRurt++$5=nxYKX65=EId;hQD2S511f6G?8%mzWK`W@6*5_>g!10C4@yjnFmSM^-^ux2xN)m0^y60_KNbkf zH&B7#ybcW_6N!i%XdqxdBbREx8(d{w84(+TKDKRuA~;TDEd2aP&BC55J4@V*zV0zt z0RE>zFFOC&5p_ioDr;DnLtPNk3%_SdX)hGDRz#aZ7OWGfUNhhAKQu zL1e0aTlfW*RZ5Y9*EF}g6cGId(mgg{im32sR<=WEDJ57xOB|gD$pY%7JUm9xmCK*p ziK0+gXugL=wHB@Ru+8=B4?E)z9S)5)L*0V)#a2CgI9M%gb<9ftgnAvS{Fj+yb#g$M5kGfq`Vx71KU*y$kt}hglCn^&Imw~ zE%f)$QGyhSAi9||E25X9FpwuT2C4&r99IaX&QCld$;c6Qc&gRpUB}tAUoq#1K9QES zQ*r-v3AH`ghOGDP)5)SlV6;t%!rexlbG?Jxr?W64d!z7KUCmojS@%=qg>N>c{o3^j zBoupLvI_h-W*j5r{TKP(x?A&OcCW%mkN9@)Q@#qEUTTiv?Uwyf%#I{Of6b$3RqR;f z3!8x>n85pPEwB}eS$>YFkRpx~pyYdbO2Z{nIyEh|0QwSxt4jgC1(4Am3mu|ap_raq=DS8Z1g7{?}S(R;=^ zM95AiH>A50`=3_t1G7!yX|SmQKzA*3P6UM)I2Y$fCP!l4OM5qEa(!|N!_iCZ)eSiHD}25#>hT#JdRa@C%uV65vQLn6FnP-(YU3}GZ4 zHtcqktzEmO-k*g(`?C^7|MBeyoXz}P76Y8`erb&;c)sif7?@#~Kyta%{jTbrwkW(6 z1g{PBG1l4TD8bi;E>=(CE>85RbS*)#Qg?QHC#%V(`EavvW>PErgyM~Ga+!C{VfP&e zBCQTIV!i#t=Vaq&GWKi!gk9;5sr*$^4D2#57iHw3BOzJ;1XDTF2EiCDzmhU?q{AN! z1;~R0>Hf%5DjRenZpjLD$U!rLV|Gh3Px-ia2p(3iw(Y9kVHSQKK$W;q(*c5Mkl$Qb z6jN_iXtzeSd=^4Q(GtH5P^xA{dV{d$cqzp8-ixKSc3K3cbMh$wu68;pDH3lkVBRnLkoCrv|Q6~$|Ad19+_3$d!jHukc0AOHTEFt-;hw>1M0qQQQvhNX`A6+ZCYaV;C&b zR|XfkP-JOq#t+!J*eMpsvNN>KEOm=}n`VVX*lm$hh|9F=*?LmdQ8_4EAjx4n7ijpa zCg|*)RhS*ZbD8QS6|!fwjBi~~N*w69q-E z3wX@3o38lz-fqL@a!^?p8C}vnE}yk#l#$xY^HJ+diAVao70*vZr9qaTM5&vV02?yz zEX@`rz5&IT3L+T&I+j*QIOJ162f2dGXSllU3u<-Z^ki3J0A-n-tZj*-a*IJJf`K-) zCT7SJ9QJv2LIIqXy&uAdBda6NLvGEw{DFLv`+_|GkdHFWcfX4?jRB~&?Hr)NkB9CH zB$8(k#7U?6*hACu$^&>**{Xq)4+y6#pQV)~(z>v?(N)#&3M4BzK$@UZLL{F`QG|`zM{D*QLSV5~pm-J2?84r{)F+E~*#=c(cut@pIcS+DkQrg6JRD|M7oaX_ z=+(BNkfs9|>5!m6!;3z87DWHx(G-i+2CN&n)W#*>Fu0u!l7l5mjc@fELU}3?q{fte z@iSsH)eCtkSr^RDP~CDOi=OB1TAC}`fs&vPKs6u8QzF_wOF#4ycWmFOnTy2|bc;?< z-Kzv+iQ*Jq(tO8#CA1U-KdW-t8r}J}9CG2^(GEmmt~UUWR035^5aCF{My4eBd+bT& z#(0S23HW|M#6=z}@~o?uJ~!z4^6;Z#Tv`Dpq$YoZrUQcrRfMZv?Z9!^+kOVs-!ra5 zP8HVS$t4`Jf2>`KA{Fxk>0e*LsFmEJ-+YGGhaw7fM}}*mN_KDVV-8Y2KCICLFJo&{ zVT7(G$C4Xt0JUWwH;dc@G()WveU|b5s{^sr&1xjD>dw3sDDwKE?jFCknX_ZMt?g+9GsN)e3hmrME zmldM+q*CGjkMxZ!qM-<~K;GisOHE!4fcii_2_-S*PSi)+G~xaqDN5iIYL8`dB?pUT zFqp)F^t`McW-%VvR&bsn1LYV5*>s zgYLG`C4yNKO%=&rD5g!wmAGtp znyy8X9hkexVNixGIMfRg=%=d-mNo_?SWUAP^P(r%GY^xsk5J*0JNzi|x93^DE3$7> zFjrAgixP3S@US_{aC|)0Qvy4n7_mEWo6hsEj)!j5S3?hCqTQZK>J^}EynB=y*ebCJ zR#kGIbZc@%UVA?If5+d$*T10M$~|)BA)T|n^ek^iPBs=}Q%Rx5WM_fTAz=Hgo|VAj zT;V;u(%@sG1X}w*VvO2PTaZt&8(-XV)`)gQdZB1}u0c~{@*Vg6- z0y;^ELDmM+v8=$GHziDD5utLlmHXHz=cP<~5OyNzU0|9@%!96~qmO&A#DTpxR5+mW zQv#IUEe2N2T*KV4<0+BQKAnm?(?j>gAy@DNgrZUD`2TtM8;jSLls%Bu8;Ix#*1rS? zrK->&S!mUPq4S`|0nf`qM(>omRJtOnY$PA|s7o!=Da0yYfYPm)DrA>8BM%{_TL8h( zT=my5BxkK9wAR#w95souPKq*~0e!)QH7}`~rUgAJ z)~>g5M($vEa(zhHSGjK7ior*BbXqq z#wii5j@NMORm8I&+3ZI{h0IytN9aJMTo_w&0FqJovg*}bOD+U`9!M~j*(TJU>^1;? z^>Kj+qFqQ2x*YmXhAW%HHd-`Eute#Atg0=vs?a82xulWTnMPh9<%1lfKup!-GrXd7 z2Q1KV9|;a_{Z6+w%t%yll_D2EfBP4TT$r<9_f&J9M=Dya$D|T({k?QF(KKKKR|^e` zE|a=M=QlmsG9Tb8MdNO4RF{5MH5Cd5x0uDvSLkW&=dL-Vt2ynu#z%ykNIaU3ls81C z#$^d%APv(4ww@X^)eVt_0{QJ{S|+Ou{3J2x1NC^3ZnJ-lPw-SC?qGc884x43jFuin zRo0>34%P~4SKvUfLETc;{c?M*?b8asTd1oGV0AXV>9|tb>qmKr^q9w7Y>#{`>r}q6 zWW|;ztNl260u>e8t!w)Swr~G{e!R2!9zlgX@}~#%%dP{wU2u(>v(_dCQ6qevnX;&h zI9Rk^uR>~}A^jCmZ%rx~1zU4po|5|mo9}Z5FnI{eK~+6)HvtgdK{pBxcbESZzIm}V z`LCI1^Uw0@@7}-b?e(U477Vw_nxX?(A`H5Cs`laLo#`^? z%DO5j#^(Lf%YUJl$o_0(PsoBGj%d}z#zqsma_(4h?cEVON#<_hONp_#@1|7^{>_63 zA*f-#eV-0fnD=em7uhwFTBB!ClC9IBjYV+_ES7iV`MHAIUJi_Hqv=VASXvN8O} zt+Gmqp&d#2SVmG(g%1fs8vElv`PzTs>t9fzRJMe!3a>k5Lk$Q$N0xNv0AIam=0|a* z#@x_8=nbk*c0}T!jnT7>1RthVr7F|PK?cmvdDz};DqSb#H8;hZ7lpgUXa{X<0Cxvf$ai3gge3%nz0d49r#r1kK`7PTPt z<77XtD4}HsTRH2?D^LQ;ciw;f$G?Vu?+;jX ze8Cv-2Rj~t|E~Khi)w{~QbHB52AAD|ID22G^LQP}0yt833yK7HR?rL(vCL|{u+kZ+ zpQl=yXz6c}RwC_8hmR&L=o!&$FAYc;?}Qkh_#*x{a`NfB46)IV{|frb&X1Yu;^d|( z-C^IH_)|tha_@J0l271#B~5w&La|ugaqlIDAG|Hesr0SFdVFs@Egy%1oO`06WNR=p`y zV1kd9&SY!r?p;B||L0vkqlTH1(t;(a$U57=a5$qfqtyOQn@+m;i<}gVRu|*UM+Ux+ zg4=JG8+tbe9IBf@dVo4TZh6AgnUhTwt0y!j-O5&7hgGSbdqINL%&iTs+u?3iJU#yU zuft#GvQ7Tk0mYA$t)^N&l|#yenN~gtu$cKG2QSQPNkdla-knNxGvvj3Yx1X$3QB<- z=20|zz$wknk6GtUGuQD+cFOyAFOpW+pc?{&IHgQMlvB~?NtbiaXu(`tTI2!kKSk{j z&^`f44ouHjXQ0gR3r&k0s=Wb5<>JuF%-2(6l)bXhly7+Tru0<}#4H-&jDg4m$klS6 zRoKwoLBCN%z73T8ov*(A{U2a#&bUV%@n%;a)yUBC1+|`A^piU7~ z@gVODg)5`Mbfn%au$s+l6`au8M9lfg&27(a(J9q0@TTuh-C{K1=7H&Z$`Z!c z8by9R9O`|DVkrE`WB)w=qzA}qV zIPQ=JiRIZ>6jMA--c;G@1Ac(^s6m*zanf>o25Z0GP%?rn?+(f@b9kAz3t(y617Nw? zA#bas;_k9Wc36#_I`SM{VNV2!f&BOWCVV6BL9P%syMAk-bk%=sX&L&ywn)g`Kv#Hr zO73|Nr=i}m*m0r#EybtU+63xS$XmPJ5F!d`(ke zUT~(Z%eps%yb2`T6E68@B;I3p!}>V;qJ+X++A+G8bqfz;E=%noW6Cd)%ceh1$gwc? z$O+Lzc9h|9H`krghEWBi{Up48a8idBIeF0)awC%~9$-#AI_@B8L*PanCUj{Nn{Z8p zBb^C-tY>`0fbRs&K4+V#6us1vNXtK~Ix!$9H|`#lM+r|#A9=_g0jCe%dQaFoKsP{g zG*_CM;Ch;0FM|Sy8o6Ot7g1X@N%EVur2_!kr^Rz*Ss8p)OeoZzLw?>(ww*)GpsZuv zC-cW0CAL{w0te-W zQ6iZ=t)O<29C|36t%$N2Zo`-$@VUKXHEXsIl zen$q#4LPW>BLwo9?|_}3$P!VceSQs01PJ9$8k`mFFlBE8Wq0M%RWkoPm$D}iS^RXR zZ{3mG+PdWGfw_t8MPeH3PU@T)@_JlepcPwOm0G~~465|;&nKmiUuTUE`3+5@--P#n zvMZm`D`>XS4Lgxrv@J!&x95QA)RTY4^E z`$E1&-+KFTAS0l$mf4ICeln%pxIk8DTRTkSE~)2N-@d4KX2v_(vt4F(?#3oOKJr*a z*RvnAhhq)f7s_g2$|q}>cj06mthV%ZEVvpybZx>X+s?@X4&cicctHIDe#DXnq7k+d zVci39^`FVMXacwDLyz#DMqQ6cfRr4>*{p3)0Z~+ z9?h>YQ#P_zw6nLhzR7iGulA~jzQl4*riQL|E#R2RLsokq)wj?Oh^lNJPwHmLtVh^E zLD8cM0r|bG-dmL4oJ1yPp}Bp^ZNt`*l8r6C0nFSTDrmz~`Af3|`q@}>TVw8P?HeZ8;rnHUoNw~17Nj#C= zRiQO2*EiLaHA`s5SbGdUr0d0D)OpYS6MO;)@%X81DtvFyX;roYctbyfHI|QViwkVi zc4J+J^YAo4U;6_HD?265o_)cH38GH(2xd3H^FI=(1uh@LVowcIrEN6 zsv(eLM*$$AUnAOQt1RFKqm^cdDd0T$sZFUj~QYDHa8)g%A`!Je|Z z3)TiUuuLC!z2CHE)ftSvOaK=ldf0_dh`x5-0Ums(7dgDmRm1j41<90 zYO_UB^3fFWo=MeNuD!=4n0^A}fO&w`f?JP`Vhn~)-+uf3s<*(y#snyoD}bOb=~=z% zpnr7k7&^qW3d^VpgGDLiOGVQMWPQx4ala-Yz7tbD6s;U*%i0P%QAbq@CwC(Bh9uuC z`O0%frzpNs3M>LE$3EJYJyUt5lj;&vu_$cYb*}6{Q6%(M7qM$6(7NN_&wYheliK=fu}2r-Pab zg_us6B+*hQB4?iVLMI%3ED0gjD>Tv-Cg%0D+{l&4Elf+RUJ>DPlT<0vI!uxp-LitG z?T6O=W1_0p%F$D#*H;ZHX?M{20-rQ*4-Tn^TtsOonFPuN3^@50y?hF-^3q@z3%oFC zcCpa#lhm~Up)feuh?PQu&3y1*HHoN?8WUVjj_$G~K}z~jc>lfyuAq>N{00bwq>6U3 zMcQb?F?nJJpTtT!EV)7UW`(Cz^^*;b<=)AzANms9$3r3d@+@0kF8or7mtSi*J}Q{O zdj>~%MtWm_M~oD-c9N6?G9|may9-*1rB46}0nFa*4M0x$;(HnoKmbKfn-6x_DCSR2 zN3cL8HO}xbRDXwliElR1fNyU?Gu^-%v5ZJY% z6lc0EP!j49k=_0gCH~~@AUY(VICparFvC7YGvfRO^_Gx>V)WZbn2Tg`OEFW!wsa}y6_U5!@53}> zmb}`kW8C5T@*1{kvD+7Ei+#tQvZfNK=QKUMAv9I8+o4oU_`Pg!w8@G^!ggXA%k!~Q zx`ljsVh9HL)83#^^?qQ2l*Wd+Pwkj!b?)&8PVN{zFa=erT~;5^BE4 zY})M@3w#Gdw0T2OV=b>*d-24}-9GTzx-0_@f&%;}9o-_4Pd)_eMHqsRBYI_H26L{) z-6b%dnWsmJgFMvYa$Oz$u&Y<6L?YEF!+9(>`XXB~+%KQL2w(m0ire|>+nL_-_n>&V zj_N~A_;!;Zl>%I4DAkDCE>%`y^_aucJi4T0I$+JmVVp!IEtOslmPBa0aQOnIAGLDL z&lYxBP+B#0;9e5oP6aqtknouXsO;NkGYZ0Ip+1Jvu36_l9wuj6!4j8)d^aTkzX=tb!v17E zs7mn`uXf2!R6k-(08cuaW1S_1akGjFO7IS52H3V#8Av*rKD{Pdv8m3!|0OtINfCP4 zT8s6Y%gCb6)OTFt9J*)2dIKU8wkmHlFzg91Rsgznl3?cH z!Cewg)kirk%MU~aEvxEh2T0u&r8^8u$=@0RRRX%?sNEqc6St;Q7M{dTva6hwdPq~< z@$+fi@7{lCyLLP-x{oElYQkXG6-PYQwng4pK=B!BUK>|=J~nPhG$m=p3K#WFWkWnc zy!N{CBIc8l$!FVi;0jh*4;(eYrVGV&rIB2>N<}NI2atw6(Li4ufP<49pS6l( zPkzJ#L9iZeMdHeR`KUgzeBTAj7d4~JYx=p_a7B*X4~If#lI=h33ZKO7)wrwCp#qF| zjLAC>s3~bod^=#3v%-=6R+{V72~kEfASTf!bERJiX- zwrmtaB9+q0fCuFjRz7ycIAIAs=GTJW8R>&!)L`X9904r9Fu95ZBMyC%yi6)web*_L z3rNPj;DK7m`7U;65_@)8SX+-o$8IX8DME_tn06Gn_;GAzOc;4l|BdrlX4eDZYC4QSqwY*R$&xU4sXczxu22SD0P>+nXU}!=L0h1qkgg^RMCj z2J|dA9p%pllY0Z~=s=K>=vmt0x0z0pU2v>&Qb^LJc?NcwX3T!Bs9r69+0;(r0zihP z*pt=;tMiMsmj^k>9hJ7u9IRCX-iMdj=s3>%to4~;7p`G5;QtK{Dk@%Z$a;tO898pf zH@O;gfzC!?iX2Ry9@Xen%Su*ky&^?%&lTj`IAl*M&zXx${cbE5m7AFhX#DJ(gvs?e zNxJ3EL@TVBT;iqW#UPzI?g1uHOh+ou>g-H4y?qxg)mazM|QuVWfyyf2wJQC`g-m5qw-Qn0E z4o&gQ)y?-~U7u)`>u-|2L&0u6>1Wq&ceM|!BtE!(^O%O*w|3cL_zJ0zwJm{xDEEF+ z5ofDlTTDuPJTC`CYM?0FXqRC>xlZ?(H$VnVTMDHbmB>dd?x!ET{Up5oDz``9ehimV z(5x^D4tz+Ej&OBh9sfcxVwEVu$;E`}rotNY7!3)ZqL3rOuq^!MS0Ga?Er7fI{c=U5DU~BNTJKqXTMj6=oE!XRC5Jm?oWtk+P@cW!=%$CI>$fJf}Q*pDN7Iud%XZ zmZXye%u%s0oQB-PXwx|bJ($yV%yy}87Ck$nMl!?e%76paF;r;SSQPrR@E`ND|Norz zd=_-Gz53f1{FC3keG$HS*#VZ@wDq`{0Ky%o-0|x-pjTPZ7?2eYdAzufjRgRKO zl%*P3eZ!PjcDMT~cJ)FllJ`b$_L7@;&u@Xp= zaK@ObqH~4%Vw%tkOA=59=-X`QBzn6;ogi3(t*(Qzrsw2v$wlYqrCPim=yF+KVFD&= z4bRIYi^fGC;KUA1vFSxJLttx-s$K(FQIXyz$04MSCH&YPl<}1`yNhu7XSG6 zOB;!P^=;_A?2U=ozoGxFQ4moNaHlQaz>AI?z^1r|! z=&JLTp70ul-gl5@=2B^~nJsKc`qK|k{gDUNa@GRH{>8oQCD7%I`={{!lgq38=l;&H z$2FXUWHz&+GAYsndJNUsF;ZkcH#{ep37PPUvgB&p6R?yhP!9Rbkji~=*&Zn35;~FH zeA%bliWGc{=IWV#mSn9W8v^+sFn?l{VMlkVH!CCcPQ;?&EomSQ;M(ne`*pr#ageP% z>R-J7ijgEs{oFZ)KG2L-0i(xd>gm+kX1S4(NVvtf7j4f64@!Zze3Z` zi+~BbFFo`mc1jQ*pqU>fLxs#GfFO zYI^b{(gxtz*XvvX)Qh8!?ZAf?dlvf8{evouoIHc1sm_pDvr~k&upnrW;9;}R&i>N4 z&8f)J@nM2^vf~IbTk9EuNVi`0w`GBS{R}np$WBLaCLIUTPGIP7<$Ps8zVvsFL07s~q#oep9TO;U(XJAt#`$Y5RFYxkrwZF zd!pf@lDF*j*>P#@LT%$JutL@QHb3^0@vaVF37}uPlX>5WDMQ-9!`LB+v+a%^S8W!_ zE|UUZSGii8vT$2>StsCImHr7YJr`1u#cQr;;Ml$Yv!%n#9KQ4ZuY99_>lMRJ_=@EO z=dR3`LN-Lgmo6LjOlc{hA^`krreN)r@G{lA_m;sLKe(07q>7BSZOLxlEB61dS_qb- z1-ffer`N|&b_t65hhzBBCC2pX!;x}bur2NkAD6j~g9QD{`@e;^-|J@$4zHKU*jstI zCY3KC9bUc{ikX8aHNrd)Tlu<1M9N7IHneW%tQ0V25iQtPS)~xESJkOd`I-?Tqsr^T zIJya=r9bi=N0VTA|4rbF%WFhvlR7uuIepk*LXk8Gd)2Hpek^@vkSDwLgh3o84da1e&2rIOz0hXOXV00c2 zt0(f^G?tJWde7mi!o8B$M;E$KKCBId#`>;ZXuFY%_w``7was()w5S6E7ZO1x*u1UC z6Fn78Rfs5-!vtyJ(Dni`k()!OrzwsFyt3r;7Fzu$%5(TN(r(6~|AlV#y{78%-_7 zzYiXcKjmSQQ#0DAUj4j|!_) z@rX$Z3$)uCdKRFfL2b`x2-tkhLQ>A5g9sFPdj0B;cL?2fxq}sA&4XVe98^4XcqaD?_`R0y6n(psZrG)e<1;ci0@}WS{j^0N4 z%tYZkH58Xsa(fuUUmMa8aZ*WUE`QM6`8mGIir`O<$z0$64SzPhj+ z9CXy699$urpY58**i;RAT&_t6H$?05EOYX<-2}gQsb+@xNkSN=oRUOQ-ZJdQxsCFK zfzV!0s4RH^VTey%`UClmsRgLW0(#C9t#0Zd(bp>5O_C}}1F2dK+@K9KUx6A*Y4J=M z>#rwnMMVm1ma<|R;|>ET#7%~H42N9U^{N0`E2nc-f3u@Wmfo#jZL0O6vbRdC!_2nj zoQ0tMe&9JNudHW3owPt2V2IgCrT!ZhxSVl4b+ACn%MV#C>mjs&+NU?!l-TGH!wQOu z&lB>r2;-T9pkK=-$Qgx;K#^->|;B~k!zOFaurgYqkM zfL;hU>RZ+Pw^hE|NcMA^V2Q{1Awotlyc|(e*$8?ogN)D|P?u|f?{_WE zWsOxQ@r!NzB~E9d>PgMPZ}zB)%Ljr@%?JwX8HMZh$H*z#$R1#o38A(lQ3aSqh8Z_} z`jO<2d2I2!@YT2IG>DceXjV|*j1Aolu<4ovK+#@o%;c%ueTvrE7yFR ziVT-;e)F5*Kj-IIp*2_9RjTl%Dz_WxM8Go4jWv-h`Xhr5CV#ygusm9FZ(_|JgWbGT zTv9OXaww4$uv{#9(p-sqyv5Mb+XR+UX)BArQ(zyqlzD;6F!^_Dmd0n{3VO#;D@0vFsKter6Sus5Mc zK6V9{SJpXwe3PsJMjAQWG=ahtZSH7ts-pN<3L1Kz4!^_Am_1{xFvDws$TL?8dQ+U< zXhYEgzz%#b^PxrKBfqgJKO<29=xrv&b;<3Ik33mX0L;r%)`UThR^?O4$2|0b1A?bo zdN-0Buc|nNwh0|DaTwQt> zmcvtyF!m+alruV?CM%7=Iy$q8qUP6$N38^R<(awYTeu#pI)Stka&yU7{yh8-e^J8W zzr6jB^B+S40d3{cd0|BZx@;MJQ}U!!8vfj9S4#5XMUtYiNT)59cml!YFd+!s+1a$a z;F{`nNiIkiQn_*#XvogMD7?mDgVmSasicT^%g@$=Y)+GuVcXdW?_^4yU=>R7k)4>y zT=VS*ggh0%QfZeb{~62>;R2e;1w^gd%|eGGTwRe1<~`ft=h=`*Dpp}&^g<=pK4mE* zzQ_lB`Vq0mqV1s6yz$tQL_rYi?IDl-pjkpslEm;-)-AeDCdszyRJFtx4KEIUOH?Aw ze6_x#DfJh5}aMPf`gq$$Yz$v%(CBnLl2p{zGu*D!| z-A^{(Fpd`p;TtC1G(nNffKLY)R@Lq4IK5x(e5%l7Ej`RC?7MX;?%F-|h5q)v@ctvo zL_qccwFfE5B4QoA*J{0+6@~^9g#OHDEIPUyx{xNr&xK zNH7@EY^%F)P66~z$0E4%t zhwo;PF=2?=+1^*Z90x&EXt&o za4uFs9(RD3TSc zGFEy1O+U+K#?H1`x_;jVTFs7!lkXJC2x@|={#Y&tg4Y#!h&w6#W%%>FY*10X{~KTb zHoRxFh8kCaF|GioSw8v4e9l};<4Uq-xKUb$A~6`su|9K>EX7=9o=Us1J%h2LN@Ejs zD94ZHvsSOna|@F(%u($NLvxDzS9MCui}6nWDB4wq;Eh`mfvR9~B%Zn4YeQ&r@@%4RKkNPA1!j>>Jr4 z&)`x&=y_b~0}O_bIb>o;7W=P_=1uDJw>DZ(@f25(N53VEtxb&PQ4W}cw&_!|C9v`O zwOA_kr3t58bE7m!FjqB^I%N!Z(6;)}L-11WTw2v2C_mUkVvH54=ymX5PE&sYg8ORU z@?&_R57y+G<^Wtj)Y<`R|SB4wHca&$l*DRFG*@~6-MLvuqXL?fHzP%g#k zN4F{KJ7te%ov>Ec01NE9V-_ma=5ym1Om@ z$T2PiINw@VkLVttYMg;m3{tTm7a`p)I%C`MdSU=&H!VBFp@(OE-gOJ)c4n^~+g||d zpoOM`J%mc_5h?N_qJdtsbls7GNd+-@aKK2%t=f>1Q%qOkwswD1Kcc8gC4D$&izYed z#{zy*yrp|xgTKMl9U_QiDt!6=Z*RX3pME62{X)~x0#t!sos+kqrM1qen+mL0(s|j6 zGm-?KAG$O=dW2~36g#zSt!0f#*%ePcbYS+L&)37vdn3TcA%UtU?S)1ieK$vFQGb5j{rGJ58$R;PzB>1K9^)tFtDOLDT7Qmw6dl^YY!OS%POk9jV`oG2`|f$RK_$S*(z zs=`CzwMP$vhF=cn&D@f<1@Y~pvN)gaWUvBaHG2{f*RgNWQLt=iZnRZY;6x!(d|W~} zYZ6GMbp^z5Q(1hwzvvB8w7|rLb;N;-uoLU!$BzL!mfB2#p#T5LeZ2oP{Ldxw{#FiT z3&B}+>C?C0ejc1=FqTIGW%Gi?zh|Vpm)Mi1r>K)I=+&^#HqMGOhPNC*KCI4EBDdyP z?}pwWH!kw;0xnjIhu(}sbS^C=DH*_7QfqTW#FJ!gSpKpM!SKhudSp4F1!xCIPWW}l zUqE7ORAn>&QTXsR>7#%9xt*Oq~E~}1F&rGl|Eb8lD}-Q zAedJ`1V$IT4!X8^#P-#Z}-w&e-JMu8mGQKawCMinLu^xEq;8;eL z2w1JqH%U&Gk49UC&v}99$v1~`4G&PJ@Ul*(T_;Qy_46`HFX0h=n+z3N zRBX}@rUznMS+?s%?Y1H%rWUmem4_$)1^l94|BJuC$zXleAHDs3c>Bo(tUyzf%Sz4G zZUF)Ymk<5zz%vJ(l~Ky|TNQNi`PzHY;>|jE0KIK>bg;Rq^xKuE<|r#xvQ_$eg7(nO zGjXiINJ;J< zq8m^xt4*TkwfDqVf{WvrC93JT@Wslr5sotIZJi&JlxgS$xvHyzehtT(cIc>km6l*- zW(!AdOLOobzx#*{7}%reuc(2zYl%Yz9w`}-kzSS5Cfyp3=BQMtsCYO4DGQ2>y$NYK z3D*3CZgxL;`xnL`aAC(eljzYQ-Yo^&v%Ej5dWeKrR8aBK&N=^DAV@Zgmj3jL{(7{m zVmfFnJ|8G7h6MR%IW+Z}h#taa7_(gV*#xG{sq;0jkO|P-Qy&pO05 z?wMmQYjDKOV{Gy^<)2M~5mz1jg#zsuK12HSJ3Ygim9rDoK8+U$((RXQU2c13N8i-cp}rCRw|q6Q z_xtKwIbh?=o;_TrqA-M#-Aif}B_Tc$@*KCGZF5YKJqAHU%B@mg!b)hodN}1Lfs()y zo5L5U8hnBxGkN0*7#>U5rEoY5uyiH&I3o0tl!9}FmC!N2TfRApeoH<&pHWtfZXT!3Z!oZSC%}aTs8`K7Uj*tN?WoZ=Y`mtnrX1 z^g{y*_68H4I6_1=Ie36bmDL5t7U=qNv_H+I=K)yr*|@4>M$kaO)WHDr2z4TK_Mx1S zHb4A;$~igpL3>A*#NBVr+jqbEFP~%bULQco=34+4>t<$~;Rw}{@d3HPyY<68V;T9@ zCeW&(zj(d&EMZ`YA62y}ukpFfDjRM&Yg4SSKkR5#SiCIw#vo|HW;q}vODPi@?^VP} z@-?XzEMh*JEKs+hbKO4pzUzv?r= z_O5n&B%AOUL#Y`&4E*(Z)dIc2iE1A@JjXnezq`)KfTFOPpO|}F>}j4;9DCJc8j0U+ z=Jf@^^=Ns6>f8;&F*%PF8@OhTr7j(I9>IC-S1OfG%SqJTuR23h(7hDu11!6Odr;qE z0Y-s(!k>9Pz=|Wu{~EQBp|9pOJYbfjJcj&(|1ZhNK7H%$Cwa|dboRKIvQIWTENU~5 z5j!=q72=2d{g>~5`1GYJuQD|5eXBC4R$ABK&#=?8 zV6U$w!=6<<+>j&cu zw^@Drim#Lbfcl{JeB;R12R&&Jcw}K;@Mzovo&Nw-0;ED)ZVctGAuJcAJk@ow-2&&r z1m(oOhGNAQ+M{nAHHtowZS~-C@JBB`j1Xq|qPp9e%JsoS!&M^4h< zfn|d>*)(-71a}^3-dK40@ZkY1H>(ijhzi+ZCtspU=|afe?n0mfkt9~IXUTyKy?RUZ zp}}tFFa?<;uA&?3YBXtFFjLTPT@8&34r~yg@fHOVFv^t;2f*}`Geg6;Vod0#-r}0W zfQW1?cMztok~mJs^%TJ;)wFfG>eF&aIU@24`FmNVhjtWwb%YmYZ*n5Lcvp4Ih}0ZJ z=&3|n-_R6IeC^xtOzA-vgm!9YgZCV}Shq=%O$3;P8+46dN#a5-kyjexxtx&;&XWZo z`mYC=rA)@q~RcxQy8K@ly z-SZ;$oOZTdHv{6hKp5LfZ2%9!owQTBZ&m+2UwwFVe6<}biUGN$2vX>TT>dir=f5m5 z_?O}R`I3>UTY9j-p%uSi>5G z691x$ekmgd0tR#Ql;nowPRvWeJBB=bt4biYrX^B?SSGifleQsSRz;3QhoQ9kvw)xJ zM&(b22-eW4t_F&5Ch$kCM8@iZqP$`=s-|%-)nLEO@&DHXps@agd!=Q_dLcF(-d) z@EN`{l6Ztuo;xgyc;oC-!0*QT4JW5u_px6Y=rMx@f8zA)gY~n)H|kN!LUaOJRlN^V zYiKT~&^{OP24`iI@?j4LumQgVz=l2uKSz7Pl>VQfzkgsYx+wO-Q6~~h6d*stY5n1N zg~U0?ij$PB(?2sC<;QFX>ahYtb2evzq!h@nfQd(*|BH6M@{fF~e8?@_t-9Cv-^l(Q zsQQvVx^C75N_T51^dWa`cV%@)gokIhJV7cOAXX z*V7EftNEW>`AKd$!_Pr`c=j@0wFRn__~TMfWoY*Zslr@7j; zhl>0j(up7uHqLobBY2+&?9dJx)xF7u30TD5dJh;c z@|o~G+sVzVv_)&g#Ml>kIPE&d<86D|xINHI5kuJ=>X} z0ro#>E372GT?P;I8E}ySPghj=zLGHOv@2BQII4dksH^(@K4;S9k8SFg)ovc4&hh20 z(q$M1S$9jeIf(#!ayGmIrfAL~cmKg~p-mfz2-w|FjU}=IfX}eH7$Byj9~w1U1d46} z4gfw)Y6?F3*<#H>G(F*>90#d4<$%|U|J5-#)b!oKc_H3pMIt`4)Y>&lvh)X(v8Ps; zI-VyvFT$=~&spXgQ|fGPNX69updxc`CXMu8;rXEAgBU$HGZUSN$?qjRLRhJ&D1f!x zix=3~-_$vM>|bpMOyJ&cdu~_TPE5@vm(x$PPn@jdeN)qO3rEy|g{+93^o?xi%t+-Y zJhx~+*LV7N{@~wxoxj`Py?rmdeK)`U?{B|_wF&%9vf1M+rTHZbR5(o>Pu5WtAWRFu zT7&a$5ouYCu&vqaaqeS>!s}`!rGz+Lvr5uRUJ`^{XWGcsr~W~1ZNB}=ec}Juf;-1k z3A(ief8}Q8&x%_4GuF^LYsc15t7sO?%u#uWOJ&BPUEg+LFUmd=olirCm%tH+vKv$! zG+$lPY3=4MH8{W{lS#}w99RG+Z+lfi6il{CfxuJI58W!XPRllkt4ga9A<)Q;B;HLY z4Q!l!4A$X!DAfpP5vivkS4UIQDKr1b-&;#~ctDML+v!ohNro!%c|BC}o=soq>l)Um zMw=2LdG9#LDaZ>sRhJ^U9GEz)s#AyZ-I^pm9{}L!;IjXh_kYO0hVvV3gh??nsnJ)> zQUNuL9Hh%hy;VZ5P1V(68tt-MIBbHyJ!Io1%%AN24js~&%VlVS+ezHZa1t#iYYEh$ zHBqkCDP&{X)0}aoZs0CwrZR@WWejc%Jm~}vM#B9Bwaw14+j%j!dV69zCYa|E047L;DwlK2 z;}AQY*SQd2F*Z0V)WZc`yJQs>Xm3iLWOBy`%{vEJsjo>pi?s z8mk%Jg@#1hD5MlWxT+!A+p$ui{H`vs)!hcH!hieC=Zbkb{lE7&;A<_%0<-efHGb4W z%(LxfMp@dsP%Gg1NS93LMeZ2v5s{tPbg&`iqG&GUv*_H4*CS$#c0Zw-w+++^3v5h= z7L=%U24B(>T7b96`+fvAL?G~oCJ=OKkL%U-Un?M2|B3xB=5{ zdTZ;-`SJUY0$(s#No@N6|7-a7{=mHLXuh){h}nUx`U~t5%jPLWW{Ct3j$VAMkwX*8 zQLFSYxEYmWGEk*q4AWu2&)ZY|;SjuEm9`9_bQ9K98@>r8yn~WKh8QU;AjcQ#`N%Og zXwCE!jvqe;@5)MbJj^}K3jwn!R1{Q1Dm(cIu%OCuL*;Gi_@F*@QK_Gv+tRt>E+7y9 zKu%$t@&}w~4G9y~uBL{;KzH6H_!hO&?`G@de_y(Z7_udT<WP=ta1-;Qk6drL5ZtDylWXpnRrH5U4M$s`|x5Xj#i)bL$|}#A625QY|D1 z%$H7QF=8S}=gBgUj?)Sd>*4yv(E3ZI{T1!@H7E@+_CMf#RkjRE4KrwcdRo`9g z3@M>`A)*(o{Y-e~qD{fXFH#M4+8*@bh6_%UJsqc$op*S!@@rv|QttMX+_LauRYIIx zT@3P#<|y(KPEg-pg|}aWH6yEO0BA_cc)4$E{y#9~2js#PT(%X8Q0#wfvJSx|?JIJY z=PQ`1#GrphCQzjdpB38}RRKH3GLfgCx-(MUOVVXAb*P9xxkVkHMmfH*{BF^l@kkv) ztK}qD?$eQ2ZJCYitQjS-z_9;wg!Q3YfMC}%3cG=I`Hq8)+3RTfb99O$9QdlVAk zN(d_o1w%C5sKoK&Ni;m{_x!~c@@dCFk6B2j0ibDTQLIkW6mWItOYvRCu&=KvBHj&i zYW4BjcUFkJ1=WG!w}OtIg)Q|!QseA=dtO}?;L*kXIeSC*k+fB2BmMZfAk2N&49xb| zvC0C(*%_UO4l`4q*6vt9Jl{4H)o{s;Om>&mq2=;NZF}kGhx@65;~_i2eSYM4>!=6{ zDr@a{(TF0`PQE$A8<7yo%B?7H4ysg{Ayahu&%=NI=H=7h0*mqA&4%zPH>@8tAetED z9-%xzbl;}zPzfe$e-Ll4-ZPiwW>jpLQVgu`RCDQ~Zg>=yKH3sq;2j7omgKF_#ju-R z4RHbm#`)I!?gid<$PRsQC(z>AoQ%mcP?zTxp9PVl7#tRNSY46> z^3)#Cpm??9VaCmnEwsh26T>i!T z@2vs*Oez+e|LhLw!I4uWOir)JJ9>gb#wuJ*F$1{FUgdm|9iH@$2W$F8MpY>~Ex%Co zM9X>}yjINdd0=8k+x6BQwpFyES53nF`M(G4rXSf_)sj{X9RR&S@t3lvk!(Cj9R&i; zm1s+Cm1+JA!8D=@Z!fASEH$Q7_jcPs#&s2ym(Zd40qCxc_16=LF>KXW{J!pT2zi8ER6XvKWD3%aLWqRIkyNO^6U)-eq+btkCRz{ljIS0ruv( zGu?yJ1reZHUsBKn4{T(CnQf_I73k2^x~_ww777;!qY{Pd)qA+hb@x&%!8#q$XWt`~ zPc-qKf*+GdbA+w&$Mz=0rcW_!h@t9MNuIz<&$Qs)YnR1B>I%&0^halxt$Bz2Tc zMjF&pB@3ykgBlO0Q~Rt%P0Wh`smd!z9#9jln;*N=S`i$crhmtFM(rNA&=QT8BRtFp zB{+Eq+SYmHZ4W)iitr1FE1Fo3{p;b2hkHGDk{48JYU&l&8KXM3IOZNAaq!c#s5 zB^!~fxW#X3a&5sBYy~_INVHEE&|l(k`55jmhfT~^D^i4^Hr7Us0&N{lJI2I6x?gL)0syo77IZdak;Q)yr=z*-o0pHxG z=?FBihT+NGFR&=Ms~FVkLIUjmY|4a|yLMdR0O@nrq`{SS(}yEZMzu#KTX)^9*qXt+ z#_a*(bz%Wqd$w$Kp9AJOWO3MXI6*{&t9kz z*kBOzam)@|#aSz~lLv%%%4e5RY2}bsp9&L{aC%1FofP7pn&^QnSF8+9-Y`w?MScUj z32XFAK{^1ecsna`R$#hTrj8SVsn~dGoF_$)6>2<1OX~Hc_t~iS^Ap}7w&*?YFEC>T8fkWP08eT7vp$_nDa zWl7AI;rl)Y%giDabcxybnfwV&7(leMrmTdsn4t9p4L3em zq$t+whpQkQ`VQ>XudQ4)AT^XWlFc8g)0HC%_Jj343>cUv^k|DNsbvHh(F`KxeOdLR zRlR+%{EkVg={EQ70EF_d_5^OAfyVWKd#SzFCGo%sb#)QIrdQz{?|tRY^4o8WQvK=M zZ@;zX!+j2YOM5O=bB7Q^SPt*T4))?7{Ht%@ zhuJUE*q_C}M7}`&H!HH)*Pe_~1k{HUj8IIoEhq4a6JoB9o0ER8f z7j_`_8c)YAB&jW*h+tu^ihs=i^qHb$1(HXin{Gkt9v80=_vZ>vB1hwGD!z}73{{fg zWGm}ujW4odlpnLxv<<5TRq~ilj>52MnTRE9m0(K&1|%~xEwY!zeU54fSh<;_imO%H zQq7mA=mNeLo^$*)yDiJn?v9YCx|YG#L$yLqGp@zKiscs^SGMFM@aSH$pZ;5T z|Bj*wF{`n$m-*=ikyL7p4jP2`*jVK?+AEJt9Anlak-&n6s zlBT%KvW{SXbpw3de ztv4?d?8M1ax|>S-<(sSO5VF(x7TYLG`dPRL^zuPZgjCn7>+8%9kQE#$r=y6Ls%#lL z`u6M3X^)@&?(MrOzpsh$&bHWHmF8`)U@5NsEozOl(Y!I3#!M&ohmMW_uaGL_h!!d5 zC4e`QlJ7;lu!8IGsr^}@)r)qW{FNHGgU${c^^nh~*B|qfhp&Gjua7H@HXbQhgJef> zO4Ic9Y#&gs$8t)kRKaml(9`fNC>F14SHSWvY%Eb^rInV`t<3c z&=nV?(IzWV2Y2fwHgZmc_DKA?#2Xx+%zyWFmMAPsZia^s)DLEI@~26vW?6?$;+F)1 zQFagBLaqk11|Uc=DxCxQ#Zo|aXYEqt=_nIz{qEdDM&J8jLRQ}Xr( zZsMi}#XfqUfWfm4AY>GoX`|s!EpPSgumCz8aCn|!hrsUwAi$bjRO}-&9GJioehNV& z3219zZz6fW3hLMM^+Yq0n0qTzh(~Xk)`NYgyR2**YpQOO?M=BcvV39I%-Kh+P;D9m z<0Z5#q2(DAF{yHf1pCCNDnte0a2GV}T zK>9P-Oc9=LR4<4UGUS<DiMBYPr&(ug(}~s97A57DMl8+j$RD_|QOO$y zwuWk5f-7Vy)eO(-;F&gi&ur`68cU6o(&fW3Q|&=&ZODqU^c)nBn6DKA8Wx7kGOn6g zp~!AU{^O9}v?(UaGAD2~Pd1zWozCslpX_~4aCm9+JA(u`Pxz4)QUd4(xaZ%#hbv0w{gqG<74Hrc(; zU9ME(U@)59>d+SOGsvH1(mW0Ku8*rAQO@pLRE1e9ek*8Q2$hNuq^kpWsGHh zPQU`%L#hHt{N zMQYBJ4=%OPiIB!ftqRu5HO|*7gJa${uKombUF`LG09exo;f_T zce`h?I^WP{I=TjvrI2YTd1ixhbxS?_Ajr4ub=Sk%(Ff5$5=ywT0Rv=6q+X^pFP;;c zM3E*D88GDACZe9M#${2ApdBY|Ar@_iRB!7uV~}&$1+y0|r9x$osxvf@H--yW`7Aeg+8v8nhJ1z< zIzBxX9fdSqqxF!lf3R2KHi6`)?bv4a;qJis3U@DVcJ*1=-U3f`jHK;FpoK?y}m(ffFVN#Z>pnZJ0G`A z2lzQmWc%uYYvy`DigIJ=eLX_w*WVn-lx-QvDa6L{O#MS}`bc%b=G$$bL{-FOvrlRj zTVsy{C0nZoa{cH2*Y~jJxPII?amqY~JNU^tnUL>KjqoEph#Dy~ZJ@>d zdikDbvq;n1l>ke4Xl|fs|E#FCy&x*swLl;|Wh;5gt4Vs2_lpHyMUzX)#A-b`15IwT zOR)9Y@N?G$)xCkpOTLwr^#LT*3{T7*(1-#M&Bo~0P+u?KkSCsIO;pkpjfrsbZ%aGkGh_<8w&Q z@UX5;)E-S(g!#Wr^dGNl`cUjb^7L_dIJS82(eBZQiBsQ zLT#<3>NAQ&r%BCHi|WOk=E{Yq=fLMkGm7gx+=>I#b%wAXbbpMyi?$J`*|MC-g_x-1 zSvys}Lg-&Pw&alhH6>=?cQjvZ+0RGmb8ZXZo-lBEO>ov7%ta3 zNl*2>7DZ$!yhatT+v3aRxVH`2Us<;t1UO= zLzam-E}wq*_Hz)4F~G?zT1?g-)@7Y*;1JwbsW0x^=(F!9SX`5xfCk`FyZ*@r3~+Cg zx=N21*+Pw0vxC0WR}x&G4q6HensgXb60HdiPBlMZ7qaz<61feScn@;r6vhA6%ltjQRCc2p7Tv&q5C5#y4;7&S@H#AL}mn7 z%G^suK^QvqdE#+JhR#|JWWojxcubid*;|1SLHR@>$2x|(zN(9*ZM$aqA5@GZ+uoDf zKkA+3jE$0AfLzZdO#VXEPI8?59_Q8n@c!Mm-^j0D0Nn7H3>yFFP{%V%mLoki{R#A7 zDk9r+QVC~!mxoajJwBqyT!GmdmvV?g!X>`~Xv)ekx!sR0F%yOFAT(f&)`P44DPl+8 zxU;oH@!SoE;(ZS*ME8MYl>D~8eV2;=KYjayhNWB5CTC0Wfje5WgOZKeec5(Z z)L2l_%Z8mtZ@1_{N__7CB#di62d8%e>0h&=bgz>(>ER~XQ?Z_lfJPaQPdgjd z-#EX?zvjCN^+}aqZ@k8H^-t}?3_QUhNS|+%avz`2%y5`6BC<{`wGXOa4^*|eqLG>gToA0yPr|VGPV-Y->Z1* zzG43bzW4_3msx^-E=(bzg=+Cjs?iEA8)?N+B9Xw-V@&8tyox^AK-fVkHulW^ULs(- zgrQqIxxYynVf`>QWHYs5j2v9wr$=m`*hWC}CD|jYR5qAsIk~H9NtWM$XXq8DLD|9A zP)6P|6R)!8Mu5GmJBSk0c8<<#qslwbr@OPk2YTmnavMel2f|ewj+Iw3lnkn)ErweJ5(P40B@}_>8^^mA(s`?Z@JLor_idS z5&7QX;chxAfpJQ&Rhq<}(n-V{w4-%{L$9Z$kh|x|N=`Z(AL5|<$NcQj6Sq({*ghM; z8n~-TZhQ35p89ZkIS~8NC^wpstaKBwyY?+77ip1C9Eu)qRP|hnFPy2{vj1+_fU$j--owfa8v#!yniRZ{%?G>ze2R9x97I2 z$&n?9I=@=yW$oo`9w>(bSSq~kPgck)FRrGnUBA^qJHYw#1Af4oQbn{vQP8^T&9?lp z$548wb4MhP7%T7y&E^;sMYk5w)r#WM3GI=Q!I)5^@~}}G5koYhB?nx>=qe&mpCPl0#g$2}&LrNp8i5#CHupa< zqL9A(UqfbHD-8mQ9AHaD#rK73qhW2YQy$nujVb%U*oub}0vsN@lVsIW)OG>Lf|;o4 zd&&lu01I7ndGJ>-0pjX|R?;vLI~GOaKz z>rRO0U%q`O@CDZ>fDZpr-@MMFeE2N@q>pmaV19Qkpa!V8yHmS-*vMR2TgE2O`Sh5F zoAXMs?x8Q@gEtWGZ?yh{b_wP~vL~F<5MW@QB!9{kXU&%J9pwciDKM~?0|2(5a&$7^ z$Tm&I7#)CauNrHN6;g@D-rWaZv34{-+#xxO&R^?hl@IKusIBOHKfv501qh?r5zCS7 zPpz0Ni5J8KWVvxpj!5yx5qHk^?uOA?ItBcTB4u zU6?rTUyD&GM7FjQNqz$pnxtoW`N~2J0#=6a_JUk7=#rP-pa(GnX(QzjJ=G*kwRAhY z&BwY!l|}Y&!#($+N?e$GF4+gT>&vKcrKgCBu|x@bFBl^sQIbl|5u+-|dzDPW`lkLN zalgF7R(Gx(4Y;)BWS{=;w_nTuzXZ*!EBglW8D2S3m(9B2byj*1!irSQ+2U-#iU>veTBi}NC>~lGw ze3mTP<$yGqzwN^ zKe8|WIE&AJ65f6bEan%%#E~BoIftvA+~K6(ULaa3tfa3#sE>eJ27<3pKpr(lO&ks0 z*0@b@@}>Ays1G$Z(BZS?P+3G$4LE_7N>|&XaE`YP+MoyyhwM~Y{Oywism{{9zX*RN ziPBf!3h%$t_s_V3B9f!zqsKYFs&)ZJPzOv8cG+?VWgkG(L&p>%)vlvecMol`x|EIg zghyzIv$CmG69?)ex6WCVQv(}GNhB>+ZA+Ny3zQg(+`Ng?z&;MPtZ_X#3;aC1|KWUq zD#@+;U}0$p4L{T)2G%5ZQuZVv?mDa9AqXdr2k6nBy61X~Jt*atV-rG?+$6_ugLrJI zviofgy*zV?U_)ONcW%`0xD~vh`ltlRU7JXlq}>~baI#tE8q#uL?((1ops=B+Thr@7 zG06jnq#SoCfeYmjp{fTaam1-Ap&?;6%rja*IoaF~4q+tgRd$K-PPWD-W^0Tul3vn^ z@)*_Ne&!;*9XKXe{0|)+3oO$~{2s+ivbgrKvE$RhDW5m z)?qq6hGW$pU2QFy8}w0GLv7&RYeizKehhb08B-Foi`ZxB4$WK0R{)xkx4BNX>uRWB zKYGF|V0Oobr<8RP!__?2T6=QVP#QN-Q~n-%tIzicHZcu^cQ^%DUBC1vMYS3uUhCz| z>co&=UhUhw6!RdkUjT7%B?o9HOI&gX>uXY(4a^R$1g%wQTk(;;1gcePTUh~;kToq) zqVr9DqHMsC#G-{-O_-Ad`;HgHt^SSu7x+Rg<=?+^_6z+n3;w@*`!$qR|L*NK?_b*O zlHl##g6#n>O^Y3STI5rVd{YjIjjIV#kbk7ZELWnINT|~sTLkG(qoAvS*rxRJb6a^x zWrW`&{UD{N_a0gcCtzg&$X40F4K9S8;c${Ipj)*ZGlYzTduM~XKe7LU{ccf07X5Xd zM~s7z)1i*yBn7#KI#x?)-SyDB%os0N9;$ALim(ZOC5pgKjEDlM$=Kb2JokE(x&Jpr14^{_n?#q{sICOlRVoD%ApfKw;PsF7l3FxgHiOrC82> zW7hUk{QX8LLDkF8m-9t<`@!YY{}JAQiDS2NP9yRk?Rdn7RI@R*a4h6jep1U;p5esf zIZ|bB#GJvibmMN1&*n!(U+lvg{5ubj%557IZV3bXoE+#R7qw? z+_C+xMjUaWwyC;>vqx5;4rQZx0_4s44)OK1sQrL5$-(Ojssl+%Bu#yZwi*94{EvU? zNabGvtq;3PiY=P#HSKZnoDQsUvd(g0+D;x z@fZfX1{^a^0+95~TYdS6xeS#_riRZJ9=JKrhIDE{F|?B!8ezZniov7R2y{eTiKB-Y zFy*PEY+x6Qo&5;Ap*n??Z+P0yfDKsWW0I}9bd>0n-D7oeqc(6#q~cz+x$~DKM*p^a z_50!Nr>Ao7n68kvun?Kh7J}%`E};-PD&Xj}1OjkU*3nK;BzX!`&J_}R?-uT_TGsM| zbVb*!4OOi`9kV!sy^#WqnRY<%jzqR>hdK7^TJ#0wuAS^Be)s-8Ufp+3vA=hsGnmI$ z#S{>uGmcVK_rtY!N;oq0RVtxY0&OG7;5`&44eL(~swg4#XSaQR%1OGqK6N4k?=%;F zf+*CE6!c(&rH3p&;q>dQF31=4q+WR`Uj)9$n_Y4SlR8k*2lprLgH;?`WtsM-K&pd6 z5Xf8Nun!dfmak+{PWP5u=QeZInIj{n^yYKR=Q@vCs)4oKS2iM%I##zoEimzey_jzS z2WZ!0w9V82-~DQ-PSXQ))q_ISgO%-#bEyKdN{WF6szjS}g`f-uwS!XK)_IE%>_wt{ z9tpN2lY3ZgLsXreLepK7ar5n8dSmRNg+Xfn&(fHJaKrL46D>Y@-0cbw3CckcEidlNb|6umjHI1ArQK3Zc!s(sJd zSv%l}h=cX0rVAWgJjKV&Epl?6p21>3^14{#HtZR8!m!(@C0O3pa5{njsJS#+ObS`) z&W$5?fU2PHc?`0}iBHfO63-$KtF8>msKvZpBj=TI7>3qnJpBkg+zAsR$vHS+AEY26 zx`!#~omPk0_m)j!AmVE_Y^Hd{QEeyR00n@?wybQ^yS?Zb$h?1tCX$@0*5$iH(F^>R zqx2{Cqr!-XSv=Sa#l%%r*k<|oX5pCcp^~E@rN9pM1iKk~+7d&bL1=)Dq*mW! ziU8eK42E|-x6nQZhG4eyR!KnUkm#lOd=O|mx=T%3CGMW3VQ)3;f5V7(CUcR#_sMn9 z=ORMJ)eo)9TT4akYv|Zr+ub)3b7_lCK(+6OGavFEeTh)>o&12FRp4k=OH?~0(9}`i zycYAjMy=5w3~4Z~w4l9d(N{+D2OJXHnMkIpAcv|xn>ew{Sph?DQn#`IrmV=EES@|% zt2pklffWg?J*}|=Z$w6N08zYmyq!wQH9KF}<3HG?0NMsZZkgC8QCRAot>E-@YJ8m; zw{BASSybQI2#{PHHGb+U@*xnxyE(D8iASIn15^_R&cNRPH81TfJoEksG-BnjEZ%$) z4411l;U#+GWI%V{G6`tuENjtHU4hvvrTYrBv(94vU%K9`NtWa~4}8yG;ed^X7A7d01i)Tbs#&%=LtSFlY4PktlC+LluC!rT~H_!mPNi;y9v6$5@{I5CR@$(&z z+ahTaZdTpCRhb^{$ItRD>;z(L_HI`sWfpS;xFT1sW1F+hiH&*4Z9!Mq`X1n`E2n#E zL3A!7!!!MUP8<_zoJI;q-?#c&-S>0!T=?0Zcl6*jUFsFuAL;ys1UuP=a@9f#Tyt1 zZNg`rFjmFg(|@gG>>~q7X}Wk|ORW3C@l%9tYZdY{LE77eX7mP!)UDx!wpui=F;6Vq z&j+~3Kr;Kl<7P1e;Eaq~d)i^cDoX%{6$sTu<#SV=rKb}wJeK&Nnr*;?5X}Rd zlVt-4_){eO_~U1n_y6zfw`^-KS^lG!h<)=66#{Qg^o{RGZT*kee?fak z{`@78NcS#$;I;@*m__tu2BU3@EM02)`bkJX3udtT%eL!AK!~lq7@n;+I|br)(2@Z7WVh8q!l!;PbsfRgMorro~C@W^BkDDB6C=WA-P<=zF zqZnt(!5(uPW@QD`k^##9u&n?`_*OMfI?FP8w=ILCdv}R#7QKn#HmNq2BSPVf41&Gf zO(@1TWc&ED!%7&Y;jav`bXV_j%U}?o3awVHK2?L9>}l!!5_}~7I_*(OE;pQA`L9#uEv)@85toA7q;BmV$VNt)Cy-*TpRXe~L%`dX0BCF_dOi7d6bg{ex913>|UF7yhJXatxK zDp@IN3<9u`pF|HG?l;eUgE!#{^nhlwpVWIEbV3b73y9*f<>>jD zX{L`bdz$1SjvPs$el zz$ZqMNjs>{TNK2_Y-v0gh_?0WX->|i51W#VU%zxTcHeUl1Ei0gj||9ATG8XV@CK<+@#@QWfS4$lI}1Kcb86N5NM4Rvjk^G7lq|LY_?QaO#al>k;q(q_ zINm0u84Fa4e zD_jCtTKH8jkD^Jm-4_!fk;5rvp}f19W_%9}F>K)w{R0}@7Loxin|+@WZsFDH%YaM^s1crdxFa9N}}>T^esA;yA<;YlaBlMYTQUMG4Xnv?R5q zW`FDafl}@bD_GHJM;V8eIdTM3O_!$reYR=(i!^|>$S*(i1 zvLV%g8@H>vq$akKwAY3wTIRwZM!Tp|!n-741orY;0JJB$x4Q$Zv)y(UzIW&WP6oC> z`Rb?3ecjfDNSTBe%2Qj2hyqtkgE459iM6(^bWb0ai)d zAMz8HL<4~w%{&V_N2)wz9d)uPBx9AwF4c0+(V#YWGJ$WZC4Tok6sN+rTmLmaYaEy2 z8VU=po>RxXm}#zu%G+-{3dNLr57?Z0ivLzh)AU*m6n|lxyJR|h>VR#4{7Y2WU5#l) z@^+E*BwR1h1ZchdipxZIylvSdrQ|qbRIUakWqE5#jY`e*jiCQ4dW{Ud%MN(QI4!uz zH!9NWP~RT6Ji8aPy{VKATon6a9VQP?{K66es8pEV-61E-#x~P{K{VMks+zPAOnIAv zyIRYhzRU9f0r%wL1S-fvceUuA?q!k1oQxg$bF$3;#E^_TlQS~?vYIy6tb%VfSp+Ne zUJfz}tWPuVp=^@GZ7z>dE8Em*4yEbfO?Sea#wQoRtiTiYUP=El zLZWmbC>0K5=h_W+1JP%HDx=n&*8LB`5|_dYm!`YkTANVWd=%# zvRf`-J4Khjn!r(@Ebq977K%xQgz+VFUxv`6hwy~$K|9Dn(sbbYaf84KYL|k7ct9n4 za1Ag7uR}@QC*?8FoOn@2P9pce8ldG@aFvC&Tsp^6M3!_;-Jx$~w^Q4xLRH2&z+r)9 z#GI?9@nO`uuB7*LoH(vl5CiuBNYhIJp9NGM8_D$rawxm({v!Ov5Ax&q;`Q_NXZZ7v zFzL(m(z~17OXfX-J~&bBW(l&5>F4`;RY-F$LmzYvq{ z3BWlu!r8Ls^~9X$Hco0HSo4yC=7-C>s}?4W&?4`4sQw~&?VD_rL{3Y)zm)2@vI2NV zyzbQ)qbLc{s^L^FY4RP&#Cw>n0&vpZ5@&UpMnC^y?N;y=%!fq<^{l%y={;ltPktzL zW@cIi!9&b)7nSYMYNV$z$mxQ*=p3awZWFk?CSTAU(3-RxyX`hLWlqt0fT4y};2=kI5O~u< z1p4incRs>e93&PfmS_>A4 z1$(1|A5JC5dJThR7BfcA{%aGE!kHc5p{*A+@Udgfw#;}`ifyZC38iXUlg|3iGh}#( zJUTO3g=OV5`rRSFRK-cdLHWMAP&EbX++KYjbt>(@d4_!n@DQ7->9{6*SlU7vmAq39oBh3M_6Me0Vt94K;w z4CCpt4hlpAj+zoKQwE8t+v}u6!*}wd1`2n$waNf99iBc+OKCw49n98tH_yk!&o$o`jn z80glHj0rbf-2^SlKaSa@?$j`duvC?Jvs!6WPdzoJC=_K~i zt&nO59;qbpexjFEBVof8h~WBQ;kn+gCwYo;>U!;JJ4B&W6RNBsTnuwbXp~W&en;-p z?_|p$yOQD(BASzA-!^~TLpME$^hWk|sOhJqFa`ud{(lnBn4u15NyPAhZ6s2}=?Z04 zDMYNL-h#)Rf@lr361v@}!%iXpy1!1ck9@{NM;K=G|H$nQaf89$rBrFg+Brs5@An?( zQYa!l{j7Jp5~-QmOY}vR<>`HVfK_Ehp1gz9-;tWcB_|eYrdJA1-Kq2qO+nciD575` zbj=cv?1ketWUlupMaMftxP=y1DZQG2 zRSj9UgT|z)^hE(I0Cq3}#>g$3vb=-m)84nTgNX@H69I#!frIrl*~V0jVEL!X<5!M3 z7_viksQ}GO@8gF*3_tv<)0TtU?p=)~OG#y2F-Xy<`*Nig!rHr)aEhG)uF$!jopq}Y zQ3CEUpt_e(dviZq$W^-%!_&m1ww0@ZnFrWOw$%!4h7v!u%Y6;z*CRGL3XLO>3fr)SQYZZ8^H@s5U-bUnmd;?5GpGbhW+SSDIq~N@RJB%P9}@>hvP_f1FTzVlP@5dJg<1*E z>>FJnx{&Q4l7RyA+a1uBM23y>ql)u{Ah`x4sB)(?gawp5w`&ctYSVZO<(~EuMn@Tx zOT6)lE{n|*!J^uoEb!Rr(v#fj*cehn3QRU1XX}EYYS4TkymbW@827&U+en>|0%62(#JT8EHL2_+R5R+RV!G3vzBki& z?IcJn*#klr#rm;H@(46e0u$7NEIE+54Oj7C->q0%sl-FmvbSfZ?0*bNR8GHlk4S2B zQ|_LnRg@WkZYKMqs-5~M9*fU777QPeB(&rtVaOnxN1@^_Za9tV70jYh0)03YRuQx39Q+9V7|M zW7id`qv~$ky2Es6ZNs%kHOaZ?!eqZJL*;Wp+b-{a^yeSJ#OuYbpGA|?v=b@(oOBRc zKhUc-nRY!y9UI z<%V5?v)4|rGAD<=gePZ60@r>lb8iq>eaw4?WSK#aJX~>o&pfLF2x_WXdwoUt;y>oy z_x0N^NV!#eawu z7|3qfp&shp@Q$@@<5B>cCH`xYYqq13T8?BSZAX-u+~mnIWjmdi!Rv|Yys)Y9{qMr} z^P~SAYHBL0e!?>%wI#-6s51LeuaqWk6WIs(Qn6#ym0B$W%UNDlv`RYn^;GK~i!chR z9ArZtp(Z3nXwMeQSmr6N3j(Ex$*^$T8$quBF<6US)RqU@6(FJ$U!q0PnhOfjb z9WS`7#g)BtW?27p*@tj5pjj7o^9zDr*rI-RE4_4X9dQFdzb_XM)9*HH#cDY!EkS0S z(S}L3XB}ubd^oQdA-KXoKVZ;WW0XZ9*$!>na5Cy?j=-`%0{8(SBx(RJ_aOy-?99f( zGi$t+8MrJ03q#pyb($HaFVUMT51`KwcI1+~X0_YdeV0ep+qWXy-!80(n-o>Gy_%@1I>7f0`xZAg#wv>rA1oM?2>?IH;h{zjt zfbHNpAl49o*uqdYX2J_Fj|C>yNEmaC%9nGyea&JfvK`B!gXl~~`oFwb)TmT%n44I# zXN;g8REZiOuw;@A>e9TCts?PncW4C!&ze0?=E^F3;9efyegiYg&Nio7(ae{7hy35k z%~EMlPXIHBb(Ui*wQ}5PcPG)hqbCtM402(Q>qDNqr&nYQYpc!MN@LotPlVE@Aw zwWk18To(_Gu~L_ZQ&6o`;UdFFO@>T~^%kih442+|!t#2o+>+87jpcBxa?2a37aSdc zRiW7?<{#-3$U9Wwv2-ML{9@;^s)}5^fMdF$q5R^>+A&WZz=QV5<@E%zU)r=j zoQZI=#b?PtXGt+i8=9*0GY=^0`^9pdm*;dI$?h zUh+$&Jaat4vLvB@dzKKDr2|eG#v@IT5B0W43#+;b#YqO@cYprTzx8MMxBeon+q&Zh zprz~rh>T{)X*YCtwV$;E3l5g*Wo(yG&Hv<)pz&Cqdgeq$GmpMSWPj6W`|GAW84ATI z)Z3*Mr2w5U?6bhyYD&5IlD9=0Mqm|^On@9BW!hQc1UE2uP^mFUbhGN0WXIuQ#O8ah z(*r|uIWnw#Cx>1x5Sz-2{0&e^?>~`%@ew8#e|-H??!{lc{ptPZum41><^Pbs{Wb|U zeS|M0m_mi>3U9<tSM--$(7J3OPF%(QGd-fG+lM6N36p zjXnTaoI62GI5(HJTU2<&4vn&v(`nQRcvfR>lyU)1qebGbM9R&!gF>VM_6IKin|HsYtP9XbDsY?w5R7iIS-b(e z81|-l98OJbivA7|0fTJO=WPt_|L*es=dWLqJ-AIJWS!kQbj)z06oNA07~C9?JCH4} zz|>d@27lQ2jH^pdZyTWJ=yHzlAXlwDbHE(Z=dP+8rNMpZt+rdH6C>|{_c%bs9p*;^0G=%i8r znt=VR2N<0aH16u~Yh0gwmHM;bEJQo>y}Px*wKR|53;8!$dq6AX$e_Y%qz^Vrx#j8O zQ;HkKf^Eg8*%meUDC~$x;poU50k2HnKb?@TIJIk6A)Q+nyuhwzQUROQcl=oChfIHcCq=njMUPAO5d& znqhKVcSL@xGNFyO7bxAXH{=)5@l++&FH0X)tTiCAAHlFmo& zNvx2OxLNwA?U{vhJ|Ep`(|0+IyGC?AwHr;wnM5HNl^@`q+4;mIRyofRoecbI>qUC(69sTsknD(-hY5>kKz;ScV0hHr{(Y57hlEZw#@$`YS#eT%$dD=#A z5HyuHCs|fBa$n(hNRQ9LIvYCUh^9W`m5#*X?c~2Zhr#*-5+$Gv-dN>48sHl-J~w)D zR~d(!AM=LtdxupM`Z$WJLB*KmZ2$^k2Nn1gZyrD+8T{1yB#G6TI|>OGlGh*+kZmla zqJm&cF0Xd#F!vZYlQ_D>WRqfbaMIsx;E*m`mknS@P61V=dKHwLQ-^}pJ0+=MIytAZ zrcqhBPlpHf5_cUCTg0D7YBzq(5_SuyRHA(3&k{GQQH3CnMsbmzxPM04y0BImK1%xF|DA8-Ll{H;|U`WBZ zqa@S`?wu5oltVdasl=jRZm#Yk!HDgQF<8B_Znha$IeCUMl^gaXPa`LT814yIAf}14 z))wjgV^VV?R(MIADBcsrQaYKZQM7-036ecB1$-))&>&l+>_{!!mUh`y9|z2uucofs z5=CBtLb1dX6fJ|S#_&=Qy@_YMoo(40At#Xi2e_<6808&<>;h3k_5M=L21hTusGS(wYPIv907{}~qagxL zPR_t1=nS9@RfTj%u0f~Ws4b11ruZyb9!BY$Nq$F4=nvo37BUg1|4tah9UUW+=II)C zf>h}@qhLt0mIMN=K`TL!6j^;I*8psf>=HwQU(^1OIA3jfkeYv?X z=#t=W_VG|zo@};IE6%yZfi!^C5%b=!r|BHD7KnNd<}3ztE!=sgIM7T``f!+*&ff-? z@&L@4t{5ug#=h7Dy$M6_mS_}FnJhF7+mR(MA)OgNPPBtU{g`B5U*7-n?c?zFFZ$hM zUUh71p!8O(ghHPq@1k!`+=Ehu{GUuihv=f*DptHL0gqndP@LvGC~olt+(#4 zNN|@7+gmNznfb8bIo0YHJ;VLQN@~>b+R-IBsFJ66=P8=*>&-hF1OC%T;dstLk|{Kx zZx`jNU_(OMpPg$Z#@V5=tI7D)Ku|EIHOBxK7jhd@!==?>u7O&C!huJe6ZAEK zLSH{OHhB8#i}aPbF1~)2zLd39!2!K$;)jmIE5-vlY3!&ZtEeE;j6%)gd7adOoyt>l z3XXOZC9)R8OpCMf;zo~i(5VO*zrl3J9ItO-GhGl28In~T()% zk|+C00^3+AwAAh?IZp2N1UF!)-`Y0BFvA6cp+IAaN`H)Q<%fy=njEyeserP^p2Ytd z{@M_wFmd=338TMHXF|kx_x6cF_- zA`Us!Y}^kwi|?u`Ldw`kAul;2YCOO`Ytw<-K)bf9_W+}0hxku#yNdrlMyMr27)RL= zd~W5wK&HRAk|kNjzJS*5iS+RLsR8`)0-(DO%wDfSNlnlVFb5N$HLZcOPzvp7(gyhE zF49MssDs;R1UY-QD<27*EqTgIok&6GvH){IX<(He>T&%Sr!(*cHA%mCP37nNkKaCe z{VJqCE=O^b+sw4v4{rQcg*w>}#5O9k6X0N;GB8GWO&>Bm6Z_;Tj9np(3ae@&Seayio0ZU4D@%rQJ(=mq)B>%dQu5ql?#M4 zMcb{;XL{1>hJH@r!CXxup#-;qi4)w1DYz5Wh1X>CP&Tf18`i+F(FJjF1z>0Z`B>QH zpw8@;w7x5gEy+Csl{vI?nt=B&YC3It(pl|E1?op9`I(@^HToLE4m`s1fKVHi-+)wY zN2uHa)h~&THnX;g{Y1@8HAa+Bu}ONaO#~Z!N@isbYl6$Az8a4}^+S2-l5TR0XK?IE z%uPnkoSGE@^1pJgnIs-KJCbB&H0;yvvJsicQv+^%)JQ!|Ic2-CW-a73cLAYj~7EDk&L~6UgBt3T&XwtM^eUL4M%Jq73 zJ%*0%42M)g%K$2;JW2!_$q6OZjxm_Four(ePu6)5=;K>Msk|DM0rT43EE&?@{`>Fz zU*L<&`@aj8;p`P2v|enFZgYjR4N$V;aWiz_ejcW-3I%95M8Y9tj*speeunzQ6gTpO zAZaRV6i>w87E0l?VUvYb)tL!ZpaVc|k&yHdoAd;$T~S3&ubDF49Al43ovzZC4pNb` zeZ3q~HOpRFvUH8M@#OG2b-XF0N=B(E!MvlKm|Q>#PO#4!Fxsv?=9xtNBcqDo!zgdU zQRZZQ?6e9QR1TsB{_j=*QoJUk9NcTSQ~Ul&e*9Bb{SQ)E%9RiNwiH!b*=*EDiqCe> z#&u1@m@suN-sEXGn!Ju?mtUzv72K)>!m8?xWg`DM{O#ZV?SD>>Tf3f(U5oOWx~F7e zGDuKXzrL;T>}yEMQ8rH+l+a`;IgFj`v!T6WX-k5!$h!lL?KWBv!uvbndoY$Nx>1qh za!K^`sL-erHcrqADFF~}P9l@2!@bN($^hMZ+R8l}9Z~|x-F%t$vormmLU9O*a%rWk z=BbiPl3L_(yn^?(O$_hoV>0gw#|RK)kX5ddC$mj=Ws{@WkdX5;-Y3*;OYoV^wXNEC zpMW1I=re;UFcFK(L46Pi@8Dk5&fVrboH_BiBW{T0GH!P{Qscq)ZOTy!ZBq4im7vQP z_Vv=W-shELB|jb0J`{k4TyH)&COYL}nN&?cyA&_`lK8iB9Qahr&Ow7x03tJTS$42u zn9%&13C*whXO7dq39sK!nk{inKMN-W=*!+;yLWsBFA+w?={KNvh8%5IPp+<#NKIxB zmYf2Dy29?kCmUw6v7HM*vUv)cnRf+eTqkT9#mzH!k|tE$cG<7j!aANR%C?eFS34Bz zHg=nP^(G(IoG;-zL|S@kpg|jm@seES@)p=a+}6}_r1dQH=_;qM#EgGO=TS*}1k*&OuV)!M=BM;kc>87g>hFW`ksn=NhDQ=LlcYuM?(8Wcy$C86 zYs-UaTu(BkJCMzuSuGA~o)Y}!na+rtM74+dzZVn&1C`A$_nQLYi4=K)Pl7XbfLY}m zt#1yBt}s0Z!490PK#olr^}fDnqgxKt3TV;iBWq7U5sC)DfVFEVxTcv!57i&G5b$V~ zZySlA9VvEob-h1*x8qv@6?Bu~X4 zA8@D?FKho@8xNq{sFw8blU54pF{ou}nx8@fL z3i5dz*sCkc>p_)`?E;aauA~-9f=Ehr1Ov^%>cYfzkyM+Sx2a|9epyj=eyxSK?GvY` zjfDc1TK7kFe}y5c86>C)ilD?s!$8b#A{YzuoJggjf*2G+MkhVX<`x}Alz#ZbKwno( zmZ6gs+h@Z#}h^!D|YTIpS8Rt`CR~rVJ!u}_I|RZQFVj{cyjfD zvJZezej|w=PG{jL%1imAa=O&GDP0*LwYI{a|Eq&~%bF=I?5m5jPhteX>7F?uD}3Rb!E^>QF-T%3aiXbI zYJtOHx>KjD_a5C7#;>%>!owho7dl-j{YGgNc^)vp8BZM;fFbOQ5fpKHGgQz~soD$f zsx#RR$hgx02Tq1W<4FOQK}tFmV_KlB-P00+OJ^9vZ3iRYh9;^3138MlI)M^kZ((B8 z(Q~$*J*`n=S?{Pp=-i~Edv!_w&BD)8~|IhZrB^ z(Xk-D6jrImg9U=lkwEGj1TjhLL}8)PbeWxz2+nCCL9;8-(W=>YSz%&EG=gl552f~{ z6o(}^Zx*#%^Z|M`+GMtZqVS<>iG?#olOF{WoB{~9=xz{_A|X>&5q+j??V3i+tBNbi z9U7Btl=YsUFu_tCQ?(VO!35>0p*pSvLlUfh65c+$yiBe!4tjJtK+h(x@JMEc-X{Pv zYMcn;l5kk7?uO_2EifhYl~_Rq%L4gj7MTybkVajliixUk(nRCG^ph0yzGr@mF%}sN-A{Z z*Xe)5`HK{qpoH;&->xIIpnGb2LviY;8y*Z)TcMKSAY!|*AoRjd)DxiCPb%Z!4^=Qp zno*yHtNU%J@`69o8T~V)~T3>)RCLKEnp8B|-50r*A)d`#dDp z<-b9?gnBZGPC%+j+LwHES1%YK3$#QG7p>)q)~=n9Nw(7x4~$|YQ?;R(l#=yD#h?P_ zZwwqzU2K61qmiPV2b)6NG2Y49iX5dCQV*!3*|MmxL<3b()JISU(j6YH&z%}?s+Upa z33a@6rQ%f?B-des8lJnmCr*awQf7OaM?K{4*))A<;0ukzp&yc}Ll3f89oz-e7YJl* zsPYU>4J*BUu`6c1%I12ZIQsybBhC0u3XKa9L=bnjM+^}&%ef>Mv7LzlilutDQ9fS9W%;E0LRT`_qiEMh_@Z14J7 z?a#Yf-i_2b8@+-68+9i3kx8D>r;RJDxZNLca+}~edE!`v#{^B??9$tfXaOFiK0YPg zz0HS;w9je!X|GbBJ8R3;@{CR+@cvLW&yigPVf{# z*RQ1FNx829vEe#n5`!Dmb114$Oo5u9(>zp@_uYB?#{|q&%?b&ajIMC^<17sVP%upP=b$C4LGTKQF0{AD4 ztMay$U?zJ)wGc-n+`y-{QwHkDX^*P8FaN^ospF=d6Wh^fV{$&dqpwR?x6}(dlUx}q z!aBP@Tk)L5Nw3;FOHug!j{(E^@#|M90z}oPK+o?`Zl6ys0X}-t7OE9|usU`OesM(s z*gMG=@XcDeUMs+oE%BbCG^KSxo17h@yxrYr`36eLHbJyt;UJ`&;lGz&cKlo| zKoc*T4ldmW5P0V_P}!&I;Y-+J6@~#bA<6r@_~A!Ci*N_?m45$oc+#t2qmzf=EZlB7 zae*wDT?1(M@JhI`Keco^Zo8=ennZ(o_wl|`*XCmH^NH2TLvncXmgE|7^WB}1-Avj( zvCHkQxxVZa@WklwApvn#*Q%w1rxgS%C7D>lJE&XA^MQ1!?wAwSshrC71L3_A^0F&s zHzn(oiyU@>!RhD;g*-%)3zY2Vuiyh5}wcV8n zm|hKjXh%4lQj(=t4@`;)_oy-~s<(xM^izy5KO&7yY~~KIPu{S=Ky1=4)l5>IU=jg1^;W-c^ER`(_O%BxnURX0=2?Fx+e<^56NxSDG z4U3H$qVOk>7kXE zfT%^DVF~R7mP0JV1=!ba!1#ag$q+7N&F^i2}<;_q?(gdKR^e*#R6t^EbX_Q@{P5{ zfCxtvLK>8Ydd+T=YBv@iT!Dq0jfK+s3l$PH-HZv<*ohyG9(jS)>r0VyH z;H}5B$b+0Amu6qXTq4YOnrEWk2fiml~Y^I6P>cDdF4`-~Hbsj`Hf$qJQmM{R6F z>M@mw$j;^fVGBhQICld+*R?kshoYGjVqn9;h)dLFr=|eD6g8<36LK2&M^bBB@_njl z1S7Y~p!lkts);gH6-@Rr$Xqrq-OP)J`qdYG4UuvnSD?izrE{Ow(Tho>H$}p29L-8f69B$&w$N zwhS^v+niW$6L+U}`wohnC+=!z;7mez_eIUTRHTh3?Mb2o{JS{Jl^ASqI9#uCZJ_f} z*oNxWgTmw(JN3<`Y65u5=(k9~9vFxup<3xZfJa%&z4??fsZu4F6&bx`Rp_GSEWZIQ z9`x|a-u-_G|0O-3FB6ZD=ooj|HE>)SX|6M-$CkryxW;z%X6p)7Lh}AEWSw?}2iDwL zP(=p|is-oUDZqnC@`vk{jMFET43Tsd$rr}dA82!TxmawV-P!cT37D;ICTAgzcO)@m zWlz~`3A3g(i0{EWqzFx4U&?KL#_9DMoH*d94k7JHDgL+N^(S_y;hVQ^Z9n9(pyHt< z4!c%ccXIez^8ikwHLzNeIa0%@gYHW~Gu%Ghuw8JK+qWbEOIfPg0mx%ca;Inm$Y+*c z0+X24;2kg4(N=#bTy0+Uen0%D|Bw!$EW;`f`#E#3<1kZZa#dL!7z?c{`?aeShtpVC zNh8_1c4$7(8QUD}D9L5gS8g3DNoAE8@{v8XMO^(bb00CXFa|4QIsw&twFbmyPw92!7iAu6I5PSju3O7eZaq^H0rNq!9zzj__*;A-8 zAe^PzV|{VA2!;>=4$_rcQ_6j}m!ksADST06T0>JnaRq*wE}MDnVE-)Td>5p?lFH4n zHh@*w;maa&KM4Oz`rID~U_6jvQAA)FwJGXwn;pIw%!c9)_!Nu1C0>_Kd(;_7F)4EZ zOR>tHnI{svd|Wg{dGql1v}`goQ-8HPSCS_J>BA#kDmPeubcAokz%)t@ll5t!=t9!V z0#ZFI{iuywTIfo!sv()46q1z{OK4#UQ!miROXj$8s6$8D(@z5p z*f5B4bs;Hapj{lS*j0)pNFPSh0D136@CJ%%;zPm)IL^NJmykxJamxs2>TQNUq;D zz$pt5<9qU43gufB9j+zgGkx^-Ema*J+H|*$!6Q#`)=hG%%sSOhf-MQ)I%#d+IhYPx z!PROsxEf9t#!D0yZNRr3U^M8H)NrIt=zvgrLU3mL7U}Ok%H3v2*8Vx|k#?*6IACbbMn|2EbsAOFs z3tXN62I`cTfiV-7htKur;bE;T|AD(Wyvbmk;{ z4$gJUkOB!aD`MLq@pEIRYDJ&ieIojB2NGlIYb4^%ylODE!mPp|rlH&~z#O5u$BzTVycS!bk&g=}qju$?fIV3svI}9LCFO3oHnzY@%xk4Q zzrjnvQZISJ-djulRCaik=CE=AUN1UQb+Ki6@^zPVvq~ONOIKcstag+{Rqg(s*U$iG znrTzB`bKe6%zN0}GD4q2pCc^y8&jI zdM*-`-9CLtPQEURk-T3};=$d`YJe8js?p_aD1Nq~SLCvF8&q!Xf#II&vl&)9?dM`h zn_7=0I^0Rtx!oawPjse=ipzx#|KWu*M-+p$x5G7Fno#Z94{Zt-%yNtD1d0EFAn|YM z9h7WaRD&214t+!*qGeNXBms#f%Vsp02^3D6r!G6I^^jUnW=v1iH@kkfz5vBUTh1NK zoGtluhr~+p!MuAr!1Dc3CZs&^8t`%v~Co(iTs%BOWNF=+V~PfnN*`nxTH++rpw zC#VcE%Mu`Or-7}V`@}C`r9P#5=$)0qI*bYgeL05${1eGFoL>yFVujS?oT_)_?Otya zBvDUx*XY7QM(ZtBa~i-o!#_PXOH( z323dO(f~-41n^GX5olv(5RE)}S_u(`Dscll`^CWz3m}Y{7b2C`y6(f^vqA_lr%(Fv z+sEPcPnvoJbL4uyh003e0ExYmIs^4kwJSsK3i$mIJ=;@C3f{B|i106i?TPCG!H6tZ zd{x+}y+l)*iR%?*kLI0z*U|hhxw@gFu`PR^+xwMUhq1zh`%jo~e!@FF^YroB7T{*JVUX&`?Dp7xew(wm_RpTvp^kYgsYavNCzVT9FDFuC`(>R9W;YkOq9PIVS2{G&?0rwgjm!3Ml~7 zS(Gd{!3TFUpaovnv^1BBJ&Vu`hr35!$xEz@7icvSS$z*aijjIy-jMbRuX4!Osp?Mn zT=Tk;q$#A#Z+539wE@r#^}&_UkCV^VwfdhNf@!MDMbQY_Y|f} zsVxqEq?(l-eYM^#9HoN;dvK^*7+2nmC4)`rdgHKt16Ngvy%c)d`ot&8;jQv2NXa*! zn7uY$@Xz$OpS}H&;Bl#?C6~+iCOJG;$A;||9)Sd+en<2HvCzuc=CmiFe$07dZCfz`?qY zdq7d{tt8HfqA-E8_F!MU93OZm7aigutlRBFKTU0*`H9LdrgvWK!FZP~ga$?rLvFo{ zT9`SD+(?gtmqCqgy`4fBch)LGH~vpYv|N(1QikLsk~{PaQZKCisK0g@i`G&N47yR;r?s1A10J=Z zHc8$|B6kVDS4=x;rJ>d}&WkO^o4rXrAdH3Lxa! zZ@yfWr*K00{7MQr(;f@o{YLt)RHW7n@Gt?F%F}|?X$o+IZ=l_laN=|3|u1fBpIgsF^^}3t%TsiXh#N zRchEL1(*qKV=Nl$VKuOjbXcBt?Ff}6`?R8gyG?itwv4la_|s=cf!sBW5)v^cIcdwH zW)Pk)sShj50tDT(EmX|5yE*Yd3HtUsoii;UffTvZXjAnSf5rV1fpViPb$YFXseP<^y9p6#nASdNeYGh)_TX(h2%#&(*v_7J$dWg(B3|;9_6K4Fxb!{-|bQVx?g=CiGfM(77P*W%FOB8G- z2Qm#9bO2()ykhNvF6Piy>Om{QqBO9#%ZY(0Mi2qNgx55kfC^Ppf>h zElI5F4wKem;VdTxrd>d__1-u#CWHQ>dpB+%P+u`cBKc49`jvyPZHchd9VhE1Y+A2P zIR!gpEAPESdfwrklOF@%GBj)-1|C*%-xUJTXb1uv3c@oQ$7A76lJa&`ciGO5%C>^4 zi!vFN1X}gB6)$i10~(2j)`8ze z4c^!^yZH&;F!8@nAnLsUf^z|Iowa*=0?^9wdXd<)$bqm=BtLVW6|Illk!NzuLM4OF z(|FgT3@E#FZz|z*OFxlQUhveK&rb~xOD()wL2JTlud8r23-LA)GMWJheEgSOBWlSnCmWu z+<`wxv$zIF@S-OKb{ui4*LcxgZfW4yL3H#qzd2B%ll1i{=xDG32Xt=yt$S&540Nbp zVO0oZfGe~c;3+)=Ib|=Gh>m9H*|dxe>6Q!VKmN0l)k|jLqB!Oly^Z~DSYDqX`-T%^j-eu7T7h1XIUwmT*o=p zPNB)NQ*lvPu9galO8Xp5hpZ$7qa-&cfXOQGFuN(rzy*<@zGez%nl~^yQ-5~>WH3oK z3Y$>O7(__Uy;^{?VNg_RPS!#Hw4X}*aoq^GhM_MT&{kF+`LjkMDE77~swxZ}yVF<{ zD1J&d&~2qkKFX!cy?|28awxfBDt&rVCb2&nmqy~tkZ!;4Gl%-bHag6;xtW){8lt1K zoW8R;5D^&@8}1&m2W7Ybo|S(6t$AcdigGp!wMeSNcoqbeIN~6~sNVHHve2PF1)U(# z9|nfGa-)?2D!4gWp3jmy>{%vE`(n@!gLdrAxQ4GLL?tg&8?(SHq;o`9s~M5o1jy6C z9R%MpCDE!4(%?C=F|PDpT|3DIwO?V*nnmLfT4>$YZnk)Zp96Szhy*O$x^+#|aDMcA zAcZ{%UR%pXQlO>HKIO3dq!?2P!h^xcXUxqnMGd|uuL?V&L3R|R8*@o(N zn8Bnf#7Q|ZSW80QjNNwe8Ir!4y%$xA%KlR2>Y! zrp|Hzv@J{tXN(fQ_6=+*ul*%jPFZ6S?0FTA0?JWdaC-ctB6RZ4{dAzZ)mz#Q<_~`G zgYd&2`U1Ru8s1XH31OJv`4pW^Os;8<>?njrJs zE|^vQvt(B3h{&#WnOX^8Hrs9cvw<_}m)gB8cd%)?yZ5D|nr>Lj`x?r$gi$skg|Ae* z+>U+$?90J&7R{NQgH@`zLm^4I>&t1OEpH^Kaovs{3+1=sl7&W19>0RdCdAu;43k%c zzTUd!=H^}v*rx+itEtgco_c%RcASJo4S{c)8^uBIlM+`8tfmZn?Ylw2#1QMSXwWM! z0pbsaH(Bx5_EAggpqOpy>zC=Pti$&DlMg~fju7EB5t$#MUegc07m9?1y3r=lradH% zPKIlirPAtxqzuq^Qf~&L5AcDvFQV;c`9zpmkw>A>yewgSlPu1hizj*BLnSBaSez(% zEh+~nLg>liinLwFgd;)jR4&s+rl>5jb*B-2(PN4=_c`lALC&+Qtx=d7+Z8i(EFNXI ze_|2)h()VXs|x1LU7XbOP5Gs!ACL!ORi^}_^u@bfdG)qP>xq^=OX*cd$8|0!uA`;l zI^@_$Dwx&^T1Ob9*j2XZ#Ct|!)-@!wN)m0@Dg3AmFp~_-X?lR3Z$QV|CO*alKr*_3 zl z1*Bd+rfcXAVby3#rv`G~lfNOyR)vD}W#Iz|Nhd8J?D=;l=|6Y&M3>16w6H30F)cS- zp|S~^gzOB9$Mix`3u=UFS0gM%0y<=f|PzkL7m zx6j@_lGnd@`{Vnchqqsv`63j7*5c+g9ISP8 zAKZugK|TuNNh&Sf*aG8$+Eor9&si{8e*Y=-4gSDLM-h@Ox|7$U4C0Q-+`AoI21Ty- zUg=l6b8}`bO3(IHiY_fWJb6hzRq%ZAkv5{;QnQ{cA!9)w$NI?p%NywZa$C18eR?GE zY*lsox&g$zMo0HnJw-Kfl1)rTao%>J){x%vEA{o0*PnVj*NkR9diz$kO|C%Se-Yk( zqfHPZs?nfMD}`$%+w#h1U3R!PgHCW_6X>9KAg2ZUydSK1__3g@ z;GDGGj>}LrKuEHqyA-|S^`De`FgB`M-CZPff(R8S7&RGcrQdP1m4&`oqK6Q8sP!I7k&i$UpzVCm$T{2BuF}5hGNR;XrD!$nuUOpv z3T^)eA_khY0zF9LO0USDbu7Jvb+8Mn3n;kW%okGO?dyEFlD|CT-2U_>amp95Us35qAI=i?4 zs9Q<0kQ~jJw#qOZ2pAbN9k&LN+<$bP^bRV!y&>Jiuzcqvw@_EoP8Ek6vUieZg{83{ zz5N=HmzmHss3jQWC>+ownlKMiEIKp|V|Un{D7KDQN+x1Febzp6m6d)HNk&mHA1vA)Ah zSy8yr>=*S6qC-)zO)AN=Bwd%=qE;I7>d&um`1PT-W{|znGOJG}VChq;ek^CmKAe+V z%^cr<5dL?QlKA`Z_Kg&c9XMcCO|2|5Hw8OenLS~q>$w8R*ZaDuZbS#RdW(T9;gFJt zRRNmbH7|%w4Q1FSk#9g|*V`tNhwSEcJ}oLj;{#yoHp=ape)bfecG>a3o3xXgjBi|W z^(JE-{!GeeH>#pmdR>Filn#Ik%*roG&8-^#nR3hNsjx-P{z7^5hWCDo9 zKNA!#8pJ}PQ(B4jY7#S|bY2`auX%{k0_pp8L<}T>lv8f=?#OvyqG25%iFbdJtUBm5S?b4FtyDxMN) zikMLFN2m1o(5tzbQ(rkf19uf9-DYJbxn|43y`nk5ncPlRcl$(j7Dyby>f{8F>|%C3 zpMnoFwuL|_z179N3bXxs!I1WUT)au+k&XhRWgWwX?qK7v4- zf(IOpfo5`zZOj059LmHFax?bX(F3H917@a)w5`dQ4U$7wr$>3+6%1w*6oBctN>Zow z{jR{Byz|GxgDDueU0N>O8auMv!Hz=cID7oQv1Z?X_rXxBJ^8aeRHqS`kPLVLl%P>5R5AaM7xz&i29v+85UK)HH;6rYa`rjh#c0mTB(pe#)DuWZxD{B z`d~ZnMnj96dw(^UCyd%bT5rh?$K7H;MuwXdvQWDkn zOQy!fpcD}hbN5TFMg&&YAmlGKhTXxnHgN(D1Oyg83M88Voca_W?-x?jB^|{ViM+*f zIg|^Gf&4=rh|6b$4*3Uc{~!Dq*~~p;IrZ1DtzzOJE9; zX6n6a-MdXY_IC2avmu^T>|+GF!(mf zBZ}=Z>0>PE*#lXlmh2u-G~})XZDxtj7pYZUl11`NdGGmjrD3ls8Et&ZyFJ>4vTVIe zBWvR+T#IEXT!$iE64qmp=S?o%iqj*Hq%E9Yx2X4aS-cc*169Q?rp435Yob;+NK-;l zFp#~3auJy_=zvo=$EJL)WoMlz47iFC!WWQT@Gz9UL zRB$b6`*)6@Zt5|4aum9T6ABAGz{J9p1QFMg)NhRJ7_giSSS zxGkjcBUcls?>Z(bQQ_#OH0YK)i`At*jDHMFT9F4T5l&WW*`XU{;DN1`67hM-U@9bKWYO%dj?p~>9brwqUU3bVo9bbv{nujdaG0&43Js8g`9x1{*@c~|XnFIm zK~b60Q*;|Dsj?&p8X)C5JtJXLFifv+=xJ&qU7_c%imsgaT|-zygB{1>I}=ZQtGCs|2?wEzs`^A>$k7Y$u1~zZ(oM@pGk`I&HJCq zUw@tC6TS)mN&kZbpBid)>HQrY=NXSWlxer3Vt`XKaeJF~s8U}j}#d2u@=Zcx*B>O#~J)j7-Zc>1P zWw}$zC7d|K1ldAI8WsRlP2P~qooK_wI5?|Bsu3s*$(^%i;t&Y# zR6(3TTao$@|AK>;!C0kz#1GzRbyiN6-nVYP)`DaFVxPP=t);{x)u{o}QRiY*kI)0+ zx11OiW!IqmaE;Y$LZJQ38mHcPSw*?x*04n~;V8Dh<&aG-96!Y1s;HG@I~*iFBnQ1^ z>i&}s_#42NR9bc{UbM}}UI;WT;K|!EvZ*6HKO=HC7hsVv++CERCcoJgvq^;jkj)ny zb&WU8OH{he-ZhSM3UkYkUrw|VQ0$jI>;pO#FvNsov{g0kGYj1eg9^?E)WMh|gZLad zi0ycU=R%WBZ`CE!7VBKx4m9D=P;Uw<@OJ}>32ar{?hrG{C{NY>&>1~5@P(S&3jbhE z2;xe52Pz;sCtr-mDU(f0C~sdDS(1MR#g&FRufkx9rNjA-%!l`1z5VI!pI$!?=|yVY z{}vs#-@cjm9kp||dmh&!?UT0#e?a(F?F)1j&NK@#M)OTH3jDnWBTU$rJGMNp*7?j@7qM^m-gW9!JCcp4t3=&QaTW)ZHI7*uV zo#Yps%|EP6Ry0>B8`icL=r`#JI!>qB@2WLxbq(X5nIyVhcOVM>#42NH$!3~Vps3LO& zUTFtp^& zv-PM$de_jGAYMQVrD~Ze!#^w;2&A1G2-Z0Un1`Z*R(#VEue$|LDE;DzOG*wH0ih=A zQA=751Jc_85v=sh2T*cPWGp@Cmo|dlKpEaqX?~nrspE}8s%@k+DU{B~DRt{VP#*c> z!y>7kxBPCPz)es=v6NC-0Q3~mT-EWff%4Gzsih2|&F7}wCIdNkD1Fgd_Eo9kS=#@7LY){eR4+2aJ1tO$s-fFhT;)y1%MZg}|CL>n zrrG|3{N+EseZ)TlUs%vni_x^M=y1A%-ow)^B-@&yFhSj1CviP0l{Y4wWrd`G&k1Mn zm$LuO+_{pY0);$;A}QgWH_6_=x)pHrLR?{!Ht~r#&`8qFGVV!M>DksA&9`fYg~x2z zS8l|m=*T8d834HL2s<9T!TEOZTbeC6%gft@Zb$_7I?poH;K+ahMYg@)=PZMVsjU=f zW^J|TJeo{TLnT8TjM9LEI$l=XBtwO0Mk)!cRoSTNBk-U7<|c zX3It8`vB5`m~AYlgYzrcVR%!u=*#Ta_Py{Q7>xhumWw}LrQBzPXO0 zJe8(J(H)hzV`HwuhJQvO8LKG(B$6*0#b>(3ZpQ!Sw_yz2B0QB#K3=73Y2m zelQP-&omTUQ6p^d;Ai(JW-| zyVVXF>+l@q?v7+f)HwuHJ9xC7PN1J{pP*`ckntohcu{QtkY&d00}$C)sylSh5a9uM ztt2dwJ!E;u53Asy7PavAsD)u#K%uj!e7?|UCI=Z`(B&32o*Xh1?m zO8s>;%*MXDa<6O~VhS(;HE3Cs9JlmQqPD;a6*pNTIk0I7FoU)8x2T(>{gY8meJ~?B zPFfvOsjlwxGASh1f^?zNKu~w3UYeK@p$NZ9CY6^?&H-t5c=Uvyp%y74Ycy2^l(Sz@ zI8`MsF7N+ac>5eWwYAe@y6uG%gnNh1X?DlB!-85;Df@kD!lQj0KV&EqS8u#@p@D6e zbzX`Aofj&`;ch0?M6T@gBi_jtFtFHo4_0l#jAT<_1+O?{q9d`|TW)fAUsK04fQonNpgVkonE%r-P^Cnjl zz(^Nr3`!EXWf(N=ejXMkB*q)*Dk_f#v&k#ey|RpPRXnoe1O$2Ws(ovr_**i|zJ2qd z>$k6pMEv&k=eB|v;-{AwZLgYH=**ecP6S{pL9(UV$1FKfJ3%#yW)d@q>LKoAC_YsC z(?{;R^(vFaCRj-G=Eno0wiRtSxd#%zfCBXmgiMTchcgAgG>pU+rzi5SF(nIUO(*CO zZf@;a?C6sBNywT>UNO)8;Z~T1bEAHM>yJL;_pUx9RzDTPz!rtPgI+>O*6x6<;aC&+ zqPX@c)AsiU&VGQdOx5N>%9V9RWlO#=1A9l@-W)+sgpUtMDrBkY^DHHm|n?Mgn- zeVqU!P2zu!o>%33$1ZG1rYC)I4K;D3*htWvLVO=c&$@=PG$`qEA{)UMIwz;_Ov((Q znThJCIu|^+6SS07%~5VgrW3~J*4N6sbe)9{R;*PMXd;PrP<%;m1lMyYj!5)y720J= z(yF8*DEAE=U|X=4Gq1whc4-Y%ikKe7_-AI2C@V&mhzpzvLEA;m7;4xhdPNwCnJ@#V&Duq|M%=g>wYTCd`*PwqnNFwPH z%cYrqXrnTas|V>q=1{@Ik> zpzD$7F1Y%B8D2j|(o{hDcex;ZBs{Oxvf59(P83%C&;dg6%JRD@^1s7#0XiBK7{g?J z$srFaths85YUn^6zr8GzTaYEC2uj;ILxsfq@__^RtRBB^&4xM(V(`2G)IOOa4iF!e z%29Ug&2Sv5!GL;Sr&_EM@M+T{z}+(0EgJ52HSXHdkc+A2nUMdiC&r?QNgz>g${+k7 zjX3`@{Lr?ovCE(YYB;++lx$1h!0FRuXyVrB6Zu6u`=t~Rx3(z*V9&Flx>fS@aU5U@ISr)I;5E$d5d#Tz1E1ADC-V2^yn1ACaJ_ zvK}^wZWpW!4l>4f&IwReciZL@`bP%IE-Q%q_L4vJ@+VWv#Szwn3eDbjRoJog=*aUgrT#(Cg?wwg9vgiYaM3lMR!Tv6(9w81kfe+FCupOYYhHqhi{Veg}l zow>_yop1cUvWax7%`ctdTA-K3WH+eklJYZ-UD`sx;cI8u?r=%D9}p^uOPAV3b`XH| zrIBsVI8&3?h)JHd_o_n;f)+x*bQ{sr34N^%XmoZ2|2OsBe*GxP=bEtOvpfn6Dpyvx zF}iRx2HU3cY|#bh;?}v+mi!%1Ah&J<&M$pa64aEVPqM2}wUibrYz#g@&={Pmo>Xl4 zZ*6GN%eU7XQRHYwxRRd)wPkU^V6<9#kj+VQE(`Zr!G7AbA>8EVuVjgPc(RmY{*YiH z*-HD6^Pu^ReiO1*bL=i^2=!#NH zPfgK?x0jNM%n|%BM|y+#ToJ@kJefYiV+vH+2XnoL3&7S|6F{;GB8d;(FxzAco!Eu+ z&Yo3AHoa^MmxaM+H!Y-nT|p5bW2*?}6oW1dH4NtYKx;L^76IcnHuM@f+B>O%z(!9J z8)kNz8y~dFv%l~xt*?4UTs!#vs7-BnV0x4V0Ep-g*Y zLk)JjsC+coj|4C3imorR{o0-UyNuYbk_Voh9hm<>`6BbdfzW9d*W+gyY ziVf>Zig3Axh6;@!b1n3CeG*QKk1GfJE!18$A=0w4ykNX{+GQ^G%_3{=CC^9&0RI)ET!U5>m! z)Ah;`_|=KOe-nQ2{ruFwefyf4QQ^Da`0m%~UqRFL%Pcen3lms2oe+7jrH`keFl1CD zbRrUkEq&RgK#m*MoNwfkg?*DkGKyZd`$ii=g^s-22^>Pbw=Jy5C1oq+Okt)-`$-Lc z?y)gJc~+@sT{gg|AvI({^aqlWkSyMoRO)cxwzlp&De1E0-M#jS?;I$phfe4crxyuV195n%b>EkhnJejk&FK0LiQPLQw_BCAa;ZwF zg{MO#>vb!%R&3%p?du$;IXS3XTTxPP3w$8f518PKBHky(>AC7aCPdTQ~x9aIiOzX&}#D~dV^Q2Q376tImA+dJOl?1Z&G z$5i>aO-i9=?`Rdjub_nzWB|C1a>@&buQy?YC>(|g<{$&h4Z4MR%}&W|nN>Ix zPUtJ6$QBbH-)>RK2ro~Q`qkTAx-2J2@)m+hmqs$ri;C`F6eXlMYKB$<&OV9U2oPbNphWu zz2~oRP%_EL(LnDolc@h8X=Jf@Mnq<89ZTko`yk^Gng`j8WWzU(^g^OHERBuWx|;xL zcI)DQ>3qk}cRUIdVTP`}x2kSsdbl4y%eNeJoe?w1=E4myAkb6own-#*_noR{r7vOB zbHTq<*~8}wr=IhG-T~yvbR-H*E zXQLKJCasIMN*xD{27%;@7$U~wvL-S3!ljU->zc@!wo&#Cw#j!}*YU*S!dq-85a^ky zN^M%V=LQTCcZg&kYdq8MAjveh9$NtjF?1fL{*&CP{p4TP7RRNCh`tA_-tFD1LPeK| zbE%5tdWT)}j3fCiA{yQmh< zA9HiL(Plq%tJ^N%yc|U2)D7UjF1oI zED!E{bepN=j;B-z2A?*mk1ctbHMEG)5Vlp5V-c4}fnyOKCXnA!fk4V{y?^57OheEg z(YBoamb&?>7VW$cPY6Z)g5uSv7SNyIq-%^&|Kc;(YpB*N(Z z=vCH!0nCDU5tWEODvYTn27L5VZAd%s;|ti+a(>5Y7>#;{=^SndHS9@&qf_(B`!h5~ z#cAEEP_LIt8Mv#;QCS|OZr*aEqqkO}D>1>`sktPR@(EyT6!##hEjS3Ud(ReKkaAFI z%ZnTueONulu&b$>DPVfW)D5_W#^=+^+1YCe?c=gePyOfg;c}!CjGYGKcJOodS9#Qu zJ)tv}o^}gNmK+#4Hof)a?@AgP`M5ELY}H#}uN+fVOU(!2LJJyD$-~DtXW5E}tvrd- z6mq|&Fr~_V*WQuG>oLfVbFB?I^oGw_ryirxVx*J|glG1M?OL*QgJ&2GrxtnM;YB&C zay49#QI2)*!wcZg2<(*H)xEu&5%GkIB|z0%GONNqHVzzA6jv4!JWfg*0sg(P8|P!` z7D%d@QgjW9YHPo4VYE)D@@ahg;~i5KS#9EU5JeY8iKkBB9wCG2nlEaoLvY!@mH!3& zN53-jfN$tJ`OTmHdiqmu28a9=F*pg=^c&)uzPWt(yYTky<-^}d(guCo$$&qI? zfIUO7%{5!0lukIz>gvm+644`|gV*b2RFx0yO3Ef_;iIOih9hgkgzlN0AD}j0vA63o zx@jFgMjy3oSf`5Z^155){hi$0kbouQ(-r%thQDc#^dFZOuM+6>hV1U)SoHO&yd-OG zgUo3CEtrbu!5DNA=*+dMAU{MZNnOsPfw}057$($NQVl=TUjQy8)YJ(|#?L_Zca&bP zFpj9X>(U05OB9CyCSnV00(KFfjSsu}6B zzwT^PBFHw?CIoCaXJS z0*jbQ%O(6|efW>oIHUsyBi)Agug?lIDQ|_55}SswFKg9A@0Omc3Mi~yMq^1$8C=?X zQGVNwiDcGw9+jYB*Vd5*Qtz_KYc6p^uKu-yS;l}~yFF7tPNlNNcAXU|&JT+EobuP% z0T_NPhlPtj{`Ox|9(z5^@ntGOUq~;_}!>)$X?rUP7)#DYna~iiv8X>u^e3BS4Peksh zeUK;hlKT(Sk_91D-pLBQK2EaG_31{sBW?54L5i1sA+`sqkbD`JeBU*y5Kd6~i}~xi zCwuK)W_KHu|3&!T<-^}&K@K?;cgZpj!b1=DZ(RX@>;^~CS%RbO-}H?N6L9;B)2yN} zbTt^Ll7vpGpC#xg6DKr|61ux;ts`|iC7+qII{Fn!YvY}{J!l>%MZC6twTK=8-0>Fr zoN?OM?9j=8J1(Z+`ImC z#?U4J)Bz<(Bz6muS{^8-Q!5}!Ovx=X1rd^+RBT&#WJTZiZ>cBaz2THs{EB(SFQt-u zk&9)c09V4SF6XgdwZL~<{^NI;W&<5vH2^o;Xn_LVyz2ziMlv@xJ}lZdMVCZqz4s+S z!Rv>cGwO%jTDcaWL`(3tbvPue>`Awb{RFQ{ayV-hH>5ZjE~Ar59;685vW;5AsY|;y zJ~K7FRqm-R9V&uhV_UY*hA#Vbwb|7MSdnA~EBcD~+r-Ih#XC9NphdpZJIRNGYdK-i z1IutOcxl0o#Bn~!AhcpjQf`Wo*cXS{K{?%BLE$#yPkG zlS*=N_)#gaj#^w*8wVE|t96LBv1qSutR5v>U6{ueI`1M$SKi!iID1<=WoH_;O|?5? zcu^f6i?w%*nRUQn@Q-CL(SquW&R{;lKEp6^g@%Ht{bVD42l^SMqkZyW2Eg1wJYDbn zmPR(I@vxh?;crct_cSMyELcqE@+(;Ci{oZ6pm99wnW^RXMGdF@mTokQpRB{6gZ@Of z!&+x`lxMg@LIlk-hbPPu&gQh)_(VOIL(MsGj@+x=M0yEIy4A(zzM=)^0V;-;M}Xl#ZA|nOxYUD*nkHjfsK^kNpcP;fT0b5e8C+yIm!a52)n9 zSQJ!bJ|ldo$_E=rY?6P_#jxn8C2Ga~=O*?;lHS*8wO|2l+>n{!s%7_{eiFi3rDtM`&5kKuM*$w4fRlZKcsS-7zHIz-c^0jFboif z0;({2_EKS56<-yy;l|7fh?73S!*T^ln-56J+0sd#3*V$+uiVq#j;SirsMseZYGkv! zbRM$GDnBS~eVIHKn!Z;hG0?kBg=y&5CIx{+U%k>7CRPZ27ZA7!Uj>afy#Gi^@Ksk( zl3+^g9>Zj&TwnsMF_3dMRH^n9U1msYI_SW-FQ_{ zpdFzr$ayUHaGvgj0VOWl3qOLF!&N9x8in6NS@dj%=(Z(rsHKbOss>wNOmzgN&sirO zs)H<;M)#v1ioPp%#15vxY8-rv9D7$z_qgjgO@ZI{LOXp(T8fI{QAPK(d6hmh5X8JS zR9P{-#t_2hec%A55BayyI{Gi~KSbqS6x2?KEH`B3+1xy|_ml25)jM#nw&=+%X*$_CYE-o~ z>s(^!N)uSPd~J*5;B7VlmiV=p3Zg)L%>f$Mt2EbcBIw;nY zdE6pP^^sa!Q7Srw8bWHk2VEI^!C%wwe)|3;RA}^<^qs$<6+Conpp&Um+{*JSdX@J> z$!-87ltayQr%)?&a?;a~<(ZV1#|gvWRtCW58bkD?v2~L@c#jAlYiF`cjoOe~e*?^q zVy}scfF+`Y3;@Jd6p0>hYoInq+9=fki*n7O9&1^-{3$x|VcSaDz~P7-b9pwZWgx-y zBV^rkV*>G%f-;@v2VfOTtR)hoo9}c-P(pgj@2?QV7>JO7I!6tSDs?Glo;9oHc-33^ zHpvq=Wi?ur%4NFLOo`2xF})78DYgLe4)LaDz%@$kVkG#3REKh|eb$UWmajql9W9b; zSF^h+WUhs_dRnPh_-U5U=sm300>|wM=>mBQSHt;$65A_L+s7Bm%u6p(8srE(J9b*O zfrQ^u?lK1Vb!4Bq3=Djm?5VjAgnJ?m4Z5Ak6zcbvT@GMHLeX7PFUnTmh_3-vF~@y4 ztAI{8x$Q{}Vpe&`-sz{fx~-uijcJllL;I4NPV_=4@Rs;I!PJd9hI{mdDVuu_L5+jJ zxR)!gX90!g89b6Cc%jzUKDo6Hp_#@Z@c>0oA9BFm#{!HL)8R#e_Je?3vc9nMC4``i zb5+p9__VWxF}op+tKE|cMH;{VL*R>aCVmjoFG=$~T893VyW4REik4Xj=amb|KK3Nn zUH58FH+DBqv(|yJPVLZuz&I&Q_mQdhy~V-36?~o~FH4QSO_^yM2Q9PHheNT!IFAI7 zmQN7O0tZSF%u=|_c=VuNI zWwQ!)sPHogSMQZ9q-DRF$}6ljtU(`p92L7Av3%w5V>cvv|(sL&V+2R zow1>Fc3F3gs>%!VE|N3Q+>ns1wtVn2CY*rc$&l=J0frJv&Q=CKr{27y)7PUq!m!y@ z^zz1gMQl)?fs^B;77svPsp7n3g~RNb5o0KWsyX^}GC^_9a@|+DEp3|;qZ#Rj$vXu) z)YE4P(P3_aChHijtxQnJ$E^1bu^yaUS9rJ)VM5x~)xs9*}aA=-+!*K}^hpjSE4Y*t@ zukIxR23;-pYboEmTlRRY-UNFdWM4n!VZH|HZajdla2KqHszP$2wU5^>ISU1nWb95o z->4ubp-4kC-gZ1Kq9MRL3VP?-BR~mwf;ErGwh&;fBXum)pC8m0_M*v{F$$rCZ5rKx zYtsz7bG>&ticetT*eJM4=fg~3ZXzXWCXOE^ z@5GId2A|7d_b{tE*Eoh!f(THj1k z5#ou_PAcxX1k~OS1wo=~GbgHDC!YiEE4+w$nWGQ&~;xebH*g5J09% z_*)yABp`z%PM^Ph8j@Mvnk84)q;Jhn0u+PcfFyS*fum#}V3v3*r3S!EFh!L>mA*YG zf{Fs!2t{%sfQ)3Rp^8XbVtRwgmc5)@l=~)s{2)ZnVja}=)w_d45P8IxMAWwGDjD@T zyu}VtSypJ{OhNtI?IcN6r^4(U1>g?!<7%t+b4odcKmA6Ek7^K2WHWsJ+Gx^BsJ$ea zQ)HCn2qmFjt2*zx6BBw7HdvFItTJKaWe*e$mmKnnkwOR6$MoBy#r1{w=dqGa|FoCE zwKB`QwYEA~fV<=?NDqXxNdT5xhLdoeHpI&n@{^e^R7DIZ`_#^jH14TdxPD7Pysi$z zP-*rs%`Ng391#1=7*lPCd9aM6Y`5IHXS+>uBz+Rrng&MVamstLX)bRH|R%?7-MaOK-f<}d%{sQc~9_kRp0 zE8CA`3cvc}UjfPSl#7rWO)9Y=(FN711!&n1km|Lh>X3A52da}1H_WlNCp4iFJl!}@ z`T&+f;vnTK(LwJ!wJ+3G+el>1OVs?0MGL?l%()~{cyjI+VQRW|>L~5w!yN&J{Et|> zJe5`~3`ixCBdbRNst=>h=d|zp_61-6x(wq3|>~Ne3NAi)g)D5^x?ktB@6U~pz_x6n}O=2n#reE=v94o!AzdG zJ9)8GS`!uuVOtqJvqze3&R=nt{>lyvt4$~qJlL7r6of>+l3s=U3Lva2EDjv{u(Wh! zTpS4qqccl_wVp{Hs)6$Hu#PfW6$sEQfbKC@k0S)C2*s>{6sio+UF+Mj!v}tzL32~U za10V`*1x?x_#ii@sBhrJ-4z;yE*u#YFs*i@(-{$@AuY5Z@l>vx(UKS05vX45>~ty% zZ&zsFmD|Zj8|rIns7MvZA+xo1WcXxcoF-mLpGdA4*Q=EDb04>8!9cLAD*Gu=yFUQ^F*-3 zdaapS?#=cfwbhQSR7r~GXN|bX@)bFo27%Mp9RTzid?jd6VR~k7A8W3k&py~<9XM04 zbR7Q!$P?RekbRj5NdqFOxTrzIq2#}wi;7Xr22P0*`q$Mn-no-_<)TVefrXgN8cv6& zEq&L(t(f@N5M6dTn=ngUlXH+u@b=fL-%DkrI?Wb(fPv_?dVyj>@7(2r)Rc&iERo>^ z+*L?cHq`^L*3wEqVKRRMJak({%@f&K_>6S$&lu&`Opbk(zh>jVrPzn!L{eR!(2_|T zEqw!Jx!v;+K**9VaO?pyoYXVa`%h|H6~QGRRZJFL%5Fs`r&5$6)xzaoYh%F(+s2BNAEVnaq#u6HisO z&u0Ed#jrTHFffr?k|e)r@=_LcG28u;YczY&#E+fjN1(}k3fz_rB(gaw#7UA$6@YEx8nMAHb9<~P5hU}I=+wD!z;pEaV3aDy zUdcJPod~=o-5fC_>i{%4fY0Y7tb3J3hR7hX?Jxy7s)5lAz@<*y3rsSxPXuS zW9pp;Whgnmhnx`lh^wz1l@R2ZFXW#Tbpou|W-4?LGqMu~5vYhrJ2jd*Odc+edBV&aQDmzx8vASV=Lh%DTgKta_Ii z+{0AjBcz7?d`Un+-$pZ4V9(9zJ=H!?(f@<=?d^NmbG`lR?!b?F1iL` zYrFt8?kTt2c^E}r?vn%mZWz#6@2IF`Wi{19&CHZa;#ZloJeWzlyLC(Xt*c%JcHYs~ zByp^o#v4*1OM;M~^+vS*E~hJYDkskhLwpYT+W zl#zcV4|T%6Q9%+oFiK@uneqcJ_;1s9)i>i;=g|56KYpKu36el_e~Lr^U=Tjd$)$O^ zOmo)Zh0_K-gdyw)WS<>doM3IzHsHZHtz=QV9`i$0$9QZas6qCUp~?MFhx%}It7;@T zSh&(;(}^uA%r=}p>HE*apYgWql?S5sejT5$<5mWGd-W5XDhdLOnmj+eOT-y~Fi1ya zXGpv8eg)GqxcyRdIi$2PN`_R-~^ zx@-U~J44P1U$G25u|tZzND=rDUlJKcDscle4^dQc(Rkz0o{?%b5$zI|)AdiunZ zw>)qhEIo#ERA3D#r4C23U_VN-Q{Ar<^Q>6~ZWIyZnZ0S$A1#Hyr&3uM zIcXTChmmETEc=E+K6Bd<6#)7R%4^y~xqmipB{jb_8MR3zR~vs4X#FiEn|_1^N5Oc)^i_ zG;fq20)OcU2?}D=y9M@~2*DKBth?o7whVyC3+I1jMm7MwAW4Z~*~;krfdVAT`XbRl z4hU-OQMIzIg(b;%a*$3N{t;4dCtF`wl8wB@^XN4dqg$6dO^vJ1VBVZw%B!?EmhW2u zntDoh^Idy*XkRx~i)?Bo&G_)Lt4@|Z_ij~Y2Q!9s8b-)cWfU7G_hv5lqT@O~Z0s&( z2hfX|*z^QEY@VER2N6;iAV;lPG$R!{Fd*=D#G(ngicvPKvWqsU(#e6A#K^Ltq@VnA z2`b$XGU-^G7>j~-`$Npd++n zY=$o3#9Xp{L2muABD2zTdah-?t5tl4I&`i;(?GwQk`=(O;!v$N*kk%N-7{BlLH?!q z7z^4H#<-;5X(5;yd2(hU%w5>s^l!rdns3EX09I1Fq%!IM(7s|POU z3=y;T(e1?tXvMlrXD4665Q&_{SGEMS5-L{cH_1KJxgauH#m?}W`u_BO0g?6&&4>Rp zykXGP1H}$D0mx;h+<-Ve$u7q|BP&Go4hn}SN@pkt(nbQ5VBnCAGK;#Ij}~Ip<>L0R zw_RI1kUSj7k3nNxhwe5fL3M4}R-?k>=(nlQFC-RHtEMTunVS$Rs<#ELT~kCOC=9JylO|AlFtp_lw7>O3va(bw>CBOw<5gSr_@wB=3-@9 z*~E4-9%ctd|C1y)rmZVQ2t=Hv_H7|IA^EXM%krLuzi|V&HKBrGvtrlTa*e9mn>wtj zGNk|pZLsX$C5g1G7QcWp5l3`#0bN-DS9%LJ`~sp%+RlQ9bXtzhrG|=|q=H1%R)zEJ z^%(pnynmY(2{q-Wo$i6fuYB@6$yQI_JRJagVtOha93}#*c4$~sNld;XePT?SVU@}b z|M&`8##U!K4a3H;_kgWRP~4fF^jYo&4|s!Sm6fRK#bOyAt`NVu)vq_K7icLzEE%mT zWT0r_&|=*kpWeRC%kk~oXZ)3u5rd`w$MF7p7=z}1;ej9pOIyZ_PvkOF3*D`iXzHXg zS*auNE_)zfv}ZI={Sm6exdvkkDuUEgBv=8+&#t^GLtEaCX3DC8wGSkJw3GG%FV`^G z=2;{gyPE9Z<1CTjXG$$gk6~sR{dqDn(YQ#TskU<>?x0nKPin8hzNX@+yd6xwR zt;wcsN}jTpS|C{9gDF|X4n0-zK#^S6ovEIxSu@(P-9JND@gmQwbpRe*!*F=2dA{d=Qj)~4bf*rZ3?*m6r zYB>TiWe7haZ+*gs2-@xdvs#Ht{^6?BpsYvYvTkdvlky{!;@K{r;|50n%ci2M z2fC=pEDi}UDXiV83=->&YY->Zca1WrDw*heKPDu)Xub43?$*#Cvrk6u1HmcJ~Cf65FTs;<) zP9!*~72JJzOep7TvREQ2+r(dQXb(k31XY9aGjfB3jJ*N`6vl#!)SVc_(}o*vu=a1Z z;Z9E`#XDFLf0ffh>oPTrSSXWUBayR*g}zzS<~a-CXOb+}s9c`~TWKvcD=PMI78O;X zZBM9^us_De4&YR)?zPSH5Xr9){$;z>I{uL2k5|AN(d_YHsorRFBu@a$1=mDUpEuxq zNP)nG)$eL|j*&-~y#elpg6)dCggm_saHN1HnfCJ>jeltj7d7WOr)} z>zt(8Bvd}T)NqS0F$t}At~R9ebGEav8D;feSOZEaDj!t!y>1gu`>2;i)3IE}wM#(P z`Yap)zCME80jjM9;D`D^cixLoV7uMM%K!@)lkyxQl4CfZ6ZZnayj`wQH%UW3k7l1m zw?Uy&Q6XdwVx@~KWa(o|tjQfTaXX8Fx?-wH(N$1(UPwj-o==MDOX6#%6QNTBcQTZO zA)@_hVklAsr|%y`9LWiVZ|xSdu5SWnJ~byPb3{u%H$xn98%f7H)6+1Gl5Y`Nb&V&) zUjLDe%{^2!dH~*yS?#l);LkI6FKj44MmcM-DigDjqBrI%ad7maT3rnp1PbG6LhqqI ze5!Gx`SbxR4I zUu{J@@yklS^2<)O10+Is?!_Q6cbBa9mhZ=MB2fw4nSOdQ|Hlvl1^|<`%aj;h7A5Cd zFLKZ(?*#6lazE%vD{OTYbCy7fvCPKJfrxMPi|>$=_G8--1t6y+niZSu8M$NDF-G^Y zz>OziZ^^_>2^g~9F*V&L9R6~GuX{hhk!)gjxalk2goxIf-ehkHGJ0@em zsep)vBqQFgt(J-NiapqrzVDDBZ`w8XqtIj=NFTPr9)E2C9_{rkT`?qkhUm$s{{sas@wda;^xF)`)`$+JU>o@H95I zlzaj4#Suf3(6Ix&anwd@|9t>8qKO~il`;I)smz-Aj2pPThz1bQ+a!&B0p1ia_41;_DpPN zmNi|tK7955ZFu`3IuXBv3LQ40+%B{2#i<9l8R=>_t{alT>510rN5GyH(KKlL>Y;-) zm1Qq_%lT*P8Kp0#Wv!AJ1+TgATqMB1qTIDpTC?y*maA@1)q;@6!m>{|<_l!eg;M><| zhl#iA0=)HzBp%LN?s=^@y;pFc5fK*v(t~Wu3^43tZl~RMOer~vKA_3d9?R6#>;zEX zi^B^wYE@USa{#xr4ihG#ojNsJxm1t9@w;*^QCPy8FMSV^;I>767~Xz_5ZtjhzYb{H zNFKHAmD&^c z&eL0Ayker0+PuR_c1c_%lomDeZC-`YJgpUg4dOb*+Jc+4UMtDc;)~q>9Rp{iDzQYT zhkUIgOr{$>#Q#t%Q1z}oKqhvW9aLICd z?R<`qfmeNn2w<=aj|@}30u{c&OdU59?$^6SXO4p!@8nCuQsKPV7#U0fS2=bW?MiJt zMn|%^X@%x8uKg(CH(e7_uG!uH+&BLz&xkRWTv<}Rp$cfNpC*4rYLTaGqB3FvVUHNn z-|}zml)3>ob`IpJ z95ikO^VI#-nk4r|2xcYOkQ_8;CqgYwwS!ddC~Ul56hcY1wd)rb+7>efv)^5eEdaX> zd!vtT*&qvvYY5$<%~r(QAduOplSmOos{y06A>WeJ<0S*I%%X#|wcY=7P1*axRY<4R zOZTZY@S1F;je%>z)9MJUHP6b}&?T6;NKWi{=%b$E}6@n654P6%*TUcLgA&m(g+P zH#s0Dq3@eSi)_qhNqj*CNGSqi2N`ybd%#=+^kTs2;Cqu@$9dS4V2YIbsNmV?P@l3x z*Wa0FFG$R|V+wX+3i-!dQ)~O`kADq8y06~-Law3U39 z_@udukl|2(Y+9jh&3TF3aeVVq{905)CJs@OjuO+|6}^>tU+SH0o2MSbtU_&>`W;Ha zY0Y{2Djv-(i;;bfQbcyFG!xP#LhWfIqJ1cp*-vG9;1bDW+f>neQ#Q&bA?{LyGM>g{ zUx)XvI3fGW=mUTJzET8;>js-~Q^EutzEWTBP976NKggp+0oWAZFOdG+QASMY+1BoQ#l~&j=Q!Mj-RUUE0R(MLh zvw+01mFc$hL}W%pI8wVldqXsubIzd-!t zhTT*Z0KRi)&(O8BAq3{k6Evv;1V-!$j}<#7cf}W4{(Vq*fzM-7C=D74ynIQ#t9UaD|>z7OR3Rm@Xzcz#0_*I6~+kNm`Gj z`J%d3yfJCUrFt|r?(tb|I;)wfqOLS2rBTS4Di{z^;qa~6aIg(zJbGDr^;6w4xW_K< z5@fgO)p+1uUFp4qa-XQ)-en}4ZVE1@xKm;(DlVsTwX`v3xaM9+z&uC`j(P{tS7D4X z>-?3fbVL>X;`Jlq;fCorNj#p7YFUbLRy(1s3+2VgdMhGnYU5z-I^=f8jP%Bo>FGEMS$1KE{mN4 z{uEtVPRa|2$>HKazij(RFyPaFg=6*$8a2xcP<&?DWy*YH`IAQ1D!S=LN~_$3*6|;v zd(1oo_1qZ(k~Yb!Q}&zS&$(pmeWd9AO)ZeK3jy`rc{ZAzdu|VvYn@T zr>hd?xLvBqDsSoxys?wvz^m=vRrbn;7WwR$p-!8l<0WhHDlJD-F5;+sj9U%9Mf{?YGd&OIBOJ5E6X8hE#X5@Rb~@1dtJfb`Plp%LA~F zs;S5n8jSNcfxQFghMd)3ZR4wGbuBu|46)Q*4)3=b#z!5 zlS4@rOEq_wPpCum0geW|)Y>BHJWF+E7m7OPl4}d?9io0v`;BBtje$BVja)c2Aos0` z>RbF%0Ykey(CgrV{qTQ;_g{fyA6{QsMlFyyw!2{ttx+9eZ+3xm?n?FChGYIE?DCmA zKyV=u&{O6KuCoINb#nD~X9JP}>0NPUS4~?Lrr8iNTmlvy9nVC6Cef~2z*@?NEGtwR z8RVk#D=Xkdf_r)`Y78Ui5xVY6LV>Sc;}n9jQ?qfWyh={!uJ>miHyoU#;5M^>VyM)4 z)LR8A|MS_~7nI@s!@nj2^h2<8e|$LrZCEL20?>Va?oXAi(U&{4pS(A>?vje09K!~5 z;g-1jB_UZ;jS~^IgT1N69$<{n)3Yrr5t2JYau5}xAO{99)lw3D8DFy3UPIE1JWFV* zv9B|0ow1#mRcdaH9yG`NSu91KU-TO>U5L0xJH}p^#Wj+buenpMIQJ*I$D3D?y9XxV zTo)3O(28@+aTyQUjhv;c%Dto)?(Qaeahq7Ie14z4e;MBY3EUeP5nhfMU%3$;kMJ-P zdo>ilM`iz>rXO;LNs!>4Lo!)iCN)X7Jq~DEbp1<6I!U@=qyR}jYCz=y=xF<_5Om!) z6^%)%GU;2Pw(Lg@oEHQ}31u$&gYMoMDeqE3$M^D=;m`gp@0zb+{OEYnuiyRw{|)b- z;urbo3YT!)$9_j8V$XTQy5PTF5U;q5Y1p{NIJ-aI3QBXl06B+dts#~rKT}_gB_{88 z`R@>3%vZAuF>R6?V!>=7Pltas{tKEdX>_teE&MsUB?G-sFxm0(ZU zYN+d)N<8t+WO!{yu#E{*&&`x(R6t!q>{8GR>9M*pdf1tZ;+K6%L^Njjk^Jr zy{%&>pLQm`5&od$ITE~yn$@ty$Vt_gL&XjW3tqgZTtm*WT8gXox-oRM`QV2y-~S1I zkg^TlK1EFV?fVbXf5Z8U%LA--Sb40c+C#~i5I)$vzoIf2CE7!q&YppbDewlGO=p@1ZNJ4xsiKUIKk`Fyxj; zL8SsR=uOj7HN>|B&i9S`g#MjvcZuTO$cF-0?^mKKi_dVY-jXjD`wie2+G~KnPp;JH z@eIk}&CU$~v?{x_?8I2flkcusoN&&A!cnbED-1p&&_HbN4N~!1sRLBLrRF<)Vw$B# z`>JGwjc9*(#El^R@$!>rp(KFJ#;QAjW+wJ`Mtwq#48X;_F_(uX2f3-ZsCw2VQ<$cU zR!uhVmD~V%Gh07$U6=-D16ghxN7X?KQiXebrB5j+HAK-NfU8J+*l4M2%QSAVK~Mv# z>lvHNS?}lysbky~%nWH;H)+yBHJjIVrOS$GtqdfHT}_b$xf86qUiMLq3~ZXDZ8Gdl zy`ZYJCTU5~`!9UpeLuMe{T86+*I+c`r$YQCAwtE)1(U5hyV9`2?{S8p9cY^mDuV2> z!N&SZ?LqUJl5w<2mu_dfM&aI2 z^I+Wq0q?6TS(QgniV|y+rCXIq)q8zeO1;{2K9gMK9<@pq(&Dx|DkH8Z@ucL4_>q#5 zybN!j>g$)V(e#hdq-}>;5okc8qfsHZ<{IrdngLCkL)nB2LPBUezrz*jzGc4r44&te zA6b39(kr>x2$x}R8*&tG(pj1x;9wFbZ=lbw8hI2skM#yhR8V#?AN z1N8Do*<>f3Oi5uQEGOweXI*xF;XR%^9HnW|gcF9&AFawKiDJ}i9ib;$Nxfa!g-*$( zI)gQ;ot(RBv|+J=1;&fIiyVwm086_+RXK$lqsJ@y3nu&y447h->;}LOpwup14>!XJGi5S*@Isc%z@^DIh-q= zp-Y2%2jk`|cgyUO!_Q~#=BYe8THZK#2cxYV*{bt=*d~yGacu5ve^jZWw9h)jAl7yk z1RLyjUUa~XZVF(0#({#&wcK*v1DlI8mQXEG>`oiqHA3#z&gH^qKNOgfbo8^nP4%JY za+zF&va3VS`PUZQ%owS<(jl&@D(IT zE);W<>b&DDLf#!5K)`F)kxUlpLQOHud+)=KBafJXH=&s>hvk?ku{zM{(%}zGcA-YS zD>%w_qb|Ue!rA~T0X*bj7$r+AC-16i`8W}b+>dmR>0!shn9w|F1-fU4tt%|;Wb>=U zJxO&^L0%zNcGfzSyKr8$BM|=h*E*|fCvbr57$>nqi`QF0YV>*})64GFu?8{huz79e znz!B{{2H!1m#w(ncd#rL&Uuh#bQ>@$(_*@3lU(dsOJJNHs%i<@4G)%8Hj@N#LVmj= zh*Xxu#P|R|pniF++gRmC3`$Xy=m`O$pSA?`#ARs?9W^}7;TPaL`uDE+;s;aF69jnJ zgu4kNfR&Dfpe`nphB96bz>*K1QKYVw_4|4s>S9#E*R|$?4j9MO2BZyZVRu2{NeXv1 zngH6ZK>-cv6Yi4L!IscX2RkPz%3quPXFVaFsdFyE?89}Dstm*nSCNp#`VNmnrBWs%@H_6z3S|N!|P!oOcG6Mn;5HI zLa)|}%9)WYMNTZ>Tb$y+5u)5{H+L^Ex}wLnSp~7=M;goi>ZtTwju)C-%w6$p<4}}R z60cze|GAWp0s&>hLS%2t>g*Q?D^wk->?fpw;+7b&Pfm9cBCT2fWT)NN0ODrMJiiqMw?%=tS;$NP$0v(Erq zK%~F*yDtD^+8w1bIP!0RtqIh;U1V90bG;u>e728`lE?Mj3+S7rA(S1+*I?3kEvEc& z^bpse$S;#3DZ?d>B!A9X3HA2Ix+cy3Xj22$moR18gy2lOW{?f z&wlT;1c??vZi*wevld7)h=e)SDl(rtj8qgsw}^EvhH@qJ1{|LO2JXr*-MCuMKZUm> zLVC#Ax$TZkj;^$^sp${3<}_W2679ANY$a^knHExS8*2T)RTf*33Skfe)?CGNy5ThY zm?USDGD;E*2_g4stc$sTqz>s2XeY7tCAYN?Zto+E>K3_#DkhG1*FHM=C1_RvDzjW0 zW9QuiujVwgBS6~)hs-XNlY2+VMi|vRB_ZIcM_S4*RE(9qwf{N%*J)w@%lnVucKf5t z6I#hzJ~-E&I}l0rdfBIIXp&{>Zf&b+Q8^=sjHa*WmfJzH-Gb3}YC8g)2fZ|{UI}!v zyJLj3I`QGwmdIrQXG>da-?SjMGOf{WD2Q|fjRL_FXI%cfrbu=f!YQ0Lptc@IiP>u3 zOw@Q9-Tv{fSVW|5=Z8<Vf{d_zt4CUxz4w>JkY+>um3#!o3!*l3Td?PbujYihyM`Xet&^lMwnYn!Ywvz zdyr)qRJd9ymz1*dox%MVhB5Qf;Y&9gZbj|3wt85*#SpsbVN)$$JnFC(xQ4CIj zd+DUodKR5BGSW|c;DoYhfv|zw2LMI&R8GNu?>MgNT{t6 z;$24`mgFo@d$mY1DOn`5uS^n(`cUg%%U?0$;wZDI6+oJ17m`R3av0(DtxbXSWd+?c zXG*|p!g0h>_RI5_CDsxaDJL$Tt-|GQGzE;m4R1*+>9InZAg#-@gLDy;Jf5z6ffCl` z#<6#)LN(oR(A?t}xj2rd+~HEy-o1(dwmvOXTAfL%!0@{Bw|fP&D7#0}ht5YuH$47m z=JNJ$q>)|AwDkl&k!ZIET|KZGHr^3gDE}HPc*K|M)MusQ_`?1}y?~Ym;FO#fsUziz zLdO*A%jHzv566?f|K7yspE{SYyl2xjw1i>9@W=HqsuR9@1_sBw!Rj(P*MZc~t+U<* zT43R(sfF#BGiu|eR;%f}jgPKEAx5W{UWp29Xf%*Jc*Q)AHbb3v0^&8AAnxmx&WP^>`h*&(%gw|3+Ygo?q_jZv=B8jKF8-DccoNo5CD7JLbjOu zf_lLFqt9>$Hkb6L@r0LzKH8I(4X)Ffbl!7?wXXOHK+Yk1K}PEGas8e}#%C$$`f%c& zMQ_8)dov08q4en;I%Cvc>tqK_K>hGuhBBQuTCI;bw-a@Oud>t?iUs?Ss#MuUiW7Dy zSCIGGGNT8_YRT+E&sHwwPSQ#VtHakrQE%B&y+o^W8y)&K-W6As9?lNW9g7@lpEUWj zytoz~e0SNYa(*B%9RVqHkzH2?2lk_#Hh*2Rv{C6iPWhD)ZTb&D1;!(pWkUyK%j0}0 zXm>DGEgh7c-B82Df=i$QfWXG*t@C!Z{osyTxtzE{g@QZ30)0gBs<2~X(=T{(XS5Q?X}SHYc1Lmn>RQ=!?~PIco=@b={0ejO-GjDFU$ zpnhzgO&6;qWmj?rfR?OqSbrGaew9w?;{F-iqK(t^nzS9L)Sv^X)+6Xl?*ND`cZpry z$p`1YxG&GD6k$7xaduF*lw}87hbT~Mxjy8kvZrJKHu%}pNr%0UXY+a;j%cxZY2+V9 z*W#qO(R7NX8R>V}KZ?8|2W(%Qrn4Vq~ zh-GVf4U>~=Eu;G?y#2v=$bgwx)%y$*$w%aM<&K3%CW;QNB+5(SPK;RT0jl3Gyu-oq zcdm%TRMqEzMbX^qv$2&%Qz>maqFnFJR_NfLd1|!)SF_u_BN?0xcB^1;v_ZuxovV!e zQOZLo`=fUR8i9iXu+5mu93ejJEwe@*n-GoG_3VisU(=x|R-{wD3v zT{RbabOCL818+QL(RVc6Ed7T1y6OhHr8#gcvP;8Ec?Tr+6G!4*QN|4_f$3kW!J)5U zBA`n+@~)98x|}rrH#SHBeh7WmY!{8J0TB9vYbGymWRteA)wS0slNqCc4(6tTq@#Vj z6S=^zPDxil2?cdAH`f_DlX6{`4CzoJ4SZb=C<~GNc<#P=J;! z0jFh>9H}t6owRN9DE7%txRKh`+IgEs=a0!olGu6BHNBAK21d;BfAWZ}8tB37FfyN3 zYXHvo2RB)FS1yf-9Rbp`USNG9X8}8VjM)x`h%dCP*!iYn3fVZyNX9Oa= zk~~B8FfXd=mY4R|?_WCNn;Yyg(LP#jpKX6h(nAv^0YJTIeq$L#P(Fc_vAOGYe@g$XmXnna*Pou}wLH-uOC;%^?nkaB7rn1xPYe;kI^mXXjqoX9CI-*!^4G$r^ z8^bLcj0VZXDtoP*)JO}#vGc6GXko(CcbLoln1Wa@^1mSePum0|NKXdN+9E4lFV)A) zRtT(8cOg-IB#9V|R1iL3Sc00n+!q%h`zKo1jbOOYknnltgNNC*w=t#bWA-(_4IL1o zz5i&Hm5|aOFTk||k;FA76!k+s(&FefB&F$vVub9QAjSHC;=`9f{B22IRPAw?Ah|ki z0u!)oj8_Qk(~AogWHuBmLP;bb?1AJ=Q8E|Fz*JtOmbzKlzPmZ>pdzx|J&>f?M=hy& zpl@)*lza+;SDjP_`>Ai%4au=uz4dH#yswJ&ASbH3D}MfCCY7Xr9quIASxA6sycbn< z*||h@cN7q}x+^_Eo(CF^3tOAoOmr8{1wPw*K z`edKTMI5WU)5}Jkz*UOwjz@(K<`l9sK876mYArZrSYaljO z7nMs&pL^Na(N?cwcE$n$wJ-v;Wc4ezOF{?YNRuivf;WkvhA5Q4>o3?)Zp~pjB%s|2Kf+9Ol&4jR4%Tvkb&} z+gak8OoNDr0XcwNSXZ(y6awkkm|ustpQYD-`}RW&3Qf{;+I@nm;Z%Z2WZk7yiA}B7 ziRwUrfHjfMXoFilsX>xGH-qM{vX|O$hlXlDr5k_Lu`b=3pxCqzKB>mNUOXB7Zc`h^ zLXz2Q4+ADy#~lSdOYa(5(V)nW=v~Z_@{G3nRdHNUn@K=m(S<4Arey-(wZc4B z7qByqm2>XU#3N)Q6c!h!fKCdU=(3qNB)}!71=*A{CMVr}kWg{=g@b?-98~6I@>EWF zvWywU%1J~~Dxtuh{r?{R-M>p4<$yt+8KFpSnmCmOj4n~$X|7=RhHOWBDfgyzUZptX z0iCd(pkzX32Jkm7>|%jzsDmPx4sab593FvW>BLL{2J-q6}l_W=WKc* z;3%MvgFZK5duaN~hb0yY$Ob2x0+gOd1xW{r&Deedq2D1Sz(&{@;RZK4n{^n(<(HgJ zhd=#>%^SkI%^6e$DSY_J+t1&A|KX?a-&(ZY)IUqokJP}m9o0_cF{f`RTNvdGa4|R= zVZ9eVIDl>zA`NR zN;-5v%3(=+>{LrK_O!<$f%4TJ%2=OdJ5A{CM}NZI1_B~5 zBRm1hpoTgP>5`Gmay=CVpbkUU+k)80taetmBQ(hDOGq)?BOHI>Zx18Xv^JGhO6odW z*$h!D@rA1W=+iZ9q(Qx)H|QAT#k=*$MHij_B#l)mbp?YwncUsGF$*LVZNGztcNo&< zr{VpFmsh#|l?UK7fM-(9oS>36bS{>PV(To%hCvBxQMa(KQ*kJ0B%K|c%V{~2 zjiZFeNzF>_QY2#rLPwN9H-%DX$wy1@^yCZ`;~JA})USf~owI4$RSKv<>4@qNAMGreNM_hY*yD-3>IVezKP zpX(Wi?Ma9=%rz!t*u(59UB%c*jk&6?-@dql-+vQ~;r^fAeiJ_Yr^^#6N$?x$kA^dv zQMIws7bSdT+mr2wVp*LD2H11gUv$<(r4Llc2C^H%*}rhyITIc?ZHY#?GKWGjg=h*q zS%9dFyA^arX!roGOV_B$p-YUTUoCeET1RyQgvhBsQ1(YqDH&Ci`S7`f{kP9#tKk+a z?0y}+4FG+Dz`gra7F*=e!`rrqqL{appY5>WMRz7-T9V@Jn1jzr zfxsmAG3;Q|9<+xT?E>y4Qna!)BTQ93yZlCzm9?rP zjMJr(f0_DL(|A=(Y!$U_ODjpOir5FNVDB-}3p$uXQ5oeKTGd&AFk=?BP_{g&j{R27 z@OSJ8v+#%cbKq%}rL8QEtJ76#KBpPg3N&{K(31}lB+-ya%(16zeM}9Ey#==q7a0Ja zE1Bh{uaR($7r5r4McY}KqB9m{&rrVzX4kHc=@o{mfo@R7r|M$w;(&KG9!d{Z1!bYi zklrAYIO}M|hiYVPicg4RO5f@UB+qrDc?r6+MJ>nBnrHBnFfFyRa-FVHjm(j-5T&%i z3DJ;SAHI6~5{eB!egDHd{aL`?XCDkCIh(7kcS!tZptQM~m4>QWHMPALK0V!~RI=Zj zH_M;rsQO#1tQ7RXyO-W_>5KbLJvx=jR`{%~`6ihVc#<8i)tVB7QtazskVUfGA@!0g z9Eb=YnIh1kpw1>f14FVz9gu`h1i4-<1g>3m9u^jThfH#`@7gj$&Rd?=Y0yuvP)>Tj z(C@x|0Yj9pWWoO-g_+d@j*fKG%a92kEpisQ3oI~e1cPbZM+hg0kcT0v^K7B!{|3s7zKnnd!mdgVN{IO3bImU|Ty- zvr_bUeuVJlMkrJm>;l_tY9nvwSgEhd>c;g-(wds_XKNRc34dWQ&HdG8DN20 zA`SKjt6tfK7`}`Y>P4BT{i87pGy3x#KRH0B#4nRYWhEvlyFdg_j2U^D? z(W;SXRZuBZ3Vq+b=Bow9AnV8Dc{GdCi{LJH`%3zkO6wRmU~SboYLQ*MWCxXHN7mn; zZn|Zb-Dc6|j=m1CN*qZ_hnE^;(Ga4EUa>%@}JC>B}^aht0 z43)iB3GHl4pM;rYqulbEW^YndEowe*%~AQcXIl0xxbqy+dSGBEC3Ln##O-ntendj_ z$$o;j%HQr>Ij`WY^53Js^BGZ#$*hZ}%;|eSgk0!r8%A!^3ay=mfnGMXk?z2#u(rwp z#bHHT*eoeh#RSVr`IDiN|J2Jx`F7ysS|`6k%YLFZ1Kb-Vc3E{f$j|PLXjLbX{jBF) zca6&C`bBeuRZ^OZs%;loY`Vh198{Ko0m8O+WM^tfn&!%J@#B24 zIQ5TC58b{bPp#Aeu$&q~XBBT^6%$~YJ*ls2dJW*@&;gyH{-Jhmp^DpgDR-GT8}E77 zjktlANpfNfI{j3^rYgHd0{7sr8=y_oPI{%V4svAgsmit6forldoor~h85OBW!d3}M zJ7p>1qXVF6&0;W7ga|^cOVC72J-ZGQ1x0$p0v38sEVB|Fyw=}brF2`(yItp zT4p|dmbZr>7&9XD_9)o#oO=8-;0sybr&Dq$Ww9oZlme#f1?&Ra-hET2#l2u}Ye}6c0P(c#4xXxt1aWpb-j~;f$%#X;-*P zGE@dRsvH-g8p_+`TYm&vCOuiOR4q&fni^qpAsIallvJWoeuZ`r_aDX;-91A~F_8y{ zh(q_bQ$UwLZ9p&?B_wDnuz2yF^@KTr{PIj1i3=Ej|Dh~rW z32|Caza~lRA#4VUCllJ&HkXrR!@QOU?A;0;HlPg3QBVvi`+Qy3UW3Z}v3Ns|Eu4;V zv*S6Yx=*ftr?(tI=p(u(= zp$;Lbs)fqv zMlR(SRzAIg6l&s{8Bzb7l)Gb*p)`<9&iWzqp{b6|wASLqk{SRoqGXu(*G$&|czdlp zu~qNWWk7^oSF=`^v<@{JMP-rOq#dPx^KyhQw}{;o^@(tT1wbC7>_M&3rr(`b2y6;wMrUctcu1$Qh)c$ngL?TmyP9Nl7Y-R!3#EDbXBUkH? zc4=JKcFXK~fO`v9CU93|)#ux3T!gc-GiF-;4F3U1B=;?qjlEo>EFGaNzgCQua?=G> zgGgUXF)=F9zGEc_F`Q??`$n>Qwmf7d77SO-vPN`??%Ov@PBn^ ztlUAD?QHF~k)C;Cl*`uq#C94Q1aXG$1GgEV^St3lO-tHof|<^Z9elKCVXsUDvKPNV zu*W3VdGd=Hx*gPNwNWG;CDj-nzOvk@@P=O<;e%{l(h4htk>%cz9<3=ou(RvVD|PpR z(WwJw<8sH5a^XO@ldawjxeGk#Az{s z!&z1J&?S8$0mM23W4CuQ?WOcpo8)ij7DBxRZ?TbjQFc}JOHVP{0wjOk&j81BK@9-7U&314b!}&wq)2 zoa9+FZU)+cELp3_?8f=ta?dLDlGestmndn?18y-xSwfPwjC*-imoR&LfZ@M8G+wkn^klSxC3&moOLBQ6}3$dw7%{nxC{mSmNAA)xmV(%Pu=SNi=D8E4XKL zKZqt%pzj=wW(_+rr3kL1bYOCYYyw@G4G3&kU)_!{!i^8huoS~Zp;VUbcAn)ms%_a> zKu}pLddbBFSPV&-A`VbS@2XW%cJaZC!&pSAjJ4yisF^?t!8`CQj@ghz;2AfZD!8hm z!MI)a#W4zUOj!ELnjS^Dle-AXT?unFryINTU9kXg2}*nT6?Gn``szCl<-v|p3mdMo z^~mQk65RH`45eA#E8u3mEAQu{IV z(pzNl>fJ626(o}UCoT{25YSyTyE%-h{$4lRc(Q*&azCIfK)8eD7jLjxmPVVTX!5ij z)l65_*})hyiOfS0rP@wi!ddF*lPjiNY>R|UwqXFrs>xChuLZJv&U;SDoi;V)o}aFu z7&0$L<2bk@T#I*W6Zt^aU7;LIxgIPdfP`L;3#+@sl@AHC?5mNnCz(Hox750aVuVty zC6642Q}7JKR1?*aP`B!SMle051UoU#szz(6V(hZCb)W23EuIzTA?1VZ77)#Z*|N=Z z;#sKEJ5T);Ex+lRXbGHr=+ihgEeW5|wq?ogNlBFcP%p?&u)}jW8IPSwiu~ED9*N7D_R=?W_N~C{bKZ5Abv-WKAX&1Zx)sOm zEzY)h%9XyN`jHc7Pd&b%a=z_#_KvJnVS=t89b6MA(tG7JDXhT2E8jG7pTkl9hiPOa z=kddT3~xVxOuHovPo?=>cKKh}0VRd1zNO#y!j->Q(1+H$4J2+ zVBdC4#3hcYOE0T&<&F)m?t|+3DjSUZB)*_Soi^1XUodB?CT%w2g0nmbHW}c?K&LKe zI{^&+>n|6`Se)^%AgnL3hB&RH9F~gM@5mKj(!G`i*iL(^b$5--2)!;0b#t}>R9_De zvPvI&-yP>yWlfogNRBeD;Mx-{xj-#AqxffS=)SO$(V!m;y3?YkYfq`^rRa7vm@2np zUdrPaWwGEsAv;rhp!=fe?J+hqt^6dkMD~C!z}GdWfrS#G50%K99o;3d=~{ID0XMj7 z8pa)#dK}z3HA$7#;J6J>wq(PK98_)~B279eu!<#V;uKHA`v5GZVB-0#X`IH_1$?07 z@i>}W-YDAlpqsa`_QC`vx`ygjNic{3Us`$}H{H_9b++3u^?DFZbHxQ2>WR!q&$0?F zYx!OzCRum)i1OOnPbvG-+Q1D?02Hn)_U(WtrGGJ5tJ>DW6+uuen=v<28{ibM!u~^=&IcxtP2teBVh^zlM3gR$ zN|tzp3{CD^!?e0z8bx`Ru8}|O(_r;0ZlZPRMwpFE14SM_bt$hC*#8HAYLWV*x1X7h_S^3mgUAR~ zg^OB((ZKBkEg8}yTD9zCL0h$uvvJ`$x%y>AZWE$1E7?WLgAB(Xw@26;#~}=zTZ0XX zV;khaYllj%_(F=Fp-@3LCnn343FRXF>ITHYazWF!Ny=jKd&sE$me9T|Q=ks2sx2EP zSBz7ETTtA;cVZzrCug^AR3|07zL=0^LOSkBUr8@D!+TE7%YZkJ z?B-bsOAZTxC-txO0$EqNSsQ4cZR8;R2^TCO1-~E5L#^4%hITekv%@>=t>Q#5=wv+>W%owVyYA8 z@+xVr?E=o=ASCFQ%n%-KQPyM^*B*YIc0N^BEx^;xmEh5u()){K#stkp9V)rh;E+!6 zoN!UH3I~?N60a3VBF^2)wo|W=4_~~08{U6`p!Kux{%geeTJevNy5%(JnXuPc?&2wL zE}aOS>0^?LF|{38llJP|A7|4(0->97OdwHh(21>3A1nI5<3=U!0npvn(tkV{=b%Jx zKjae)Z3Ww2C$!V`%Gw>W6ZXZ1oI2ZOfZa9vF@`d>T;Ftnh*o#h zI4%#BZKhKXW+1=`+Vn_5+^a-d6F`~0eP7X!QI#)P)dIybx{1dca(X;9fSvnTR6$F8 zj=_utrKtE!ZX_4x{p{@uvUs8pq}UTYEV<@7qKLLBtz4%^9vn)7 z^6Y`^p9tQq+?}tSTs^vkl-=TnClp-gui;O>Apy4=BqxWaR60k6l%%cA|K+?;zC|It zaX~Kv0-G*%gL2sf-a3*Z5SPoTMC1HPY8L4kOJd-B!tplJxpN5MRvz8ZW>EWD-o-8M@K*}m{ zQ)%rPZ#lvWy-zRkDpbWv=U_D&$HiMo{D~~V!*EO)mow>t)-)qh-B7}Q#{(H`(l6+e zMP>9bVqoU9k-IEC8pT?6SRgS(gb@nv0aM)uld=me6|u zwH0r=5)*YG4CIZlAb^6YuEl+}gJwhOUjz>R^}ELc`BKOCDNw~79%Gn2e75S|?dr9N zJq|2S@YviHlRRensKQPuE8XHi7E)|}`s51m;%wng5uSEmbRv-y(>Rx&XXI960eBZ% z)q5{dxKC0C*@Y%b1tWKBaX7ZRINlyxo&4+FI-mud=k~MYI zhljUo>o&8hU`7zMiho(-6F3!&Yk99pS_{YBkeWQnz0|-P74vZPyDg7^Sop*Tjm(H% z6h(6yyd*ngZwLRk;m`lOyyJgP6W>RtDz-;W_QXEx1n;7bJJHt{J;0vuT9m<59Fn_i zfck&u9_mNP0-b=dboa|B86|KkeXjmsauyV*6*%j^VI0#k3rL;^uIf>z^%-T!<%z8< zt|W&Zqc-K752lVh65&d~76I)gHl~1{*9Pc>ZEURbeINUepg%vS8*FOQJ(GkBihY$c zOVM$0-6s=zf!9dBbVpQlqnw(=I7vv?xn^`U&wb z%cnYcpQPa~<0V7WO~Ru~?Wm9VdXe03$C547HeB`jP_^SK{|gpzu7xDlrewVm@?B#h z>9dM**^~70xS0}N!zxWK@EtRM=$-gYuU>x_AVem%Xk;~BQHW-E6IU8OtZOpHe{D$NuDp&)&WcfBb%0J9XhkjY&g}p0EL^<6^cv zqh-`(>)RRJQ*EoqCU(?~nBy0I2$V`3`~1C2;CS(Re_wk46HJrXd=f#%of= z%Jv>g?AJtX$&%}|Splh!6a$Hijlr^JHTH!4Jz!sz$cWVMaI12_Oh z4A!T`iRV3>WXOO%QvOze-64tn@Hwnh;GR*xmd`GCcTV}y=I>)nTohZ|(Pw802X<~h ze4JH89_jm}@_qw5TM!9>2-7fUKd_H|fowdvHZY#oVAN#o4Lez>mV)##QL|bQH&8X(aYs zi+j7!)sR}+(Am32*MOB8h4ijsV~DC%-*QuY>T-8t_A>A2<#vvb(y|Ul8||LV^4!;1 zuI1d!$A`{t5+JY687lc5rr=*)UBh+WsPhRlK0@V&rUm+; zpOE5UC@0nMR<}lyMI`X21q8=NW&0VT8ZB&cI8v^V9|h_=XxT~2qgn-yGuo`$0XB05 zf#EEpRb~f8w0Gf|hi+6~cJjo#$3>fJBiRAPH87?8uKX{2_q%_lU;J4xHMVC7KyD&uzIl37`1BU2MSFa4x>6X%HnDc%5r z1PPKLNP%W`ivKlxZQpBq9I}Tp0aQ|2f7-*|1RjE=@xRv?COObfHCppbi;n+!1C!hGVKEetnLMlQ@>lkNcT>D^r z)qy;_G)qEIMPGyc8OY8JYzyNm1@8FL)ykfd5^Z1Gu z(WRc)7?&~sCLHA>lE7vY=5+Y&yu61qN{p;5olDUDmi#q?3;O+}g2Kmv1fWAt93cFzFI|BZq9DaQN|l52 z+1M*^EeVfZ5~d@ZB8Rg*812cdU{p#;l)Jcf%NaW~9fqQ-FV*w17daLf{_&Tk=UQ*> z$+6`l$-yZr_LxS8M1->bUCA(NwVAP(@_R`ISY8fXQ9=AXNTkl1-azy7Cg8 zcYRazV%|NN$-@=ZD>pUwk<&WyD+=^%p`os@d~6z-Y!g6q|% z+=*l2Dy5+sL-h2BMhp9(fC;Hndlb8>$r}a`-lbKf0r^s7lu$dd4Ij6IPIkONt=P*M z5I)JO{}%3mtWm0-QE29H(RLMn-C(n97sJ(1GeGKgBssO|pf(Rl-`l?FOA8`#Sa@9)giBW$J(H+pnyk+>+q{2R=NM52lN4#iP z4H$dW)2ALm%(gw=B#Td3&dKJUX^ACmRIZm??#k0)2{3r-{QhTX8-OQ|6!UFF~Z+^N-5#>QD_(-YjX z*}LqUdODTvS%lJ({OUY*a27|ZogWBNtz2x3j#9nFdx&Jj0PzR;${hA0^fK~7fuhz< z_JvwXtX&0sce2a1!_f8MPJ*=8?j{8p^@(EvDa|*I6rU>IKCaNzq*^~K5X7DqFG_wI zS>8jt>@c$p92KFdJDpL3tJrwGxzesO^EU*%tMAgegFcX(koIhKNY<-!XuqukhNd>y z+4TT3Y)K5OnYzk{e2MMI6ITo-dtApahN{2z2gJ%X)^>W)u%#~oI2B)^hhwcJ= z*yJ9*SY^I187g4>1-aG%BfNF#DA)nuG;xKYCB1koJ!(w3t)Hx|UgdfCUe%|`#+VXZ zCPo`z&3h--TO$?NYSI_c|4j?V-9XmMEs|wH+TEKJ7j5Mz6eEn&<`c%KQXn=z>@x?8 ziwJeUv!k6W6etn3vNeu?X>galFKr$BFz&kBOdu{_u4ihZZ5=dB@tl8R$!EG>*V3|p z;m|>XQV!J&V0T;xx@D?D5gR6wILm2A%W)#S7fqu8O6A&d+k(48vmO^Ekj=l_aP|Fv53ir-tB1Zt`MuqXm$YaiwZT)E zS<;!JS;_KcoI~Z}Y7lWu?AFSvNiKI=AT?$e3*aR~_Z%j-N=F~a5f~L_*!kl;J-NDO zcb$Bs*gnEk)L1t=Gp#zDSW|_-dFXNLw9$5}?8Qr%X2WB)iH(fPeW@#0)S-7kFR%(x zzvuX$0=~K7ba(W=97UV&X0X=XC-stpubqM+O0lzHgj~^E1+m6;WJca?gIeh=%*C6M zVH;3WZW*W$SV^yf3&2@Pn%qj2M_}9@2>4Ovm(gUWQnN@Jo8KS5l1!{QILuKJ9z)p2 z0S}AP_?a8%?dN$t?zUy`i(i`uPik$7HyEC9@UyiTwrn5Z!hsujVwSupo2XSE!hGta zGLYNdk~pa=nA^!s0c@)T2T1Ux#Y|7e2>osgiuzu-yh9jvLc4JVZD8sd2L+7+<+)>8 z?WJ3z58c9NPTU+9hBQp-s3X0i%s)%D;Qiom z(9xh15$QafuX9lF9uH$)ZUs7e_JJg=-hhb~(GIz9E0z?#cg=dHjw z4SzOD@_NASg{O2+?sf}1t&#BmY7fJdEmM0N93z&^k!=;l=Rh`%Q-kx_5`_$Q=z5dK zjRsAURl2J*=-^NQSUQra4}TpV+*YMt@=JhMnTs`c{h@5wyz+?zph(WWlAw>y#I^LY zUw>%*F}%npM+NMSqR#^X`h__$q$TTx-dOG2^ZpuZDUi^{PcGdsMlb;nN<)wYl&h+f zfWGaswt$yqz-w+l9Z4?+1g4E&8dhY0mN(YNdpv= z7cXSyD7!TF8`<%)xYkWloi%s78p{V7Bu5~Ve2CATr%f2haG!+Q=%CA#nPVo9{H(pa zOmLEaoSx-O^-f_E{`=1#k zwVd~r@55f(L6+B}PnR04gyzZ3w_CJl=na7+%ttE<5?;DziSk1PIytXr0|H4y0iC88 zfx>QqHgdPFfs_kr=P+MnQHal@#24kK#>+`Jh7)O*X*vi@!h{qH=9(oclmgel%pa9K znXjy2cd3UQ62MsMk&LqvfeQJWVkOJI*$Q9byx`+hl4~ZD^RrM|n_}vDce8U@=CJ{4 zNlG^wzts=zZnDJ;X{`sur#7l&Nl85tA|r9)#rmKCwQ>1@gnOLg3xe&q@^qr1xH#PM zu>!cxY0RXJ!<#1cXw}`M+QDqV

nj;X-C@gua07)qPBmS6kxKbsrp_1VbHQ%kr&^ z!k7u#?j%tu`H)R;4-JZO%2!$>0QKq&&?l(kFwOyPi2NUpf%zN7>I!<1?&7DVpkI{@ zmL_`FL^hDUgy{TA_m8lC`Sad3+E!0evYC5APM}? zn}5A`nP9%7s`jCld`%y;mWtGPnVBfxz%iS`08PY`1H7$<}!~CprTo z)#v>%DxgFCoTl9s)+Irb`hTaxwGxB*h@QgTc!zbtluM2V%bXNRZ`ntM4b$WFoRne0 zu3kt3yDfkl_t2DDc$ybS3Gak--iSSyr3B_e@?}j%xmv))(D`GWy!1vK8^N^o{WU-s zXIFuh2%`yi#eqI=PqppK9Vz+~Ezk_d+Ld0gnrYe?kc7?;t~|UeX?S z|M>>D?eFxjX*!T2C zQa|i{iG&hks#!K_dzy7zy*oq_SxwX~CZU~!<_+5D?-AbZQ%ivE)Kb`hijWQ(?clbL zX30qBI8!{ARUTXe11G6x3>YoDQplL?PZUlT1-qm!?d+ZOy(ZoV`}v=Tw?CfbrhZo8 z-4EnQK(MD@xU-lV#Z7dTPtftrL0a^28qc9WG*w7M$xsyd zaS&^bx<4OLLL}t0L+~H@LknnZ>I@qSB=+L!-{|eSLDs}}P6csZZbwyU%wN=yy-Yo{ z4hFeQYbfWCqoRW2+iocm)DQOlj23ajZ@A4Go{Vjk6eWhom2lH2*-+LbW}1gladIRH zIzBH@nL=-iTM3=}n&}N}0dsR<@VF))5*C12<=!(qw2|3hgY%+gsogE~<_k1hUC`ow z-!Rp{?8UE?6xGqOXI_%j*SCRy&NGu#ggn#G5#J*uFUGo!vB+V}S~ zIQf~5GCKOW{^DFT9mlD|5M`(ex21&>WV;XSUI+ifGoVne0(E|t9S?+@tqy#^ zP`Nb|Fs!zNCHp7!2NOWr(Jl@)j;IB0(Z-113Ur&|*^g(GOWu;%y%n)NSam9N97&V9 zELjR!dv?4eTv!tg=O}yA znfMznpj&qs2SxM(uJ~)1+LUYQm#<&{rOxR4@4fyqy#AW6f5F!e+4-|qp?kw*t4->= zBiHX1u2f}sw_~tmw>-dyNwy&I9g@}-%~q>8A1-nYMtpt|z*q&L#n0O?DHNsjHHLUp zbr>6|qvUVd=0xMqpW?El^L`+1bm4C5Qo&Fo&}HnDrK(a+gR2HF;~kUz*3-|$P(dqH zJMD-%^ugelst+jR9-bz*wn7f#AS64yY}cXpr3mQZt6N~ z(hUZX&8^2BU+2>C9@)N|@RT5b+mRh0fpVCYV<4$AHOaIkBv+f%tKPIqJ<56Y3}2Yk zU>-YCcu|cu$3)KsS>*w>yC+SsNWF4}Z*nT6h=-}fYK`Q&ha@280>ms$j20cY1!6d)A~W z$bOU!q(~t~T=mr9JQbj&VJFELn*#cT?{t(-?(u+gBmox64-4#sd^@hO&&YG{)E+QB zuzTn(r@o&a4UV*9MwI;86Y;pJzr5X)Pm^4!6>a^pGL@@e!|Ke#PS1NV6`oE2~>eIY-JzS{O@+@G?sJcIQ@?FPHm0r#569ynaeZn2m zQ9=DI^_RU&>^xl$VxUhLUw3k-fgHDf{g~B^^Kzn(H*v&QtQgOD8g@n$)qIp_?hxL0 zTsg9sS;gsokXCDywd|R2y)Qk++#O{#gQdE4xYVZ%m{VnfR<7HLK_htm#Ygg==);@? z#3$h&EeN1vxaOinHlpnQhf0kb_)q89TOqXGc}HwWy5#`_#*!Ky4-~cW(7&A5hrDA> ze`nR4$mctx{l+n<(sW!}Nrj1qNI6p3*;kBFR+~Vys$a(}N-pI61WWG5TS$iv{9@1t zDqc6}7)0nHx$fMEZ@vHY?RT%AzW?-3|NQpL@cz@+-@SeP{->|MrnA(?Z(oyQ{rT%3 zauAKrp|YFyB{Y^7r3DV71mAA>>77%1=hk+01td;fL4pG`xTwfa^@dry`Trao1KarS zoy)l9|+AvKvUwXfTt$iD$tlGmUooL8P{$J%Ly0fQ^# z$dgi4$f_`@0s-BFzJt>fI+l_}D}|eHTcWcX4{UKDgdW6;)q7@Vxqz8J_ny{4NjMN$ z(}ZSm#XOxMqGYQjx<@IOFd*v_*)QV-WG2U-j~8?US8}zLgT29;`^RrmAphv?Ya6QG zB_>)&=q7JJM_>3vxd_uXK}X#6ST@M4u#>F4TiHcw;@Df1s$e|YMs~9?hp{>AGw(l1 z6%54=NQY~Ljgm&ElIp_q8ZFn0d}y?405#|(8#|bYf=43f7!Wl$WM~*gpGCG7(P|G} zv0G*Fqn)d|wM0Ul!+kwM#PRl4svD@OI z+I4%i*~cf7?9fhefU{2!$h+EMc>{b?A1}^C0Fa|OP#%yFmAm=V zTp_o@zK~WeOG;!##T#;pqT#$tfmyMcBuV-cQee}bAp5F)%-SO+)VOs~zkEr$0@7s% zn`6So-$_orCjyKcZK~laLfwOYe+ws2q9CR_0|yXAUH(Ha+c1*65(0#glsTOIRrq@~ zNR3uutH;F|jgmzT7aE?y7s*)c3ut|+W+2F|gEmXCEvO0c4)_KaWs$^c+={QVMJPqW z+go$Wr~Eouo>Q-_$cctD5_dLlE{Ah`fVqM0$pYHRLbyX9kfy8L{by?0OAJz*%xW7pJ_Wr6JHpmr z2m>w-v5rGlN%didHXP7zkPF_+5;<$Ny;bz2R>Isd<-hXDrfx`^ z3v8pszk=H%37-D!mG?>@c~Cy&UCFM7JzT6~w{)vQn(Z)wz(M8HB}s%?OMy3Q_hlpe zc+Spaq?|}y_-xx!QOPFE3?BtP<{l3AClzSU^pCvTG(~D*N-i0v+{9b~RbrG6MM;Dm zqG&dyI)l{bW*E+wOE|F~poOJ20q<0eM&u@ShZda@qlpWyvMK}>E!GP8VBvxd9}H|H zeqqgg$=-kG^~>-rBwDW@V_x`#p*HOxgQYp^e#8k6j}v&Jfx8X#xiDR!9Y#>#hzW)D zw}*~BE-kIrJ|(*Tc5Bf?NC&_sh_12f8IQrw4MY=am@m zR_TmW=>!Z=J-l^It~0>{lOS&kq7Z!@jOOEnHsc8Zd>a#BBD$7hvy5|;^lG^fu$>la z(Z0094XB(|SmmZuG5tSUC+^-|K|Wzd9hVOpU6|)T93unH*JN)>Pf_PbE@*L5a^S*u zoiKKGdkHyMlsiY4>uF)c0qJRw!Zp)Q8F(a%F=`SCURTNa>vp=Z`PNHi-l0j(lX!vY zteri`$Z%4XV-Z4;7XxQ0Ib2P+p87^DWMEWNoF1Z$hT*9!NpfzCq8s(x8BP`j5>1fL zpJ#eHHy0BDog21i(AcY-R3Z-h9$F(U@M1A znOVyj|9N=(Asmy|9iGe2)soow4%z0xeY6M@U_)c74#9}aWRgD zP4NdV#j5Mw*}wz57oWjFborJ6rQDJ9OKah}oU-GJRC}1q$G)LL5;{n>FI6nqlQ!6R zE~b?TVKEc^mM7CI2g%xD^)5%eGxseOsizqy)#<~Zf8)=;&R4FKuZ(!G`~ViHiq;B~ z2OqA}kS)1Q(Nx97$xU)wNpm2PA96=lMns5IGLl>mK#C^FaaHZjME z%kaoK5jW$6$N%kbe>;5R8{a6q?=v~;*|+okzrXz={OP};ees82_`DZioI6k$D&;UD zWtPKTtA8;KBWnFvRuHI`$VhlS^6i0EtqVj!r?DaDf`IIK2VWMDC`d`Tyy=MT3YY5# zqwy2GL&CH1JedpVVy}uAO^y)8EQkc(wio1i-IE13oc@QI(w?x$I z{@`$$E3EMLYa5A&x6eQZw=OHMuPTa3Chua*^8=!jB`2SMcC4e_#zd zDM0)n-6Itpc&t<$?lj+TQonRlSwq%LRecV#rBRl}y=HNn$CTB6t*Z^?pu={7JfYpD z03@@uCzoR3`W9mALVuXKeW1T7?+G()V_%Lc+mn~9tI>v2&#`D}h(ugTW}fYJT=#=* zmqa`qppEw}X4VK|PZ8m1INY8a%8KX{UuqVIgkKpG3ktb+WwVuhu-bHr;)5&3}fIp0mz*L-xE2_muHtMns4N}bP109&&adR&< zY&_?c2JzUG^2{WaxY~GJX9bkGfF0OiP5w5b!)-*DPUS=L>!AKrIShbi*PT>h(q?Nr z9RH#OQiF2<_e2u>VU7oltZ{NhvZ|cO3RrPl+Y!lvgu%^f_-RL@^~xO!9U1vhF18FF z^d0HMLme8uq>^fUM7~C394sNH1GlW}eJb51HK4a*Xom} zrO-N4pYh+}&%aUj;19#wC#U!S^7{4re+jR@Ki!9;!p$9n6^pHs@K8w`h(TyM%csKx zIniiOE{ij5zTw3SWf%-pB=>`hmD+{uMFG&I4u(3zv*?M~A^nk@XSD5yrpMjrDjm98 zb%ofuzg)lzH5ZNHWHlAcv`^d^BE|q>1n-Xgv7}XbGC`VQY zvea_UOQd~a>%+;KP#KK+ESth8Mn3;F0jN*e5FlVXlKGY9mG~jn=6I^PM<0>R zkZH{0Ease29*(dTbETv)IGyT=ki3hsJ|-WJU6M)*_h_@IeIyQapVwLEy?6crA3=0uBI@IJhhgK`)Pp}Q-6|dnDwz- zEOJ;8KCB&%vLoF}(gQ`5QDxciyZqbDBb;gQ46g{*lG=~3Y@)`{EiWKw;025m@9Ie^ zL3^eoRB*NHy|Lk?TBCHxs}gb65Yv%QvPn4Hjd-?hAQ+&%#t9967^law6$9lEW&1Pu z&7E%HNTt8nr~-AqFJujO2y;EzZtr&hP|HvOlCiB1^!gMpyHB}#a7XpkQ*@<%z_t#Q zQmuv;xqrCgu#Rq>%NvrLXiIX{r&{yv>T$}8@ow6hXl?*n?U8<_qO$m>q;_od1K#Hd zkQ#Jj8^FtwU3ry1!nL2Oy{1a8C0Kv@XC1prF_UFdUm}HIw=CA%_ws7adRa9=vE3ly z?y^K1n<4|Vja}`Q9lhJp_F4IXagmP{e4Z3+X9)QL61T0bGBE`x1tB#AE6}{To_2H> z5H5`XBnh+04B0q9wv4Q@_NXt^M}=Cc#kDhlo*)csqgl;*@&kw%hs!E�J#6HekB- zpg%|cf)oM(=xr%!!i7-`+pzr^`1nibBx6WkgjloUQrpJXl`#~unjel1mO52kY9`EQ zTZQ0W2!w;_eBg!m6BwyJFotQt?XT4bGwfF_q-alz_%cud8s3gpM!~c|ev|TIlC!*e zH+2FTgo6Z$8IOIn*!gZRGV=4HZNK%;26fu5WPT=3)sirbt7P-+L>Wx#4(V0Njl4}D zB3ZRvz&_Tt-j$t4?E~ADu5jlC-S;A!A;o``)6+2+Y57|0fpIYh)p_TzyeLM(tZkT} zi#5yLrvm$rI9?~x%Hmo7GU`bE`kQ~NBBt6~e)}!_r^4%xPEa8Y?vHne(vVY2t04Y;8+yHR~Z(2qh<^BX{Mi&T{y%Xd34 zN9?OYFf+ddYw?ym-{|*kI@m~dt@CCj12@7A6mD>zTY9*aUT*{YB4<9!QpE7~Wd@W(T=qw3Eo7bf z?P13>bCJPqOk>o>ooaS^6Z`J)=7en!fWh|txso8S@=n&4#v*qTk6;?DJX>C^I;KDG zt|0`knQ*7(aHVqSKyNIde0xJb!Cd{k6FOJz4OG-PU{nLt= z_V2^^Me2$6D;;_uCDxAA?+@7f$AlSM4m%)r+a&bfhIh7Y;Q|BYcUd%v8y8AtY;u<@ zti%AK=^@`@X>wg1kJfy~IDNoQW6n|=QCse507KB%c~ZR516=BiJc_WgCPNiMUv9w# ze!0{*EsUd{+-A{Q?FHPVfe0F6=rOUy5V zuj@73PPOFFRmGcMVmoHM5-RGWD*gNKASnM6%9r08sRSz>XZTz%WRJ>5h7@Ph6I{1$ zj&K1Wf^)%ndW@ckfFmCY@I3EJr8(CAB_trW-sz^7Fxz(Q;|-G>d+mHeyby9DFU(do(pC*&uj=jbK)Ng`q+5>#|q8Aw( zjX?jRvZ0r6T80B58xn@rlLalBC{#&oi^N{NOmJmXV#9Qn$b%tpT1`w72HmLGTyO}A zF#hW*MK@c%41ajr_3n3|S>tcR>+i6g0h@`Vd{Fz)`gX-9hvo)J6C6DgOd#8r|$AuQB1ZFFg zo7`@Dk&?bf*4W^IQ9wbq66;|64R|FJw~9xX?_iY+mCWzT3n-~7TK=Td14>*^Q^n64 zCQGt2gWFqAy((3+VO@pMdU@1e`=@^j|B%m80nh2Eu<|*-%Br00l&k|v4c7#~NKTDf zHXjbkMb#GXp&1o`6J%F5RDo0;)VBTsbf2t_)Je~>GST^cm^#>5P)-;ik12bA%i*nv z_L4+y^`67ow8m&Zqm4Vpeq?MeIHoZYkBQ()?K-u>5GN{GDkIP(2*rnLM(PE z#qHnp^$TK}1uo!>E&oyu(WrX0<2n<=jmsQB45s7zU0Wbb8g+cZxj^3psTVVqtaAG0 z!bTSKgXBY3r)lhARml7XF1er-@Z}qZIda%1;Rg1a+53>ddS;&zeJJjWW*@PR0QCMghX9YRD^Y!kmi$t6aRdPl4oK=Vfk_VSe2 z^(+#MP7{?9ush1?4*-2rhiYHcWtI6HgwP6vDLwCs7Nxj@s@*t|MK*@c%ko#@LQND^ za>>3#IB1BKx4$3*=7V`GjlYj@_&ITXc>7rI>%A_7zewpQL%}Z z@((-uaMWVbh8^crJsicx@zkmyJxx&5_i&Lr(!K_at@?rQJsaWBaK>;n+KrA<8<#+ zb1Bn-_a93jG&YcwyuZqBJTF>`$o*Ma>wa+&s-2@LxwZF74NE3tDkx9gBB83)jX(w< zsex+xT4XuFbf-b$io@c5oPZXbdzVT8Nr+HD03Y)!U^&J>Yn2J33Nj!%>>Sj1SEM>< z(gF#u0BgzeX$8EN4!9h5u+IXpGqhkH9XF>MlUB`5*WyqPjWh_19a67)2bYYj%{%}o zB7tz}YE)^vl%RIT5NK%IdviH=v zz|hliPJx4Ar47Cyi?x>3O`h^C;ml4gEs!b5vhE2H<8#|LNDb`}!|k(4^yR)FksnD@ znsmd_z;Xs4gV@2V-k7o#ynr90)Ja_!I2yue&bAhT<47IH54e7EkDa~K4z1OC+gEu= zOx&S_5^BGMI!7G0+OBcQXn9Zy>D|cTQ55f9=t$=h-Im z5W~lBpNH39ekjfG14uT=zs%_Q4hTYyC^)_r46c$!z)i6GGoL*rp6#+tA0Z{E2=o3{ zJD_uSz=rLxl^I>%qE8!;}{+I;v~#j%XCHVkh+GtdNzrX`3CPBZmVi zvM|#&r%?p;eP#T1KjZ5HRF}1&&_QM+Ufw}_aJaJJN9Ls33x zs=0!s^S)G_l7y^L1chSuLERZ(gg}6G2BdoGhOP(Ln&>L*?cUDuQ{2^_*RTTXL1z<^ zY~;JNi>fg*@Xc zwmy^TwT31H-3C-w!g2>VD>q5oc%&}MQ~wgIPG{2B)Hu^=9wap_E`iG;w=6o0qj&CS zd@qIRe0tjD6oLzkl2TSj>XHRT+{SKBX4jmgplB%J2mv)k)sOMiKqcx%@Ob5q2iPKo z7QsX`f2WV#a+@BmYF2Bifv$~#ASxeHBf@v5=(5M(%6JDb18Q7w#J0s+?`4lh@g5iiB!o1J(Dh?14rX&o!#d@`01y$LSI)Kc5o;@0mP|dC z3Xf3x1qz21eTqZBqeEaS%=fTKG=?HNTPItKsh8BHrELh&`h8Xe?BT*Zkh+z3R3gZ* zqx4X5fO18TH~3=bb?cfwdnU0)mI{6_f&<$k3UtoF5eNJN5J8-%DLUMG=MXrhc4UF#r0woLsjAc>6)FZDORimPuNt`EsqmN@+k)tiQP)w$)3EJ(NjNUEU0*fl z8IlKI4rmJ}=0wHI$~F2h?w8zjM}%lKm3aU_m6AL~P7eR8{V)7i{qi6FA^gMXo8JuI z{AON9<@uWxAWtuRNYUlkviqII@D1%l%8Z8do{`vxjTxO5fuyZ-jR3Istz8&uGzMiU zhfVUsn}t(FaAcPZgSb4UI6AaV6-4buI$Or2>1zM@U~ZPJK!N7Dqqm9i9ZwxTh<&g&mWX7N`4l|pa-&HlBGclQG$l~mRXUr z1D1`MGH{@SQwBOZ1EI5U&%gc!b6i_#D$~EF<;EWY-a39u*E>8z-9OQGgOuE=J$Dx`_k}`D z3fYVO%x}dF58#Qtx+mILqRB{!sSai{SDemM&UOr}3o@D`VN`0{#9CA+ZS0CZFbh=7 z?oBf6tlGS>rxGP}kZROEL;yqbvp&_N`CzcD9?jU;wW~{v5sa@4!{OOejt^x&;F+Wy z!u6rH*qkE{59o&P{4oCz{txO`|LiZ-0q?Qj(4ZiPamS?7j5>jekegMd1-$cyr)Fvj zk^s5v*`lbPP62_EJhH_)4S)gic9>zGB)cJkeQ)(u8BO8lrJVg0tOpBkP{oEPkm_5k zt#N!i`H$~XT8(-8)LuYs$EI%GDp${zbcMTN;0+Q1vZ|C!;>Ik^P47$qK+aI<->l@X zD5deAk5Wrty#AERL4Q2N1$JkD@%B@6^s^Nt(Py^-kvW}i-OE8XSUy0wxgFWQg_~wH zXh=r4M#Q;3GY?vo<7C(N6#x;H*30XhT^A<(&8v$lV+hY;48OWo@H5tq?HeiBn$s0_ z)^t=;<3);RIbji|x|kQpvyls|-l;Tgb}PLUkYqH*;TqP<2Y_}EfnT)7Il;D%bC<(o*yi=o!wk#?ZuaF| z9tqT<`^RbJEDI$CI+L9X+w^nyLG~rb3EZMvfo6EArWjjQH!A*p88~ zwx6L_S4a!)dkow?r)>{z}2CjU48_WDIIO>=0=7(5lH*<`gP zFlM`BF8(~>asgYG{v^P45Y`-F18#qSxN;>A43>$8s&F-ng?34>D(T4*LkWF=kq6k! z*u-tSp*-+HIS-h8L^Qlsxk@f;M3qgHv4f z8DW&}Q1E(@DiQuLvGm;Pt0I~`vD;PF<)lTEJt5>qInP-RL%2VLx8K^i`O`=8+F*hO zFY9o|n+`pR?T~P)MRS7zGN!i^g4lR$v!WgA2?Wc`6^Gf!_1LSGcaPfTq!W8KwSg9L z*20KM3)`b%?X%P2nSw1>Nsrv0wA;2atAqc9oIe+4mu$eU{B8|6o|Hb5g1)=3<<}s* zemK`qg%g5?TAieiuB}%Csi01iP`Em2f;vJdT5XOWBtBxy=>&=!`<{CZDHV=7Fqi{h zA%6w&l6cxQ#aWYf5}7&67B@}$ImxY0G#m^E)P|14x+-@Q^A&+rTiNC4RppF`O{oU% z6Ah!V@GfTEv#EfF9ESzx1;U5{6<=}><Hao$rm|9lxcfGCo?ai+Hd5QbBYM@mv*=61oFYCk$?|4JWSXc-RPUMqLa`me^wH* zX)(*}_|!Gw3GLgw{~)lI*R#vd5DP0A$>a1STMXXni6#fyRXJgcpeT|@NWY4>901y& z&%*Mv?a{1s#&k(1|@szXEjQ^{vc%127P zPJ3e*6}zC6Lde&Y3oCMX!qxPGkv3M5;JR~v@b^uclpYA^2$aT9lu!2D9mZ&%zx_KZ zmXF_lj*j8m4+uh6_k%xul>bewC(PU4K0YQ2pS@*`&%4@DRBBMy4{R}LRd-r(quZ$m zls{!D@BEGKG8R1k(n;F1EoK%f75h8PB_tdso^VwA>;qtm(@U|7&}jj(gBj1&%ikv{ z=Iy!(R7AwBFrCy}CU-1!>>m4@C&$YL$8M*kTxh8KB&X==y4-*+Eo*y|Vv#Ypf%-Zi zVygSZu5Cvyxv^`uWa$7Pe(OR8k!04&N%YoF6-G|3!J)DA6{2=XZu1wFPT&)w!RnZ7 z{jicE%PrRt+Z4Qaf^ie{aNu9qI4DmU10@fYD6dn<6W$)|2Z(W!jdVs|8V|=N05hgO z9bY&0-El&u7cYC#ItbFPNcAK9kN5F{_AXH@K$!Mg?$@C8dG-V7N`!AQbfKq43ek%v zR7p09n&KQ>qmv)~X7_@$lba6&04m{heIseWs^cX_ZakCGJ5jK3?5WzGpHxAWEiS8y z!Krezh&dg{-J`}s{ul6%yy%0qA<#Gm(#Y~9#h7T#2w-QEOwAO7W9XpQq8rC+Kr)0|Miq0lBs=(fpH7?N{xwLFe0@>|K3XO6zZw2Tx^{i@A>MmUpZiekZ?;=A3AR8Wbgivz8%gXdiKYvV%sJxSE1-svjjCG+jNNNrI4TbmuM%bjgcF z_d-b)4t=du5|Y7jD%cfC?(p)4M?;OR7W_Hs z7xmTlnw#0JFyh)y8GB?qPtFB^F4myHkl4(kXN%24CyUuo8fcs`1SH^w-tNF(_v%$= z*A1qf9KPTgTL7DTEpFV!Y(zrr#p42;alsh$5XeW1h5%N*n|~~&;|iB&??!`n!!Ats60DE2ss@T}9oend*a9HW>@m*P zU7jPPs3LuRp~JrN!1lq}KM<)Pi8-aBbbd`cka0@>*-eIaN)L2L4dB*lrYL*-%+>GZ ztG#2l0$nk-pfP}yQ)i>u=~9@44YDTQ$~$KdCc0{gdSfcVY{2DJ{?m5?Uzozz>rVn- zXa^>|eVKLEzC7xzy~OMF9v*#@fKjkX0$7)P@npt@hzoH*s)gPPWYcsKMutL1?OjYi zX10-r4()NDk7-%yRlMFVCZVoUX-Vpis9Xg30k$7hz05U;CNRxVv(V#5-h$DB?=vQJKxyF#3r*BN}a$?82qmP|R#NqEn+gmouhR|zoG|tS2Q6DPFMCcnSjjO4D|NNOU1vtz@(9@;^t86&U9Q6puRGrJye z)-$S1&9;_QFnWVBSq|c!J@42)U#HP|lIn|ziKaxqUU8KYE^ZJ`%?)NH~txS4!l@RIE@B$osbcZj=MqTV9Vw?OHozsg|9vP&ngB zf~&;`zlc?FLK2B#k}ynmO@t+w^}F)%?j;ATZw3mkCp75s?3A!15$VC0D_7*eEs3Vt zK&@}d`3-jDVmIFof0HF3zV)qdg>UDVe;fWPJ9oVQ;oI+CrS|>d+t=n(ahJ<~J*zh2 zNSX~e!1%<^47_qzIZ#0b!uJ^nnMSWAe*~*+hz%Zo5BL5AJKyT!aGSLI@+8mAs5h(Y zFGCG$1KCUtTuJ6M^U_mnUnYmEO>CUYU8){-giT1T`TnEVPsp2v7Fs6-5G8Kghj*S^ zaDU}DFkRaTTgJduy+vonZ;1lN0!k{Ij|xVf;Ea<)xi<=KEsmb7J2^b{}}!{Kad9?_6V)*bXKP-c%hClFmHq`hirLwgTOl4 zOQt8o)HrYqTvYaR`iF{7a>R#eb+P*dIx?&L8x*}8ve@y%Y?SiudrGo*BzF%(UGGan zP+o#eSqmosbiM61l=Q_PFjk+v;zsp{Y}FEQSAo%Sa0MU4bTY_pXxkbQhpPoBd2Y2kNGR zXF`1Jl~VmhD;*1h=$7E}=w7fT zsB3$b{Pk?jtEbMPZz_^>!L4oTj7Y9Qa34EIWR~GS3Ni!E%F;Ac671EC*7YL3|N2AI z>bx(ioz0f-n8QE$gUD&k9fUKJL;$Hdc{==RG3;w&-?`@Zzl*ET9C~sc{$+k{u(s`2eAs zYTTZeSfMzqscNLK#~-rNIedWu59{IuYROxM)v>jsK3-@OSSRZy0c&|X$h%}AMkq{T-&`_xz_aOg+?h=oYar`lC+lVJEn@gq9=9G zw4SalNOXBGbpuk4sSvw#zPu%iMy<-f+six?;b=o@aJe)MPJ_t}Hq!z2q3$&5EWKJS4t}Op?90AFMQPQRvjGEvh3`~hnbs(`2y^qG#>yd*!R+TXY5HSaJFM#(4OvWgC`_8l_gL0#<6N%v=v(W7y&Vo1MsK91u;ww z_($grA9kI)(iTG{BiRk+G%)O{sEa+S6G0}K8;H?Ppkkh;m7n$jj~7{RLv0RJYPe3W za^C?*5>~&XTUE%C#3fDS1ww9dqa796+Ides)>9kK204|8^+LpX6Z{BY6lYQQFl)%5fl?7q>#D0Nr@9AP9xe%@b3i7XEO0=5p>U8n2pnUAsnUXN1K;gVuZ6 zEmRKkTGVpc-g#OF%g{1%u4exye3&c4WG(2-oXHKcA*y#PDuo1t{C%gIQH!ob@$bUeXgq z9ML&gv<|gYr_%!5+4XV_BWx$DQ`F$Pt0i?mvpKGUKd-qP^8Wt~fO##@J|;jz_C4G} zyb*Bgs$`mmx2Q7FAoEd(S7`&h=;cA)h(UoGK%6ySw0>1LZHEsxpZgu1^9 zb!maf+aqTH?*&%WD)S#nVU#5^vOflQ_Jqlbf>T^71H54!U<^?Y+G?%0@}B4@Yip!5B_B9fU7r zG53*T^7u_!irYStJ&mBt22ti5a3(Z{1={>`8&3%eC^iC`hAI|s_}c5Gx_>m*5a;SG z#!-RhR zat6oJf%72nT{QRAKU(Y>lgmc3CohJE9WGLxe`)-qNk?)ca~909ad)%axk3O!wxOKi zxSe$B-`nv#1BhjTv4deVhjM5{A-UPr%D7__ASBc9tGWs{>n0UO{S7xd&gLVQZ`~o* zoDYGXfzVY?`R}3EFN|UdVY1>YlF9;w#FwCtIyMa!|?$p8F{;t~TcPL25Qw z2Y382%@Rv`(Ew0JhgEz;8r5hd!1{lDKcTy=-Q)ia!{eAyu|v@qHmf`sl3fbc#s*Jj^SrOa`cF@reX{hYXkMY)7c(JEG zfc`3#3JbZZOvvSxaR#O`1-M2&ji(1758aiBW*~jedIu^Q)^xE|ZJ;H1`HTkYdeW{~ zhxw(Q=JYJbTfXB{jBR?xSEc+BA0=kc6035bR(yoyQFfpjsAAk#kPlp@k_Vr@SkQg8SvEjTzFkwKW6G7 zn(6WecL`6Fg$Fp_P$%fkWL{O-ze{`yz=ByJfw>I9GV}Tf+Lp5&GL?Dj9JM`w-VDT0 zRI+N!B4F$Yfjc~-b3vOX)#GxT$*WUbq49B}^fWxrL*-`n7d+@~1!86NY#OjpHssIY z*(BuDxNml;pagkE?P7SY5jX*=9vBQm3D6=-eDT{Y&g~@klbyI0%B!|V{x1C8KbC{{ ztJj|&ANt3Khn^|N?5bs>v5kmzonA%u*bU!82bkv%SVQ#Y$z@b6rhHr^n}mOOl=R@H4i$Arry{8_ZBxN|U3o;xd~ArmK+>73x}$3Dh2YSlGOs`PkcE!J{CsC2Qe zP>Az1x~5o>+$b5EEditsSI9+Wm+6(;q%lzku!v93op1VEbUhLYa#eJ7T!j?iT1AUz zaw7{#b;9H{x)s&O3PC*GP!HZKl+uS8uS1`})+Vt*Fz(;2J`RzUrO6O_W!Jg9^aZ zvI`jQ&*2@~`7cx|xL|-Cq59^|TOge9Hlx?&_vx1MDP;>jdA?8yJ3o?^m5zzdk>N9t`MbMOAi`znt?)>4<-UvjM=RX z7L}oH+Xu1`M{lw(-hRP<2foOE`sv&6-hL_n{Nw8v;r-9ve*5+-`RDfy0Py~kw@+Tb z;Gcf__UY>n=v77+*PZVz4DvN({g|m9l^HY@mwjotF#wM4)=84D2pv#KZoASeT?B6<)fHo+YU&<=P-KWa$+iG`Lhvp0?`L6Phy>YR$#IN_KBG@1_q!`v0`O(Ym@G6ZD22Rt*+@Z8 zi(O|@=5d6F6qD)rk_ARaeCi0du8{mjYm}T`DIRh6gG4r-eC%}YHs#U~GZc$xbcDV$ zd^di}P9xr)1Gw+q6NJy2on{Z0!!L$b!Bn62x(UthT{{W;pjURRF;{RPpHu=~vW!K! zL1(gRym)qENDTm$Wq)P0*mC8 zG{Lkgz0G0?fO5c-DogL=+GqG}Ay&B-foJ$OpGh{srAnL}Mwk$>&tEoDX4`bGnpK}_ z8c*>B-7C7N_Y;S2_Xxq*gALEVf!cP^==agCOX%dc^w(2;@LA1z$V zd?tTgAw|f{7#4Suxl|U+i3GW#M5W*kZj&UXl`cF-cxlq$!SbSE9d>Iw@nZlsm zT)ACXGoVnFZ~1prd9732qS=4t3D3?hhZj)^AUUzyW$9#pc`~jN8Aerlbf|G(wQR+weembW3x8C0k%~B=rda`AMotcl%I!%Fbi7kKb3-zDeM9Lvq z+rwwV;DIa0{LEh9rtVo3i`H4{Q0(JyH#X{jidh-@Z?>gys2^oKlMx+m`i0(OcOj-A z5Blx3w%6<^mstX4)fKaJse6=l0Qno6fk7P@U08}t1Nj1Q-{47mcb1PSb%Q*|>3kt? z_KeA@C6sV6Mw5b0s0kxp+m%xCkrD@_vE9TEK$Gmycd+2Ta&iYP(4%#G1^b7oxEbB? zQ0{cs$O`thb$WaS|jYYxxXj2ZE-L5 z6Uhpp&=lks`RiuC@()l;SN2DYdN47kE}*M3PS=Ud1Sw#S!YA=eF3UJubujl7g;{#csnRS^5C1w z1bY>MBw(5xo?Pc?T)Kn4ET7T(R&$UvX;cpY%Wy#|Fe=@{?~Nzi?(qg2od+bI6qsUx zIqLrvmqw$%pu;aqY*RB-w^FxZ$~h-W%|N#nb4KK8vk9iDquTDJ4yvg#GOKH$AB-GtD<|}lB_Qa5ty!$9E-XPvh<-c8MJhk!(9}b5wgy1U=AT{ zru}srvoHhrW`zm{XASH5%iEAbxb3R0$chidt{~o;r&$A+*HQ(({wTZ}H}0WCWZQ!u z`X=mwOW95u`l(-AyIKQaCuP&la&~Xg+B-9=Vo9a1?&G@=y)m%=J%pRBcNlA1>{e2k z{gV2X_eF~-g}oZoBdtg`j~;f^1Zr@Ts8GAh&KlUKfgQ-`_uGKs^yVE!cL|S;P417= zO;ikZds1uo!vO88*N@3$`bfX~*vUpwJSAL))e6dm6j7u}Ed;SZ=75_-$1zz~9pvrD zY+3M%EGa4FFy7+>Z2I7;SB-+K=hiP)WWD@2R6UZC)+yX0wES@oH$a&nEaIO&E|Cn# z`oaK2QJ1Rw!2YVW-wJAM^chd%GRyVR^R=Fosi$W>K-AridIYd)?+Cmag?MOl$M(7i* zj0Xg+SpvVS4b+VqEE)_I6~sbw@=meAt|ovo0c3F#vb#v?!UPLc6GsCy9r6rj@o+k2 zdVva^qUjKL(uOeTZBRdUgz4U5l`*3r*R6vzBBdf$z_7eTg{;%6b_KLGam8n#Kw%O$ zCZb4t=ZB;49>dF&**~%>bRLqDy{JoTZY3f0X+lS>sJv9u*jqdAa!fbN-ZU)ZL@w?c>Ppagh+qxs-~>} z(M>twbvb`>S3V?^xsMR!>S6l98@Qs{U$!=3+KRf!-oASNZp?rjE(UC$xoHea({HRH zgw_YdFR^4sRF~)lx`SpZgcmCN`M~9ui#9l>&HAzmpbKPZR?|_NNNv7+-uwQO*B`z8 zG~|DQ>GQ|%`n4Q2Qy5f6B8Mm{5tNtb-swF_TQx9&?9RxJmbOZ%_m+X`RLj{pa0>gl zzR>fvCo1a-&8QCCnM$tuX!r_luS+;Diow1(;TKLtD9#smCmut)uSFwN8z{~P?tQ+c zyWsUREj9L4o7ajLwP*psUF6={Q=werINf0S+N)h*L)L2_>e*u9qK+a-f|QLWMdT+uVlmf*ewbtrYVS2Vf2pPnRQ72}{`vw1 z4XNOGV@)>ImumIL^8dfqF0H)yT>jrIT2cbi5U4o`Aqb=Phylx5=+P|YkF{wwxBgty zj*^oZ7=}t5M^<)?U{=f4)W&LOcyKhRiq4Ty6*wD7v@TS)kMhzkaF~Aum-#)b(zu*Q zV_T^@yYiA9lu=71>Ods$rYxC+&r+0-z3dz!c0Rs~7r&%6bo{>9(0^XO`^(qguyOud zi@nQ%cqnJ>!G)5Lg+v|-Gd4?~h*FS{dCLaWMeIc$pM8-LmY#@pvYlNe4t>?7iC2S&RYu;-1KK3suxYO4SqEi6K@EmKGNfU5kJoD2R$~FYqPUWMNU? z?XIksClz(SR~B;QzVCHw<_g_%8IUN^a>KB~kS}>4m61p9{|5}%pPxg=^l5^F(?PeP zO(X2iS5@9#S=DT9v7}M=R9f2Xb3s9?No?j$GNvc>V7ATMLd5~7(A=|uIb>4!L6)h+ zu-8NK(0Nk|z{WBQ&{kqyL))NMkmR&8O-q>;ltIt3QyZriaZ(S!s ziiE@oKod`Ra|D1jawu<%7(kvCzxD`YLVC->EG*B?p1hR{FXz0tyOMNIcX~j9w?U{K zCKuEWTrtdAq|#CeR?y%VHlw9(zbx^n2P@BCJ2n?$dV<&XyF%Ix6AQa^;yOX}xd1h4 z&Q1&vu03}}JHj~|(-i`#3t-aPZXgjUYip?aE<|)7<1YJ>U{PgR$ur(T-Y*vmaJXc+ zLN9>|Eoj3`R&@b8X<4u8&8A%4y7wJ28aW(py1CbEv{ch}Fl(uxJYavI__y)oSqAXY z98X-`+41kg|E2$aOdPX4gWqw#g>B&WhiER~hBRX-)#8wzmBdMjV(7bD)|UWOAHCX5 zNae!1M3=HfeH>+t(Ha6^;~qW5y-`l5k&Q(VWg6xd<;3dae<$;P))lKahc%0!`d5+@>kN3H0~LhmZPABp9>AujXV?87@04DNmo8(cdiaD{(Ia<6 z6S&cVO^)C*^@s5b29S1d=*dXXAg4Zgui@8@iF&hj*%(r3rFy%7*De>bN9h`606>Ag z-oO?JzwwRmzvYd*%xWYpQIg6kxL4T>Uq@IJJhJJkp+_&+hIz+=*GwQ%nfF7^!0p9R z>>7$Ig19b47lwpwQZ*}_>$lIBp5G(qDJ-(_TYINsMmutDbZ-ZMS1ew z!cOCa-egz$ZfjrEbXKGeyb+W79~9mDF;+D9N`N_6Cy31GL*Yjf;*?e{o{^Mdhd#bpq~_t-x7FuAp9@5zA~o{w#&D z$t5I}QnlV>4dU}N02eMLkT?5p6*;p zoERNjvPId=Yv}je0iYfGEuK-Pt=Hsr%(*F)6_$WyuL zB2@o@`MCwmC>FH48(xLI1SDSV5(+u;xgsF~_6d+z;*ZbSSd&WJiadt8Es1N2l$7() z!OPqmbgFW?L6&@#Tul@ z4$9(_W>`H3skPFA25%9;d65G+V1-9?!CZCl3|+h3GyoxjZsIvRNOw}K*zT3LY6k=f z`q3d8qI00(5W`W)9iF2s)K!8j+N?!Nd{r$Sz9xSg3aBU<^4MmlgsircN5kC&fVL$| zNsEgnjdWZbItb9GyA*J{AuF#K30MZK0#=48!UbyBMnt8%L!Kp|NDc-=bBm$q7ZU7@ zJEO)lm}+Zh`#cSbIJ-3`&Nmw+eb9n<8lQHT7y&yCB;k&6TTKsTxh_n30YLIu8dzce zAmnM*A1L*!_}3>v|MhR>JKxXW`Niqp^$q)`djm|6XAXc!Ovu*cP3ylE<}Sy^F2Q#@ z6s_#>$!&RwYK7W(NF7xXCZ?XvWH(yNNT%4hFtQq09$2n$lT0qN`u-!SX`!U@JW2Wt zqN3XsTqNz3k1G$VL5{x}W+GK+qREXXSseoeV5(%pNgUFvk0o9krL={q9EE!&=K($RoHP%(Gr z`&KZJCMCD@U}`o)tz@3AlA9_!ZI~$Aat&-746#+b=H<|;g~(^0py?%vIga6?sB}tP zToK|&$q}AZc0AK;Rt(CDr|m3RdMjl=dratR9sGAMk>cZLotUfJo z98fD2jqInjphaqcT6hZ6GJv!A;&BgGeqP^)yP8D9Z$0=#yf3-lk1iSVp5~om=fLi_ zrj7;1G?34dxeZ;`f-6FL+uh$a_q^!6i6qik6+=rg6`jL5%vA2Z$CT0 zJ^KcI%BhTLD@xEn;1d`A3^T~yp-8L72;TG|Qm>|#Ds@2K320*DIgli(#WlN<)$4U{ zH}(^7qLN8Vs+7&@kN&)5R+!aQMkaWz zT0szEQJ)mK5)2e4>o<2Z$4AC_mF&liqkGIlY1#CD9xaLf0Cf2OoUdd`9e<>3dbS*W z$*!e&$&*i&4 z!BB6{Mvd&qWgSkxX(b|h7Yk3s`nG_4F-HR7>_aWvuin1+vu?ttZy4*n|Mc}oZ$D%h z2MD~`?c+SquDL&x)PXr|J#znsD+QO9D)=~5lJ0wirYtT$Nz#`G8rm0y?^vjn#q8zd zKZXDoko=)87Qe@hrhWLZ7HE3Lk=Gc= zZHg&)J^?$QpJ=f?e2Ryf1Mkh^J_j%o=66g<&YaJKLuMn79VXE>Sk?MURwxZKx#)E_ z)(;Yw>(Vy@o{zHhKz4wqHS)6Mw*L)spGA^^$jD;?aQD=?CfEktCG{JDVg2yF?Nm~+ zzamkUi{aUt^tG1k7LaZ#I}*MOoeC*xKh1Jy|Nep5>qme3j^wIs-x-LaE+IZ;=wx3= z@*43ml3cGuokK!IZCa$fbC(eGUqYYbpli;W_28RuRep9QyZIEh*U^A?=6l=gfL63nW z3lIoh-$fEpYL-DUjs2qtaRmQ&OheXGad82TCo65o#wd`CGp-#sCPSLR>$yp#wcS8e1w#*H7Ka0& z#z8Ka2umCHP1r*LJrXn@6^7P>_^7g$Bf@J|9r)I_^Tz%k!H8Iz$jId``R|6sGs+4~ z1&U3k+6OVaShE2kQW$UUB33`vdm@wrQPzY9q*(V>>9_+mDXU4Wgtc{{0$WEX@x#|+ zr*E*L)ZOMKON!x#?(Q?XZKQiDZfIJhQfuhZk-~+_xY&V;bdkMqs-CQftipDee;m52 z5or*Wv;M-(?X%bH;3ie*jb2jsKxJAuwy}?;mgIpudPV=UDLpO8^f`=AAMPlAni&opE zm8W^2dXT7DYZKLu^fNCqWG7vN9Aqbcw93c|-aBt!hri6{enbhjpXP=lTo)j`sR(g{ z?P_yKTcL*>awcb0!Z-;^154j22f^~npLPLCTUsBz6rj+ukZmb`y?B^#7I8H@uq zsQu7;cS|#1VRsHIR7&n#QV|F~5Ou|(0-&o*Gm+ARymoENSJTD9m;}umpM9t|MD=zo z5AVT5CA>uIRJL7%fzG+R_;y0FE5}DQ^~VlZYSJ`zw~GHcutLNY8QE#p0X^Gio!niL zC|IZ-s9uJ+d2rQ(!+})iZ$FcN{^0GCzj#(AYWC^d4_-fg|H+^J`R!NAyEQE&(8We7 zD5~laZHnaD(O%!J zK(e+C4YA7(0~O{%puivpb^(r7B^Wv4TU)2=u1U4e`1c|tjok5OEzFY{CL8u?(SBtz zJwjti?UpTi)%D^(Zcr0To`FlTZn|Vl;~cD@ z$-T7fVcw9bBc-r8CRCm;p6FyHz!3e0ffX?DUZ{TQd4Gr4)#QQWYJl+x@~gICCB=JC z9Q67)=+dh#t&zQ)TyU|@7nlo@QcH|B(%684(V1M?k?zRmeZn(&fLj-oC4^|x17~GK zM34(QoioSoq$2z&!=&8#2*^D5h>P;qovE=SCbnuJYsV0Hitv_0>od`EcO>;0zOUMI zl;%U=v9xcyA8d{yFv9DyUyMOGr&-ElYiA=AT9!xzZ-tix)=M?@&8Fs7JiKbx*FWUQqVYv{XiYpa6nQJIB~q5aJvqN#`H0ep zhkZ+4*fg4ul0Xl%{NnR^rOMc4@;AB5_nUHle-C?idx7}-Q;ol;hsyxn(Vn}bvtl6% ziilIeI=CXgO1#n;B0F8LvbD}r`iW33hfLse6&pJBQhNbmu7fzSY)%K{R}z3N$MezXqg_qvj?gYoE}? z=Ipr#{AewLVs%vGAr|YH0CabUn94%+KUs+9-9FGan8oEjHcTD3 z&*fbKlXB}EAhS!N35IBh!_0Pr>UZrgFZN(S&_hC!!@KS4ZIUDIaam2E3JyFj@s8Ab zKaxUK4~0xEo!GeUq~r=pp6NN|#6Fa`+!M7AmLH=C07>K(+g9sEll%{9qzCH);iqe;hX9=YtOHc6&n;;$tk1e z3HW!~UV%c0s+$`WKycU&zfKPh5c5@PITtNfb<6x{<6~qd4bgp|1MgJl%~;GD=8FF0^lp=H38YA;sVA#W&B#|S9V$s~=`5F|RL|tPSA|EE%z$3I$Z^cF~SfhAo z!pngiz^q=Lvzg+^Q=2BHj0=yx7CBOxTMuZGVA==pjBL@Kxjob*V$(6i1!yoSb_bUX zNocVqT1+ewZ{&1!?G-c-O9=G@{gw=jJM@S3xZ7sgphFx;joiYMoswAxR}v!3O$*jS zo@_{Ts+_WtC!)yk<~&;}x5v`AIjgYqkkm`h43$)>9iMzzkcC9%!IyII?F30hVCnGF-os2_OBwEhSrcoY z$2j z;LbC8%41_vPm19lQYM1X?mGW@on%d@p} zgg@n`?Hi9w234q)mR{swn}yEHEru?n<|oQVHVISmowt&b4`0}nt6Vi1{U)0M=l8M^ zI3Wb~OEQhIcuM2=nUdL5`|SP(Da~7?uIDW*4;0C=`UJnWq2iQqaidn;b8VVR=Z#Ig9A;^r3(xE{hwN$4IzL-taljaF4 z#}jBO{(jI#(OsP#_4Ug2Ub$@3NfrKrsWB3l^}tM(L(BWfVw&z#2R)XDii zyfVKN{*8Wow6+QFUD&MZPZX25turmLZ)&+^=lua)>J{?s9QUYRky0n@i>!(aa^*fp)E% zTwy_$c7+QC^eXz!1aQ!KwTS|2K6nnSo=pR0<+(CCgA97r1R-e34ejZG-pj0_<-kb( z<=1~5_ySD+-@pC9#5nU_r)t^*jc7MSUOQAbrvB|$@b-X@9H2C+Z3^A~Hl4Du*0CN^ zJDer5@LbQhF@XbJ&-wzIVpm&*4o*c&Qo*57{Z>+z{!W(EX&;7C$~81}XEs;lIh^wd zc~YJZhsvO=4t1@Q71!{BNPA#c<4N)kgh(`=`MjU93A0M{a_)cStm({)yzbFl-<(wM zd@kq=Nm*je83013kt$9gQBN$&KYsr8e+X~C%zIcin+vc%WCa4bG#lD5K#)_QW2X8I z2F!*Eoi8=T@z6`OqCM&8r%}kU>_n|GSS2nVUApNCL50fTCUQx8YOY2g7iA*H3N+5x z5cYXlpgOb9Miu<2RW^F=x^98V3cR2KFvs?2+IKpKS#{&**;fWKmOC7c ztUCqZ*lEdSrEiT>w!fAtqj4v5OcD>yty86bj2<#o+{u9XHS0MAcf+R{fUuQR?934c zGO}e89{J3wm7Ft?GA#R`0(+Tin7&%ldzL_j4o^?nw+-x?JtPf7O%5imBJJgOj z8X;}CEW4&Ex2W(n$z&I-IjeCMF0cnFudl3&(dI76!JJ%9H(Q^9oJuDAuAaZl)dqxd zLo}hdP*n|kC$W=BD{Oo0>_RSPhYxD@oP^Jgk{yV4meLIRjljfTE)rs&i!mH%MUw%_ z5a`#9!vGLLl=$tYn8TdB87$j`ri|5MEjfw3?e-GnNF^Ivfg`zqJiMqi)2^80Hn#c- zFC=VR^xqdWv8-jS-2+d**M~d7uy#-Zh3F1i5>Q>71#-mgc%Bkr3*abNn)k5oXpfDk3pFvbf1xX!gi<@XGEnt zi1zI#1_p7=k@|8tiU6XxxaMU4L;JbiA~UI`UA&{BodRzZ0OioR7-oRXsuxaEHcO(K z2#|BTa`Mtvs-t$3JQadFY}EmI9-cBhpqUJxfD#B>4x9t!YOKnSW&k+%>A7X`1J(}6 zo3u!4?A{kMC=7ZJ7H!L9~bJELPa@ ztmxpw2o%TC8Uc^dA}sROvK;b^iP0aGeavpkq>h~VwW3Ouyyw0MH)=x3<3-}t+9WqA zZ-i{K#(OX=tScrjVxWzAMnl^Q3+36WkO}z|10s9=+mEDN0Fdj{Fx>mmVCNU=0|@^E z_3IHjbqbzVK$0bywl4-a?d)DYQ4{S|!s0|(K)JtVKR>0&%MJb#f!Gc1X;dPrQ4AG| zP;hi3wbTX`-kbW2AY;iVvDChgLH^YfoI|bV!^||FdO25S!O$jO)-!G;fRcMO3Tzkm z-Z=voNv`vTL=*JU^OuVkl)h5NQv@)&2H;(;r9Uj;MTe9=&QHSC`^>qhd+Mr?UV5KGbv&> zH7|}VK=D@ou`NsTQ9nW+vbmhVoL<2(9w;zhH{+^#>eavz34rZ9$kS8`PkEp;9C5%R z8Mwpl`od^Mp{#H=`9MLho?Y{&{TVVPE&%+rtDwy)JKbRu?J*5$SB!>}EL%_KI7=He zYtV)QYebX>IWtfaVAHB2bw$G_wBf0l4|&e|q?#e@E#3m>t#T)z8RzC;t?c7+U03p0 zcfhGFt7jtv$b>zUM7=Meat&O=?9=p;t8mZ0055RW41b;1;AeaJh7^ zg_c8axj_{3>w+zF+}#*^QU_83fwP;JgRq>2Fg^$$n!SCUijvN<1~oyL9!*&r(;@)GSq zdv!uL)~&ATIE`M!+s^}EfMfBu#tgUz^>EBjCsE52YG%d-SNjgA)<^-vk^y44Fzh=F z(p+nCh%XJIZSwaEfTe3ogwbR~jXv=jl&bmQQPm+Lo6sSw1W5*MHAC*e!^SLHTW3W_ z_M*~se0)M8Rz`;jJD(IlGm+tW1KQej-!=*A4MTp!2TI5d!3! zQj_ZKl3z+LsbJ2=9@Ffq*}Ia;Tgx4!iawW4vz!1Gv4S;{R^}ZD1nP9Qt1tWnjok=iXN{`=TE3aBO| za>)69q|UM`eEEGRhZ_!!_Y^5R(GKVsvAsQIUvP+5pymN%ZOWzf`gl)mL(zxq$R0(p zbFZKxe2UL*B_c#n9QO!2WI|&>{`~C03|DYegW&Z`f$Pe-Jw|@$6 zrauqW<@^AFoXmfHzstEJ(&2obR9`5+H4#s+7Hsw4#v?!Hs@Pfrw=mV17RY%Lk}wa@ zZ!E&g@&L|0bnAPU;%rA7eYWA_e|-CqJ=uklI#^{sZ|GbSZH0{C)~390=@|{a;*_mc zH2oC05$h|SC5(35J_J%Tp_JE^N~vvLXWUCVk`;e#LONj}=h77rzFw`!*<`bsK`rK{ z#OWv@**lRefIj>*Du1y@4tTf_9p|D|HK}; z24Dc|&u;phQ~)VIW>j-T28?l5#tb6x5{0B;Sx4Fj09}vE?u(Id!e9eowq8qlIbV`C65SXNnoK4W+{)_Q%K+8JU+ALZ6dr^mGmNS5 zbNgP~!V;vqg50XW))^05pq|qSa47lz3|;wl z^LEAsXuHv`Z^q#mG`skqAFCNJ)XVEkXaAE4*}l&kQuYI_z^JxVoi%%~<_ z;xnnqz}CK|d?WX(RH{M6w0Rd@;47NeEBaMZ&f*d#HsJ|6IWK@e@0dzBH;JrAxjG6{ zbO$vLSL>EiLAk3y5VNVUe%PVq-_J!PXi4Xt7%NE#*5Hkf51}D;R(Cf)pYXe^8^;R)GH3PTgG%22z=jc*TC zvbtx~tni#!EfCig`-U+3pgt!=2(2pk_&F-Gk3Yd(pOtf7;F@ixMj@y?_jg@{1*F4O zDn|lLSGYY$B~N73l4^yH71qj! z2k^K-mtQ}HFyj%!tZhXe=|?c7^E-xK(e0#LP6J^(XZQbl53_Q}GBan3SG5jXFEByZ9LygDD=#t({A`La2IqjBLhk6Qq9NmFYwgjJGwb0h8Z$^PcBv zlDrJFyMQ5PIP{oraoErkWU2B^>PrED;3~dj$3YoJ_Y#N<2=944m09_HDnOk(@ z_*_?|B(~!db1!vLu_yNO@&FayYOdXz{1CcAB!NCQATkr_$IAdOJie>3*3K4PRU@P& zCHXF~_D&RNCa2b5)fLyetd~rbNaF&G5o27-1SPOc4`ntqa#w-7n*TLP`YbTP?zWd( zO0A{2FCPV!e@%|uK{u7IDjH!gCfEoW=5%e7VIz4Gi~ zya2VhTObSpB4kZrjmiq>{rWOZ<>?#is=WY;Duoex0X4@*708||n^>?Atz;#lYGYb# z2oCA`_^ouU+^`A6;!FonD7r`qb^P0mDa69!k3>qrzX?1i1GBb!u^Ta?mGy+k&t<>d&} za>CP!$@dwBO5+k$TUH6QJqX^$8KOerV6p+A&a9RZRh05k%W~V67_&probF^22h6HrCOIK zFszBFMyJtX)Ic<|f4+geU%9wPlJ)z--8|R&+CwPAYMwJ7c>ZU{sRGqPZB>W3z|~eB z=G9fgE{VFjl62tCgrjKV5=)Y#?=C&B!)G z7jC6+K;@zz5~De_y?KKTbQA(#nyODxpDm84!)IG&K!O9+aJ@Hp1DhiUrlX zWL^SMX&{+l7{qB!ugqVXcI=^x;3eUFAINu4z|7+8vXJQm(K_${7ryxk5YKyBoWfQ{ z4LyKf#fPGeByk6Le(1ux6I`Rz_0UbO8h|j2;!(En1|`HXP!6DR8j_q78*2d9K?A|8 zUrrMGCvRV>(B$8~{vlYa=`l!jto#-!y~b^-ZPAwtrjXtSHD(crYFsSOYmk1DW(qTb zhN%d8HW8vgoX-~-R&f5G+nj}`i#Ed6>jzsl&7o}uHR-5w(1}`Jwn;fq-p1|J+bW;X z0e7lh1z5MzMui&)s6S_nffc3{ZcF}I!Rv$*x(!u(a5HmDp4N;I;UEY8+u>gvMxDE#Dzz`B^3N$%D1b$J? zD#L{~(F0W&N0NY15MQvwgCwzhfdzzXEqMZ@s3{175JjK7m30qq^sQkHvA>) zvwll<+~5>zTqoz%5ACxfKw3=_>@^qwCcsbypL-8l->Vo6tO*txs6>_J8QaceXRpu) zDrkc8(?DVuSq%IX;#m!ep?p&_jbOEGCI4*DBS-#{M)=SQDIItWZ0@e z4AICuOR`JA`0Nc%HOR%zfb1R`>!AW>7eQM_P;<}41|8`V#)*h z)b2DRr)jlY9uX%<=AyzqQyHM4{2J3WcCqUyiWyZd*J`zR(4tlD{E{?C$erB46_aR< z78WiH9O#QNnIl@TQn`|yOsb_yMG{qxyItTm4*4;AlRqz?{Z)9CtK$1_KLktd4pwQ( z@Y+c>jV8^U;i?D=#Q-0K&$W1_`T4H0HqA5`ojW3=a~&X6nIF44zFNhJCw3@6Czz4g zlw;>37`t2%*cye430x?ALGl??Wz>j}C(Pt{V0REb9;EILo0Ig|K(LCwKQ$5q$-T$j zRz^~iA0HG^Y6*?5`XV>B>DB|Dj^_p6U_ySe2))7@sa*=o*%wLC(u@|+!}fKL$)rsx zk|*jI1j;^a-I#0bAfn0?C}6O7f=<7BQnZIZIAgN?6gi1O3&Li3GZogMc~064a!43q z$ZmgtmSY!VxVe{Cp;l5hAPekN1fO5BT$22Ey0lPH#>^rhEnq9ynwAtr-%W#O z5$qUD!h2V5LUNiP(7v9-eZ}Mm9W+8AHeK?K9X;8nEp*Xb8)!`+P|fBqTs0Gw zZ@I;xh$9iXbIOVh3os!_btFp-(FAajwT?tL78k(5odLOhK|~_lt9yhII0YsTS0zaC zwT_as5d#}BqZ?%j*zI(t@rdzo)a#FzxmuPQvRox0N#p_mXN9K{rY7vW!}e=9#XYd` z1kn=N4(dS)X71xKGWm6Q{bPRj&jhJ|{q{!+i&4_|om}i4j38c;_XdmS(7=2Qah~FA zg#}Wq-Ouql=gx(-q9b^!P`}Z)DiXhj<>8`vxIwH{GpV$aUBQx95CVig5$lpCwKk`7 zk6K>U`}z)!PQ{mY?Bk>Ce`Si>h@`=&&_O?s>1;xF*5Ogx!40_n2KC>Sr?CP$f0+o{ zh=XRlR=`GOOdZDKzj*yY_>1!PN3Wl~Pj+4=30D$%Xg6|Km2~4U0oQoCO>Lc~bC@b@ zF8#bBlv~wCw)MD6j62Is>&*3a!$cj@l;nqQ+81W88Ws?XQa6sA=T+_{8y-ps)9Fj` zX3w_@@atST^j1HcN_b9=NpRjWHhGt@mxgsOk@Vv7hL7o(@VgF(Qa(80Z6Or~2ZONuL#6CuC~ z4pMi29{wA%q51sn`;d+OTn^T+b8Y^>uPS8Ch_z?Dg^O2(%W2W#_^RX6`-DQ!Nz$?w zX8M4Qm_n#9GR4EZWa)5P*6Q))CzY3_Ps^cn6({qtJcKNGr>Fv~|c( zgVY`6go)4F#f@91W=$)bqMpd&*ZrDq_1Ej<*!+2JQ;*khfxx60leggtChGg@W)FLKf4B# z$`n+uDpO1B zCF7}ud66xTLzy3Ua+-lZt5?;z4|$qq4;fw$Y>iGk2RyhONiCBDG`HS>lVGmmgG;f( zg(ooh4ZC_xF{q!hyGUSB*=bhIiz5;y@ViJu1|f{C!s*I+7_55fVL3q43mrNnNTVC- zJWWzqf`M*{sNsbhMdp%AR)NM$qRl`J08AI!Xl}|lI3*540tf}}Pv3qn7oF-cWD6J{ zLrYSIUSJE7(GEqjQ>Jn3<2%0eDtQu3>LDoxm%4c$pXI`o3y$QBIc_-h(|V^p+6;_1 zsY{TCXYlERPlUf2NYpS)9$52E!dq!9X%Lh=iD?;7`mu^5JfcroIh@! z^FS@*QWR-nYWf~8d6DQg7?4kjXlqb{dJGFnY<2nRfpfF4kBI8@>We~v(DQBFvk+=A z)=Pujl{NT3NAKp2C`O{R)N-e?pTBWOLKs`pl>uF}KI|8xzkk@n#8AJ2t^9mK$U!fj zUKR_SUMy})4uJk6Hy~2TMq3RL9c;z4lF|Ioq{||8;TGl+p5itN4%_T@Li#gtY7L8o z6i8)Ox(IKNTETvP%|m2F#rPANiiyf)k-oiZgPM>!ePMEI?jA;{9yT34_^Xyp}Og_!(?CU( z;nxD4YE9@A8c_x4n4pwSXzFb& zd^o1e7_@K^$u@jSa$8jC#Uh?+q=fX04A7NIKkeSs;8%LTX+_Dx`bt<26XBB;-7%DPHo>% z1B5YHKSkbL?!I?2i4l##ZM@t|(hGi|7nVq-1SPSL^mn5P=c;p2aP{Q)JU zK0oCahRRH46q|}Aq3RuUP%Q7&ov9v4?x~74==M<7GxsA9KK@@2LIQ(vqUNGRT8yA2KR1x@EwG^8XYG=k2gyFk z#iW8dP%rYl5OJCt74DgK46=j4p-ijZK8HyVK;{-d zE`9Vt9`vCtr8(nSC+gEnL_z0fjUFB4Gj&$M@VXss{7O@!ZO@WJKgqVZnY8*6=zA$& ziHwGO1yAv3H|3dTaPjEpmoe%$zERNSiooHs1%Rr#gVT-pdXPp3J_jg?$j?EsYZL_( zk6NTion6TRQ%jNrn!qNuJkztuoyvU%emgHvsBZM}?lN-^r;^G~FeCM#cxR^e=|*?d z;9)8^V`}8Ld<}jHiMSYhFis;mvWS7xnAEX#LSNOV(d()`tX0R@4X7AH?jlG4NgPtZ zJJ_1HeR`5TwCE(nvKUyh0>RPk1I3di9W00C*KgnBY51OgR--GOHnD^AN-onhmw-Pj zsn)K!6(Se5oug}hE-4m?Oyjk$;9cHN|QJ<|o-{Agh_=Pu8HY z9<+u*vt{cG{s4^nkFj|6Ji)fx+7+4GTVg1Tu%LDf+L@iF2wzB0z#^5hfqAu)BB>=6 z!TLe({koi*K$3;r765sU4t@p3h8Hs!NXd)-J_GX^&F~e6iikotdjkZTpOg)TWgV66 zpFaiE-z2MdhRDo@rh=_u4+ObQPi797A3Zv313)UZ6wa1!GQ7>eM%=+bbAx%tS%9x zxgQ65!#Mx*N#OdZwBga$y%CT-$_kXV-W1<@VMLEcHZeJrd_ZRc3SU* z4iwx@y$|#ztCNm9mfjEX$IoBCheYNlZ$EweF$S9Lc#?m)2^RxMVKjjLaO^vKTu7Fe zBG*w;lo1KP%bkVP`~7fYm_sF94HN< zjU$>mkY*1sl@yL;pDr!BOXNzOt$A&Fjz6TZ;}5M3aAjZr1}$BQ2AJ;``wB2&z;g9= zHq63pmo5^*$(K}-0@(LLkCrnaw7!+By>Yj}v>`9R0ss&pOcDBjoKLLkJZ5Kpzqk}> zO}h$Ja(2pNANyVYQWiT=%lm=CKIk5elFLi!J)NF{pU!rWa||$zloKT3KjRFXA=Zc? zQxzX_sO5>LS{3Zct^;b6rRKpcv7A=bP&A$%+ldlRat$&)| z{e7^z_2b`#*Wc!y4+#3YYK!M{R$m#u+`(+LFOMV;1R$eHBM!30R%n`ViTu{FJO zdBEOESGX)BjcK13>71_cCE4oG%rx}OQyehGaOv!JQ*-pYE3uf~p1sDs@4$p>wvMyy z4)_nFf0{#M>c%?!Qi|$8%?*ed=$Jr$PBm23h7G1f7NVi=Jl61cYtezV#D5LUYE)Z+ z2IHS)MWrmKZ~Eq29z>T+6hmoBZ@`(S^+pX66_x0;EssRUhoPxqT`xtR;Yy>_kx!h> z4A8YhM;AV-R)p43k!h@apjb+FdJzT{s9^m#g^ZG}|1ia)W{5}eAld&?$EOMS-IKMimHq!@oG ze$8h@J-QcQcq&+6P#8_J8W>wjvfC6-*(IrWGK^gU(QptY>6~kkTmec=MN5NBO6-T0 z79>TF-oF7CJs((b<_t5U8#ixCj9lVnk`&7>+abl~opWmMyxk7)bDIDwg|~?(^vkWh zBoYaPDG4*@yonV5W{10mdacQ8qdT>w%W{B$);fVEWnK2B882bLV)b9u>OotzUqyAb z3W|Nja0LPS<&AYH~Z7?x)ezwq!;|G@vq))s(GJHDItg;iZek87X?4g7=hAi(Xfpz1c#g30;n*9V*y z3}LZ|*rKZs`8$Ig{+;Xsiz)h6gc;gJ+; zl{ya2-h`M!G4c-abIH*D@uWKQw#-0N&=tN|-mYk5Sc?vVQh+5a;DK|z+rp&=-yV%n zV1$0*wZ`gf%HaDEExqu8MWHM!2(R~cE%W&RjSl{{tHDN&oZzmnin(2&k`)Zf#2=6f3SS0jK>Vw%E)LQGkLgq}} zuft6Ryh=6?YO|A7mD@?!^bnupb8lRY{+=S{!O_N$P;4+}=ca@F)*D4n{GQCV^>6{U zFOvGnI$o@nTjEp9H<7&$gGC3;!!Hz{g^U4*x1GBtKke{Fk)vk$vt0QVj-w@c^1*s> z7nK_!mIvF(#4sf4Jz%9)u#*bQ&svY(kb@};g;3NQ6z^=T)~W%TZDAc2S!jVZ^I>xH z+wf);okUs1^QHb=p4rNRdmpuv#5wy8;EvREG%we&?mW$Vf3WbxVekp;*k(ISSMihl z7G6n`r)Jm~(G%XY?WPy_yLY3PupN3AEAiS&G_|}y%0H4o7KpW4+8Vb$YY-v}sEuW& zj!V;id^6%$&wWBwk=N{59Sy)Qv=mA)MruJAfNgp=wr@kOAI;)>7-HgAKi;<4vKIUF5n#j=QtBd7jqdS}vRC!w#b| zM$Zu{Q%#gZ!CR&wh7TYFz1}9`aL{F%W(Y7%u$z+Vg%w$Zk$j+W$_x9$p#2-+;7k34 z0Z@MS^n9_Xm`dRoN^TAeYMCX!Y_@AG`KEoc02q&0BEK^mn za$4^(OF!gy}#6UkZub>mM|od;JmKeHz|=170y8 zIytwe2Ubf#X4p%m6`RiB^qm@e+cLoFiZn5)o-H>3On*%e?X+cfJVbQm`L^^C+$?Dt zcDLY-klD4(uBnB0D=|!;An-JH&=ha7{y6cPXE+BXzFv}o5}5kNduRxdlh7Ehqe6kv z(cDHn=Z%Sc4arbR5{bgk-62MwUF~h4@RgtELltXA3Q0tW=-9Kqp>(h*xOSA$<+Z*7 znt!@c4T zZ5a!iU;!nEUa8eD`fvx@Zo|*r#oeaj9XO~ueQ~O-QPI@Sh+lHcpLPEz-~Ze~HgY_u zk7v9U@@UKM2e}ul?FOd8Wh@Yv0rUL)wVy(|Wv0atyvvIoqJ`imuEBMhC8Dk>_)@p- z8P>ZG+1dP^z`zE-xyX_4uqj?RN=_g4(9R`aeU%{j1AX@b55$}LlSFFD$|#2T@!%L zuQ0<98K(H{S4u^Ml-^yE`_0Bu_jtA*suCzC`xYRVeJ0>wosr0?Qxa=4^b94)17;IL zA&6mO6(yg)dN&dkI`rUCo<&4}4|eNzciQXl#=84}p;suo;FBcUQnhw4wl5m;0$k9&&9=CQHGweAVe%t(KnFdW@ zf5!)RHd0KU(ht+XP|><3`KmpL4V5Pba<;x8PLlK^$w7mrJ!}9ug2w1Mfrl=uZI|@0 zbqb+&9r5KdDG`ho-UzH#mUY(;vODFuI6eisu>-HyD`Y5Tiy4zbWrLxzY_t0WVL4*D z9`LD;7gs-iOy{#VQKb6aDp!E5D|yE9*dmu@)e?^~`%)F%2@*sD8B2(JcIl(*UMo{#vle!+TQz#GrR!ouB&4oN*jH`z7Zf_s~yr=r`1i$*5 zJyuB*h^D|xIqC8Neevx2C}$osSIQpgAeRfYsU_KHz|kIzL~p-C>~2=GKn2Qz6xY^h zpK`ZBxrA5iCGOCzAMK5oHE3~+&SvrJsa6XBM~f}ftezm0)CN_Tn5IhdKu?mOgsAGR z*7KC>?baUJvf%dFk@|D_FZ}tRAG+?4&B__eHz^3Njm7i!S+FDYfN_rvU6M_X9_--U zqC((KH~IlXO3AuMnSL2|w&tat#GkeX08ZNm9gxB=Mk4e?i1u{6y7g9IFJK0c$g3|& z8b|c(Pg-OR=+VQuB0^gcX?YikIzZy1(3y^4h)#jq=48=A4v7`omEYzCS9mmIcv!aQ zKaEkD^{o?gJM{6Vb0)?!3#_kuLDK+?J{3IJ9-d^GH+qv{s>00?uO`EW%2!nuRsBzr zPAOULsTtE+sC&u*Ua=IoOP#2=q54Jca)^FMm^_@rjJMvRM%&46l&V|VCGyo$!HMSa zHzs?^V~U(|Bn?p|t22Y)#}9xnkG!9C*36>`Oz21@=1-cTRM+yEudb_eWkxIIk;+jD=g3 zeSqz?%B@$0b&nL@T8c42>Nfh^k+h-T*rAj7@=l}UD2x98=VSQhC-PQ_eFv8115?ai zEs`zS!=x*(`5lDC14&U6X4?;QpWSf%$}4h~%0xa)I%FYEQ-s>n-P2@?3&bZ~9&S+&X5BwnQUWH;ks zgPIAo1ez6>ogHidoY7O9m+8!)3BPysAG9!XfnCcZe=s)DWd}aeqT@x*{O{fgifD{Okw)gy(R4D1g`a^&CttA88* z{a;xU08)`l1Ki;&CslJ!>6(Weg+X!0G)#}`WTxD+{2DKjP?=5wT9wpYk>KQf37m%2 zWjiEWsx2-#BNpz4#BWW2Li7AhvlJMubrYu^eJ8>bp}_~QZ42vWpNJ zTL!ngT;$5PEp`ZatrKMmgZLJUbPEtbP;3Mc@64Jt7gg{oFC!lLhAe?XblcD(rrlZU z&!Jh`qJbjSWVZ3MKM?yH#;uZ;Ahfvz)nKxbGvq9R$18BWSz!~@-jpiKl|Cddd}$f! zx=Asn10#?sil5-5h7N2=ML2N2LcJUuVny93hwosmc13)!PV!~C4M<+Dd)>t<5t_Z% zs>sfE&snZlxu7~gARxZ894?tNl9np!_V|I--AZS+E<6sFVMQU&y}0G``oh6Q)2>jy zUI*=VuIM(>#HViTa;QE46JqQ47k~a|LH?f~94y|7tc)b=*!&EKXzvvk5;|?|3xxBa zc4iz6$^Kktwz8y3b7u%E&V6%jTor;`AS3&e@b+U=puZxn`c7liyYfr&wV|VB zIbhUDf<#UG!8VWF#0oz>Q-tMC+xyWG;BY107RsUaF*qv-HnIi@c=BeV0e>Ztw3yq< zf1%|JxxizZX)BZ?*(o!Ufu`X%0Bvpzr)$RKbPkvlbLilF2NYPey#Vpl+TH4e2;bd? zN3+c??H~s2M-jod-?C81$hv)l940azyEJvao1Z3V4EII8@J?A$QPgbJ@mWbs4qwc zEkddlYTm9OaqhI%Yz_wVvg=_Q`eGCKN`=f;1vSEWJYrZ?^O^&f&JO5%=k)OU*-4v_ zU;ho-B8L*Z;&a$%wmElH%LHLsQzHo6_ypz912ot)|rDX)U0K@6X#;Vni zDwM%4bP@^K2X`EN+QfN7Aiq!5#V7mMuk^yXv{NRoslKJ%UrmG(Ufr%LG9vly=++0O z6#%a(U<~@+e9~b4yXj;u8jn8~P{0f3>!#t9P&hnvNXA1vt~Gc)1-?JP3%ZAp9OpQ9 zH8mzA3_W#p`1qsA`N{(UjD9%T8J}>8Pb7;=)~(IuiSMBL29Nrs3E6goBZetF@iKtU zagiJu;1S=Yo-p-&fi->G1FQ}_2ib=SfCj0)C(!XIi36!s$rTF52Y2LT;r1dqso8{~ zNwO)JC^polyg<%8|Ac4gS0Y7MlLAP2Ho<~9XYPGTpz0pV6y&?Bu#Enx$Em7nTm$b) znJP0zEEd;p@GNEY)a~1m!v6L%wlgvsBCEw@<(Ru{rwDu|t}s=pX=}g#w}(Eov12bd zI}kdG0O|E^uaeb>sB*f3?mK2=$mOSo8N(QnF3b67!lh8?$V0-`r3_7zw7oSzHRc`D z{V5$pa<5WEr)TW6)g>!)?9pBp{J~7|q2|;lL3B%Uq%OKG{2?u4vBBmu5LT2UJpkBiPvhI)4*w#fjXr(`KjTm2V|e{JRM&3cMvl}YR|F50=r@>` ztX8=iBv*4+BWIIMO5rKU15(&s>t#DVFcXqEc4k9i2@gwH zw1CI-ls0biw+zeGD&g2}VHDYXu&@~*)cvZs2{z#+Bb5zZnhre>3Mi;fRd!Wy=(L=Z zGY}s6O>iXqJ*=eiUSQvxFAUB;wy7vCs*WvL*s@gHl-qNzxwsBeZPuzJpnWOMYSX+! z`-tuz4WqN0O*C})?(Afx?K(B@HR1;t zUH0VkjSa--XNisSZ1a7O{s8l_%ie|;O5H&Cmj?{}Buu=m=0zul4KR$95}nv3y^t;I z=xg9HD?cY&x*%z<9T8o@K+NYVp!5wq7#nKDW%8q=!eXU^D1iuMVO-^T70)VlYkl9W zoj~L)ldbS)E?W&~~ z!Fr%)9(cBMLolncjO~g;il9dA42~+_F+|J-JLY-)Q!x85N#I{ztg=WYF!${7cI|MM zu+I45|zHgvAY^q<9uBbX~eh0v!P3_LWTUN3g zFDgf*_!qZXtlOnl+4#&8Dd!yQyrN{I8ag~VlH~n@SK3S1FOsx$N~17k7PQ*E`7wdS zxc3l!lJC6*ADcD88l4!s>~j8Fog`Zch55{ji>IOY6>Bel<(lDSbpc+wi39SQrjQ3P zAfvPvtY20dA0q}MUn2V$TJ|=V%>;e9@T8949R1!PGwoJ~z=t8yR`h8Cx&x|yQhR0- zE<00KJxGHKDKro_DotWZ;ci))kUh!}H5m6N<$c~Sc7mjGWIAD)~t|__nJea z5~!^(gi?YviAGbhRi!IF5>WQ>p<&B*bO5_rA71cNvPE7`qw)tmM^h>6-mymp+pAJC zAJ^j72-g5)-vRm{gcwWF8b{pTv{$v_!j4UueE^+4 z6G+5*MYAuASBuH!)owZvtJjuhzDw*M19WHBOJx@uZ5=hMFNSwR+vuj@s8Z6??bJ!` z>e?*bRq3Ndzile9fffNB>{SQCe(ozcp3|w!u`hJ8#jPfx76UE$a%|5*t!Gel*A1qg z>bq=5VoWXy*`$iZ?kw&Ix<^urYs@|{w#oMqsACUk{g@1F59v=rIL=a5?MUruB=Yg| zx39wM?}?<<&plGi=6d;(f{4w<~RYuDfZR~an@4UT+>CN4iYm7)5D0yQ5q^3 z~}3Xme+HQwm1$3>pJ+@gTaMi4WX2{`XWu7k=!^c5ETQ**|-v9yOR)w zjCJS89&Z%m&ReW1CM%Vy;o9^b(nM>IUq6*H z0pRS{pS=Ta=Lwun(i|P6*oIXuk0N|`Yn6~jjH3F*=Do5))>~qO#UpvR2Jga|cF4^7 zfl7?9ah2z%Xqyr^U~-sH1bYmcK}YDhMN+0V7R?FhE*8(2CrJ~@;N0cj&aa?KE(aG5 z+xuXbOT9A`R7IFbm25F!I|JIuhN><|VR3`K=m2FT_pHTN+ybjw8?AB^!px7tMN5QZ zfk`a@sk2B*nD*Op9Ez0fG}Lh0S6Z~TJjfVbZ`r|ci4Q*#ZS)ox(C zXCAz@W9ynk6P479c)HdEsbve1XqG>*Ku^(Iw34@DVz8TtfI6vF3;Ko7WMk2F4|n-b zHul>;!EEyrs1f}h1Aevi&_DB%q8c~Y9)`UMQn%4b;(g#_k-Gsvrgk)akV8qoJ|Tbn zQr6%S%Sc3>t?qP;hk*r5sZ{+!o$UcY@gdaHw44r1p^Tw&^JUrWY1ci`L&wNwG?HT6 zsP+$=#dVf4N|Tmk`{qds0{$D&Bb~^BLX#5%!;_>_y(bSN4Ie>+y2);m4Q&**O7829 zRDL+5;RrCF97EalYv~Q@0euH_qG#Gagx5cvKK`Fj;r`E(SG;J0UxG_81nv!b@@knt ze~~pR+aa{3N(OR)e1q89cVcg6h4oR4GC}(iJOhIL#PdCxHs0FFYd#{0ff=?HPDQ;BXO22pvh)#H99w5aONPgmFZi9 z$I)Hkb7t2JT4r=O$;$P2_C7GMs;{l&Z6#@ps_oe}DH7Q>1?ty<9U-;gWk-VATe5I( z(evlcjwyqz1DZ|Su4s+WQX?#lDkT@5tXS^U;BY}mywU)oC+QJ$?vAfuOg~{xD1{Ow zaT03W(U0)t)^e!SR!sH}{Djsf*OL?rtsL$fGjSyA7Y0V;1p7-1kc~mLTNPxvL`p?; zspSw?^=DX-1HjWz3U3Ugd?1AeY6*%G1mLvGsumg3`OG=_S)x)nGc;kD({SL#)gZ}t z5?$DsN1k`IXTUms*qQM)2t}ybtIDD5caUU(vS98z5%G>@BtZYR0FcR(Qiu47lKQqq zfe2;=z|*?8qpDmHM0%)$#5pjTR5?Y>!}6oYP3p*M z8(vpconcI?Hk0hPy^vBFc-AtQ1rj;*0%3t`B613j;kuG9>>KD#fdr_6o*F0KuNom5 z0yR^al%M=#hir9{@Ah$V;@oMyLZ#?g_TFNOH950J$Qdk3&avXP*q6Xz2; z6dN_{K_&2wZ`Q~VQdnmqf)E9wUp^yL8WC@t_fzQ=zo5FazZ1*gB-Sk$V|SX7m|fwQ zws*G-;w9TdjiKyOC=SK@*ih+L?>-LEmxR$v$K_n)YfR7Kpm#nW+)74?i;qw}7F!N5 zBCEZ%q-+=i&66*H>x^h;T9|;15cEVtW~ei<$0NL48GSEFcA%tg(4;X1$AxIV1R?N* z2e8iSA1;Pp7?{K0rrLE<*g&?BMlWL8-Rqh0bHjnKvzh2nuiB77suLYPy$X zN9p{4TM11g5CBc>C}S%8AP&04ofmUzB1IbM2d%fbH_!SO(X? zb@G`{Vcw~WGR%M@XkWzDEy_KKZfO-aqqbHV6lgWM=7?AF&cTH$DDhQ6Z;HsX-$(mz z-8-TgB>Jd8Z(@t(9yTkG?$ zQbU7#!=*Bo9lS)KQSB`}Vdu%~AGu`FnjaonwtX54sZ~M5`);>pzxw|qm!AoeDV$VmVbcj`ulQz{GLXxJGE9B(=$Io}q#(RgXm^>nM0{w8PTmSLi!lD3W@4jH!N?!d|3g zGMu*x*IHSz>z_HLvkeubI$$c9ER(GtRW`59?-n)Ktkm3wQqw^D4Yk&CA;OM3uA z;Q7uvmTFX>*R+7q<%f|YE{~7=y$3PuX_axL<$YckG?+O zj0Z}Hh3dHtt}h}F1HW3Wo8Z7jiWdANR9my`6ntuc9V^+eaDK4YsxWt&E`Siq_Om;0 zs&t&lvF>6-@?k=0SM!b)D|>>JG7(f_a<^bt`m*tG!7uO+_FO(d=?B0x=?KvHjeoWh*1=B?8!nRQkBoZfXR zcQ3RFoCj*zu7R-*t{b`>bPWfU*1`0;=ge{h{kFX%J#mpYc#&>|7fr$hwXkzjb4QJ& zZ9;>DKa_F?VB4;uW_EF4I<=_muHWWB>rBjRG0dSQQXW436cZsiw?jd9S17jdB0N9a z6M5I1%{o3LD<;fRY#zAFH4WWW5Xq42Jo}CD99Y)M{apMDFfquF0GDlk28lKh=V!o+ zfdgf8FZk|5C!gvj5?R3zA3}758XyyaNLxt%Vp1Sw#}GuHik&H_Aq? z%0=KD&|kmiZrw{u@ZVj6Y0W!ebw{VLBsa(1(%>>q>#j|tLVpWS_@!b2JEzbQN(q{o33uZErsjT#G-4caq4ilsWer7)JQheL9+NwTqhM@E=V9W zCRqFL#rRuR8s~zw_!;xcbb{TimfIZhv|Z@TXuH{$OO%cA^p2z3ffjMMLuP1fshUvfTBWv}odd4mV=N9&tU55R04v;pvoB&A=F*YF%iojBx$!+fG* z3;9lN%cg*=4e7jrnIRrO9h|VT4=b5g^F{&+HhVuJ zTV8kxGF?Hm>&z}%8I>y#9Z+`lz7s%xWV{qJ-isz?c!y(P<2oZt5ihNR6OF39oCtvV4mOlk zLJ;)Hl9fmQ@|`E9-JqjnKX5g*jdDv3h>n{BW__!{)E@Wvllctoi+cQ62NZurVsKsx zK=t~mzDf`S1_S7nvO@rH&6s9qE9I>MdSbS7W;?SFT-noE+CwpQ%UKqR^9uE@9J5}ed zU5!a643+t^TBwY!4z3lT`(q8GYj8=hy?DR7kHC<`5_mf0IGe9gr{%q2pV3OUBMM^p zm0Pb1Ui`~*G!^dUk>mQ&(-P9$?8{H}7Q>yvLGqB%^_*g^6x4VO87QB5m?P@i`oN#V z5dXjc|27a=pS*qg4O-jl@BVqf1?SSH_6Nkxj=p(hcmJBufOAK`X$E+M2u>3q@{j*K2B@kwEP9k` z2#oP?XtI0%e7oD#CX0HGC*{1QbwabYN$#5mwTmakGlJg?&&-~>kD3L_d3(ywbm}pk zC7opQeK!$m(N8L23rxJjN}wTUud`z8K_K}uoxOm2Qpwb6+Bsc$qNG9Vut;zLi3|!e z+3rgbcZH=0Q_eF?u4;Bsvsy(KR5gwpY?+dY=QNue+_Z>tN$PobRg4g1u%xq6U0gPZ zF(&YKq0-u>wN@Ec{$(t+6FsslNO&{WS^{$L-f^{{uV+n3^lylL1`yH(GZe6|3W$KO zLiGSLiQ2;C@UJKusGb!RcBt}sbNOL)QZxY(oZab+Y;7Gm`G=8e98a@yP+*El#R==! zDEiFfm+no=JpsK0rInX0*xh`peTp{!yz4^Qf|C5#ko4+ZDo%6f8%AM)j`MZfrZO zfVIFs7s@!}VPb&xLot7uv|1Zaqr^YCz$*>-&%uJIBG-dsU1}M*U&7`)ChG}he2Oe@tC$L(m~K%PR%*hz(F-W znue5!^N43=U5LP;dn}ih{jGg~gKrlZRUuGg_eq~IGDL^hz!*X7+lxM&D{PotMgotK zFeA;HbUx3&6jU{cv;8sCfv+Xp*upbJlp3~S&Kimu;+W#*sp~nS+zzHrE7vY(&!+~G z^>&j31MQtUNgsEIh{4oSLUc9AzxmE)E9XVw_1C11m<}s&a8!3RlZ>sM2?d#tX667n z(uWTsrz@Pb`;}v7ST5HvvYu#PAf-AgbuvSN1+l4zhJI6biqzDM&>mNm3auPt0Ncm06>Xp*=uo=}iGG zOAZifEs`)&JH=|1tPWlK$LZsDG2ep-%sjPbXh%pvzJ4^E^{ry-WX;sK%ETPwQ?S%x zUddOOCq?_s@-36jYu*jjeh}x7N>h0Wd}>e++L(w85E${jU&}$jkrb){R|92?;hgA<-*BBKbz+vnJbnl^rbNLzdb9v;f|ue2gZ>x(4xKz` z>G2ztIKV@MdYnZtHTYJm!chAAZi_O5v28&~okiYtWndn2H-|W>OYHzGewN1vw1tR+ zMf|e9>w}{}`FGd|9CF$BIz&vtg;jST2eAplV(Rm-d4?!4O%ildYmNEh=>2_gqD=16ynZiO1!nit=bVWA z__!9o<68Xg^znz#j#jV^U7V%JeY9ut+SvM#HBx$+u>~ZsnY=mDe_5*gsBJ_fT+6o5 zq7rg>j6>QxXSOl=5Wh#;XC?fz!!+nYgu+7(rhQ)W^BQ&$#sB7M(*CX7rmYY4+VP$9 z-4za0P{)z1tA%wLn`DbroF>AU@_d#}T>NFpK_p`UC@87K)Ik5tlx>}iu7*;}%5ynY zc562+7$`)bNc{G$CInsRiIbp8^6vV`>Xq(prwi zduH<5#67rFg?xE80YoTkeGXPDVz7Xbl`(iyH}A(cB%yvy$KoFc@bf--`|R}-8)v*E z2o6ggC)?=^ryD0fNlkLhe${JnQ;pNR1Tl6h~4mVT9mNVD-$4~Vpv+ilxu;=k)%H>Yy!)G1)JfZTHW@u!VSrllFU<1Hk4S+Avb~B9*XM; zz?2d>b^gGV2bKNO0u19>5EMk)7w(}E2FbSV)JnOC6KU{XCvOM8z#5gcu5 z!qo<8a*s>FzS#5&{*v3lxI@h`DJX#+7t8`+k}_UEwMk<}+b!0YO1LP;Vs9{A!X-KG zpGeTghHT^;g<+@q>k)?dJ6r+q~)7w=TIej3pnn5o~Jl#@cgNJ$pSis}{I4A56) zdpRdeghQ}x=90yGKcmCI}|2iNTrE?Z8OI(O>@LP#Q;R9{c+W~|_+tnYrE{J83A zb^fd7Xhu7}%J(d5>K(F0$&g(9Nsgqu05kxDavIyelR-mY^^u2Tx!>lDig}ruy|D6- zI3^v~kPraGJ{du>Wnf&;Vp}|bZ;s1}DM&fn&wG3%k+Cok0R3IJ3-=ECDF zE6)BVhWaojSFMVmP-_NBWxN+(=L|Wl7Y2UxVXiix&#G@GAWRwS(g#Us1MTYx+6L=< z08>D$za+oNZIKM|2FcYIe?xG;r29Hsw2})F7MKJNr5Tug!qzMj8>Jqn6*wGPXY2&{ zU(PAK{Jf+Tb1Hpcd7@ix@VoDN==MQ=Im2LL+3OV$PgfavtmVv$|k2 z1g+3pj;Kd!)sCO+^D}rvCHtGsz)hM#>_}Ng0-J9okKIdlndy0gwZ19 zZIaBb+U%%Lgd}e+&4M}KK*)UeP|%EmJlE?7y9JO~ta=P2bXgLxg3XyC{jH(0j|Sog zb&r~*K0#5#BbnXJ^Loq#aHq@F34s_}wYg(#KXDJux-?$B7ngnQ>~(DbM%gjFgrN4& z2x|wVzlYA+2J^lW!mSI(hQ| zou@x(ul)6QSq0~NYA5^phj7eA{P2 zdNF0PWr6?*UE|Of?sjNbW$12{+#5=``2u3sd;_}vopz$m;A!J~mV4q1HJDELW)Vj zB*Z9_bsz2z`YS2XhxCj}{*a?K5v9B=Q->NC&}onAwqLz{_5WbjYjwZPg`l8iCazZhp`&#+KU%EfJ`XF?AxWUOHR z%ykDr7=R^}zqjECMhTd5x_Bp;f7?ZJgW0EyFz>^yBGr|>?_I(it^OV6t@0tSJl#lp zxYFU5-sb3ii-W16ffFA=r)1)CxSp0k{D@+uk==1++iC#L#}@ONbsAU@L$=Y)*wQdx z&^RSoSILaBsK0*uqn3EDnJ)N}FiVzaZNp1; zaPw^IOq|2EpD8tjT5T}!%QB(&fgf*l&FS5)5V_@RIEzxzTm6W-(kg}yvFzHZ9}A%g zJ=|$@b^Nv%%Yyg-ACY%F#b(E>Y2Y0I(U+Ah1=;$uSO&-jaY03*}lw^)`X(cJF08c z4V{-X7u-Zpp>5}QkqdHYOXm2B!e|EZv=|czJ*SW zT3b|Qy9HP&050(i_4Hw|#(L5W4B{pvE1-_DoH-3eFs+)Fl3r9vMHuWN{gz9?oF1uZ z!ea-H!Sphrwt;qBoByG^k#MjDdfw0K#p8k|^8^B-ool&9R;51X?F6v~&TC=OG}#W2 zz_bBla#_d#7~qElTNe99dRcOv2K0N!=Xz#m^L$n@;{z<>8cd^1p$F^AI|x-vgJ1Bt z^XFux?NXA9BLAiIJOdoC6O*B%N7B8Z;jLP%W9@n$Jy7DPSmUBoJ{Mn)&E&O%%9Q%> zTh)}@0y`T>HS9+pq=VJ8%3kD~C3lNmZ3kBlaC%nwZ7^)R@Za1<($3Xg+K>rqQwCp6 zdUR*tcb0^<8$~v&4bfL1234lk0y(np-Ni8HY3{LBv+n+u+Kjl6(8)P0$_NH9_^z&x zFoJZ!XE1EH@_2^U6%ZiKZm_IwcR`VdPYhcMx1v8W(HL-1(LO6jfT>da^4W#Y&+6x5 z%tM%KOH8B6P^zjmoO_yyL6Flj+osTovyi*$J>~@k8^2va;Iae~dSk@#D@k3F9LPql zWRCo+vdofEgm34!pTGVf3oL#0_Pu;1O+fG3-+GCG8OFSyZUJL|7{D(P)ykY?!yV=m z&V>l>1tdktIZU334`2XTpi{teBnu2`#H-?}>_IO`aVnw|!-eY)M;bsL?Pda#>^wPr zBH9gCLo*@2jL=fk89hJ+C;lKZ``8NH!$o;b2nM(O{})|)Izl3iDVd;5w9R44$G$zkdBbCf;!H|LgVBcmERJehkSV+&=y4K6abJ;1!;j z4t+Pz$qv#|-Z5whpw_I&GcQ)#V#m4>E<{xT?>maKl+%0cH0+GH> zFd~-NZo`R5RU=u`+@3=>OLFXqD!I9Az7~ojn}#;by-^f)GF%bfM^}^pQ6)5PFqp+M zB5Srv5WYL}lSNY)PJ$$HN|h8O1dU8Z8zzs$XkY{?A*I!dl0IZhfsJf?nN_MnJEbWLcY{YUgxcVjd*zD< zsCSzn85UpzHQEwH>tJxns;D{3;-!FCGK(=yn3v>&3wZi|Ny7B{G*d>h zPIT`Y&>cn&>n!CHzCaoXk2Z)kHR3z%_N*IS{3 zkL+NOEU`M-+}H?{d9;eO6_rMa&@C)(@Iy%q>CjQzP(D!n2mI;-GW5`NTH~|ygq!!0 zQ0z`r9g=X{=*X^XvWxd9yM{t;tojpWfvH5ake|vFRx6znuw#b`+k;BqW#N=;l{uCp zr%6wKyM?Ys{X({$86_vl_;;Vb{xZB868vN&|Nlqgm0r@(@9J?_s>Te*DKX;==FswS zURCl_{!r4u5cN(9S3T|jC@wN!lh|$c>!^qeObc-oX-pc)O!<2fS)hksl8EK$wyeJ;FExSgLpelLGFh_%+5S z{2kV+9o9nc?azPp_M7luc#|P7emPvW5i11e7SG%8~m)LNW-89T~~X9lgNW^fgrJ7GD+TYH6eZTm&AcvyTNJf3CnC zw!0NHe5k+-l4;gVk$R$nQwBiicATYwW4JjzkE!~=qKXSwN+`mWQ=VgtrPM_cFkOhGO39kSdAyRS zP*d%%)a}{ z>!)v@r(c8o_Js|s?%)UC-PKC<4CM!A&9^I}JiP{Bu_Yn`g(%5567*|Nq+sfT^VesE z^~vm++aUs-64>v2Y0rx8m{?L3fhJOtI8ewPVjt@60OO`^5fE z04j-*4e)rQuDkkLZ%_L1NFkA%Z2jj+RJO)2i6*ff5YbLTFzHaK78!HpvBQo8AZ_hK z(W7cOzf)Bdr5R3h7L0Igc!4=(`lf{xJ?(qK;2(YWcaEQQ>=53*$?tyr`g3{*84v%< z*B{Zt;}LwS2xZGTxWuH~}Dz@jUk3(gWC$khw zm$`&Bnb)Ymc9X~`73*~;9T7rf7|i!}`A4X1^{NrSk^@r*F1(uH4rg22VZT`<2at#S zD%bxRs6;5FT5N|d7oF)UIMZbCdj+g<1jAf0a|1A|7d2-qc)9KhHNO%sQj9m3L0o`- zgpQHz@~-|TBXm^kxl%r(d$zqN0n|fncFYSaT~<>J;yIhey4H9LSPrKu$gQI)V;c+P zIz8)*nKI=n(I%(Huz7v=f-UYv^0X|1@5MTaXAapUiI^-mE>Snr^KYW znnj;^suroJTJlq0-t$U@wdcSb@)CV|{G!`d)k@r8zQ_&$lF>x-RNy%itE6S>LR}7c zO~Xm!=5^`-oABx^mr|!mh+U+0K(hl8H>gGf!Q4*3u}}-T)xyJd-HH-A=<;0*@rY== zX_Cb(WI?YnaWo4DI6f&@2IGmH=v)snHC78}HX;O}rF(Ko=p}Lqy8Wa$@b z?qpq~+P~RlQtlLI=y)R~0Tf$rd0UQEN7kq3I0s-1SFF+FyaW$2mSQ^~Nzm13Z5j{*gFPlh4bkJ!sJAj9zBhEM3wZ>PSTJ^?+C)|8 z5s|!8%$n7>NX(p?2XZl^y_7K=kmu3+82GXSyeb0vCJSc}N(IC|doN0zmtD~oah@ifPC&+BFLgb&; z__xdbQ0p_IHX-Rn<+2KL0qseRc#c`|2>C@VeinvQ2wnmac`35|F=}Sk*Tu+VhC;Bt zypx*dYp}>Z%Xr_oy1T+%-9^zLC5^P?$x3n@CJ@JfMM)zW38NxAe+V^3Vpt-qT2KB4 zON9J6sLfMasb*C@H>tw%QwqMJGKP=UB-0c~?V+&rZB+39yZmFWo6_o}NE2;jXFu#6 z`4Cs_glyw2cc<%zE72Ksb~dXt@thV(psbG0>m#mG2cJyU=t%SE9wwTc9{iTgLYfNc zuQnpOJo6`6mC`aZnA^m3o)iy9m;ta2Rvcl5Y!Bq5AV9+0rORjY+H(edlV=%<83*x> zV=WJ@PL}N3U(H-y>j--yTQ)|JZN=D?Zf-y%w)SjIt|}#$Z_P@buOGkuGVn$E>X)y7 z#NtPPOJDgUeEWA=qDZB~_}Z#49>v^XROeZ*$BgS_jl@<-vG-~}=kM#9b@6JC4T+dK zkuh~x2%={b)n0m<1B3d;E+vGN(szH78%p7S3H1Y?ssbB2JMPdhO4o8y;LWP!dEeD$ ztwZ410^wm$LS%LV(e?WZV_m`Im?8tP@ zUIM2z&k%By<}rm-m{Apyr%-LNQh4MRWG|(~h-1ORPdhe}8o@}RUulI2Bz>19k~t`T znHrEtOx9T{y6Tie(5_{nojKR+)6CN(MZOtu!%&KY8}*8G-Zse8{j>rF$OmSKH3k@0 zh3GRvcg1jlaDN@8k(q82flX2-N-#q2Ogk2Eu&Clpr&P6DF)%jx3+~Y;1qAUCp*qwx zZ>2LOYJ?6_n!Wl9rTaNOCmdCJ*Qrw2+Bol9(;Ud9_I`sphkXY)M!%%i2g>wOz2gvK^g zC^1bjs|EHxs$X^fuu}i1- zEZ2mlt_$5RckFXocC`5Ri%)#V;O(NSV@bSnz|-2n+2SzIN;L28wE)G?_T**?8@Q4R z0J9t&AWb1VAPEv@Q(~EwjXnCs={p7eEzy>mD9?AduKqon1w;6NU(M912a-toACoHR zsw|hTt0#y3!IV@kW5yKs1z}@sU)2=|Dg)a{dAw8# z7rDodNWIRj(#F>3BLo2Uio&sc`tBdzeuQah8T~o$##BpZTJa-Ybv2Om*|zkXH727_ z%a8PT&kHC}%uMQcAXxMYr9YcG92qYb`)N)}7U_wPkD$P$boWrEY{aXgX|+2C>h47! zf^@5{$+*aYV}Smv{|I*)0Ntx>DBBzP;0KwUY%A16jY`@DoKx*TUwiP3DXQH{^$M%$ zi9I1jnB8~5e|*5SDl0jb?&_Ntps2Zi%yGTUV(B-cx&668a7=m)l5bwU%Dp9b=4U+)&qT8twR@N!ooSdlsBfNcl$`#?&NM4`4 ze*X6Bcb~p}_3ht#C4$8aJqsj1giIc{7BwV!9jd;d8h| zf*MM|q$2xSPJZmVoJhHL-yOqF$rE>?bF?`_m>azo~cLI z+K{!ukX)yDBg$C`SrQx=(#r*gQI&G&)tYX>^wyi6ndzclZ+Go|Ep-wR-@o2;%S`V&qO z$Hr~AY7*C^B!Ku)qSC@_!(%e(wemAj2&D>-N_RpK-A|9el87c3Z5C`eCqLJeZ~5=u zer5&vH{rWq`0o4sU!9f;wxyK(X{%s09jFd>5P)=%eLxT@?Y>3KuXrqZCCa5(!kh)W~bpUtP+VE&Q zqZ`a6EKZ)lLnudxy?}PgEkZU)DHMxOsW8=aMdePRa8%^4dI*zQGD9$Sv$>K_G?olB zcq-6eZK3cV-jiImp8}->$M5LF{QA4Ur@#H9w;#Rz2bgStgMIe)qt{>Qmp+k> zb(&_?jIJ>T_gE>{^I>mb9KR$yz!smK;!12L9G~DqRL~80k^g||l{3VvHQ-aoJ&xG2 z^}P?Fa3&hAM?h1e zvF!TF&$yI2Q>8AwxVMAmNIT8l(ucKl$v9O=l|b#z26FngHe|OE^p9uzsI2y*ydIY> zm#UvO6Y_Ywqeu*{i7GK@w=@C2JUh{U75?JCrrQ(l3L4{D#iBy@bkSwh5_>Ku~>EZrl{yA5S;WyJ6%Owl->Ijl_JPIXh}}4j;ha)QR8@;0yceQE)% z5NH+fE$hp7pTGY0?L*)nU%v?NzIgrU?U$@5?);A*hw{=O=l0BI2pltent*y)rYegA zNC^L6FM9Tgka2_;LasnUN!(w{$?FVeqV0cZlmxd1)$2I1;^5S=IP(Wo2Qy!>?+xO% z_PmxecHUTMyybpFhX7S?ryJ45${DHRPHLvttEC)Z2koKgP`s(6Mlu83oXgNhwBj}} zhY!74V=`tU66%)E@M+R6%~+X2TdFMVhVHWs#P@`ZsXA#K`cr9qhu!Q3TX#7N9hvc4 zLdRRA!4}J?M|4<$comqPSIY$>)Iie97T$k$!YYjXBOTQGlNq+$;nIAH7ZNa0^Efcz zmV@O008x;tfb|;I=XG*ryj_rFNxX|2w&N%v;pia|&Hcz56?Bt(sqzFI!$j%aEVxN0 zLx`6=+6OpdJ@{yqBZROkfFwO&8(3+(jGI=Plr1lHwgL#>g54$L&x!1r0+}b;6)n)u zg60!(7z%%;6z>lBwH=PN+wv{F(?WYgf(UchPvjn>9N8XJL^fHx&ZlBwHSrp_f9f+}*aHpIIfiNzK3XL7(mj9HHfI49DvB zGV;)%Rz2C%p(~_Chz`Rn-Nf-Eg#*LK*Iz1};Y6yd9XF(Dl=FIRj+R6)bd@f77w z=yRFC8H|j5sEJ92h9<(I^uf;zd$T2`G6TRM3?S7OL;`*cn}&~JA@nZ*RQ-$jnL=t^ zu2M!50_PoVj;5wu}Y$d*^tQqf_E9J91r zuZ`-p+g=)=>MZ$t(eZ?lfBAvMEl?Ap(`131j3=e%2ApAgoN=qNKQfqiFWg@9Ak}&Q zpxS3UiU6swt*TLs5eK;-X&PGzD^+8rJit-TutiC{P@m6^A!?H;@e2#-3)r>@)$7Un zSS=sDctzPp75}AZ!ywmP8b___TB>QdNcC6A;RJqLRaZ>wqFBNT&C;zQ7 zmQu(VC3`06@=jVY0`(zb5CP_(_rfxrBx@P^^!V`l&@GTI-=X;U+E_eCMnZ?h0T4wX!dUUjEq=^oC)onw`+stlIJ zfOX)MhzKv8+z;2gd?ewC6Hxdr6{}@E$&669 zV|kBtg&{8dsb8j6)lIF&g{&R7KI??Sqjz3MwOiI0vXndQ9LZmeeT_1qjgF-G&L4Y2GdcIYZq7UMf?1J5tBNefeYqEbY-1}-RC=Np*l5DypvN#V_9gkgLUTVytJdenKL-$E3 ze?HDpQ;x_j!@Hzoo(oU{-nSve$T1XhXqinU8=1cD#x2AN5`0xY3^o7Tc!yjua$iO* zuM6l%8!RJP$VjnbtHXAY|5z1_u#u&>2n=!7%m#517o;yMKghFc&X%@bUlh4wRS(>4 zEoRFB2lf{$v6Xi@t2683l6_l3)%HY)_LDk>|IkD#K&@Y4LQS~)4Vt^0E922I2Mz{4=@;~qaCKXi28MlC0N$N>_%9T0paSNEJrLedMK2%q1wJoo~<-t;yRC>k& zFS-Rd!|38r3tAPPADkFN1?<-uPvoWQ1FM>1b3;Nz78l_l^sixH$g!@e= za0KboKsMu~gT^S?CtgtZMDIkVZ%Wv|rEWcpz7Snti`p$eiCb<*OfuZT zRknmOh}Wt%^OUur;MO!ikqx}DeSv1LM9jsJ6h7aCX_TX@(V=IhR%NqA3kt zO{7iC&QTua8PiiR0kS6tQ0uB(8DV(Vt?MlywJtx@g9|RT=8mOCMv$&P8>c-EDp=xO zl*eitq64Byu_h|u20QbTH@X|Im?#o<3p6SfM%pI0zZjT&H{+94e4r$El}uewb);9@ zC_i=bO7~q5Kuk`FAAsUNB$nXY@w-7hNNzPs-ErhRaRO6(oQ%^}Ky|)w{(`M*e`R*J z=&621o3Dek&S&(pHUX~U;zWR*X=GDdQ#xKk`QXmyY(2ozvwM1kVJ1v02BN@JJh_~X z)!%b31b8(#T!|ZI4+){I7*_U<2ng*VC&n+*a=ROL0gX?Ob*826JpHWiV&4Y5sv!R>9}4r{VEL zDylW>&d`ZrU&u=ZCZX1norO-1USV zmsa`|Plp#QcUmjF&eALCZ+xFW14%Zs%m+pEqLd-W(Il#Qu%Fnzszg9eFl)Dn??$9} zpGbCt6em_kTo?7Rrk21}H5hpsF<{x2tWAkJrVck+mjXC|QoyfW=Z#Rsr&(!hcknDS3w|BVy2-`nrs*zdo4U&Hi=uiqR>idJg$nHl{;7x<%T zuq>8JcQ>vE3=Yz;&#u+|Bqp})5>{xKl$rqmKO2J0*12;Hw6%ljSLJx=&CwhSpjDN_ zFJKELkMGq<PJN!p!(R)e)0??#$?K@_` zMTrfMl%ln+{h|Ksa|1c{_15Y5d%N2Z>j*3*+X(e7s>cnzfzIU0X%2O*j15ln&z3a$ zLN(Ux>a5uOIYtz$E=+U$eU#qaFJ6O6baFGQrU23v`~px!%LvO9LVKa|2RvqVs#@wN z3yqDAk;q7%h=dZe*OxN$1|kc*iVA~1tW*Y|OwLf=4qW#p!v4r?b5Ve@gc$>q^axROriVnxhpq!D%Y#ao zM2c!Q`Z@d!snZTHZbNy@6*!0r5K|~}DWU5Kc}8>^5y8U;rH=PHWfivc#Mw0CD@MVu z(yf`6URga0;OdyV$fK(M57-WMcW(-oq&CbTzK#dl(28VI?1%>zAxnG&pQfzEeuvf< zyu$XxZ02OR$s@H7n3?B^a{DuQ&>h*y6MpL}pTV|OW_ zh$|S)*z&26QibAew{TqKleR7?CfR$N8f=TO!y_IH8zZN-_q`K}F*C7scJb`GWRO!_ zyGn9CFi7eUX=i7wh*FwiJpJ*UIz2bg&OlWufM>r5JrDM9@Ufz?^;J#KA9#O zjZ5jx6^U|)e89Sna+Y2Q7Labtjr)>yj%)tPkykSW`V5RY&pYGX^F+NgnAD-g2UMo*aH8&eWj2m(T>OMQe(stWaahh&0 zfxQtSf(8GRgk`N|&7dXptAx`%xH2%rI-r%5gNlmtRC$Wh@TCrx;MyWTY^B$yy>bQN==H72cR71vAe``s#BIS(}|jTH(E zYt2DbuxJQKfGd5s5@)22F&VZ7VZ69Y(i_Q8z821d(Q|)MOcOHv6BA`XhBH2PQ2&L7z!T{c#uwUj1iE~{05y@_pVVpTc7eW( zJDa50Un50%xufj!HQW^w9SW3V`4Cn_P|VoIOO)V+nuR$c2ABN6NLdM)L;~?rf%uLU zJ`L0Z4O}bG#uA=jR$LHgIA9vF*PEdOGnA)Byi`pfCpg|&mZ6b0851ll_jFQT3R_xW zV{N-@Jh^gK0VQM7mVQB6P$D2C zVrqxi6Im{hvmYVwESGg`$qXCz9#Rlqw++*R#}bjXViz9epYRR=7El-=aq6$#FnOF2 zMk03l`b7y}n>!wHma*QPkfr`x%8B608n`YSFW*B6-06el7HFyVgohT;hJ-MmRJCN9 zeulY(R3yKB`$X%Kx8I_N{yMNHh^`oZj8^F$u~(5;ee*0&Ke?ulNrh4C%LdvgHA!fw z0Yk;oy$N*tNwvYXAq3K;Cv{!;@C_VAkanGI+3-poWw*4B-cpLWMeW#N5yI{?F<eR1Ye9RwrTeJ}iCX8x1j6h{O7w~G4TdkLO|@#8QLV0cGIa3* z66|~g&H(@+AMCX^{zC;;J<4L+b?cVWziMB^+copZEc@W~6}AR$lms+gW1n@_k(*Cauz6I8 zyJDvM+?EvEh+-=ah2O!S>N{<{vado7@pY2hn~rmZ=y^&4f)!`oU|8*20lZ@~rgUN@ zb1`)IKF{e<>C}Rp<3Fqv;|aWVs=R*feTrU{!>sx3mR@t|B z2aeoVH0ZRU&OobOFj`3#0{f1IwOk93Lm^@%g*gFH5|iX}A|qcXiX9;S$&o74f&L)4 z_eZblyVBSDg;q;gdoq%twIsiJI!XOVzG>AX)}1}1XHZa2`n(O$OYNnhHfmDdJfv(J zI`}}IRbLZOO&;bsyH!?YsPfRTDypheon32Jv^tX8adVhLvCF3e{oeYl0@Jgg!v?!i z6$HDdd{*Uwvy4{E|)vIv<0N#SPPF{C?(bUjc5iP6ZK&WpZ@RFGP=M$0gro zx`KdFP5a$3DLnuy@_V<84XCa5L`(1~9-I&WRA&#if@`;=8T|QqDDc&5QWm~rfS~4z z(weMVLC#9Il_JgkO19lsL0eQ1@$SNHQdT$no-5vrn8A+&9vdB!j;zc>7`2kHL52|MQ7kT#_WZPfmc@lg@sAs53`yYFW6@e|yCbz}~^+uUDY6UcVq`}4v{*`i(YAn!3 zhyv?*iFWgNu@nNk`tiW@Wz;cEy2?dP3-{dbg)6b?K5UQ@X(B9OomF@cXm!NrH7e~Y z6P#2np3=&-QhZg&eFwhFvh6UWjV||R&}*?rRbvSn-r1XxCIbI#i4ql1;r=>z%=uY| zfwY+Y%OT@-?HqxOdXig4xP4CBX{N6>ft-!pl+0r>I5>T&cJmHQLuhx7Q6w}sqQ#`S% z>kN%hPeMv*!VuX)uX;kel5Hq#);MYS!v?!gKYqI1I#-ln&INZn!CIoCvD)Nt#({zZ zgJd$f0MY?qN+l=qs^(znc!t${=iFsbkvPC;5;_U|oPG;kYqP{rPI2GK-%mxge#Vzv z@?pJ}hT}Xa(j~6y1F~^)ch4$XSog+iYQ}CoTaXwk2jY~S+_nCeQM@Z^#?(1(-JmO< ziZCOXE7*v##;roliZ!;?S7_|m+sMJ2v0<~+KZc#HW4b>z`~_@x+)9N)ae!oURAI=~ zjg>BCPr9wR43OSshp}4rQK{JUsyD4aY4xu~Wih?zCE356^*es``kTNP{5}2YzrFqz z4pR3#@K)6}G-7y!eWHjd8_;JkLxwp+@#5S3T{nC-li07$3Q+OR)x~Jh!}*#lhQ~6w zxtJsirz=SvdyQEU5>qH=_|NZ&PC_6X90hEEh}Flwvc>&4aWAlJA=750T>2AszW~8K zNqbmF_0!~0S*gZ|9)4pMk1KJ_^2#NTlt4@xMZVllQ; z-qNl&b&#^GBqc`U4wv&@hHMA?0RT|x%1iejt8^OVu*w0?mp|(Yq1&ei?F|$(5R?iR ze!T_iTu3wC=(BCO;3o`cIGK`v;@;`@%I?R2l|*)q85})=5xxt2Hi`$1tBw`H9+8jb zgBGbDvRz!GG3Dd~R9^$-(niQ~q}O4#;tU;i$JjOjAhbzKOw!Ws!jws~`q4SO2Xz)J zA9!jxB5JfX2&7ejo<2}s|1P|Kb~Z~vu~(S-DApNn;Rt~Mdn^E4qthSOPG}P=H1gDV z9V@x$6upbpp%$hve(n^_P;gYUhaT?P@)=`P-B;Mly1x(F7YMxizN^R1kE+Wz{d7u3 z2h&~4fxu#~kxt^7+ zuMz|&@ct=7ubOmpc`L3PG_U|rWp-0zvzpmOdAaCA{XFxff(BIo=et; zRKodCSv1n$0S;|@wr<@~d~=6_^23<~l7l6PZG-c<+47C{*L7$pJ2=87k^ z;kkqIrCW0nw8-~BN3)^m-3`8+NS9I{4CoBnu^a5h(v{Y0>3#vjWJAhMH4fKy=-3HF@@SJKHoi@q9Z!s4C7sO18)zcY z5*1wo6ZC;;<&1)eN z;Yf>Fef?18tf`S=)I(3HwpUpfatFag-H96q$YkUhg2^43!CLab=s<_r@?7nG+GwD{ zxoIgUwL|elKl~D~t}J+Z?wI3Ykq|>fKE6PF`_vK0?unw9IvIA?YQXkUdt^25!cf2^NEB@H z%QX-RpWfs1!CdXoQ*7PF0vi=Kxvi&#hQ0q=_}@J4KYFalhK(z)(pbFzr+ zyAO7o2X4hn%+Xj9jM}=QT>xG4#g5m6m6KAA(t*-Z;TkzK!9abWJ&10o0ba^05zMJ< zsFehjvA9H&w%d&hM}O&RDXsd{L{C>#S+!3)oaa!hTRh#0>K64y@g&JfA`BTDlKUnd z+Loms6(~d=Y1+lv7TBUg0h$J{Dgc{v?b{OwVokdi1C+h|B=xuHp+;@jPgTnfYdY4c z!Zx4V8z_TI#(+3bgh!6mnG+-|AiiQ;viQjMJR|hBT4@a$!mRB!t4l!giah!1kS99C z-h6O~enTS?V97jl@7KUwKn=y>!`g4K)+u+8;Z$f_Dhp$P@UJT3j$4QYT+(7{x|64R5B4BdbD-SCj-~}jAL1QRFlK*eDK9QR z2>3N6-&(z0H#{0;7=5mlrhFI|-( zkp56k%nK0AmW|}n29;&vd)N|Fu6j8Uh$IVk3$=Ql4ec^c92yQuHqFFNnTY_8i*Zo%Z!AGRKIThAukm8ZR1D(d0ht2#dz>kTB{=m z=z*Do1*xel19hOw*!9s}xL@EqtiEq{yC7_xJ}Cx=h93UHgVftEDK7r=*KaOLh(5Rm z-Q*#!7hj6D(p61r3iRNxcflM~^2I{-v?5jwJyT*$W#!r7MzIo*-ZK`)b#1^zp#6D| zp@|CirIWU(76v5Y<(f=Oj$|wg3vNdnoX~&DT;!w$7$5CkCW6Cb%0Oi zGHO#k^E;BeolPit-!b#P5+f+zW-Zrwg1{gvtia{9j=saDH#dC&iI;`a7G3}bT(PQD za6lCxI#)3sWPVnkMV(>8l?YAtekgo@BTvaKVmEQeRofkzvFOGwy~c#67&MUkpc*G} z+&PYf3bCsSRXaqs+=RsUEl^rCl*?B1WrwctF5!PJ4(mROiL+P?uPIW5mdEJvg&bS; zbJKT!8s7c=>u1<$pmshlAr?U1@Oq?7bB7 zmRp|_6Qt*)Kq{xr0p1w!5ncn;vy*Vj+Dg#{76514axF_+AHj+hunm>mk>jzuz>z$e zHb~M6#s^8H>`eDbHH*5-sB>{dIv1msZwa`q3r)G)@lza?#sWYG0dGkq!Kx@&W?Lby zBjhAa9Ucr!@DO$+)3?u=Tz(P2&r~l~ zbKJc=Vsx>WyVTc&OApz017_^hb11G3P65T@RF%v-{E{BwMao33N@vwoqqjV&W`cRa zyB!LNcfi=#)2OakCvpXP8o5Wv_6?qS^9-uwhC*IwCKIyTd`t$#Kun70z6eiRJJ~l^ zyHFS8-4#OPvjXoFR+YX0f|(`twbBYo25Yd| zEt72_W$9)10|X!1VP~;MYAd>*hEKz%;ZM@BmB7FQ-1u#RPYJ=9gE{ZB>~v$ z71FO`bE02PHiE|ZSg{OTBf~14+MCthtLixGY|Q7ne4j@r9D#NL7vr?EurJDO=Y0ml zqH|nh?QDL#wZCR*kwufk+ZXul^3rjQ1`-+o9g<3>9VQA09in$zb}f%5w@gR zM-ULDYnP2s9v$;F%2Ogy#vP+Odo9iDzUqdoU}e*&qX{)Vu`DE%uMK_rkyV+_KI=81 zRjhrFyOLJ;U(}LkPzZT!sgY~#&om`0v=gh~Vkgge@>iH>iCOh~8E8oc<;ElRwip^nD-Vp$_h6a>91+<_b+ds1bOkR%e#LJRzvRLh3lGqo|TNroEbdk0%Q#IF%iE3 zU_i~7lKVjr1AmcXjgnQ;1(crw*Zb7Or_KKg4vmD-3MQQPCsLHngfq@6^G^48fD~;_k$^i!Yb9+QP)zS9B?0q^E*+Dq+T@~{TPB>!v4&l3%l6PuL z4(-Big~Qaqmf}fCnU#kw`Dqr_Lv4H}xvJMo)wv0CH^M>lJk))_Qb#1> zurVdWWV|if~JR@vZ>sBN2Y!Xz$`Hl3qETud>T%xx8SMJd$x+ z;)qla?Cq|Bf{#ewY%3sFs?F5rH60X_FEXc8#OTt95n{1 z^%0I_aRod9;1_mhrz@FjatIWB9g*!NEF3xWM@+rJ26A~RxjUpODE`e})+q5HDKvJN zjq+U6@DyKR6BZJbH^c8cC^vWNq)bK$MmTO2&?Y7+{eh7U*`8i?0jQj-lk`O$<)nRp zLt9arGOc1+xGe{K9kAyv98or+6HJu?_qkAe?m6fIEq|(MVtc%F;OcU@yFpZKi|FuF z!ulKHS0IelTy*Koc2J&lsvJtRf8NgAy|2v@5a&C8^_St>zfJExeET|l`}e31yF{Kx2XtQ>P1Q~^~z$z_{(98kh2K7wn6N<& z1B*^}$&y=fcgksTXVnkFltiYkZUsHNXyV-amTQzB*NUJgq#EubcBF=f9LO<3wP#Tx zID(?$m5A#LtX6vL=MVX|s#gEz5hfmY)5aB$rl#@Eny= z(CWs;I_Xw@+?#1iY_Os~ToVH{=5;=45}D~hy%RWtA*3x4ppAV7dZ8XkK96Vq$JVmQZJ zL0&DMB-JU#yUXi9Y|OXI2O!Fj$N{eis=`k<9s#XvI-c8!W~v1oOGtC?r)qbJRT+o140go9kOZwfbi z+#9SDx5bSkV_kO&Hh=)UjZA8^(Ylh_I9#my;(;BMpV;N1%rmuHE_{(F*KEiDwk_;X zy|g$56d^2?7bv43*q+?M4I{Kwz}{7oS|EU9Z7TpKPm}!W-Bcmvg+%BX6hiB`6oBqv zpSgYxo9n1-P!J=SVP@EbCTvM0Vc5wl0Q5{J1Cfi_#8#Gk$Wh`=9iItgilZVm!!#V& z&#D?2C^Uo1q7XNT0q-Uq5IXv>FZWn;L%yzsJjxL~fE`{dlg;@T7T$^_Lyh4a+;b25 z89Y0a<1-i>mW=j(L#H`S^aTQqF2+Ch_(cB2+78qC7(g$)nNnh zUtCx_C~(#;Ch8I{laS0^uJbACJOJ0tXX{tp1Ys1Pp-A`(#oz@VAi37^!%qf~SI3Jx zC>Ba&h8LI8TW*|`p*F4?tT95(kPm$U-ZP}#t$+Z2Vv;rj|F#n=k-_;~BWpY2YR9l3 zednE}6;^kM(Gqh|o7t&efp2PQc!ELr^|I_;Juwa<}Ju3j#U+M-%$FLVP!(7z&o@$orc#s0w2A&S&hI3=Pn zNv+UYlnVyTo!m}rAqbfrVSIP*XatPmjL&AI?Snq3&s|lr$9GvOhH-Pv5lODkUBxLZ zJTN_G8*x6d<;$={q`ryHc^&(;PdU#E6*;d-o90fMv# zy+-3jt<75jh99s4_V7QEf22O`S4clPFQP5(rx4y2S|kvwgG$;8Hri@QWGO1&OuZ-1 zS;s6-BH0i!Q+exENy!bG*BL2XO8aDC3TvxyJFP3Sl-xJryI-)n3pVEVLj7fS{4X65 zQ*2kId&ZcQfYVC}fC+K1-X%u>-)KCVPJzL5)(0=frx@>N65ou0`bumsl;TG?^r1H8 zHt7Te9i&OhESdq-o!WgFU4sRPXwzDOv1Vsw?-N8KEnuA_Wx72g3Dwz~FcJ-qIeZ-6Y6n1ZW zkc)Eb{NKY5{)fIeoOOQRVOnkUqC3p3}G z9AYthwm(`)++L-rNoqXdDQ1^cm9O`-1V+Z)m3ij(S(^O-1Oxl3YjCf0Vx=Kb=!8Mc z9trSJg1CCqp~5GyO};odI<-cVV)bdSMxm_gDpVBuIV04Wxe6-WC8JclV6!J(=o?ngxFuLeW*yxvtkwBk9znsypcuc8^*t6P>Z#+GZ?=^#8sgiAXCYbRBm z>y*efY&ukcL@HpKYA+#cR_o}NeJ|Lf)WN_zG6P2v6VV4o#2t#iPY&BaM!NGS!6$8l z2Oy~6O3+(C!gT20(@Dn;7|lnwx%76cgB7RUUDbX{N^)4C zerK0l(&3^`OmZc7A&Oe!E5ECKQwwOHCHY&b@BA|T*}tk49rQrH{oBiP$hWMrUVpn| z8|iB)s2<;4&0_{khG7lVTq{;5l#{h_f~Dt}vf{vi+}tSMx_eO#)8gLg;8W`n*CMt7 zoR)hOs*&!*hAK}^6>SfRwi1HOaH3V1_rR`V-GS}&(HJb4sQuP?X2p!G?i!x3Bmwv6 z+)J$lAl>3l8C+!Ld*AzB`2Js~%lHX^)IUZl{w%znQ|?QQNumC7bSTN>8en79PQ7oH(UuoI8iTJjs23uJ+6P( zVAf}8T`fk_D~yyqWB8mGc?YIr`)Um{lodIE*%zl@o|zF%2bNELk!ProoZ8t*ggAjq zsz7n=Q5+}j0gX5Vql_|?%;s4}=ULTje33ORjRb;sc`0k0* z=udF3E|2!0OGa{73~W0NH!o-%j)kXuF*8_@4;fjCRvr`EbImFS#k_}+$;q1yo`6>C zJ^9=PdSC6OYY2Wz>$V*0*Yxx;j*I@ z5@@dstaQnX?6W65rXxjk^$&Of3G`CJw^Vd5^q&|v9}eeD$sq-UtpHj8$Dri_mGrg9 zW@RIgR}xm5BAd#rVEt-!3VcL&%A=C}(hm!CzjF{^ln5ipb?W_=%~9bky2Zt$k9m|N z!chegR_0PjK_d)Z>3rN1-UEFM18>w2MC^RZr!=mDdg;)GiUeum)Dxl$T;uFx2*)*t zzLp~Zf{g0taDp`IOu;Jx0NEC9ysFR~@=Lj|5L!mka6WCZJxi2^L|x^#%g_BYs6eYva{$hee`1_AUfu;jlD11jtZviBMe*PA z+;ONc_kK#Qb9rrNc#3vX$PPNYBCF35x77nZ+cN}88r?h*y&NjcxB1u(ac#hAh(e@p z2i5{p)02U&w(Br?>PDq>RVo_bz;$`%PSBM~#p}sNKvK2GPg+AGQ@kS@DSCCStn3?4~EXKYYWJJF!mRSUUT z8)v{kR09aYh|p20rA@Z*rw$R50x5Rwq!z9a17m43Xemtiqn>~p;YvU*vP6l-gqLBH za?I*lg!14jWte@IiYS^A-D-MO2j8HA7b1yzW$!4m$J|Y)?G4 zD|MbnXP#j<^=`OUpYr8p_PF?(UIcT)zXt9W_urU z(~+68yI}8VH(fO|QqJTk>&b!BQfF~Y36Y4x{$|ubIcP07+Yl%59J28aLYTknA;-JA z@=32Xylq#b%jOa&!GK)hVN{x-^smZu&Q_{03SnPGN^Tik=nZ?|p?g-D`Jy-|zo;AuDM)9PVsRe21BgKY;IdqoiDaj% zLepwKU%x=%`QguIn0S<7L8c^YH@08O%g1kE9Zx}~$?Ruv8rCKcIqAjYkE z^bIa$lFh8M0b!+To;00V7iW4Zz$I^X1u_{zDHu4 z+9TMz4kFrC^eweN!Ue2eiK|EHDM8bqzi(d?3H-_1Z(lzS^4lL?zkmnu7Z~z?YEOD+ zlA|_#9!3no!@&Yh9f_K( z5%X8!2kG*l2K(8ojV0y9#7}r5M<@GDz?<=pwQ1;H(z_1rjPVpH}-MU&1M3lJhj<&ZBPfjA>yj!BpiUq=l71ViX4KE49MXAw$tt}SimJ1t&i!~FMRb3J_I+dp%q`|61 zVRVMii5*M8*fedFoWTd|4v_m0NI1Lg3&^Q%6dkNo>}4HO4E?h|3x6j6OIP(@-abR1 z`10~HIo9v_IS^c~;@=kD;k%tKfPBF6GRqOSv55RNBZA${Phi;WD?_C&aJ*Kn0&h4_ z#TNV0tymG!8W27l7aU;Xwy)CgswJWYjcb@~3B6J}7LDj;C@MIfogEeH?7gI`jV|y+e*FrLSpf2 za$|q@d3gPbLoEHuy@PN(Joj-EymVRa5@2TH9Ws;MA(6!?JEme%FF#1{v`nHz*Y4G{-A76j|?xWYQ z!)wCjKcb7TV)sA=MQlrNmT_AA&kk=vpdd^y+GDBQbFC;+PS!6Sdx2wPYYN3ns%RGJ2KLWmKsy+h|;2 zuZxd$Ie#i}xI!3>X1h z7*-+=tbYp^opxFp<|wc%D6r8`qmCMIHfJ7g>J(y>Kwo=nF+Mw@P_D?7jJy}zYH*UIO6ajy!B1NZoN;$fbZvHk%>eI_geHIO zFiy%c86+yIM4EL92UPxmnUr!85d6l)qxK${XB}Hba~J4U`$jQAd0$$|bH)q=Nz6&r zHS9j{xll_Li*zqUE*5bD0M;4|n8sf(fBBc;FXeyu%1aBbj8XXS-O{8k+z1_A+VIK| z1F<k;_7M=FTltqILf`kGzCJXD%eiOS?bH&UqVt=RF)a%ViBToiZ_2?s&a#j zVZyDr4h9`aMcBtft!- zbY>ip0&j5`ff*b!j4MePja?R;Q37_IwHBpV#mI5=Ma9zNJX`iI_f735JC`C$2H{D4 z*Yf9#Kd0=+U;S0Er{&$pz|?+zc~Kxrnr*6VnyM1j1(YSylt0~b1wFB%fgb~JmIBIL z_X-j^+G=GGEs^t}*3D|AVIKx=w%RkDYXIHHrBt2XOGcu)L=}3Mtql#xZR$k}Wol>x z_Yo>H8-dWh`VK{ZFyvwHW=?Q!F=-)n6K80TRG#*i?i#F&0xRmEwvJ@ri2zJF>bO#k z6tO-|lZ0NS+ZrRe*tIUNs2c)kcu}2jZc;KD3Pf4Xw&4e)k&ekbQkGN}edG#ip5=OZ z-HE4kppP1$$?4$jriIZm^g_u8_n+yjBcjK>Jtiy z!P8l$ACE`PstC5tstR9o`vfW)ASvyk8d>JlikZPskhv)3C@C?m^txEk8M{ov7wRUf zllu(jZ(=xBUTc7UqEA2Il9Y*z*AA94-6%2ps+Q=dUNSx_4Blng8$RZBn9ZUU&fMq@ zD?IW15~eEZj;_E`JiS(HC*;Xmx>Yp8+G)#M%nZNwBf~HVK_O#{|19CuxZ^!6z~sY{-~-Oko%#HMM~pBQOb;nCP^zjo;@#=C zeDnHQNb)mB5k5!S#TC3`KvlMg7+Sl3g`150!wBRB602;k&-MPDG z5V5Cth=H<2)fh)zA4`Spb4@jMS|+!68tJ`T9bwtA;lBp-!Q4PJTC7Y* z6aeZ2KdnOCN><{VjGai;lQwhpm`8Vsd_Pn8&%Age007HuU|q}8z^=gYX8Oe!}q^`dHa1}TEY$f@$1j*cOzh)zHoW> ze?$HMMb0MZ)Jy8K_1}UGwp_fLD4YUSLz!VhC-?GWv|0N_LB80fTYsoFd`>Q$BW9Jp z*;tW)DyopJJ+Q`bGV{rIZHIPVCbe21JSuR&346W5)yN5#kSs0_B+Ro~uZWP_rPY;h z|ClJl^rX0mILil*2VqoKUpx#Z836V8EZ=!mL$s}Aq{Y6|YEuXqN!dc>c!(iwhg>8s zz%d2_TvG?z_&xTg6@78X^2~`B@<{J|6~~d1I{zw(&ejQ=)J)ry0W;b$18KETqkMzM zb$Be+hxA$h7*fc|5QjAwI2UfvyKm_6(=#<5WYLb(9e#v5Suscy_Eswpfmg!@N*y-W z@*g-9;~vqInLQauU;X7te&~q@61szuWPrG_fO=Q*MlCmxehRQiNw2iSgRG>T#bFw) zHD}*I@Mfjb5m@E={g^QMJ!|=ul7CA_7MFz!jFyUzAtD8x3{P&M-aXjndD(bH6DfBZ zFhasD)R@uX%q>W(lEKU9_`;}w@TiVc(({hMBo|>m$P-zB`mn&X5Zeh?_~q=ub0s|H zq*8b#{2qcnFE$K7O4alx;R$_&A!0&ZT6%-3unqq(dL7m2#LE3?%1DP+2MDcmB0;P! z%!i;+s8u>8lkyGL#0axVt8dbyBz&p$fvy;=h?hobQ$YfJ4n=0$mnC>Fw4;V(A+hK^ zVCpkBcGoKk;IyGA;p*Abd{4vF3LP@iadbJCMT*v>O;Sk_kgoFgQk4An*RL!|zWotY z+ZTuV99So(kA3gJMX^#+URsL12ZK-DRSLcDk|o))&wEb@0`OSG`~m4}W7rmwvgZU0 z_wYpp@1cJtNno9ld>%Ol*jo46bgDX{X(nR`xKnR#Ny9s(?Q-ZOp)&(%Gtg=T%UeF9 z2L^NpEn3cUIckmwh7eW3>IhHi0g_y#{`KF{D}l~odLSZpgmNRU07FTY#?H8gqE@bY zYg!ayYdEhQ27xMAM<|}sS9z*i$S!W%-BT)bD6PpuWS@y31;@Hf-iuVUsgz2iOUIyk zz-;^gx4-V&zK{okA#U7Mn2Lk)g`){rq0l}M+R>eyBD;?xf{9DOoVPnY)NAbgEwmX_ z!vH2FV7L~nq==`+M90z+o({^qqABN~7MKSsCvlVji*pH$lM)cMR;Mv(;}X9FFgwq5 zDaVr611*`gKN9DxaQkoJ`)G83&IRCxtf|NXw@<_xB|$OL7g{JFdO!!i;<6kuTa&}6 zhj7oBDEH1t!PrcFIXJwULpl00460wOwg(8ke6;6oQg;hDri{|&A}qy)gZ^;}w`sVH zRUo4|TPuvPY0X6g5@fS$`S9#`)E<}{NWvMQ2DmlK^K6nedP~1jEvK{Cs4pn(8cIB= zxbmj;wJ#?wXg{IjN+aJCD(enof8fxo@uZys!qaB6^m1PT;$m9`ktH2=)ykihbOq{o zaq5=8e*2t`b04R#{^RRcL4NtgyMMgg!E59+V4H3`PT9KiPICf_ULWb(AoR(7Ln4af zvlE2u&Xoq}CJuF7*Z{-kqRp&^jJn&ttPA(`9-tbUu(vll&zFxHB?ZBB31Iv5Cd7sr#!Qa=G>fgK;e zx++70!^D#(j7ng+EDp6jpj-ou7dg44LuQ z;Y~X0|0}#DPlo3MN-!-aj*sX=(?{62ZX9$JZ2Ca!K8_G^Wz)It7y(@rf^t*ROXRo` z5NMFEfNhcwfz#XgG+OFj1~GGQl4Qv zY-2vbD>exZNHSPn0*I?A;B3yRQcmoe#|i)wfh;)EVFn z=E-9+2Is0I?PT$B_V>(7kx@DiGVFOJTpMH!S#MUwxJxBxLPx~zXbS}_zEo1}@}4}` z@5AfApE!w-nXvQx=rXeXj$7lq0zgQyXjtC6H%qoU-K8*GFGxnWNrRKra^1?Q%(~Yg zZ^@_Lp%20JMi^{(grab5lc6>dGZRn?1pSXtu_GM>=f@gfqzt^ynoHhmSrrE2v|8 zH6{b~=5m9ovw9U6H0sHVl5PZX{N%idHPw8&{%r*Csp7;p8ksKpsTA++3V>!CWA+9p zJDpr$dp9+wpF^eoUQG@BpI-kE-u?62hjKKwY}>3V!S{((=Yv?`y$rq<-CyMJbQLGf zZFj}K%2x1`l*-Pb$90xZBE|B9s!TAhMYw7V$M*sJn0XT-Y{5uDQ$?Wkx(!^g&GNu) zOCDuQPSKY8no1eWOs{rl0&NB*C&=xMr>(puYo59WXf^fS<&!6O5>=rNNbCzvJ;w7E zpKal&4tR7Ml(L2rzi>g4x(Rb`SLis<$h5H@VduyT)L`iXKq|E`n+|gGEq-r`D=2Ul z5Nc%Bk-7d3QF})tLx9z_BJQXOsB z@x+lB;MV-IqYG#1fec&W1~;oJH_$aCw5nRddm~8*#B)Z~5kan#JFajl+YkD%2F*~f zIFW@4tcom_zYO7Ad9m7+kW9nI#d{hIO!*JM2RB?dop|!UgoxJS zLj8~%ghOr7+ZM$dMJbT#i~2F8YoqKP&N}4`+Wz)mQJ#K!In+6ZJ09TS$+bXuldHP# zVW)DI)cL&)8MY}Yl~RyECo;?4G~n&xsZEz%M;*{MX;fZ&fOv<~M+!EBaO7hH(GW^I zAvxZpX~fcUJCot2gfj*h4(lno2+~@#1nmw5eBH1iEb}>ON&l>foxd%NfVU!(6Xcm} zPfK{W3-%p6cvzHW$AwKFI}XnOjMrG51iCPX{>oaAK;Ac6jEo8^@uBQFM#7Um)Ed+R z!$C40q_Nr=F;SuYBE0@2y;Dma_45AqhnMZpYmMm`G95WRD&TPMN@5t(7fOlkW7g>i z&BSns4iB&g3w2Y6ij;aSy4bw#ecl$SJ)+&g#h7gnK%byq0EP4pLH}TOGT^*KLwG8x zhWdv20pSySR{fFs1AOsrQ_CN{J=C!3hHoFLs-LLbAtljANBY37In|mcWc|@M|LlQ>)G5F^V8Qtl+>sSiP94By3n8i${o- z!Ej8#YbE5bk)GXTb4F)je}M9=71k$fEkbg?{tF)wm`9Yi67Zgm3!rM0A+F zRW5U7N+s|_m(JNZC%~Hx9dgax6{Xie5hG|h;27dlO0X>%TW?gsyCn|^D0~~-v3T50 zYO7KTcfMeg`fdSsiX+H&s#3hJP_O}idj%?mHJkjCFs!D>ip0dZBOR|pO(j8+J#m@F zVd(}z7c||g?@<%_r~38)eWmY|jhCs0_oAPb%Nnz#I?Axi7B`H5Y;=bG-3n?Mf z5cdw%c9}=2M^u*pV`Vy07QE4h%maJ@|IU`b(2~QmNH>D~{nKDi+ z)DBCsamih88NE%H#|{;37b`z<>ohZ7-t2lHPuZXAKr(&rzcvtZqUZ;y&JAeywf+7Z zBl9Z-Je^xW9?@#=QMzo@&USN^y=pgdy5cA}Nk^U>YWc&lP|{f*nEG@9)}pGi#PnBT z2n)hxq{HW|tRxhcThHSPux{^WJ5wkqeg&;(^vAfYa*nstdS6D@i>NpPNb zd!VosF<4)%qaAxZ7G9vtBrp{2Jc=LtV7)oiCIvFJrvxq;7l-D)bj^ ztzuL;sq`mmUt)kFs0v%qXt7PVSg~M-6bJ3KrEyuEt~N@0a=X08CjpqF?I7e2ly1Mz zM8135qS(s9USfqPpJ0@-HcQd9%N>iL8<~dNS@RB|JZ_gO%s}epxWI|aMG&sVD9``W z>rKw?z%`5u=3=9+l|*qvrGc+v@H^66flcVSsBrY*vE4_(mTNC`}x$^8nTKd6$sq@lGP)!M0d+8BR4RT4Ts0 znzU#{w&^(O04B^Dj&SD^y$)kx{VrsYEImRy#d2fFYX`u`vQa8RGDtyX)JLP#8j^xy z5LEWTU-44FZcd)W7Ubl;j3wqYJ^2T&^THSWUH|j}^m4IX_P)S@EDHL$%f*R#BO>=3 z;NX*~0h&mL#Y-v`C@BZ0`x{#FA=?>9g_0#L#{HUTr|QwhDdKJC5Din*D+fn~)-y{M zUYzhuKjD$~23DRhmkppnWV1VLqKQ8Jxn{YXSVOvvOUruitIjD%D#Z>BV0LSA5GJ`B zSczO|C0a^lXi!$HyPr=`0JUDK-ZS8#uiX{YT&n2t9m_(DcRIC-P{2@%GKD zEwFy_`deu3|Mcy1dDf9V;eL&WzHsu~tsu5F>^I_p-c!PsLnl%Fg+P+f8t*5uDW{9d z99l^U{*KL;Tzz1!1F?&skUBtYJaH7Xl zX82okc!9EWB9s)}8E0y15G3{jrvW~XSMpgl9*7R-@+%Rd*eSr*`L43if-Ai&y}h(9 z>*xGEeD@2NV+cG9kBM%!cPt@^MZM?o9eUG=5=e^8gQf%Jf8=Md!RUI6y>j9!_|e<^ zY2@x@?v(muw?J2LmVQ0ZDz&_2w>(yuwA&N%w4;1%FP&R9NwiWEcurrhG2cd*q-@Ul zo0T8TaE&>p3N>&G1qw95%W_d9)^`i5LBObIEMPxVXJP#sAn;W1x_2sHVf(;_VU3VO=v>lR;#AfzKvyzDSTw!U23v;$5B`v@dF)YGar1MJO#vd1(Vp%S2h!yR;_8-$=ModSW9ZL} zdvI6pk&ojF0PyCyLB2t7{=+J*$;?FI&ereA-oh;BL=P-6=HLuMK1sT)at0LL4XA{5 zvawP?qp$cBMYphmg_fUP+Zzm|LDadyDJXq{Td^pC#$wvS@A!1fDzcEfu8J8@wwFlv zO{`GtD!~0s9$so`m01V13F|Y25-@pUL__FKpQoM%-+)5r-frEHZK_?tgHpXWcAce6bnU-CKm z(z=^(|BeU#%U39!rPm+7{>*T3e|-Ij79{CE{5_wz^f&cy@XrhjrplkJveXt*D#gCY z&*RqNWcu+1B*snrR`sV)#~zMEr0s*s#1z!tN56;_%H){u0##i{@6KWvG_Gw`o2zj8 zHpwef1L##0%$^}6^7K%ExOG*bTk1M!W>Q33L2WrSz&8dNrAkea0!bl6|eMO2tsm zom;tJ<@q~MZB+M8E-l^nxz^0h0%l%%4i!-QWQjo$- zi$bzcK3UQ!>o1g~f6(?eOQg|~LJ8ivF_uwFV?S6h@6=q@jx6AiPs#K#cX9*I5pt5y z*|rNjVseFVdV!XLJ+E*+)w#4{#6>e|INck|XXV~fO_Bv+Y~@K+Mb9uu67 z^P5g$_pB@n^pM%+T&sI{l#LEeb82EXSyy1QOG?>olndOIq3d`Sj=d0d(qgr+y0`eA zm+!fDl13vMk@%2x4D^~B4sND5dwOcm;!|}{t}lJmd9Ih z5Xm+iJ?m=KCem?at&UJ`*D3j7jFb*odnw+f#AP>6;+%%LFtM~Ru6x?SJWSkwFL6uX zJqKINd&eyFh7K+Kh0!OVRtV0f+g>aO2_z^lHr2(A;;($Lb?|$sZ`&c>1JMT8v~Ajv zwn+fL?#U{8}QJTp^3c@HyR8 zxNLIDx|E(b*6lNf9|lhWyG;?$wp`%bX-|K+7C{IL;~-qdMul3co*i`A<;nOkBSG#1 za10RtMK#MtI#`3It#ehM^dqd&j~AvoXKa9TFCpp4Gm5hV7NY|++eHC@9K9e$dwVrc z4`B>~4kws-OTN_59e2^RYHyKbLwaMLfm#IX-XboVliH&E`0Xd}e)#s$>o4>(pN4NX zGOdsK=l=e`{nx|Sf3JU>KlP*RvK7`lfIzPFJM4Y<|FVL#k{R${S94O`S!3DX5H)SC*BDS3vf-L?_oR5!SeeJqA{jlC=c zrU{~T*@R+Z__bC;nKZwB{LPOgJb(4}G5^+&%4dI`T`44!%%6i;&#(UH{~iAS{s*T= z3>%81A!NdV?LswT26zw{;Z1_)OoK}O6PJlZuX0lv%=|WmCUU437et~WCze?0OZ<8y zNso33_=!Lvwdk>4O}Ni?k#D*5uzkB*sW&|sqNmQ~W8unnLh?*)oe`?tY^+Hkc4ccv zq77OU^&;W%k#aiSYUn zX6x&2UvF2;4`b)LM`XW0rGN5_KInuSXG{(@nex0WGM4lch&-%<5nOiAzWbNL^w5Mo zsP9M75x`{5)7~Mxyu8@LZ`%RO3!;&ACG(Qs6kAeJGj3OlReHt&2SZS!$`94iad;0h z{e~UP6)UNs70Fh(j?%4)QILW)!^1eqV)dBh=7obQoL3A|#H>iyk*5HzcP0EN%VxVy zDuB3bR!xdm?uQXYN`IqVzcODLbU<_SPOSQ!7wtd#NLF4MWjQa5>581!herlX*0w;Z z1gaOFV!PYedz18{x?k@QL&$cXc6PM~v6Xei-gUL%^}>c!#AtvC3Fz|ZgfO$v)SciD zn6T5*#x(NywHK1l!KcVCq!btdXO=W}^BEGRxurQF>B>gQ8l|GkF$PXo(rDNTP~Zp& za$JGAC}SlhHWiC?buO*kBNeD7x$wYdx@!A2QvEM`(Xz)0E zCFA;+-~5=D=Ft>HC+s8T4mxeOFqt;3a;6}|eOL&ftr%7@&0(Vsn)#bQUq7SngiBW% zjE`0ywL-~F9;4i+t;AYt%c+{I(aElb>pV%ph+@v3?Nn_${1l1?nIx5L%8YTVYVB>h zLRC(h7f6rylx`dL5uhc5J0Ge1SG3WXb7o2(JN*D~0L1QqngsH*@wqcRlzRFYc7*D7 zU>KuT+a-fKtNE;Q0%}rVTa}x$!8>v#*l;MTKCkT(?{LMU^lMs2=o*78c41FlrC}#i z;wQ5f$4kMNa(>y*pMy5ifW=@zz-AId`0wP>|N6V(%@`*C{Q8@(zZdccefRe3pq_>w zpI)jaW3)1r_Q{eoWn8f+L|?Pox*lE_1 z6wAQf?=7_BZWXBdDxsLq>*S|ubTRqAAU%3G$up*VGO1Uzrs z!rBXB7{pztZqC%Cju(Pz&@0VSt7|kQ`A~@Y>R7*p-HrC35C<#I0a@l@u6??6S_%V7%Oc%_;ggSnadnVzexY|StSN~ls9In>X$mZnx7MkTJ)-wI^VwA6A*p-N-mJv&iD3f_ zA+n?dcAIZt(M>LSPa#Vr8xE$o8Yk7<1sgX{SdAaIlV%+Ci^tXs30c+T?vy z$TF+a@jSx zvcyN1!A>f_kw2+m{i#V__mBHgH(bkpB)Sz|w#c4ULd))J$itbCfpVj7=E~KoSE$Mn zN}*XKfMy`gDM2y7BVCVE^E%&NLkO%6JPG8iGk%Hyw-0ir4| zTC7u`Qg3-&>poo|-9lQ95}KAoEX>+JKeJo9c53X&3cJH*Kkw8i zu(>0J*3kO0A7{byKYg$#oco5qhd+1jW>T_k=X}}*_ z)*VYl4=;A5>TZs1d#VOWa^ggnNN6&X*oI1&6Gu=pZJ$)629hS!)L?S-#rv*?|vjD-0#A>AH9D0`gvyF|M-9W zcldLEpk3(KUk3ePwZ+J}IB+#!T$24A(dj>QfcFUqZtSHZH)CF=8*!Iv?^U^A!n!w5 zxv$x|?#ErX3EzidzedC|Nj7BL?z~nB|4&8y3%)p(bjlq?shsvtiCrr;i2dj+~jXe}@ggd7WkczjM0GM>@?kI&R5kqb-W zt#P8;OLA0pKS{Lwliha`9ndyPQFC6%rEmrO;zLJV0f-l@KQ<^ zPa0UAQmB1SNCze;DIh`g=AmTTXi=?@k#~`X2_ZtRBAWnUK%c*dTzhq#Bna#p9{@5L z^In19^uPf$(yp~G;g+;3C$)&#k-HBT-&UhsAj@p+%p z>sv|IERof6daD$l?ZPn?T0aiAUZlLBC?_bY&=3asV#Bz6D*~vssswNuZ>foa)LA&P zm5G~H8PlP?S6ae%&Fy&{w83LstzFIUBya8ge%KOt#fGCh(^401%#MA;WZnV2gFEC% zjKrx+1&mNFIes^lFSULKQw%g6$cct2oIU0l^Bv2dt1OCVi8E@KuvEFG8dV6|E+c5l zppURQc^tld$ix|@AzCuqX%F*|Fw)+4b?u-*iYc8fV3-H*iYsH-xV$b(#}Wj z#4&lmH2cxKH(rvb5obH0)sa+MXEOntW!oqlimQ-2ULbhZU)*M|B~lTBby=@2yndqN zLrDcs(2VCoqQ^d~lB~C^j(F9r|UDV)7p0-s87j?cWAVLUE`J%RuUaf~V^ma5GcU9*03B5ve z@rrfQj&VSP9sqD|?BL2zhJ~-rjw-2p!t8B7Jg=#cm9wiAqxG+)(UEfx+mI_)kCsQ$FQ~JOG+0>TS#%bOYqpt}wY3F0>v> zy-N;2#_&=&-?jyyfK4eJIr)&e&~_qO0kX5Kt8&FYBBZ?!&nFb26LDwqOg}!I&wFvK zLWx&7C_r(t2XpwC)vhUZ&P~GWT?($7EjmoYNZ)F5cTBB(kmA%TBT!UZpX5e*#8|kE z8G-mvOHj*!?ht>s$la@i^@UlE$`|%y=J#G@hfa8@v|hML(oAxZhpmn*#rtvSA^mxA zSS~QNb{e;)1N%=7$Fui}s<5_l`UY}EuE7Jk?1Jz>ZKuP!bk?qU&0+2(P#dxdk-G7+ zT_glIn_MF;aPo)__YVb@mC>Wdm_%sUY=h=gSoqH^`@r^MRG$&&YyF zpIIkG-9p^)*i7o7bsjku)ZJ&~yUqj-*GbNUg005qFq^pe0CX~{)P+C_?J}!X z1Pz`QIoQ+D`dYzdqw7Zo(2;uBCCTWa#7=8k>g~c{)tO6jT=T0X!4e~wA`vGf5*BPU zcUHR&t*)$eQthhMi!4bgZSBKQSN> zz;fi3SgZS8(cqS|$XUj1+3+TW`I($@eIXxlUvC~H;S7i0;ZzZnQ=M^!l*iXs(+TFTcbzD&po}KY_M?w$hj~H`cDQ zRo15m+dMXs`hKQ152ktK(NB^*K3Ud1_Th=LdgEBExyPz+ofP*} zjan!1lDYU8tv{oNdAL<@$1MTzF-22Z)LP^SxRR&bSlElybHTk%A0R?b8ig#a9AQHD zqb{9OpulVuswd5Zb-bGk{F>MV5ZaDy(qFJm>RRp@*Ya853vI4PRTEfG%9@0|{G}>& zaj0v`hSg*A=(#2c^rIN!bUQxxz}D-)n(3Od;_oLcn}e4Ud9<+q@z!&agyd13(o=|* zMkPn%V7$F^vqwlpjfze#3actO?YCfyz6v|u-3lyv53E+|LM?&Cs_2_#Z{qi(mF#kcuF=O zOXM>)tfWbVDEe~-j|(Em_aaJ%9-F5;Bh?F~0=yUahMK@habfWSfQiceiZ;N@3$)hV zIjdnt1`@Z^{~G@H5+D8zTrH_vAHMzZ?I$)2{u|p=7{~c+4(bc?Sgp~vavrs<`&Htu z^+!9kGVZhl+;H2u_eZWKdVnO+%c6{Vj}!)~JXG>s`?e+0a7EzgH0-c<2eLTiDo7NH z(EOfDvkrxlAq6TP7S;5c)Ljl3`AA?sL>AaEDap@MAuBw2MvZOP?GiJZti6>t3)G3h z(2Aov3rySq`=B;&9F>4(*eU%RE+8xY_ul^K>LC9{+VbCDKM(Kz=`9mc-u(b3ZvXi9 z>FGs^DV?vHrkb1_eStf+3Pq6f(L#N6Nw}$5Km!arxIP-!22mF{FvIQdIhB%}E<+OG*{M+R z{S^avd|~!eDoC;#oJf}H)A07m>D~9kYhJ6Doyt0rmng|9FV3!gVrcwGedjgHws^|E zjz=}>^(xh((-QjPEsb6(jDzzV5EL9FTIC5sBgL8HZ6472x}?P^$s5E?X)Qd-?>;yn zXx!Vd4nDHMF2>WAt*4Fm|^`J+pTaR#Fi9hUqVYDiMLm@Z=f z!kJo)$+OQhWRFg#3ayuphkQ`qYTE=cxCp>se=Gd;x8#4m_>gP*&_DfEWEW9R!s@-J)<*8EdwUIYi2XGI>1^Na5)tO^l*-K4dM9pET6+{2>!v19&aY^*y zOe8lh!G&~8*^_p4*AO)FpgC(kPR7`>aW)0fpnM=75bRu7HLlwM5qMXPD1)ETVdkc= z-JNsQT|KSSM&&fwbksw`n6XGJEmChBM$iD6#-XxUBwvD1?<6@F9II3oouA8E`QCD$ zm9i7a>z*rApK6gQM@wEv7J#9j`?pIbx5_41IL;qjr$P?!+JLPL)P7`ueu7ZjBQ#81 zpR{MV^j2%2P%zexoWuOUi;p@$lP^$C)?xe!+IqUh^56c;@U3rstK3qbzkZQFhSy&sVEr=K z0O+A*)am}1-1O~^B)73>qa&Zi$Euh+Ddvgb_-cabtv|61O|zi&I+wY+!D+T8mt6An zCSn8>T7!SU-ZiP&ckd4NtB+bR#4i&>^@EdB$aj+Db5uITY-o9!Kz(1CykK6iMjL_- z)ivsU3fJhE=xqpUBZzhqb%vFgTy?X@9EfTJko8C)tpOXAyk5IN?>f>}W}D z2jV(JJ5|0V8KMrF6{ZI!_pSUN>5o~W$hNG9g!?ZTQLf#W;@Z_pEpn67y=SHEnt_vob7K)YP5I)Gf2BeAhT^344O@^W2unckH@)v2b_C%|2!r9eMWf5U+(zTegJ=je|-A_ zlG6rz)<&78EQeBS2Zk;!#^`|tj^~Bwj5%-)t*N_f6D7H;VSKXO;pF5EA9zPVKv`w( zd^}n`9_aj3ytU?p!Xa1$_`CLqhe1oOKH6GimgJL{652zu_8Q( z2ReruM&5lbD++%uP}xj%S!IkcGHMM(Kdbj8?=H~61B_)n%qRWCy6OwAk;JHHj&`+! zkt2yLlJ&CW&=V{^wpP)MG#Sh-gfntc`U6dI~fYw=F!U zU;z;MS6Ftscj1EMYuK78#);vkfsU`#KBgf$04d|8Ehq)y0V$-s@RDX3HlV^ku99MF z{xg2$Ciq$T(=P*6EC2cRH!xnqho9l!_>BDNr+HU|=RR-uJGf967HD$B(&MD+iTNkJ zp@WG;W{hS(lNVddj`OfHJy_##R-%O^j4Rg99SI}}cf!GSH!QGRMUJt@)a2a5fDrVN zsrByMy>qEYaCX+olT*$3qTGK@Rvg^I9^GvC!d&64d(ysi0Tgtq=~_`&9i}txF>t|z z5>v_9vxN%;Htl7nOeRRol^)+2Vr2k5k0q={MZ3v*a~rj32Ze;0V;dph9#>S6s^Go2 z!Ll}{&S|0p!diTEsuipi4jbT}X5_-oN=cP2{SA~#|L~UGso#Bqr1z`SOLfIelL{uv;tn}uH0GRhJyp~Dxrf?V zSPlV3iDV~CU$J;v{+VBea1fXzw5co03ipxSW>Dq{Dw;U^1SRchs&-aaN{hM1iqIfpY>2gXE2UB zI~y!iH|Kq!g%7-q)Tuy!a*RE=3kjR2f9_-WbAP}f|68dn6dL?%5BpGtQNp*r`TX?a zHHyr2;3AYeVm4cKO<6_`jm*)OOy?X^l6&@rPo?uz73 zjRAYnJOEZG1HX;8D(8h~R2{edk%IXzXJ}*hH4_@HV4o_1bOAF|uHW%-IuB0V1ufri zV0+cxLH3n%t39k7V-x%pE!?6JY|Eu&F4<=uj3MyijXVid%7%}wV~R_jwC==~Q`Ig& z3aLp8;Sq|s`6L5wa$vqm;CZn6+ES-T%*n7xn@-Q!F+kqt+`g(f11yj?owVtRL{Z^V z2PV4|TUYz~Dsq8YbFqLNAV!}S5~nWU15NGeibyK|S{3~S561lXuj-~jKE(>+7R?5_ z1XG3az)bD^Va@cw_5{*F#hptIMsrbT2J`~HK`R-Rjwr3GqQe3Z zCrcd6v@vE5FV)%p_@y5?-Fj$W;Tli(hdgRe<#rmjslnquj#LT1(MV09`&Wg1sOGNY zK2*$@<9Gl;7vgVG(yIPs7uC(#zGg~cYvlqRABngDFdN3|q?EZx|4=Dvo^36I-O<2= zP$+T020JK~$gh21Z{SFw+oz4y{2x5+VSd2EE2)b?OC?3<+C{ADSVZ$uNtlQR67V#~yYIZ8@~o>A`skvdb5yNO)e5%*eNrYG)YF6r+=U2ENfh$+b4U2ym7gg5!`*wJPQMTid2E0WfJ+K5LJ{ zrLkapLu18Gqc)nPDh6!FmI%J3)R32?QA#p&si}ZB*>ogcIk;~Z^~#2jKeCxs65fbj zJ3w-N5Ncc&bRAdMg=$HJ2K36>27b?)OBJx5MHStOQX3cl^!4|DMq}#URe%gus7BHm zqUO6iWv?jZ%~ENcl^jL4O_~d?oNUbvGS%o!poL#uXy|fx9}yKAQuBy%zx6seLhMU(I=a@kbd?E2jgUO&UEH=}cY@cLWW;h_hqRi;q~ zZWsbVAiW1GrD|BZKy!9s(>AMJtfv*?k#f#dY$*X-{30o=3%;pRmyfj;J)0y>kHw{S z?4Q}dRO=+t276`xQMwmH-q{4?@kE!f7enwl^NAS$(EPTzD5+{rhau;NYV%+OJpj(e z$z!2~HG`s`hiIzVwUp!b^VKn?1)VspotEw`=MfPUgVdkei=sCm=A$x2id;kciWf=W^?D2C0b; zpYDowgqtLJE;J+|wRQB43W+8T9MJaQP=dWW976SrpS-Jpp@KX%Gz=Rp$&mlZA=s^| zh$SDM@D!`*%4T5$oFfmJ>f=oDfRTQtLNS4@RfLps+@IK|8wYv+=+79;xq0=ql}{Dz;O54uN=Ls zQahPCjU20ca{f+SEz*lkAzG)JF zrMkfw(>>U<_=+Jze!fpo(y^;w;)#V86)Q7M8hGP676ENQv>@2xhYw35Pvs1i&U_cZ z5%IDlW3sjBvVKGSq7Cca)^LGZK(UTCzBju-`<8$}y^xiU5bf3DO;w~^3KjAS@mj0%deHfMB-=EgW#+#Jf5Oa4o2cVf!`6^`2dLKYgh$YnnJ zpr8c+)1<&Ch?o*;^}Yo+l!TWUT^|734R60V<`%NMO^)>j@fF?|djaH2{W?KJ%C$JP9qV82_kHgxXeSb3a^M>29-6!VTo1Zn93kal_bKJ{EhDz zv-RGrjE1v(v;qcl6_RZPR> zl5421jw$-mYX(Tr0>(K2v3kMnIZ$0GX2U9iY6~}8o>2jyu+mkMVise2{S{NfKjdZ8 zDw~6Id6BOwz~(G?+>>fiy*M^wp}@qg>JFCRbOe;@5!5)!0Bo#yX~eps`|T&R}LzqwJp0*4hJ+q zs!`dWM>&vd-W#VUNp5PWbJORN$p^iR=W5C{1yjy;Mte z!RX!wNtZBEA!(3HzmvS*t}XD3i7kULBO#|=SffVu0Sa?~ZMbZWC9$aS_6j64X zyW#;*>Z(pO`4d|GgM?)F;Mk$SKj5tFt{KK~1&ITH+2SFlRgjyrG5rP8W6Sw>DUOz6 z1|m1uo$84@N)GkF0!u~Cw;UF%zGQSI`=}iw*+}ZtYeWXZvGU2b{FKyPT;`xdb>ty; z#swII3>3e7R9A}XZJ>~Aoi-Qq-cA)UMq8bAPI7NQhMUWzse#I^w*m1E`ICxBRLSk` z@=&6L(XOiN1E&GIec^=ZT1hRyA0NbMIczvRdv8UP;y}B4*iRqNl?qoy=Xui6wt)G0(Pc{%6ns;VR3m`<&X<=3u|P468<8;RnNj~Ss3!096@V|HJ0XOnV7rOp1cvw zR@I}ZqK!aSkrZMk9%$432tXw+^I=geqV}L!0xi&NAQJ^V#tTYcBD^LV8Dc3RW6JB% z3cOJjQ054kU#t_cWy3|T-#+_3NfD(Nx$DLZc%Pdks1ekiB`i|S=}S$A66UNdmJzajLmY$_f?)eG}@jt>UC7lb23#GXg%3>#&C}uv`UG1 zwt!7i^j*kCS$4}!rKc$$BRnrRvJiFf{scZgNZqW^xIT#S=aEc{6a$S) zXaZSg4h4eK2O+Is5Y6F*)J%!pu8BUVqH@jAot%pG!H(H*pgdm(C~CULSJ?fgp)tf+ z#}lrk5%r}hL=U9k5{S~DlKqa?k4 zDUFfP_6J7TX1s<}9`clGXnwh_j&_~ddjgg(8yVwYXc;m`?Qa+yF;W6^0q>)wM$grXc?JI>fiWGeqg~+$9dHlH`4SNQYYH(KiFzXIv?2H!eFMNSv~3z<|hw~;w(*trEsyTyw7aB zNz|90j)ML8HXXvv0v)a!7umuG>=Pec%_XlbmJv!+jjd_eZFsObDnyEsrm62zOTjDc`y)(lu6Sqq0@W>RXGx~sE0V(fL%_{Mvn4ytb`=yLafvIvLZ+vc4d?X-PSwVmnI676k z7gzErRH-DRw_!6!VBK1)j?`P$^}y<)n8XB^0;=`yiI!BfQnOOW1mOpC%%0<*0LO_QnZ&jCYH>-%HccC(_fD!MQQbTT zLBnNrFc3szeB2{n9HL=%l;o!?7wQ%1(YsG!`F_`p;R7Qm5H?T{kt_WQ{`~puLRKrl zo{!}4@;NqJ)#!Bvl1u0_wb@!)Ri5q`e56ZCL36dAwS(c=%(x_1iCprHA%GDNAf%9mGOw z=JaxFk6kJDAVgAeaWH4kFMDWtt}&gnDi(VZ4bWV&IW$W@;E#cOuh=-mS`zJx>D-GQ zo&|jqzyyJYSkTA|Ns^z|rKKu|R=#MghtnUqE|Vmt+Ilqazgy)-%eclsnzA>r1fmq| zz`A*zLHeM*?HHB~r|BN13K(IJjF~lL6tpB^dQECF+$@rm!tbb-6iEJn8x_R_G)F>h z&0j=R##1>1hZe+~P{I|~H#Iwwa~?)eZh3Uk!@lwI?3=FmheK8`zkrCYHD7lB<1S7M zepl9X>O)xX8!6xYfr2N2m9!VR8OiHL0gc)c~QfxvYAxe4(3NPmpDrBA) z{9y%F4FnPjT!PEzKn~Npf5KSypWc39*WThxw_PWb!7sSl$+mz<`#G1osQe{aDLF@W zy?nq#7oM7)uq?&CHV-D(a7!DsVJ#Z~g7EpIo-g(Z34tb3pP(i^RP3hdzSoJBVFMK> zQ$%6Af*!jJC?cHzb8cwzCCO%dp3`waA-}}4v*6pl*$yJ}atM}9g2iJzX=f;`E`ZZi zgGtsigl-4JT3lAlMnJC)t5(eaTlf$8yy4nCJ%Ad;T_j~e{?DKqFWg@ zN4YJ|Jqp<2aXN>omgMjXbQ6V>(TVK}$E%S=Kll#Su*|W6ye5mJV|1JZ!N4M_dY^Y$ znp&v7Uw?Ld(!dMB_bR9*dfYzba&vC z9l8~209?}1y7hD)*F$edK0!O!l(n9EIkN0SZ{DJuV(@{^b;6R-#xA*_|CsMwIg(1p z-FW*BDopDt>iu`i1Pw6R9)%Tp_W+k92bAQ@o2{(LY0Nbq?)g-c8SnJ1r zqiigsXfZ>A<>ndEcu`^`SdBy}fUxVdP^golgTiws+ki8o1-a)l%D|P&fI%f03)pnz z-6Gr*$O`WGlL?(ed{9a1YZwL#YD*7yw5#OnDZptNE%TLlI*?I(9zD1$wNyVn+C$bD zG`0Br8sqa-DVG?2t0Xq?-WFJBkj;S)dhb{{DMJaJ?cg9VQRhqIXO3lOsfQ*-o1l%} zTI+;y-j-yCN~XiJ0{A;cN2VEoGqQM>T_u=u%+?}O$D>wlkR+d^MF!G8jsmbE-U{budG9b|p>jUL%*&f?)tm66H6=KrNHqt&hwi`nMG3O%id`VhX?x94SBkXly;PO-uIsu`tUbCA;|&&Q-;uqQak&o{AP+UL)+g9 zm**g}eT$d49pK^nNcb)U@iyZBXO84o_Wns)M@TY)859NvS#02@E>- z|ILn^BlEZg9E#+V@Q1_%+2j**`~g}T@Ast!`W9Wg3Ub)}#xh%~>T86fkO^*rHiI>0 zo{kV~vo#PskTO}|!#HnV9_V)h48`f*G#8je-73%kB_di41qes`IO)W>OBwZesKD|o$X81F z%If)^wblvR!AX>a#&Y*uwT&o-& zJ2#;%X_}ntQO<^>p+Gd=!fIZiUF_A4aFXY$eB+IP{Q(3EN?M=MqcEH>{0l3mO197= z;nj1&JUb*eXl|?JejM4TwSYGzP#kS)YKe*46lRmuXw)4!?Zg)2=YSSIYTR05XDB6} zWC_`KUElpx_;-I(0_9KNe#npEo1fsv{I@^*`oD$OpJ!^+uR{KCdVUViCL76N(p_yh zX@FF@`0uUv0(w)|X3k3izgmeaK?+to+7oOPx2&Z@7d;NV_B+Gw5$u85|^A?Gc8~|nle`dKu zuGC&bC&B82i#-Oby0SbPUDu&l%lS;B{xk#*0 zSjrmN!95Rs@mxQH+t-2?w^hjQNtJ5)8fsIdXiMNTN2JEF>&*cgS1(l?vXNwdFUObN zOiWc8mqXopc_{B2zWc$jx&fs1&rhdEX69v@a&?;Epn~y85 zPhWnpN7Gt#y)xNDhJlr1M~V2-{^(*u{kug|Lu@2`K-k8_-IwI^i%GAtrO=LH?V;o=c%CBRaylfk)6LF* zoxJNUnGt$^6!P% zOqkd9M%0!nDP~x(t;}l1tcqQZ=&Z59BI^|j!#uhU2zXP$k#%6#P=5}C&e~QGb&GN zZ6L0vQpWXCIJL6iu(|*&1?e;7m`37Ppn;+1a`ibIE@@N}7DzF?^%am`9-7@!w=Syr zv`<=umu~uo371y5h@6z4#cd`(8#DaJ1bDu-$Ls{ok{Wf)KQ_XvItbGIZF zB+K;7r;47fo4oYrO$U^A6r*C=E=JNtp}=04}NelTvOw|ER3=WxXce!MdWFlZh={ed?tdn$^!TZ}m+S?zl2btHf4)mYA!YSnY(l$uuV?`O8QJ56}p z1h{$$mm+<6rv0bfos@

xjmfIWPbQXBQ-hJBfVL9X{NWyGi`~VAmgpK0ru`tRpDL z)~h#wmoE|g{oa>e@)8ccC&>P94*-EA(W!=_h-#S2KaoxTCnDOvB%=MxER^~ggm~=5 z>D?D!e>Z&nJzTVsH2wC_EO;dC!9Ajxq_|qsfX%BUYcC}-c+)2|TSB|(Oi07zD4z8> ztarne@h`6s%9;IK56T2uFo?ABGnR1=GyLmc1ws31k8r;5i=@k#miQD zVXLNotV+?LAnPi(Vsc8!W^w_Fp10``nwg-tkk|-P<42&3Pu8RWamNzd?5CHXI;L{2 zr6o7_K31oVT2brXUz0zWwUL^@5_MHYkSY*kq0YjI+6pA4D)};jRUTod5|?vqHrEoG zfd~fz?Be~3DUwJa|G7LB`4;!4XT8rXi8q+Y&k8viqug`2YsyvALiTVvVVBAhSB$wjUo$C!sFH)v; z&OU~4Ji9m!HPFtwL~(0jLajRg9N!5>6!^+M{zgCTo_enMe>}mzn$)ZP)%pF4QJls%1#W$A~k^AQPs!Jg@~3Ct{4k{q07ohuaVA2JdX{D5F_jM*5K zceFd7%f0J9W!3Tkaf1>qmk=K;qqG9duP|7w+(EL#R3fT&=IrL%7qnV06lVoz0cv>n zvH`l%#zwXvUqFY5x%o;m7~0GH*^typ9beS2W@buV=<+}LZL_GKr&Tb275)#q3Z+uo zr(WA%7MgCoiidMLHK8|F)JG9<9|Il#ROBeX>|%9RHX`oMRPtowHmdY)meIj}a>?tc zB5V$_nzcn@Iqr+)COWE04k427&-AO&#zS^YakUND3 zb?V%>Rx2Sc?&KGUpRP$oGWYC%rnRh4uq_r@8RJQ_Bn2^=SXwv>56i5Z7^cz!KXpkEv2aBBIPMP*I|aM~&rW z5wpNgiq-FVS1KhbLp{KfXAJ-48%LtTZhhL7%ShlY{QbN~yO-{huKD5JP$c1yRyoPH zLeGoO_yPRp=|Rc9dnEsAzbS8q+(r*hX(Mz~l12IUMvkneKr?>zOR zPK}|%?z%UN!xQ1~vI02cvLmX4vu$kcMF8EA6-~vj2?{ss+S~C8uOGtM_LovzvE%1=%=giI2-<>Ovv4Li>vsZsiPs~M{p9JI#z}REnrZB z$Tn(`E9UR~!JgCuuVO%)b5GViZa1g=Vz?>0@=}vv-Jo+#P^an6SVaunt+i~@)u)jN za2^f8izUD23XZsan|>TKBzdC{Lx-%|CTxJdlnqldQECn&;lV zDP(o}D-{Cw`e5cV@05UF2h>f~N%4Rx$ddPq{1fE=cCM+N1YVm`$`w{oOu*2VSNokC z6?d=U#d1LHCtds2vn^mgsuvT7km?%3d&oBOszD!H&XZy7A@OTBD{>tI>m||FnMMLg zD%6zR0JNc!TNzB18%-qSt97T_QuaS2;w~59rK6g#=I5X-BzHlADfuUOD1cAdS6Z@x zZGH{Ku3|`6T{`^ku2eTamZU|k&r-FZj4QYX2ei!`%REzgCPdrx+j}wAH991I_cl|cldLEaC#wrSyE~%&0zK#6iRHX1|@+DL2m2b zH2YZGZdZuFan6fbJn5K}$&ws!03hm#zzStVa>|9EM=gkGBYi~AdFhCbrm|x zC@N*Cc#j-8L|J+av;N}v_Q!{}uOGjD#E;>dpWsK|IN|M&`ufEcWYk&%#2Sl2k_mL+ zjY}#dS(7}adB1ST0GLrx(A_5q^ovR-E4!F76za#~K&rLM{X9N*GzFH*7=lRPdGyw5 z*f+&1#^vTS?)_4Hk>NopS>{qCvbqOPCbolN2DBT%1OA*|9 zEal+v2p#)q5{L~vb=jphpamq7h3SM+rc)#CHl7E!B?sCxHJD~$R-d&6@*oU)$s2ol z@*v@Dos9S;Wj{vj*8G#ryK_$c)XNi-q@$AOZzW>2vWZ;Dt!UjnEF4$izDt@l+lsCo zY`XQ3bBo>4oet(aBx`+fn+KFlh~2K;2ersU9VIy{qzHBzSwK1V7U`SRv7tT}m>fKk zvh9(|@O-dqmB{LF$jaYLZ$NZkP~h0GaysjzaM=N-wA-I%uz=5??N)x)9tA|t^)^?+ zynN`ulEf{4YqFQn=2#mWGqV{&uac^5rDjBDH?F6tR_+$s>8DXLXYKO>fnbrI4GQ#) z2J^LmW&(T0S3r%(Mx1FjfB_DhbI+j$qsSrm>S?B=vdchje_aGW;IxV;XpZ@~!F3+gJH#}*FEl#H^?7Erlbpa!6 zE#=IVN*-p*Uw0!E{K*Zr;k+K;4s9XqC4ydW5;{X#)ojzpiZMfVO!^dNd}wJ+9Q?}d zxL-Qr79Vr=8*uNy#u>2?vEA6}thK4K=#;`b!$=lMQ-O)BJYkX!VhYVx*#T#bMCD`H9&t zq&ACWroYnGC1?1sD$i71_UdM&7x|{yL3M)Kt+mFYdR6viI?u!bSW(8;9t~j&R&uB4 z2zzDlnk7VgAnOUU=+sJvh{nn^T4AVX8WX@dcz>foAC@=Kh)mk0CLopI#(p3b+H$~i zrq?kb6^fc|KPXzLdEY3R0_U#x3{_KJ0?W#M!o|NCX;E+e9INE~Y)SVF{~{U}Ytv&v zz5yptA%Px>rrplI@EY6W{euHZnOenG+SF9X#-NBO;ty6kohH!T30dG zUz!K$hTz@7GJCVjatQxedY%fFCMAd@I2pwipN*4S@~P@yFl@$m0?m> z^f0=YTpVgG-gDlm!?S_lUIwfO)An?W)^JlFa-?KG@ZnO(zeyXwsr;)YW*J z;3^j>!*hcmD&x+0h6#s`Pf59!b%%6x&#OiiO-&C*c3eePEU>M%+V`pt@BZ)C-&uW~ z$J_M1h0KT)GY_eRY)pi1mJjTqP~@26jQv)_umY;BQQa3K&H!aHDTPVU0H_lgNSJ3G z`q=ys?JOkRHfFWmp)xvIVl}k~n$EjVzW!c#{Zv`dWrC%lJj+}?tBwG3!Mo}0iJU$;8MJmZ7!C1^s1Bdl^1?#aNFD5EN-nmIe6r;6 zAULhs2Zz}v>@#2zD7o}DW%W6Qy4p`HrMig|08C!H(#zr=NL|XN1Td_YHv#Tqr>;)# zHNzqbRTYl06O8Uf4=4_lHV7;}SW4MlDo+Je&NQ>{(jslJy|EQ}7tAi)WTgQQojT*y zB0m_6-zFkjtLaHoz?J#RjuxY}t?$7b*zi9d2xLUGU_WNBLFzWd^}4tPhH5l`$DWwT zV`kf5ax-NH_O?tR)Pdb%Y10gWQerqo*UAtTkqjJDv$Bz7KhDv4NSOWXXk85n}I zd1tXMchKzwrRF1Zx*BV_kYt@DC8@`}3U}ElbRL1cQ+~{l;{5#Y3gU-^b}`hYp6;W|oGigtQJW35Zbv<4aQMXQY+@PC&80Fsv}Vd|o$6yCl6gIkQceY)T+ivG{w6BC;|F}*RG$3QjBA}r0ook(Q-dR<9d&NwZaIsBXt6- zT!u$k**I%67(*GWwvWonSu4Fe@(OlRm3seL)qYNMXd1MwY~Bvd8wcxSeg@98_cfH4 zd$5^Sg}Jlu5S8zc+b&%zRky8(;@{LfJO@?G-jPYmh`M($e*;5Ow6T|UM{(H(^{8xSb5pqttrA+BfC4`a;Jy}eaDr4ye`U)oI4n#aWA1tD#t&+nVC!BPXF!f1LalQz#|YVk z?e^q%r;pt50QaGl320sAngGT0-4}0vq>1#q zABNYD^3y9OT%WxCIQ(sX^AEr|eE-#Y%2HfEq!_S}iQleCTPYc3CsMY0xUN?iMG){A zhK*2{qzYkBn^^X&7~b4ZS!IJwpsji?L{R9aP{9Qb5}un%C?ow7bFK+`xRxR#4<$(( zwJ8wEL>yja*XML40q!6_y&+?~?KSNzuO}_KED)=~g{|M!#j-}UI?Sp;a#K%DsoL_C zAk#q*e+3vSmlkc~0EB}@@QY3|?C4w+xv%D(`w89Mh9f>GH*lk#73Gl)f%Oxu27J~a zVCZ;(sn)}p_3f>rdO)*>XhryXb`Gg{kwRO=Zo*7s2c@sn1S6{3<~$T9r|-u)O-uJZ2fD@-Xqe*KO5iM@Vydf7)nel|O~RH?F}HW8LinS?uH zcRF;kO=~*)I}SO~%N%2L?IiZ2VK6G=RTKRc$pKG&7e0X1>(gmzYRLnansnwY*5x2x z1oV-L=aQVq{l=54n^;mG0I=Aio|zx^6F@2!om)3a*9aZDeJY{2Z`<%Nia~_N4@}>d zsZ>F2_6I8t^HNa3$(vG40Oh)yGzJgEKUJFw1}v_HEPp9@n;HtRGf_UMMzNcDfnt;e z?<$Fu4{!(`#a#)#r6KD5WSSPWDkL*AgF=Q2Wv`Brl`jp^q%?6qfyxfZN-s5z%_{6q zFn7j)4ft;Q*bS|eG6VnESMTx*tr^VbHZ-QJ;aexn3A)u zY*s)Cu3w>n6Rwb`-O$m(=vVI!tOv+DlnG0PTC>6d5Z7l(=4Ihc?j73PxN7pw(nhgg zG_c9+b93H_ost{(L#o=qtD7clQ$$V6q4r9NN;~e>LxLe zcJjmSILD!%*GHI|({*Ki0-CL<jR#mjr`*Z~@al?X z8%lOVyu#YXa)d=Lp^ZXEl99N$gxtY3aip?mKH!e&-SI~OaC_0zt42stZh%%=!jC zpv}Q)8uQX>F`#@U2a2?@evOE_a$nmeiV-34@2Fwr`k}P+;_xr26@217U?gaZw@t+x z^b$3Pu}cFW)|qy`SYzUx0o1)DPv#^pwMu$U<`!zmu51m0kxdQ$0!>;V=A0kz@7{iL z9ASSc@%}F@VlOJFkc!ra{7!?$X3Rh*^K#z8MB3y=1OYCikZuu?nl86WlhwJPJ@(xd zFFx3-maTW3BZ=ahayTrgfY1Tlz+B;0sFRJQDyi^rXKuDbVM?~phY4~KJTGVzw?)to zf*hWv3|JJ7n>UTa@tAw;AmUYloBKU=9cx)r{Fx8ko`&4ii!%rk~@srY-kN z1&%|*A735>?408IUJ{6+2tSb0*n|2d=7ri02%!ox%yJykS$}xYL*(Yio%4)-&k@y-&QgzxOw~Rtz!HWE6 z&sCEPET0a-2wuykS(e;9nxV+cHDK&I*eyX3no)s+V*Xf~#>hT3$2GIvzjrX1d|8V7Jy=3x|NYXtX8 z#6)fI<8W|i3Af8G#0fhV(>V0 zu;qv!QhfFL)%zsL zI&Z?~XDM8W$HLJh_9K>T^xnwruka5P(h6O5!3m%*(O+ju z;6XRf{_+O^)vij$t!lP)R3{Kj*oh5Fxs_xI_PR1jX|NshZpk)6FgvvOLAhLQENR)G z?snGBjFTj@2_D%aSU@VD%u;zG?cxdGEgP-l_>`D&Xo|&Wj>pwol!cJWo<0tk_9h+# zvLuPGc=gwEzXUo!sV^@p7B>}_pQ33~V22!qvs#B$Ry1qf*}!I*T%Iz&gTe&_$)PTa z7X1NQDh1IK)d11&XPxgAQ25i_C;)jT_ z8g}T1l8G@Z)WrTe$R=roKBOc|bV8qWoD*e}3~FUcB@yVps_3A5JjnxEDmk7~kWozS zsVDhXyN#wNf*E>Gvd@#2YDU6TlqLrYXm4^lb3c0g|Z4@)TY7xpwV2sA~ zkBR1~md%4yh;khFu17wK6VLZZ<^rO+;~?eKSn09EL*NE!gLJ&B8=X{|@L$Yo9Fqc5 zIa}pA`aHk^toI4HO2(tQAbM4vWV@!_@8>|#3tWw7ztfP6*%Kw~V+gvZ3@YJw_W<(7(|B8-laP1>;aQWGF9sXsXQ8}==sRZtTo z{{VEebbVrx;gVk}P_hC)r<85idlCJ-#vAR`p0fRtgD)2`V7G8Awk;kQderc zzx1lOQzfgb>sp*)8xG}SOh9FS@AhnNaYB1m)x3J5)^2EoZrXt*@&a-ot{9}! z$@%3#@gUGqYlHbijwMo8F*!SRiTT~ST0`ytp zt*a_TPxLTp#1VMT%!`f=dehEaM^gWXPLbta0AAcQ8gZV7!F%3;<{M=zfRVwH0dBhx zeYAAss#1)#_3Riufh#AFW-EW){u95~Anwcfb4p`zV5 zZ4VphV4Get&WhEoLL@nym6T8^`lU2*ojH`n9r5{17pT&)hO6b1b$_`mP~?gi>oM+V z$jZ$yQLFnLik@|b=Dp_?Z%Vj7p{0EI<|p#sg8rNx4NY56tDJOcT*C%gN>3Cx?4?i@ zEGjgdKiT0Bd3$s#CW-6)Ud{3!3>ZgQppz^FMqKQ=X*+Ia@dl~i8+*QT9Ojv}7a$2* zpOJN(4%_{3|7CxRDTiihdLtPM?n6*j{>YoYC zc2coJIp%r9rSj^A^iC4Xj8B`?k3wK(%Rm?UJT1(GdAEtJW% zE=6Z%x#alN-#py|avG{>#kOs~6nA>bfJfy};|^L>iF~SV)`mcNYSBm1LW?;26I`sR z^n!%xLV&J%nnb=vx?m~5u&*iyKz}gR0Cm%$L7B+x$yO>R3kG3fh;2}IvAEEWS+ruK zs@j>;!0dZg*pBD<$*z*~0L~E0qqF>qX1%zo{`O#hE!GkYxzT#!?^Kl@-PbvVc}sr5 z!BXWtD#DM#v8|B*h${`aVB>_m6L1Af<_B+y+}Bh!t6e4HYSC8MT%QODf)= zceGpQ9Oq*-;W2>gdXB$o!me3f9!M0-%BWCX%YL;Rt_UVPYo&nx+$&4Jk2>h41b1=I zN4Q^xV()vdGBlM!=IG|yqeC5jNJ`mm!;bAOm2V(nU!p_3q$_Bb%fR>Y<5TfLP7mi8 zavr2uv!SFi^Os}x8Q%T{?eLG@evNkc+b_Yy{74qyv)A9g{aF9tC;A6p;Pu!4O+RCv zT_3*v7O16tRwElDq;EF>kX&CNGvX|+s|>}qpI`ucvvUYBJI_d~8~7tjf`^~nJFRz6 zF&|n_%h5SR^|65E%I^?FC(vP}xNNzuM$+ol>OSAnmFgqXmmXrMJP43ww1r%5$mY7! zB^mnM)@X1V4CFj2ZHfm7Ohb2Nqhe^i>=te71nwyTnefDvSPTp%Mi$SKX6=41X!@bG zSpGWt%gS9Z1=ZFSUbbqB9uenTh1kb{$MnFS((al?1~Bi7^D?Sd3>BHVS9}=hxi20N zQ#J^-pa$$*S6R+8L3`HPG*!cAeBFahA$nOiDmS77!*49LtlV^C_Li{js3beI-fWTU zNC{8;D-v$l3hq>osDX4~m#;=~GPEQd=8ib$hDg3K4Pbp*DV>`ZO!z5+JHuA;)2wI< zSR?#deu(GDay;8>=erFJ;pylvPG}_^jD()B_7|3Zw!7(z>l38;LdZScAn1tY2fL&VrZS` zuul<9FC*tiYvIXFk_>cG07czCW+&5$R8x2k$+s=v6*evnDdkz68!p*EVO;isw1o>M z=J_H)R}K@x6$UicPQgro{^^aBZdGm>+k0r16cIXG#O2@z31UHHqw3wKZ=Z&@KR{P} z07#D|5^{n8jgnQ8X^+7>p2T!EBr<4LRsd|pjTOpQt<7q2qKT_S_umPptL|l4L^ivk zTmctAM&nB00-mL;3Ah0|R#P~gT|}zwCeLm}xN{wB>=Jtk5H*k-4vM^@>-2zyAwfPM zC8@{*rxO79fwV!X++CRw3~tCjz{{#!oxC{8=Pg1vUF=Ej zk@6qmPPRQcbl6EeGh4xBDx{r_FtC?LTS-{6qq{J zN_x*L+c|#%ByGt*K;j)(Ur6aTTFxT3#s`{btRxW2oi*7G>>jEB#Vk#-;SuE=I0%@( z&)$mcI9lsC?Yv;j>;uO0E?IMa<^BV0Pt^%Dx(15EG^SXGLi8Sn0?d+CLbFSv*@d5y z>%0dL3wjBDY?`WvE~P|%zCT;et41x}8^vk-V2>H$W1$|s3%1s7-Yi9_t2mB)q%lph z8tits`(c@>JH!&I4I@x0mjAzK73-LQFtcos5MCx+2+scJ&o%6z$u)yNAT>j?HPTn{!MteJNC0+4_!{ zhLTn9fNBY;D=W>>Rrcg+g~3Ly2PDP(`t4_^9)1l~CCOty z&wuM5-#!Z}5h~RKaJvuo7kXNm;&5V1lQNu4!UvU;%}SANQNHvtR8XTD>``IZPt*@;B%t#d{pGx!*%bo> zElm3cPKMm>@DA8;?}V-3^sfa2n!#PjI~|UK+qk2PSPgxIYV%r&Gi)rZ%adEF`W0y# z|B6lag_fuK=Xb?lp6>m%cTJqT*2NZrB2{_dn$4*t=5D=ZL6SV-AG^W;58~;UGdA*C zQD(kmDUyxU?!O5JT)VRpSgN93xyHV5hgXRjytalY(M!G6r-vMYX6GMBy!OrJ9=J0c z*c_s!-d`{qdXep(gBT*;0uf@4WBcdW;-onP`>MimVU-P3SlS8^m%^SR2a;=PGmU!| z(q?GEWvqfn4VmCA(9?6!-`y{GU4>K~vF36>}@Da7Esn;&Sst{nv z!pIB26DKlx3d|lDSGO#v7Ij6oZ6c>${@_$yKs3U{HI*Ins{ozppS*nvBOLvpgBp?x zZ^=rdESsq5%BmgnykPwhs9v>Z<482Eyc4nj&xr16_E%uTe42_=!3@M(YOE&!8eo31 z2@%F5!NCW7Lvg;E7 zvjqLC_v>+dncE>WrG(ymHpX_m|GAbj>q%;|{CAu4UKT{Ca~jE80>3s?WDA*;5YS4ljmWlXAur#03b9YH?Xw_{~9h{3%-WGIPtJI@(== zrZ)_y@f{d8S zy2=U=9xjwvsa_t7{wS-ffo7>F$AxPNB{5SDAtt<%Iommf&9BKqh14ByUKaD@gedKdiWMXjPSD42nqxQmE$H6vF5GH}wm-3?^7~W7hN|G2{Y!@GibZ#cz zHU8sw)vYgBxl2oO!x@E>VWee0J#?;PAr6Fh2*LsV@6}VQv|+Fp?8@Z$`+cdcItzPR zs14`4omoP@E6HdM+T33v`OYsswU4IX_Wjr2y!(E5{oUy$xjps6tx?hSfb@ZyzP-4v zv^$;xIt*k7s%-`zv>gJ3&8QazOW-sR5Q-$h9j)MmdiLeq+^A>WAxjJf6=C_>gC5+h zQ*(d0cogoA&JM=OBO8b+rrl2p^1fE|w~`zTT5<`)#1-j+oo7HC<*ldoXe(E_&1)CyB)>iA#|A7!YYGav2W%+1 zY}o9WAIpz(Dcitf#WSYa{s0oXmwW}N>MWS5{rFC;+)F!dZw*QuM1q=(4D+$TN zhjMm)O@x60s7J@_sXOb1)CFX=k9}vTm8|L|T+?i`K@^ijSj^UVnzM65yEj{L?SuT` zGX+mn(NU3yQA)y?P4$^)&2@ zi^pUN;F*!RP7;{U);SGNaX3NW=b@_Z0KgCoS|5PbtwP@HwIs8)WGWlOychbb-gcS7 zo#HHYXf~Q45&KpxV|b+V>D%A_cKFZ#xg6@>!ScCa5pDht>f^8A+xW%XSH`$~&Pmb^ z;+(f%aFMZF2n%MO2voE3tQT$!*(9x==^l1sk{Rwm6GEe~asaA|DX}cW;3BV24^-um zVuwcR+Vp55+71N<$;uOTFZFhKr-PiwNh!Ss(1q=p)78UzoZs(0@j-UGosb?uzetLQ~f0 z*TKv&@*lna&=xGe`~1CkpXGPz3qFVjRk?)JgU;M{&qSOUsEc7tZ7rt5#GT@R4R@+I%k*p80V`aRud4d9L zP(vH9(0z-5)L%ghmQmg7-+^>b=Nb+~k>Yz9a?M z%=?45;yD)Z8KefLO>Th6lnLf!AUDFtB+r+0x!)w%Sj?``K#(x4dISvrvh@yd=WCwT zUMWW6LZN^(tM5oRtBO;T2-v#7OxKYr7fI`0-0(~xDS3gRPVcy3Fy7YnFyX9P(4!Ov(BaAR%uO*=%1c@9lS{{)k{M#qMA5&4&`^|D&B)c_zjxf&)QX3Sz4!HDpRD&D-~4!>(ZxrG#kcf;N^ zJ-e0g7VUWWt^{yr=vAEz8FCNfmh#0mn~u~gs6|ig%z?J;Y#P~KXA;h29p)a;CSMkyCupUEZd7LZpQiI3OwP(PSy0Nd zqNvxjmDa&lMnyTjYdMDihu6UPd2y@#d^@9H2^kFJ31x!uzA+fB3H^}VL@udw@w5QO z0!y#5knWfbVN`jx{owi|mFj=F+}tG|d`2rofz^Vd9NA)|+s0J|8@8yNp0v3Q$biu% z7aZ*`)MYt9AAaGQh%4xy{(q#s>#ii%l_vH-pJG#hF|F3L9-uvT&wC7}8*$kg5t(tT zxMZFTUiiXeJF7kBm5e)*-^B0-G8ky4OUMyk1^4o6Rj9+;idJvJc0 zxAalN-d=q|DGsaFi^ck2<*_9Ul#iY7zy^asPkiw8k+8HXry)zt_y7QDelD7PTzWzg zFb|(IpK}5%{G?kkviiE@=0t;s5kEwiH@d@-x#I(hwM{xp*e~j+3oeN~6T$S4TAe+k z<~kc<1v!3Vov+$%Nw_M-fDPqpy-OIu>?S?$2T%^g*d1j~v8ZZ-tXAdgPB4G13x#ya z_OP-bY7s(Gh5Sw6A?(}-=NdhYx4!<%T0Q^1FJAr__~LYz!$!3c;6;GcqJm~`fEl$G zu?Mlqp$*hJ?XsVs)PGp9NE_4?&%8J5JelTO+xdV99*_kG*e*7ydt@a`OY`mJ@0%S5 z>9E&sA%gz;A%{=g=TGp$n@^M6Gx71135>&eOL#3Jy1nmY}LB0Fz<@50J)w|D5&mDai?@Q8ZZlp~MrMLO& z?rmHGY&YyoU}NfmX20gC*%Yp(Z!|~&;(8I~PRH7A_AT`cjEq0JHY|^Mg}(<6K|-%o zPRB$zg>EnG--jDp@tWhzA%X$uGcq8cio@uENTHS%P<22*&KX|1gR&J9ygFEas2%*6 zS>HiPK?ertZad#)QW5K{p&E7c zZ6_arrY&Z^BTi+G6VUr>)prA-He+|?S?tZEq?QWd9tfZa(v$UG8C3XVy?_Thj+BkQ zgTWP8K^C4bovPX5PrNel_u5e|P)e0Ra3i=3CW;L=I_F-&t={=#E@;!WSi{I6!k2m{ z3a3_b40n;!NR4?0ImJ&8*|RU0EuV^AIBct&=;2;YSvbG!5zLVDKK19Yp6=~&hX^T>0%Wo*DGY=Yt@{;=>03v{8;sR`Xe{|+awX8j z=dr1vgu0gCMo18;@K}K^td`G`3XvFs9DIC{>u=P8HK6OW%?ogrn30>iTM;D-s1S>$ z_X-VK2i3#gYKie2NIf~jGo!PCjLuJQ5MCs{Hgb>wfW$s{hYdkkPtiafta2hw_~1w0 zgfg@L%R&jD6yjHf$FyL)w-2AzT}rrVB3b}LDXD@_Dn1P9R?F6_>$XTtflcV_@gK+P z8lEh97qDJ@tRkUtL1jH`n-3T;t=c)?U3O-Y%Ec=**mT9sO-u+&gYPYfg^m~CtF(^g z00x$n6IvN0J}_B;3&tUq6N`AM{c<0IiQ;01NCrxPd?u(dUG@JD~_I^NnJxQddaqBj;{s3R}TX zw9B%>hldXb;3{B&RCL@(Xmdf!O*JaA=690+$|P6i9z%rOu9W&KLh*`Zz-EbAwx#I} z1$veORSFlA*pvr+g0XqEtLI^O&eFKhS<1?8cz)LdweAFjBR$JNY#PFTi=~RiS8+3*d6dm#kNF34`qrr9_@I8unex3@T8{AooPjjjCuuX!R?5E4nhDe~hapz_?!FuTQ+m!n2`}HAlCt7YPVasszrKEB&zqD- zV6I$!E@?Ck4t>~`ta^%`MoMuNOsqM{Sax`ZnK?`$)p`#((Sa7rk_{%Kp&ivkH1`V_C9TsLSk%Im^-H&>#Tlnfd$^~+44&*#NV;lanN^xd zyGcC)j&Q*Qg!M`u)N{Nk2@@n7f~C+Rj1YKA zZ>K!Tor2xr5#mV%i1qjmr(FfdtDU=i43R(#>$YwL7#y1 z0-Ee5o%X|ELwyjbw)Qw}0M$#B&+C*842!a$@Z>G4iO5a4E*-Z>5(G)FXdrf;WQ@z4 z{U-H1rLms|3nFP}??zRY5ao1D4!WdrS8-MecbeZk`{G}ocd=x^#@rsg8WRw+y{zaB znLegfK8%yXttU(sj$r?t@-$4HQsr;CPnuXx0GNZ;)WXBkO<*n;IlfQ2y0i@qlqrpi z0}u}DAK=GT>^GgBxOH2G`JLU<=R7zZ1ebx+h|#n(EiLB z6$q~LqCj%*X+b~iRcno2J=#gr(4&XI@59Kds8j>p6&&#$EsE41<9%}x8;G9qzd8on zh1?)@?w(+P;*WC7)YcuG4G$!f@`Qbxy8>(DtKz4yaUw3|^B6lImAFTQa4CWd%2fhm zTa1`7CYRi-GhI7CBdHN%fp`hm;xJ2N(mkN`<}oIZ&y@j1<30o9-<{%m1?aUpX4RQU4+9qBs^~^cxYR!iML{BX zz}_i9Ep;CR_HHx5bj+7fs0hUenj_IxaJWH&7Oa3YUuFu2EuTSqj39q0yU>{o)KAW*N z>K37|4P6bF%u9@iK5tl561m5U4`m9mj!A3O(&{_`df42kF6$+Fm6#Di4qNOSMZ>+Iz6!y(|6y5nZJI!moV&^3h-ZGyGfs z0+>4GBi|3no$D(Cwmv=sYL6QHWS<+?*u&Ft z9Nk3WlO_KbaR5u>`BXQ-=SSC|fIY*IS8v?i8Vl}ujkXOuRI@|ci<+?&QWceiEEeV+B?l;aqi)u00x8IRgn6( z*9h@k@BvgHp=q`~&IQ8Ev`Fqoh06HYymdj^RE8(;w#5cXCiWmF%!$2>gtD|%O5HlA zEiJiqt)epQHRiTHpVjm{X>(OvQ4~o9#q@d)4jY3^pd2;JP?AK@t5#&Jw{n{>AGjDw z=7q;5@atc=c|@1%x4SpheIQr6JuATW$Av2heftw zg%upxt_tDSjI3qewyLGfZle=GMeuP;wGFooIHu{^Xk9(K>x!haG8E8|Y^9Enu(76I z9lJ5)5nO*fT>nb(&HT0j>9Yh0Z=k%LFD*M zb9UGRf*wXwVcp4-#^yyG2IS~svJAGmVK3*P@KLL(fqb??T0M#*qS$6?X|=NS`Eho8tEx@NMY4toW@I*$Xv~vq<2e!d5MTSo*ewOC2}6^p;Y)$qPhW z<1VS;+rr2&fo(iBzK4mU(NF>lg`UuT}jqKm2f)7%#_|@}j_$ZKtY)RgM9z zw{}|CpiAQ=9lP;^i)TkZ6d32HA%qqu@D1~jTJ$?)e;xpOzk2Etu8aokeKy#e0BuzGuNtvu z@SsH?iI4@8bFj9m@BncrD-maPtg0UM}{7-vJ0Zv1$oDnom-y3E9uRI{cKa$6S`))D!9Oh3 zbdBZa)MqpfPO+87KJ6$U8-6ZbRRZ`?@j@~i6T9|+uDK4ZEFrx!pbE>bo}L?|a~u>p zugTeht`u;<06SGu_8j=6(KB0lHK>3yChzF+ipAxNZiIfT?VEzg)Jf}v5#%Uwpr_k4 zP=D#k0}trCFpS`+8FDE@+novU+b~(@Wt5Zzjhbv4_&!Vw zAQkTn)eMir=z_+XI(^|pJY*3}w-#TVu^TV< zvQ&NV^#L^Kh_FSa;>n8c;G}CiRp3rJ%0DQu49$GwTP{0?>4l_B{}_v8!N|W%zC&9> z8RY~ssE=R2qK8T{Doiw#V{mG~-8N~7=E@{d0y13QZ-L_na$8k$AzGkiL@(J4*Qytf0z*783v)RHW)+dz6>AptOH=dPY=A%Z6wC z1>In?qUYe)-siyT<=CI4D&FCY1AkowjG~py0-n@NLIlKzr4#zhxx^-v%uI!D^AQIq zn@`IDYzmR4i8BA}n)9)GG%;RtCXjQpKV^`$(hM3(D@ip8)+^shXCsmGx)1hrR}{;| z)ph-sBChgNJvOY#pEgoG5-Ju|&mH1`XDZQd;9Fo<=|O<%5|ayqDjjgvK;OAbBS)9* zX3Bz{4G>WFK+juX39&&>rav_DScf5bD-UXF48(0PQG_>1oQeBU2{1df1`G4-(>8;F zqi{1W6($@eRp%N>?tFqhow`zZ2yu@5--hp}g!KWti9av^eE8>o4(S(QoPMqn7!c$6 z;p@lptBR)l5;LdPZk39$`6vSq#QOTAiopf>wr3sK4IJML?%q03HLns88h|6Y;)l7r zG>CRyuvc`cVJQpBxb?AU_87ANj04Tq;&SmJ2e5NK%eIbrdDLxCe4BKtbLScjQ?*Sq zJmUEj#CT!-qFrxP!o3 zOaT^^$xsWy2=vbO!04AM9i|SJYL(Z?5Am{x!R}sjH!e=IOU_y?k)L}VTT6ooF&nn) zD2eGPUrigJSpCGE(M>`9ZXtktY2i6iGz`t1^)zLL8oTszuxN><{eJjf`p^@l_Z#Pe zq^~9>KzjW{$Pq~>J{`q17_V7P+ac4J-YI;>>c#yU%vjtm&mEw=A%jg>KcSm&RfRG4 z+G*2U4;2J1?g?p6qDDaXwz^8*c*h{E*%_1D{U|UQOc395)`moX7 zSNgb(C*ba6pzTmM49f2(K~5-?`4LxfD~tx^iBwPvec*>-?|v?Lb4OUYatDjl+w|`({W1F?4gM>>m~O7x zZPnUe?fTO)u99f>7KQV9(t?CP!x>SWJ>$7>-){-S zWc^D`Oj%VxX z=i9h*_k=0@sa~*f+oX$@bO`E0DCN(p;6k-to!SNK+{T$&9s0kL zlVzYQxdAMeCAcC#z#*GdI?L%%RTc}&N5dZILYVr)N(iO2;(?$RXzkme7kpUiB}?W| zm?iDQ>N<-|&#EdoJ0mPhR%yhWM`Kx-)ZxC-;jEGqS|y!`u7@XVpchd^;z$+Fwzz<$MwZRoA;sD` z{-Mizu1c!V^8~u{}(JvWne#~I=W3557awhW3PuU?!L(`R^RKvT8x9`WMiI`OSvvOTxI4O z6KGcoiiO%PEjzP|l789=Kz}FIHVveWpImqi-A23jk%%to)<%@}7U?%c7RVT!$?n}b z%28IQm0SglUxDQSs#J9mU3XCxT`DvL!elteNUVG^P8__jpo@cTyTnyS%zWmEM;nP^Kn%dw~P)!xl^tUquQQ3R_q7yxPR1 z=hi^Lk>x~4gL`TP8PxGNGM#Ga1B~CNjgo!x zxF&MY0r2W0gzVJDM7j(B5Z4Loa$@$d0B{r?K6w%d3Kf=mOs#MKUlF@M4= zDEwo(9GIrhTzB3vOriQd6!O%j&{ua5yEwXfPVH^ZI z#rIt^z8AtobIv8wtUynrnF?tOif1Ahm15Nb6z4#zv(yv4g;hYFP*$BX8W`-kL_{5i6C_-L z%b1Hu0t7aCwv&-=Rr0+5ZFMkZrb?;NqccOX0o>gSLSdx+aZ&^77-*Ov&qwu~R5zQv zyaihwDh7tO8{i}RA^som5B>Uqb(A#MPk~^-iCKA9JJoYs+-@ECa1%d3(RB9+*J=Dv}=hMc|6PEN#gQKYC_F*asX>=;YYnJmZTtK)@>mT-QF|^#cg5jJkVO6nbiSvUh_9EY30Rqqj zly9}Oi<^PV0EU9xa>+{=re^?9K(D_P+gQmDutvAG1f4+H1dnyYSO7VXLJ=xZ_B;D7 zyUJc6>|hnYTUCR?Wvv%{A>3~VF^g^E!^r#GoeP^JpH=j}a~f`a(L{Do><9ds&^_qw zhWI2EyRpF_dl{S=-%X)?=-@z>FyZbgxz!fs)GiOB++0g2NGoj*G1w?rDf{^DyzN=dJK@5ucb_2yqx*2@cPG)(;H|= z{|{`j(?t`_Y}Z+;jvMq7S4MHD>6?y1Z?Net0=07sM|`t)8Fep}r4$4lxzwHHD~dD2 zqRTIG@*%&Ea&N(L*ovAayWpI~Rqn5rem3lerOUxq;-~NL?+yT@qq@hq`muW~$^!!h zYFqYU4qR=(M5gTD188oOMy~f)AUX+NF8f$^m!6{wxsmz-^eXi0gxWc9GrOXCsa!X~ zeM%Pd+w+vWKRQwNDkVOR44yNrl}^I~_}4fdr3)&`b<}2lTJp0$)S;*&HedjAbfHsL zM^5lHlL)U^h0tPI^^C89D@EM#5)T(b>UP)Q-W7;UbgTGu^*eMq%Z9YTYQSeW`i(3}~$L`+~ z+Wnj&u1N{{Q%XW7!05Yw4li$k($CT7?%uq&?wZ`DsZYDFeo;3w!%1(@V%yz@51UjE z_W1zAPv9Laes4u@o8+~bR9+6dy#S#JtCQaBs@6;$xC3wO6p%Lw(QXhq?4hq7$%if* zU&akpa95$B)J#5D2xvi@OM!o{&^!@{wXH}Ha#TuIau{&hZ`FqSs_ZZ@?iDRKojNG6 zO3xw(1%r%*+OQ2CH*r7bVpC|A0<^dyhz|LUV{;3X9O_-B4#ON``xc-w^Uzpsp~}p< zSVB@FyB-EGEHO*hL1GF16TyES1mohsnEk!)h3|bY&GbJCuQvPtZ{hV8{0D#%)*B>u%5Rh}+H&SBT}5atV#g={ZE9ApE7<5p(WIxIU4juW0WmXH<)qs(&I(thd!vG0(!5z6CliK|) znIsC)PCE#@yBbwUT(u(m2>U^!sxOOU+MeHKa44tY*;vk2s&1iF$^k>6xHAo z%B+*50yM31J(t*Y4}4m%Il%~=S;)mr3P*QAmS7IlV*!AU@fc^jwcQYgE@zyod;=CYeZM&Sy z8NXTj25{U*1@_arx1_AuhqQ+PTk1 zcAy-`sIa5-8WbA&L#!2ea9;V_?}qQ2 zVCaa7T01?tbe7apYSs~Pto8w(m8^_r2z8uY@Eh)dz=4iB44;h1<5RnL&nRM!wu@!kl2Zci(xJFTD+D|ln%!=j>2&?H;8@d`9 zS}`sL(Se4rj~S%%UOVuP3PPptu4_|*5Nq{JshXXLx4<*l6h$#jZd`Q^)dQQyeIkEl zh8$)yDygq~cI}h(>PxRpn$|swf=I3lSE4UA2`CdM`8#}3dKxAJuZ$9SA$ZBy)#XHs z&>f*$y>BM;%v*E-ok}TAOSTUkrriNLJ=P+TgAuhCxaS6YtXBX(dzw#Up2NjDOpj3* za2y+{Dcn)tbYD-PB$pPY&k1Em(EnMbiPOUZ!@Y@Pw-ZENOMfGQeB+xYYhB?Z@Ei*U zq`gF$;BL)Tk(f|4cvP?@Q3s`br_>?@IBqRkllJ=SzYc#*W58eWUj3SD&)+!4;ytXz z9U6JuWZc6zB@i;KD$|ibBy|vyeBOia)Ui=dI?v!h6w-XU1D*6Qq-M9s?-+adUKldF zB-}uQzu;7CjxM84v%s~tSIk>k(|}fhbl3^OK+aq3@Pw%D^tCwKg-haqwyaT5RVHIEQlDeX+Y(#W>hxN0>m!#aE-b(4W zNZjsxZZ9$Q8PZ%Mm0eI`ayqjj;!nOs#`RoVc^)=Otsy-{D0LlGNx7@I-l!?VSd9e# zL75m!N6H>z(ojxhnpefVyQVni;|2Ha=(4dUSCvA3t=8yiM-f4Pr&l^w9TswC=(F4F z5rLs4C`j6`y5?W~efLHD_OCf!eIbX~EI>Yd{p96e|MH*V@eQ)cSK;Ne^k4jU`L{1g zh7qhkRN&N&mwNMw_Z*N9+5+v1uc+Mz4q$rw@Yj7--T2YA)LHdRT9yu4;~g*fTHFsL zn}rsIilxC7Lh)M=x1vLd0(J$2sn1=7C2spPIv1tXOPHZ|}BbW0yT>G-)&x zj4!Yad!}xY4@D$ZprjgHYgf%w(1ge**FXrtHdKmo zl)m%t^P&0GtC^(!)>y;u-b(fH)9~(RuU}iw2`s{OA_U|h&}a#b+z+D1RUTzz8jKj~ zkSzxLOQ{J-0o9wZ+7wb4M6nNeUJYGKwLg{OeB|^Y$&k1$BskDeHoi>~-@9Sx z8a3LHq$oEBbxr6jz{$^>$5BZn@~|KFtPFH=1{7I{Yp?y~C7C`Q~jzy9x3>c-X-S#9k4EUkoULt-H zd{8ZTcC3!21U|baP<$|Vf#1BdP2BSla^Qpq0096{s==@2*eg0}UnmTI-X0bP@)M_w zeT9JmY2H_rl1O(58PepQPl0P1Lk#O$7T!XlMsT*9@MFEWKh9_E> zZu)ps@W*vH_yC|9gmAeYMCD3S%%!7Xg4Xu(9bdU`51Xw>fF*YiE^tGpY)Ynj$!xzg zox6=tt(0+SsqD+5Ld(?Rg}O!IHclY0)u=M0h){55Wir|*#(RmE&Xbm;4E1%=aSF(Y zFm#5|w(xgHZQ-ZPFs(xQw=Cl5wD4`m1^)u&7JpCK#s9DG!~fqu0KFmY-Ht5Ro@Aup zYszqNFV>dO-m5Q;^@#cYsJNojuDSgmJu0EMgQRxeF0@O2rhuZ2r@0BWS*jLSpQTDT zv7up7v9&=tbTKF~AQ5@k88xIUfoLX~cBr;eWKbJ-s=sk1b&cEL@(2h$ZKrO9Qh{Wx`d;VGjfyatE8L+n>?rPe z{sA(jK6j1l65NZ_+@$POOWhxi2U)^?+F?>DRis->#QZl^3LkFhE`)(kvBa$WW`dPm z4*(CnPUlUfC;z0V@Yk=C!_*ge_cpxz(ZUiYR5n{cu`ao7Wip?VV(*!=KAfzsZkRtF z&;}}zERT6oab(lx?%*}P(=<*3T#DAZVZb;a_GAw8D8j8v%VZ|#P*^k5qT&L2*H>hh z3Ln5FMA{N}7|l@Ur{)Z{-Aj4uX7VEqCx@sll+k@>l%z|1R-7dH`%^sz5;1}I@zl{5 znU+#@p~Dmcy0Juv7J)zy%)%_zKy7FTZZ1cc-?L4X7g=9~TO<8_&+>6>6L|W%2-+;G zOL{AOE4V0sNhc88?wR;@R>Ieg)}#!VozlZeSy{eKhiqpd>v00W3{Rm7%I)!oLVM6O zKvEi+J(Fp9SmeI1TXcz>^1`k!`xV3o`2*N(%Aq(XV;@LHBC>Y%?z=U74W{Kl9brV)Kdd+O%_v%Rpk?~ zVr7F?Q~(46f^8xgFdVbgXmWy2!CJ3dhph)j>$lE<9r8#)Jy^0@f$E)5&ndm@*yeOs z*W|-qzV&AfbieOlfIB6Kw}pl}-$eRarRD3zhGipAFGNa6`g7bcZofox`MLREz(-@O zxAD&DB1w8$8efqmmFZL4yASd*5mwX04cc@zgjK)>R1(i;iN6KA3z#Eiw{kh^a!PG; zY9$?<^A7E89J5pd&!Gbo%XtqoKS?jsIuYV+Yqa+@HRS}T`3z}SeWMgs3+)wzc}j>7 zBBa`ZNT6_O{4j^n6oo2}t4{pJiUw@gFg>4upXL{!tH9PGDRG5Y8^(i3^@Bvx`vx9c z;1wYqrc^nFON77^?ks#f=hH0^jRYKyZ=Zq2pt3SVy7n0f@Hq_mFP>qxwi~B=-0_Ev z-4z3<6jJ)#`AAKp0pL+y13B^l`Q3I2d9Z? zPSRPKb|UE;1prijK=~DR1m<~M!kyRCU0)>2Eg&%uspdvr%*n{N#RBglJK+U5G>r|O zzW@F2ha|52kQ7;J|LXOt{M9d@wQMg=#{pTZ;!JkN9a3dWgqV2+SrPlIAXos@L9BcC zyq>uuS4;CviOkaltuNt_ps?(Nc1~H9o&gfi*wi(Joh4}k6Itb+W}{Yq=gX(~jw z!uHz%?vkih`-U-ealgVfPz0h>B_dV*&kmtQH)Ovp2$dFT`kY?Mt1uZUpuoRLarT1` z_^dvAe1f0-MT-3c)U{z1AV;E=2rEAz9E%^!i_bKgAcJx4{W8t!>*ZsK^{xhyzyu7H z!$no2L<-1>`zHCkZip`>Jg$zM+hDq5dZRfAYs&w6rE5B!uFJA$40R$wN9Y>wqKxr2w>K&iHH7mh>CmS&d~P0gUhDf8?8 zUHa<3y!;}(`)}Ak!`cO`H3Bj2Kz>ZpHtA}*B&rZ2mi}SSVZnKubos}*gnX;#Ex5;x z`Z3`e!H-GGu*~^i2V}_DJ9P}cep$s2c>sxunI5-so+EHrRTgR~G8`=e_kEmZ66B_7 z-CF3>+n*1^cn5<*pq{=zsz23`z9eTG*>o}$Bs&?t? zZm-pcY~oT<4be8Rg#x)A00vS%T-$M{Ka>)y48t!?xwMvG&3F|nrz{fG1SiOjm5b|w zs`Q)umQzu-Sg!^1M=e68eLituxl5;Thob+(g~euI-A>!SN=7HOO38jRYm&j8BBV@B z!t{nDPMATrivavd+mWte2NHaOq^7>SmmaGjusBDxSA(u;x`uK_nsnU832 z5q!7sJEHYYO=ckwuArp3LNz2r$Tz#8q#Q{xk`tsN=r${e?mYp~bNUi)WWJI>hd4cME!EgyWlUZoY$yziECKavG7MF*AmYU^GgCXk{CdGAkd<)D|_x?|DFB+5NqW_ zH)#+{(M4)zG4QdJ1EqZ`NEC~Xx2=Iy&rWv@1y>k*R0%&8h}XjvD=`T=DCSihT02?& z`B#7c58>~>n*;FMzx-$TxBi7f%U(ZBv%HT^_oK=m>>W&TM1xfc6;9m6m}r2DGmEE9 zryyxou`0qdi^1WyjXZ9PRDfqD)_JO+yj0S0clQ0LhHx1cUDydl2j){3pQ- zAUOPl7Rx~s3x!jr|AyH(X+fJPn7qKl{uNbQpSvbB`+^Jqlp$F6R;t3oX8%&g9H(1X zW^sZ|rDpGIdgT1xx8g$JtU@e70CCxTEba^HcVrFTIm=1`0B&qjf1e+A?6;s>i1bz( zg(j$&p5%by-4CQRB|Ldhx^Q$4MpSWj)*v6mo_A~u-veJE8SqsaHnJ}32e&JIeG#rv7$G_3-Q(3Z&;d#4oKA(NfR&gNWnIqxXTAn&dv_xgcQuxJ6RN?DIaH^!@1v`1M1Dz$M*K$eJ3BK zKfHb(zD;lc^5rLq{m%dJ*XeLQ`%}5?Y3O48(G970bwRNWX#|RWzB(#xWRDCY0U$o_ zk@^J_99EaPSb2ip_cXHGmciZ)f^aP!q&Hg!h z{))F^o*vXs0lg&-PI3}AXmT*5s?7SFN^468VLDcYm#OvJlm=Py(Kma4`p(~m|K&UO zz`u|GrRy)B?o(R~@`4UhK-rOcu{{`&;s@@$(3dFdN{Z_ilhUC*BV;Y(mnul!cFO=4 zwvf}Kj1)$+MjFYkxYIh#t^L?4$e1s%-2gUJCF&ic={E$7IaWV85Q}ifXEx;%g zLzBk^CcT)fdj2p;7>V!T?gC%H;Br^ybnxc)<xzAhO=UQ?91}; z*ya)&7|tJ{jK6gywTLI4ocIKPty2V}R?6`R7IR^Lh4eMugh}?1xa-}@h6fcC=R)$G z(S@y)N(uE4RW?B6wblwfa zcH|X%Ew%B^Dio0ZVnI2Irqc2XnoGLG0_#jRifPfilHmj(3Mp#~l95D)G8wY)H%;}S z)=CQMw#A-;89^MyxZH9q#6NLYgo}ecVp!h|qg`;16d7b!hu84Eqttfb_Js zn>^>OxKlT9!61s`8|YSqiTd9CLtS0s@TW6Y$`20%{U{Ip4!9MDN@cJ?2$ke0(L&5`%y)+rYX6@k$+5!3leXn4%nvBHFvGE%c zeLU;c)knSAB$v>?HqNcWREUZOE6L_U_*OaOl|%EsY4tea<|^lP48Fd+$zOw(0JH7% z2-kHFbd{rsi(JdIrUbi}hZ;Rw;tsim-ybSv9Ak^BK(8~oOQ6{}@(sj9)px9hYc`Hr zVAKmO=H=$DfRnQ#1TT!tvO?=W>mfmK;3Eb?OcFxxyCQ%+%g#)03K*|R0o5rik`);O zpITTc3dB)Wg>)s6OBrZHTYR#$m!X5-{mYB04u5_+iqWG|avgjisof(SC-73* z6Z$G8th#h2m>eZk{N!I8IB7(bs*X5`6@?prt@kd)eiE2BxJj%TNr29ljCuLFZ*p>$ z8{A8%h}xPE$L_esu|v-)zi*=bA?Xe}cjif(r46?1&=&^|9q3MkRm#^;F8NRv8eMYF z*9JVqgv(B2>D zFm$+itjZ%{4Xexx&Ni^{-vU~^DxP*N%K(fGgo zWK3jSt&OV@xN9?V0Z0iEj8)x(FQq2@!<8b+a6TK!4McdFyrb`2NcyId#qUn< zK6?2E5anl_zSGlFcQzc( z7a}$2fi1FKM0m4zRFjpGpTHRjv<(AY)9s2=(?yrv|E6o?qb(}$ezdG-w_o>xXIDLL zAwfqn%W`1Ji$zPHam^r5>TCf^>f|^}@6sL|Y&c!(J*UjIlo4lX%6huVMS`im8~!K# z^{>KrlQkIfL8=z;`=A!bc959jYmb2N3W!5M-gs zHxj%F0051kt59zA$|>Qxzsqo82_#s_TPqM7GP!y;*0@SQyqLtb>S-J3ZI_Z{I%Ag% zKHdomWiVUk2y%it9_*}1o|h!**7g}TXck+!%)N)29U0ceba_!RS)S7Eu}s<`7(J5xQ}I_jTvK{E^)Pe& zE-4Zv3X}6G--T@wD@2CL>Z_?t(gbJAs9VeHJYdhk>5uACa&~xxC@sC*g6;wAbtw+i z5%plUfzN@JxVoN=3e1=cF4iXCslD!2k0ElT%aZxld>*AixHy&ItnQlp?eb2241Xl? zEd`z^pUFu1xiK%W>o`kZJJeumj6~`{z=*Wqq)Je6ej}|AaPOQYP8lMf)G^RMKrD{p zVzYZYNT3*)mEL{)^4phRNI?JB*FQqe{^jT4-6yYq{PRD(`{?zvmk(9p{_VR@UVi=Z z>vtc&{^Io)`jyX_mVX&ulBS6o6Jjr(-l;dRucvOhHnmXx#O_tC#Ox&8b*e!ifvVoQ zxzqzlL7hPI7*?8~s8`6!#3sjzc`ti)0}Jb&M5i&86uFJDO6+2ss*exeCsuo7_CdIXh_<{rFNkxh;SSp9DU&c>?I6X z6h&!U!|#Xhm`ml`KmW5FlDDsa0*Lu%uU}*75W_je;~VHVr1K(QyHz<#dq`eTwnjd^ z_5PqKw+@rbX|7kG&$Qt3fpM!ccGMh<3iaRIM&?dN5;~{@ratbc1ZLO-<22uf+KOr- zJOkz=g-!m3s}(Og0rCm6TOAtIcPMnx=C`unEbCv#@FcOP*;#F0q)EV&W0XwO&d^Ob z6{DgZYQ~SPIRTABnlt$CYKZahfK+tSM+Z?FRtcXR9z4PGgdFKsZjWRW$La!TAdTU7 z!vBg@LAD%)DE-e*Fz78^=;|0Ac7Lfab7T8^t6GEh@7g5MZXC#am>o7=?SCt<-KazUR1iC}k@5yIl zvsB0r;Q?_O4Wy5dRL)njO+lBEVOORa(oF4AC!p;cWI#egrHqE5b7QlWGNfrGn7qBllUYtgk z*hDK^RHv!~OOg&2FgrqJflbrlX9<=b?mmH*PU;RQI@t8347Hh}EMd13C@n_1}kokpIasd;OCMkmJRP(c`n%pS`@ro7dkb;5`VB()`JROvm#_Qk}@} z|3~v)g~kE+r`G4m$C~aX#{U}_%sw?nYyO@Fo>Z+4XkM!po_la1^hv>!YdyT#mEPd# z<;^aIF`1}9SIPOvRl|sELNX-CmV~uPF_76!5^Oqu{Ly*g@+2T8$%S4VX3%gXQWeiW zZjw$1gM9gZ_L9=IJ%uh6kUKfz8p%FDnPz}Q(lj=wBqneF7NTg+e_=oMjam|f*Ke53 zzX*T+Cw=|ASJ#Ke@gSa2N<~cFY^8dKPA?!b(r(|~B@kH!CM6ueL%$Mh5@HLyhs7WU z#ru6hwtkPEI6IPmQZPW^!f?7m^JkD6QS!h9-qK7VRXEg0az~5E>i&j3uC1P=6qmbP zDTS3QCv2jn)P@YbBp9kw$?w=_7Vv6E;{*I|m|Z8R&8VMdA9*GlxLu}lr zsz4ngZQy9Me~Br!Y%kP-mSy_8PXN(9cC-Lm=g%=~pl_1I0O_ z%TN~0NsDW$(nrPq`F!jgau*6op1kB4@!cQT7-o1$=xgN<4x#gQs8^sJSuA({_|j_J zPuJ<1#H9c*GL0trI~rA+RQ_j|wl=GlXGA6GYx`*$Fbx;7Z1J2Q=A5oro}Mte#F|)p zk`uu|o?ro?34QYUO|hWg>6UAj9RgM-b63$X7Q6L)9o9?-_5$jFje8Ek2|n4rkP@ny zc)ULN;DZNa@k}EPFBV*X_WJwq`djJske_TFwH@JRn;RTI#gMqX?+WQG-55`H_ty!8 zVy@tBsNRRzXT1~Pf=@~}RTc7S?U3wUS~z06e_9|MG@T}Vu5WhR;lWoBqg=1z1}uL3M)38e`G?2u=<3t zcmsKD3P&_iwF%^c7(wz(<-S@4fWV`e#xz~>LICcAU>{;2haZmD@L4*DNU5nYxX*E+ zB7WSqma29E?&luP(fhc!uRnYJQ;=WY8nxn1r{$Yc^Gia5^dJ_t|CC~zR;qiscC{-Z z!s%&z)Eg_#@nL+4g$k{wVu(W$o{CgY#CFb6V(!>AM}H>M8RrXU#$q*;<}7WFFp5*0 zhl}5gH508`P>p#N+i~xw&Ots;>x=6EoVqlJ(|D(23{LFn0?L7cL%(GX*sZxBmD+Ky za!1-gg5Ex9dE{8wV}xucwkZ@FWPx4|y|Jgp=Wt+JnDP^fs=?N+@;T?i7=MoZZ$cEb<<%6LveZFD6cma=wN$Kg_yfaVmVb9=nbxRYv@Um zW;0INDSLVXvYX@%n{JIz%}3*g=|?G79Bu*W@mEUw_Hhut;YYgGfB}7*ohek3qKuF) zOV=N3)2rus2q5|dN%Fi4QYvluBypp%!Ov7YD$ZiT=eNJ#F$ha69a|HZrOAGvB0m#K zuHMgkP-sfp3tpKgnMy z`HNg`IlwC<+G95RJ}|=ZcK}7(6CWRZq+EwSEqU*N%)2yz1J0!t@Iql;56prgi|;N{ zYKWY-`M3|}KvBUTcbK-sys?J`;2z=V@}!%jpy~1bUhtVa9ZR}G)OJ$66(Q1Wtb^I3 zN^LoG{N|suE>7vSX*v zE^E)wv-pgktanU4vkQWb#{r^9?_6B2*f)$dq(SBSBzf47TmEyC7EFt;X|?_D3LE*Y z&2}@IgP@8qcr#RDw`MVXncA+*%2_DhB+y6{2U*jqa}W*->RMvDDj)e&s*;;MkLTbz z@jYwAUV)hw3nA`CCFn^-OKtRb!KB_G6&KebhUXi|bfpCf<SgiknYgLNWQ3b+B(0N?ug?sxL*cCY5^3zG=uJVft;ixa{D> zOh>Ci#rLIwz`CAO@I%p!_Kfu7xytU!)A8j1KKWA z#veNDGo&)C9>v9b5Oi7zyU&3d^00*pF1yjM|J84limHUN#KixpH7`fc2Vz?3>-I6VPSoB zN1Rm!9o9oaxx;LV$B{XBzaYJ$NNFw3toYzg%gv^n3wX1O>o3T~C;l5)@OdlTDs_Rp zD3;>(p}yIRTK{DG_iuvTY7ENk$--58@#8o^MsiEpniFts`vTBx04lm6oFs@H(rl)X z3nAI!s=Rn9F5OiKsJn$gi4EFaD5G`~Js~z{hX`#--TBU_NuDv=9Hjb_;vL3XwV~ZE&kndYo>L((j)A?#0CK~>(O21j~;O{Ls>1vF+Q3b@X1@d^M zLLOZ-6cL{uB0Y_c7A5Vd6@;@aVXNCk>%FA+9#vmYFRrdTF^G}0!SK}1xp4!oSKpR3;+%*q**C^D-foAvj_vW=?I+RZ1G zh@lQ+9n6>^)$--!wnCwC=NQ-~Hjqk)$%5uGsXiQq|9Yr7?k@g^elE?o?K}*fYkokn zsiD>Lge}Z+z=;8dB1`uKB@73| z#)nBMq-&(RH6`}71vgfHW_JkfR$kj@2~z7+b$QN%)hN`4z{?_JsvM_f&{$;{8Vn?J zT5eG6Jnk-c%3R^e4;YRtne>-fm~ve<-)Ae$-wq>W0IE)19DABcp_a6f#f+|*NYfFb zL6&ZH49P79#5Cl}Fx&1~z~>q%gmf)xI1!~AaoK0ZF{LM|u5F`^ywU}r*%tI~b5LhX zTl9|Q0Eo@jt!Lagh*p< z9mQfZ%|gePi>v$C@BaXE@DCoCabLcEK_i|o{PKRJ=+c*u^q;>>NYmd~*4AN}T(P~c zC43{R*k`7bbH_I}fnj~GgEjTr_P*$%gB_G;%X_Zm_}$-x!RIK_74ur7MtQRn)W1M2 zi>xSQh-X`b7kYKnA;=agl?}?|d|=|-PZTRj6 z_bjO3A|PQVD^?K;`>(EaW52%rmJZH`uO9}p8j!Q~Wq3`_*YE!KVC2nb)d;Y$A3ULY zJHDwn^fE(A!wH&d`(jVgEHD)HnYHaS`y?~3ECGPJryz4PT$!R*weF@y^GMs^WbbXM zVWGvSvNEKhs9lJ8f`x_!;ql;#Wt{dKusul|ypBo%96GABj8ths0($WNKF1rIIH=1{ z8;VLWCOLjdfGc~6&BRiW>LH&KoPCQtu7@CxwC)_q4?c{oeen;Pxds>dQ`B85QkTP7 zQMHb(?Gz#x0#**$Zi9eSa54v_!P(=*8OeG?F=SD0@sYODJo~~NuR-u6$rAlaP(}50 zI(z7lq?ct_7n6!Ub|twVL||MocD&{rR3N`%(BjFh3Ka>&uuVwc#{U@p;U6GvCT(&@ zki^|ZJybz!?R>nC$-k6Ar!8D0@?*%3*+RAuD8rhiI5vZhyt(hZ~HySgF2Z~$Lm|`S=a?cJ&-xX>R;EMo6 zhPeg(qM}Ynm@7LxE2bM{VRagiVIpe234!`r=SRJA?69E`;LS{wBBt0+5vtAf8Gscd z!_D5iT(QH$N_FrVQ{SO=3JI0-tnYjhBHa;(s8Wm6eElpb0%N}#L&cT18%v$^pr+(g zo!)@k^{H&v-^f zK$zXbNOh)gOUD z24)2PL>FRMaKg>JFTlr#Hge?!wOkme0+ux7#*)T_zllT3rIr9p4OLs?DPf=~%Ln`8CbQ8V(Xo0Jc! z5);5j$`AT%hXUeKC+xmP$OLImWG5P+$2%o6aidbXmNwK!)=sb1%w{<9_VpW-!uuMor(KIq zy3;~CesJxm4b)PEv++H5taj?M+5}pqSfAq4tXG)5I=I|G9F0XO53>&joq>^-HTpGNm7ro# zkvkk$DBo{!O@8!TT_CH&x^z(s^md+`VsspYzCZ1!n6uZGtmQWT8IG-}+>a5><<}x~&a8LCWxMw!^$j3Ki3KSPR`! z774juY$r5d&ioE_4LJrme3IV`MUu;oGjxyWb){SxyMTZJY9m`N1h1$H_YzfBRZ5Ub zvd~Cu-=@s1tCWj09qJPe-^~nGpfEEJwv?0z>a8P&7FPq5IMqVRGYv*Zvg%amouwRF z1Gubsip7wtdWf*77a$PTb8FD4a<+YDs}2M>F@&;ol-s9$F-yPxfZbql7$@+m5?dwS z7Eg+mo)Ya(Vs?h$*XmzKH(@|o3_3KpWOBl7*4!yWR9zYgx{jiLVZug^p!*r-2~r$l zmPFmOE5{EB0tmWxvrr}Ora5tGI{Wdsh*I0mlN40w! z7>Q6#dy+%vFa;3B93iKM##V_!JkbVHg-%##D4-+zfh`24?~@f|MIj&bV6Ke@GyDzh zEk0%f`P0j<9--cVr~Tyh=kldbUVof^&wm9R`MG|F*E|LQdkusd@ySztr zdjZj8*nFP)X2)g}Gh+OrlnbaYlg`^E4&aJs^gt+)&*UWKBs16&Vg7QKfb;-REGH?i z0eT=ATrVjF5e_|>LmJIa*09q}_7v6s=XH@E7 zP(;VPgW4uE2@e9<+qKAji2~623A3$Nxb@=V-( z5sqhzmx3zbBTb9?YhF1smrmU_;Mmo)(Gpe?m!79#js{8E<=ePYM_LE}Ft*1eN*M)f zo)u(Y2CX}@MvnT%Y>*QjH#l9TFJ41O_XK%R4@#2KvnatQIY=()MBl)A@)Na9O;kHq zHMa)8kJ?jUg21a9_GJjPU8TH!7V}s|1v2R8Y4Wv%g#LZRvq{atbOrAtbO%qw1ZKdn^jSKoL(>=GxpSBaU_0q4V_x4UTS<%IC>DrL7!{A}GrLNgcWaI+BxaRgBtHNfcghU| zoCK*XHB(G~^xuXDN5J1^V-pyF;O?CEr7Y5rA%$hUO+#B{)v$tuwI(#*M?b%yM)PHf zhj-ePzPm5Udv3OJQPo8?YO5n^`r;PlAZ?($u1kI=Z$ib<6c8+fgB#NDP6B{3igarY zw(L}KAEA!79`51gd|HERjH`Y1NvaCk5UEk)45>SZhqD7QMPkktdtgp6>a<%f*{F}% zryj-@S^I4$V2F!jfi*4~8R8Q$+dj2rNPRt~0UGj{v7^L%N9@ERurJ)hrNbOKy#-(= zxN2FYh>2$&n-yKrp8G)g<0EkLo{AFFsM-kuK+O-!LVDpr)gc`uC?GuOos>#G_IEwJ zOiwUS47HpLDh>>Luz_uHRgd+dkVYhK;pmx0>Yn~bKcWB8Pfmb_TK9Rt5Jb+;J_n!n zVsDXU41rOL{f*Y_$P@#d5NT__UsY=$y@4Hu{BA}dfDNOkR zODV=fb_kN!si zuMUXVrjHl;p&s?57A5H*B3c@hWm_n=zG4%#2Gzv2FSM$CHG6q~n36=Ij&lsCWusP& z(%y6W1OX^Ftz5BA=nvqgDjiwFCemP*QsLQp{(!$|dbtBtFHQKvij0K>>~VJ-4o(6F z=tJgl$B^xWJe&DO$o`qdC-uD%psS4JGpP1LgZ#jO^>C>(4ul6vQFs=JT+Kr!3@R_C6I)aZZw?TR-5v6sK7MiPv7UQae zR+X2~S2*J7AS`CjN~s9Q3thQZgFY2D>5V%3O|CH+{P$Prbg`nO5^0tZh|C8AL<94Q`rHX=nsz*bNKe{e1#Sgp#I; ziTNbxFFyv-l?r_~o$oqj8cQ21;WynXpTG;xnjMm^j?}nIM#ThpRYn5&0{AhF>W8K2 z6`y#7S(_z)eCDpb6_bbQb5>kv(`T={8WOnVR`gUIzV18$mnle-dXXD6A+lO~EGLUz zhsjeIeWU%LQh3dJ@`xv1`~#Ij6C^z)=~#U<-v6S2F2lW(e>8S!Ad+tFRx>$=uW7pY zzBH0G*F=-Ne3ZVbbo~$Y_5Gkogv5O4{|BWI!tK>0w-y(!*mMPH=@UFpES~AOl+tO* zR(b@F!g5}G)UVS?3#IJjyG;*lcOs6d=veoR7=`xQW+4@NJfMs)C>{G>gxvQ zaAHqxb^T>mHNx~-@0%sZuuA2HiV4Kx4$?Ytm{eH0bB3ne-i3D=iWyG^FCJ^Htlo3< zfdY9PsjAc$_}J8$X|%pV71%77?Of0mI&@~K1nr8KABX>_Zw`P_`sCUXW*6SQcYUqe zDiG!FAaZ8W48v@Yx!J<5yWv@!0^-Dvu5lG7KnG`Lv3RWTGf6fniOM(GZ!oK zE~k+b8F?!SEK&=opxuY`+2d6$D(lvTR;r*MoTfK9=j0?M9H>WU1uEKqG?nsb4a?zl zEC7wreM7P;ldc8?qB0VZtnQCA0FH1@`d0gX$$Gn}tW6Q21v(v&D{qvxV+9-wb&=}}2(g(eLwsRFycHgG##6^cT5+zClV)+l*LBDfmn z7BeYyxLeMS!L-BOxQZIGHB!;o>ab#5`@0Xq-#uU^zb2yXYwiRS1mO4YC3r(q{`sHq z)jzU~)33qaHh=9d`PL=Wfi)UVAi)+a0(!cWNu@ALE4q->w{GKu9QCT{KrW+Z9sYA8t^D!_R-2j`z_iQW!q`Usc}>Pg8%gWCbV@ic zeUY>THQud$2*)V(`!2=8s6v$_$H`Mv-&h(Kzz#aA3tY#2%LC)KaC^c_LR^PSaY)d( z*l|@2&AB)lb3bm9lVdug64jb`0?U4po)0V+J5N{-8991yteuv_pV{#{n8HuKR za-S3T4=lZ{lveGiGG&e$O(?H0Ve(Prg$H6l3!0uNuqa$FM@>pn>m|osiAuFPIbP!m zz_~7kD(0l;XNsR)!W&G49!4=K#B{dLg9+YgcMG-y8w38LAkX(hQMM8IFVf{gZdb)UO9)-x3y>KwDI5B z;P#Lt1{)EpHcL5=kXW(lYuEIszF{I&N`-)>GCBg4U*glj8s}7;l{h%vYyqGyQN|#L zzK6mE7+CMceh2VtCE5LG2oG&GbCOqQ6mX~Oy>M>i z6{Mog@#ohOGZLr0sMlVn3V#KMW@<>4!g3)cmrHjYu8A!j88#_N&qWQ6&sZMA0``84 z)9B*r4+pM-4%@>`Ca?^vg5;#rvZpDkCEX{VcQ3746uBJ1jENgsoT(?RUXry*w?TG(l_O%1 zO}U;2s*C;1@8^n%kL_I}glr;LuN`w3NID}YJ&i6C>;S;&Zzsq*9*l7?(^l&q2J+ZT zyhmG>ZO*4mvQTjs3|+9%&bZoYw9x}*>*;bopmb*|Kuhc@SDqO3@taEf(iW?{+UE*> zT&;3ov;27k<~+-X(R0!37P<%=w$xAWi$nsN>bsqWq{IJetNhPR`|l`fCz`AH#K7_L zU0DPz1f^V7Q<1#G=@y>22p+;vojEl}7gVF6ZMvjSzI5EKY=s6Q)@EAJ*g;w6^8FT0 z%D`D}9N-!!rHe212_6?f?z0K)R8nB^x?t|2&l_j>98E>dh;OtRlrE3OkLtH;r80X@) zFo0D+U=C6VuqKaV8}&T(w0Hq}54t>f4xHi@C6ERap<@5Zyd_`0dXNSD_3Kxr68Icr z5=Mp>GO?p~C~Yq`2u^;J>0<@Ya2lm;kMxntpB=y+3tREQH+Jw^jMzB$?X-DK(SjoY z)8UW|JJYA%)$j?gJ1+3SJH&XZmI`rV1Al-)Zm+|Gt^2$;QA#RTGMTi0wmYJpFvRD; z@GWwN0>q8&0FEAjKO0Hyi~9LuO7AXprTQW-X`Q#yNoGLAUco*oci{Y_MuUgT0d(n^ zqF-0gx))lGtB|G@Cm@>5w&Q7!;(hm2gL0FlPrnT?E&eHgFG3g3tTl5ITZ%ZL6*i^=%0V`9w%-YD1 z1?qT~77_ZMUToHTX%eOO)IWRuB)oj3grJu%l@J7a(2rk#0cqL0uM}>|ea&$tT@6?= z(f7p-p4SZ(qWkb{&}0qSNn!>hzs79FSc)k9?U2uod7f3g=tk+J8QZ4yG{LkESg!QL znc)Oh8^qZ|-=gQ?fW8o;hOP1k>7;maMn?ak(?qhF8Ls0*Fj88F?s|>=>R3Zq$EQ3Z zNp|ryiewcW(vCSsH7FKoekK>X4d(Tug-1aQ@mh2|^j#S)msIa$FM&1Hy%WdUl0VK; z>sq2x6$b1Xu|_||2whM7FCDgIY7Ndc`m#Rj;X>ap5EioOd1Xi_Lsu6MjmK}o%P-TV zmm@%kFXRccy64t*ORa882sOK&(uMM~=w4IEAy5o3YWd0R@k8rVB~BE-jqUK7ZDfj} zd>~N(BgU=-+LY3~s(KaU-#jU1%zD{wnAPsp7A1wxXvRs3rDTaMKf|-L5hV5&lr2=x zmcG*ju@L8eiH-ujI6b=ErCx+fDChpIlzU{DVG~0;2u>goag1XKd&8nX0XPgn0k8@j zjV3J%>I`fkuH+qIAZoG{* z-BEN)T^Xz>nIk3!5iDB6+O5)B(tn^=>$zSXEVA~ca|VcbL0|q103jthzz8zlDkf@o z7JaaT1^ak)f*{ycKATUD0O}M3@2H8efpgL)xfA|;hPj+^DbFg1AD`c6{?&{U805?o zRQ&j8o%vk?uWgzxc^0UW4LQ>SUbiLV<f_QfII+ImBpAEETVrAzuT0aKzIL4HZtc+tWUh5vN=w ziQttL!Q-y>cihsBP1sh3`d*Kd)Wz0f4hhyGQb9Nwf5^-la+bPOsp%7+?`&-!vDd!0 zm7`Ga_&3~LtJiUke}MCcl42POYg)nY7@=5rrF;Nm4o}(BK1u?Kl*J^Rp-7acFTJtsM zptIao?M(9rfwK+Jqp@sWH@9V1aDH3sE4*M#!Ajy(mhHfnk^+n33UYEzeE&?$;Rty$ zo5;6lA{-pAd(js@x3)p)8%no21$U_s;G`S@ioyg|gwzQ&TmUOITxiJ&Mu0-5qGbIX(p?d<)?bv?XH=aX||Ls^Kt^KQOU? zD`9_l$^&2;iCwG3`K3k1?^^>KUzv3@l0*o;6$ixLflxwwv~@I+L(O^$h!Zd$h~8tL#&TWkT>BZpJ%U zk>k^R*|tWtEn#Gw1@P{U_U!YjGQYV(Y0!tzZ5^a*4B{<=oHR*Ed_GcAXwq2nwFyxH zNH81deV#HllU1aOaTxw7#Gx$QU#Dy5FuF+$sG&9^Xllv$rdtZZ7KlpVUvs@&OL*er ze9v-k7G5T(L6Uf0vsX|$OVz$!jKBtPv-!-TcXXy~3BS^dXp7XfcjlCKykwYA(-1c7 z1AcAkt9HZ&7&q44x=+y2?NeQY@;#I@JuTAxDHWx4mGOs*r@(VVGHX3L<_}~543jtk zD1*ZvH+fP}#c}z$!baEa1{-ilXBXL%Cz^H!@{Ly3fn5-M;h7KGtX^DXY|Ozo?+~bQ z=07t2Cd~s>DLB6xU~ou7saPfT!l}=xA>=gSyx|Q-H_cQzf?tU7K&AOL<4`Pl++0vH z%cpNhF%_w90R|H05jn=*(RPiEl@GHOqiJSOo$k=9_hAE)j|Y}#Ix>o&zyXom!^kqs z6Es>*#Xe=Yr;({0m!pZ!LECLntd!4qF0B62uySwm>7l8t&VJ`Hk?U`tA#Y)}lQ4)1 z5Z?eRe5B2dCmJfb@d*a7?ni7+qiVOkQ$^%v*ZT;5$4=W^tVW&(2ltCM!1fq(xiu$+ zhJ=fdh+RjW4_jbh*&T|fWf)LK8>u%sDqn%{PL61+YOo76?&Sih;m8eI@x_GSQRP@8 zrrvmI1@!j?7QsEcMo59?7Qs3MEvVd;4DW)KQgXR~zilS0IeWmDaK(-(^0%F;EvI#F-75$MbfXT7MhzosoL^v+7;#bNKgUY=DRLMPAbS*f6-v^0{cs?Yi3A^R9<{k8&#jDc-|f?u%uV-kgM!nd0BU3;qfG4CKC*afCw*p zSW{GOTi^$*T$o6uTO^y3 zX9%Uv@P+rd7_wwFge6uGHHkwuKo=v42?MkobCoED~?mHZHs+F zR>58a%_~>2Lz^&fc12bAAhMHD4JD=M4jF8YnX^>9H%B{nc;;*(8Auz%7&YJT9h}d0 zG=@Y^dvaVPI+{Qtwn{*s5t~9)cBL?G=PU%;uWDYRBF!8?nGir|_Q4C%i$;C1S9NkZ z?qUbkkT9x6)r7qX#w3L=YX`RFaSM}TkraVGQTJl>rX^!0&~x<-cL;fp^;`BT(9pJ} z4Qkmtcd^Jbax_+{L%PTT2X^BaLY*S_@+NE!N(CRDdyURv0noIg{=Al_lgjbiQH#0( z&W8pxc+%h)$idLL}%XSn5C$z8(A28056QeSUyY{sh!+_L8^}MN2H9MPPrU@_` z`&PSz1#tp6?o_m>S}URvk5;NYyhxR74+VzZ_A`K{sog-MYf+QW0WX9`d=LT!dafNk z2+i1adk~Ujbzi`@_pJlfMJX7z0Ml8KHHh7*$Tf;Xgqk*dbEjlt?PS;^5hgx01)lW^7W@T7v@P-nykw;@g{K zg(qW(L|x=B+9~69!cG&*M7MEKOyqKl5|1JCV3iD5o>m?h*Y!)2*L!PEhmkilh4~0A zWSF43wa6+3Z8qCg?+4#(I5ee4xJl=PXT?$?yigVA3(2U|!|9=ssB1lULs}+O_$N!4 z=w~;08T}EPmr2dt0Cjdg1W=Yc$Pkn2nYh;{FqrlVlvfK@YL7OlFS+ENr`0jxP9HXq z!F;vJ{taqEtEP17vi1(rkn6AeJURfEIEacdxI zHK}qGz0s1CwSfY6NqVw|&I<`Yk@4zxHx9Rryn7x%!b@=jE`3v_@=}Te0McE9m(6zp z+*j2vAU_|@LUf){dG8f7&3dm?AAus8WdaDhR}aDX(t?>CYvP2KO?lYSFqm<9ij_g~BZe=h(3PWbdcKE8K*!x|dkpth9ritO5F0LSFJIHh@@F#_&bP7?RG z_{JQ~F|?HudTbsXYp25F@X9AuG&i}|@dTyLvpk72xO6!}J(Mug4qgKR05mf@t89L_ zYWFL(cd|wBP^yyB=nI<)PGa_&BR)lbA&}c4&5m-Lh1Xtzs8*7zV0BelGyZ7PlMzxX zyVjT<^*S(U)jFd$nm`>XM08&uJ(S!#wSw-5odd^=U8P(nhD!9=MWXgw$EN--!e3mZ zVSWkvj=uQg-{qX9_EBu6pCgqHA5#_Y6U;e@uUjB((|W?Q`GM9z7d@x@MBl&ypEfIv z(^d#knI526V#--uDvVJ}V8FnRB7k#~zRgwi^(}SpN0$PP{i!-RJ$>E+A^TG0*eW@$ zNPh>^P?l4hD}o_l@}F|CH*=z^br4YZpD&x9TV)H?;@qya_9sZUEXo zL-O6F6qS>F@ADLti8`qmKOs>N3^WR$l*p5Vl*>u&WY0~k)ba}Ae(w`i03#MkcS-N@bcpVEE|h`!MHIC>(qs>- zS?cZn&2BP?4V#1kj6~OiyJAbdNRhHzy5(3(TcwtD5>Bm|0yD|& zPULdEd3bNL>$#hgNj(e=@r%}MgqFwogn#w%D{l0Dr5}~z#(wsvT$CHc2~g*)bO^xk zk);W!3*m(LK!yk?Hrvj@(kwqV=vIdbb>~1si@alhN_*Vg;G4!iVNs(73(!(36^e?z zEiQaFPndGsO;5_NU~!@m9#${}%MVivXxMT(f)7bWu0fK+vtf_;0-QzbK^z&X;_KeZ zSxkrnq3hE6rr`$7i~v4uzR#d8_b53yCd7{mpQfzqH0}e}_6xdecY=;qI?9cF+Koi< z=u3JjNPZuBlqJMs9PqIl+zuF|W{4741-e#uti&VatVV$T(S_L1q#!j<@A>z!*u_@G zaRdie68X_yX?XR3HZhM6mJ#^d(xz0Ft)DG@#P+VEZ9L$m@vWseEZU9RvR7@ms@^OZ zD^O1quqtjw5ageBy8$d@H1AEZ4`gXaJ&% z)ZrQdrTNktvqW)2Stc0v$f=30{95zqU_8I6F|&$&UwzV`%W@~69|l4TZQ}i6*Ndq! zRLi7Vx_|@NSao>;k7zoBU)9C|w;h5$a+K_mU-nWBWL(>eBSa_^j6jNT_^MER)y~N8 z!DBW90(DU%dh;=nSrGT2?g~6s01c{ikHv>KUGZ`yr*^XI4pp)-mC)<7kC)+eDN%b7 ztL$EbB3iS0r^S1?w*;8KZfWsY12)s1#ub!dci1 zEuPsYA0yx~wjlWQjX(bPK)g0ESvs)UY}MW;D74yrYis3A&;fi%zC1_8q@ue{yv8Fe zmkYb%jECcXwZ`3dnY|HL_bV96Y1GYEf51r9!L>MRI|mUx2^$K+8OZEUdAkUjTwH-GlZ8!{o1;^3f2kJ5W)B8`Qyvq-< zq*KVPrQpP8lysAqYpZ*btj~yjBSF?0?@GJQu*;DGk=t`Qz=m~OQMgEi;eD5Huip^W z=b1BtMTgbC>i}an-BeP2yR#3M*Adu6Uv8WlhaJ}a_UZA&fMbn^L!R?#&esGxWa!6} zlq>Zva&i@v$9Hyox*?w_`k5XeuJ)(=F>doybtcG{mYed01!B}^7J8v*w38_N<=v%3_gbqex{SDTZyF9r!0E1s8 zR$~k#MWjlEmDqmEHQT+QksG@@;BJvWnCaWOA_jKHZIzH=L32}3hF_>f3Apv4N&7k7 zP*cN@)n+ zoCw((-@e1vR23Qjn(16Q=pweYxoiotf~Cv}zVo^^#qck=Q2JrGKxE3}7F)u)qY<{7 zi_!X5A3ysOh@8$!0`&{>`uclZUuP)uu{-zZ70Y%~x}FGqqd~=X1jbDjBJ#tj1HKDU zUXJstJ%1A!*-G1hX|vLs64jgL1Y;nRkCoe9P2+Hcjp~+jyku&56YU_NA8fg`mWH;t z4JD)qI>y(qIX({aaY{D<$r9E?`7`V%2FhDYJwrBqv1UrW?Xz3XIA7$a#Ll3j7=H!& zL}EF{PODK^gS~`QX>_z&BR|kI-D*hdxQPxXdlIRAswz41el8G7fNi*=k_e7{tna8= zwE-b>Mml3M85b1L7Qq*_fg!D@06MRi`go_NLJsR3CF8Yqp7H|j zxW1^y4)Bp`hLlbrOm_0Zqy0=yN8k8De1R@c4}Hv+dTq=UE@+ZU6R<4m@lk?>K2KHy`8<2xeXLY1x>%^lu<`bdSQDH z93Gp}%w_yGUQ9D8Rm|;4e}&4b+}OdFCK&U!TBY?Qh2+UEF`V(p7#g|DZgx+hZUQmxOaA`p0IayR_ZqC zK-6FXTHC2qah)aPMukIe%or-fR&pdK4@Hlg1~IA!Z=n~z*qBpYLrU)6Zc3lBVukK2mz%;;b`ArzkrlP{Uppo)q+RfIe%9;&DE4g4e$=XWFPubV2 zk&5slgnN-cEi?Sx0zviJz^&x@QzUA*c(y6oeNu${@YyittIy4|R@KfArDrlOhIuPRp*mifg$Nim{HqR z%ez+PwmTiPVr^The!+S{906pXpX+u2ymbo~iThbsf)KIUQ9z7z5rGG&Zz*fYiZmok zKOh)rC1Z^}j802oihP4x%xO)UwnKSoXcg!Tt|vh525kT|}O)uG|iUD#Y;MJ!-ZuB+bZj>cCCdKmV(9WM+o+oT#M_8#i# z7H2oe3{c=;-g`jt#6qe0XJp?ox;7aTAdTv-K}5_P=R|eL`l_n zM5n8;DNAzold*A#njIxx=|UYGDO#WcF6vMuovx}=qwZ@#MR)w88Z}ZrZy7G?3#b7o zqAI0LXm+^eoNFrW#@_!~UmyD$+%o0Iw#MynhnXX~z4nu^91K^a6(w_x3kg7e z(A(#eL<}s5@mQCJelOkL5yMlXwYKU{1anU9WbFQjbiVDfD(poL5bLK+& z@a#Rn`E>ykm~sxB6yK$Sl~e5qV^D}TuP>_y^SKl&jUN2`ZfxDTUG;PW*MYXOg**0H z6;_}I6A*(vZ8U~Sc^U5Fh1mazBu&hY{d>I96}~QXmOcFRo??&Qvs5zynAwY zBxeZ@ENad~vPeWo?Lk-VIhy&G_g{W|89x2+{kx{N_C$!Gi&XYw;m^H2g3S*t@n3g# zy>nNvm2DU0TLY+KrwLwkCWT ze@nm>xHOe7Ur=fF&`MS%H7S2NhcEi`8!Vv5_W;2EfE-5Z9qkIBEO7)yQQ|msj1`WF zRCREh;N!&Ev5FP2%2umo5^Vl8T;JHODxJl;sQU?rVk>CK=$+?%m^)X>9QMn)bXA+4 z#D~7TH22F@l0Z6x3Eg~t`jhT^+L2OsVDa$jmZ-Ac86<2Cb3iS4%W`%WHcq8;B}mpF zM?Xl6kq6`68&VqtcUWxHT4zb#yh9c@S#Z8z?A0VsQ&ZxO>6x91@svW9j_}fHRNyO1 zW!Rf-p&fx?Rv{7fVVUk>Jt|Kn3iH!sff*e#0YQZrO1Zgf;l}URZ+G(w}-BZqst3m?D1dH4-^^eRC7-H?CFzgkY|q)kv& zxN5@O1rSmf@vb%HZOgu{7Y+(iN)46u4YPY78Jm_|z1W@$0hP%CTr-Yt3G6nTu<6WC zHc%Q1c-45ra%h%&8^fysGbAZL<;+P<^2TKk+83RuP53XijxW9+YZx4l3pVZYT)-D_f za;U)BKVbai;-rA&48uk0s|$$vQ=P)Wu`m)t(%+%v4gtAHcRnerR`Nk4F3Hu6(tJ+_ zhJe&avw0PL_QbUyc%B-m?6xg8?5EH?yg>f zlQNb_Bfy^i-*PAo`K6V|vXc5&!lW#kAG%bux=}Aru~8|`o{+hx6d{WNz+oYWKzLmN z>j;Tm4T@GrgPz}W710CqK#aYP!QecjU z6vzX}zmHg+I=Zp?EF@%xtz@#v^@w;+d;d{z@>?TFl`~9<;~v2Cg>OSuL%zXS4{_A zp1c)#nuFA1)Sugj)@)aeN_vF;ZiqCb)tl1L&iGO50y)3bTm`8_dz*$(TQ7rU+L+hX z*fkNqiK-Lz|3qG5;HoioVT-rKz#_-{R85D;E|()!c4t%C5v?gfPTNOwEpp$Q024XL z9GthS(ALKy!`$wOfsFnE-vU1V4ZlC@cD2hWd8#!E}%+;}5TlDG8I$ zm=Q!Oq*$!gZFs8ImGmbA<$)=&$Brn}}w)Ch~N0j+|SuS>-< z;12Rj^rMBHW~??`D-8K)2meEgRe0DD_z2+>n-KN2!Es)IC6`bEtLn4e`-@ z_eR5|qvDo3tS$Jyczr0(ITtZUI{CN2y=5^2klBX9kuAI4!6C^rMOUS=X*;>N5|b>Y z;|cdkPbmAmf+^98QNRR1OG`=XXL}Yjl&)a*fL@lp#;nsO#h?D?$9F&d!}}lP_iyX( z|M30`dHtn&6#q}?VElvRwSO=TgSUKYT5B;uJm&y)olpW8;zZH|R3ROOADgUqn{TDc z*_ndC5l9V#pp)IoKE7aKYH8un`AA-moRXr_=N4%r-RD(DLd|j@Tw?>Mqx`8?k>yfI$ZQg=uCd6^Wu1o0% zj$cWy;leCdJt>1e=Z}8#{d=Fj8Qy<%+h2T32FSsoyI7C1ShlBUZmeB!Kmk}J+H8oj z8z;O{h#=Z0f4lVdV#tyJEJ0{0D697QV z?ki=G{iNG_>&n%_nhsctTtYikZO4Z}3XDmerR?C8*l*$S&w*htuGm3mX!+(;Brl{9YIMWW zx%gCA@XKsEJ=lBLT?e>l!1qEWWT2QGcM(;SONt5z)c;#hUrKuxASGsT2X0E#sf);@ z4`R_C!TkmAA%2l{YMcW)asas~Qgmknv7jTfst2+n@`ysq;op|=A}EpS_!d}tOO^G^ zcN`wI6kB_dMv0vgrf&`=vtyjihVx6wyO>vf-)=}!sEK>lCd_p>0J|fM=U3D6rh^RtmhJiC*;z4=u6kgA;8HqRDF zlx8BEuTVD!P+O#2qm+<#Rk2L!xD`jvM1i`Y9vk!pU>=lBO5Jfyq0|p|CEeVleui9z zB?>s^dZE0mYmiV6JSYO`aB{1v0kx`CZJl$^4PEHCwnL|Y4h6%-wPQ@)p)@a@fMG@}z8 zCuc$2im85#6$YfVA&JTc(mKH{DO4F)@{SaZ(1f)|dPZX)X9dDjjU9hrdT3gD&(FJh ztI>T@UgTr)uOB}TA74Sl^k*Nx|MbK6pT7U#(~mxWjJEY(q-`}Llk2?g>vnwbR2ppt zfGpZ)LsUvF4^_x}!zPg#1*uOu-nY(;+LSg9wKTUdRE+F4^(o&Ll}=;#N@EGdcWHW- zun5gt%ME$nmtT)1OwwV#XX`=)gKtAQUA}LNL`&?@sVvcW_W%o&CsZS}=Z1TRu0R0D z=%(4DzKv-Iq_e-lEKg1AMh$oQo{}M@6;Z}UM)_3M6I5wYCkq#At+16e2kui6 z6ns46LAEZAg55=AEW;;}yWw^wrJm$B9&AqPF-XQjEpkPK`IGFrd>_^80qPg) zlwac2$q3IF!x=%o<9vT@kJv~?JCGiqpyRMMTv5H}SAo{&hQwL+;P{61+&*&7V)?TI z(y?tT6qs$NyVQ0bg*P?6Lv2(6=on)TU!J}{)3ZA0O$lN;U)@_Dv#a}$ zkGRvTVl5H|tJ%^#pIwR6`$Wtm_&B#s0&L7{6&j$?quQEm4daFfzcB8WnF zYVowk)x=e9rU^nO4zXVX&9Aea_Ygh5W)5f$3^)fYKHJbznwgJj4gAiWXf7oGXounV zfHdyPZ%x>_pKxg>JVom4xn*W(fZ>2sMWn-GD1y!=Hm>>30@T|f61^Fky$G{eT(;B{ z#w6c@3kY@F8Bc!j{wv~Ke+xy|ufoUAZ=b&V@xR`GCcpmn{deKh_ujwr$G_9bucXs# z;cU@HJ&H+1lX9zQNgGC~ykfLO;O(XZs}ZgOW-AUEXLKJ=cfea=)@F}<53bfi9`ZE9 z-*H<`p!bCEtgj?%ouk4rg}u8CvmL=9xrjoiD715d4x%6yjfp3{WB7kj&j1^oz~`ou z42I=e7^vDDD-L<@swS;KbQpE)17NLIBDbqNQVZ6hRvOJXL3Xq8^HDNK%Bt2Ff`7(h z=7%?WYP-3%8NR&#hQ9~C$oCU7&u`^v{kLwfNc=O2p}p>AmV^{horZlYHh-jg?VZcL z!Z@C-z%CWFp_zBcS6SaIH8LFQQm&HgNqr<7nvxg;)Rvn4baekdc%KmxHS6l1Mnb^Q z`JPuQ>t-T3^i4z8kvKpFfSrISH5lu5`BX!MHmv-KuaGd;#S|VZ6e)Qk)er`GVyZ}K zE`Tv+*W2;%f^&Gf$f%92WeU~XX>YKj4eM-3#->$|9QE^-v`H(NOefBAjWj0>TikB< zvUAz*9@qp#94hv!ZoA=9(<7i{bh&}ib)PY0rR)VR5H~+r_B`H-e!mL0(Z3@qq=)w& z00Frea{T_w|9O?_3Ln3`TDCxt>yQ5(zkfUMWB>T^J-Yn?X-C0N#eCNdMqTpSUY_S) z(JU--AU9#sz8%@rdbdjeOa=9cMtZX0vl6yAq6p2+|Kx#!bfC+k=yxs{; zUE{-j3gjpvws?OAwInW$Q72c^Yj8*~rZ6-cofK;YXJ9*sC6M?oQCyh>Tb7e9+~K&7 zZ3jG@ZF*X{5(B%s6@Ds*W2_VbV>*D4=WE&lLxGkA4GaiebVcQ(Y_9{1LnJaA7RB<6 z-tXaV?cZI&NTz|YP|H=W)Q-TlwsW|krlRuIvAvNe$Wqb}8naxMkRn-WRxfk)r#LmZ z3qV3@U){(d^IRRVNVZweIQfR`4UCv}TMr5YZqmR@8)*8GC#GMWHpo;&Kqenbi3k$c zM|+KzQa+UAPp;FQ`&P8;2VDuJ>*QutQMx=PYQts6M5kou;xG}{ZPF>E#)f*yHy(DP zUGl-kthFhrvcC30+W>=iOKl78*3?$abdma`kM^^oWN172!%z8?u$FJ# z0~#=QcSe*BQ?a^~^*Y&$>ojA@W39NtYUSqEIhIq)fPotFv4}2-zSuYrG?bB_f1QTG zyOS`L%r>fo?TZ^63Czh|#Nd%G5wDMX-KY;HwkHO|4O@P4<&i3huV3IBdZ#N*QpexI zo_G`{t~oB<^izRNx6G9cL@s5(0zmW-Ds^4!S1^fF_Gn*-xJ#q-%ZLK3>QuIXNK83A zM~~p4z&2cREB(haHcE91{N8sA%N=uFdneSL`+H_Ao;UP8Ji`zxaEkLMFv(vS;s+a?uO7-%- zEg`9Gi$3Wqm`6ZSk;uHXLqAc)e9N%q{4irD-x6L6Y=YryA;3PXa4ZzDtb0u>^dvuX zg6N{#`YQ0&!L>zy8lvF_5X}-{&0vqW0$VwL$$ zz~&PoyZ$fotS{ESpe{gB_E=v`;MDjxQp6dsT-R?4FMCGpTdM{JYO732;!$G1DT`xE z*!x0{JqvXu$FIktgs{d~VL(@%vBW(}era@CRa{Pe+jS;*Bb})gP!IVQU+iE3D%Ngo z?WWlqfJUuS0JeQ$C$~j)SKu3nn=`k-sMRg`ly-iRD{e;*;71bqFeN5H&-IC)m$#U1U@tD;e7z5@X#@)+D+g=XP*UO+v|pFl z#tGeT_fY3g2&d%P0j$-hZ~XBa!2qI_3J_Uoh{4F?CPl>tHPbo`1dbx4V-rPVdXAppESna}Y_AM`u=SA?V@)QMJW}H8Qy8*d zU&F~-vQbTo@eE;6*0SC+?#ncEu^M}eciVr-!#)~3=MJyUq!w>%q7XxG)#Y~(;sCn7B#i?!=;tnIk<%sQL5Ka>AVeO-~nhGmer_Aj=AeW)uS zuqRSjvR@xiEIfmfn|RWwiP4|r0Vg})=s{&2M&4-H_kvh=)%WUd>HuQaI)-KfxZ%YL z5a2k0ew%`qs5(S(wYCcSSk&+;KvRPQEY|(f^wSzoTJh?@4ja8pj!g*{o`hroS9Tkv z<4tcj9*n@2DNq&Oc#GC3H%7jT!~8fl$se(M!9@jCT&wf_7Tia z(BxqUZL)nya0GnJP(XkvtJk||N9T&{x`DBmB@i3l{vO)Zs^*(ibr+z$WKu-=dE)wa z*NO-;aPW3EEiti%HI1!9dP~I2m6kYJJvzT0029Ly$UP4NUupDE@wL$O3aIXP^DH~J zw-UDE3mRo|@aHw{V0KTVgRa|$S`fJBGE`#nOY9=$+}u=Kg{zE7ZmX@$$4d7?D{t!n zl_xy#(07z`0U9t(^Ds$q5k{Q}84?9vk%hdv1tZbCGShH3Fx=l5C?LaOtcRz9r`T6@#17GCG@=b~8pT7CW zZ`|H6?s>>TB(LZh?k4I4%fq%K-X-Ypz@1iL-_|e#BA|Tk{JKKpMQ0r^x}CeA;Fowu zKbkD7&bx}K`nkcJ4n(PZOa||4M>vmEbX~S}EuN64FYjQovSb$x@NU$VRsNB;p3p7! zT4BPPi1-*7$3rtp8h`?>TLExnxtZB!H zwy#ud)VdSFuD&Z6+pELdxuUzra$Du>O;XY)YylWntNr4rs077?lY;f=rXx~IUWz>m znnzjVtt%G$v<8PzeZG#-Lu46G>E;50f!LMCEmxoGrP*DgGWRY9?7#Z>p8J8z9msw8 z0eh4Y6L|E`7vR+syS68>aS=bC`GKqAB}ud@Oq2!nN1eEq3><1b$dd!YhEsKxbVpK1 zvbu5%xlSq5O5@eDRV7R_TN%=MrIhF04 z!yB>*#yax1PhBVwq2Y-!@GvQ$@a>L{6d#IcpD$z_Y$vZRA= zGVy|F=>V{!#T7N{BI4Zz!oh@yJ5;G8AApxwHhYIjeC9^9L^~*zl~dPBrSD2-rHwU+ ztD%}ChGRPFpcFVpn&z3Rs)z9R2?h;2(DWMol^@Igh1koT+aslO?*{w>80?5Qlh00<@=jmX9JM{9Wljo;O zr4fR30KZEMhPXw=n%$j#zS!mIUv-Xo`Woo0<)#93datrCGsYAS6_gE@Wk&0EXhJ!Fe)ZrfOQh+F@G2n!2;|Rs>@& z_10%3cHPTFe_e4ZdzqgU1@^{r%#LgjwQw*hv5INT}w@1$8N{xdq+Mci@oS&ENhUM*5nT$PY-k zPV7WVfn)$SJyJ-x>XQ~tV|BZ@HxU98DzG0phdB z`1(opv0XO5X`Nu-gjY+j3vI<}wK`|K44s!*^1aXp*G(|{_z14Hq@kb2nJI9=hdgWH zu)UR)RFo6}(5LBq28(^{vX+&-RfNi|fMoc_6I=P*p@1v`u{h#@J_|p$iy8ZW=p!Dz89XtL6R=l@QfB*hNciDquK|bqJlbnfK zx(uWmWqfeO4X`}bT6Gw%y5I)xf&fuKuD@^~3dh;)D_5y-8bz@fuMs%C;fMIxZ886y*zAW##&GvvK0>yosqlKye@3esDiq3x$t zq6l~ZmhUgdhP^7B1H;W?zfUS{fR08Ug3@|TMQteSA>DM+DnI*CGSJp)m`&q!)tbC} z(FJ~U%RIgkl4oCOsKiMw4fEZG_s zG}hL~)!^)G=geEen|zG>3rt9**04WHKD8)Aa?cv9c5I=)o<;^M0L;J0{5ZAh!{#lG ztUcxIY)IN=%q|%25RJW1#di>Oav(C0_R#mz*`x#ar$T+Ir0jwAMU&8_4up4%5}&LH zMG@z-odLx{epPTLpd76k>^jFD>d?Dup{2w{=*t42*tA@({tHySrH6|WU!@{9*&=o7 zMXy7b6o}jy9H~*oGb>hV*v6fc?CeB5z|~BenM(fNUU~q8bome+0G*J8tXKe{)T8dW zeXc%(?cG_8N_KJvA26qsufN~1V@`6wAxLgRlOh_aHH&EHmpaDd=2YEzfjvBTH#pgnF(d$vOuE>W~mz?cj1p+j-dm`8eoxyXp2ZcxqEKBk* zJ^_3UY*s!RUbh1-sFh}iCFu+2#EO8v0qZcGFi&I(c;2GBmSf&i&r#tFe0tTi+qObuReru6x?iHoCuH@`e25@yUv_j{Mty;nz$#u<21u4uy{z6+#Bpq$d zLb_yez=kjL4}o}=X6OdMCDu8k#Mc$b^TeF}W%&AeNPqe9TMEVgfsOpl(A6pm5Y_V>Fm@&wR(`e-IISXPEwB%TPrQj)YINJz?RDi zBrHK+i#zTt%EYiwIOCC(4Ak}9!>hr1 zLP`VkUE2C-fQV!qR(ZoYW1v3xh`mluu+QXbR?^Wta(DPP?5w*?G^X6a%e_ptU;P~4VwpB)^nae(zxw$19P66niF$=fZBOiq4P3rl z;AQfl9wZn_$_7abd93#t_jW-Cth4qYrIh(RQkY~NGK7_h7EwqeASDp zr4b=lP-~Oi81Dx2YaCjy#5Sep4i>3a2>* zWED$^LkrtyX}iAI+k|y0CNlIDN6AA$ms-xHlfbv2j2)@j%KenA0wqgQsJy7_z-eHW z?iexATtU5Spxooe@``k@n9<^!G?|t=P%{=De*7mo4o2hs-|%{EW%k+X3@`Lg|0euR zPJ~l{8R4>{SOT9`N+gW$XpRN0N__L~Tb*rOBW;DpU2#_JC7eziO_gPRKu25snCO0F zDS6BkG(7N>e*vEiJ00OoBhV^=r!@2t;IjFyFRJW=EeL?@PM913SI~*Y29qPTQY0@) z&fZ&Oxt-Z1v9GyXsxvE|u_LrEoWMyAF&t<=ty?wGQZs_64s}$tc+w0GTw+1{nU*Nc zE^%eHFI)7Wd2v_OXVX}hz$mm}YY%pan1-Y8fjvs6))?9Ej@TxYFZniqFMRys#_{h} zXnV)4hFQ+;yTW~18n;E=8#4CSOG?l#1ARZq>Nrnn)pQujKz(NF!=KcUA8qU zu`ffRU&^E8W8eWr%yHH$i&B;&F*{SGE)hOPQ-+eXG51pk@{WwYsOTqW74lD%Luv;M zKHRnRX*&1kk`uv1OWNT_Ff5z9$V+m;#X zRszj7e?ntNpTTvIfIH8m8~~9>@14>6Ae9v#?T18Oum$R&R&#c8dY;+gBH<6vw@x-Uo7%fS-EsO?a6oLgt|I7fjS#f(Q-MWMa zT`t?{P%8bJcc~br+5BmOZ2bx|tk2!f02;*z0Xvn8!gs2aYuXz2xRoMz4I~5aWyxnG&eo`IDMo{}zV6srn9Hp!wY_M$ z6%A674+q2_;z?gpHSu_npF4$jvX8_C*azY~Dy@8~uu?iv)rz_vuoF&~ZK(pm$h<^d z47BJA=1m7{T5#>Sr*sM>*DM@cSkxBvF_@ZYj}@V7sHZR08Mo!Hhs zT{;s-j?KI3fqt=bASh*ghQ}KNH~YQe2lp{tKA&MNsJ5q@q0>%8<-yepI={t$^&D@? zQv;oa@uXUUI0^ae-lj8BVV{PcFe>5g9q=SpltJ4z6;tT_Ty^puuGB19`^vhRPP$6- z9f!ac*=ZeA2(6lcyb^hm`071xQr*@N03N9Yf7h*orKNi~i7Ztc<_7)ItZkvITlSEO z1PgM@hO~B&k~WQ)K+1jW50j-R_ERhcO%YmNqYeNkkUw6lgtWbpZ$V-VcYaAtxVWKv zs!DZq5bBDtNPeSkzj+llw68lC;^)PA#PuqHuYJ>+Ml?tZRI-P|ZMV>U>S%P$rtu0% z?Kp7UL%{(vG!F~1=h8AO-ay)K`ddMGf;7n>{W7%c^otXP{7>7SRZ6 z!j^}Hlscbz@RH+|KMZ*lVpStIOd~Td6fse*tX|x|faANi!1yqarB~hcM=BbEC(==S z3sBA)fFrkzspCFwr!3+cx*i; zVEo-n!^x<-JKPr)PQR~A>fL3E4JMyO!xu$B zknmm7rLcu6sWY17vBaQS?e;9w(WYEc@YLLc)`+fXEO$0RU6}01qQ>QbsUSn)4zZ5K z6`bI(26R*l=N?QI^H34xU(cii$h2KIIoQM_VO_sa9KAx0ru?f!kp0s)-hW2o=T13q zdB)gKf_Smp%g@n@8MbDpyOM`~zSym`134JKS~?|J%qFRSgUu9N+gB z0KWUIeMC+#45DgU-=!JCId-V_9&ATBM6cdDYI}ImpJKBouA;=_#fPBS z^0GixF`#&+%=Dhz5g@wZ!!2!wstVW+0PgSD^}9qR3X776Y7LcNv%|4~CrpopMsdj< z<^@g6nKg?7GOvD4r9d`ZRYexuj=4t)V!B>p4Np6}hH?b4(XePW%_z8OU4axy#X5CA zMh|6(vZzn@$O3+JtAc(~!|F{=;~I%r?UQp3u`hNZ!jdD&29?W_hKVdi#G&Nk2~3Wc zbx3^2^rC~D={20113ZR<!Uiae&M> zbQM}(WN%^S%_`)X_M4@e3Wk1=irp?wsc+P5grA>Z9&IPH}s zu(NVNK`_?079;VMx0K8bgM`KbrryE2M`;Q;pavh0s-w`H%v$dj4is`_^FE0&J6SI{ zrczHE)+g;42pq6d2Mw$(p;(;5!Q_UeCAh$)LGCaUu;?$J=a65~HAzs+DEM^N)Rm+J zJH05K90Usex^snui4^+V)wliiWD|nCi3soCx;@nl%#m`>?0C#~2z1UPc_gWBfn8;7 z@JPG%~aszfLZ=hrGnJ3yDTSahV z23;aRIQL&7&Yc7e2vgs87n^x;1Y8G8x89YrupYsR*cz{1S&jVi-2@^04y(}i){Uvi z3#a^N?Zp_gJB=?&*zo~8A%Su{sx&#pSN)Oa*-;@N+F4v7-}m0f{jAEMtz=wM0OkTM zTpbfXVN15y#87Gr`TIn_l!)5{u`fDxKA;g?oVGf;1Pfi4nP7Hvl+TRe)J^jqyG7W) zIoAlMjxH<}=6?F}ufpH{RX$$d`S>yXqTVoqhNDO>Rm-?>qx_tt&@$f3GeMaiij*A( z1kzPG=a_5%ZQ8H?Y|47Er~;8Cj*XfV=BHq}k=XYvbwTyoC2h*o!&A`$qu0pu z%y=n(pK@l43#i*$+ypub0-40l6{b`=3b1!z&vGh&-Q;a1&RvQehzOtT$8pj}UZWkd z0FJ8MrI~CYDP5!k%AzYOeq%Pw{$H7_dKx zy$wd()8?KkrO~qO>Y!1d;$!O(y3=t zkCw*=5f9u3Xfdq@L7r9|w{r##)C+xQGUQExAT|%TjG7cM$8B3gk(2k(YA(Tn_dFjO zAE?_Vk6jP2ffMwW#j_Q*SA`c2ou}Q&+dB54S$QSj-sFluWt;uOn zZD}@J%??F}$@Y`}b@;D#*WQ2h@q^q7Utfp+-5&s4mb1WvVHJChcHDhbgQv$;av=B} zva=o&hHCB;B6e71zZRk6JSH12DYu=&jTu)xzbbiJCavEg+rIL>f@Bcz(AaF}1_D0G zt_8?+Yjg}OdmUiE`Qfj%K=>o8FF^WWrzQV z+UlUo_8Zu$n)<0GH4ug!bEd4XS8tskkgNWK z_uph7qTye4YQntmg!S1FJ5=8G4d{gRw4sxjRWs?ZT!ij6_Q|uvV9P=fi&Pi$G|cJ_ zYW)#zB?r>&tRq!oGb)w-{=(iBJQrBFxwI*&RqMReFeltOp`L+(x9&&24>Tj>ZS`TR z7)9jN-!N8{ue5vV4LSd6FXa7p3KlE#0E9jSla|$QPg+j5Lu}94sNh-khp8@ESj&{*JKziPu$uo1bjj-jjBe4eo^ju(2$wrUe`W&MFjbXm(4i+ij`7zkqjpV#Xjz^4ssfII}!48#5ND zKPY6$&hP~P?UwbCGTKbW&B=bHuSqWJuT@m`HEgwxITyswq#deWjn? z8FV>3azvSgKVb5Ba~h{A)yP(xBSYlbsL|l$w+(#BGYBh3BSoU|RNp0-IAH4@3jp#s zf59lHRU0$!zo4<@L{#8UNVoM}v4x?nC!jXfc zFQ&g9zVUWcO=@cpTLjQNb~4=a;hA=|g1Eb-S#>~)J(s9CNaYY@{qP3s2! zz-aN1-y&g*s^n0T>ffYsftlOx2d?)G2Na@I4UV{i$I>Y#MrsHEtDyW|Xr zPB^zn;<6IkDf^P6yCo)7W0Jd4=-_a@topG$%C7*6u&w{&bUK8s^mg1b09+BY)GUnZ zK}J_Bm9RN;F}7BJ!8CSZ7D-O~_=#H7Loii;%fDI@lS;ehg812vz?E^3=`%8QuPdpB ziS>_U2P!1Ubz3oTZ$X8P`zzz6WCANZR4oljTzxjF*1b)@E&vxd`eZ%UBUzY}3Zp@z zaP2S7+-qB%Z2~;}d_f_%oCd#uL3$itqVu=_ns*Ig%$%@gzOV`A3CmgXN@h3jf-*-k z9@0uI3O>+ zVpI+`JT%g+9YQCWNBKz>3tQdu23-r-iI;D0MR<*GTOvfDg>B2Nmi{{$;s72DEyUx) z%FCM|onr}EO8o6Ki7R3Ecfq#Qjd^AMSM#sJ~Bf~tohY&^{a zrs5^(@^17&>J+=Y*1uuKv_`meh29D-sa8A6&A?Mkx3WE~NURHisF_p?B@)<8MZ;Rg zx1|82lQ9aioK|t=lIlcBqIt~VM%L00UB_eXe+gL8q%nt5F_ZFbAP!6I_vB4n#60}m zsYnm~l;5k|)-H8Nl)LgJGcK_t zdjdPC`*3?e5*`nU2@zp>*wQ8P)L+BYq4#x}I<=7kw;nyA(yI4ddzl843VDcMElXl3 zr`XASg}z{To71LrW)`uE%Dgm(?QME(!Ioxv1cP|7v8I^<<4rtAG~_ChYcg*KcR##8XSRmgljH+QXS)Vn|1s25zq0pg&qwkIC?FC)zfPKa{Q)e|k*967;V2!DZRXk?XxkDkdyt9xmjJ ziXF&)Kf;9sG%0@ld`OJm2nDZwrvB+WAHRV6&UfB_XF#Gi1fO`1CiHb=ZR6)_cq(^< zTNXuf18Mq=2~qiFzKh2WG@Bn6><%g?54dP5xYjI4|;Nha7rr^r+&Ij z*w*SQ@07@Md4x?WM;#(q(UZa*m;qEKfFR11lAF(p9QV(sE?|@485kQcM{4%t zjGg+v%_L9k>jf7&CPn8NmLtB&lXY-GJGOGQdz&T8rT8BQen+fd5F?) zv2fQTlx|g}?t7p68_uYiSHQ5l^L8Lt(PVMzW4Kf0J1S$9E*FC_9w7O9zdI22lUItV)Y=ioCX+*1>MQLw)tFJOo0~I94`1pIkfTM(`}C+-c3c)$`cG@}X#={lsKX9c zIXVm2_;024wZ#ddagS}u(?*8HIxVN&)PIy~_~pkR_$RLP#XtEy&lsgKus*4P4b6wB zt)QDvm5)bI?XG;N6#tQf%rmH)34#)6$QF69+gOt4xb>;_d(DL5jhz)mluGsBz9ufA z4d@M&{1z-LfFlWLQf}%t$sDz4&vGg;?SRH`XOCLIdj3AsD(#B^<2h5Ee3D+Su_2gL zLILCQSmiN%K1=w9ZN)P{&Dgf{=$I@jVLP+Bs1pf^XkSGb2BY{diE8m~LpX zv_VSJG)y<(irLdZ65fLtAan!9kMRGdysKjPi{vb|N;Acag`!ehdd!VZB>zac*7$V# zgLX9ojuXA-AS&v&2tH6#4l-Z=^W3BV+LZsPM01g=`NfB;*T~-sA3sCeBT0VrLy#G* zuoj>Ii2Mi;s^#Dr+gs^j@z-*1KJYScctS>onLS{tEzxU^d%uP(y=u`2=Jo{(T@cjn z23f+~BcCpy;3|1$&$Wnz8692^=bpqLPB|k~eVBl&z5!#rOTmjH?(E0W*oFfj7s&>ONjn|7<0 z-%N}(xGZwMu=|q!v}z^{Q7!o?>CxR>0DPQDy_TAU11TLcX{8}I#YYxptD7=zLgZ=g z6y{n+Z3I_JrfK=0dxH$lumiaSuawpe6U|&_P{jbb^}&f!s~#I}7dS|S-F%P&d22Il zlHwBPZ>eE%m+odqycK=6aznOBTMY}5lG67xXu?K=s*TH zW8zp$P?D1eH-CwGX>-K`tZA#Ma- ziCaSe5A57wwxqLK?B}4wKUV5e3)SplTI>ibq)WSfHD&k{kzy&FA`-<;{fNZF3F59@ zX9N0v{L&mKe<&TeMj%C3|rumFsF~M5Heph zht&(u(&qAjc=V8l(_~WBj3j}spt&ss2*+~;2R;3bK~aTb;9ixgY2YQ8C&X$3$0SW= zlH(-pl=(@v;PK~|3BB(qnPOoFxFs7hQVs-=7YlgFh3d zP?L^=18$wB59-D+?kMBj4*9O0YF?*JVRpwcmB~1TZnF^`T@_yEa4IrOrE^H*LY9xT zePK>@XwbrkwE1@bQ z@4pV$+Kp-S_u)O0)?QgNKjRk!6#!6f=p#E$VLWbY2Q9S(K`E6?EjTIEiY&iY*;>hU z^`)klMn>gkb_V?=yCF$^9`P8?4ju(dz}@KQX~vY+Iw(n`?UgY&7jkfmwJcmoKyqKk ztSI2X$}GimnFmyc4m~Mz0yxV_hegh%w}*Q30X}sEPhf-2H5llmv^2OBMkQ8D=NSV= z4CmJWg+3!7&EJ5Ga}+sHe9lRg!*yJzk*X;HE08u(Lqf$(W@lw$%#`dYQR_o69TYbu zosrZxt!qh4u4WeZ2BUwNBNSN$6 z*c<>s#zX7{T13Fb5q+b?CazMX0s{0pzX9%kRGyWUf~`vnH>d6Z%9IezctN^Qn9kf5 zDJ@4PPfT+5^62B!@$pM|mhwwk)(nC3s^ldl|He1hag$0y4NqOcZz$!6J{aRlWm{4F zvJc#rJY7(=%W8QxJeMOqQ2jc*MB1lH;Y#f;`P&-+#_O#qEOj*D%|hMkj*ild)>1MV z4ivMxd_c7lly)OrSnO!Nq`D~g(`N`GT)ds73QsZd21gx9K!7GbsOK#=#f2J)DWANO zpO8|PKV!Hv<@ELnW{6=nn^(OH8&{_&n9U z9-*>%#;jfrM4`a7xB?P>ePRA>R4M_(SO9%p=nYHFJSkYT;_o$o6307*1|C;fZA%)& zAb+k5{|nK;?Nq=U-=wf3MN%;jmlfP}PJD*8?*g462AxdX={Z%NaldxZ)SA{XdkI1- z&L>xMD`UbO^Eh1{E}H}HsIR8Km3F_LjoN~{{F~fox34*nq+JUTs0Imww>wn%sf8n< zA|v{(ElxGTps7$$;zDE$sJ{2{!73YvDE2o1Y zOhD${jpApu&~g|1K~)dlEa@JGCz>GrojpbjiO$k|l(gF@CSvR9CER0)#$*d;;T?NU z#r;*u`16Bm*BEz84v3mj5+AChcx7i|07IVEz1KF<_?JB`8mj5yuO?9{=^|!4NB12E z9~W>)2{Ngh0+gr~3c9mP-L|Sg8q`$Sqn$q)!TgY*hiW42?WD9?K8O82lP z#@-iQr|NBR^cPQvNUW#~^0(nH|JEXxG>fHDS2y)Bw!`znn(Wa&$n<hmBg)fjj{s zNgvml0(ZV1!Uv~)^iwPW7z>!nO73_n(aD5_V7Fr)fl^~u>L>JUc`9HRE%3ktC zBQ`0nfcYw!2&(TjXiHLnY{b|>{~cI#dR0l6xciJ}fY^(@mP1ZzKA0BP4SQ$575??bnC~a z%cNck4tYAB2^=)2%&0Jk87?RFNchUoYkeOB^=NwZgIX92(=wVJM^BF`={GW}Bj25! z{XZOK4&OJG&EadzVw$!*W|~>GK>mSRcOlMPj`f;SRVD7t;xkyk`pUYH_ityLZDSLY+`9(zKikwal2_c>;r0Qri`;YWW`*4-dg{%xFlX=+Vh8lZ~4oFr=4N7Tlw z;)7b3w_Zt}w;sDsHQ{mmmBJsUMJ3L?LWVjXmm@Wxy~+;EZ&3jj6J=bUR9?JqhBM6^ zdZ}=3(8Pnxb^h?YBKpKK0byYes470&gIuX~n|oS9Ip@S=j3M1Gq6*WXLQJ^*k`sW{ zj1=7Okr|g0&^WEdL}e@If&~*ZP)@ELtkzDn93d-=F1C}g*IZ|d%l|91UP19|Vs8y(iN zPq*q&S{k*8jSejvlI3eB!6pnaeU;LLkppUI>=M2`s5MKzRQKuC>ks6YmOQ_tqeft+ zrlq=gEp9Uf6(Kt*j z)}#)VkT~5U;F@+S|2%wM|H~2Y%a1>V_g_lExag69l9CkL(K6H}^2uYi7nm1rtzRS+ zNwMrTUis5_^eRZj%)q;HV(SU=5sDN;A{!Ysda>nTi5!x2wjeEu0mYsgkF* z%n$7t?$+f>t_5^AQGyR7IcXde_-99+3UiF20mK}g7^ zVy?cggc#RCKVbQ3M_^LSUVa_6!XlUtm9QMEP60>VI}G40UOYBcCdDdEI2{BUZU7Rt z`<*Viie0g2EZJOSL)V_0*h^$Y^;4z`4eejUM+Su*a`nzJ%D%$P`s9^Kdp(*-I^-m_ zhvJ2XSgV@5E%1@!zYS=}%bzUd(VtEOJ5kJx$(YAJZiM8bl7roRYq3^%2Ii>r)2?Wa zJ`b}pz-v`f9gH`Zx*? zV@_csD-A@p6oSt^xa$~DH~R!}tn?o`qdP8p+?KZM;NL|7Wm5 zDAweV_C7RQP!ZQ;8tdAEYk*n0$*43vGD2pk0j1|{3@5iJ)H`DoJWCT#-nPNsX(e1~ zQ1>DFjK_V+YOf|I*GCsNg5!bQSSpmY4uz`W$4EpzR=%4KN_G{SJzc*OU89GMq9EsYX**mnBEcn`+qQQ`tU7l3wP8C2nBsB1g|?TCLL?`F18TFOY2I)X z85!_cx;SW|paoLi6v$3_fFpYaDOtgenij6Uj8HOs$ZUAG*h-s9XQApLp7KIR>_JZT zwR+c3YNee%hZ{i5CJwFEP)Ns}!_}}s0bsHr2E2w_RSgf}9H90~hD1FA=2@itJEQ}& zi3<0ny#z1G$XQ*bXC9rN5|iZ4+E*zKeyatL;uT8?sQ1z(7+SRpVdGL2NtdKGQDx$b z;p4aY2xXBY4#^+zqnN;d1*#}YhydBw15(lvi&~ns8DEa@Mh>5isWl zDqGjsG)HHDV2mM;*8Qw9p!a#kDQMcHgvGuDZYo}kZPj)P?c|fH;v{Lb|G%7ix0E(LwimJo< zAi9B*Z12knSGUWig{A_fBPkitvV>W0ciDDu~p3Td~( zYbl#{Ly5l94Bb-dk%ATZ&o*iMof>XTQvq}^0wDp28I@^ey?L-E46~0F=>B;&a+kq2?yPS5EP*w?mF*!;^?VR)BfYS19%4+_q z&6z*EC|z&VQhaq-{s=k5&8OD~A(qN2=EoD%!s|M+RNK`2iQ5dR;$H)ow5qt1UqR1h zl9Y4yRvq}(FY>9P4Zm7YnXS%8-kNARiG55(g9_EVl=gbG_6<^kjh)5{dI44}Qgam) z#1k@pahHXNanS;pS;7=+a3Jwh_Chsx|x%mWUp4=L(_AF>bgx|fs zhztJo{fEJ3Url>PY^l;p?AJIqcxXvRnQ?HE_&0GyX43y`akXY2RM)pvd}+Ffy-}J6 zhm#!L=(sG**~)1nVrxB}Ua(7*CI*8FIjI?FzWK;8FOlwcfR$~tc{B_!(le;fltC*2 zuqbw0Jp&7_mRW$ijj`eW9_k`14`CBu^pLe7?HFdL=9&#Ey9QceFLo3=^#HPIm^}OP zPo#ymYN{JJjbZZvP+wO%DPPy-Y(I` zZ+uCZQkf-hTy46LpFyIB@1HgqF)xZfIunCvpm;IpI zkp-m=o|8c2b1E2<>r=L(TW)vbZ!0*mw!%P-SANA96X z->hZ1OM+k)-IngXr!B`g`5r}09xYhN{QJFMhb>X4z^uE!JAKLc$9EC5z4IaUvJ(VOX9u`TF6D_MIScdOzSGDTs(E^ji ztF?)9{lJ}wpsM0;f+}7Aqot3(dh5hbC%#Q4i$P@f%3mDH@ zPQLE|xU>tYQ1|v#KI85>v-eg3zo<6sAE@V5Qa^zF9P28{>QGmi#p0|-?6)aO*|&qb zBx>OaTTV}NCE(^9Jj)NNcA4dLn&nAVds9&5n5{Iegit|{tT&Ziu_b#Zviu>gv$jTm z+t)KPtIC3#{A|;#n4O(Oc8$lDt@RF1AO)8mfS+M-S?T3Ty$0>;fv!kZq)a(P-O$am zsYa1cvjcG6B>A`7$w)KHvppp>KJ+-DHJtMuIds7K8lKAXYfph%-GxlaZl4RML z*t`FVO9~K%!jO8W0CN7vKp?IyZf`)!o3MF zBPEn-cg>jT<^=Jk9Z=<_*Q(KD@u4DW$hJI_KE9 znhLj*NPlqrq6-Yd@7##@d+7*pJ@7=@jT{ zT=Nk88wFL&)KMsy5yHxq7>uVdD<-LOMrjv1w&Ak^>8#Tl)#YAYGgi5@4>>h#nh_9P z4<@^I*Us`;7~hlvVDdbOgVY*j`d9H2RicRgQ0|m9<^5IAC{~|5JkLA~|!OHtudWIjpeew45^yj_|KAt0gtb?8vkM^f0*OrB;_a`Z{wq`4J5hzBNj zeSb(Xy3wo!NB5O6?L>=~`o#C6<;j7k%R08*IC-Y%Fg3um%?u~*;K*L?b=Y4_E2O^w za&t@I2bIFIb3l28|F(V?^gCYK&$m`vg*8uBhAV zX^vm1B#alNm4xe^3?2YR7%jDXUbBA4&Awq{v-&YEd&t~9Qau_UxCR{2tK)MRN}-6c^8bw>K}G= z93Nx+f@Yo2m41i({xsS$um^BH9bx&#Q4U*~-Hi!%Z^s+gB)x>n=XmL;>~NQ)BjuSb z!f$eh3Wi65`ayA*D`{`!sh<}3k0ef7dAZg#fX!tmwOy}tEj9r!v8SYB?9kN>t z_;PKU77Gn21#N7u&cfP~vUr}Q&9c)tDx zLu?I`bHN79@+c&Uc|7hVa+p=>tIGDd-!%rls<7TO-%9^wvjGX?;D})ppFW}P>=wA7 z7yo1sQ#Eu7@K#lDL5R#slgolZI`z8bTGm$#YqFZrf}i_jAqz!)=~;T89e|(|KO#YY z?_);RBbNI<(3C~Tv;YWc*LA2uKcp`JII`Azi$IM-UVy`XFrc-bgfgHZm^L@GC))PXh-9uUXxx2H~Fy$ySf)q+f!T1kkG+ZLrzzu%3AF6`9! z2$4WvsrQC>#)0Nzg0cecniG+SNt#%Xm)i+tm83qdG>U?D zL;K1p!!!q_-rCzp<-xVg!-O?HG0dU(5f+QvUXuEw+H&i};(MT$tHx?0Ck`(`MJp^ujjay( z_eimZ5-m~yO+d20TtG^OhTDUTHaUaxcy4H1OMXHUnOt;-j+9-e)#%Er2ti#tT0=N` zWt<$gasT@LpFa|edHZePi*%e8^(U2Yc4ABRh`x`&N`y$|6$m_-52gX9JUM1p4FRf} zG0OCZa_z1Q;%8oh-VD3Eqy42VFu8tVOSbVE&zv^FgnikYS@GJ zxTemm?68itX}4OSJlx{(rpiXHK$M=)CarnUs7X3@5Z|?49^S7&PcSL|qQKefPRWfG{mbo5brOf^S&})fxs88fnR^$ZNRCQ?sIV5uF zLO?5>j7%}rQBEWy9S0oHP&0*!vGUWss%#F z)!2YQnUy!w{~6@4SosP!GglRttke{80p*+N_r^z6a-}T^U9q(txxTfKa>Yiss!!vy zKmOzJ@6$+8(NjgE4?dV(ohXw^8|Code8u`E`mL(FozAF$3mI8Wo)L| z21*CFY=fJRqFaTlGV>4~69!sHc_3}<3s?DiR;dUMpeC0dK>fhMph+6*KBR7xN}kTd z1QuY)h*8UhKpyEm7lmT)h>llyM7saW9-vjW@t_dvY!M==t#gD23|nsWbaD@@5m2#$ z4U8#3Ql-0C+2L$AxHvh3qiRpeKt3>dRby=FvDX@+?DaT1j^WAx0s$|JcMo;DyvQZH z$D0&jBy}m7bZy#)0^?g~(#!WW*P!fl#MMI-uFC!+Qn46wf2lXnqPIPJ11>e{S`H!P za!zFlL*3B>kp0#tyZpTrB^1}yR`iBF;NJyLdV|pK+a4iUM`y(Wov9riq?9@>Ukx=N zrHC{d7FiTqVV9$;Vet*>BJ_MEgQ7Krh_(fh_PVVIAUBJ!4H?td9SyR9ldch>CLm5g zy;9m`>vJ)N@4U|)ocLcN3iJ+^*|K$|5`looRoO)z3QUu3=xnoLR`HQofx1~hBI5*S zD~b}1$&BLzR{r0O@d7KB^ z=O0spJ9cZA3yfji6yt#KdYEjfjk{WpBQNMSISXV{zh(mT6j}TcFI`pZfizgG@d19wDR?w39 zeL+n=whOVst@=@2`i~k0P{U4C%T8+n4&U%|52d`A+3t37p158J6X5`G{(W zN=Ac|b;KLiVxP&O(7jkf7W?J7dc?`g{bU%CW4WGX)O48t(umr=$gVhA-S8j_rt5xb!CU zg{q%$3+lqvB7>H3B((N$sG$nUsypcw{)I3yjl_V<^90FCwMQzV%D#!n+dTpekN3-mxfOdb-!;#6c_B#dX@jes{x~4>y6?gPjHdyBU@LZJp&*NWy{?$=F>IY2R9IBvG?V$E6^%$ZLp)*O!Ub+{aXbBzb6VN)M zDO75e!>SJ3NFbRwXhP!~&o0xqBaB==?rMBv<5=D5QmsgDjNR#Y4M)Yb&ca=0x~qF% zxFL73R}}$L#dI*FLIoULOc;tU>PAz@FE^~x<6{017#y{x7oV)AsY?g1p2-r`AA~>4 zC*_;>&(cTA-=044k%ZfaFW-L^-hO*|!F}+||4`*=1J}yElhZ(lX;V(pp(M%hW(}~ zWlTD!hXn4!QVLL|P`9e2v*pw#nd?H6zAanMu2dz%7zJuNZv8z}*6{c3on#0KUZpn4 zPR*t(Hy94A6GyUGNl&)mDtL8cFERSGornp@a(RUn+~x?GcDy^$d+)+4as92|I1Hf( zvNj=J-v+AA)a0w~4OmwLXUYrgkWP~tcup#K-yZ2fp)n5A!urZ(aOsY*+@@;6VQfn5?cC6&<&VjFks*VGr}YY+#z8BN8cfzT{B&7vYu9n=1D%(geI!2J=HB$-(qi0uMoL#qU*5;A3 z=+GJH5w)-t_W**VwuWmpm|M@(`#@>P0kmW|IRXJfS={b;jc8>&> z>LjK(;jYmv)Li$121o&N1Y{%4Jmcc3V$ZCYt5Wpf4A|01$J3+YDC7}yjE~0DHH(Fx z*x71|NCA4_KfH8E(?K9Vv1EwzMJ1#&-2HoR-wWwO`ZXQAHoV%F;1%*y&zfD~qkWa) z)1>E&-dDf0B|T$tpw7dc4SS+jQnTcI-6z++f=qPbl2R*rj0d&d7Jw_D147DQoxD#u zc+LX6D9E5nOs9<~brkgn!J=kO7C@&`M7M`b>G2Z&#qV}AZ4jD-U~zGt1k`b5N0&|6 zyD(dTeFaI=7@g8mgzE(Yi-@LHZ>l%U0699xoO*VIeV+}oIXHoE38_jyn6ekYL9;U{%v^s`Nu-wzfJ<- z@*#ajiuSi32K|uGkAOv#(OtftKzag*Y=>g%F_pHy`%$Z2LQp>Zj8ZJP!srf@*#68u z!U2Ifaa~E?mJXIUF16ilFY9ah3h{jm94)0obZ5md?<~tu_ms+Cap3kWMGk7e!F{9+ zg9fv^F~fbkx{PIvsL`9&v!xSWoMxZ|<%QCF^008!KRo17ka#B152GGV zu?Q$amtjDRz2a3$js=WC3l{Q{H?i*l_a{rDXl|1X0wsU)i60K+nJ^L{l(imJ(_~ut zKKWb`vp7QN1rH*1p^Ir(R#OpM)_&??&NQ#00W2)!bYn~%GepbEDLXhnKdCEAZS@6< ztS>IFSd-a5d3ZonB@L7?lUGk&>YCE{nZ8rCZlbeJ&=R%gLi4GBChksq7YtieB-E)K zYuDVk)wL@0Tg)1`Bnh!kW;?jUDkwU4X(Ra_RPkPd71wu1eg-PAU;uAD2+w@GpG zU~0+f;s!80J=9`*YP=9tfYeh>?S`4-ok9ZZ0=+wGw_sA8&B>#J#9QeurGJy!2D@Eu z*Ok~Qr82RYQAg);>E!TO{QuwVzrYs~Wx~C5EF4y0-9>H}oZ|@R#n53Uks;9la~RoF zD(VWsE?cWhGs-Cv2&|~;O24gg2Mkk>BThv{m0ZbghZB_8$&Vc4L@xFymwEB$o(2Gk z&Ow8Eg*(^FWNLPxV@P|byrr7|0K~pn&t{exyip6gU$-TgLoFsxG-bOUwn(qlVM>n5 z>+69Ejf5IBYT0*JiWSr<^4!6vZmZp`DQamz=Ufw9bS$Ree+Htq zeQybZ-s{gWtk_$Qt}Y^pDQQJgq0a7IucETtD-Ev4)9t<5nppL=CaD*n3bf;0?kENc zaEni$jl+(|pF3E2{^_@3Djr}1F=mq{Z)d*aT&3zKCFR6MxLrnj)Im8@a_=1?DRCWwjRaQ zlS-GE#!~Vzc|yc;ajd(9ZMmSAt4?#7ysnrOO{612?*zT!{Q|}Mczd9kSZSlNdbhU|0)txseMCi1u5YN}2roY|4R2u2}f?8xR%oo~{L8qyN#4+`l%` z{8n4@@ctu$b^iM8E6e7G#0vS3;&mv2@6$rE{T?R5zWAwa#d9eYaSd{)!;7{&&Ozm= z?jsxnWjd&?&ijaF{pkuKs}^M(6QTc8V4*dupIB3VmoOE_w_VmZ;cJDxAQ9a zV#qPb%&H4cU8q7>hTOY#D_!Uyi8NX?>|2tgwS;Z#GGJjl%{7br1Xk5CE(Y>)y?P>t zc9-kHNM})cgeTF1>q$U~Ft)ZgP*alF;01K4+IDgg${ylTcI4Zvm0f~iNCx(b@i!EZ zTAGSu4;bklqq`!kh{3bF{7>>xWSWeS+8QkISDB_dvP zZh2rnn-GgD+cumz(i9S#+qI7m3*{=a&aoMsmTd&PJwv;AY)<-Q_Cx?=Zj-K5(b^f`ftVm%3g+_HiBy7V z8IF*E?N-oAa8|UQJB0uod?MS}u*uOAs}4$;*VYITKrC1x<)!oejfjM$FvgJ<`t}zv z8$dK%q5}vyv`bIICwrdb!9?JstDOvf1Cv{a>7P!0EqisLNMGq5wv?!pLOZl-9Ysr{2JCVLK&A%_ z!zc;+*ujIIpz4a;dW8uRl@bp7?S>bcU-H_kX7z#)P4t%PqT5UaKecqW_XueaTgP8x zhUMT8(=v4f(z0#jP-BH^*_@OoKP<-W^+~Q4;;AEjXAyh({iCDN z@D02cw=-AO+)Vd(0EmnuTqxGt$QF`UuD1trw%uo4TW&S(IE8mgSbnI@5QnjeS~RGW z+;p|i(eoCXAcpV2C^y}%KMa5V=YO69*vYZX7M>rKq2Ki$lkoPN_fO^5Ux&9Z?MxXg zM~Yu_B^yz{Lm{-!Y~2~vNx8+Mbz}6+#f>&KwF^KIruVSyT$79iBoWj386}!Eb{x>b zV}MFr`Jm_0yPrt8R&M^D9^RL$RBIa;8t%0CK*^gPF)-PuSf&~8lS+~5wzdK< z(vk0}DfL#LlsQl`0+@<9Lxy3fS%@k@U)Jy>_ak{rP>M&+G-mjuXoIH^G;~{W6Klcp`sb{Zn`0HtFSAvTHa-C%NT_W|a2l2Ge2K^*Rekp*`R%G1+c^XE|oC0>|v z@TRypETJ3st7*_oer-PC~MY+qP8MJ<++ zQV>kQgybq)&BW-1s*<-AmL(4r!P>2dgBP_tiWlhtta!K`s&gzYQ_`6sEbtx{cSY58 z(X~J8@?kGf*Cz!!9T_wlVOzKj*HCO`bpWM@w(+{P(&Y%HAykyaMxrWZZnptrxuNXZ zqHsGx9Y}qtFLnue=xyY=i#VIWm`BJOFRqM+`8A{R^ERDU5y=5u%90HOd|LTnHUzQA z*7x_4n81cWA6{mFE$Sx?t&+C3)80CT*ma2Ot?)2g-kvq)E0+FYw}qo(?e_!(*g8x^ z-VIa2bxPW}?-0Uzf*k}}=;AY)xwWMf;>&V7$J1 z`aM#p6C#?@)^$3GXMxv|y>g#az`-^rAtOq!xbW$fiXo<#m^Dd_bWyAhcL;T|29)Pp zsRp#%z%YYmEUnMvluu?e1ngH~y8u8hbOr68EExi<8q#(`uJBi5^|DiOtnLe*VxKamB^F_k`T@9Wb(E+r;(o$aev;kdrpiXsZszULl%5JYp zERRGx!{*NJGtfb`2i8Mf#kfJc9f-6oBP{0r<9Qw;cTt{^2{R6}ySVmyTT!VAv%>RI z8JUwq7t?{U1c~&Iq$n?-Ooc{~EanJuj*k*`{*qN!TG0DC5Dbc?9ytfR*E*w7J3>N( zZ;ID3MHYat?N+1dFwY`XZ**E{Vz{Rx1lC|=x2SXv;+Sf=t2x+fYdrQIYUpmc67gR^9w0)uUYC;+D`2{<)T`M+~P}{ z^sMYpC_nG@>NYS5OYMU=LJmq{Q zRah!(srXUuF+}MkK~BzLacI$lQ`_!YzCvS3O2GnF&n?oJtz)LQ4v-gE>f9tC_3+I-BR?qJrEO#DFox);9BC?V{r- zt9LIaa%dk%66=$KMC-&7xjf2g-|jZ`fd891rE@g5wAZuFK=MB;VIP#luPq{mnPrWn z=5Ilqo^my0}v;A&&s39Ie6)$f?wp?R!^l`^e}oz z&jJvM_EaE`p;Jo5pFKDoNbALpX`6+g`#vAOE`{}rJ%hI$fJO>J$o)&81TZ03$=#@C zZ`E^yy$f0aDOPL@lYEw#rBu~E__QVh@NFkux9_vGRjJ4hf`y<#Zt+xy zG#CP8$DXM2B@SnDa#O_q9V%6raRZ1b=Y4}F2$~r3hFsqv5{w(*y)3=$CzfreIiLv4 z5lJoS$PEh!3CZuRqk!!A|tR zsago(DL>f>(|Z6`Y)|aI!U_VKYmUnW?@K!Rv?SaB*Y*v`RXPDV1`=s8{j(=QEimXX zxr5akpu<5Kj&%>NzP?JrsC3^<$WI*MfxO@mD5u%`6i77hjvs)8SWUyX2QocbcApU7 zC2{$h6YUJ;klImTFo+`V4}yu)a?)FxcQ^)0CV<6sByRcX2jZLZfi?*W0clp zu?}H43fR+P?4u44St4eb0I=p$vVfF&dP+*vQ@m&Is{>C4Le}A&!I?cpQ=l4f%a+p8-`2ELkpMChr`xo$m zc*2W?$yqUri|+1D(txT_o6c=`KJ5jyQu%QM4J>645vLd&6mPRCAYesTdGf0hS z)ATgW&IlY>zEu;+Gw7)>9$n+fb!tFhf$kc3a5IVX66@KV;CP)(un~-V_vQs72u3tk zIkbvtFr2+NSMrp-SX@4Q>fP*6Z>jsi490g7D;2waz!%B04MuAOU6_;v6Gn~ptA>K1 z{28L6pv+5-?GtW1s;pt37+b%xfI3U`>@Q^tlrbr4P0@A)Vud7aog!@Qi{=du=j=rwv`SRlDnSH8Mm5RA--Tl|OIonn6!nODT1Or} z+y#0FP{#BooV-{iGiCG^yjYm8ugS6^@gD?@Sy|c4=(~mCMyhKuaJ* zY>?-WnlR;|k8yNPu2B_0pTy8ReIJ0dfl6_aWOX&X1;^XPqdJtR;<-2F?}bL0D5e6XBsnqX^i&(GfkK#te76f;%&l7L zu!gK|x^4fL}}w;Ip@H!rPDkE%4*p&r)iAaZ&N-l&#yI@Fc`( zyRkOfMmhiKEX-gwWsK4~U9sxpj0qD8_h(jIR0D)b!WFT{niVUQUP58te#mj!wEMXX zrAjl@i)XObWm$>fg054v%L+dI2w5qBUSPpzVFP%1bNG3L$=8%n95h!pIWgAeN(y!o zd!x3@jZXTxz{R?mL}@7SfUlG-yrIuH!t2kv)tmf;(%t=tcYTbYcELfCc`#}Ev_!FD zgI-HCEEQ9kJ~?FKoP4cc2fG{xO&6XCjV}FKxx_04y<>77=IR~ZN)e+K2(U}k81P(s zb)O{YEzhXpd~vL5wFk{kslL$yRkhk`5pb}^bYDF-l&VBLjal|vF1yWVa( z<|+KEYFAPcuYh9XkfqL)sWC|Cq_<>6DXXP*Oife>$B|5=JRgF4z8e||3DL?4=kA;2 z>ZkADynS);0oDPSx!CQTpJotTD z$SISv(=hVj5upVj%vhlrWj9=RR_SFO_m_mgXB&AE?gV_=&V_2qVdT0p6IPkgh2vy* zUSlN=NbFB5NYv00Jer$NNK_ND4|0I~XU8X@o|m^9rQ=Xm0Dz>fCR+c&2Nd%nV}~G6 zO9r5BTbwx9iv56i6R{Zy{yjvsT2C*lRj%Re#aqPijqH*S|K;tZ|M0W-p9H>0gAfxb z|M2&3zXmS8LSD@ltFfF3!7 z7f9wxvaOd*cZU<`Dnq;JtQfkYL19t@18!&=;#d}63{)+yus*H#erc?L1zBy9fRtuj2A88?R$3aMmli_PjBC9kox_9 zVRrnTOVq&5B}}`)Y!W1Cwsva>{Xxq zs?O&zxR9M3%Q8@2c19#%xWFl=mC){wlhpN}?0ii)H!8L^%YUNX8yqdrEG?B}YXxah z7;&h5$qUMXbiBo-dj@;1uxv&*jnq zfUZoLTu65<(eSs>H5{<6ssW2;RkzmQR+|qROfe~JRAR}=2?GSB3|zEAQitoi6-Z*N z3Dh-}c@ILz5iORTw}ujJlggUf1WHQ6ZE`qK7hwNJ>Ld=-Gx}Bvs&7QCW8R`esA9rU zfn4=oKcIVsFQ zmyv%*D*B?oD3$l3Ix`rIF8l_f&ug)7!Yax*l79zr^S^!j(gKrSW(;tj&(L2~fDd0^ zxBf@kYDfuXP=;r%t!Z%p%_K#t{CYbQ+h$yoMkKaW@-_CJgd30;Tq+CU$s86q06WdU zSh(uLXmfDs+Dafh)idx4SD9(m5pkqgq-n1gHMv*XJPWww*>=rP8Hw4d5V)m*aJCiyK#iFc#}^Wa?^EmJjB>$PoE<6l8n7Ke zv!F((OngeFf@)>ER9@W`?*9iw;pS>^_>xn<=fYiTfMMpb)Y$gh_n-1(`0gi?OpS%a z{~Z4Ke@^EQQ!*1YRga0=Zj|x9b*J+e7^y#DDy(ZGn9$hwu&->|B~(^4rw5-xA_t`o zM>WoScEL+6X`Hh8+^XB1(>QsB<^V8Q_U<;F@pu63xi;5;=RGw2R4|spiN%3N5W%I> z`dSZi&kRQpUd_h={lPGVi~(CxSWBwoFr%XKfci=-EzMeHIKRm8pY@5-d2NcX$Qx?1 zw(tp1Vx2tzkG7VqK5+$)PuL?jlwoPXJhR2d9v#P+R)p*xXnU2N*iBP2P@O;=~qN-Q* zMWytIslSxNbR*{+ymi>Rr{gRM!nnJw8m2)y)DC*?;);ZBN=N(%dv%G=dQBeMP&WLK~$F3#m2oT z2Gw?)3&3Q}`K*mA(8_ub|7c836N}=@!Q) zTu%pD4#4S0Dr&%*Z6Mru5&z-GZ$A%jHm&%(_wNV!CB0J~d}GA!X@s~^;JteQ(zb(y zBl)DJT(2&SmH3I&swlZDT|ogBHyE8n3$qyk$I6p$;VEaGHASV@sO{3ju{avJqp~~CfkE}(vXj8lP89$LjvpOWyD}Y^T^=7e-f)Nk34nAK z_8x755Ap`7Oe}Frp5nssK84Ium4D;Ob;79qM?+lcIyi*1#VT=W@9mvM;OLfl)G2WI zFo@TZOw_VN`cg=>08(SaJ>bs>AD$#>4pZf`Jf8;wT*}Ld#I?}BHm$fE@QyBY&d|>e z9z~dJTj-Lmz96i)E^7k%qUY7=e z5Fezs)qeb0h20rv(6PI19{fWbvjeF=`H)#%1IoxsxhR{Pq{7^Pk z1qr1Ap_m~aa(4zC)bog~$9LJL>zpnJPxe6I4EXv>)^-Dl@T5`o3Ece%+SE>5+T@*r zLDIp|r4;RkR7gX{)T^}gxjAtq-Z)>z8$=4_%e~?}%Pp0E)hamY@I0zHk_Wa5);MD# zQQ5#FId1o*L&F~1;G4PYT8sO`L60=PXYxvSRmc;EA3#6O=qSxA< zBq>ZfIe|BduOwOMpnPo?_yn)BVo;7P_Vm2z&nw5-8^yoZ1M^4@Z;HEOtsGENU=eg> zz)*w;5Fc5^Lho*n0FvX!s+0oiyu_S;))HuDIdV_esEAj^EoX#W1rHLlTCGbt89how zEW=LLBNGfpoa zxo}@-4K-0tpTmokLu{F7M;c-t+JUXh5+HEJvVnIGPC0>f;PNbrGd{99ZJD&wCDdB7 zkob2SKa$^6J`|}Yhan9$^nd^TTXVGf@B;{S{gR2`H}7AlO2Yd;U!FkoNgd#W>j#K@ zc1ib);M!Lx^E^qQ*ml)gB71UaC1Bvz#!u`MF(Hs}d~$D(r@VmxNv#RuP6$|1<*{6# zDdJ|zjzH)k6tAw_rChwmIaF%GWKUY*q_kx$hoJVg=`HB`lKt(C$}LlVZrlJ!usI@% zA|rRqDo9Q_FsujwVNdUHaNVg`8l-79!@rgWMU`={)3q4H$Cq>D_PKzw)9=#X=$F_8UPbUmhf1R1cGkB#(Qz1kSB zYJA3pokaad3r9go>oy+3V{rksf?rU|dDlS16KOMzYm1t^jE>{Gg6)FBgqT4S1?}83 zOhRf2&E}TV-YPbpg3A;kZ9LE;1i8f)hGQpJvl1B7$!ldr3Q8434#R(P`TNvl9v|v|LpvC|OD(7)+ zZJgBY(%rne59l4Uzw{~$cfPP(3HNqqG~6caG?OSGVP9n^ZGO2ZoYpo_? zFw&VXgy(>=-I2op%>0M{`u@H2o&0h5lRwGv^4swCDex4nZ9`vG-FCB(xU1vA<$177 zLB0jLy~QfgT`C~04oSf&)Pv8xt6QtC))eGa?1cn3s(%B=pF%IF>jqAaGs=)1lSOR z83ByF!<|qDzL2fHbc%vlR9!~p3xM;pthK2Vz{vISAYIHFvzK6x{(uAN%YH(r+Cb+OQkE0$FHHaIMt4>}7$; zF|2ZkYL`@$`r=z%`t%>`CDko-kY$OJ7I)52$}&{QRaHwOK%{Cp;Jhczzj%`rj6Pt@ z_Hs95a+;K4P;4%J=@U3yh3(VeOJOs_QjH>lZUgMjPW;bqZy4N~O!Di#EOf8c6_^`w zsYqhOq6%c$a4eY{*g+h@@W^n=k=#U@wpvBhk@^n9hCv=WDdG*z1MD87!&O?n`qhqx zlvOrK+(YBqY0C4n8^3X;qO8H*pulo(uA4mHY6V02q4t1lQ5RZ{8IvR^xM_a38yCJV zp^zGqLmd>FeO^3{VW&zb1~KxNJIdee>i*aBO&3=Q4^_28ci0|%^l&htqdOt03#v{OVaK(Osa0kpp-Unw7VSGpZ07|NCl8L~;?1Rlr$vafMw-uAv^sawW9 zBpshs%TY%BVXU)Hth6q~Zfr9^+cXN;9))DpuRZXt&OXqc;y!!W4Sw1aA1#Ssy2f;k&Ak} zxTql?lS(K{yxA{F=qp*AwAFOc2rG|HCiM)*6s~dgE_`s)(g7Bogi@7P$wG(yj9sz{ z>D0K&O7kwx&}6n{?0GYc_D$MN>**v@(&?#Pu>6Ts8CG2bo1M{m+#g(sL7vo>ky?oH ztLsY6H&Us62ErYt(US}k-9TK*fDw8(EA7Emj<$TQ!*iuuQ&RF`im$Ds(aIl** zOJo+#pB5^8b-4l%dtwy?t_UeWCOGyQ8U1kkBZM~RU^@kdJPHpbzu43)@Pe4 zJIuf0ss0tPGv5pEKfwnKD834B|Db>Jb!u**Fe?^GvGxK`wBA=IuWcr1rN^N}LZu(n ztp?&pzUStm`T%$W-1xI2KW1$e!$}LDa79(GJ3D;Aoq%@$XZq;4q!rp76*Y(;0^sGB zLf^A3VqGq~y5vFm76UlgP;OrP!_GoA>Ll;EA49KGNV2lyqKoi4eD6!lE8lrDo;DcQ-vB(=e|a# zuH}A$(CBk`N#SkUI7X@VO3ovI*`*dMxF5}F!BpLo-PB5tpapaGmlt~nN;}sc+>lEV z&afSQ6@;XnU1uUnd9T@1nG%Z|;4FlsN+?S>SzQT3m<r40o*iQnjEpyin5+Tm^K{N#WOs)|j@K6_($7P|^`K&*LnmNG>c2HI8`&4lm z2$u3kMzF|Q!81jNr)*<*1LJJ~E7pzxFY6tC*hF z_==p2S^CeLDpc8w@TSH+auqqo_qM;UOY8(^c&u^DRqN>2IL_@EK|qOfN$GK(f%8N3 zVz8?rQH?1-E|Fw~L7Wm{c&Me&6Lya-RL!``09y zeNBVKpVMIRXP2iUu-Q#N<+4jTfEX6sD&vV)05v`89^@i6G-WkKICxTL#J7!5@f=iln_#`Yg6wJOb1{NO07a-vP{}eR^wz$31X04LZ;s{f zRn@8YxFU~Adw0EBNE~$iY>QJYet~SwGn{I%xi=~rOhxU4mq;64sljYFy?|MvcR679 zOc`OddEI9^oYE$`Q6YMnq3|OP;mS$}aqMWSJ>0FQ(X-=1kT0OhuZ)UMDBv zK(+t~;>3drkB6KzS9_enWPuETTVnx!E#1bk0K0O%TI^~pmtB`u{eNP~c%`!0cqkig zdkTXR`+fyxyA3lWh^?)<5UUcbjbsXt(}q*ba{jfvMK7^RFT8Kv!kX&k#hm;Yc(@R2jY&!Fv{UVLV;DH&G{COY$sdT%8v zy?S)nR-H&jE`t>Mxcd}V4nRny3Eif#{vav}5V}4Bx<(oqPD>;}e7Rv9;jrS&}fj({^aMoeU0E*tztcEC2yHpL_CSA`6tP=kX`U3c0V14H#m2iq*kV}pDC#VwyyZ_V><>tg017`uubpf zYPn)NaAQ)$ARTQdXc6e`u5k;o$V$0Dc0bqeSWv8!u7IT(^I7*=g_1a;2TZi=HP{Vk z{hE`-L@DPKiblHfbV(y6`N@rTm?ktrF~uOHwBqJ;39r@}LJ2<|fvC>a(>NBkK`a3~ zs)+x5sBt(@y*nZgFyIYWh8^ABQM*Q$JC2c4yiXe6rV~?H7%vaZwQqbq6s?NT0J_gXY;p$Nu3R^Ou8k4)|f^Wo5%_{EdL*Df$ zZ>KRG@?Y21@==GW^naVBxig^)l`500=PadhFMC(98>fe47jt&etwaypl^XU;#!RcS zF?A)yXJn@Un64GyNa8WO*2>u?Dgcgrc8Xw|QtTb!-)-faOrV_IVLmD7=Vf{&`PR;q zavbRlIYEHbe#lb69WK z5$3rS!%Ae3LieDpy_RRoWINX@T5hN%!>JVW7QS=+M~j(nq^7hn%B>3oiwtlvHJb zkxn%&oLqn`G6C=icR)vMqtiH~-o3e~E^M)a+hc?K1?pEIwkXPXIOY@gtMF!;BtL%p z-rKhye)Rrjc>f}W%gC{l6cvaxgi}81rgnWD+!;HB&^WX}_QWg*k`Z0)i%*z`O;1Rj z1D?Ltk^L2xT`d$?RZ0+Rx)nHs?^xifRik}*EORfIWPf7GS^lsbW$-L5;z@NT7i=J| zTi!!~#JhMk$-s=RS0%`WLt7;8bxfW-P7WFmBGpHA#N(Nhd$mkg`VjP4n+B>-<3Tft z7wJLVuVTNolGR1>*JlxbxgTIv)w6(%dEBhU^K-0r(;3S$ZB*I07J#xmGM*dIv!ja5vT#o3$r5!u3#}?BX{7 z2(se#4Q#$uRV>r-teaLra1bA}==X_SicS*pBUx8KdejhON!0w*JfsGJ?NE;d8Ld3( zeG}WCrmG!F{T43qbxN~WIUjN*?-Je}7!CxZZuGhFLR+8rt|yCiP+lUIY&s`qbCHSW z&6MouQ)t9A1l9Y}aA#P*C=fF{P66{R-$qW}r8=>Ky>EGX7<9*R!i(J$&0Hy?*Y{8O3rqaP-zsd2Pnkx|qgdPS4Sf#y%TOU9)_V$Fjl_J;H0)KA*1-`gY7b7Ir zko@}F_wU-|zI_?q^3?9_v$r1yzW6uP5eep%>QwT|Yp5TN|JG$edX4K+k1WhrETo)S zF$K_@u>i~N8yLvJ34&}u98NaJbrK*=Z%RzY33i`>Ly2>4TpjOmJEE{`@kOvV?0=!GpLT;S!)jiq!#iXg$?>rHGk=MrQy-Y6F6M@ zah!#Xfe@W*iI8(VnKRv{Zs(W@4;%R9j~YqcVy{wyP*c#;{vH$wb0R-P4Nd5-l1C8H z%%!Sbai@y7Q7gMBbBNSL0{vl_uJCxBvjpsJ@xAA^DKqGHh}u$I*hxS&ujmX?%6z3G6Mi{VhT)Rx}>NF`F5kgA}7 zHCM0L;a}PYLrqqp@;B#wyqk=JZUCNjqe||Tl%3WkNm+1(@N;L+!j^nPxJx-gZHNX) z+3pu9lp6WPf#|41l5@3j-r6zbMK1F$+6PI7Ph>BW%Z#V zB!BT2e-Zu{Ru{hw@89zEuZeazxvRea=5okEv6^Fo?1Nm|b^|@WX`Ie8IA4D#!M22+hMjuI;6Gbq zVruSze1JU!MBd*3Z9kc_Cr5%5*FXIA+pjRx$1wj6AIqp^K1G2loax(Pnmi*h^zQ*bM{<}JM$Okju*sxDqoZhKLCuzn@Y%qDtMa03NxAsbK zu_Gm6$))uXN^iM}c(Q*1%W}_}jth?_+UQ6l=skA<>Iyy6KNAu<$_TR>B2#%rolDzf z>I~=_Mw_}1x`eeVqV`E5jZ>quFGmCEoVbNO+Ie{bsOvmEPe48(4c%!^@$YL{mKJ}3 z^_mJ_{eaMAce6vQaseh5B1?|C9wkI`nou1Ic;(@(lV}!7>n1`6T0vOXrB>q}S`12! zVzXipr3ZV3zK5jbmo$>Lf2H29xZu{+Ng|!*&=MJhk>6>PSxtamwl-9$>aoD$6GR*f z-SD-YF#N4jD7I=`dYUS}%6&h%-ohnJ>ErfbD1(8xpH0WIHUg1e0E~Kz!OV$8QYj$3 zd&ROZYuw~L1k3o@`_G7#6h&@+`u>maU#DL~`oIYNE5u_I?{A;75c>PKf297&3-EvN z!cGD8**5tAB0$3mFa2l`Vq#2{ZZXhUR+Um}6z?m{*E`xXRaSwt)XoJb78|2O_YO;2 z(`g2b+rgn{tx`X4js~2easm7dRY3qC%_hQd6p=@zBTrzI=N$Kgmb5zc;OHWSW86I& zuHS4&J;av~Uze7>r*0%9nxIO-2u#koJpItpgrVBQsqtV(3@R%vWilK)6NpSVHg-&v zv2H-%T?L=aHz6((dvhF+3=EFIvewnfm^rnKNYF|zl75hf5v;(?cMr<41Zol*Rk(;a zV^C4I;EbQA-EKbh?d3AIBWP|?cS!=|AgypM(*o!>x^rN3RiJA;fExl}QUR%bWSAQs^yF*xGlrX!1S zD3mBlFMJ0r%$X1fn;)V}CCh=^Hf6q8ZHz(oB4sCD4Pa|<)G>s~{>2*e3=-z+0oa~3 zIDP{tklrfG3cJIdYi6l<;UUI@P^xJV<%|^(x6uEmG>aYSkRYSX1`-Yl=_P7j2lGPt z?j(O+;KQ|j;oL)YUo!3KY5?6ILgoJlVZ*Qbdk1D9YvKimbur>otIGI?V~St`a z&#t8_%f>~z72pzm#M8*1`1LiksnV5hiM|TZ!8Xw5uC{g* ztA&{9Y)Z&Ys@)TTZ%C!X-axjW{NV-Le&?1;oDV+A$O_r8RgGGY+FRtW1x%lhR_1ED zk+rjtymZE4?@IR^hvX2x{R!A$lWu6GH@A(YYUlah3@#X#I5cXaUGfmiEwuF&gzIKA ziu~|j!~5q@BzZo~g6oMX_5&hu=@deeRc_qWyVk-^5oZ-sSSq@6WvxRc;C7fOXls5_ zPH?l@9g)zFYP_r#dMfz@~-aGPL}Xex&26N zLe}Mg)J?8tuk`>q{Oh!54Cz&U%hOreq5oL5sP}6!dB$8eSE_PrCj`41Z{kN)T_M-! zh6O6iY0cJQ0NW#zK>JLZENV4rrh$FzNkfiMRkMRtK#x*iLTUXEjTDUD(6DW%boZ1> z#>$>&e7Gewel|NHSY}yV0ycnKf7P3?*RC`smy6i7BXun49hfYRNB}I-l4+ig%{*Et z>1L47Ik>>KG(D_XP|5R}PK-QsYaz!2U=9E`$m8lxEUW>#{wt8Xc&ciPG%iZf(Pj`h zF(OC1kV%5I^0i4%yN9y4v}&JpbN0Y(Y5@DTb_P&d4w}lmONfKw`r5(YV|L3&qnV)Q zK4(ZTl~b;18Dy_pbvR5k^-L~RWzKj}OocN^)l9t9>Cm;`Q4r=Opk&giJM}l{qBwh9 z6j%bagQh;KZWWP8vIw!{lSZA|WZH}T*cziK7b-{1lxlhYwNFFb+9e1K~y{!Re?C7ssSFQkR zQqB~3m=Ne!;j3p$TQ4+`8^aZl>)92&8E7kgU3|e&9VR11=+TBHzl|j1=I^LJC{3sG zP(FHxGHcsR5YD>W$Zx$tgE78Rn4oGQ@4Y;M~shFCG$4V zNb=)y)dPz0CQS}^G>2r*9p0pwzk#7QCL^E)1UfXJbLi18b995|49tSyqdyzisK|IJ zU*Jj)+54~Y} zMJv|Q8DIcGH87_^rwqGqH#w{8jiL_00j<+jY0E41k8kS%A84foP^@8Rm3(AL!@FBL+9R@o?pq;G29G_7zt& za}-EjKiP?UTy^-ISnBN-@_UKw^}zg=5$kVj(2TyjZLPt}L>n z9e`itW?HRw-D$LhQtLv*4-_u|mFc;~>z)yISn0rkmZI(hk@r!ucw0`hszWx}=MhA# zEve=qz8=uRhew`UIKl?fYnOEU8e1)>z)1F@P(Rv@1PYw?z2IPLM7h*96qVF*zJ-`a zwjx(8eb>%|)FzNOEcam?gT;idEc7!ks)l00MsE34%G-s3rNKboK)4XziJtwELYTju zCu=cQxJ%R=x~}nM0*#jWc9x5`LNPE2H}bmz2^xk_nV>$pkT}^M(7LFmhPNWQf~J=) zIhbVXfI)&uOk6K!73BMglzGF@R=#QIb=;aF25#x#5;*M$*5-0nIcN(&xi2u*uH%67 z&`U6s6Ef8H2sb!Tm+KCurqnI!yFjH3U`wU8#W?CEVG;pJ@Tyo6{6$?`c^WIY>bPtO z(hsMym?GBLzt;OTM-E+C)jl$X2+S4CXP%#Mi;qmNoL;=XM$chKMm5J9l8PO z^%W=v;5$k1t+F=FhcDlM4okJq-@kePk=lZQd8r@L??aaU@7}*i79oFU!0+c|52)i{ zp6yD$5zJTAg<-5PJjLu+H+H7}BsWF^EYyOk)9hBFXHvno_yWhvaA0J01anlh0JS6< zI8E4w=_7yLWlB=5N_cyK(=ba%Y&!N+iN*3vY|?~jN#i5^8t|+Z7(@%u=#JG|CX+rS z0Mfw)JWRE(g-+JMI021OV|vzJjpHKppcDs&y8CoXtmeC}j9G7WUT@X5=m0fCj@+$2 zMr3H4PGL1Qtr28mR938QZdu^7f!u;aYNEm?on20CvkK!wIX45y^gOPBViQ)Y26^^! z4IPU5vIDBz2gk*v7#a(FI-#Y9?NU-?OebjZgwFoO+t+kH`uZYg?{{$P`+m$U@3 z4RxN>Uy%YlN!qpF+{+A&-k~o*WHZ`p7q$j)xhW9tt~>5TfzqW%BZaIRSPWsDCI=c* z?5A58iIh7eY0J{n9lcbEj#32$+l5_LaI0u}9BK@G>J>~Q%dyQK+%0d*77tf7Ywb;} z7Q@l#h(^g*6W!b@ESZaz@@$n}Q9BC|+jfE^md&xuY}h7BSl)YBSRL&B>osR12?|>e zEQpJrpjOsJxU#QPu=wyfwBNtMsrWj)nG4GQ8Q#9S9Po+639;w!i4_e9_0PHpo7p5M zGDvH06fmiV$Z~#OU1$*Oxmqiovj~}F7ic#OT!Kid$n$8_?bE1|shl;!RcahrD8(6? zT5S8rKnAw_6Y1MsfQ+)G9hPkDt1$XwPt`VBpE$q`FjK6Jx3-sRx5R3xCPV^D;(^Lw z1Dv44la+A~XFGct8@EVMvyjp?Pn2O@WGf66=Qo*t`-EKB$vh2o4Rli3X=+#?+@4@^ zn$JZI6C5RxazBTTj%1j6NSi4`s$n>2L8J~gF0PJny)G*1u1gSk0Or%MQT~b!;&jPb zn@O?SB4K83!+{o>;yv2RbjkoZ$|tVGk+C-tpI&WscW@RImjRFoK5PhLIG*zK?@wQH zX`}V~zq%Zin+rc7U-?QtEuug_L4o3>Rv`*`s3Ad-RBNOPk_h2?Kro?NAOMlx;lZqQ zB>BQ|3}!H$JXS??@;1&e8UIO>gajm{ZX)18Afqp+%IHa?BxVQ@pq{Nid_pOXAtzHk zo~<03*fUHW@rF}Y(i>kf2NFurye<(Y(wL;$ zi5(YZtPoN^Ldqbnr9bHC62X4)%?hMMNcWU)6Pka_KnRz8O+C`Yv+$J!N+^&8?M;~M zUKH)rgXJy}zVx*kgo3aZBG}{+h=e8bfz7BN|)51ynhbQRF$Ple;U@#cDjyw#q2Bn za}twn(LJ5uMv~t;kFgHWlm`s_7Iv`@O!+ya#i+8pY`qDxNeC{i*g;T$CxDdw1d|n7 ziWq%(RUHpZeMVQj!fdl`;z0AsmRR{!?Ir7xfpCs}?82~@w;MTfJABDi2*_n(B-U%Z z+*;LF*MV@JlDNQH@0@V;*OW7TP%>dkOHwIMyMV0Ygg2^!$^pM&r`LJ>5M zF>q`R%&0l2WT-=s{cegjECe(ID3aiE%mrZUD~V6VHE`_qbm(1_uFP@TDe8o`FU%ss z%poj%%vAox&nBH3>c3WRcJw@|a;Xy7<nppRo$2=qUL)mMMtRM_sVO;W< z9<2R`GT^hc*OilWtg5lStM^*^Ll|?g8j)C>;%cYDE)!X|N~J}KrxFq-Ni1)5ZEd0} zZQ<-ZYjMcE1wCU*TzR|A(7Cs25J23MS;+$b4@9d?I~;js224QCou<0ruv@=_v(-(P za>-(8*!_ggiINM2^i}*|;5jU${b(=dS|hg+FreZX>YB}88pywGk^#et(4!w+r8r)k7 zTO`rRF=IWGZJy7`Yu=iL3!T^)J-VoOA^$)k_H8h z*?O$$x}d_SVMEeovxw)cQL`GHB1(g)ynr**iV3wkfazj$20m!2m>L84F(KAXo>Wa^X82Zta~Cxb}P*knk5nZ5r^xjUEJ zh1|gA#=0F^I6Q)`4Oh@(45nl*%M(A@Aws}$$pHF@y@o%i$+EPKr~3$~kc1*P%ZSz^@XbXiv4$Aci5T& zd-WN#&DKrP^;?v_0qFYVl4X4D)|Z}Yw!U6;`)FrvJn=5N*si+mXzMG-9aVj4u~|=J zl}w##M=dOhT)^WNWpl@()((TQ5am4RPY=1R`{i1zppEvGXRV&A#Mw*T+37E#D{GZ$ z*_0mv96&zlk6ezsJ~&hYBtniHY{2BC1Vd(`pbv;ya95=48RlZ`bdpN^)@`xB_x|PE zXaD`bhX0;Fq=ozYkM!5i_17PU4`06hlE6aL{=Yo4mVWji_Jy1pbZ-+MX7267tI4cu7b3_y<9eD-JJvur#;TSId4@|S-{Wtnnu6m963}$+i zih9UHsIZGv`+MoH#D4_v7AI_+sKbRi&WOqy_Bi`d0Sn(-beK78_FXJ+GohSHTA>%0 zPhez8hUo&rA^J^9Q7IYA{4G>~gu*hz_JDn3EeW`gy5!km3(e+2F22-yKt6X-^2(0@eQ! z2rGnfCJM$H$@;Zbu+YTKkJN`c%11J&4YMejW>us<2gk`^()v=U&p5dgZZW=)kpqWE z&i~;O)NHq=D*C7#TPr+@wgJf90Jx|X@q_W_!ccOQ6Lpi8{WaRgy)1XAfVk-SzY8D! zcdXh{WcxGy+}l^6Gao8}XzPp`C?qUI0YHn4WKhhDv{4KCc@D>}HsoQ6diaP;c{|4N^!B>^8)bbMcV@UGS7qxbbGMLne~g!i!Z?ASzk zuxaEwmTqOORTR3}4`xhY^P~Hw00CeXmpYKW)^1Hv^aM%S*u!RZ{Hj z{Us47fi63cQWCEr#mmg09ng}S+d|Hvuu~E|1Gn{NK%$zZNnZPNg8ISILeXlE--V@;mU3Y zX*u=V2R>HHLhmjS_F``73+Jqd`XR96gkgzfk*wt{M`ZdX{$2Q+bO`?U;eVC?a4<>+ z{A0?C|ML3VZ@#CS|JR?Z8i8%7)%pn=d+bjyypJq@G2LKvC-0R3$c9eQiCVT(KRfpK z5FK_nD+Xs`5}z?%?n>k$$%s&|kUqF|X14*B9fzimtq55m?n*QE_WD}CG@Y1b#iE{i#5zw4raB)bl*sxY{% zuZjrrmcE8BK^K)y8+~-N9LsgAms=~ zR5uRrM0GVp6jTrXB5_rZ0P5LoK@}yWv%W<6s#b(m62VY)W7VK3?04by_t5N;%I4Uq zgpHV`)+Ac+$-Q9qu|@-bpNQgxO|L>k^bM;j8mOu~Ru95t43w8&_cRvu1JumOws3uh zbWt<_hMcC?YDq#9WpvVr&Xr0Rnr$NHW+R3H(?Wp94k3h*BoL`<#w0JtXp&ZmLi0*Z z^F>h%@#&(Yu#EiZaSizM_KHZrvVCDJ^pb8bw+a57)`Hw{2}@?SEfddfDd&(2kUUx> zxgl;_6Xn!7mUAcNeUrDHsO)wKS3}!kV1Bzahf{yB;4DbkY;;9-Q7vanO|`bV()D|l zFF!|a5Q!J{MOo@gS#JrXM_%VF@h08%WvmDY!26^BOj}^Rg#GLfYy&v>h=VU3j8?MX{D}4p+m?RSj8^ zlNV6lE8ev%e1*n(mmXql?0u6)vJcszLwd;)xJ)}NAr1i%@RYy`{R$6 zJ=X5W2ELGzl_W#+*1dI*mc*sf%m=FN3@TiB84|TM4>3;QnL$}Mk=aC|c9xJ-xUf?$ z<=weEk=NV|o+jrSK_j%zXSXD`1AQD3Uj}4{(YV!S+ICwdH(eD9Y)>#bwd&xSW|!&l zv|Q^93$17QUh+!;hwR}0`YNANZeSk7>!vEC1b;}zUN@hVkjfOUQK@z_B;i!$#-ege zl=M7Ean1!2YS||OUU=Gh7R5OXY7GikGWU;)Cg7qm`ODX@ZM62HFI!SvFaQjXx*D^@ zHtd~j#nokiuT*|7FV4hOaJNekj#E~>0XoCAeqwgBS+R1h>bsq{A--IuElaPd8a;i( zmmrC&Q^GTFL5<3$S|n%+Gb@%pv*S+20hcG}8pX#&rx_^((!KwDQCi#O+IMoGps=y| zVBIu0!zlky)tzdPWLbbJxzNflDG%Y8tL%TKk%hp$5~{LGRAnB;oTOJH1QZB$O@Pqs z-PP+Px(1N)$up0-BBEu7@ia4oPPQtyhKS>s49%&9GH5eGqp4l;#auZA^5BD|2H41r zlrS;38P5i)gqhp`oQtkfDP7dvY1JNU%wp~BR21EYvFV^%kjbtB8X1&KT2(_ITdFO| zlTptcBxcMiDF?k`=Q+k!4!Esl|Gh@wQ?YAUrbBCltQajN+#q#l9HeJdWlOt9fNzvq zEQQjvZ(8*_r)ffc0;Fx$VBglu@cw(Re;9MOjvq|T3YQhOLC@ME*BP_z{ z1BP^Lbh_ub8W7)-(>fCbs8RxBH;|p70L!bSgi2jNoM4Foa2Ya>sj7?Oklvky6!|K< z4tJFV=uy8oBpx~IN$xQs+WLM%O~q~56dc7+YR}5gVhQ5p)~~$B8vmWTY7{&zc9o9!qcXN9jaP zLWR%N%DQ7^_=qD@+dkN3)dTezVkIVmwn1(QY$?UbuhE^3onNet>T5yXQc)qroofXhXH|sGzXgx=mEIK9n=AA zTy}%XAl^GUm+3+~%~G_tdlNG0Gr_~hT7?aYDXU-rJC?$$2^2*w!cMEYiIYO`Bks9E z>$7!l8KoZ?Yv~2z4!WiLBKDF9T+krgZT20d9+BIOPCn}G3exH5ihJO}NZki`B&=Y# zWi0`AsNK-6464hPPET+_j#X0E)?N8~C zqM3yjc(2E1C8xJMco(`t7(ZrDLo4P^z#O0txLv z*Th_-v^pZ;Pz^_o)%@ydy27#t_HmZ=kRErcL(0JifX^b?hHHTS=2{?9CKS`jf3#Zs z04@)d`(A*e_;R)gtSey1%W?}yf%LG(89>9Z0)mrm*SjMkQkV&-$k}Iu;xdUBX588P zpS=AkyncbYYTLuKX4c$fx5hfFvN8Vwc25|{xLJXksRxGuLzxug5qe|xGbEdrjRPgr z9eE}>=Q;|IASI*)7v-DPcYe^dB_|%}JuzUNMl~LH)g9FgvBwoxnh+VRCJy)e6W|_= zCZ+w0Cn)fA77h|^K}6p(d5j#MUH+s3D=zN>QO?{&>B1559*Os;F7^m z*2i3TtOMe1dSI|%3r3J; zSEQgm6VQkh*4aS%^AqUostlq)KV5X8)j2K=?$Wjm|L51=fd>2qWb7)C$I_c{WH=qn z#%_6WWP$a7%ar1g9vWnYi`8L9UbD*_v^}#lv_zF5C3Ew%1YZ#?^)UveKY%z;n z$sfT!)P7buhLzWxV)TH0U=Mp4?!;#1gZho-ly1Ww`8I3ZT-#QC-+w zt5m$G-Np{Au{5A4XAxpI3Onclsp;afDAtUkERz+6iTMW*2HkYfJrW!@K=Y(a-Icu% zOc8V_;I3F(aWLdMLGF34@A{g%+M9es&}zDa&sj6bu}Eb9G^jqgGR6<1S~hz0u{CJJ z-ec&$bSijB^TtNr2pdu0U|y8MGG1k<=( zqL)IS>NvgLIs^A??g(bStkU|_tf+!|=NSUy4!W#E^}{<$VVzWS{b@+MGyqYp+=HXi zpuS2k#i1^(2U7)s+X=D81kkG1FcMwO@w^`7>pGPsUkDGW@n}FK zEw?oYsQye)u7dtv?D-30SlB=w`3N&sJRnQB?Re@EId?-eQV6Y$O}tAn*L1eZEHGEk zF0nNrH-HBxjQ&Y;3=WzLRAKr`5ez!VNPh#Y0BNmNwJ5OE{i!ibk{fzyCIxsTGTS2z zw!N1dG!-QGILt0bv!UZVNdh-AFYR zxoK`br$uPsrbuCi?Nz%kb~-1QdY1pA>T~85Ae1f?n8`}8&!X&Lue4OwQk6zxhrpV# z#S<7eWClnphaACY=o<;4ZuYYRRH8ylEi zVrv=j))m+j$}x;y;6^jMzG8?fZN{Zy;zQBo8(~)%3R;ND^>3Q==1BQcLv)tb?$a~y z;$w7NtfaD;s3hf;+?;J%qb~j+7Y=>)Pe*;LqQvW_B`3lYl!42WDge_cY|}FA#E22SD>a^B!o|fiZ;3_!U|{MpvAb-{!_#m!}@9m-0&e;Hsfh930-9 z#tG9jLH@7(82($o0Dpon_?14-Ki99r>nE%}eiYt*d3m&%bN|2*xJh1)MM35dpg6V; z-BX0R{`xM5$K&PNeY^;nDKGW3wW^ zUq$K3_g}pJ98P;*y#4O=S3C!P8h9pr1mA@;rhb9fgB<}!Ut#n?_pwJ<_NJizVD_RX z#~Khhw51evmh!{-7gSwb7cuP7_$>`GflNmMK zdB+TZ{+eq!=n4DqeI4%bLmKj9i3o{xq%6y84MTlXSS zUt;O%r?54*Ql@*BSZyfv(p8z?t`3pV3+MnhVu2zDWObk$t3EJT(l`$jkY0q5Ey>+U zNxgBsfQrm@jgI2g(8Ed$_0l6iR6${#8qh%HP*tUwRsbw*cJ3AZ1bG6%?3o)zN^!SK za2ql9)1cbc+&VNH zM}#(!Tye@|XLpHVQmy!w3@yyhY5VCnc&&!`V+bQZF~v!m=tz`Np6d zs{yWWCM%peC2?K~ePrTB_5`)bhZD^);C8dP?ywnwe5^l*$$$xFRH(s+NCOcm=z#7; z5}szjvLV#0o;Dj=jc7#Dvcub|6@2=!?97La2zTajkea-q0s`n;`>Ik!k^UhEqq-!7>>EwVId9fQxA%D6sywi0ObIO`?cTy|4T)J*F_t^#oA3Gb3flL1 zxPj3qD`JVJ2ffMxG$NE%&Nr|>xesNr1yfd9MxghfobeQFCemV}aZ&8grNRD%tvU*X z>ZIz0dC`OM*C{}5T8AC8RTiQuTE{9=;bRg%!yUq$eD3mS6X!!Q1GVA)W6N zmxO6}mXx6OvX9ehtZ1@FXMswUA&Eil1=va8k8I|FEOD)SqgwoJ_&0x@L-7}HpE#Eu zYtgU5o5=-z@%9JEl78{}>Dv#}E1$pqBD{T?9{BHrK6yz99jSU6RiJ9`4 z3b{)BVIOq|u^_2N?j4rIOQ-JW)Z^LvQXw>~*yKQaa8-sIZo?W)9_fQ{Gg18&l2~dk zqtM?DH2q#qSGVZ}3?6c5z7hjUpyQSajAO$>L8Yk1a=$WUg*0Y%c*~U0V^Wmf&ptVN|*e6&a>mA6tca+RbzePUV+I4_kBBOudE~cSU!D@DV|s zx6q{DzXNPQWu2kotm6>sCts6_83H@OFH>AUZ<<+`OAYvwvt#-@e!@x74<@vwc&<^m zU#2TF$u*Miw{gl6>K)77OcVf$$R1qt+G22_a|HAz*#UI=Twf?*&C1;8+@C`1OpzfV z+;_l$yptq*g#q0CteW*{c>RU??HKwDHqc8;F6zF(J;PN7)fi4w=_UuR_UM1%t;ZUZV&}9<1Fw>*_N0)s8$TF|R*?F^ z47=LbZK3AO36L!3JvRDHZ+L*cPn>Jdy$H%oa~@Qv0~@tTH)@@n@0~OV(sCU5*=!5j z?kJ#-(_Dab|2XK_n9n#>l+0aWZ0eSdJB=%#7Oc)%OLoXA+IS~c9^_IQj*dVe0Xz?u z&W^GRq*eK;C3X712I^V%bsjAdk9T#gS!@N@M;{{4pcIBt#|o_5O|@^y@#;~ae*c1* z=%(8+j@^?&X3aDGohzr$O&ENk-|U^v&N)iJy2*ThQ#=DIW!D#2erMMQW6nXo;ifmP zKP`QIGU(!b8dZYM*IP}5YLdL!-f?0MD{pbC*#X#1zuXOT!+In`8jA({HYix_j#d3F z`Sr6C17-wvxv|;sg7A7J$4^~wCwI!wx4`0C${4Z+L2Q;wQlavv7-0uRGAzX{+sg|; zy}@VEoya#Ms+Cf9&Vc+R+_-}>CeLJkHF%=7+j^uE9x$Rf)%v0x95<^OAl+R#-wsp zf+hKE?3eXGB1e?U<=3?a0WU3FbFkZ$SYrc);>yY(#b2XsdQyli1sfnG7&wevYCsTo zFUVB&Yq-3_SH={p0byOip$}bA+G(qHG6upsRBW;YodWGyOuOsBp;*JzA4R1)vKG0B z35z1NjR`dmCP+AqzU-5>s(T@h52w3th;E9;DA_$-4Y!6ph%4$860K55Sp%aa*J~$f z#D=n{hKPB917joaF+5$2`jcKy)XEb6my~ryv#j${`IS~?w56HCVQCjvO{%rnG>eXT z?)CVA{M)Zyf55faC;8Q%zgk%-4=(S26kb1-lJT4Gg}0xj&w(ds@1CG9q-#MIb5Wvf%;kLisFA2G!N=Ld6JI{R>7d-c6zhL!auTd0$Ia z8A{J2E$kIGa6Eiw#j8!WY;dtxxdEI?d${e8EGWp7A_ra{V*)UtP)xZDbz5Zlnhz2GUzaQg|$dZnNoS2^tjW? zzMLu|2Z4F$h!TbEDz=m~2nAk4YSITC&TwpY$&E{K2qC(tL>=1mIc>z@c+f5&PNCxt z7!DI{j^Lku^Y{E1zWsvbxCN?Ope;VnNJ({d*)Z^=JhQ~yx+j>`9EmZ3a7$mOw7+0% z^7LUDw8X1~mEqBMW_LB9DXk+x)hbuYmsBvibtU3ikzsjPOL6PFLUuVqlM|p(za}P5 z`S&%^A6^_vb{=m?eQVd>fzq;?bMS1pu;kYXQX9L}$PX6)qcGR7bSGcJ&Trr7fs=hB zWrOehll;c_`l9lP<3TOfMGF8r)z(V^k|?25_%^frsbVuK^>6c66bCj{iW`QWYu}j# z_%6v(?n(>A%mu9Ol*6hfNk#ZsM%C0Lc3YhQ;4f*1E-lySaRokhb_RJl04_~=s;FW0 zr*<}&Te)(uYLi+0SkOX7&ugeAHsjR$OJ^~$*+;lKDCZd&<@U91H1?w$v`h;|hx|Q1 zhHt-+KI{9hzmu-swcmdpUQ@n)sN8@7YE(a109Zh$zs@=Nl`>aNCCD})2WQ8KN&Ta> z*y`$xRmy|x2Ho^qdRdq9nfuHOvOh%Jht6U7ad zPNY*bs{duOF1r9aO)dzGR?;IViHu(8$6_suF*)1Xr-E)PZ-H8r^78#{_%|mtm#-+E z@%y)*rdL0G{b7K1@jnBc^Pk^-e0g!zCJb5~^NIo^S*MIs zUE0D}sLd8v2>4~qovWH&T1S-O@Y1<-yEidybX%SBrshD>6=Psk)b%yH<)XGyu>qQR z#0A4sQdr|n$ERc$K>>U?i4DAd^7e7M_CKTEIkbpB4kzB2T>Ey9+XV=wo@0e%l!U5r zpyKB-rpb_vE>^i{YkNYPN~PSXr4eL4*FEXQT2+`hUi9KYm)-F(Gy$YBU!uZ6rQjg4 zd_I<(x&SJjC#n6WK%Bj6xcZT=@*~;sd%3MD|4{~7H-TLVV3nWuXx%MI9Z+Ef6}*{j z-YBPa67WH@ZR5@!Q;Ch#xL#$QRs;?5$r4>n;)cm;+ey-TcKuMvS^Edb6M#4Pci1vq zdq2CUNivkYPr8VLj|b1jdOV4YB2YGOJnA~UU^rA;V3x}QGCjo2+oTw^=2$*RYkeI&OtEp#hld+Brb8 z8l*^=GK=Abssk1kl8Z@0g}T=|Y=ZDu6<6yMuvP;g)!m*(Z6d8l*mXP2e=q%my0cQK z0xIA)U3V$(=cCgWL&rYCTpNkeg$JoT_QyuxtHSu4g#TJsiE>Sif@PKz-(R;aeQJzGjJ_oU{?Yj&rC z#l6`rIfG($l8%eGyMsFlqs(#5koR9;`SL?>U;E1)%)z^)1zP4x0SzvlQ?@qgH?RR5 zn9x9fBEJzpG-tJ85sdwZ3ko2J7-;}i(TM}itLHNL1?u}nNzGgCOu-3f_K9*-E7oGP zgrssF01Gv>rUsy@?OA#f+(~EOmNT6mY$3IQnJO>Fv?6qAi^l1eP~z`i_aq+U;bqO!l$d22gN3@6;4vl&rd}ZtGuBtutgU4Jd4}=e)y~7` zv@GYu5I4g_-(7WKxPV2=DPau{MeLc$6Ym53cbW36G^%`VTm@H53G1P8CI2U%oTXzk zR)BvwnuUoJ;p#gEx|)F&wHe2bGJ!EZdixCz%s(hD=vy9`FH$b=$@3Dtg%7NAI>|V9 z$-1FZhn$7Yl<80bD>lKo5i)MX2^$ZyY3@}^Bwb!Fl~s4Hkeh_Z9;{N` z@b+%ZR-eA(ExS z$bir{s#1YItv6Z~3a@QFH+h_(^wB!a%TcY8=e!`D|5B_aF zG=Ki~W6q0JR~Q<^pS*r{(eK1ae*sL_SVc+I>jdBeP;5`Y$aZCBX9C`J zGK<{WJ$vlQZ$h-BR01>H>qBL|q?$Neu-)7aSXX-$druI;sZEzgromx?QV2I}GxNp| z_x9awZWkZs&ziM+Fx&#S!1Bw=RrgPxaIU&nI)IZZERErQHVRH+0qjlXSVvWlk#c?& zds5c`g+TG)o)RlpB$Cco65guVsRsf*CfwSfGisuJ;jSlTu#2N&34OMVo3*OlgmbiC z`g&k*ekJe%7>YJV?@-`5(-G`mFXu-Cm8IxXlx2x$KEvg{-xlJ?7sb37XL#pG(5#j=vq z!pYxSl~f5tNr>OE(qszzrCbt*#)N^oJAVO-$09G4Z_CTEO71fH_)Xy}W^__=LI5Xc zGV9uy=JVXnOEBK$U~AnkM{4pU`^%9?1!1~@ScqwPkt(KM7J4Q~5eKaoOQ+SYrq{N6 zHYs4nGlcy~gbUBkFj;Gt@2hkf1{js=xg_`{EHw6^;4Y#}?wgj+QA*K7bTgeIZIoRl zD-lbiKeI`qrUl9$tm;^1cY|(*9n{W6in>{TAS|VIv)v!yB0i*?e5vc)%O88#<;cGg zfbzh^a!&G(Nx43(c^39Sdt62X?SX&LP!NiE?*bRa$2NiRHst$INw+E)wvEWdKD-w!Eh9~xZzSBlAF9| zE~Ty~C_s%hTB;9}ZLN}f_5_BBxz~Z!U;*%?+}R9R4H1`^gniShdaCw3wsQ5PWBXJZ z)Z2}|2uY`(<8vs%!++}+ zuzl$_fA`^m^8Wj;zflXVe|r6OkUxHTd5JDE3I_gqnwXEPtzkJ3gounS>m=Cc_ULik zmL+FdU0U*Iz96JNIvD&osF^;oD8y@Z=>xYl7|3F+Z$L@d4jz7fgo#|O^E-6QPRn1p z5eJ=)+4Kth`>}`%@3$pPHz1xQ@6ta>N{qz>k%}^uB>qdq=>7_2*l|-N;-2KjWh?D2 zNaBfBC*Zi;4d*29;j}qBqOBnn41QPU$wJ(6qQ=RlTJ=g>X$I|bh`mRHcB2JPHPz@u zusOfN%V1)nM>&`jE?s=<#MXoNa`0IJjnPW11*P}d-9TYcxE;ZFklR+Nb&4%%~AA(*MOo*SjR zH|b($*pc)7g%GyG>o?zlO6?um6U@@**bv$RVjSB`(l`Kja`wzT)h8h|kmlVjVC*y` zcW!F>kVgTM_9slwkMY@(YnA1=(iGD|sz<%Z1!NZv%dsuAz9q!QeYwEUY=LH>1BW|H zZ0VVlw5%$jjk?laSMI<|JR@#oysUmC)$9l8) zqD8$PT_H?LITnz82YJ1U;B=s*EiE+o9^z8AfJyUW z=WC5sc4abOu{{ac$bH?NcC*k4SxzL2FW-Ltp)Pu_kO-agTNwoddlh@QI3OITWs zT!|es%fcO@rL5#ZYg+EzO^!549CB-=P?ILcPCMNHh$IM8CSmG?Z9~Unfw(Ic#$vPw z{`MrBkzPoWqS!R<7T19wt+iIqH}^Zbn%AU~0_>tL-O1}=p5_{Jxz?pApeZKj#)|_p z4aJEzqF`gEI}lL&N#j3>F%F&DjR4AF5ifV_YAIAMU155f>Z`1VCOs@S@0X`Ihs@Z7 zzm1>E*Qu9$D*Zz%Nk92|T9B(wKq=*>k^1G@)@w={QoBl}3F?J9SFdce#_(cVK{%tP zYiOrsnW%g&=~V%BDfo7nZP8f<@?bU1!r5HNwSK|y5C9f0lqCZ)1*XvYRr17DkJE4d z;k;H<^xVQD6^ZQ5DrVc4gu*o#8Wu6r)kRRZyerg|5XB%9vC=|dN0C62>s1vs&k1#{ zrJs_6+>cf*`0`4K74HH1Dnxa>A{1m59}b)je3zt@Yp| z*YH%cr-6f@Qz|Pe<-xz@DCN4#O>Ou46=*Qp683JX zd&OZf_q=2{=xE$oO%37@h=8nNf>Ir@uyR`D>n#=cNn?)4QaOOku1W3Ej{NX!^Ddo+ zIgtyT{-$v}@I%TQ7h?s7^VX3jG;W~14AW^SpfFyqHpdzZ=|Xa?9cReRf%E8yZQso4 zf*L}+C5O02=!O}1U(%pf9Qy0(O-X?T58pMw`Jp{*PjHwq=t#VXFEPCT-@o~LH*cQT z52P^H7KUSy7@$JVVwbHeP?WfsdY6Yh52qbvNl9Aj1#@$uN=uGx#MZ#l@-;kWJE1!%grTlXxVHN4mJ`hc zDjnKdvDg|?woF}mi5{6OiG zvFIpv_NhC3oS7%K#~HP!RNxWNU9L4@S*u4%Nkd`)F_%sa;j~nBF1n=q9oT^rD0-b{ zRd?rpO3yaCoGWx>>~34-i{gNo!Ch$Pof0)%<--Gj;8rHk!5fiV!j9uCSuJ)^X~K)Y#c8O9;o+RO1$q35oYln#}&lLAiJlkXl? zI-LxJH57xwm1u|qy4;EQEA1NM$wfrrW?b#I{)8md^F{UPInz{SJX8TKm58wzdLnJyRlb%T z`dtswn4^)JR$=fq-l})#MkwX(f|~1)BmNFphx}#(S0{C)`N|0tPdB+I)?o@PPFI)! zCx-&;Q+rA|ChG&F*wJZfJti>4=|Q|`_tPm!#97&98FhDv@J`5-Y@zjtd~@| zWBxy5EN&;V;=?okZ&h)~lF|s0!X!&lC~pF02i^CxSEeMOWzB5B10^|TnPJe~)eF&{ zA;c#}AHUF4!a0w}=qNuypsN9l)hW6Tr}}v78I6N2Y++`{mtY!o(u>;Y?s zi}Ix~Xsk3IJN1~Zxt*(20=b+(l4J?mLWF2!9#v3&<$ERAlUpn1Z!PjM9hu;^SgQt9 z=Pe90%aXcm*4%E?tjvc0F}6EET2gr4>E7sy7+B5Hp79gel zRUZ~%>-h-*2tPzu_Vw$JQUt?A(BvQwtSX=x@qnPsOHLZeJQi~WjB!&Q1B`0Ih(!9G zQci|#X6L*CKjr!su+re3WF39{v);l)eKGi`I@M?0CN6e>8W`YyR-@s1kn<57N&Rl` zvZ~{J#h_^R7dxcKcvnjp63*k(BLbL5 zt^QJ;;+@5+yExQZA;;5*o zQo`1WN`LVATiXYbe=Yf17-5m-n`#l1BEjz1LLxS;qOxEZD@Guyr{kh>vy!|qLGQJ| zAN;aNFqaDuP3ak^tT|QxA-pA$oZ^{3vN|I%k>FnoF$nKr4?wAyogTU_m&AnJ4c`j~ zJKj;-P|e`ZK7E-e%!EA%B(Jb&MOZ+q@ySB9)JaKgfwDlQzu!2rpP>zA5=?MvwG1}P znOAvKtNu_5J7}6)074&BwR@}`TkKHDx80z_hW?zhYZY%|hJagN<5&&=n2XxSR^>@U zy4U$5mrHU(-rb0_4|5|OpvsrfFGd|?9fkA+H`IC|tK}(}wNE#>oO7pBGKdkWydLF8 zx}+qQ0)D6bR0C&Q$l)4Eb6SQI$mv?ChQ0F^>wBD2HsQT6TfGk@5;A*LV)bOXAm^Zs z%j8ElNd^qjY|@}9*H-Zu@n+qTP$y|9(3&8w3YAqU#3qgqLfawwyNk*s*nS4zn@b;f zAyp(=sIRyLIE}3hO!hfZWuMzT*Jw#!lBe_~=ei2?4{!ep0_mqAzW-0({5=#!pjq#g zf>tf5Xz{7p*5M{e!&|spU6i?w0^B;r+3Rzy6+x~r1i#wA#*`h^Y)}_1;wuy>qu7gxorKFe0IJ1 zFdpk>QqvE3Fpy@Bl-3zD023Bzac2zd`x6*m4^N;9{V>lqLy}-u>2B?qmJ6N9K*K>C zuv`)y7P!4~mv@ffqh)v90WJnFK5m8W^dKkpJ_mx4F+92vVFI*!E{$3^)#BD^n5i~4 z=FO5sBpRJor33}g6di9>18o7>3>#2zEqdf$S`TBP6eWBB$9{HUM(0{34#YMukP zUyt^Hn!qDvk;g^t%^y>Lm7v6m*s4g}pEfE4h7;!(r~NQD(y;5C%d$<})MK_y*HUbB zF#TY`x!4?Fom@_8&9)h+Jh461)FrGd?-c`Iffb z@)(5!aRSIO$97F;T#-AddB5{MQq{RBhVq#0)oI0~U>o^&;a2>Fs-<*9@P zR4N)}xp82QcF2w=Nu9G2FSlu@oRGWfDFfFbL;(02;;2?GjCULBJ`fw1M?)$TXh4$K zuj>Eft%u>oVk`-*#oPxHSa}hoYFJ++QLG z?;#LAe*0Gh!pEGt{L||na+E+RpNuE~ZEe!1ni`pF` zG1qC@3UZ;*RW9B{tjasQoNcJqt!r@q+Qm-e>X|k`9f0Jl`~%--#AkI;Q1n9ehPj>O z(m#W5SyCf*M(>DCE>uT-HCX9l+Ts8+$&6G3t;{j3BUH&$9EgHv!DpU8zJptZc|4ng zvDEOFbFIN9o>K0qaHj(TNG(0etB3n6t0@U(1hM9VgpVONAP0iIEi59j`{}4D3}OP` z)vg!};ojD|+P&9~MV@ClSMleimIUnJd6)rO$SS>zM;{ywjOYQN)(#YALjq$5%T!k5 z08;V^u_VAyI)$&0O5ZMBa@x=}kTYqa-I`^2is-6hacOo{_RRu&sL|A$1Y1b@A+%H@ zw?pw0ehlA!0U`gdy6UMp!G2UrC_Irqs7nozWGkJdMGV^xoV<#W0h4Aw`Zl48ksvpY zWj&4#S>KR_Yrx`HDJwZ{0xBNh`gIJwfh)KeUuuZd^{3hX$$o56wem1l#+-QvYiiYi z-%RRw?r8Wpqe?Nn!C26YW%A8oSLLE+=)i@yv9YHW2ECDG=pgEZvWwe7Fnb4k0<4mXpqgYE)m;`pgN$ zNvUPhvumwB$ej(eYN-$om%bV#7*&F~^9D1Rf?Cy`95X9viAiCTUl=OIut8g`h`=sF z3Y2mq+Pdt|`WYJ7(n3odD`OlBqlNnP%6RjdJ*f+z9C6X%r2}|eM+oVq((dEG34irJ z<=Fn}?FSz!2b^BusQgn7(0vZ`TO@J)kp9%yU(~FTD+zh;;bY&PV(_m#s$PUmm0g7BvGdLtkiU`J(Tk9A&`bgt>HQDfeP6Yzg^ zCK-Vo%(`>wq*j(@ujKmcDp{$8NwU116OfE+Xvmyrn825flsv}n(8CaS$4w-tOr|0Yt2ykLaqy-9Q zI{j|%Ufk1SzMJs(Jl$%{Ez>ML-3v(JhRBl>Q;t5e|L&P(H&8izh)-m|NR@Nrh)wFk zclg78xtod*PcY?5$3z&cvKcV}l4RPASKKq5_xnp;S;>9i5I8wPbX9uQN0|GfW#?a2 zQnCO~VSQ`^DUcd_tvF&)sCT&`T$a^=5Q(O|pd1>dUy<4=DCN^`0ltG^p66m6h=M^< ztHd%EF}LWpu<}!Y0=uMQpP1*xWk{o(xd5Bg-~y$0Q5m!l;7kED0l5xxV==zYGtsu7TdW2(WQ;<&rNCh)rqC!*8mo-tET z$mDP=m_uQDg$wU{0Ik`p50aj<_WywEll$`loHM8=qU3m|Zeh|Z3=niP~tVSoztEV|IwgW?3#tkD7j;>)wSOLl`;Y(KaYyN5ZA%oU*BvziGYxs(U$tU#C#5i86{sG}L#sa|0v^ECn`^e=({3fVm4i2Sn9s4keJDOzL43Iyh?3O zB~(&Lt*Dgl&LinN;V<-~VI@9y(FS|qRxDphKaO&PP7)g3Ip;q zSyc?5ln4_Fd~7tuf~r);Uy^Duw-R_gq-mrf)%I8pUHVhYQw*D-=6bTCFi<`OW7vT7 zO2tdBKS8Qs2A*LmBPRS%YoNQd+~iGbKLqB{{CSne$)E0uy>-S6C$wcPwI0+67? zwJI_1E?WngcSEwBdtv@Av3;&GSy$az>a^y~TRphP?Yi#8Scu%jKDOI4|LUt(@@rocPxkfWx8DRl`1VKtchV%hnmNUP zMjMfw*|~Xr)Vhc7xHw$Fvl|O60LCM_b)r)?)zv*MmYA4IkL2cO+K?vqV_S zMNKY9K7(dLEmb3q*>@IdB-YQUP5`9dA{CE`xMGwp{ux>UZJ|lS(=VebuQJ1&X?66$kPtom_tXrvw7i3 zap9I|`10{2U<0bgi{r%FGznwMA@#J26UH8$u(M)oQhu3jr&F&%+i z09!Zt>=7-yl;RYPdk*t7$bAI7FCIvNw7L+cWBR0XHhWMt45|-x{WK+EH0%a32&V5AnMc>{C@q^R-QdPdQO$fIp%TxD?20%IR&)U`sZg zvL?;8CN5@1xjqFan1`%1u>ymH1Ig};yQ#rjPKN;BEpH*-?U4Dhqj^!$3mbo{Yx3%w zbj-HW89J?~Idq%T5&brV@e!^9~VX%;)XyfRST*RI2sK zwQF{pl6{v_@~%_%dw3F@P2+xs1;pAVX343G1#?}=D_eaz8Ii&y$hk#n**WcfmRiUrA*9M(mWJ+}mjP-AHtTHk?wg*wua+Gx=ImMtDem#!a@N=7j`d=Ch> zWqN2qJZ2?KNy1lbwoX_$=q&c~nSB?!PNGl~n8l%1RLsZVhD+t5N=cTDr#nPWEL4*z z!&58*wF6ry{oCLVz5 z518`s4r#vh5N>ZC)@3ijBK;P5>*z4@zAN6i-~yw)F-eCaR93IdEZZP_=bH2Y-+H0h<#@9Iui5QE?95|=If#KnI4hACEoz4s$vR-<=a(7NR0 zs7P!}gD}9`nH)PFxX{0GElcp{?AE7x-g!dZ*K?Ym(li^Wqh?a6>!*5hT%^=nvs^d3 z3$#Vcvz8Xkyn0&|eIy>Qtvk#*tRjHKQ%}sjcH$0oO)D=9jnM3?0|95K(!*tuPuR04 zuiv;$wJwt@i5)6@z~E_7vw`#RB06VF>p-4qW${ zSNi(o=X>8twtq(!I}GM<<`5|Y+h(_M$5d$HFCza)5?qCE63TtHKtjJ@0i!z}deb6) zEL+|H55QD85{Nbu(FA9A*YN5vqNt<$==hq1u(1WglQ-{ej+n$(_56aA`bg<6$ZfIH z!9KC)b#ZKX#7K(>GPInX!WN-$9Mx`~R){E*b)NbXd25sqc-eHiK-hPO-Wmxza zOowy8ezi$b_hp{i*cMRAg#kSJhu_;bVke%Br%3Go8pt!fftWLNOQ&ODLrvHP>OqXP z{D2xJs;IF&RhwPhp0}(|($o{qz`4yr&J9X`z{a439uG*4%h$bja>!hj;CqDUE)C1E zTd+3(R!dWr?ZV}X*wVGCXCRW#qIBq&m+bakCgUuabt~u<2O39v5@y8_^rMB2q|{5H z2;{hBVyT>a6A#=%nVAn$^Jyp7_6gDO7SM`b$o-EC20^u|Vffp{&Y63(Kk=0xvB~~X z{=6^WKKoYx@Y%N;jL$x7C_WFb-@m;7VR-!tjG167Yq*D8fNz9<p#9dWW-?J8hn$8se~=#R zYRaB-7wnN*!a|7M?M?>*x?@%KI*l^%I5%utHaT|2gyzFIgbjIpjE<9?u~Q}FJKS2( z%E1hzW>Ia6nyFBJ;>nl_?QO3Dw9YC+$YJo=cBekQ1V0PHo){W)==ALU=pYA={p8p{ zQ&XicNj|wvK#J5HfDf=}f0}SpmK935joZHs@@{Se*nmWQ$o)rJz4}x?7}&ZwPuwsj z7?p((debhmlqZ9fU$UzxEw(YiQM=LgoT7zP!Mv zg*}40tDVH@^eEUDsEaBoitg-SnS(NOV$86EC%nWAu)cWvI?z}32XCLK3HC?Q#FOEZ z{^tJ(ufGK&ld0(*QNN6reNL9AHjKfGRLM{U3f*w6y2iw^6{D>>k8ELoSry*(1FOBM z7%n~Bp#h#A#pf<>5;hnsJGKx=!s^JKzVZ(!(0_$lZCCRq!h!OV!=-jRn*!K7a$n|mc@or8R`c0sq-VHk7{?{cS1D0 zVOa_j9XmSEG7*zCp2xBf3Ww`gx*t%aUctg`raoLt(q|g4yw)}mGNRC|GiecdLEc*M z>*e=lJH7yT!jq~A?uG-*^P0Jr(>^L0nRS4Kb>AeDVXKxpm_w1!S#`{;m~|BsO|~lc zH7YRgr$&raKGH5UC#2z*WVU_v_VNGA&GU=buXRlk3`TOO#3%ks$B?}BaE4Qv7)6Fi z>b5QQU9M@`RkXWnM$3&5vez>*P&nNrb=H$O#$?Rs_W_J{7q<_F=~6}NXIH7h+CvYc z5|qy=CglV`4pm~6Ahvg>!BBE3QpK@Fm#9wD9d^}Bsi=dG1Bfh5+_Nfj4)n2{AmsuF zt^-6l9oxDX58UlnA8(=bm>oSr4d>fJKVc}Kge|8(Ii(Fx(^C1T0j-z=sXlnAb?srX zShiB3DG3W%^I>@Z&K`>g@jYD5sz*G>%1@fqPx|5IK6nn&-hANNs@ucUCQAUYz z&y}9ikL({`=T2;{;pM3Lc^qhO|&Oz{B4r^ zl+GZMBYDpo{FDQz0+tC(-9;_miF>ggtoz36gd3_$Rtb<6CWr~dkyB*;`t@JK|CXMb z?(0{H5JDjI0R0s^gjGG>)}qHS>txmL=Jnxc#kw!|I^0~u8Ct=v8Wvnc6o#pAeC@l- zycbwSK^)dgT&w>u1m{Fi6?aEn&+ipRj(z5U2lhriD5NVnIky;0dKXy40Rj*T_D!US$0i~?)p-`)Frb)TA)*H z0UjoBsv1@NsW#Ypjjvemlzr9Hw(JmP(%%dri4$4~Zn^eCSmii?6fPU zYF%}=qO$YMKrggU8<8fgi;TUNZRxSp-)&OR7%zVn{wyb@FW)}pfZ$Vq_4Q-2C4cey z2S{uFIK2Jo0uB?h*4OX<32e!ZxA^09i*PQm)i!HFan|l>Sgvl|7z{MKbO{^{NYfAJ z14($}WPFmucufx>%QdYODF92ZJ9$0J$yP>U(HG1VblGUdC(ucKTq#P}=~Mv9XBbIt zy4!>3w3JF1ePO`XtBg`6;>M?7GHghEoQ(m-MQ5QXCw$*!Il~gX%v;>AS7q@%)spmV zbp8}f5?f&jc69UP?yg>7bSg?=l#h0D5&K4=>~K}#A`nW)w(SF`GO;nQeKHAO8ObYl zUzN%lPIepA&n1Xdu4;&><&=T$&4I0doe4yj&dT0`3iZsmIe4=*wSk1K zhX};zRo@sZ==0fB#D^jU{MS?itTNRmNNJJGw7Jow>eE>tB0+ENGKnEQ$*+i8hvtEO zr%tPOXWZKK%&N%5ri=wOY9u&^ln%cu{{{J99)vS%+kuYmClavJNxqU*{x2^9T8f@9g28&q64e? z4$>-b207z&{{rB*6F18llk%D9IH@XHOq#j-fZiuYJ`&+i+7YIxJeFkS1^BxCYI66? zLW-0MXmo_wjh$^%UOMb0>bwxqp8VS7ppR(&519NnWf6WDc# zDm1VvgPqF>oOP>oQ5Uo1QYn3lF~B8V?o?s{0~-!nV~-kKsz8D>7FUg(>lIgS2`{l9 z*y=R=%>j5u;U-QGDP3DUQAEF{D=I)dkUx5}NYN{ooTL3lyIva^wbQz($}A{4#&No) zqbg%OLS^Hkr26C@HIRm?DJ!d_N-Qx6x#$~gM=t*^{H6StveXaWJ_d^DMQzIL$Oaaj z*I?7*n@%K9DzHatLNBdIxK311+4c$*k#EG4?3==7H3v0`V~!c(odwZ5%!$Yz+Z`M* zEsZt^ws zHnJdC@P!d*?dLs`Q@?{FKRE$>!`#QRoZ8fVARW8F0m~=g@Ai0trL1a?NthP)QACZ{ z3ysI7@^<7+sNd}>)4_b_nG)iNfL-jX4}Fk0Gvt>NeR4$xCcjDEa8Bg0u{$LsX}OwO z|5nao?wJlr4+Mg?yv}m&)jr$YeZmWTXvqCMDCMUJ21n^LvFZStH&cQT>_?5=j0&60oJ z6UFAGTb`WED!fVg!@7WfSW)u_p0-CY2;m5f2XWAc_WkK`;X*2y8{Fiu=CfeV88BBO zodn#q!e^^bFoaBB=c$&S4GKJmdTm=omyk#tD-5q9Mk_WRALhOPfN(MllYDEkrlgxA zp|ZyyXC+ZN?O@YcfK^H{nSPU8F6o zo%;*{sM<@SxTf%db=$#eQYjJ~9HWwq{Y9tckFH+jh;6A`5^B>ZIYPNzAm9rF>{0E; zUB4Kh*E2i3M+HpZWQZMFOM^0wZ)K~ZS}FsWQO+&4W~;X!Sux=%_r7JjHn7I42MaVT z!Ve#kt3eBPOcqy_i-1EC2RU!le09CZ)l?ZWyOK+ECOuBZ-fulS_2rbgcP>ncO?sc# zb*~@4{hAbwEPK4AL@O%6pbNfFuxh6$0fB> zdCiVkh^x{l5HciHpoF$zj~YTz%u7*HoO0q9^l@vvwb{`U=@lK6eL0X<6!vvYSK@y^ zF_W|pm(IU>{c(Qvm#<$3KHx`-_fgI5;dxwNUL0|9)Jh(odX`WRNu4mv3@%opY0weD z)LgKj*PSqOpQbyL`~XOp&QuV+BSs2{HPAaV@lIZYd|`!Z^^jA8a&r3ziX7`Spz6IE z^m?r^B5@P=2ne6uGtE7`Ow-WilOC#|Qup36zFZ2}yBgbju61W*P+I%T9Jm9(ou11h zy~nIv-3`7xw*3e8g{oT&n5}h(pgGrc(i$WZq12icV-XHs4X7*&YXN7uLk3^c^yUMz z8}#!Y9J?T6q{Dxbv!~-?Ny6KlH>X7J&0>;meMORT(^}l#eVy_2_2lNmYS;zsP6=l< z8ZA4oMU;KaITJX}NcmQu15jafco%Cx)WGg%aufJ1WD;(nvTsx?De^=a)O6dOzYB)1 z*W}-g*FFvdx?j3;!MoLIe-I|g+l4^6P^=Xw3;#d-|NIyD!0y0rzUSzV4^bfB3$I^8 zN@q(ADq3q|2P7%o)JxonW4KwKawSWN&tt$IPJKWe&opIW28eU4=Ib)pY<6Wyi}$sR zL^9Q;0JWZd>oHe#`kmYmcPzN}ar4zYwU8k{FYn?-Wo9{M>fEj>Ap)aY!(!^$*GZ<1 zj)A?(h~#Y6*Qy~5=8K~bZx7|ez&&>LVhZbi`BqSaSSBjhTjiAqU2gEGGkj^DW(V9a z4v@t3+)yALlEsGVt$D3-|?}~Q-1JM0T!>bv-gLyMOurLGt+Q^+z1qn^w&~y#6#Ksamz3jg?CF zP1IXb{M?8<3`fh&6@|AG!w8De5rRoA$M9g=0BA}U8dt8Gqy~e)CA$l^JeEx6qT5nU zSayYG*5G7Ps5a;})!u$=odG98{Sk|ua__a=OkB#1(iOx$lAUC`SY3jGVH%!nI4}9n z2t*^WZ`-2L)k>-}IMS_+s&>sZ+H)p9idZg)t_R#94bYj}B(V5-YoM1>MD`Cvx<=09&D!lrLl_tzncx=N2A| zH(PNIt@KmX(;hbJe(AOsDMB7im=?NA>W5NhKY#l?z54mvuivC@`TX^Vl0^GTg(g#` z-$%@yBpk}@)~G-xH8reVe=b4Zip~X-wSvIP)RH1Fkg6{N)~`i9#7c-o0DV)A%DgWK zJ=aqs+jxw~=9c|hE*jim9Ui@O_?+Nsy+uN;<;;gJ&Xa_C=Y8`itt*t}$%Th3DeePH zy3@FYr(HfKUZZ8=RbHzamsx^gFul^T0LBjCL&8&Jjf$#2032q|fD4lxcGLX;na~vV z0B)6gFDP8tO{1DF>1OD#{Ia2%Vv(W)64d0*XAckn2fk1_QfM#(@BW6#{i;M>qed*9 z@*5s(@TCS19CB)Z?5aChggjOhC1vg6bg{adg9PuA z&sc1H#?1d?dg6SQJ_2m|(W`okeD(U(f7Gv|s*$z|+V55gNG=?^Dr%!`FQA>CGO$+i z^|z6)<&{;OdiP=#09`-)!jAx=B3MbYG$KyYVDZttNwqLQYfp_xYs( z=mvWzmBQnMrkIpN#sP|Iv8o>we$I|}QFY|);Z06}-tHu~GLgH-f)85jm98tp4xu^LB*Mw-=C2eTdZIZ#EFnd%`$MuDVZLz)tF#@-0( z6)4>X4O-AANzMh`h>=l|%mUre%?U)1^dkspkP~HrU(V>(r4XqnOgm!zWgD3OfXZDP zm$VRup8t2hYo$&;B7PIze$PVaCq(@GgdfxA{ipEu=|!bd9(CdNM%z-qU|UL(s&WXk z_ky7Bq#UvlNQY)R6h)h_K zZ%9&+(_zT|Gtcjk0?o68VKO@gK81W>7Kt5jhr_wdo8l$ZtYNdwHq$@VLW4qSR>dNfa>vB|D zX2Xe?TOUj0~&;EdX3VqrZDXCuDVf0RS*D=~+5|p`W%|)i4J)3`x$l zR>qhrqD_yd0?Uuns>DdGE!!P=qofs6;po6s#6fWVJwU{I0nVq5PPa7SysLqaB=_Ag z+euGU02D%6a7(^o;j=Ia<{t~ghb;mH*0k_F-XJbvKM;2LTm^xXOQn^5>wxF-NZCOs zpjHrYt@@{gX4X%U#vJgKj>yOx0%33=6v#r9tacCF?~mwYefeh3mbSuEtZLIj#M+iP z{KC8rTg-uNtlVjNKol5A#}K{i-F85yWwsB#F4K!j0Ph?w`?#!v!nBVEq0FG2%`|YP zJUdMvIPZ}&KQ$~*Q@@kZkB#41jh%>CTK;VA%Ea$ED~$ zVEWhivd|8DqO!XJ!d$g9<~3ea8otj0p|t6q6%r=R9jE&rUjO)k;+4MiIX#x}i7d6g&y+3K0Q)Ef7S|}B@G?;d+I?1^mE%lP1;VcCyf|&3?T6f z9HP4(wlD;$SE9?IkJDN(%2|j1Qs6Bew6P34*eDv+av1U;dY@hwUk4u5$X}g1AAn@q zoYJx!o(*;xfN55k#l=nf@$4OBRE%fGa=z((RI1We?k6Fah>*A5>q1s zT@#PQ^c{2ck#gxHaN|?Y!2!4j(kOt*hi=~`Z!y>6PjXf3+bOH)ERNur&k0o*Bs*Fu zo(C=vXfXl+GzFyq_F;<`J8Hq2Hx>n!-?EM8>nGOgBe6>Z=s930TWXzMPR$HgJH-7zE%`;GvsMhRRkL%)kM&-_|{tJ(QF5f+;&Lx&f`FN`LCA z8qn%Wx*rUxR2yid?bnip+y*rj95N{$s25*z4bYg9b{fJw7Y2n|5#+r^<{?#2`ZyIs=K(vqP{&B%+_UTZyTv!$o4d;3N>tchR1 z(5*MlR^;%kYL!M??ve&B<>*qpkbaouw3Q#u`T66q2kh`{$%W&q*{7UOe;QuD&x7?} z-+r0?4Cf~jnlBNu9trQ8ViQhuRvAG~QqQB~qQ(=84)04F2mz2x46XEV7^W_8Gq6P2 z&1CYsME+#%8&2Ip5UyH^txK+hutx zR2np_|AjKdC;AC5wL82?E5moYAj|F1N~dSz-G@?SARrELk7#`5M`SMzo|PmhYg&M+ zu>1b5s#Vx5y2}+&-_|kUEXwEz^#Ns|v{DTYwX-V0f9|QU(qJ6~ zUdN_uG~_(P)!GWVD}jGY1}`1cU!>9X(EXCTz-{%YegNL*N!-z$u1v>u%uU1v=u!CPNDJ3)~$5nu&elXaEvkR&` zQKzm`IluxSj7`*!@>@{K7up(jYOCXPs2bfqb)y1Yd?JOr0ScwmVt?9k2XxYngP>h4 zXqV~}8Ih_(U?Mj8uAtmq0wJ*iU8u0uL~x7jK7kanGz1efbnVoL3JS~_g?6LlTf7n; zfp%OjzIH-jT2K1VD;KE5Wm}YIvAVY%eZCM(OmdrJ1v3PJ8$l8P}@_2t@GhluSd)|sqeI6_) zPpxk+0$XKAE%PYVX;Nfux4`#N-B9GCM2+2IQ@Mc%veb?f#|%}9IP}{)mq^3e6?TBX z%c3PHE7nM(>f7#Ne@leg3H%!@2APi^o^N-#6|en%y&jTZsk5HoaOsI|QB$FGRScfw z=xvo=eo}d8$mpn-1-vmV7Sfar1qw%@^{iW@+JvM5ea|b*9d`i9!R4X=$`|;S0Oqhj z)pV)PfQV9pFzn@}#IZ*?;$nY!N$@gSmLL?KENI=K9!e-uYvLoys*ApV+@AJ2)jBS* zg<k?J>6B!BaF;hVopufg{8cOOhmUkI7T z`00MRm%Old6z?h4aZj@3P+zl<{LBE)AjSw);xKz|my0?oCsl4?CqYRT*J8!i0&SpA zQ>T+UDb#?XSyhJC|B(c)G`os@@}&hv6mmLd@4*C}u~QTr*tp+pz^0;8JvDHqYC0>k zL&~N%6^CJ$tYAz@4H9zKN=P%2XfuNJFNqv+lp-8&O*kCL*w;s$dDNWr4Zv^soqBMu^Zp-SeIx(v0Yky6T|TJ5^AU;9up1hctVnB=e=6X&zDP?pOO(QvB%bc!joen5*! z2`MdQ-DcQKF%2JDEoD#ULuw)XXNkSHp7H@-$BSbavMv{vrPzK-BUU%sQM$?ChFsJ# zsGvbjxPanz3;`tddZ$9Z9Fo+2drIiQ3z`T5IOiNNyOVb*zR31TkLCYtCY@st{`v-(KwYfmgRCPjFzqS(_ zw?=a7etCv%&><}Om zjFECfCH**1U+RZfZ31L%usS?b5ToXwFK%Y6@q`SmMc8nO8rJrQ(u+f!RaJ ziC%wbA<-^SnJahc6^D};ucSz+gc>Q>3{V~iOtY|3r*HPNl+bh_z*&D+MD8Zw&I5)Df z1aF)uoiNr9q#IIQ7PV920^4z;tKJQJlR;c?Tag5~)4m;KmqzvcfK?}S>ePd1??c84 z!atf|s$(=tXy1XCcaVGscKS)x136jGB<+TT!%n@MdeYeG4tc0RK~98O=-5#)St>|~ zONL6N4P7(rLG<|umosEiL`JF^OEEoj1{Y_|>eIQ8Ia=>}VY~dQOO=wh9s;8lcFPZ# zcqIl;IQbYWuoYJA+Lg+^TNS(PyJG{CbK70Ku>@NFgzH+)&ULk%2qyUulei3QLL})e zAyBlhS?(B8`3|r}hiC9^W?b8p0;Ol5#F!A%tmm&TTGhWWp6Lv9T?#gk9<@gZX%29| z2B1PzpXBxTkVk%%>=$1WgZTZwy#6-4eGMVcPlB1k+#RF`2u>$8wW|+obS9OSml+!6q-G{p1@>-mE7zcsLDGT~e&#<7LdfZur}xq*tA%YN0`EIp9~ z`NbX$!Ft^QQrvAqqOvyV)6IQ&xy-?I@JHx)!R~UKjGrudU6Y$Sqk1gZm`5k5gCuh_ z!X9>IgZYL^jtPe*H<1{Qp)A#FmUErEBh-6I1Tk;7eJ2sW;YbO*5Do<~J%weKK6%>v ztU{%9dTonar71D$3awBu*39rrrEM>@*5UPL$ylw1*(^}29gXwN?Sl0jGn%oi{%gn4 zNr{0fRXun0!QzFI4J&DgEHBJ&PIP84JwJ4=JH3#CH^!CZamu>a7AQ}BH6XqysrH(B zF|Iqka~_BJ>8Ki}T$-{3`~#pg!3^4rZQOP%`fPbIQjMpK$*ffOPk<2o-%0iQ3^ofJSR^rQn+4Q9i z9OD4G^JE=}(?A_MJC!YlWELDY3SZznmJBZqgX@{Qv_7X;N+@V$flbQ7;A&F~k`K&RETe0l#* zuV2CO@TcM4dj0Wu!DMjUEh7XY4ekft!pQM}K?|P~IcU>Wrr9!3^%s0G%mP8NT$PW%l z7m1Pca+ST|KrVH8yD){@O!qM)&l9U~X;_rl+NFD;Xg-u^ATr5gSH|1G7AESbb;S2`oJszV!6 zK^7 zYrIbjIrhW8g5#2hSjxvg&Hg4R7x^%8fU^zGcr>}wD@c7&np@h39y1D}=zbp(^BPA7 zm)buj@kZX=E~kb2dajZAr#u-_qaEWI#IPH&1xhTwqFL6}N<4BqpdzbI$=2*7;wE89 z@X@hCTU`q)ok|QowgD*S3uL`M|tb3Y9!joMX$J4lCn*DSZBG< z-AeF?mI44W0Fg$3zNY3-g?YsH&ecI(QQM+1{c8VcRo-3d1dJ7deB{)-swXY{R*X8V z;@4`>NgxvQ;7uX7fo{7S!t;3cdjs4tJ%Z2J?uTg-hPQ3<2!v{{I|i#WgF&)u$y$`_ zoc#<|4B6~Nhk>W-f~a9Z^qt!7V?M(rwZF=b>#Bo@OkGzU5jBceUoUHQ(qdd_mX&!AK0KV9-EzwVP2;@BX5u(RNv3Rm03g>j?!483Z9tov7OIIgRi4zw z_g<^}GyQY|1lOA_5s}jFSk!g|&1xcykuh7fSi@c2N7Zt54mPdpcRN(LZU4%xG|ms4 z9)XNcvVd3ee=4aHDiB9*p1YV-1mUV^O!b`FJF%J1ka4Fir3gXWUQ&8so^erIdi?EmFT2G7&>41NOmx_gFxywNr^>L z#BYD3U?$LZ4<$+R_?st~`laE-B44Y{lf+StxU-KZzz(p4iogKeNg4{3#MPaaJK)W; z(+yB137{}ZMD#$6NiRs@KVOuDjHzdH57ZM?i)YKw8)c_Qa>qi^mo)mU@0y3&GFouJ z?cV$yYuq2%a(>)Z^~q}d^m07Vt&Jy2Fl1W!%_@uJsR$YAzEW>k$ew`92N8-AvvPo3 zGgu=^x(F!($(BG~G2W8wC_-q?ojKXL|Aq?QEy#N2-W$C-sBw+-MPY9ZyMro_ zq^-cU9-U0d^l1(^vstRD6U!5A#1n(#w)p4_E-IF?hg+Y6>Pc1t%qX8~fEpkPhXuLj z!7lJLDHJF@=_WPWzN$Tsfjf{la(7>|pEf$f`_?jpfF4ws$#pA^?A;BHLuQr9dHX^J z8Q|~$48w^c@o7P)r38d7rQZjVWIqdUpI#)KeT)Xx&(V_lufdA9|JBr_4$swrl7rV> z-z?MJD>NzWZ=JK&9>_ip2De94+pA|=ZkVE@#Sm^cq~tE1x$_W}S#$ga>~W+$@nrMk14yl zcrp*#GR*7Y`W*q>W!Q^`vSFn zn4aSPH1!!))SnWjqLw6v{{{J9+6+H_ z`vp<;hsra;Zq|5#K;u&}2j12cAT8A%RXfORJ^->z2q(sioDT1~1q<9J`5!Ahfr*k^ z!GGh?w@ild%gXnmm~EYv2}GdSwzSaDw+^dMKBordTv}xeW3r7=8?M=QW+=hO zvqcA}|HLE~UR!c(SxSK1cLN|ldRJ>B0i!Ow|Fvap9%QkIPAN6*x7ma=u|AU|(lIMX4-d1)D*d2U8G}$m0;ZYY!s=u-Q zAje?I)aouvHf^m{k^)@ylf;3XGW1y0fTkMuDfp*Xr%H`{tTr5Xp5UugOWCL(d5UwY zShz`$j>Ok}aPY?h3i6KF-jP1H)VVD^*L_@I9zoxsIpi1$#eRc20;14Ec(pNT4=9D~ zqiE%I61X1T1!}>QZ)JQz;tN{!#v#p7Z0S(alHo zzE&#=l2DXsfu6=Po+SUUU1W=Vz!j2cehV%wQs1))8BA%4 z8U{&$>iwfubS_1Y3o&$V%Luxjt!Wj6H=)cMnsqTklWMwq0VRpVh}jfw>`)#roHk%^%~e@L_p>XV0NA zbF|p0Zm%gqK$-i}E!wA-lHgXK&_4+jGz_c1H0nTyO@|{*g~qMxGm#1VHyW}-vJ#Bk zoRkeES&Z5jFq=2%0T~zoTPed;k#-aFgLY5jL`$&r%F{3ok+|I02(0QJ@UES}{fQiP zpp6vTmbCl4TU9&(o&n{9cJ)hQrQ7G!XZZhSXYD%ZI>mcC#buZGgRIkEyl{a++Uw`x z{pW8Vzb2&R{}z6bVs%YV*aspa(fx8V%_PHwrXfQMl$*Bh2QHFF*oKq|-;ZFq^&MLA zW$;Y~Yfutc?@)kqLZ=kvWs)T2b2)w4;(#G9jeanznIVYXjVI;Lbw&nkJ8;&-!$&u& z;&z5Fq8gNPTlb=DUo`w+K1;$(4FeG={Qw6vk^MErP7uG~XpqeyA&_oW$FfRpn~o#d ze5U~}NQUl8I9>q*O^(Gmyy~cS$K?Q5iX8f*<(e za!`uZmK|S78a1eaYt|M3U@5o)^Zx~X+~RbQm!-c9WV&gY}{bIOi564+k5v6l)NL>nhw_uhTJFv+aBO`E`Rg&K=k z?J!b`99Czic}0!-S+dFs!^z%7o|9EAIz1@9P98;j@DW)VrJ&&$OmeqdPm2+#Z`;WR zBuLF{Yz=D$sme2{raCXUpKVMEsm6MsRj{VbD%r*rZ%84*OULp05!h&59~c}@-X~Q2IL|5^E>>#U z0NwDy;gd-P#$1kmcB2n4tW-v0p9!3nz&_|SW91qL0eV*9#FIVU z93|zQT?!0i)`pfYQ-Pwh8!s>zj1WZ(^=tJcHzxSc*}0;RTDd!px6B7|;;C0elu%E1=g8 z4^*VaVWnBNc5`uoHc!MLkYH`e8&u+#eD-{8esJv2ViwF=!E!uJ92FC&L^s@Of4EN|kN zT-C6+BdVl+#>6bk;sf%+PK^{?oiZq$+Z!y+jwO0xLua|v>(3!_N#x0|&B)>XN8kSF z?aS0CKR*utqi;xtC)lf>B8peXh(n{gP_RBC|1R?b?5o*f)--T|IOzatnj zg`%hXm&6xLL3zHX*OmrKI}_^1ZbPpI^D`)ID>i0hb8A4-v2ai>7iuiqjCMl2gSlD1 z>!@S&1ARwMMM7fX5$^Utc)ZDG;V!t1c>sC~g}HsoX4+Gm^J$Xh0?_?VQRI*fGoSP* z(ueY*sVmYBwi_h<3G_;pO{r+=X_b?*10G6tg90d%ic+Qpn>f)DPiDJDuA?P{i52g`abU6ouO7w0&C}^ z$J2Bb!|rrbs|ec$a>(%3709uOm{INs_nZN!zM+=FH>h%dA8gD6h@Gq|P89`YYc(tp6up^id|~uYr%FM3h~O6b;t;eA&Y7u z9<<~}!Hk?EScz|H@XLvp{0O*fSn*PO77X=!j{a1-`ckd=NUM5M){&pZs^GhjkbFC_ zRi;rD*Ku~SngH9twmE>YT#?;Wb$1CEAR5}blxqVxDOK=L6OER70ph@VC((X?02Qu( z^PGULBR_rnV|e`&@LFHLeVru;{R#9GX6PQJYo0_1dsmt1v{{z8Bn9;Z(U8J)-b%q8 z1NJ2Mhb3Bb=F?7CFR(@j5ZMMIeqjLXjyfn#nJxHmN zbtji>DCA*mLwPJDTa|&bt6P>~kl0%z2L(kY9b1E>Wqs#L0nphi)e?sNcd1p39|N%i z_RfpYSSAYU-XigJ-C-luvmXwSs;nx^BH?lmkcaGTC~#V3-|j9=f%wM3s%&SLUXof( zP|F!~*Br##g9HcHM}Umd;+Es-Ze;MQ=J4>0vr|JZ=~U_Q&eh6X%HdE^d6gj{SZ!6J zURx>S3e4${xK!*k$<@7DRBfuLZ9p3XO%m=h@AWurC98wsMVVkU_gF&~>Oj!t>u3>p z<1FFBtO*GZo*O#pl(2)6=AW50B^Y77z#d|?_)&)jk!-+C=R`=QFF;){^cY{pjD41%a91IL)t&;}3GCax zY&y#1YFAJyBYuZ9b=`e;UMDKn$x%eN_|$Ei$XeiZY?JT@wK_yoPXXKvELNFMaoa z4oMB3vUf~7lD49x9zP3j$v))u^Y@>H*DocfKzB)}n)N{z#IIZppw&)Xv%W3i1p$$ zS49zA>Yj6;qS5Nh^ngD7g9~?LbMAv+X0XKXOcuCq*$JvMjm8 z-fw8x1-IOm%7m#Od-m8wypJ=H?kdx|WzAN!ZtVwEXOJ{<%ZAAGH5LkN-Z)E{5u0uo z`AMZVS`lR{^?yfir(1fL4Z#LnE_0yvnH(PBrJGFNX;jy3D02D!^Tma@S1*1xt4oP? zk)SbiJ7GFaD5URPx*Q;{iI1AedP@5ceRu-fS!+9~8z7=wWn~uHhP~HMC^{_h&O%?E zE5mnki*1Rj?ga4JC1 z9D9}IZ#hGRr?QK@qUw{~FSp%rn-bdVVQ^Xs*onymuOKWWTb6)iz!n33YE6ces#y{= zhaUNg?rgH)fbF>Av{erV6GGK`S#~z6T0aS4&}=Y}CoA3LoGj=#APaTax)gOUJtFJ*JupPL8aJ9mCAQ82MbQEAk6P(>_gdLwGJX#Y8 zNuYLHZy78R8unsv{CG#8tvh$EZ$WCNsfl#9lgA@!;3E^tPj%qnksuIcdS8BB9kV}Bwz(m81Vvt)7 zKA$Bq5&0G2D~O|Bf5?#|_uBzhI;J0GS>pXk#$jY=6d}en{lBm<|LOIo@*sJ1KU8wv zf&^4+Ib6e>6>^#P4z7iib%$(omiXC{b)_BIq}FBQO*ye7NesW}L5!CZq%>`r0oRZ@1B>6ZOPVTz(nU9vf3 zF8WpF~&|bs5-T@EuDn%&bW;J=~6CTGe=(AbHyqfL+TuH=BqX)?4K@ zmg)>kj*qx(iGoD(onuv~X|Y}QoF%NT*!|uP8zFwf)|mWmxjL;@lJ;87iJ#K7B(q$( zrHH;td@`geZYM0P+uXT& zR$GAu$Oc$;&@n;Bb=fx8(Wo=cq$VJeZ|0;6J&mR&rU?^M!V;?B7=)Fz&8?3vV|~*% zwCUK=)S7EYS3XUwmL&i|W{3XvqsC;VLvlir`pi;L1Dj>}bwj7`?ko-tx^7z6*biM9 zK$Gb`F_9c)r5qYsX6_?!oknK_*SJUN)4(-EW#23{hhYO8VUscMx}A2RTnzNbz)8bu zHB1UnI2^h?ra&_WOy6vhdxV<3FdUj}g+U>r@9PsPZvmBRIaJfl(vxb+LK5E%-~Z2P zC4v{`jxnRr!c{->g?0-OSDac{po3&@LA9a*w=X@L>kq|YZiK?5w}6wyKPU*= zJ?#NkdZ9j>s$%sjBWlYQYMbf1Pk^l0V%t{q4j{eU*N{fF-=xN*7Gd{F=>s%sM~ZS| z!xn_xdQ_uPhG2IgX|g;${32JX;ar0Y(Ltf*P~mb;CUB@Rj6OvmnX;<_6+DzXcH<;# z3y<#EsyUTya}T3c_NJMxLPIdqB?|yPnhQ!pw?K?{iYy&x-5(pk*`kNpQ~V(%!7?fV<>4 zn+Y{yHZ#<&M(zwr$h3N^*5+m3dvNH{!j<~}fXuA5iI5vpDS1*L`>7?y>5oLo)sovz z`L5j!!Z6dQos`xVQ_`zQ*)OgcvkDzrb4=ghHxp|-$%U}>wJTDN_?J;ZtDEGzlFf!^ zr;L>0fj^`iA>d_~NRFOr*-5q*n?eI+PUzn=x zEfn3$Wt&Le1ocdov*D&yW{M2dk)8N;K;IK>3C72@Q{}we<=qFM6gQ$LXStXc1(;U{ zvIaNqcpw011wAazG!N%Y{PB8XtwgHo_*=$gH`-ueqZSSVT#j!v?}GnN`6+ z(3N`HQ->=^`A{Bcq{@f7I-ac4Ig{@hmiVPkNesCIdILt_>Qv_nhNE+YCEY=NLbF{d zNt9r335DEyH~k#7A!*J}oG(0bv7)OS!EveO@eo|G5V(6;m}{--oz|gN@!ewQ5DnPj z4mqye*yk*+j|(UVWfB@#B9OtF%o<@@77qda5@eAG*^ZMOdXB*NmU3_8x_8vd2S}o( z24_F5a`WEj#(eoJ7Jq9Nkdkv3c((sjK=2D2*XB|xB;!LQHfX* zo8gseOspF0h?{;cwnv^OcdPG4IM1R)?K7IbYC@tV+JaIi-y=UOyOryzQf2FoJm?$R zGb4w)rKYkgW!rp@m3;*GK8ab=s56eK&xlwIY$ZT17syJe*JWB80RCsSX!ToR7kFX( zmWzw=7sLm3S_^(i%T`+#mfFQ=B7`*@nhuz2IG9a1u;lOlF8tl!Ov*`{Uae zA7b=RFEE^c!EkOqWj}uVIK2HNnJ#~01LBk}zrgOzY-MR341lOOHvw{5(yAWxU(#Q6<|_&H-OoWZ_%LJ} zP!i7)FqqRcCpX!0+L!IfMzxZ5 zR5htyX!c5ONWMZL#nl~<0aFe@E#VX0PPy@t08$YK>!p{xuVfAmC%Wat zb4DK}E$gEDh@(E{Ua)-&oKATC=<@!*e)|u#Zz@SbV&$;hLGF$ za9wfMUQ|u^Y1i)Y6mHZRoP!oUwt)9s&B44H$krtj^;by%P8KgRA(&2;uWfa0-?U6N@k z6v0l;f>;ZcMh;2tvS%!VfCof+gp~mN!pqA6<0&5psnOH}Ut*=a2?vs8n@GqJv^!@Q zg|>@;t%;T{BE$k@mlTVirh;t*Rba6=`R$Kblwor5_IrH&jEY`3^V5;9LRXf;Vr=$8 zy>2Amc6{zH@`kG2y0jpPs?cRy_J{39Sx?6qS-6LGptgXUc59!aSvXsMK}WR`vuJvR%b<3p1CxwO!YG!MhRCEh`uXj}6J zSIgICa_c>mvO|{X>Z&|0k@XEAP2W$NiAW%476G$lw~_=M^g*6~AEDH@SruwSK`7J& zs4ZD?J+&&6FgN74A_hx9=Q{1i5=38H{ z?Xa}dgVDcicO9jot;PTjLBP(*+L&=xso}xNABtS%Xsb3q+i8{Cj>biqoS6wkenn#g z_8)}5OLfrUqq5hsRcErK2kyW&@M8?I28or4k$tGEEJpxCm90VpR1HVjsT=NAV;&3?$L)bcPB;4v+8=Ts9_DU!Efm`zmRv@>25djXi- zsHp5&9b{LPqQVflE8Nrpu5FV#TcxKG%B+_&W4T|Zs~i2uMe2GAngYG$YkWV^$=Vf%xA2_~bq^6qAfThWKtYkm%HBTNA2M6*<1B?zv)9QNI~hpY zcjSCyp^IhDZKSk5qCe%9Xt{+}mYk)~)XlUKw^F$#f{dhr+&R;v+v)(_ZF zB@YjZ5S$lcC|&jK?=ZqH(= z<>=XohYpkgE|QG5S4%}J8Isgu4>heb;kW`Hs0Wk*vM)=>L#3!#MQ``Z8Fie`oImp< zI#tL2`t~RL`VCK{Kibzn1G@5Qc>AertFklMavVrI*7hc8VgXOHwEB{YX{M0^dgF$} zlA4(Ez>EyaYtzo@v9dNL@tN779xFNf_Zt(hQBL8GHU#iMl^keD4RgQ*YvA`PALoL5 zx18uwP%p8E%ZaTQsqliaFr}Sj9ZAf^P+c8I?)62<@QNha;FsrNqJbv)J`9ur!&80g5|KyCrU7WIK1wO$^)&K;`&OBcSx!{O&C?@(*Sr9 zR&FWG7wtqVJs!%UD+a|vRqCH(>#zPmo4tU%7rY&0{b6ElK=J6JO%gtAnjBr8PMd-s zzkU5d)8+g^`dg}h7t+Y*Io><#I_K8-9GcQ%yo8RG1j>B|9wdMI4fPNQI~i*)+b?!w zLRDwXp1f*AYi-VaAo98?->sAsr&1C;dZ8R^ZfH|;OoDze(Ip9X!b1XzIXeVC*Vyk4 zk3|oCu##b^ZKqsKzXtda*~uUnmbP=?Y`9H@>krVE3~X!b@J?F|HaHO^QXy2V-A6TY zk56Q&;ymC=kdHfMIp_g`(u6Rf=*2KWp|BLbMvBI|7h$w6ZKQv-c6GHrs#HA^5<|wBs3;Ty{&j!#bSH zdfCUaRXN;Jsop$_q(IK?m|PK(W+EcZ{cSbY9R) z!|;g36(j{x z`P0X&ahQ8_@ZlV~=gTxG*f1@2nB!Gcpo4Hm(#?>4 z&xHyLybjm`uH|VeTck5oj|RG`;=*;kY3;hp>aoFr7O+5^p|P%n6u@KP&}~v?vN4RX zcwky7dC5l7ln(MeQ^(zx?>7ML-Q=*+c~8Tu58?rvT$;Jh>;cs(i*k`bm42gKrdzF6 z6VT3ue(eqbogD*kwK}zG%V}_?qh#&eA-#@uCLFGXrCcgD;DAMCxx(eda}{~l(Uo@l z9uA9R1318n__h&9i{?pys3Em=>8uTkm zmZ6K^*P*sbU~aJ-qgQ}HVU=w4kLP<*K($*btG0cl+yxcDzy({2@t(Jk z1}N0))a%ecIc!B{2KTmeK(Id%|9dhhB905*;fKGN)kAa4iisnB+Id7se)$6nljAIN$0=r9crg~+!E!{rM z?b(8E8YS?@hsn^(8buQjNc&l8Lxm|k`R?gmI1tGpSz9ZV%xOOtRaHk;9YmjS;$-jy z2r}rFq-H#7>mZ9+w%F=o-#B(CuZ$_Yy=^pB+$9Ddots4R>>9`5+SX2^kobI{;?PF$ zgIy$v5DH8f9a)C=SRy}|B`rMz9MMir8#0|iXob&&t919{Jlg1blK#~Ovb!{ekKC`G zL&2A6Asz;rm?#qmV#J}r9;*ALL_gy}HB7ZxiO%>%J|~B_+l@#)v4*FUfK1{q=)yev z&%J&5YNOOI34v7sG!~cgK$lx5*GCtYD?I~Wp8NO@DJ*t-RAD^Lo%}#5Kr+Ov>b}5j z#!TT!RtFi}B%w^gs`sie&#%*+72XilmmV%`qLfHm%| zw6-dz%arLZx7yaPq>kqdhwkU4iHW5Db)r-V^HEX4+n58B7d8TGFZ%? zRF+K&zHA+#05*<*1L07ksu(YgU$L?=EWP(Xdi{cB#WRQ-w)PioAr*3mUaVk1 zEm62(fm{%X=hPcWq3pB*OxUo#7zsxhq8n|=PI-3G;~L)feZ`{O7QjuR&gr3EU*jQ# z;R?;dULq*@^YYPbIQ~RMQdmXXgr_0+;EExRA5B*!|5!r^G$FUQL;JgI=|v!KPOrWm zCKewGh>F|{^k8DU=HIKuzf6;D z_ZK;`fzFkMXj<@h7@x};znKv;iO^AK8OC3({48&OW5lMyvYeZ8?n{OPoytoK1c0K!&`V;r(1vojD9C^y zUs$-ON71XiYnOWlFyGZ_dX(G;ClYB6b(YDldmV>dsx8bQQXs}>5h$17tDp+|K=zbO zeQjyOo6nZHWNpT6Z#zk|@+24>t!coLKUOg0_Q6#FCDiTx<^9hjMS*nXCm+d+1+i-beBIcf{A$Pi%H*^PU4SYDhZT&wCT6FBuy0ho8J z$!vQtCn?eM!j!KB+^D{kRnQEZGETtnM(Tw^JYY{6A4DG}7g$t_s}t0I`SxY__8;}J zj(y5~%XAn7l5J6<`rdmPj6PpPzj9RDIDG_3iLImgkt?ii5pq4&2GL>LyiDe42|ZvG zaBTD~cj|7YtTQE@f%AK{JM_l|rUe-nKzL2DdvXfsf%SOb?cN2~n#djwDt6da>ZWB; zPUXpQ2=(2P9W8s9Z+eE)LrXXDbn9BBevgybMpI|UAJoT<8vPhVHIz#_9qpWq?i+gT z!aEZkx@z-mA&Tu9(Wx3IN2u0NZ!)IWoWznPA|3oC$!SYsDJF_eGp}l>?V)qP_lgO? zII^aL!l~SwYA?5$wDF|1AiwTXblSFgl4_B2{Si1VJEi3ku2ewMjNdMNgj9IZo`Bu| z`uZz=4S)H9|1GJte#N5eS5jUDQ(J$*uY_&g!}``LC9lSZ5^jd8cSF9cu?#2c zL7=FX1Z#0Quc&9GJ87k!!`)V`Y?oqs2GgbkiJ?Q|Oksku3}?rGNfowx)dS(2`XU?G z!qk)wj}`gfvlLQtva+feI%ubm&4rj*y6n-)nc0v$i6CSodtE9_=zg6Ufwvn+BR5oo zvN~0yFs(@?#ZPk!R3Kc*mJ@#nL$ra)2u-J02xIML6;~YTdB$Rl1ZHh=l!vmOJ&8lZ zj7wLW$6-~F^yWPPi0(zO4OoH{Q#K()qZlDhReu0ub?Q@uF=`Rov^L-WAK~q@WT9e; z758bYp8!1y*Ln6^UB^m&qe`2lO2m4SymL6zD9m1p;|&Ih@;MWG`?Or-x!l@X0-U+uYeD1T>vFH*JIzfBo18_XBB*unaop;RFXLtsWCyTimbmwv>bXujQ z(n69qF>ZSQY>Q1ehE?+=J(VE&tOfRq+N=RRU&J1>PPcU60@b28r!;gH)xnLk2826I0e?NTFGC6R;1(t7RMD3 z<43cy5Gl}{4;ImL;2LV6cX;yiT^0P&x*hjy?2h6^b&IOSGHDo7Ak+eGrqV+Tfr zt96;8`5*a}o)R|J`)3J?Uj_a0>-5S$L1Pw;DDeGc&ytA>wiSUE%KvAveD9e20YleB zXJ}(_IxdJ!4HGIvb=ulr)q_HI{j)vml8<0Y`sn&F7^Dt$og^!mx!%@Joix#8O^cCq zZ%D>L!D!F|`RB`JXaWrYpCHHQ>Ecj3l`z`}qSYqvuDm%??j_XLHI+g|!Ou2FMx($W zPI5+5S)i&Q~wb-Bh{D*dsg;o_Dw*)fb zX;cPo0O+B!w5Ik%q>_l$OfAKDswcGyL3M%1!ZRB`-}? zqERe00bdBQM*hGt#R60^XYEdH19w}1P$m;Yo0#qWggruOR#H17?hG*KV+(MH+(2l*^Z7CM9);!M?4 zrM586A0Y$nO#DM1PMApmdnEg%lofwj!CfqP_;XOU&g~J#=gSi2hlT0nzAXzL%9o7^ zc-ycDB~!s8J$@W?|FA#Z?iUu7< zGOIvKGWZ*+f%d2tZ`#=c?WywIg26nhJ)}LC^pisaKsRcJUW^2CQKS|0iZm0;m{G1q zZ;d}n!a=il-q*p~>g(N|fV>UbLrPC>LKD+%Dr?odr;hwkE2_7Ccqo;%2(l+l9s#9BwLC3WBL5TJ1@?c{%|o{}9EGUjR9&Q5fa zYnG3TT#Bouma+VY=W zEwx?_l^SsE9863bd3QK3Y8VL&67zbuUImV(@MNh{L5T%ghNa>%l@3V3LOGQ~gVPzH zY&3A@47DsFx>BfZ6oE3b7U}bV%?+bUjp9DypXDXU>Gr4L=C7DH{t6tt&t88VUVnxl z_ouf{!>P-C>~~2FpWsNtczO@fB<|$46*~-Y=>4wQfGoCWWUoBMA!}$;mq!w+u>PUs zA?PM#L`(w|^X7JxQoBzJ1ymrnsak~@nz^FGI%RaPk~*y=F6B4CXOjsAuPP_gOr%0Z z3WLX} z0t6ddxw5qnR}5AQp1eRo+xYAJ^o#KJJIJgGJ=If&aeEd+3 zzudY<>rz^^)6XzfunTkFu}9eB-W`Svo0ttIkW3assgf1Ymf>36G&Ntn1quKTwSk{M za8+7rg-Qc(SZbb6IC^N)n|rrs-4sbAq4QzE6`Bz%2j6q2NEQRZPa039#6%rJg3e?z zwX&<`NEXJvWogL~^u+YYOSeHgpq5o0fb#jEPM-3b^d0{kD7AtOW$Noy ztus@M_PVcy8|12B69w8F)Luv)0pSX&ML1aU>w^>fl!hUfn#bX&I&09 zAd!$oJ|Kk3>5$5M14Snfn{GQFjc}YXG`4&;dF!-s*8pKDGpyL70dq{YiWKw2;d?mg zS8)v#$C3bp!4zROh0?)PC=n)S+Sf|zf^1~9Aw%2aO`gW%15EDc9}L!!i2N=|C~LoE zsP!YIAC|229vC4a2cb$P3@L9wWZJY+E3d0XYEX)kMy#ruoq_0AWGZ2d$#(Kqr^PtW z)EulbSZ#(0yv1XyXHvsEJ%j*D#S#^ERqX4HPqL#o=DUxumbte(+`~Ynm2n4+Jv{+t zmxvA=)AXF|bzDl`Cnif0Z#QbQsZ5(yY)|O#vwsCV)-rj|YD=OeX^9?{8f4tm%7CB7 zqOg>aT*#f0JsSAtY;{JZV~tlqHJ zfZ7pi)u6VF7!A?$3KD|UBa#rlsofUm1(LBtSj)7Crmco_a3IT~4|I0NO0J_z4l3Q+ z6gihhk@&mS=D66Fn3UP|HWoWN#6`yz>=$gkevyVu4~kB12Kclmz{t4%#15h$wI`MG z4`Crjz^;~q4;QX%mF*nZwNo!7kRl`_u>HNl=-l!dN#AG$!lDdxwscXSJ<*kAg6S zpx)Pv$Rq37M%z)=PRKMpNnol9tnQAw0GiUYm@q(55Vo|D^0crZskiuSOSx9$xzvC| zp`G$fr=Z4g1*w-0<2j{%%3~-{-B4?DRROE4&UHgT+o?ZZ;_@=%STKsNCU1|`COld6 znBIG+rPiOB=JVdJOK+E=5986MOW49ta9Wtj9t=;*t`QI@zc|IV~;*bjISNR$+8{F z$;vWs?*a$3Uvvyi8SFJh!&@I6)~bT8CgsNC$p6nr8nE^z*5{My)T0+)eH- z6&s%vyJX!F$;@W-)vlM0sM;abE_I+23%j| z+FY){a#02b$i2lUZScgIx#*|fVNrt%2+3J=kG%~Y!M>6|ZazY$3jkUMt_uuT5IHzW z*#i+Us7sn!$=|(Sw_t4E$A@tci{w~eNaB>$ZRMHL>$w9q6{<+{A!@E-%N-i;l9~M={HIg>`t{qdgZ7Yrc{aGg31`_&RD*(B#|3hSmQZ>W;#GSs z(}Rr`c*q({VhC+cY918hLcPkP2(!$Qwe=QnlI5qIew8SL)Rs^m-4wsHYr!|2Vfn+haG zsrFmyC1!6M@aD2_aq>*bri9p@Bl!Dr%$lmp(1%g^&r+v5by#UWhI_r5>g(h_S<}g- z4Ipc*L0FOjxJ`cBzOtdA4HKum?Lb5jAq_ZQivG92lJjX&Exr}*j*`JNAXZz{j`zBP zQ7o+6x_7GbmSm>)oBvGp&*2mf_HCBS$OT;htsO=K);5rs>CG~<0prKlNK+%d+v(pY zMdEk_v)iymyd1C-yOD7KfKPRl98ZH72-RhPd|ihWk|(Y{+Bh_|E>9j-)eh^Vk&n3= zDwQ6!IF2Kk-NeN|V3~kp4B==b+d|#_s4L*pKAUxO)hdbCi6$4#HB8(>Una1vl^C4S?f-9B8l3CTG)$8 zjxy(|(f{zSB|u>eA>y;D^&KX;Ji^PhwJsg z7bi@kR8TUqMS9g&ii6VNFba`FjCNLihxg9EC-?0RtMz0fnB{oCWB-Nk_ zFDOqg=eB!WV%Vvqqe8gjwG9L5is%?=>{jBK3Yc z6}Xj;ZXuzSAJlLVVcQ50S38zA09yca?ksAnvAISR>cyZI(OQnp%PXsaYJwfi#v|nJ z?IlzUlvCa3#1*xt3;Gw`nxOEIr5?yMjVGL+RL9DC%0f!A_o5^~ckUl3L;_Zno(^H= z(HDW{X1O0#-tGh4Y8N_9;Jg={7za2+ro?ct&!vhpTpA|n8c_@!b_(trWd@-MLs-cs z=V6OBC}t&#)u*W|x=JZTOiJ%zEm>JqYG@1(xsmBuVFe;8B9-+^GNs)(UwSUCd4 zIrs_Nss%aV@GKq{OyFi)(dQfs=s7A9r1D;1J?ajm6 zIDuWrVnUC%1#qct-8ni!YfACC=~)r34^-V#o@(?eTjB5-?6%#3N2$i9Im{OPD)nJ0 zKr)dyRAw^>BGoYOGZe+X`XEs$O?H5?tk@fk&z>|0uPAK^)Zf?cvg?cqV0N zwJQu$0*B24WF6YN?^bo$%^Z?@-A@X)2A01|w$N^$jXPTKL&4k#@X8`X3<0#hMSs|| zlI=%X+IFO@EhoLnU2O4K91CTaf-h90RsZYo`l%cTCq0h`oa6>@v>pk$c;6Eg?gD{; zih!2j9f@rkF`4TYx?_xL4Qb5Yvijz?{|jkc9*kSm_xOhZ3%M1pi5rqt0!UYgb74Ujc|`D+o+zlL>=-q>~14 zd_%p$o>Z1OR?}W=xlf7dz+w*8fHf-RXIQP76td?W@k!0cAzjS;M=$pRZ3eH5e! zJrL^(jqpHsc}t+`4=P&L&+1dFUSCFzi@1Q7*r0sxrEaxpu?uOa75MMnL)jmP^ON*9 z|0TSsuFcPb!NFf7d2GTqAU63QH5=x(GLDD-QuXTC^*p92>S`q5U^rhH}hgzniS9+s@iU z{TD~B{HG@<>oaEp$J6NNT^HIx8?AW91A({GcthQ7A+eFgxfX})pFK1%F2c;x-7qD% zOFeHDLMfj_mh+Y6!2|`NftwPtOU~^qlndrY9ZR=usP<)7+HqPy(SQ?2_%MbmVcJN% zSWIgZ(KT3;4vR^{{49MX3G1PHd<2W3?%)o*12Qs63YL@k4!z79InOQqLM`jSP~x2h zW(14LwC)h5CnCGhh~6btQ-|M`FNWgjvSwj+P!t(H7(LM4-_XBeI<9$Rr8c0J&&=(C z*0HT5TxEiCXQ}L;opvw{lLJo136Lo%CT$1|NwjKO3=lhk%L4c``_s1_)F!J&(Y~@r z;r6H{Vi$5X9+wUQ2rlF%;59&$ObQjCX=J_nzzV0%#zxVCDye4RZsBVY?TBga_Inx( z-JC-M{LZ>5ayEKC?xY+E--*a<{r75VI0+sj5VMNur?!QHDIz6*K?cZ5 z6Ui@TGt83p-mN(Wn;XQKGNaE5c-}$mXz3h9gZ9Bjk{o>e>_;O>+1P50J$^P2ia8Pd zP$2k^jG4(DG(G;&>%U;?kuJQHks~ErkPknQ`_|T!g=7%Uv8IOUw)xwd^G{me&nS!K zy>?#9ZEkpk**Zlu;!VBO?O%n#x;ZKt?Q`R(>dUpm#uZ6Jc+JZTmn|*<`I;I+B&Cr; zQ}U`6PylNA0v)n*p)Uj`BFP@mbxO}lPYx%ys2qWRsJar?8lZnFo&oh+fDI;l60$!U z4vlZvvXTwj34fDHceY1~;x9p-IWu^T|7hVXorU{9Dv50N3|Xu0Mum7iQ;+^R=49T6lA zxP4%qB}c=%y^{<8?`Lh5LAeotmpTFq#qE~V%_m(Fi1N!??BQ9~W7)2%U_KHoIkIi2 zI7txWKhQI!2$!U&>>+{+sqEM3&cRZNuHxvqyoBJVZoG^o6BM^5huo3_!$8KYdkJCy zhh~bS3J)k2hxMQQAcN>m@N&@rrq2OZ7|`K2abHl&QX9#cTAij-ws5^0Ez53(T3zZK zN?l@Iq~-&GQ+1$gV`W*uHMHq)tkWE=!g2_m`gy{&Y zj=s)8TVk1^BI|H!$rt;mLsXmhLD#XGHlV-Za<(A9{S>^G`9%DVpGRkW=y|t=7 zff55;GW>6Vlq3NzEoE;t%*s`guzPn^X*SHH^eoxUJ3>JXgOq8 zg)6!)!2sa8n>zNg{2tyw>K$cslX|3(K+0Wuo49vw?QXsBr^(yGs;W@{i|3F!$@7e0 z-bw_ncuq8%iR8dUqq4#ez3``t`V2P^31hzkWS~1$E+m%K%SoTNM9o$n@-?b}bd!BG z_GO3=(;%B{(%@P43bA0dtu}UWv4f!r`{GM(kvBRpW5*ROZ-kr05VxGgxx<2X^T-L2 zPI4f+4-DZ`AV5cGtxHKNqnd}<%EeNQ`%OoCT&+QF8SHp`brR*HEOfL9s+JS{>q$Ge zhNrdMB?-C%db^Yh0@1Yg$G}8eEf(msH|*dN3^k1CE|7C>c5|^EN(?^lH90<8>q@^` zQk4+yH-PO___6;amyCGU&KrIT5$ zO6_Qfv0H4Flp*9&PuFk$RPtu$T7DwSk!Llp(nMEf21@&omSz>J^(acUDNx6X3a7pcRU z!6N;TbPoPQI~VD|_1YnD1-E}z8zPQ-!7L{h7l09YUzc8e$|W=P>O{pd?NC?0@a()2 z>gP7@7x@6TG;39|7#*W1$E{2IHYmXcH$o1TS!(Sg@CD8vkd&b4P`?GpE7qKkuoDX+ z)+AM;qD+9tNUIa(^+aGvHF}^m-t}P3E;g&Kpd{~YWcjcIbJ}4lmk$g}R3O3hkdw-% zBo$ByWk<4@j#B45>k=(RDFDB|E$p>b^8ausYuFl;q|yNK-^VQeqqjer9m{vZ556P+ zmsj_1UVp~G{0+R~-hO4++`t@n^g`;P6Jhcv6=%El)&ROI^G8B5ybyQUo2FnZ6=RnJ z2vCkESShA1N?GuR*g*B_-90Qf70{6UkA<6ZeeH35y@vWs{0*{{FUn11zZ&*hFsHCH z05Y-gp@GcpgVp^?SpsyzMW>Q59Re0Kb)=99aTrZ_nv0v_1)U~9gmj3Kv0_whk zfiY=&rtko>^$*a$P%N;fZODpxzbr{$ zCoU?NxZf@jE%#qtz8AieH(@rc_|soHSR|tSOSqw7(vtiEKEwo79jI z%<%@>io9$bsSn$#0ON1T*&8TFWu{Yl86|6<1Uc!H)Il7ht#2I@Cv=)lxEJ-HhiHAs z;?hdMmnFOLsRX5t+WVvYM5#=mtUDkP9Jp*{Ij16|cY*jD_!-7&)X{azhed7Zw5LfK zQG_`n5pL~qX-WhV9xMrImGN)O8Fa}+FtVjQCIb|nNgyCFds-&$JBWIs`k~UP+L`8;8R`++tSxV+)Db?+~%J zH{ueg<)*mX#}p@aB`r!4VI`|v7FD$>6okta(QA;Fbty6D*_NmTevazVnd+uZlcWh| z#LSWmrwXlqvJunx(UtP95IIfj?0!<(s?alDbD$;i98>^!rcZJLTLVOXwx#LQ2Yg|S z9l@W>;BZt_nD=a%Nr#4=q3eY<2W`X*v}awqA&-|Apx<@!BcHtMLBs9}Th)?^)zG3} zn7_c5W*P|40?R`_$?Vc8QoY-{Q9L__-81yPGmvFO3#CKJQPmDOgFnpXC$wz&R%HU< zkApdpbtNbIDfTE&vpCh*Wt!UE>{? z&ZCJ za{Vzp%pzEJw48~k%0s*pcMm(&Ow`6ei2?<1fQEBwDgVkc9wc`$*V;`RYP8x1HqzS& zrTC44LDPb3Jk8dQYP>wScF$n`k_mK$o{LADYt&)?C0TSKznQGBPqs{$q05O`k2s3cXQ7&~G3m7_W8NrP%#+H|^IjTU^eVO*zp|_L!7R)F(YVf@a z^pko(f(=|7D9SR7gq`)1j+JWKn(C;)9s_As6U!x+{usgb-e=VKQiMLq&EE)2AG4L% z6S{HyiJDFW82N@%iWonA@#B#`97^qp1Xz<|9>KKGwS zjQy7Qg8GzXR<&NR)Kq)*Bo<~xAGt=}!4+CvWgsC? z%4y<$+QaqX5pP?8|K1>`M(HfMWQ>C=WXh;V)Jighm8qmBo=kHxqRS)A0mdqwi7d|m z?%arZm1}@JpzPdfw9jxishHBg8R5jeNm4P^c;o7ipb{6gPc^0LGPN>bn@+yFuBj{4 z;siccT7zhGrbivz2cc$7yRN8yAspOK*YMn#sxZta29AsZX%~f@X_Cm_LTSgXEGaha zVdmh-5UV1K%Tah+XGPA07<|!qv@pl{J`b&+9|}+o)p1H`}K=!7S$uj z+7kr2B%rg(0q1Uv9+)3CM4Bk-ilKr!J%)nJyXt|Ct;@eXyq8yiuOaV>83cyW@d}5p zQxp!5ya@pAJ@s`9rI~c-jRwcp6bfa_ke9P&+xO(Z@V)Puanb9SbSnDj+rNMP7sCer z=M=R8Gponc4Rxy%D3y&El+M6UWE;D-Zgd`PTL8sYD0aJVtE81SySUPF0wR8D!pm|L z)L%aA&r`Tn6cC<=jf1Z>!UXTGx3!h}A`RTBUu66RGPsD;WG!3Mb?ss%ntZnFR zxZ#k+B^kK7#tIW5Kx-WE=0Q{o;} zj3s>=MwhuAz(SY$h9P!Q!eRPhhRz0{0|8r&+Gu}Ub)gw4)&YG&3O&c5o7+(%41<~zFGV!*~RtOnSCkk4rhg3G`DUx`u|+%wXSym- znh6k8;VVEnENx3v1Ed4?z(U~LpTg@O(z;VAn*(iR_B2|R)L%ixr#;&jXI&!yO43 zCFVljnkb>w&jAtK2kh^KXw7rgC2AmrRdJY|EX1!iltCWK9v`HT`9-V=nsk>JGv(Msw;@7Qm9SYkMYv$!)6!~ty%;3wM7@erhBp$bN)FTX~1>aljA9nOJ zoV!11?qQT0Ioo)&A#HA%FAh>nWqGd1^c}_y1QGa0MvQf&R2qAdG2P__mp@0B+$=YQsrkXakcfQ?}vjGEd#eCA_E`_D)8a{MyP2G!SVz zkMdb+qE^B6o`HVpq>gk6O^MP2L`pbbM2nUIxrJIQ(A*OL4k!qL0K#bqW{DMK4j_?& zBRQ?u1wG8OD|AGxawb^?dxCQ~|M}}zY+?TN{ZyNoUIB##T~hTS2VI@z|1(s|hPGRr<;;a8OT9h`Iqhc^+rbUnfI~cXj_a4*)7E7#(CP*QV9guB1QtOCpp&gUEPG(JLRTlx z&GKePMX_hIH`$BoPh#t44mZ-&(78r6qUeH^dj`XF`?vCL<(FLhy`u>)l8UaJ)VG#= zODIWlnErtApyeY{D6X>k$)Bk=Oxij7>y|7t+)n-WBA>-(Wq`*3f-K>-zS;&s;ci+c zH9#-psdCZJfN`z5YpFPM?K%ar7a;1msG@iq4u?Gbka}gn-qrl*!@DcA_g6eK^LC@(7lD)ZR_3%j9L)GNt z9CC2wy%gJrY~FcAE|H}tpfSnG)?&KmwS)tt+xO%GnUU~r$eu0c2XSRW>Au(l?-b7X@7Z?`T@2<%%Sdo z!5UYO^vV0VL+x&q$oG$4_kq12@7QD=(I!fdrqt*x{W$Dl$1Pckr6fHXAk?@8p)|gb zDFpkY^f2rz9Xb6U>iC{V3KsRm(LI1kNw1<#JBWZ#_zC;a16cFB&hwU9#q*i=)tQ)* z8YaV~$}S^vGXa?*Evm!}%DR%0SuGPL#Mwio#583pC+>iZudHqRvORi!s;3aOC7a*b|>r%NnkGhhh z)&=+h5qPnO^1;}y*(H^gL}YjJ)wW+{OFE&=<(?E5iCtr0-kC4AeYg!_9S}g#*5M+)aLpl32ruKDwW+;u& zcX`f-Ls;xxXV>$~Sd3Em`9)< zx|f&U8;Z0XtueP;VCv{rNm$zxr?NF{ghzfPC_P$9-Mfc*RfB@hvZ9A8>fYl~rbw$# zGQAsBmls+h-pWz4k`;=lp06c;UIGK!72!uB$}!tb`2Kf;X8FJMJs`EhpFix*y#McS zABFe-=j)&4!H+NR|6BO>AEajP-OC-?Ee@$j;Fe*B&mJBQn)miAU3TwN4?Od9x#Mtm zN7TCx?+j}^0*f`PsJ>z-glE(<89kOP4s45QR#{b}B^Ed)bsVC*u#Co6V8_aGRSh6vF`jTL;J zHs@XtpKr>QXx}}4y?*29xauA#=Q?9V z)1aEI>Ufp1xMPi_7P>BH3FL9-e5zV`c3n>{dr_~L3Ui#RLsfem<+pM!`*=Ju^)PPX zHa*BaL6ya81dpw!lK{quw@1Dji+}VZ$Lrt^myX zVY32nZbvqpY^AuGm`~y~uv~S)Z{N@|uV`7VfX#LqI&3=lImA&77%fwV(reL8?*0om zcn_y+yPy+QPSjf}Anj*cVb|TV()R=8tn6wGA&S^c*gtB3$yX6k*3}K{N}mfO4|Iw_ zG7lW1z0n(Ru-4Fk*CPosja*O6xM?QQs^Dg+lHQg^Di7w-)@Pq<8aP}d4DWgu=x74P zMI{F;YD?NxyqkRq_Xh${GrBt#6y{H2X(i@Z-iIqBdKOt1zlcd^G(E{kF^w$jXTAMv zTCQLTev}$jpI%-j?-agB;<(%K6m_7pW%uYifLSNI*ID+8l_Ohy%lybqGJigD`yDws zR-JPYTmTpWXUDRjlJT-d^4UcnwOImVxOxGJ`3ezKqpOUNrU5%O%1R6rsU4>E_JMdX z@(n7f4<$<`R2frA?RdcCP{Mkhs}Py`#9%4n9SAYY`TB@%LF=+4H{AqMPu>(#LP>ae z$3}0>0^3QQzw$`i*!AudsIn6iwz!IJinlH#BgICbRqz$$VgN)rvUpb0H$63MUCE-R zaT0U|X=2dHPDI?!Ls-ZFr!F~RH7z8M!dhKQNm8>7TnTAwR|rPCIXX{2O=njlLE9?b zp3Z_`Ey^qE0|#rdsfg8)E`$p2cnm&&ny8z>7WI-v-r}_f^nASh@Q2}tHoiqq>sP6@ zmD*n~d$76G3v6c(TdSCz#X|!0HT`z&%I?bhL=~cX#Oo~YIm0e#VyM1B#Kp+nO9C3cEDK^k&EYhkpIG0WXpvo~Fu)uvG`q=dJYwG+w(tro~yMht}D6Ba2Vge^%G z(1f9ZMDA;^rWtbo%_QYXdHlVX%So)aia95cBX?ibF%twdxwZ`%)_}bYb!2@kf1y4# zjoX^sKv24B`qQbrjp_j|%sQ`tY-90e>)8+dit2`Q<<`f6tW|YTMZWYdRdVwD@TM# zMi5QB#9fhAx|0pI4z)=nISyp0%Ka@uMwKjeH@dTp!cg3X0!ElAp=@%MDhJvU^>zO+tpm1Lj%F_8KE512*tucazDaYw+mB5CV#7gM_SQ>51hK^GUEw?$P`G@Hc;BAh%E6{*3X)CvRUF3G$Ad!+`+%Dw!t# z89+g6*I%F;m|pOX-g;jp=nM{&TGb@Q4`hUF$Pi|(*xK(OI2Npu8V{VuNhwc>jAaN9 z8_q?_%%(F|idY~-7P!jKEMws*%Z|>hc6j}L65f2Wy*Xd$R$S;s`*&`y1kd`a$f1SE5sYuHheeZGvaY%^mMTzav<~(7Lf)3StoHQArdgWGGipPL!k0xkz*Y_)^veM%?lP zHs}8MDH7rhG(np&#FpNoTBV$-P3^j7vXmq;Kb2GB|JOgm`HB9P*UwZq#CD4s^8i_y zo}m)pXOuJLb_B2Z@AS2mfO|t-&`ftKGXN8`Y4s_Y?~qoaH;aw~!l<(I*r{LtAI9FS zNtWa~6MN5J;TV}@Lo*S4AI^w>L^8-@$%x2|?Z%Q>Q4cZ=Aw5YCdL-Y-?nW=f)>sKN z0K%-g@V|7vf4~!*DAit8U#~+>f8-Tkhy#g6HbT#TcMjJ=(DkXM&KRL^NDm zo>WMk)OA#n&?*-a@o|F2CGOu0w~~!Xy1GjPkNg4}8elbPOW^>xOxShXq@SW4DrLFP znoIRb5;;8@qz=A}5I5>8c&|r?PXeyyV-B@~?$hpwR-*LN!x@~ARAtons{jmwK zG-UlhVb#P=Z4D4i=liLu;fI-aM3QZg;;qQXx5`abr~!E9LNEvdWp_<(qnyAWY->DH zJjGVU!aV99DzdBdX5DT~wEXB?;o&_u_>*6XOiw1OGWSlO+S!4 z^!SR`mIAnxUw70}ly|y=SmG!FO>a~gkVcA5dKr+Fy!*`e(ydwXO=^fi z;k_h$)hC#kWV9EvY48YF#hlZ~ zCtP@|buA&jkbSK|GOziuVXj~-kI4o8mO9}g@QW@3x8=+#-E1?V2FCF;F1YAG#dIi9A*4+42Jp7D^?{)%FZ z?g+hPrxFJt*6g!q2~s`&OLq!%w%x&J^6fwT<%i$? z+8mr;K}}@tVdzt37^ya)8g!%NrAq$2?1P*-wU_GZUl=d4V=bq`SO+%r?tU=F`#vkQ zdm{;;9^@QYA@B+bd(U*R<1lsYZL=y1#rQGt2$h2~B$v1YCqs!erQIKAccNRkrKi)4 zNTHaVwD5WFD&u;#+V-{YbUx7pFpxt@IV3v=q+h{hadgH5I4%2*f`Dar*_#56^Q3g3 zqzms^f9+Oqs6eyH7y2u7-%)`89yZgmWc^RfR$s#{s){vEu_O1&^n-C=4_Y8guae!l!M8M zGGHP6Xxk>lZU9k0uD?ZRXqdGPZ_9o=;9r*Mr>jc0bMOnyunjuad+^+GP2w~(|CKMcQwKNIzle+X2~zo+)XhT*(G{}Z-yf!z+$O5NkR`( z3s(7QgB{5+BBfpe9ksx^N>p`Ro;IlJ1)vH#|K21ZM=1ipf?u)(8(#innwFMR)egLq z5(${QVRqwHl?XgRL0c9LS^5u-qt8j&qflhP$zi^k`YQ2hw_1(9>rA4RfD0hEY%U2K z+z&8BA!=6hhP?d150hiSG+jUsgLb0sjdGefxmL+fsg@ClCUrbwnGjA`n+h;GE##Q7 zsbYbFYGV`VGNQhQksc-`W-xLl+45f?P62@U5bn|N#%S3NJe#2Nqhv2js}5PcL{mnL zf>a@H?8vahey30SbvP}gQvi$m=O z!65l07gzj*y)kSvoZ{1j+$!C?c@9X_6au zQp=vS&mwXjdAaE)zW?t~MPIXc{o1%Uhva>`BsD;fTKH0IssiEUY3?IOc8@Mw)GLcT zLwx8E=&MOWUUO0JNVfo-Rh)z{Vqmx&%mboL!RHJ(f#R-gMM?29U)I9$V~K2(>#+sC zr4=%$h250}?(~*IFO=#2z!U%gf~(Zvo3}oZJ1k&~nO+{Wd53O{X{DQ&tI;o+T-Hlk6p`tk%T-Wlw8a7*M8FjlHjg+%=2pOp`oI*?UNSEfN={ zDoRc`Jkuj?V5f>5&dMvoQwrWWLTe2P^WF9Z1|*JDivVV(C-67nf680ooA=+b(UZ1< zd6S=Ex{#$J%AKE)O^%pu+;oJ^*r_&=+mdU0=YC4Qnf{4+44|>x~ zj{%`_Q$8#b2~|&r-b^R^V!ZG|m6K?bQ=l}q%rHJ3{f8s_DnBhr%q+(;(khSI5=PxN zTPImB#@L9cxv#ECi=u)G#wd3z33+wM>#L-sR)@;FEoHY>A)DjO)QOF~I!R@AbpwIo zjT0RKm>faDC!082H!C`iFh;U!IJ1?iw5)Tsw}OjGz8O;F$%2>EfS~@e#o3sQZTCph zXOMxgo@hz-;k--n_z@UjPJ)3a0YHh-uAYH}D=nwAjJNhf538_eF&%7#V%?p~JhVWq zt_8Y>1ns_?ygCAfz}jVD1Y>rUdxY7Ob` zlZX{H|Bhr&w>>l`Ya94xZ6~K)2!A`0TWxbBe6dUn_1!mxqRr?m8~5hpMsbATHdzC4 z@j-AbI-U60O@Pe!<*&|q%bK?QDbTMWF*3gjcJXzR!vC@2)BZWZ)V}&}K!JYsZs0X_ zp-v%Q3Ni^+P*+7oWuX~r6zVZ~XLcva)`pn@JCndy!v2_y$r0T$D%v2D`&1ES!qEpP zx%j>8=eBcxnJl2OM&fU5EZLAmp?=s^UVO4HkNVk{I_k5n09OUW@=Pc&D0F$pG{xfk zzV-4?q;zuZ;0R?&%GlMtYucm4>}3Zlrap6EHfN&tDxhLXeGQ%r6^mt=0CWa1O;D-o z(ur3+`dNqRMwsgKaJl6i zAOTknO2zJVqDYvJI5%|@3DLerz?CHw=-z72Jmf2VEMffaVm&HYLIYv!uc7E-2Ue!q zz`>q?`hgP3K42cO*r1@m30y&7L!NMt-YBz{L{>`Bj)kHoTYyg^i^ zDpnBV)QA5|_?xsTegYGdl;wQ;MR@<|&(kmKd2e?iBUf-AQW>I&g!hO_Yi(f;1C0%6|$LjQly8&SzKU?EFAm}<-M*`Tin)q zu4DSF8-z6FkeAl%2Pe4zH;o1=0Mllm7MoPjw$%3p+!r||VN+a$7VBMJ=iOJi)dtZK zQa6Q-pK#3(D#+HOCK#4q{pftEdc^ADB3v>QAN2Wp`M1XCyV%M8_Vkwnj!l2|D? zRge)z=2)GSLbYy^F~D)sW@LyO26AYn;*pBQwr~MgA~b+vc(K52D8;J1#VfM>`k^X4Zk1owVUp-fN+={6+ODU=3xw#s;Pv%BH z5$wJuk`U@gNm6m(8G_@FBtYz!dxusJ1emNl2#jI$8mKA>OHx=QxB@DsAE8RO*O+9A)x{xv<%e-@5 z?>b=yYv;s=-POldRsTzui4tQlfA%}{XWg4Y!J8a6q=%%;YIZq!@;%(_FR9a*cGLtQ z94kr~jo6}2X%4|;d%vM|x;TG-h?Ne3R$D!Ae^Q|c3T8H0B_H6M284%k(-y5oba|U? z^a|Y%#4;)SNu=&J6=1T!4QQB3rH~9Ts>nVLGL+V78+D5$X>CEnpcr1QD7b>FyO1c~ z13R8`_^Zu3(kAQYR;BGY>#F5;RoTJLfjxmLub5a+Dja=WdB5Piwo*4}su4o91;o)R zcpNUcf?gLNZ%FtDsE3rnhosyb!NJ;QtuN6<)g@g2&a8qz3-7U>ivBlf!WBtq*^VXL8(CB@PWfCQo^A zXNR>!qjO-pK%U0_qVGj!d7(JN?k<*cZy(6jKL??d;8N**GxD@s4|;@)`Db%dB1# z0b1#CR_Al(Uvqi<{^$4Kzx^?!3w73R_?El|>b-ADEC6N7jtI~)=>fYeQPq-iBU855 zIN__Sr>HPXv-kO9(kyh`X}Aey7+Y)Wc(5ZW;j~bLXN~|`r%6H)oQ-|pQY;gyrMzZ4 zXqoYrMZ%2{NI;S!9b}H&6mo2ADh_XD{dk~LWE9z}S~L!vIiWIe;rcyP4n}y?DTPfE zoJ9>mM4~vA`I8wUikg(S6zE}-umx|by0rU{Jqab0q>b1jt*|BvEdRi(%3A~f=Q(0FRs1yjLr<(0X`iQ-Gp{oTAI$? zNoO9Sq8-Wpat{LmZ|*2EdQA9YNOikTTq$S3me=XmZ(ndC`&(O*(MBaljk@3|;o1)W zXHt<|xBW_d=B_%|PpoN6yPr-tdtl98cBf7Qu4~2a1ha9x0{PG^b?V%mMiOQ~`F3TW z5DvMjtK=!^m9qi7zp;avY4(a>sVqm>;1#ZNxMMpgS92#v5e-)6oPZx*rm=^dR*fOm z@Ey(6QIQwp9R;i{pJ55+4vWcax6mn$(nm;=ymzD`$<8J1q4E%Xaom9?v1(LV{+7Me zFK8mEUZXt#lK0Zh)HNAh_4qc)-!z9gv?hz`s2lRHwp?N+l5W}WDX>eqI+YRJNVva1 zbxZy&w@St|NHd@*IG-v!Ra6leiF)?XFCWZ!Np$&DB}AcZG4y?X!AjTNQzcj3a);r#7;SO)Oi+F^tQ8;4vDypxtNNMD~sfzOXnm^ zh1Q38Ls~Sm6zM9FX)wi67~Pi(mp(ieYl$nvE^pJd`(TOcu&m(oRd$>Win+uSgB_0% zt?I*DLIX7gdif1N0&J6GY@Wx7p9U%qB@%XvB`6^J`UF72MzTT@G_C4D|L3(+&t}^< zH#EkK*S@WoG1Ut3ze`D=Bov}QnqbCSO>(n;Mml1Fu2t~-)6sC63^P9B&6+bU1{{%{ zrdf&FWjAUx?r9ZN%p4SJsMVkt& z!(S2?$l9=w`J(LP7Vb82+ms{Dy(q`blEGwXPqi*X>Y#T>i%M>y&>!u}4ITYGXQ^!^ zu9ZFYjq!kQJoKE7i`pZ~&g>c9$KZ6@c?8O)UM`LHYK@+bZRyF1RLJPncptH>vGCP> z$<`SFm1-607`8e(qgS~oX+=vBM>tuxV$L-x9R<^um9o!p&u(#OAcnh+l@z<(oQK>6 zTFLMebC#tp!6&=>MIpw zJ*Sfl%M)*MmM~U`Jt)X(bw%*yQ<=zVt*SDVg^@=WZWqZ!Z?c?TEJFu71*}n9TQRso z5c-0|OK&Pkw^j`?X^Oos^ZCAZy}F=eQRsRDsMQ^>MpZgqjvcTGrsL3Z$?q+kK}W<= zHYc&t54zySEzW_ekBJpnxxIMN`FII*2{qfX=3|=Q7$$yFR}L}&7fJCSQbkY>8mFv_ zLrWyulb%hR4Mhg?lC+yfr?gk%D|$IRPD(K9x@koWtS}QRTTtI@;Q4Z@s`Ll zhFV*wQhM+~WJjz~Wl?K120DP&TXGyZ`v>V20+TiBe@Y4H|Lgsm@KJF>g9f%iGMvG6{Yp}8n>WrI>Q^k#{=mkMKw4pvKAx@Vt>ZbhJB zmef)N1CDl71A+~Oca3x8p+*22De6jrn8KgZ2imhjiO|QxL1wwg^BnwPz$PdUVN4 z*4BFcNNVWG!`Wg#r?!ArP6U@-16_V5lz^2ra5zxXo{g)UC@z8BoIWcumKd;4$q@+1 zn%+}nXuq)-#w37X1@-;fK{y<0`QeY`b)y_uM_eY19Eo54SlrN^fb{0=UpNx@d4BY( zw{Pt0@4kB<{=a_UyZ7n0X7UR06hD0X+@{_SZGY4a zI3g;MC~^MA3i??pzY`AZm8#ml*bV|LT;4I@;;2arvSiCGgR-}0A7+LBPra=qvOtEJ zG7xQS-Sn*pROFR{e5ucFZ#}qt6BN|0^1{%d%hO5>=|iICrA@a%sAP!Li9oJsed)QL zAlD0$OkWd=1iQ1eH9coml$7nt`jG`kccrA;Ce^v~BwyjFK{7wU?DfVI2t&ze%?b_u zfo=$T97!R5X5!o?h^q2$cMvnjFu}UB+EfO1+HU*)Be5dDOe5h)vaC@jNF7^~w+?VM zpUvW7Ox=vMZ$N-XwH}fPCmyASG0rgfknYDdS$aR4|=4(o@z4&>;)3jp2_?-%fdFd9?qQK;mAipRou z!R)Qh%$8Z+wJkF0&S0$DYKQbCCTD)c4*Q)N!vkU?M+(5TIZ6iXfC2g1l5EMjNuhqF zvJ_P7TvQb=IIFjxAd0|#Y$%zt_exo}UGb_eY`{{iK6}G#L&bNkwFMmlTl5G&oojB& z*|d*v?!_q5s%M~~nw_O{+yR%)@<-Sf_zb7VsZEQmGP_6lRmIjB0%-LCo5XICqPZZt z8u$Ze9-v+X9@Fk5vBcg{Xe3aiEoWx(yZhQYNi#&&qLeWErl zU?y;SQhqxjL8FQ?8rMY=eIlCyS>d9PPqxf+eDHTu!_jrBbS#`h(>hJzwsUMSgv~mo z+HmhmSK*Yt zxq>pg%Sx`8=3gr{IR3321DDn0oG^kc~-#n5yh)Z1siswqWecDf=bfG@=_M^ z(MnOT70KwmHeu#E5$AIC7f+x6}dXMgR4{O$xM%12EL5RHrm*J=QXr0e%8q6lJ>;TrmPL zZsmK}TtqQLm|;;yM~u9W>X91jHH?~>T;5%${0HEC4v=Y-|EWxvwc~JM0MAa2U_UoYRgQBg5`^8Y9knlT7n&_( zEBipJk^{I#qV)^N7TO*I7tGdg(AW-TA+THSU`Qg%A^c={QGM$E^pkMoM&-#3m07)(PEal4&Az z>NYYBCI!4D0Y5DeAPu#|oFm;1G@1*#dT0ix2E5REctIP*sEkvB`Q|471aU-D8LHZN z$B=QOe%Xr=~n+kL>fWKg|`j>Bv8;@~bj=kQ5F;Z;0rD-{6a zx`vaBnYU=FTclsq$-!z~MILdifJ0x~4%6VolqQL<%V{u#dS%*!H{7QK*K2s;WZ^n3 z<=#6SywW~px&(ZvOh3U={6JS4eO!pmuojRt0+iGeDXan*x>fjvMt_9kY-NoX(09si zmmmo43MIfUcDA%O>gMF zKZNf-@ZJ0Tx4wEaYs#TcrTINp7itsofx1z?L=Vrh^EO>50SIc9E2IW)TwD?;5%dN~EY1BpV}f8kme4Qc4S- z=>25vfl+;=+T$%8o*`+I*>;KgbV{OZk*d40uZP6Q>*ac#F+gO=j6G#}R2ZI@By~i9 zqMSSO6v;a{DQh<2SdlnkI%qRCsTV2?&K#BZ5{Ph`!H#F#N zA>!JGX%^LF<$eI^Gt=ysS*Ju?8fC;-y^swo&r6O&n`ZACJ6p9`>#1xib@;tjq?qi} zwEFi-DUy~R#1Fx_n#buSDpLAVKl`tl^-?zQ8cms zHA$~zXTbO0s>UL{1b+DT8-9XMK+Q0{#rWh^D{mFp&U|E9rJ6`hXdBv5b4Y>@=}0T1 zfyySBdm4{~^@J>^VIfyihtr+p%>Wvv8#{wfJhQdNTrKkLLMPjkkrnu85bvz;A2C;3xC(yX}m4?7{K#j!!QqNCa$zq~j!>uEg= zy?MB_;XVVbLDgV?=X5mV7?wK(1uT109&W_(r4G@)wQ&BhJ3MR4OJ$IT&T=D3`^M3i z;|fNKGgM=a^{dL8*%sP3KY-^=soKdpJ!iOr`ZZe*=xE*L3+8RMXC6w1sZPih&&4JH zd9%!mw;!&u)s>AwqQ`()Yo7kgA=A_!CC)=EPQD#3Omk1Jwyt%h=u*2$V>8{o<4&=Q7r0ee}EbX{~zq=Xb z*aMlQ3&_lfrd@^KSNGSfc}as#$zzGc5dZ?xv(*!Q5GDB$@e@d}gncfPqIw5lbbyR=jc#iG)#t;3&1eCt|AO=5iIW-+*Dz zIDe-UCb%e6z6Dzmq2V5~Db;@p|Isi9|M2z&&^n(bhsCWkO@+sF;u@e}^r-#N-FJC} zhr@2lP{#@am-UuVmvT*XohsKD?W11db!0oB$K-UDy>IP{@$fn77&r7;xwSaqjijK#%a`Y?}<;A+NfGs1K!ncq2Y-79!Q+nO!TA&wA{vg-ay_f^=q9sv{uW#a*AW3H+dvI#v*Odh6= zXUNbs&X%YaNxD=8&~Bk$6V_#K3PN8_rl6gq1kP8-L}hjv{CVEc>1M4pgeIpGL$t+a|#)+|X+w{E;clPF3qMd!;Hm3S?c7=|b(jKDYV zUx%}3LH^D!-VG=4i}x@6QJ9AQ3d#qcP#Z7FQ+~ti&wx3QFQ)AZ9s?J{vmOpYNRqZ$ zTF~+{NNQAESQ1)r#akD4UBdpr5mZvQepQiP>YxCsvM4fy&=`)IBwx|;8sb}p=OH(M&fDFAF~2JG3vATR7$P0UAwWn*zZR}C`wem+_*qVfLMtJr7UsN`bt5tY34&)r=vZz+Sqyd>EMaa5_3E5<4;(3Y z6x1t#9`XffCIT?z)7_>*_HE~?eD~amy@RdNm>xj~!-xj51;9~`@LaQYnj+geNqB8U zC@GtnhNz$`0Y92k83qJ6b*b%Av)HDPP0ap%P?P`~u46h~zszU)9x5H8e>FpN=}15v zIpZxBHP&e($%i1KEE%*dB?P!^UOOlsf`08-(fgg;?^5FQv9B$r6KP_YBKE%RgO1;6 z{0!h4ba`7eU;Gg_FaVVS^o3-{WN|jiQE3Cf(vK;*l#?O7`Tr^W^o3}4m(_fa>8jz1xgN+Wsmea#=?01 zULUGR!2PN2lojeJ=GV$?wE+Hbb+%b5T3&W#nK)w|?*UizZ4n!2PsW-Z;#heqne3&| zMp)&#L%m+^J+wXQ<)L{4pT!7GpW2w-`m1czCiCeq}N;omJ<#~X zbgXURbr5)##9cK}Nc3|(0L5#A;FnlSS6H7(9xl)Cgc~VMTMFHPTJs!mTTjBiw+`kf z^l^ihuM6qf1ip%k9Ed9U=uqCoL6!HsJTiw9*fu5m+SWjduYC(uCo@nH`WhIGmw7RV zOdCW1pyL`Stg%whDEVOG$x!D@ju5}JeB-qnhC_M1cJRGQs!BZJJ?sNPw=jPsBSOU@ zT|EV+%7Z&dL2l8i;iG?Gl)co)$VTA`Li*VSO=x13{p7f1 zxt+X)B(F_bpOz01rY^thMwyurjq!Eo-l$!t7l6V>iJsJH!T@t90S=(cro8)Cm+Hd0 zuq?k=A)@b+AUF-u6`BHGWhdi%+3e6P+sKTSH=Xk#SW8Q6l4{R(*P`nk_4E6I*9~IctQeTJIJR5Ty)cil9-6 z<7x6ObN5gnSuEtE4GO=*f7;z3WFKMZ=A=5wvP*yy$C`veSv(uuus~C^Wa<{$o?Ax} z#bMG?)6(*x_cmz_{b8rfR%Bi$tyeW$c9jKeJ3tR6M|<6Zd6D#St>_^N?-{VfsZMbp zL3$y>7JfYsbbr!oQIycA^(5yMXiU-RbAk*O_%28EmMf(k>PNz2))0X;m?5lmcy>Tc z0OtmJB1LT^Dwxk~?)s^tgb3gtb!3bE0B?LF2)j@K+B96^D~7jSxl?#5?kWxFFfU1- zu63S@S4?k^-^hn!1C_t~UiiE3;eUGfH{pNG$H-T2pQo?E@J`QmN~$F3PF6B3ig?$! zP#o0lpyJ0MC<$5^+m_-MB|%V~eRpn5stT%jx?Ish zjA>h5nP&b=oEv6RjiRr3gBMq#k;JAyCPv1hI6<>K#IV2X>+)B zR}!0n!Zv~wL)x`h+9gZzs|p@jiVnK%(_OC61xpuL8TPr=AA+f+)o77lDoCfME`LNB ztC*9Ljn+~r!Y)>>+8`lX2?TUUv0Tb9voEN?=1k*Ta9(#P)M1`t>OvB8F-cTKVf_j! z?$RM=u|)1QG8cU5&?b(f4XU6jSQEir>ge7UAcqnAcnx#JpkUXAAk;z#xF4eCA#rD<7Y)r zsDHP6r=oRYXYjqo++&E%DDm4~@-4d--9YOmYaq$V21gNS0~=(=n)p#rc8vLkLAw-* z@N{-5g=z=8#-^l;wkh)IZw7wA{LlT_LZX0PsEB(7=m5 zU}V$7KD7w96(Rx)sYOZKQt{NEyKJf?A5ws7D>0Ru2WFf6;Y@CSs5T9d;}7|+J@b8w zaw4Y}tDbBd|j7n;|1}3zt#mS`QY7H}JU%$T6X%io3x>{sKEL z5*0S6#xXm*;?&Cnu5MT3C>wC00l;DaHRIsNYdMnU2XnWQXAq=KU26<`-(M73#9{s3?2mz!k6%JiC4T`7u7?TQ!xvAVwK+`Sx2Pkl(2{lI^rzDl%D} z6Em}EnSq|Rp6=i?S3Ds3!@e|>ZgXLYMFPg?r3j|G2V@APV4L^QxM1K6QN^xQVU62P zg~F%@C#)3Q%WMQh0gj4lU22=LQoBDlN*L4w*hPwmti`LbZCL)a#|zS%Ktv55x3GZ9d{-DIo(YzYAv+i!)B#{8p+7)aF-~7l{pw zMxt%cD%|4ir!B@DSII9{CJOS9(x=mn(=rP+Joc?zAk`+?Nkip!=4RLQt2I|$CK@D;4)#)qp{p7Uxv)rIQwtstkP#iPu1vFwEWzB>8QGDNCA((F zb&wc_p?3BU^>KR(9-S;yDd91Gvx=k{d34r_Xpm~SK*yZ9-yVD@Jh4F_XY5eqg{0O< zs4PN4^D$sI`!IMIzC(cMBhsp#dAF%3`?p`beNIu4 zSBR}57NaLQK?M_0ck!_qtnJvzh2SnVBv4b2k~aI~X?r2mZU>#8f;32|s;-eArA+aj zctp&1JFAbSjTQv-}BmRc0pcJPcx!~Ch%rdJizW% zAQ<9+@l0$$f_N-hY7pwm z+ARSa`kQr?U3n0*F-8ZuLm{uD+mm+#TdpH&2D=`(@BsUCr*JvUkEgX6qzvlMPSsVtiM?5ZJA9W2(+{DC|b&KhzQ0StiSoh$N@bp_#=2%P9yGMeo_xM z;31u8Frp(2^F?04Ab*s$NY`g@L1y%$x&^>J5GgY&L)H`IDtv_)nIZIwppef@Pej`+ zWhb>{P&2G2J2TT#xWE$n%mgF%U7QfWv^EtSb)8E%>qNVsHncHajAc)p^ar<~q zIgC)828P5k3V@%u%~a_pC1%{(0NedB5DtNHg-cSP(wIB)y;E=YN;)0T>e~g69rEss zY|^56hHj7Fs=QD`e7Ry_1|mVmL-wy>8EREUQxy~)ajL+f{n|>0TS?UrL&<7-LXC)x z5T~vn{XHYA;8h`SzbUNuJ0uOUo*vT?JeV5BNq)CI%hL7Sirt5)g~}J3F8GU;kGXZvzwr^m$O3S%bQhdo|+(!EjN}rd0 z_qg*=zF}do2u;A!p?)mVPQMlKMVtR|zv61`0E+XCacbw&{Gi%292}z^Z(L1A~lBqB2t8jnZdY zVJouEQg|F{&U^?jlK;y>TIWQ#DOvdf0R_p%R|kTtu%?s?Po69lAQ{_*-A$k^EHj$` zn$C!Tkw7geq#ts^Ad4jg5I6_5{e7}6iM zFz#*)e6Nw|ByroTe1X_NeMbTYF>E8+jt@|$9n@XFv{CyW?%RT~Jrv`Xq$HiTpfWDf z#+yRX$5&>+xa}JFr?XWKVwFw07c~;2O_98sF0%ouq^v4&M~>cBb~pm;*U;18?_fBTAG123?L z|24e*O!jXTb~aoeXim@6Swq{ZqIx1&bTN?xpTI9HdI{Z1D|9!t=s7laoe#_^y4=x{ z^JE2c4w%DfK~q6CAJ7`jKHEPJ#petNL@?WuLXaIYYF0<<-})Mez>s=$_j$95*g>s| z&MC^ZjW4LXdv`cbpwQ{6BDxq8sVan>Ne=Upzi8H{$Rb7@N-L#)N;I{7G7g;=**I7P zX%D5&RkRAEpR^*EFA*p}0CrC!p!*Wxel)Q-S_w~r$|B504Zx1fPPXD5t|vVuW7WCqnYR0+}0)e&F&IMn6jz))ZCjb0ea|q>oT^*rS@G zjuL%6c`sGviU@c4WLk8Uu^ku3V#sG?$<)W4sb9T+kskf=+t;Ab{^b47Z@ICgoBcHK)q+2y|r^DhMF%IQ9Fu$V* z=ynR#n;b1J(~1%ZKy3)cg&Va}mK96W#$ENes>mYAf3Stsb_ca>>p>DfZ6!FmSAq|X z0jloxm7i;k=V(3Eyj_SrOLj0QRuMazT*O0lSjAigy2WmhX8nPl*9$F@rh*I z%6QZ13`>)WO9YMB0?uE_e?k8L-`Kq0y#F{oDjDhf7wONCzSvG2z!;>m*E8TlAoI4% zyxK>w>U&>-EVoDZ5p95k9X_}xB~zmn%GP11u}~ltMLboA%kK=e(8KW23EGIzGC0^? zR;gU(uET)k;MB&xM(cQy#Px+7+*MVuALvFyw5skdi|QWM#A=qUtYY~cA9g~L!8(M` z{WPPeM8U2($?3w_0v%}dFr<`8pOWGyEM4s6GrHmQLwhoxdOcOw`UwqPaA0g>K9I-v zaJ8jL8Wxijbg3lUoYpm zZp1Yz)TUD@VDA(_lcH0DScN>&AU%yRfg(z`l7rUlSr=$-*$%-_;X&7s5tCn@b%0Y~ z9KTDsLgjfheXb5?D7ury$gjfNznIy``yWC&!{8+X(qbOCJ*QA5=O}yI^}3iAZ`C|Q zHQTm9eoYOaofPkV^8;qvVdys=vOgY3m~69{8MuxtX<{#j41JPmCa&raOTD@5HZVXB zJFKJzguvfZ&ZCR!7nhRj;Y!!l4Cp~_0WR<}t4Pu92A})jID>wdy8zG1dcp}cJG*)6 zUCC~0Rg?2@kUex<6yrgVv0G~!q9O|u-gd9x zk(S4~@CQMA6{V0Y8D;_vOm$L91{c@XI@^>2(upiHv1^Z0kSpw}U`pE=+j>B)dUM7J zhB^>skSf?Uv+*Le?{2wS4WCJLG)q5`%Wf)BT@lR#iG~k*T`B?}u4xz@%YJ|{I0Rf} z2bcyOB8*K!t!$B)Gn^jKNV_z5Kb_t<;%%G7U%y3x^-cBUhdFL zk=oW&8tZz7rC-+rdVbb)K@qf)f^^%}0ySOB;( z56&PZ_4cld9BG?T-{hu|6|-;bM8k?vs*qH#Y4&kwo1w{gyCym?4?%sOy|^tA)4-#J zVvZdOJ6OL2w1FAHkXD@B)KH)x?@mtQZAZh=*l*Zl!%mi(^0zDP)qz5L%Vs*?3x9V? zjs6(kf0V9%6W;!0@m}wLNfoYNn%b7m|4rC>^n@cRq}G?GHgD7717~oe0|7Aoqi?(w zelNh%%R9?4X;;eeJuj)--$B`lKu;JkDe4%SO~lOiui3e44Y$es1(zpMf!NVd5QB>8 zi3vOsWR@>I(B&S-!6;Fqv#hMOE5paC{(F)cWLTHC-o}N=CDuh1sL3*{_ozgW!Zyh( zI;`oshWycjW#+YsI__CYq*AFcu^}J=hBb9<#r0C7UYS;cxg@~bB29Xtlp8@AJ+P>T z!rYEdVwCl936RVzn9sm zW|=hQkvBe%3FLu0_!KSENi62wK>@NOlwzo6KU~%iOhY)X+~7=YkgQ%2il8rA%i(Xs z4}S22zfBAKN0QaQeW}@e#nBbUjd!9t9w=vyd|BH&@#qkzn#Q2$JETN8SCv{xK$XB8nNMHrlc*bQAKj-;;dF=x`G}R7lT4Roxs&Q`}sj7=-m4$G_z)_+mnioEB z#7P0%BY>Tq@29Op4g_VKtax42yQ`-c5e}-6*EFPsEO=C#oRZga8K%=Av0tLIonKY< zDV@o%t%2tCorvUEh4z5z)Cz2y#ra)5Hx0+6+ro8d6>2DT(h6kK7B8z>+CCV>VMR(z zvAoZ|dZ9x&HcX{e{R6wJ^wq7lES}O~Hb7EgXr;0Z!)kH8WU!coN$RUdl#cgZ7 zU}#8D-vnZwc1R*7&^`o==IE8JnvpFoR64{~Y3=peJ|jih(MB;yFM1*#X!{+_{DHy0 zp&kH)tT9mFn0}EQEIzX`<9&ioPLv#Hn9ume8(QSDe9lerTZC~#9J#W)V9EfU>pHa$ z*m>Cw@uWj*YILH;uDstC-vcPP?bKPagJy$vI4pQjJ)GR}t`qu$yzcM4>gw9aUy6%r zFD%|%YlXC>YoycLq}FL22Bi;T2r7B1PQcnRNLv;17~QJ`c86k`rWZ+i=lYH$u|tCwsx)i1IN5QTY<@9 zfGUIE)~dM;=+Wso$wF>57B;&0HBCgcm+ps;Z27GIljMFSXw8b*dbP;E@caNyCK$01 zh!_KYPCD9%1i%19W02gjmIPphhu_LQXH5yPP6OkJ>KNXVV-veWv+D)i_b|=2jqa1A z3#DWn-qUTe`tM!6plpDG65FNU@A8?FuwvlJ(c*S;`)z=PHpqF?(cbzh ze}lyIY1d)S*fLO7p1`YN4|4zJQk~vvHEL9?Yp`dU2-zoXz!CreaTOc{3Ios{)Rq2h z9sGW;HN^=Jkk*n&-+Efg@~i5SX%*-t%T{N7LL(M}$MVOZtd_LGzx}7Tp9h0^sSUz+ zJg=WRHcpo<+L>v!q8;Ya#Sg_+dPB77k5c_qeNchoas3ELOJO*~x7Bkle1LYy$cm=& zTdRbvk1;DSx^grmL=DSM*ZwF+6+tT~L1~Z!=_ET(PQ4hoTRF=XlOfBh!fYKQY&MlP zoYswp^*q39j7A`+Xba5zXHVF4zQ~4Z9X{+6?cNq;mh!boRS_{JB=TiU2!j&utDQZE zHo(2-Ce?@HCB|@HYO+#LG@xl{NP4_zc5nu@6ypix%~=oyZGzb5<^nW3B{u-PGHJ1% z(Urz-fKK+x9TeQrwb=&lKyY_?o*;@4tTkBfp04K9GLuC*kc6 zm}7kM_Idg{)BNW_@%?WrGvs@6@7P0qx+iBhMvqe&ra5T_LNGV?!xCopmUm5;)AX=9QuXo5P(9 zcQu_>)C#q6G2ENg5=WV%#1sy)`D>%!O9G};RQKn^N$~Jd)Lmr+T|`%Qip|U=r)nwY zBc}`v-$sS}0J5l#0YtI{q$3y%)+NlFP-j4m5=5)kjnZrbAmia-f33CSjY6LyZjFbw z>cJP_OM@@}ob0 z`zm?dR{me)}2F{HK8Pglz<`SlZX_3`JFEv^E>7_Aup@ z_{%XP!jIXoLEqhiDL%fwmh<0r(4imScV>gMp#imDw#?t&l$~pv0n3;2hLY=}`)LOh ze#)~OW$jtY)gFPL44|`CjmszOR>w1xL(_(t8PBGX`Y)5D!88_;Z2PWXsOr!up37>M zQtcI~4-c*gC6s%3>^vxpB0sgBdI+GvNS&VcOY%ijd&IX-B^#?;Bl_Oc?LyHiZ0rVh z$ZuWtq`#rx`-FXu>&AzQnHL~lEbAI2({soXRUW`5>@b(gsO77Y^XdT~UfQ{J59=$) zB7%psSc{^Xw8>t{Pi~5>f0fIQ_KBwvy0%uH?#2f$HMlJ^sT z^zBD)-vnNyM}PG8tMK;Qv}Ja+A-od~`6O)l2~zHO5uCvms{Nzri{*eitDZf+1>GDoJQ?7ON|g=vGN$7i4B zq26G{0=)5d^cfeXHYC3J(0&=9e2O-19){mJ7+0mnZas|+J7*8hbpvmB$95+f>pGew zo!-J#?bK`DcV5lZw^kUH?d}n5KjiO2ZcIEK$DB}R4L7hlM^LX|V=w>!X1X)W+X431 zW;1axpl><^GdQBA*~6*zyp}QZh*hnUn=Za!Coz~`PHcW&G zuU2%jZ|oR@VCti*v>Q$2Wu-{@D?z7Ktz&=L9M%G?>H@B3 zSOwYDqCQhZXzq>k$|VUzI!ExHoOeZ|Ge$$cp~Db3CsJM3Ok#Zd498NkDM`87G2N%| zy0b|z!Ss;jkere)zQU&=L6>DC_=xW*&#|rD-w%hi3tmXx<&85rjl-2IZ*8I3aw3!| ziHrktDQ?rhX(fGCkDb+-3xt2H;DO3W-RBw=l69w%6S~Q)B;ZA2i3gj{G0sI#o3UjXQP#MLd>r!8B5%ymRzsxEU3 z^(tUwH|Xqeu7Z7+%?i+Go4MvIjzA=s9~|0#@Z(kmrvqX6ii0mG(=D}q<3d}q;&Ggj z+>XWV5p~wyT9+5TJDW+uj$$DcwzJ^lW1DblG<{|(T0Ytom4QcDLC=Hx*VW*PyP-ufZ z(*9cB9UK~mwSdh7!F_ucS!xoeWQQyrz=)VG@@-ceP-If;oo%!oza6p&%p9v4TwNmh z%_$>0BL+wZkoXRyLjz<%TI(2@eAsIxsXsYmyj~U5#x8K>+t5U}zNF~ZuXVgAiy?Qv ztR3)-2r4G00`@n^grl$7O?ALziORq9bT4O#iqm#k>lcXlwNf41I}7LxCnK75x;8%g z*dKOTj(Y}=%056>y(HJ9Mqho1_Y7RxFhJ9)4DO=^Jm*}A@{kID@mJEfYJ2nJ~60&7=p=5T*6YB%0ZIKJt zZIfe^I^{pA>s(r6N2Tl=m*H>2JX-+XLJ1QN9H+r3i0K>pm?gG4!_YpWWib$_9VrD; zOG>*d1laDiiN0l_yBhRDTW(KRQ-qO$7Yy;)pPq0jTNTqxiCm-u!*b7sfH7Bfm$coj zYR7Psm<|js=M4%&d%eI_T>{#1Dx<%8`-y%1;=A|ZyAPzl^^+hc17f$;2CzER@4V;~ zZy(brLsB??4%?#5Pjya2wmx;q#nam<@|iOFD;EW?r+tHPQDFB4K1@UB z+0LL$Q>zyT^hqEWjzKh@k}YMh%Ivhbw~-=8@=2yBecRC&whr1268u-Tc5Xlnaa&@| zU)nB^;m=&1lp&ccZR-U^w^)x%?>AK&2sa(;;mbIb?*tlGP{DAb~7_J5> z2Xit(S)rE&^GyirCfj9OvuE9+QvTJZomQ9qf=!x9B#x3D$Lm70IcTzl^-D^OzFq2b zU!l;NnXd*c=>}32d)trjMsuSI(J2VC19pxQ7* z*{c3Ld_Uj*F1-Ib-+lf5WBdAPunTKKee(W?w;zT7kZ%47{sEs|;CiFhH{>R6?(6|F ziNPDeiJBPrc?tvkABIB`cxCZHl{@VR5W22DDv;yg2p(cpy}9GJ$}UmT_&1Bdi73oa z(`SSB28XeeQm3o>GD6biZv8Q24)Vrdb7aRM0}f^Sq-1;6Wi5+)V)}Ehz5KYvoYmh@ zh{$(LUQAVUq!xB(v6wSO*db(Hx>mMpSjVa8IKgVL^n7nL6Ha8DKk2q3K?hB9DFQCF za;2vEQdQTpQxJGTEYVbfeYkGe|grh*SC9TA) ztSGf$mPJ%MWaVh4GNK(Fj!{Y#Th<*4qmAHNwrG@#@Rp1!o)8&7p{wQifRLhwTdRj% z+w2jxv<&2(17|CGe`9YsKz<31qTluv(bJ}Ei$z6KlA2KY>K93ltT7{R2vQ*q?8ZZ< zaL{~a)-E}xtZFE7E*Awu5!{#6Lcs}KX*i!ax6X!u&1^x@z$6~>q)^RT!n{p#zRf_U zI_d}H+iF(K5+aN=l|MMI8JLTynYqe@@QV+ord9SXg9x1vO9d9J|a}1{>B3jN!f`v*q0c2n>Z;6j2 zAW~GY@>T$`9HELOEl+;rGZR7=I4IP`2SPs?xhvtc6 zgC(!woNUbXTa?4@@cML4PZb)L2JfXaEVK1A%|3L|JtjgdpYG(M^Mn3?E5O33Fm@fR zl;8n~j&YtSyFI#I!jMGl*|1eVaZ*JkPt(z)seH&k9@*AI z`y6_JioPApr>9k9el z*PI#^Doj&nu^5QyAveFXKW+LWPOp-EK8Q zOuKLL1wD>u7TCK@^&oMtSD)pI9Z7j&)!yGDhdCXUT2;0dQr7fH+RVlB(k5$bO`)`b z1FZybj3k4?;{d(Y@EFG+n>f`2x*{a|$Y;>>E@q0{&OWB5B`A(+?{E)v|~kBOD` z_2s3*fI0<&XDi9o<}y>5va1BTjiMfb%WenP|FSESu}aol*;adtPdP0=_lc0 zJRHOJOWlHclxM@L-FNH4EKvd3=>{gcR;0#Y-YApgH1-!Imx5Pi$QZ!{^qG*0yT-(* zzh$Ek`54u9^4ur_3E>$BPKHo5*_xMfw6#8ZXt!dm1L}q|i%9}_+yHbBNlqE+F9(Nkp^o@g60K(uPmf7=p+=?TF*$7rJrq>uI-mgy;r z_Yu7VqjfA90(xw_{LZZHk_(WLm@8P~9HjP(vTD~lvn@u@0-wm7rzver~+fYCua&SDj+G>{@kptu&R7*VzEap@Sgj z_gw3UwN*|&{kY;dwr_@eO0en|opGS8CYL>y^N_+#t^LbOYTj}(1WfQr86E>*Iac6* z3-ypHIwD#=WO;FWhMQu>4N`&Bx9HaE6eWG9S8}L0)X+qQ?JDaDp{ zu#T^&wTFUYRPqQ?=;Ur(uZ`5NrXdA3Q4{@!;TG6c^urx}4J${9riQ4L17@HIRfK?@ z4}8`-`*+u+x?I?FOeIj{-|sKWLq#7f_1fV|lrH5L`FvLg4B4*wP+xR(|WaIDxF zH(jBjAO{hJ3C^P!Z2`^^(uJMLG~j7ud?6B9s3=#E**7AKC}}h z9=sg5O;G-d8_J}jxODM)RRo-*tSS1UuJ+?hsuPvYaU)A$R;}-=q|&uqAYh#~_G3D` zu}fwDG$H83tu_}w)YJxZkoN%fkYie52ukF7q3{vQWDA7m@-9`wv0fz$gI9QZ;Rj$kwlv|l zmjbnEy%8L){NhZ6Zl>y*MPN4&wTasU1Bv2L5$Y1MVDE8sCmZBxN|;Z1T2E7^Sr$B0 zMO{xrNk6-_j8V%>3r+k&*H1bfj=O|zvLfIbW%~skYwnQOS7`hJrMC{Us%r@nsw9@q zMW|ES328+aw38?r^-3vhDSdHr%fI{J0}C_8Q9kxv3K+%dE(hwA5lx1u4g=LrxhSz* z?U08QWOg{oerG4DfW$H-){3qIG}67nz9;{M?|qMD%{MG-z9Gc*8$w)($$S5Ec>gSI z9&}{Ng|N~m3@Ry7BQcBSC)&HGM2$*W_UIl|>g-NXo}42STfL4{(L@pOquz#4df1;F za1uPJ=EMR@cqdapFmVa`hRZItVB8pTmR7|AU|rmzyI|N<(4#Iuli0G~vgHi;Zw=e4 zi*kQRx0C&ib9eM2zB#F>-gj42yUU7_rQddN4l=+gz$3=UxudkQsYNBl)-5cQcv@AS zW0-O`NL40ziJb9j*OGlL!=)vRqS4MYTBZj3xpGoaB?)&a(IEwp(pF!qJy_XJEWmA` zP-9VWAGP9Ay-;r1wia0JJAU^nfZsx?D1s0a)8fq27jd z_yoEDNpJr(5CXe9mv=iB?{aL<1Qty_?QpCF8gg;JWCAzKI-Ew+l}j`v)nJX9VxG{-7VB#3F?fi)HHC;nK>m-v4Z4`e`0L*!IZjFam=X`~J zz=~!NuWO&|xsEg>Q_(uIRgY<`nb1c|!)}3)txi6n1O}{kd+)mnz?HOQ(JzzjdYzev z)}>Z?276Y?WZJADG&hqrgQO5nYreuj-vRF_OlS8PccaF9*==AF+?Dnef%`xOqF6{I zi>BVK;d=>HmgC5ifO6%dOXX=5$r4uwGYX)?zSg4kkVG($Go|%SYK^Iy|I^!-bkTc_ z!PUm^s{KDeza@I>1vJqHBd$=l-HMA^{oqQNCZT&9O9-{h9aN=czw6X?cMO{R^^+3_ z&^>MD?JL0ggv*(CWrNW1E_4s_#-z03!0BUqc%T}#^gcB9u1pf2OwJ$5mc40807L_< zp&G8RAYZj9?CTfCKP=oZyPABCKv~O}H^1bPcZiVR<*0vN?%QaS$9rGTACYNQav7Rh z=JALb;aEwMEpHyM6}92PZ{bFwjjR}&$v0zC7*g^6cmc;!7o1#GP4c0_`>Eq^QE5*V1-7Fb|9<-p%UT}5d^uMpC7srKDzoonhxH;gruP8NXIbtxhA z=C(0v2*3HILER(tG~7<0bP*Ef*j4t#&xNAhS5nHhM<_FbE^kO1cgQDjN#e%o9s+do=QiB^NGt{)`uZXGhixXar}9S3+E`iUkXuGk!3! z&7?FHyanhqJ`r{3axDd1~2tyykw?F*L4?Qe2>`TirR>g{^*a!55=!^!EI7rr66u}Lr`@PU^ zKi?G{me(kO(rsLr+}we1vQtjd6E-O^LMg!&MO9=W0$g1Oek%S1?7N-;B(xoS(Jq95 z+4y#W_zEx~m$s8EFj58=&{3&qc8O~8Ijqr8iH(kFQ#3)gGbrhS=Vkpe!f7`3LL3+$Wt&>Ii2Jj)1Imu9fRV#$Qad8(De@n*e>uS z-76`Z5$Dxw#lb4@-5p8g(~-MZIbZ`n$6E zTTvxq+205M!d*XgMyqTB;_NI1gc=E{~+3m$irGK&ffI`4DklO)uv0+>+o zftsA_Ks1Z;@~MozK$?MiCRa3E_}*M=e**B9P3$)yd0%rSJq*Z>Q>z%5AI|?Ik(Mys zvDuSKlIUo^%EiD7>u1-PhOdTm#L7s#avA`C#dwP zIaEk|UPr^WXNm4~(sYv>JmH+j;C$K_Ck!#vWe$%;B2sKm?fc` zewX+7l`S=N*XG!xyKqMvA<79ebj{+-fp%9ZM$9=CAWnW<3luFL?>2LLCtbFU-iDV$ zSPogG=ncfxaZhNG1-=6+XWP^DtqSqp zdZt$dX0@AZYemLPe)8?Jx6hs02Qb3>&w&hnKhKY(nEbs27q|ew{}y)=Xui69`;W+x|KaURx%l$( z3M@%^xB3CfbO1s!_XPx}ll(vd3|BbX=rs%|wkh*RSV4MD3?r+Iet zD}Yq{#wNP_PyI#NhAHLaAORQYE1NcOF=ABe1IynPKt<*P+WAB9#1)(a8KKm{&tk|V zS=v0I)NQEbx4?lz+p)5=?U1gkr7H?qM}SEHyr{A;+2L&}A&fR+0#~|L;h=v(D*f4Z zbj)O_KEn0Vw$Z&??&|r8%?m^eHG-5jo-XD0S}$CR)q8!pNfDP33PqI72aSQW54+v1 z9hx?iZqj~t1 z_B{BP3|GZ$kK?65p>LGmE!4%?Hfs;`6b%mnBU{jd{N3B1{@3tVf5Tn%dHBnJ)$2ng zU^dtHd8&uiViV~nW|YtZN71h8~`IbFHZ2|2$X~;oJ~6Q(zUWpZL{p5EH792bsxh6t`J1LtG=ST z$Xq+9cW*XJPfohtNta-G#C}s*!v))=iU!=SfVRC#J&Q?`iuY#iUZ5y?I(=7hd3ITt zPHOuVIZ|rxEJW)w^N~IA&PIL93$9 z&7&QLBytcnJAs4y9Fmc6+Dy+7tIFlAA%W0z`QTY5Z~PB=IJ559C-5;HIaOP8cDQ2c zD$$o2uS8q2*)ds;5Y8$2K<~DyP)qfbs?>s^(fJc_1#`sJEXN=D?T1dUux=wy9yAM1 z8Rb$p3H3yL{=E0{dLj6(FfHq1!ZCQg6BwlyH<8qWEJiq@R>(3XgKXO%HJ#lo%*luD zG`AmW#L&n(X;6(B3Li!E1lggL*Z7#0ns*qg0wo03LfBys_p~uj9`}8x#!F~_B|{XW zYV~k|rWsM&x@SrR`nY2=Wz|Ga;!c=ED9Q$G@2z_#BC%sN>9AO8nB;GA_uwDn)Jq7=BQtR9+@O$bVLqF@xHD* ztiiekX2!c`z*4kO-$m+G$+af!v()g3m0%((dB{eOnvoDd6(L1gqSXsQF^&h35K*|Z z)Md-cUpu{s2E?i#C))i4T!GX$B|lkJz6bLfvSN_{_G!=B)i9vfkO&}B+u_YM zlq(W0(H?Qo%X;ssj7sWyJWCe_dju-rtq_pxN|iv)ohk$MP`pBdaXs&ayjP|Hf@BiM zE~h9U1G7Sv?rlP@yiz&Y9lC?v(JbT|icK|IkrB zXInYPiGec!Er!pDEe(}|qIbel1|@+hI%v<;_aJZG71%a;dM%CyYMnuoml=8wx2f1y zS&*$yLQ~e6uN%dJsf*QT09BOTc)4TrZG}}UhmCyiE3V%3!E_@sHfqy!5=QJyC?yxA zb4mWpCD|Qy1ZM#po=OuHk*?wBljYT=mih|4@x|wJ)f|qg@#2LPGaC3BfC3TXL@tVp zvJD}{weg_=x?BXIs=Z?mh9PBE(D5zn5{0_O^RV`*n^CqHNpl>eBQ$7`=b8ud&?e`*hSm z(mq}M^Vt!!p*cG>i1wwJO#XnNyF20<(@QN|;K9TyX!|H4PY~=W=nMpzyCN^96~arI z&m0jvWleRLWtRhRCX=n%jW4R+DVYp817t=K7IaQO@*SSl(TQAtdDYibKQ?*vSVH#y za`rB}vK&{I;5@##(T1x0R zsztbsyXZ4)d_J%%z*0^RO_%fbT0+0Ny*+^b4~U3z!WG=v0eW_hLzSQ53T=FGuX;+xzVJBkoJHrn9a;@&;R`O;KJw>lL5=73lyNjE2qG4@v> zwh}6j-1-oG4sP5Np%?@?S4dZKdmn_Aub?!5{AfMQAN}Y@;UCOg<-f7*_)Pt-vigwH z&^DvgEfki$H|qUTAriv#mdFBiL!Ye6az~; z+3GGxO)^8117y|qICXnQa0lU?mtVQt2*%airgfNrgiXr2rR$?4E7tpOT6qqW<5Q3j zxH}OtGLoU>@p3MwSUIT=(I1JBJwD4RXoJ9;`l}n*D)j74U6T^-8hJo!#sxB=?po zUYqxTs?SKiU~N*_PVd&n2O07*GX$wv37sA7X#i#j=j`b=+$CSJmcHC(b3xLRJsdn= zfCcCqwKXyLS18VkGPpxX;J#(6@28a7RPS*a5fpN`&3z#EXav?>uX^wn*8p~yQaral9 z0mizLXaQvzM8Yam>=de{la1AGVMq95bmtNt@VocJOy&0NU$ie|mzUkINY$cqz0=Te z5Fo~e^EHE-O1!?uN~c{gmcqx{PW}%0*$3eIDRW8glCK#Q2^&!vw~?je4FsI0T~^AJ zytRNvtj=+zMsh@pDW5h_vB|MSo$e?)fRm%dBx-@c{>&%_gVH4xr*bHuu-&UW${;)S zsI;NlGzYWNuuzsmp4d6kjJrM!Ht;nx;EKDX zBWS`leN^?$JhKO1__k_>7h;At_!7o2=y!PmXUpub2zL5#fA>o|YX9c-yF5P1z`fLDX|#$@l=;MH%4B5?z;PSy|`+dE2d1RAP6z?%D1Pr{kJW0}hH$ZIIbg zE76)IHVHDe!~ny4o)ck-HOd3JnIF(Qz#(aIGv;oW&v@~|%vI19n}(K669X+7xE69r z*7F7zKy_x+7O+M()>QQw#V&@XphyJM#!@ySduFj~4q_jj@+NFycG)7Em5>}#mqt=3 zh$yq4lW9YJcGs3e(7NTabf$8xoCDh)C8%!k8AyOtt1pJC>#)m~$>Dv%`Qt)ZP?Z`b z3L%_>43RfRa*s|acrqNUVE};oi0p|Ax@Kr=XAKC}M-UdYTbxu19LJjEkfUPmDP2>m z)S~SQbt!IeL8|tYUgVbqrOl3V*?ULS^%(;b`1)cPZ597rTVR`SEAUEN@G&hR0{@R) z)Bj1`v7dz3pXRF{L*)Bk-+rbFsccl&;roBVTha5uRfW^?Wp|zwa@!5}9W}dvu?)Iq zay9Q7X>D_GDH=`KYkp*hIol0@>NMp*$p~m&8pdwYSWn8`IOrd~8-(VgWw=4UWZ1~s z8b&DUhv$Lbh~`0QL!{xdJEltpYt1sL{4a*C1W6d8Tm|5+T`HTkL({N}EdATCd+R#h z$bfgJ_Ryeil^HNvMb~Dlz1mJesZb<(I^G=J=Bi$H>f9{>CoC1`!a3^=oj?%B>sW2n zg&LiEazh6Oe<-y5bV^^k-YP~jdHo~215Hsy9iT`-=_jUsQa&IRiPsr1IK(Rn4YSS=!E>uADRu1$VCH{)0hXW}xB4Z5IIMbYJgf=J! zPg3;1J9GEIXeV*+l-oh1MIBk7ts&)D!Oeta>U1abxm$*48JZj`)I656ZiL3!?z2m{e7CB9AmLme;m=Y2!|imr~oGFQj%Ka&9TF?{SlfBo?LU&?>~ zz%cZOx1Z<0^jm$AKmVaU!ewGs`+&PVZR@*XXDCevRMJDK^BjKK235^IRxMrDV;Hpd zX9F2%JeN9dl~3hVG|8$Yr^SbcBUy}|_~{u2b>Y4abVYr@-gdDF2Ul^4ZfB<$?tTb% z0LV>$!QQv%CWrh@>JyI9h9}}iQ?PwEL|1n1A9R`O(J9JTuzkj)sg_NyY6g$Mj9k+bWRRC#`i?xeksZ~Qp89f)E#xcZ`VXM_5y zk_q#uS4nlOh5>rEUIGkV8qXqX=<3)pfTktFD*pKdjpmRT?pl{Ws3gZGM&gFwrCe>P zUvL~VSy6d@?_Pm-1&SIV`3eh>oZ%*^kjW4ZN`vz*0NfDTM$wDIZdQtzcry<=ph%9| zsBjG#**1{J^t8QPx$x*YEe}|Vb4z0-Lzy9&< z!~ee@!~f_X_V51t@cP02>Z`X8_%ZzO4aYxyeN=IV9jT3;)u!8vC&1rwa)v`oN(`IZ zERZj_Ko`qFknl~$ zSnSA)ZC1H*ITeZ<^IHiH@@bff+c#4e_^jG&GA;eEu^->pK%3v0vU-D1?uq2ThC1tc zC_~1PLtcm(p1Pq1;GNhEB!a&6C0bV%+xhJd&1&Iq1VwHiAa#gPJ4)jww{P9eYasg+ zH|DK3;93n%m|oDN>WLeMh^jUAFk^x`aY3p~5$Z*D;XSapQb9-$g$X8k5Tnpe3>z^j zB#OQ)BX|iB0LIcMyUu{Er)uw?6*#GOk$Tm}Vw(-*E)ZhR2dnwKF=w~wvdAx8VtXC`%c2%$Kmzc)A#@K`Wx#AZBaFkW>YwL2?h{( zG~my~12gKrceB<&7}AnuZmp@_(92HJO;c3v&)#mBsHiiqD#)T5`17)Ah0qQ@V7)bR zsL0kR<<@9Q)k@4H5)bMQ)o@36yEXd+QO(E{kYdTH1RzK3jB=Xg3yDGmGod@4)$4}J zZHz`GJP$&Y z4dF^9#Z;qOvRzVOsdLB3qi|KOwQ!K%pv@KE9rE{BcMZP7ayZ-$V-Km`V7+8#MCQdy zNU(^OP)h9*&vi=tI*CWKBq?TQ21tWi{gvJek7~o9q7Nm7@;dgw)TV~|EvWKl4n-x; zh{*YNFy9M04Ef7aqhrb?Stu`G*h~k8-oa858s8H=Mc(QoEqP#yC7!VF;2(|%2ytQR zyP&~vRy*k&)YJ*PP1^qhelov1K$wFZ5+JG2#w?AnIZCAnR*AllYr85;?F2x**ls<- zqDeNYaB%O_Ow~Mc!9}?Ng?;5&>azTM!654Y0lMKg;q`OboMmzp@I&s!7)KTVF$B`2 z0M&^(XEhMnm;D6GY&ftRWuQk8xpgE4ai9tHHt&_!80nNlwda}ueYhz>@t$Tv4p`G* zxl_iz0!_JkiG>Wa(Y-HUYh9J0-RwsLLr?FFq&zVTNx)J+ zO3teM&9D0@03nIeS1Jl-boS^->)2aGoIyW-r$|(T#2Y6GRBTc~q1((Z`Bn~h_-za`Wlm9BN)cK2bD`o_&8!9H z;4R-mtrv01XoVS?`=M=FIUZ0#$$7XPX8T2Qw`QP!D)q~CU@dCZBmChEJJ-oeB%tj* zABAZQ0Co~bO&0MSF)~H|%S2V3@sfVrZ5Lx(td8qKb1@J?5LMeuFaKjO39{eo%kO^< z3G6J$m$Ss&Ri3?ZhH-baB@P3-J5@^7>Qm zd!{1Ll(7xo_>`-G{VxSQy8%j?h63mp^ib%sO^7}DZX2LXC3ikY#^ta$`lY4zoF8RTQi~j*f|sy|Wi$c~#@e z{d3Ffu$o|P-j2Da`Z4v6Kl68AKXgY$7>54x?T_K@J9K@1{rYox_0ikMk{*8wnWwi; zmrJQ2e|vgJU9rvsq4zDwu^Y;~4rO6#2_S~h>YTh&3|)*I z&eqDtL~E$))3PQ+tze|Oym<$RqA}R2!O@O}o$*Kug>5BnN4bl#?=T+C`*47?I3MCv zH%}L3mjtDkqd~G7WXbeSfQ13fh8rS7`!HJMEC3WDNK{gnqu^e950m+dCL~%8(!ITx ztYJ>jB@&VE$v_&q1#lk7>d!njj{TntCzBYF>y5U1Y^ZF`v8Gnaif|Xt= zTuo!OoDE-BA~9$GgzH%z7A40pQ3=!{DOLoect@{f4*h!I6xXr6D1g29{y%K^2*izj z282?(3*$Ux+yJT?_)(5_j_HBm;DW9ovM#kvb6n1Dw)3mJ+Jc=yz(s&SPK^KxMY-B?3qfN@}h+GI8P>z!Pt)a$gQO!>dM1H(;m-gL$RTiK&b>>=k{ zts@!8Nsd5Ok>oPV@B%&rbIJ z*Mk`##{W!;JCv_b`aURo$e*UQhx;DMPmfwlv6=s#E85LXS(-W!pIZ_rmg6pgd;>a^IE;uj^*8>lp zKwcBk-1B--PeY`0VD2C%O5bK|Y{_yFx=T<)ook7!lF3M}ax(w}z^4&t zg}ZE!y&*iSqlAyj=IDkD>Qb1+3C5LLF;Hb1EgMJk20SY^&O>E%iB;|u+&JDajP)joz}g$|1Bz;_))c{(V&?7J*N zQiEULLepEDPxewC+9I_Ql{aH`h1wk&0@ZgwY9sdC#_*{9H}LKQUXgfLAD#PuD_mr&d3bF|&3 zNwVxbN5`KvPkT7g0lDbZP}lVnI`e#-rCom)@`sG1_yCit@cL8mpgsZN_80R1Z%*I; zm@<`*Bu|jTW#n)YwJr|BbKd2mP$Lu(BdJ3Ru>5Bp_W%bqE&vPA1xk8ay<%$>s@~xb zdhRG|wokAmk{V3CQ3cak;-k9)DyPy3vv*aG%P-;$*{)tgxdj9?w*rvumWPW+^%j+m z*>mf$3B>0P<2cM&Psz5Js^3$1HFVZ~OJ!gMD?e{h%Lyox%}FAtQNPf6ddOY?V~8U5 z{XML$TB4UpepjPTHKnq|^J?D4?2_x9#d>u?9?6W(+IY40rS{w8V3qYtR4G(ZFyBEr zphe@mm7}B?je%W`yi{)`YfxjR*EZOakAX2u@+2OHa_Rgw5F-KR--JK@OtKxGPx$H`Y6$orMhCE}G`um0 zfHASF9x_3cc9N2h>p0@>jPoY-EC)83IM06u>};YspiUdOJZ*wx)c7yoezm{*+t;r- zaQY&@Dpv^q{q-*x8h`kna^<>Y{nw6JW;T9h>aZ#X!!3)zKen>IM$@g@@vAk+ z2ulW|!kont8s)SVzOhi^cP?o?XF`c0^e72?+xCtU)CBuNA{c(dS)m+xpE*xTGdBzh zHJWu^!Y{x`552>iRx}ojVHC5hQhpK6?FqhghEWG^mwgq8yS6~=0im;aI;LFllI5L* zq^pWTVep&0Y7gaLGD!x(zgVL_@Jrge4| z*X-yQ23fII%H#zseX3)JA6{bVc~ z)vUB#*;LK$qF2W02CZ3FovAaIoHixrtO$S6>9p;jwQbSBJJ{C4H98R*)%aLk0(~fb z+yoGf6)MnjcA<$-vzm-jH>wMkA5fGee_xvX@Wu~6=CAtv?VGpX8U{nvmS4YAiJI46 zpEhK@&wVdRQDqQ|+GYTc^Z+KF)|2v}RXg3#PFWFomsV9lo6avU>JsqSN95RCI_Nyj z_dzmzYAfFw^(>%TA&4DXnAhvF`|ZX_DYv^Cz#PMEmQXf1^W7E~HvF{fLF_EyDIT1N zMtI1X1>@=!T?er^%WBm^ps%PD(^}&PI&vyn3n^#2==v~nSn9xR zp$3*L-)gWnRW^UO%Nyj7Bm+3z;4@4$n5Nt<=p|pU7I{M&hFrxb`1c*5D*Jw@*V*wS zIecq2aJt}#K$}YrA?tEOA#I?Pp<0!l(ppHp#7RQ_CkY+-7cZu!YcQ{dC1vA;)KH776Hpi4lzR|eD{Nh^Ru@PBsRIm|2N?+Q(eFRX^_-#L)0{<3a%_r?AoU3!K0(z>|g2v6Y<49>^wcB}gsB zEh|jSfTQjT6YP+ng-pYlaAS!i@p#j!2mpD%7dy|jeySn*rMDPnv-899bMQcbuHRPTQ3%O z8ucQx?^|{a^1F@kMUf1){M`{r>gb0;!|bR7LE9tV8NL2z@;!ha(d=^jhAoqXV4f}E zi;k@Zdoz}FA(I{7TW?Q-!FL(7@JAx@Brb%vZy`|&{B>S6kLD#R#&NVT-;$EzibD!GIkqsl=ng(h!3%{oBt zaZIj9+ec4Nb*gIXQwg6^pI%7l>jP6MIdMYGkw`&(QY~n_VnbXEP*Lm)min-MJxO7V z-j~yK+NfAf+VDc1ie+`T%PgoLv-h%K%Q3}@%`6N~25_?50rSQZPOb`*QH29rM=%;< zH@r+2jEtNm4)H(A9Gh{(xO;q&*Em$!K`R0h{gBW}>E5CLdroneD1jCM zlbWoQ<>Lqtch1Ohl;m@kLeQIFlMZ%f9K2k!7gTQfy3Jaxch@Edq)ZN7k8rb^BikkY z<)COFTdUoH=D|^}a;FwL`{?x`x+8Nm@I{=tR58@UP>!UT86-;n~u--&?Dv&{Er{l#M z9(Ypy`1lh=gh6u#IdYPcp+RPi%jr5m4VYrM*GTP1s7(&`EoBiS9t{>KI&d^j@WokO z{vPAQxruuRdcl^hs!c^&(N$E6MS4lfm^S^^QlSt`Zs4;3GeFG0nx0fwkg5UwEwqW) z(=SzobFO6{+uKzU0m?8wV9!8w+7FZ+70sDZLD8}($L0~1IVd2Bety~aHDBWt z^~ubjDWP)So$`(oHDWV%T7nW0-Wu_vag6xw2g)N6>in~}1|Tkmyw0NjO)|ExfzQf| z0ABGc^R~y13kN==IW_W~=xfw5)2QJz+w>n6h#i$OQWeDIKH+Idlx_~bWVTuMnYM!*(v8;|8kHgKp#6?Aa>QM zxjk<(0<;k}Zeb-kw!n5g{nI~%e>iN$*FSJGIw|AB@Ynwg%uKZ#!#`4T?!ZG!HB0;2 zy?n-fs%cbTvQ-e`m}e&$d05LHgueiOl<6q_ zi+RiF`xLr%)~be%R<#d5lZk;~ab9v|b6`5$jDsZKTw;PVbI-%BYYizMTX{n!O6C{x ztHV`JAxx)paJ@KyWBF@Iu67`B{OCvjhCh&(o0{XjuZ_AP*yiu}5^8T#KcMpg=cvs( z>>#WTXhJ^lFw4|Xld z3~+JO+M1qukXgCOdm0zByO%enB$}-X<;puiDf6wn6Uzz!Jm1)G z_?FQ@1?komQUO~$vS3Qh3-e;cObd#T)$c>Z}dDJFzZPg84QU z&@^|AuX%%+O3u{pY6DoI2j7OVg>Ypl$5@1f81>2hCS(e6|dxZB+6Lls%iNJ6f#5JkqkwGYkpX z2$R3_Fn0tVb8d-&rkg+ha$pY(E{Wb34 zY5?O)xSy6eyxbXYWT$VkPsd1}IFv6X=p;OHHyOh0YE8o>sCTHHxe|foFwXn}Zr+H2 z6EtyTJ&QMkN1{%UvY>BXg5c=m# z+PYItvdwK;I||LErU?ozKU}ZDP zY>k8sFc=!VK*)`c3OcKKx2~w+9$NUtxWjYsLFXnbtXKVCC-g|&wYMU&S+f-> z5@4{mllg|)C70tl^-n#Eo~rUNH(j@@plAh{RZkQgbwc0L{XnB?tJua4?61L@HStsa zefZx!I=_Ar-u{ej`rYfNYoSs*DtkVuA86kQMGp<3hYBf7c1h z)pjYngzyu|e#}RPGM57+LfBIPP=2;jSLK(bNbK&E+d@lik*Cu^JXo>}$OfY>S<*=n zz-n}Wq*8vGA#?yY%vVXlDg^EvK$f!LD>njdm0jj&kK6Xpv;W|W45i|py3UB0u{(2b zEudK2ZONfeoCzgTs8ci;~9cFy6CP zeNuIT9RXQjnxT$fZf%GriD@SlgDQpuuURtsO-l&ad4_nQz{Cp8zlOX|uzb#&n$mho zjt;_;t-XVyI}piU;RPa#p${PeEZ!O?$%2q42b9gB`)&2Ayn<_n7R1L7M$nkUx+8(sMvfhvryS}UZ_V7qtn#(|z^a5Mz z2PL=~D97zEQ%Q->wpC{Jom%oU!ZO1d8yqu)DS^&^F0i z3(#q9O~HJMRlPdu55~v~g}0z^;q0$bT?=eGtBE6~=sAMIhZcGdNA-$sgOHQ$+<8{k zys3Bq#;P8qG*VN<%z};|{t64Fia%x$UEx<@oCI0-u%qlH|KRut_G;6EyeVK9JQB7V zKZsfFZ`)ZaHd%aR%|Xy6V2sC6CqNHuqe!gnp^pTGV5J1QhOyc^R`!A$`nro@YkLL! z#Wt?qVi~;AxZ3GoCv7D$y{#4B?_CxywoJm6d~TC;S0Xt~vzaJ^dV6lv2WKKIP#FsD z{D@_;oRZQ8t^7`5C6_|}Ng^_>e$egr`JUW|4Q+oL-xr(u+vaO+CRA}(qv&Tv%MhZA z47_1w49TTE%!B{MK{E8Y9n+O@7Z1!2;E!UB|6y%C!b$kw{i-$M%gyi{UgiDl_)zYP zUH8jA4$VotjsA42xdP2gqt+@G?_ulk_Pg-*-SGtZj()1|i&Fgczwl%J*N@N zrm#7l0@+AfE@~BDC))N2t0#%Z`A~l+VUm~&JW_XOZ8y1Fmbo9GfrQm|IQnO1)#;(1 zEcvvK-WIp?$U94$^(~#~Zm8!0=R@Dbe12E;la~5aqEE}!eg(0J+OId#V;aRJD{u@z zM#f?|s9xmPuv1qRAuStjDi{GR1dyu(>ds2aP*tQE++z)ZhPE%Uy$%{gm)1NpFKPhX z$;UQO_w)i6Os%o=o&s!yqOh~tTKc>@BN!?jiGha{lv`&T13aUo{ZP!(oWD_SyR+X} z;vXRy&{RdxXVB~@fF4^|tWuH*V|f~$I{x5?f-6Rj`~3A22&sJj_6tJ#Fth$V53oPy zTK_7%W{to{LothomdAE^b7eEhB5VufU^qc~MndMQ-iJg#%kwt$Z# zYQnKh%nX#;G#r&4W>qMTW1k513nr~UH!W=F;#rEI86t~pV9kYF8iN#4;_PK z%N5kKlfT~`*VzELA5;=0FjDRR9@HLnf!j}<)fF{PvOO<8QiHg@d`{PBTIxuGF1f`~ zr;F58nJ}Um;^Z(ZWd(Y53RE|uo{rVwerQlAh&hcE#;sxgQ}QNhv*5utX(dNvto@Nx z>s7vo?W;+v+oer_04|dr7L|i||H5D~# z)CA#yWwl)cy`;IAl7|;Lk*J;o?Q0Im&wxNdDnj-gyx;As(fgnVr&E<7A*)!EU=t?f zc1UO~*RA?30^Jtxk=7~^fj@PSL}S}S)zBYG=Cl2BPwfD6Cl+P*h-$@-XvtwZ`MJZU z=&0qCsg0129l8Vk8c<|Fg$8#ChTw~wbT>+yX{&qQLdR@&J@^95&5KJM)pEuUEJJ&s zc$*moDWvF$R0ntceTw?nObzwSFkD+(Ekg^k5QD1j6wF$|Qkw6x64VGQyeRC;kRH7< zVId?jK;614G|aeBJ%&H@l^RsC%;2!YEnwvLaQij*k;<3=1~0dKMQpyZ9k1o1l)}shr#3 zY(kih0dtb47zJ9Btl`$Mdj-f*HjGl7x?lIm+UE=y8I%0;x<|Fl`qu8WDvir0fvsw> zXNtSAp8CT$(5j$!Dn<+IDWb^>!l2nkmK?MtS+*B-AEhD=L_8-*o0>ns9ablnHcAe; z66f04h+Co@9kR0u3WpE)%UMqK>g1aMxj-o9!c_FAw-upE)Vtbicv5g5_GSDTF#TlZ z+PTeew}y4iM!9)CK)4qjZdMoSD-b)_O~AmtC%zi-vbQCFi;}7lv2=wPwXKvZDkyd) zHaWj~6=BU@-BMW^52?%j`(tw)-cVb(>c{BPZ?#&h*n|!6^?}&QdY9Qk0cxBFlg{&F z_kzDx{@x21#E-_NJ(5Wc>i2A`quiy@;77FUY(vh@`r7~o&U-jNuZpn@Pm1;cO5`O2 za9i9Q22xd{O;2p@O%{)pj7q+*ZES0?e?WBg=da&}w+~KFuSqv}KiQ-$DQ&PvUu5Qi zEyr<;Jog{9DhXTGeh*b%jmo?`ig2Us^CWXo7acz(bvo|iYx9a3_zp4!c7oi~8Mc>k zH^bHGzbz>Yb%~goz!PhEC{GAegxw{HZ3hh41SqKW_vEf`SQB<|u5#dR9dOx!Mf8X^ z`VuK@59SycHN#S0R;oxw%`NbG3aq|q^FrH2b>`+Sg(}SlGrJEHoMO8u2V+p z-YJe-N=5nRgL?s9WJ&d>C^2gclCjz1hlOr40ed@xy!0NE@Au*L*GHS$Lzgc%`GWF} zzR2vO{5c=IefRbWXYHW)z5VvIL4aeT!3=OQh6jB}{b+qob)63Mo|2q*WbBe>FGm#B zxh+Qifxk;F!k8OiogVO&K+>etN zIe;pi#s*3^5Q-k5YGxC2Vt`GSAzuR|Y|4`INU>X~{G41~Qj!KBl3n(E4p+sNgo;CR z(6G_Pwk{ux;9P_m6YoX|y6902Eh-TgEz*bdOe6C=-yQR_Ef(D|iWe7%JmQP<)BX`QGm3FDll3O4WFyJ%)G-k);mk#J zJYa~hiL4`7mGW#T)qimaZ$`UIC@!el(2bKCLZjg}pmCYEQSQ31k5k4D-|^x`9!KF` z#Jsh4+cjXv)HTtII3nIU`~Hj^ZU-^$ed-uEGCc#A!jl_&YCwMg=ziENO`8)q zM6?L zCYdt+QVca$&z=>{L~8u7wn(27w6lOJppX_?uNDZCt>_ul139N$Slw@{I&-SPKz<2+ zs07a!DsdHne*5o^3EKz;=|n5UwW@&iw}>_kQrrPw=$Ww;^77wX+M8!%Y`Y8;H?&x0 zQIXmTpoqo4&3)bbK`CWB&bp5o3e~Jg=^qW@dK$a8ZFfkbGMO zm~#4XX?pw?Ht?3M4BVUK0gf(A@6>%+?qHd+^-CMGOk_u6W6Ln8uu7_uGa;aEQ?fU#TnT$enBK3Ci((2fRGyz3y2PH zCcvKVfDl9#ST)0GDxFL(F@8AdEnYmnsDSI8E;i_=t=5hh6vq*UhsiSZ68UXa*1@nh zUDkgk6sJRWc8TkY#fDBw%7LAEXt1LF@q*E@7Z0~a4oL-Xw9R5uRv<`$6!W?*p^Jgk zwej(;JksWdHk+lFw}9~H-c4p)HZPuvW4p7-0qR)=YiHLK*VbYuE41BV!YIDHZ``Hn zxhqc>xbsK^IL(CO7Y0E2B?xp$g?{FRmf(^~IUqG6WNjSTq(CiO$sqD4{8RY%|J&(5 zgunlHd3B+r`B>o#xs3TbbQ-hhj4|`jXIc|# z1_S@08mR+f5}!hlN^H zpwU1s>VlTj!Ab2ROY1mw3`GKXj?}%lD0INWqTfOUZa36|?LjKxKyPQ!WH zu`rdaf>uWa(%HD*}~z)-}XL<~_>K%PIw$ z>2JyzQZ;nF?0pj0XWF0YEy%6~38)b!kJW@Q#3_lEXD#l^lnI4r63i0eS-Ve~DVT~?~d z;}aJ~8>FtW>#I%qiaU zuit(zpZfc^KjOcyU**Gi1}+nY>C+y@*4gY@cE3*!Ho{IHT29ZNhe}b3*pOW6<$)z@ z=QoYH#I+=Hm1gbjdFS0|Dk|FmJ=Z(TS&Ux{BxBcMhtJ6SkY528EeI-%w*;DlK2X+3k@60$Tn zN$90o!Yr1JX>^Wzl{}RqQpK&D=>hbV(tPZwIFuur!xMjZc5x&rtbm|irIvGUmhu=B z=l}_8AmsBuXu~eww0{@A|7Y9WdQ5y9jz`E>M&tSl`VK#M;}{{yLw|Ey%x}WmXDa+a z=)Y8LqtRP?za3IX_s~Zv>W0EO3$QB%u)sd%Q;G*0U{KJ^dvOcp9lO+NFml}#)Tx?p zOytma;k*}Z5)!toWS(8~2MUs7_7yu1FmgTmkdLypp+6yu=f*cw!In#5?C3}iu4g>V zhp5++^^zu#E>i!_-<0r0Je>kmxI1A|H9QDV?jriX)VbPvmT?jgt_?K@TX<0Vm>*Kz zL$4sxO%l?jVR3N}Y%ojKfn|cz;|dFgd$J@$`BUzk)UVU5+TZ!#@>qySEO|Of{-@Sr zlyK1cz;;}gdbE*fT4e{RYwTenk4a9w;RCG)lZx2GN^o~=CY8xHkx+71cm;90&-L6B}bC7?I8MY8|-{On3Dq#fvn^(;J~al zUI%p=KM2fys}k;+82+b_iBU&Kh0V>TkN6hw;P_^m!oN!5w6!T|mc9&Nyc=y4AR% z$G~3fcUmIqIH~X0o(l8ob6TwCi^`!c&ElkQl}*|~We^azYbj7sLAM!=T{kp88Qn8R zY9O$c){<=`AS!G=0=CU?>Q@Lo5NrUVEpZ2Oqo2=pvU9DMUwdV+D}nM-jYwd@SFZHg zW`{TRwDlqA*tF{MB9$qJGuL5OAtOR!fh&@V1S-{Z=>sbTG_+~QVJ^F0M?Jto^gxwR zegoiniTnltScolQv`d#r}Dfn#z+3+-Bw zo-Sc9%NfD8Jimvig|Qii#6BXOTy_(2Y(%+{&=aC2uw&%2Ef__&aL);=?ix&R8Sf^w zO#zhp#%PDlENPv5t8L^AHA=?I(o5C2UTjC98M-+&VqUINY9zNv0kVePCJQiD7O-~T zSG6jajJh7i9NGE?n6tRjElDcLo-RUCR@%Lr zF}sG^QKu9F0?|~!mrBQwOet;|X{Iqrc8&ciG20kY3;L31(*>n3T8$Xg%)B?Zl>u2#h#O!^EdD@5?4unFtDLho z<$|g=RoNRQi(80`?E+I7%|^$@l98$jXYS`owS`CtRs-kDs=}oCAO<%oKpWZ;=u290 zB%LmDTRp_7c@WNP3wSN$e_K1eOF(~j2Tkbz%1#@?qs;i}rsKdB0z%C7uwNRm1gBsF zh%72>a*_F+jw%f5soF}mSn720eb18Lz5bpsqn!5rnvD@-{eJ$}e|DO|Pu@PEq&LPe z8BF|aN)|K^RJp0WG?bu_TBDHC~pie!vRT-%n?C* zxF`jI4HPV8t|a(c+Eu@cQRJ_)9X}1Ajb#q6zVU8F?}GY6*b_Ivb}_G>QPYE+Gd!#WCuti zf1i=#G3RvoyrEOFKZi^;I=?3GU9EDe-Rx|w)-X_IZ_=4Qd#@FAdH9=F(51AB41RZ> z>|Y=X#>V*NA{ipwE1OA`E_Kpobv`D#Eu$%frWky%dX`hEO*|tomg(XWhamJh=|~<) z$7rOZPD=}Gh@O(pW4biZWFcC5xVo95S6n!bz4AOO_nV9O~~p1S2{Y>!mr5?8ft`*;M2RZC!N0BnT}yvz?49S1_}vLM;6!LQUGEqMi8pV4aR*$kuCLJw*}DeObMoh%aldFGRf{l zPlf7!iU*d!rp7a+%0;+mpGqU|wBe$~T}{ELD?9|q3@o(mq-K5`E2#d!nYbg+qDX`o zlqO>PJ35dshx>dfL3!a->N#D_EsVSDCL4rltIz(?57_6>z&Duf(WZr{>`KvatpTE~ zYXn8tv%eoyxMeq8xk<9A8^aGaO+j=ElzRG}dq%RJQ|5k1^=9WGh&|@L9yM#w*arQL zp#!-`KcK6iTll2qxWWhX7ASz$I`z+iiH4?xlDt79@erXgX^k|5kpm`Cj|s@PylvKI zI;eDk&T~$+9QnP+#W>s3>+1eg$|$H$cN;3F$@h zMu3ADFSVHSPWJ_m&zdN$=XWI%d?MCBttWN>te@D@^h5zc6;<>gfntSr(GCa|YpTW!oeFUc9%W1i+J=8|YR) z>ChT4B!VLJS%{*#%y09s_?ygi|3ZV{Fh;wZFRUJ3q;fWNs}wnAAOj-`&L$tbFq-6- z?@sGEuyT_c7Is?RTLQqx6y+7$z?OhETkdYGep5#*7|kvNkQs~<3-0bXk}Z!$E@oa9 z{nn}3;zf->Tk`>(r!ZO|8+4K|_eu4Upc-b|y4`Jbp=wXC5GXezWI{m$K_{`f_@99a z(~7%w8V49b;vm(tTf#NxF_1O7KJowqhO^O)r-2N51Gmw$S zCdu2iRljYE7pcF>#wXMfYS(9}vLLOBSV)0d)XvEZPQHQ5Mnf5gX+1G(sj*69y_N|vd)2gOh3+oU4W zbY`#??UFku+}NSd-chhxIAv2?2c1u0b$MG^p(o37R+$Gp)g?CmtR@`Y0|LvaPCSg@FrFm{B z%eJ`W`oI)j;w6>`^`GKPcp)HNvf*tY(Nz*UxV3u1+A2yDlW%*YL<@AC3d**1fp{7@ z%u5Uc#@g+opL@iI7=(EYRLc%C(khbB;7YCJ&@O67ZI}GeovaWHF?KJVFeqPGs0moP z7WO}uI+ipOt`;@XovSoo31nB}EY>BYEEu0%u zk1*bZHcg-hJ@}m8xca~j5xtEjZV7y>oVo98Q>nikn=dF${Q4|OWC5mszWaX{{&wFb zU%k=Q>GgyB?*IGxsr>(U^8ep_|C6`R_nylJPdOXbOKN6E(1zye+MXU{<^suRqb3D4 za!#NQVRENWm@I}D>wMlcgSR>{OJDf>9j!GBZ|9{2P}v3BhcPThU7A}JbfB+O3%3#W zXQY&QG(-eS1?rOPYDzEh-mYV|W45q_fexFlaHcuu{W1=U6y&zUFsfq4t6NVsek@~M zsdd*6_W`Aen@X6x;SP93w^DxX7uz};!jD5%0Yz+AH8mrC3j%}`a%q!oQcw)z%?Xo$ zkl9q@I`k3TF1gQ~K~Mu*s0<3fbD?1HW#T5z2f*k_UM*cX7;N~zQCfOD=5C?{EflKgXx+#Ew+(ufvm zXC%i3Gr4{jK_XYmr+V?4W%TDmNTA8!XWR(iSo85WkU{#yG2olxAM_wsntfjDI8w;O zmFKtE+J%Gzo_Cpu=?W&Og+)9U1LYDVZZw|VtKo*6r)ylOlea(~*|vi+y%6~&0e8!J zuplix?6uVZ*^_-M$WEh5lH5wVmk$86b(qBE*O;pmJSn79yA8Ya(R{!UsXjBt>-2OS zrCQ?NC?KtW0?U^Xp-+#TAwnREx}Up6eTR7}v5{!W8-Agc#a9!Z)v3Vg#XboRLa5r8m8@O)ohPS>++-IlF+)%T3s>56*Av;twtz*epqM=TEn9K$PWh1b}g z!XS&{4b`9`d!YZyLs_5~KrAa@vfZf0O-!>dl1oW0uC~r6(13fUW`k=rmbErTxCbzH zKkt~aI*iJzC}?Fi^v~ob##uzle z0H+Y$i8Lw2({31Erm$}{?O3RE5737*+B}rLTqJLb$*~qHn`76=7(>>oqIeH_d3z+l zc!~2P`90PiYqd#I?R4uj*~xVcx8>A8ET9J3uR)%af893Ep7W}NUBiPZ5wPd3G7EAk z(=BZc9ONV}3UP6RX8AX5sK-^6_IFvv)Pnu0R;L@6?~ub}8FzR?3B@Zr0*c{DQLqBj zH6C?Ely9s(8Zh+~X#@q%n_77u95G$oK%Ul$1vyEAV3Nvcu6P^o+)Vl_TN#4Ch*?t) z+R@^>pao*tuF>CtS#m+NB;=~8)2|9y5kerS_bq~yE>Zk9e`9!z{OaH6s=u$V4u#B* z933Uw=nto7M0ahI-%d`D!FJWV(*ubTe@N!n-cuDJudc4*mT<`f#Q17zY-+B!D2hIG zoL)c*2S;}8My3cdZitB&py9HW56J>oJ4KHlusjPtQuC6OJ+Ga+$V=T01ns03aXN7I zM<1JH!)Xgxm_Ev(YFXE|+k8op-8DFAKDBQ>UM}Q_1NYI{@eZwdylkr00@@&-IJrD( zzfuRIPcNABTDXCFyDR+67zCm}k-!>K{rdO5Wfv>?KDLGcU!>NFWS&yJ!|B1U(ImfG z7eS|Y(}7o@zOa(a*BlCiR9rc*qq$;B7`9$EJasZJml1=Tm1;mhFp#M$r>aZd^^${K zZBwte)jAPi+de}x->6k9n+C{V=jO^`@MP9lBJ3qeeK`?3#4U6VyrUpF>P5NlJ@kQF zWA@_&(u&jeb$CL}@_mM{&X+X_@XdLRbX!9Tdw@XM{taaT?D7ycf;h$&m zE}U^FB+K?`A#tE`c~^KT#ltN6k8j^nqxSdvyWfP@FTIWMm(v5}ZrMmDIo&(mD&U27 z>PrhtONqHGO&(#fVHFyCw&tb!G?@M1Sm0a8*q!_ea{waoAy~ljqfrN`e4QW#B)6fD11H zxOhm)fS`unkm*x4fPxScixfB#9oV||bRH&NQ-K|zW2V-rSzy&stXU3_nUH!67u@Th zN(Y+zYpw zC6#Q3c;&<$mI*fLy{pzBp%^73xvrS`P9-7!AyFCYZ2XTOy)VH_vFzGhcWvn92s0<^YOa;0IE6{OXplnG>7aE%MUw?$HR>KD`(tR`+Y(^A z08qchhAiS>JEB&u{kFgGtYS_DEMg!qIBmNo_yi0NN{+bWEubN$<$Qh(A@drI>v{EI z%qXjlzv!rVZEKmKnGLJl!@vpOuWJ^Jm?BTco*n<}{E-`Q7C4@iD{1ur@qz2jl@v}l zi6|zTI)rP!NPXXECN{{~!V0dDZ?+vwHPt?x!jJW=j_Ks-ZBZ4xYT{};ltedWr&2{3 zF#Fx936LNiDV0*t)`}to-wLOw(yZ2Y&~dA5*aSTBV4cIFS(;~pN0`f06q-6o70J>h z&vNooMhLtSAThu=B;8Q6RJ(C=24Hcqvv3D=0pK?W5=C`^8tjaSXBEG)qv!9!|Mhpr z6aMRe3zvODG{xwEU@qAH*jiiH56tmF4qWz5I^;WhPHXQBu`58{yUUcEsiP5dv?mOi zm~{t8^pKHnW{n{!((6k0f$SqW!tDHz3Llh>n**CcIwpJ%!(q>q0OD)+SLuS;*zUX; zgPe(yXF!J6DcYbBxDMQ;bQ`;d?D$wi?FIg1z9rm5K~;=;T7QsK2GK0D$9N#JwX zQh1*7SwP?mWX?(B!epM(aTpA#m8X%j63*&|`dfhMwh1OVvJAk7v3-QDqKoR>q-dgI z@p+%(fFwKtgx3{gZQT@L;3*0L8S{3Q4=^G_>A{2M8WM;VR|p6>oOc@B#=) z6&O*;HUV0D9Zjl!BbV?I8SQ=;Ep2Q^Xy83XJz1~1-%IX94}1|CK&5}tU~D1V7eO;8l7+#A;?I$(2WHKN~p61$7XQ3!5{6uZ`nINqtwHp zJMs3_U;h(7h9ACR>M7y%7e`^SAHV)u{X%nWmE{Wb-Nd3l8~DyO26OgKVMEPF1eLcK z;=;WssacuKk_W2%c7~xiv7NJOo+YsY5E*%i>fI<>5X$ks1H|#HV_rZrxA4K}j5giT zn0NIrLf7GESq^+A&f$zcv`%;I4g4((0;7%wOIQ3Iv2q95vpNxCk}1W11!)@%SPRQx ziH~*AHXD_6|h zlXF+XJNWC$Nm{F-MRTgd-E@ZGZ*-YVnN|`j#5gA(t4E|!93>})q`L7y6cH{lw6GL7 z!4{}zNC{33N`=(XaKxq{K6J_>e8$}EdMIL%+sOG`t8!4%A4y4>9S!w z`0;`XBfs*J8pwA)!sEex(+vv$>!a;2v^#9dx*m<@(JFGrlkB_P7PdQyE>;bFAg~1U ze$x7L$fwc`g%Ff1`$fBtAU1Ml-SiM4qFR7dTT)HY3FktipQdbvdF$2t72*wqBUWg* z-3d!rC}g3r4GsLl74$pIKxeyO`g_{9P>2Bcq68(|uaF&Zg-Z_05Wh;fV>aa}bWqz8 zyE=s3Un0`|;0#f+;CkB+7f_08xS!$zH4f;1I@3O0$sdxFXBZHaws>%$`Q7U`;Xmlh z%{5N%p?CY*X@xsz!F+29zPbS{1>$nPCw62Z3VTzV_6y~1l?JXx1f22DuiY! z@Nb7+#_X@uRaA~!yH@~55>BfQ>`KfZTHVBC98}2tr@QyqKnh5tM7h zRmw(5jW_bNzB=S~7@*rL^>fGgdYxR)IlZX2F_rEi;_s6vXX+G~x_hXRlV3t7$q@3i z>w(i%Wum!d=|$m-m`F*UyrL7Qz8Jg3D<-Ad#IOKUA8b{e{%hgmH*bcp`RVJ|;PO7B z$Kq}1v~x9Bz6ZVkeMonQ^J@Vjpq<(4PU4r8^AcGvEkIz|Mn@k4uvmF|h>AsI=tw#V zSGonukF`H49D~SPKwT~I5zUG=on&JmPiS0>ULw+I8URe_50us^Z9O_kyIO~uoriv1 zAooofad;j;F8$Drt{`w{LPpr2>U(2neu7jkeiG_nf4jv4@@bF3#3AuNqESRQrQr@P zRN`n2uClgfOeC&Ux2M7u7?)`WVtRgcX`qF2*{zuiN9W&06#R8rn(~jj7>< zJkcq~7f>gvP1qj-js(D^{cxq#;f%MkOYtaoMbty8xBF+GS5%;Dra6qJo-m!0Acm zGz^kmCVlci{Nh_%Fbbw2r@ub_@LUciN`Jr+Kf{*N4D#Tgpb?1uqdLY;A z1S4q*wf!NT1}vQ&x86wEWHq>0b6EDnBx|%&tEW|GWp01yE_Ww+UiRtNVUyizQKZq9 z!+KK9aE!yI#S4OZJwpoZRIQ!VTO5?F>eFXiyB?6Gt4e82gpAaF)=0&+F1p9c@)5Wh>76rccZ+~p-r){Q44w}IUbn2dN+TGFL>_8(^%zHgYe!- zZJs3aUX5QfJ0Vr!O5_|6HlRRbTh^UUVDdGHRaw>CLTeGu=BorTChJ;6KM6)2=#WO0 z<>RB60m_XoHv=Q2^3fFaZf~DG3~w~g(!o$qkQrj+=<4f8R-1Uwd_`^FR@&3IJ93k? zO6_vs`7Wev-S&hE87XO&%B__gP?9=>Pe`pha-TpdsyV^!+11b_V#4TY_w%3&bcIRw zbgEF;(0Qx^m~?Q7VpXYpK&aXBP-Hh~J;`s`JQec7IqXID_9OK!P`KE!bqRyPmD7v* z)9$e{NgRD9qGweqE;Eyj%LuIEU?g7PsR-77@VGEt>2ZA{eO62& zhBaI2wW=I=g5fqpD$*Ren=G&A4GxtoO!Kg>X}vK$cTqJ&>s*FHPHG2=$iZvhM3rH9 zKy2tMZit8#3p!I0RYXH}C2?DfQ47tMsFhJ}#2n($P)%+mbcyT$>zhoaukFl`bk7bA z82kYyLTJ^{%y1xa$wc%oC7FhW+D@!e1PPik%4Oww0g+V3t4=aTTi7u0;*1baaf}Xy zKPMlYwBcq$J8UTUHOw?8@$o*aLDT`+HRR-U$AL@aJC5_(atlDC2HjCP?;)TT)7msCVI ziY@ld&hu_lIsa~5d@hHMikvU-1dxN`yw3X^sf(+7$Y%YGSvMu1b_zVqD;RVDTi7@r z>{`mmc*RDpoZp9Nd9GI=T~whX(%=&*RnK&>RC1)h%otn7b`X{brD%3-_F7KO8{NPF zxeCs_YFibO;|7Ilm0eKYIRmvG0R2-~5t0>6FB=OG-}cbdp{~Luyu3i9jnKkDAFo4# zN&+*0Ka?j01BS{t7GO%TK3g&C&8WmKqVy_iFR`RpmpB5Glgg)+z-|qv2`(5;G?L>| zjksWCQ$cHphFM{YIkQH)6Nx7?Qn-=x3KQ#jc4*Gn+b$Wb%R13|Ovh4=F`TJoBh?ht z*RKZE4V5)U5&4R}BJa``)Vj?!5;nOvRJ?p`dNuZRlTTVVkEF1ZAh878369@~GQ_2C8 zuo=v$w!K89%iIpV)CI$807WBw;@5unfKIOIjEs%GTJpPHh|7r=)d0``@Q?p!rp*tX zL(8ukC$2$>^A1yc)TXnZc^aqn0p1$qKB%Ci4nhTbxqjH?L`fl0w1!)TZE!Id3=qZ> zxcaQ(=MlJn&v5GD(V094MzisG%J~ty{5$mq0@ZQXr2xCz8bSDmwFHLQAaxT|J1n4q zz@15x@7A0%&wNFA+&dn7@08m(VsO2LTTjs;vjdpDk+8C=S|Nh~E;?~CaJxwAlp-gH z&8b4xIJdBY4rW7idB2}T?eGlVQIRmPs7(gEl~^FJUq~vWA!TU^33dt_XeL)+ZDC8S@S4P;#e+V1yQ*cFH zxw+_{c83X9y6sb;4E58QH@4b1ZzwdL^}r|tLo^OdHAxGOJWxrGIzH6Xd9#g{y-RHa z9(%(QX<+_C5hhld$^OSLHjq#-xd}tLkqN;qZB}k~~J}ZrA$!O9TD9 ze+qnQtVBBnzW4#Te9pq0_sKMW9@ZUYepI;`P;O46ka6N;;bK2Imm!2iG^Pg zn;W=(Qm5iluP{Wm!y@UO$E1AG78fO*AR@7sC=jBckfG8D518UEW1l>~LyfG>c>+Yb zu&uX~{;`rSO;BdvZES&rlq|>Ma)J{Yn{X3A^q?$S!&9~fbSSHYJaeqA8k>eOR{LrI zV!1f_I!WCZhM5Qq9VB)kF>;Km%p{qovTAp~Rrw9=1X1rOyjZONi9(VF$&Fev*>wq- zT05g!=vK%Z&S3|l`9=uCwFq~1O}7m0>T3@6aoB+43`@R~0&Q}-mJc&TAuHw7Dlea5 znx#O)rfqcaRqlzn<_EoO6m_STvt`+V1{Zi?@+^}R6Zm7PfK~qY?roS7?QHZXnK=yW z4tJKvat7~$ni(nuZzr!B)uTh|rLj_j50+LX>fV-!V;GUT6TCVtx?t=19G08}!JWPV z53l(I|vGp)n6u9eV=%>wBt z7swwy@rLnH-k>`B&r20%U1>bQVHb~wlfT+&1eQ8)Cz<+6~G)LrH~RXWd%6-D`y)UNMydo&d@-TUA&6cYWtIR=@13-dk9!j~!(7uz;yYTD8O z2FFpzn`8k7eu4G*Ea@ZvNjsZ6i8k}~ZF*tz^4ozZ3bW=J$$v*-*IDfssbmUWKEm4M zAzNfdW45IwnZoH0spXXLEaU<3(1-a1OnI_ZOnwWNr_Ay>l~SX7y^@VRK@zqD*f~6b z)07kc%(1}`e5x4c$zm-0Bu9t8)p5ysvAaA@3o)_iQ5u;$kLGqoTzW9 zYFv_th=T%ldBA`1jvT-FZS z#XC60q)z9Ze9sgsm2j%)7zI^qr?~0XWHbb*{elVlqzpe?_2?n%_b1!Eh)SorSnhpR zC_cub%+67_oiLMtDgc^B1B6#6dK9-RZgk*G7sHCDw@X9BbBPW@Jb_~a4aJ`^5B~!{ zh9ADcj~?a}1(Q2b-+%De|MdD(n@8k8xZ!Are8{FKA;!9q?NekOs}Cf=rpY(+?ig}t zV9fI1T1@7q`M?@rL{ldDCPzl14)_ck);pnh$b~sE1c^YNzwIbl5)v;Tj!>x^4ov1K z#cP|Y#_{q~<9hUyB4o`wH6!7C5es&*I9ef4FKyTQb? zXb@T_Gx6vWYNZR;b(hd}VyO;5I&%Gikd{sziyo@508%wivvw^uNMezGq^hUZAyemA zoBv@iOserSOObVgG9u3><h( zivPCx?(fMILk8QV6?;fyyobn_uRQ>lpu%b;#E-)NsUQDWlY{#k*3Umb?9cG}ZNB<~ zowP3y9rMLUeCMN_w0<1$Z~y%IYsIgy8fcU5#@AOCtDcK7NQ0UZD4Xhw% z_C4fw+iuRzo69y_f*F{s2l?hTa4v+XTdnNBnKI*fHBE!%B6r9PDv-M}QOCeYkI8j} zC?Hk+FZi|?!-HfwE3S-V`g%W@W@X0u(J;1qb$m%db*Y>p(O^IWA32(2wAL?BU9otX zn9Kn6ipr>3Z5WApx2f@GSPrBjHB?S+c(G^AD6X4IS+)agK7ki^uUOgTb$hy{2MRsg zX<$|4%p?~QlKieG7!6vG18^mQEws5RYqeh02{Qpm!=88cH+Iwt8k_wq9&j;es#W$FQbR5)A`>THWg4M>>N|=I^c7a4goK_U&Euyi-=K;cSBiKRM<4MhuS5VwQMw2&6?-xVs$lIlWS`?L(YKR`ql6x3Z$O1 z5(HTz6$BbEOk5$xJY%@nWzD6vCH@)J1myssCL+55(WBlZoGiQcj%vT`5?ejY7Zqe8 z@m&uEBy|=>B&Vg186^JUaq8v=pkzsjXT#d_fLcV&$k+%Oy!wR0l99L?mnCU;Z_IP( zjCl{!j(#uEx&}feidQ}aPh0}@_;cl!S0x6i`cFQqPf z`}FNk-+%J<-CzH+y!X}XuaJHI4B00>sQL5HK)I825*es|$lvQ<5uG+jTGap`G-O`L z8FN0pNS;M~@2EYLwxO=jBktn~49(r293&RoSlgs+v8l5pQrjmMRSrf~DqOm)>~zmS z#dR9hI4Ygd<>T(3Z-|K0gs6uRK}2rvUJ2ICT~=dhv(@?BHq`KzQ~+JahQ-6n)9i*^3avJAuZvsYqD7p2D;cwgsKx@Lle8WIu)%qO@r2WULlU{i-=`BFPicaJ-z1m||^#-?x~ zsB?n{WNDq6&yUR6k0gn{h?D9w+Ugo0q@OPn zc=O;HKpm7LEigIFwidkic*%!5&UPEiqmjNRF@+=u`SZJ6>>I^x4VU7SWe9l|-iBaA z1G#GMkipf?bY4DCaL0iD)JzwJ5iWE&l57V?>${4V#LbnNdiDeayG{Pc(d~q4#SOd5 zYzs+WIX;arJ*5f-xKrE^`EA_y5(;D0w1ev2{n_ZDdx|KyfstzEt^p8DwHFv(jgw!_8FV0*|Y&2*+1V zZ38BYw%q&iQq!~qqHw44Gm5{EhA*8mb9u#fw{e8uhbht~s+;H%ePur(Nd_(uM$ zPt+OkzlOJ8oN&W}r%BI!^r3FklBAi^=>wP{qGg)GI8p9`*Nw@BDw zKU1Ead&Bp^F9S3^PfO~?mQ+Bwxh_^83C^0e+PDIK=$#Mf(kF(dy@8*A5^y^BvQ9_+ z1)Q;7*_gK&6V7*mu65%Yu7(;?`!mxF93|*b6GDZD25n@=ac^$aN;MtHrk(3Wa#YZ= zx;S|SHF16ms^9njVl^zX`K7mS56SR#K7lagS*5ZbK@C@CKtGd~Blm8QpuGb-OHv7o z8>U8mLtw#6P;(x8Rc`P_nh`$pF$8(C6_Y#o*B|ESH`I~1d-ClXN;q8M%V(c(mBY2w z_-F0;1`t;WpY2rh3v4FjTb}al67~YFOmq#MR6zuCg8Z=GSRPpoPs<8Ob{9UA47IYe zs<}2kC`vDQwpN<~Fv%lHYD{)I6jNB*;Z*pkRYny8<~f80&^|1Hx|o~Y%Tmgw)#%n# ztS6Cb#^=n)I3@VpH!jt>?vgIql2A^njg-d-b5zsL3&TzJtL)L&KWe@R%m6+pyYAEQ z_N5w5zkMM8{X=-mh@of3G+E0+R;%FzRQFQCf=aP2HSb1Nj)tB|eu?%3AaP~bWrL!u zX0{*TA!L1d=;9Fr*X-c98i@bh)kP97*P2u|g+*O;7DVAq(%e+2t*OfZO)AxBm&nId z?0Dypju7STA~u|)SEunn7l(jZR#vItIY*WNSi&ZM-@5_2O1I||v=+Ey? zLx|pM99qxyk4Q|8@z^2h)FJfdBzcJ2ark74L>E}VP#PSPwzElFUW)CXlLPZ0Y}qPGNh_@2BwS~=Fcq$RcS4lscKKCgwxdlc2&wA-666# zzM)7{9=Hf#9u^Vm=?79wVYqXP@sc3zl%gpMZk};+zO3vOpA*0z1ubFJ^Fcm9)vrP+ z7`SJlU$Mj8BK*+-7_>hFh)4`rVmy;%q@#9=>g~Rp;u(6xC6Bd#2>*xt?}Xmuhp*q{ z82H{Mv~{JRD>0+8Xirly0@-pjybOa1@8%&^VHl( z1%g{5a~kE?1N0>o1qqf5Dir(Yf=^Ns%PotUTLhj!xSL1h?K{{tp8YJqeYDvCx!HN= zL*V-ks2Y^cOEi3~RXnBRMn>mFKfz@yR;ntE0Qek4#`-?P$DoC--E0rQ3fPhJp+Dmc zAau3gLUortoebpKEup=ix|`}}NeLif*9Db}y@4awN*q3^%Msf9#nAQ+XKn#iAUHP8 zNzWX6)mJNcWK5lIjia(*KS=cdb(qsw?{fha|L^2(4Gg18HkK@yX(=YUJASSi?n#e|e2pT>G6J|>vJQpyXX6qSQUpYGD3wxFcG0)B6aXosi0F8j$9<;yk`%CQ zrZrjL(l_7b|0C_)dSuD2GqLyl6}x4RC5>h3eLN%jfB3=J5wSBeG9zL~$0f6(UBb)=g*wOth^Yr+17^vh=Dhvygoo=FPEv#}UKcEw{JV`j$Dh>W* zcnB&Nj|-p;Q1D~H3&T;HEmTBoVRk#ctN7;A8^GcXGmL>9`&^1NVvRabTz-L7_<3oAOGJwHLRO&2*I19@izgUK4 z_BLVmI)(?;&lQUyH)(Y77$Csf!xR|I7dIs}G`db{(E>@LZ^PhoN9DQK)C5$V%BES~ zaW6}}DO`1iIWa#$HKk?&0`hE@dujz3otRyTTBsuTx|pZamt@=l8v=kgR`4dM(otJV|?Yjxgc1i-k=l?<_h+u$P)7s zJD<9>o9-Q2>}rTP+XCHcpni8)CxWb7W1YQGTm@nEl+)4+TB9zU9fB`Mq_mdK1`zH5eo1nGAWC12s|QW+cYDk_dq~ zjBi~q=siP`%W*Q$<)mb944)cocPF$YVv{x1$}TS;X&@vnxL8yXoF*`j`Pl< zwe+7QTS^tW!^FX>)vMGhXG%+twJM3xbD(=Nl_|*fI&zQssD5_P*Dwu zeluDFbFJ}a^l(hU_Gy5+UGvjC4o6#-2=t*RM2wk|=;7L`hsv~gwaFCleCRkvH^ zj>&F>RD(;q2b+#SKTT@c^nzpGMCoH4^5m?S+C|Y&0PM^9P_ZFb@HD-4W50aOzsk_? zoDu(%KD*0rpKP$PEBu=4%N;0#&>1D;fnah$5NzhJkh@qGR%2!-0<{TCg{l>BEYq=! zLoK__6ot{{Vw@$6veUMKRZEqGkT&rOfngy4w3uB1!%aECyi$99lHOJBHRO`{kY1Yu z*DI>#UQ4CAn2d79GOa`mS`vqiL40D4)&~z$s3mloVs~>G2g`9UcL(%yDX}%Adj#Wz z12piwHcO2oeA9@!=(pvmi_p-vFr;Ue0z4M#gIurj67(Ocm>`=&uDx3i6n~qQ7+9{u zWGN9Uc!al~(Rdxw7Uw`VC142tLz86Z{iNiNJNbwzMs4*|BcG3bD;9RD*7!tKEK70E zNAepgfS>TQy!&{d!l(caD_rqZoh}5}JxboLeN-&Dv8xZYFL?&5bgLxqzWj-Dvb{S0 z5lDUvgek_Pf|l@yE$`ANpFHhQBtE{N^Jn<_6UTRb`TjX$>uEInWqA8G+Q(mncWE^L zHvI9g8DSul*zWL!{$Y>ITVBi6tVkHUKkm6v+bpbUy0h<3@1ZdrTmVAjz{s16j*50h~QWO`5DHZ@+AuX^H#rtbIxPYU2a?9w-USEkCmD}w?O`7^5x2r@hN|!@4x5NE# z0t06xULek@nT*$z$Qjmc9wBTE)65Kc$(pmM0aRP#U#cExNF2FL(3Y^l(x}zl(~w$H zT^i_1I-_)2JVG1EVTVG|ppq31{w|ewkJSXa8Vmg%dn^2DKl3VW-KeBpC#76r;f8Wf zy02f_z6cmznwE4JZA#wc>E59*Gk4=SUhJu18V%3Aw-3^w@%lAp*Y`14K2afRhc za=SST4b0V*XNmn$=aTJHs-I2JP(oVcHg4g3CKmgGw*Wt&mfIMs!7x5-OpEe_Oep7^ zO$zw2OGt^N&89OLc>sWFaImIt&8*kIy=Ey@MtKY{u}z-J~fV= zuypDAm@!Z^VQMWV{U*d1^lWgljmE_1ycwWQ<={c4jK{7Pn^wZS z6(nj12@E{uoAbt`!-HSLddyZp+{ZGZfrxId=cu)HiIQ1bXFD%yV2P2N=#vn^{_uTA zaw=Gj`K&y?S>p!#$d9;|fZ|l9aDcqY;=RI}+X$MeKm1AJBdJrO9R*mz+Ojk*j=K9d z;ZOdgGp88 zk3x2le}aM=CB`lSLET1JQ&B@S|`mj`y7|PHs}f5)%A1zxqFX-N612Uw?f3S6{vTf`8Km>=(yZe?h9WT$E?Oc>9j7 zL_d4~EWG^!;D&DpY7my`BPr8Ge6&e-K9lA~#VQgzn)@xh7)4;+aR68@oy zh-(uRn(7R7!nppA-?IF?xqhsXl_j_*V&p(#wZm8XRFFuHyyqg<2JD&!GzVZ9sHA&Me34SA}~v;*d{bo4>y#E5&$!cL51QO5O0iU^SB*$qPT{r zsv*RD3?Po93c{$!sxc|#msX`JSTLUfo5IKIEX7`$NBeDhEDl~@jV76K46?ypEhpdT zmv)sq>N~2ZU2r4iN!X@5EAqaAT#%`Ao$eSUDU~Y~b8CPUB ztF`Ok2lA2-#^B^hhefGiNMNy|gucn1yg~@IW8ra<&)r1T%em-+Q`ZF#uP!&7oP6@> zCbd7b(K~C*i+}-&z2KlGXb>#`b(~OqO|1UAbv-876YQN!>?SZ9Gv`_*$X&ZjO=~y5 zl+yo%-6e_(6GOrJ)!9ra5b-S_HDGL3stiIQF(h_*#Zel!Csbpf9?B(p5PE@4mmL!> zjv!YRB@KcVUedaixdOmb#N9*w5b*n`#sTvC&9NrWM2cGH6SM$vS+uj~h4Uw}j*pBL zEKk!JM1M3$(K&OEah9f}+T_-F%|pe8@f>fYydzGp9iUCserk4_jY*P-z~WPRynavw zQ7LxmP(@YI@g|=5trY@x`6a3L4{$~-8v3U)rXOiOPmeJWTsg%Kma7$ zjWS@qtn+Bl&ehO{tV(&m2W&Jg(lW#-E&Kr1p=Lqhx@FrpUvp6hAM!o9(#tgt2boiG znDW9YD7Gn`$>C4kadKVaYkG3Il4?Fto6}^4_c+gKQrt+a6KL79A7%>SR zy+{De5sMI4D*)<=3JOi4EsuRoN)m%I$iHR1Y`wDDGTP;oGVe&Wr^XOdlK+D=_7L~M<1c*}ZS8v5Xt+YM7k6&{l|9z;&x zoTv#fwrbYvqks4B!e9NBUVYD$J++#^nMbXtWV>23m2D%Uk9 z2WwP(0*B_YhjL{0!r*+sUf|^s>&_jQ;dF&k8HdGdcS0HNiCZ<#Sj+-;zO%hHdG)p^`=!XRnKz4O=m2k<;SUF_h!YXP$$y zfpQh~s?H8@P?>|q8lYa9fn5Gq9v8g7UDqtBi?w|(h5Sk@`?Z*&dgtAFQ{T>oM$l@5 zMxEtZJ=RR^_N=uN^Dz!GBmAbCQaO!8;;4A(Mn0|*CR>H3*!p&ej8GtGQ%a&em@RB- zh~W}Gfd)x|ck>M;e5ri#g21M&$aSB2BT=@WwZ2(s%vI&C(OfBe1*(G(j)jlJ6*U@c|<9KvFVC~T%Ua( z_JAiwi5akx&8B#>)u-h0*(J?k`iJwYyTMdWnypx`XuO}$MJUZ5xp&WQbU_!Yi^&Z~ z3oU?BwiBeQv3GK-tRpdp)&#s@rMhb1*a4&37eW4QqnE+HCL6sJB{87^MIFBc#+3vF z6r`5-uq9IIG8DNs`yA@jUlcEFWAeIIMDNZ~IA*?}ak~upO`2+O>bjcBBMv+r0{b1+ zeUA>t@1-UKME9I~T8|Z>!G?YOt=L@If_EF89Mmndl&?}%m0Pci7fDlQdeg~UT3NQ0 z1JkJA7x^up@D&)ZU8Fcf_O1v#SDsKU@dOP~>eGT&2_3Y zb)fo4JaSeOyMC7-pk7n0I+1D7K&pWyM&hAi2C|u@vUvmW&axF~=$wuL$X)y1cAs%$ zE@@;B{2-DtY99$*YzwdtUxc?`pFaHW;r+L#{~7e2-<)=6YpU9(eR{YZ-!s0spxjB<;N$Ps1d4d!)e&T z<&?uLIRh4?0^@*6QETh3yvaKS*w0dvP(E@g1@djQLC;Oz;d7DhqGmsU#h@M7qp+9; zyL6ax4;iQiv;Bi)ScE&XKQ1CW8|Ur)!DG2VSLyK8yla9tN0K@UNQeifFIWDv8bk@!jk_SCdqe z=8y@mKsr77TNyD8w-T{?m4CpN$<0;mgA9Ev&A^!^K(Guxy@CZn65p{o-V=2a_9qvC zJ;Gq?1PkEj^W%Y?{}Z|69_wRcb(j2h!pi^5v!stz>JQl>3nX>Z^gVT$Y%i=LDUg+a zl6p|{SC{)o3+>F#C8OeVpDhO&BAN#nS&mqo_}w$hAq+4I=2r3+?!ni3lCsys^4dzkx4Ckxl7^iC4a1U*-4o6>_X(;X%10`M(a0y@BX{XrD{#*^LuF z*9+tgT4;sZLm>4R_Asq#4faq(!Jw;^8;m{dGU15lj!Y*y(#Jkwy^9G@at%H(NV|Kc z03Pz~wB3sE!w4=B*^AhFrMd13>e<3>hH}#5N%#aDB}RaLc=SSscz@mv32 z{|^6ue}FBf=z1r8K$hWGEAJS~zmO{TY0VJdYDp=Z!>i>Y zWmg`2Q{GN3WOR86Z5Gr`?Tk=s_5LbfQswvA#;0-=)o`xD+^CtKOBc8$%BkjKu_oz6 z#RVod4qg1#uTictx>mGYKu|yjnmt>kAd^G%HLp;oX^9yG4aRqns28Qv8n%-HRd$?QN0sWBmQ%ES5JhX1-m3=+rh!ut=7N56Xi3I7gXf1-TX6D8%pVl~GOiET=Ph?@$Ri?NF7mn+bV3+*pCEIxdw?=1B@-n6x5<_^n=$7Ky#fWaD3e z9(=vp1mCCuh!bj853|Z~Lazvg6A8Veth@{xH+u`FX~bfwANCA0kkoT@0*T=Tf06`H z<~pt)W2h=QA`aJdzXl}+V0!Gt-P8VcAh1ri@vqn^gsFw>RQS=GblpyXjYpM&e~ zA-oa8y|Z9+YsJRC$Mgetd$+KJE0*Y{D1$BC%`W9%V<)Yy8jT8ttL4YBgPfP=)? z#3Ub7XBBoU6YWSx~tA5v^~i;gjQH-J@stXTlXpZ&~GmYatE zoC&*@k9w$pm#}S~a>lPV$HbW8*exqX9D2@DrV{9Q|WL8343A6MJsC+s?L2Tv& zq>KeJ=aDLIQstD1oUtrY#yDhBzNtBZP)#WcouS*Myw@%xk)SMXM}T@SpoBibk|C|9 zEH}v2d`>_aJh?cH^iXATId0)aidU#JS|OX}COFqjKFF*GgB6)$9U9+Ytmp$thkzRL z&8N2A=w#I%vLl|s6*Ozf9N3?_^Ntld<=vdo6Iu)0jkw3rNXlXB_c=gEP4~nAzwGim z+a=IE7Q1*sj!No~T&b<%if<6((M{#;5O)fk>ZO;YlM5~}(P<{S);Ayw4vrHmLIg^5 zI;8*lCsK|=9WlVmlhaLmWDamP6#W>9TYx%BsOR`_q$$7yhi_bc*`Br~c&FK8VR5P6 zbFd=2s0Ir`n3qE2FAq{-)jKo*cuM(Y+Uz5wj4f^EK~$;6j-3lFhPEWHs-c-8M=RWN zeX)gd&E5Eb{*3X(=k66FHYpphIZCvH1g`qf!)?^%4d@IxAU&trsqlNsQ5Q<;KZUQW zM16VC?0)ny-R_I`-@SeL;fuG=-+mY5!4KYl`r*g#-=_iR59MdQ{|cpmlYi+4P)V=!mjxbou}zG2Mx60TucTUZ~n9D!{H`LG-Nl0 zYU>VPNIAS6RdGq%5H(xKIsYVqf}3zVT1$murbCQLD&#vEcyRSTN#p9GF)Qe?RD$c9 z#oZq=ZnBv$CY;MqfFToCz68P-ldIg0S9s>kjCtwnZ=NWNP3%E1uGk_ zpi`;%N;!9kL+pQ!k@xpf(|;9BVudd|5D zxB&xP-x9Z>HhSK?0R#6e>3~e$?~=$>Vc1SGsgr8MQ#RcM2X7L7?$VE8eQak+I^*=i zhovG>b}kh8hw%xpkbUM@)}w>`Yi)O4C7I6_ni=%Vtn}N=2EJ1 zDBjYcVS!M-QthcH{%Vy1Kt+5fms#vP409)l#;y*JGDOrf+Z$9O?%!t|>NjUCKwekk zjD+bqUqE_bFhl1bC{2`Wz1uEHy*tseFk=o@;;z^lQlhRA_NSGoHrTeF2`^^1@@%(uma^UDM#nintIPm#ZmAxo#HXgA)OVew z3WVZA@A0d8p2?*h!7%4Kqv$x!nviP>H|W%)UJpDG5O{pq05d#kEz3I<9?>^j#_fem z+o0eg2xbp4_`XGD#>hFkIh`g}l}3b}o~0P4($as1i15YRFT?vUEc|X(c)zHI+6zDv z00@Nxpz=_x(|A%OS_v_!vafl$6q`}2ym3^R$Z2$l*$P$k!F8CBY^;X9QMvcx%_*Ai zkL*^Iy9Fk*+_W%gm%?~(3E$|_*~^pd?p%hLMr#3OrFXnxz9t~j;w*vo@M*?`Hl4`- zQ46e+D$nUfx-C>&HB0J;B-#U=ZO{mX_BbCl4;(s`$9)BqPVKz+!f`hr2kdt@@-3jf zg$mINL^Rd4q$&d?sh||$6Lp#o;yf1m3T`5VI0l~|-!@>L#<=fR0!VF=zz1@xMwpV6 zs{)#_+&xC@Yo>`SRz=TcUz`Gl7}gg?xHQTjOSgHxT~vyEo~90p!Bgx{jS6{Gk(lx(_Yg>?*8{jPmY*fn>9FgXxj%2>#|}lN z#&*apNm|W?nFPlOz>$mAwAJ0xvS(ko);B$DkbfUx1Z*iRJOet&ixVYS$>&!NFcsA` z>VXU1-=viT8>D>qtGxX7^a9m?f+eVcganyXT|*8Cn2g<|w2}TZxK1Eu&I)#b1}Y^` zi<6?F7I3S2Cry1H$)^Weesw&qj;-r_jEnzgn(|Zv> z+PU?ah$J2#0MAG~s~Tb`PK4zv)dILd!|YmPuv@O-5fKUXcZteDXB1Wv@4>_o0r&$! z+g*k+{Gw&jvD}3Nnu3f7*Y61=yM?KHvB;AEt&@u;&rcXgxf7&t=05`QJ2{jA<%bIl zhSYFliR#Tk&j{rOCJDwyZi97^?pV8BvZNab22SJ(&aoZRfv#%QNu4$;f%17xXl4_S zuH}SA?cjjk(8l9h@w-f*K#ug9KbM84B_Om+zjDbPPn8tMi>e2T6!gzhaS98iUR|bW z!!6zHp>z3-@LYH5Q=b%d;%|TS)SvwMku<+%Z2aZh(~SFP;qCjU4?q6nUt>%3#rr?K znbj%OX%=ZEdm;yQKaOSs2!q)*o#o?z!=uzTmM*acf(UGRq>?*O39dVaPA0)_l&1Yo zZE*SLB%GQuykxq2*2kW6rD#q-fK1Ybl&VsL$_-+Xaie5QuFe}wFAfEy#rOatgdi@5 zK*V$*u6A~}n?Zv%sCw}s>ypV#Soj#Th8K*QIz$CaS$Qb$gXPw`4S8#s`T!rq%_qOb znZ0Tq_CT4GZacePVGl7vc5bZ-!Ao#TT}&yNS#cRA z8gR}p&=GS$&{;8;?dcr$zDW=M@KR)8F`+z=L`ohm?bs4V?TcJ@Z&K-PMj?-0Iy zmV>Fc=HR~9DrgR-3=sx^(LER?YeG#Vxwl2O zX+cy7S4Wq$LuI@h@sr9GxV0N7ZOO=nDHg>U_hja)H^ZWEm&mWt7rvKCce&Uoh@_o*v1Y zBrgf-8*Y|X#uA$(Rn_5Qr6BKXs1Kg4qw)a^ZdMVv&Dp2HLS^_!v%{M@(pj?5##%Bj+S(t%ZUy51xaZf2a z6Tk+aB`N<^qm}OktS_^bxttBxtzB?liOZ5YEpI)eO) zQ&~JLyjlosCbs{ofFZZ&N>W?};?2Z)J>)Hn{eWq=#ek9*II4v$L+I?c0b8or4qkK8 ztqv9Q8mKQhYGQK2jCArVurh_TpxhXB`IUnCAl^@?U;_cVaxh5$IVKw^Yul!f;4?wi z@aBD`@I?n(1YNzWf^hAmi%R$QR7b;HiAtes0rpItgM!gA5SBlnM7`ZkuYj5GSAx2r zLHLrAyBdixLzUdYC$#zLT?Jw~BI<$ADoY>LVfLkgyd$PWvcg7Ze!}3csul9&X}x5X zhqhfzC+8iMW#xQbAcLoj7#3nnd8)asoSYASD37*9&h&|YKFfFAs&|l*TfSq791={7y zQv^47gV@GFF^PMLCN1dX_Dt0?5D};qCBINSHBX-D@=>W>);9R#8ko}|9yv;fsjyFA zbBBSu1Dz^N=%^$S8f2w|?I3SJe!*RS{EKn}1qx*AF^bG7bq(gCa=V?dgo4N@aeYmZ z+UQ9u{GaT9Dw18YkwNVK{^UAnPh-c&#&i2{d4+7{` zThqMm^3em#>B^jQyn{&}5f{X_V`WOsYb4n;l~{nj0^tX`$djy1LcXMq1BZp?gG%?( zd4aE`8j&PxW7F5>r_ls-S@S4W-NqK=(@ha=W5vP7G^-dFnY7q!Oola+4`SXmLpij0 ziW7F?Ju{$0Y2DIR(Mc98I{fTYtKJPs3D}Yu zX=S!a@SJXv%=5zvmYa7Zm^WMwNNoY1<2`CSf|9#of=J7g5)2K`;teggi@m%$3r5eJ zS(O*8Q3M3R%b2q!K+AZr`@1kN4e`ZN5k!QKWDaF&wrJQW&;g*%Do-u-p}W~EZd4P& z_hxejU?U<12&4%Nqn?(ylaD5Al~s`=tAc)Mm0y@qwx*+nZd^eHSlw58;V>k6CX^om z?{)ThSsN^Zl~mOeAyTU#KzSCvl_N~x<=-)>3ZRAFzjr{2zIy-eQ}6ehd|A9pp*0`* zDp<9EPaB2Z0GBnYc3V}IF)3V>2yA1_iCTYq)OZUww82v-9QBb(<&3ub$yb~zH|UX!oHE!X4mUFoqD*^Zmo9& zGUkp~ zphyJ!Hfa)xF)9wW1`fo9v6Q82&VB2nfCuJlTmsf;qdV(ew}u7N3M;)1_5{ud8yBt1 zQ*3ba9^*^Epbxtwm6OODfa)&Y4l9^U8I&Ylgd`^j;$D1Z$B>b7{RIMK-6|E?hi|?8 zEO4@)6|6Qu7M+`UWyAv;guAzPpUWXmDCwMAC^uj?>&CtzCm5k?Yxh8Rl0vdz$}xe7 zTc{0&bd6IHbEHOS2OHb?l!=rpRBlkIR-s1?B(P&{igT*3;kkRlJU>5byVk|BHANft zdM&ayYVCB^f90nY9qQ2NnsCqSTVc;cNKiA1z4&y&`Ol;remxeT6Y*m46*=)XVXt$qG z@AfgS9A2f;|fX_r`Q&g&zwKz1WyFUp_Z6l0DC%bV~$QhcFmT`be zaXx;hN)C&IRV6hqT;za~2|Qq;5D&okGo}T}?bB=5nS?5|lebu>1rMHER>sj*3c!*Mu@QakQ zma-jTm^HpK#Wxh#v#KpK@EQ#r#iZjn9R2hNmmBSbr8f>I*xE{GiosyiCHc4!po05A zYO`n-MHh%|C4_`)nY4S@)b)}=(Ab;Va8D8?AtrfSPv`SN&W5;woe)VHDcdxn0+SrW za~Gm~R`NDjGb^|0p4^YBA=9uyO=6d!SQM2zUg^Gm|6_9=JLeUqGdi=pIq*#0mt3a0 zHS8iRobmT8@oC!!DG?@y zq4Y1$s?6)G=GE0ku(->Uuf@T!T*tl7db5*CiwSAf5f-*p^DzzVmQU?REa}rNbdzIN zm!y&q#i-8#L`@Q00X8Xqp*em9Pk+y^KSpBgcMBpTD@#b}~d5@?-hHm#E1SzE~=b|wOJ$26YdC^fd^mOJc0X46h;Hcd5-wQf2T2vSJf zG1w$YFgIR96_}robV942eho;iE{S=U)P+Nbt_SfIu7hh&J?0t(fbGLj@u}}PHeEYO zxOL2-gA>>Q2a%o=T-;vRfLvUQT^n&)ggpBURdP4(uz_YC>u-=S0WlYM0@wEN_VoRJ z?2Bl$s?JoWKM7C6iC@3};-8@~-K+Cg@4x30<*VO$`wIRduf90|PcUFQMqaLd*s124 z;{i(+i#vFbnzrI2w$#fA*Mt%dbm`nN;YBcuE#FB#zPPGg*A|q((Tiy-#+}X@eN3UE z?(DWQvDalRcenTh=?@UDMZLM$n_Yaa3r8?U3vk-jg~|0m0h&1-aLi7VM(M6*q8O*J z55Q>hBpUMuc-1D26xjYeC?Ua@mXg+tmy0%ogk9j=E^!!+A%;9tiaC(lW@Ql^s%1kh zopHI6ccdI^CC0jAsnetDmdq>Jv^Tvti2c|^BP<(*skVX&3zDn}1CeIJipNgV*1iPR`ONkk_chR5?j(QZaJv`d@_)fBp8kUVidP_~e`aVuCa-RQcNH@85m< zA^fP{zJu#P1NOgr`y!YN$twmhCT9Z)D9i`P%o^(fX2@pRf!jE{at%16mfG|_u#ihH zSR>16y0z^={E=Q&(re#YpS*mk_&}S;<3D$;*f3H7HrKigS;qZoJbzQO#G5~ewZx}o z%3dv&0Ts5GF7ta&nDcg1>}?6OUJ)+#b0=^cRw}l`Lmh*_&3>uz_0Gd_%*rl7EcPH$ z#Njkb*LUTLYD7*pVQ4_i3`0GDe9Qs-F{M=9$LzB3Gt_z{C%iHi(Z$+L(SzU*4VBKd z9bdRLzRlh1E3nX=wI2YM$H^j6erN>G;_`&xx_8dlxv9iiiDJpN?5(e1C_|x6Gf%l3 z;5^?Rv>CWF#deblIPZiQLzsMGV56yrSy;Y@f~9{-!s*n4148lXEvzLOC%7}6;WBMb zjFNEW9)-0658b5tb3Vhx=ZulA)z3h95G>e~_QzHT*~QkHRPZd3h)?Viq)o-3Q);$z zJRo2h@(1zYTr`*gSbj$Tgx>_7bU0Qm1wUD=pcs2d5v-(3J@6})#Bc(+27w^9hMz4C^ZgTHg^&{Oot$T~28;es(w&$P{mnEPV zLnVO=(tBarQj&kUClw@?tSC3CB9*)$T`p=3BE1B+Y)!Zq%LO+8T6D6`K}xYNDPbw^ z?tc0-^jxFMCo@H*mrDMHa=cux^q!c;NjkE*!TgUzWa%xzWSrs(@y9y!TQRuhfPE}8 zmoYt5i3qnu?zcmg5b9B+E}}f{czIw>!Yz}qpFo(h4RveUX18t7oLC-=UbHGyYv;{# z!%1sE>2`F&?j;3R%f@tNaOk2seCdSH0L~b!AfD9gOKRyRXJ;K_iLYA@KK3a9RxSBh zqifO6Ms!*5hiwIdX(LE{L+TF8f!RvbMD%Dnz{yQ1?}4K=uotN1hnqAQH4+yaaUF+nIzN;DL=wMZda*6cFIDnm`}rIyH#Iz%;3OL!Vo3a5Mfn&DVu9p*0r-}ec&y%#vD=DP*}8;f5kXHZEgrEXfbUXsAkhDLVCT>krv#eCmYR0%Ch}* zt}Dq8^GF3d>;ZHQ0JS$h2YRO23`qf3IqIUBmBxvAQ3GBO+S!4z40xp5qwHv7I2ek- zx_L=-D7`#ek8UXT=_w+D-QN`{r!$=576j}K1Hf| z8R2KuLo#Z^>K(osz@3$Q?Y{}%D0#66uzzk3cNd9&sq)J)bSvVg`V$84kh}(#wiWr# z#cjYRUsks$dKA9qp%5Td!Eq9=1>S0hhqP(-sjPA;4TnzHvQ;2{n0*3IujM8g;2?z; zY-e?yEbRilVZtN|D{LZRp931O)R6m7%kk&Pl~r9cdN;COf+_`oQ0&J8#sgRPI_R`7 zGB~wPg-RH!dSoJb__2J9o*!`F5T-t)3oJ#3Mt&Gru}_lRSjzzezOL!{iC(_#Rj$t+ zNn1d34%tOKKOFC84jKj@-!8#t3EN(w~*ri?qTsqBp1lMqZ zh$HsZlHY8clz}FAVQL*fWwwyjnkq4VuXF^fN9aDP0}xy2^Bn5aS!oY^MsZnn@kTlb z59f&Vb5Kam$nDZk^M*W!b*JN4(~S@plRGX>4s^i*-7S*nX@dk(D5cV!Enn+z-r_EC zVUWY97SJMFh4dK;Z3c3yR9UegbOO{&u>5c(D zW)H82GEdYB#F4MCcr4%fN%-dJgY>iisAHzLuR{3?9q(svU)qrB^x;3feIHU)^7k+0 z|9=DdWBL1MDqSTPWgz?Ee|!736nG7XRGf7yn_&rZR+~6GD(2xJ2R`J)Cmv)QyL&#D zQ(<=NCAfH>Bs)KLE)`KBK~fUC7&%fX=u-tffl5Gr_}1I64>c@+`>bl7VD-x)0v?98 zDU{fsl2q4hqc6wSMgk20^Jbf=sU~f)x`Ea@qOl_YVyd)rf-e(o7Y1P8MogQmK*qgq zhs?C~50KB`piH$`g%y-bX$g{x>`l@fcgvv7i&yFO+N@* z@!3G`Qs4LS0ns)`MUFeAE=HvD16JN*TXC0)gbKAy z!?Ju}azqcO9-#VC^DhqA2TWkPk+CsKP0`V{4c6%-Y&iZ)!`*YrC5#LDWYu$~p=bmp z+iLRjmS-LJkt}oWHq{E11m7;UGZ4#GT>(cQm$ZkA{Mc?aHxsX8LxE$;lvYMmNyBCu> zi*59lj#rn|0W!?WmBK`6?i5E@>q&Ow*@4D6^Vb%6$qI9OSBc z1MHo15uU3$cm#R4DPJt{v1*}H9{@d!1D5o)Y#v>Jclu{2f9dnD&iZ}nIPHAQT?@O6qcMI!c@o92Q8I$TmZdtq z>}{7uJ6;SLQLd%>XUbV~n^cHOLfV&3tB*0)%e)=@$KtI~{sVhP-Umu?ffv^#n@De3 z;%fO`o&a@86&Fy)OA9UOQZ7L;pRI0O+=f#^8j@P>_j|*J1nw$Ta^e;oGt(R!aJY2# z4cG2mdO7_TL($rQ0DgyxEVUlUQ=0r9nxcxa4b>y9U&S4EkoB!{wZ#9 zrII1hO9dcQ6jSbKHgZg=Hl@E5HHo zoVYcvPbwofDU{B!Itu*JyL*;gighBmME6<{bh5^#8-N^HINJfD&n9wPI7HwNp|FPY zj6;<6bUD9BQI(g3(Sps!G4I~xuR*=_;I^db(G0!#Q}K~3$Bp;8@~VvQ452`Ioj9}Y z^K8&$SJAzZB-ErW1_LO|hZr%HPJNh&RRX}B2^c$5?|`bTj=AL;bQB8J$^mLPzZ9e_ zhCE0a*OcJi(Wjo!E~8yj-{5*ve>5mZDh(47mc4<+z?PPeQodtQ<+VAIhuJ)d?8Gk6 zRx)aH#nR-zdtOBQ3G%D=Cs)N^+7|2yIsX~7e(aF>Pj5dD=m_}e2l@z4BYT(ReK`C) zYT6da0S)n_gV1%yTHgSaE!vE*m z;d|P|rkkaDk6(%0X(?~eubQ1wT`QV(J*jaCP<2o{I8I`?V;c`tZ_N_d$frC8Uer?0 z_tS=t>*5P#lDi(o){CA)@UgQ(!a@*^cauG#yTg-KolN6kPExI11v!fp z0T3@MHcFpbu%XjKP+aR-0KeA4#7%`61mrOL>AHu>7tTC zTVL=&JXGy=0l6smavvUbnPsSg=He&FO~ridQo6kL=4J|o_hTF4bf~mTpT5`*`HJeV z-2sum#7OT2uu)Lw$bF0HIr{gdV~3#Hg$+nVe2gXmw3m5RY@nR|zzv@_7)81uR~SqO z=-gqZOxGrP2cWDeIVip0ClnD;U6YlsE4dvoDGNxzNaaP3#yA_mc81;w4}Tp9sGuuY zn8fTfskYTv=g{NLO^wiE5Q1DQ2{at41~_T8*m#mPuN4+=n-uUsUo4UVR)Ncz(NYwN z>A*_4=PJMq?Ki3R1{l*SZLZ#`s<$c)lqb*<9=1$B ze*3;Fk(@sK=VHI-P4|-ByS(t%N|}& z4;7z>LN;N&Ywn+%an_NyX3U$r`~K5PJ$Bf~io zURyVv204UiUo=7oX|p>9*jd&@z*0Wx=Yi0Z$=!q&=8WCpU~fkcxkzrMTu|fCaDX?q zoB|U6nQG*HLt~Y2$tz^J`b;vK>)c!=Pi_WMxXK+GULggUmN8NvI3#qw1ekN2=Gl1%uj8pntXYE$9l(mm^MDmKH)hLd}EphxR)t% z?~tVd-~@v@DN&$k=g&F~6|l`E&LpAAXW!|cb;qO&%l9~VeHe^ zgRe$d=1{U$zalSqN5wp3NrY0Zr z9M$WY*K+b%=b4paZP7U2p4Ou}YF-9_G3Ce1G^~J{n;irrBmr0Xv>wS_jAmd{3SD%` zGmXfkB&c?&0CVenQmL#$Pt4;Gs7ha=Zu1fKZOn2<+|ps4c#8l5kq>#r=w>2tb@;Jn>@uuWTTG@T5p8PlJd_GGH zQIn`$V;ctXbrK;Gy_T!FYvCqQcCeN);htxM>mGF{Jcp=ki~66Y;}}HsT~Q(dTVmJ6 zawfJ5QVb~O;6+8~NgZ0djR4ZCp14Opd@JJ8KMZfbDbIfP{`+T^xKqYUUz!O_X^-Rvd{w}Y|+p%kFXA>dk>`%+b2r_rWsTY7PwsclX5F9 z>Ly^v|X5`4eUZbrTMOv`eHoB2e&tt_)%drd4pT3eY6ZaxmqJ#`N$5<_|QFF6((6DB;5JB=FT`U!n$deoF&Ekchk8YI?}r5j>4RFS%4oMc4n8gR&~8CbWd)2Vx@Z)WK)7{!hgHSp} z+8IDMER9YbDnJL^Vtz-gSQCzz#cdDm8$dYam#HqDfw3wm14kWE9SxcsnOH2nUHY8a}FwId_U`Z|t=Mz4cOP-#_ zPCkEJk_wu*1jwQzb=J`}^l;0i>VeKr;6NyJ&aD(*%faZMz;0WgCbj7GUo)grc)LlF zt*jOfr{F3e%v}_~iy!V89qh@O;Hv|a^5vao_^p*Uo6@bH? zd)s&L&FOo~%h%YVlXo&gm8^{E);r?}*=an%GqgdVS(~mTDLG&q2zlTj5$kk?kk6;9 z238&+~hTnx&k zUMeioK|hF{vzLPJ3##HyW!HUyTr?aT-=!~Kt?N{Y{9bC7PT`yVZr~Hl1tg!TJ+Pd* zoGjPijFSsBC^mTs?Q~?@-@W}RJdx!;Baq9ak$w+0p{1l9gE=BF(GE#0-o37rI8=lN zSO`9!+Msp=+W50|Fs5@DN7~!34o{VZ{T*-9n)++Gqhq^ypD^MQ>~Xx^wJBj@DJ5E(2PbCaBeENOUc zX;2li+qmW`>gie)dO03S*asQ{8m^U8ib;NAONE;V6CE-Pkn~C1Of5E>4FOJy$q2yevr2pyky7gy}s>?^eC*Py&b!e7~VcjT3$)X(g zh_@q7F~gKXamBXYM!5)5z;uYsh|)gA8*N$SV>qLADi0--5Lbz&S$?4fqFWrugZ|I} ztD!#I##PD^gP~%UQUnG77?h!r`^_DF5vj5EPZ?)0$$Th4LEkCyw)Ify^)D8qHusXA z0KRpF=t&(!964E|MIxagzntY!Ti&|jUu0|x$h-$zA45I2lx_Wn6^zfCGV%SWGdpWd zr21UdvW2BN%$g&kuL_q<|GogPA;sH92boT3Z}eDf_Mm5gp&(E(Niv8CR!= zU5eHpAGTeiWxNwfr1Hh9g4Xz1iBOhXCE3f_N%R!cEcq`fxOm24zSZbZT#A`SsWBlo zcgDOtb6CgMQ1pkFBz38A_(T3l6EBAr@MX#5fx*?UPY)fJTLrv@>o!zuQL0&u@;G!- z*-I<1tE?WY>J{M!r#_l6vv%*b*_F`nmM#RX#!Fc8>3=LS`1b@^6?=zYvNHbMo|Ojn zH?S@J@ZI(AdUY z$*&#6zUM24LBO5A!CY1+P)M7B7a+=i;+5D4=;{c2&Vr;vTT_*3jCUnYa{r zm?i}~Ni-9FER6*i#mVk=2nf9D;$u1Z3$Q#iVqi&WDmfuP2rw>Eb~}0PkPQLN9?h)s z8qz`Ty-Mwcym)scQ%%rvpUeLo&!pQ5J8o_&nv68HIeBn~>>G+>LaxEj3WO-B>s-e| z=AxJoVi(|`yF)e_wu7i)`V^PVSqFV5?}!xfE)EEXKg!d}%NR;}vYJ(Dcd}{2tgOT76NfsvS!KnijIEyRB=@Xdq(3+Fa%w?A@=t1th z^Hs#x3rh^MAFgI0w+PWhI;nr^&m<#c_?7}L{}dJ!lKJiXPYpu!yXUWd5k4sov8(Lu z9C?N1CctBMa=)T*D!;`Z9wn+Dzy(JfqPT>Zz1>KU(G+^*m;}HXj=y=MDXzlYv|f~) zmQb+*omE3W!`%MTb?AR?OS*S{1D3)SXnJ8g3ASbEti*PG-Tc-_HB}G^bx=(V@PX_8x z35;VVshYvcGPOB-o{F0bED-Rz&1|9d{ur;E*WpgQUIshfjM%d^pG2@jGSB~ z?^-Mbp&0|*tjX8X9hRa+PMFZen~L+;A&r3y3Ily36yq>dgeP>+Gqy{NjSBsp3Z9U` zF8Gr!hH`;Js|@%_1fC^bfC9+JQp29vv0nfkYtSKEKRBrJ*9=ogbvZ`*0y=3_` zg0DoAGHDm+z}jOBa)~Eg$|h%**fqCdq(o*)IlDWpOE=^P@R3t+iQ1@gYvmW-an_>Ihq=+MOX{hjtpS6zzp;{f;0&?lN?y};v$z3C+CKH| zl>xo2F#QD)5*)xg)d(*gKB;spPF3dAkAPNHmC$LryZf?R#+SDGyg5Hxjmkn=It-S` z7DOA;yIz|Lr`w_hg`f462`kz)az=|Pq>WD^573oV%5SFSpj@|v2Tq)9sMsN|J80|_ zHeq>YjB?P-n^v+G!Bc|tr=&b$mof+r7O|b4XOSqu6+*gpjmZS(wVz7#TMFyZhFHKt zZKSAd*%P@YTXd>P>@q#HP7QdYwJ z>oYfB^4@=B-uXMJD0$(}N^NPnYkc&Rlf>aaz5TxY8J-^iu<$cL5PovZaN*Y}oudjQ z+Kv2Bl>@heh7^2q7=qk1w`f%jraA-UQc21M#46vo8d31Ht0tz|x2s@7IbTt4N*j(Ew zvx5$mH?$Clr(%s#!%~9-(x_9Y@wK)bWHR-K7jf>1A8cydk} zxv6e9AdirBjavxN*m`j9fQ7i{5n3BNPJ8*V-LD!6*p{-&^L?JJoI~B8&{l@D&#q@v zXUvG9nay)!h84K{l5($Aras$TfajKTqzVbctN+K-s#LU@e-(s|z zB#EaZAF3M;-&gvW46Q$=o8yHo}W0g*Dy(SywQ-iNxDhpjRpWQ zIluA}&fDTMq}Ar#Fcp>WsfZUWnt@i8OWRYBe5;FdX#qUBL~6X3&65NhIz8W(UODiJ znDW8Jm&*jzjA!OX(a)Rt&%(c#z>*t!Img}bML3eccrl!SRI;Y%aZYn<{{qlI4_lPT ziAjkI+}V)C$MI@YRr#`2ibK`% zLuS)3g-9_S1l92-%V$;~w{F|g-IPTa;nur`#hVf-ggYZ}s!I!O1Fr6NGc7wh90(t9 zf;7XobyEtRg%fTWyMlr22<0ij{kTr)E@(@cL2*#nP)QEjhA#Es$T$QCgKhWXg)fIq zl3Za`qGj2rXam}ZF;8!O^ptiB=W?F`3;3c;e~QjY0jl=ol&e?YK&P#M8beed@SYZS zI#i#5Ork?CdItG?ROk)ORL>v-tSSJ}U@dEc&}MTXRCEOx8I4nH0u9e)~Q;+aJCEu$0Ggoyku7X<@NIin^D)%&nlB5-M<2n;* zT=H3NWU{?&nuO03BaAaJTN` za>8zZ-y4fBUii`EC8a z*90MXX?{rElv{@KrTCO#^Ih-WFVcx9dDgf_@7z;=z7rVM(vGyFmI(R zBnY=JGqA%FQ0|o0nP|i0gGZdBlHr|W@-zv>%U^AbA=S+a+*0XFEyIC~ci_#i^_6ht z19!lFV9jD_Px0%$+kZZT6^2dPH4bEFYzGccvUEGnPIbeOf@^XpI0E*7?r0ZJU#?!o zwd@+Ln+aNX5NOi0wknVja!a7Z~9-!~?+$4wau_1dOB< zgPC!`zOC5A1ZY(+}(Jl&nU`e%twOl_L89ks|NgX076%I`;+uC^>roDDjm6Vb?AL1>a!uTrP(5-Muxr5dP zp}R_7fbw1eFWpYrmv(M-pV4Cw!aR0IQiY$p+;>_k_Sqx>h9PjBXeucOg&uOm!?Sob zxFeDpM)p)?*(l}3Q4h{LAs;~t;hlm&g9ID+C-M%Mf)OEi^7;Tqm*f3HRE?Zf@@DOa zL<=32hgfaF`bjx-&goQep_V0Mv%?+E6Ja(!W|u8tLRE$v$uaE!+4v!a(dDuA2OGtq ztpfxE+6aSP+GU^yH| z%Vww=QibRIg4aSfP3Y6n`<<-8!sVp!i5y0_Ip*u;JV+NPE4~Ia(nJ)%$xL!r>~~HF zA!EJx(0J;AQkM74W+E5Z(+y%7lQg5qix<47)sr1D5V2$CDbAeD~B|B!}bvUmXjV<(+vH^?S|_&Jfgz>sFt*L z=%sTwZ>Lm)OGC%wrjS!h9Bo4t=IEHgA?l zrjDQ1l-$%bPu($ymeL_pGei;ZQV>fo<1SBL>JO;f?u55x3~}7yVpP(Ft7_bwT6>$q z*$}9>J7ZHshFq8Ws!76h5dcJ>qa|ReV_xTE7#%76PO2K!VZ$HpF22<2#5B)5h|W=o zkmqDYY*N|QL;;ZG4XU(Lme@7`bQiXT0N7xT+$3q}u|2LFbs9-|h1bj>f?P_89mS}; z?==H(R;dj#TI#Y!wjkQULg8W_3L*x%fEcJ0>P5>aR=N+C&)-WM5w6;uL>JNOjGs?XYVar@RwxyIN7NQ?NHY5U0L0&%#lI(FGD--EItw*{wI4O}uZyZ@$}fNZ{D zQaPE!R08*TF3}08$`V+>u9wfXJkE#^ceD=Bb+VvUojyyKQX*n?5DE5&O-#}4x=^g^*mA@( z*e~@dx?tA73V(XUu4C6K0$kD{+@d{}pZz6j0U)FuPX$f?bG(tRW>gB9e%Hx;8PWVRUjL?u|CeLtuI zV@d*{QZ=C1$Qd^3k;CbvF!_af`9X!<0pHsB3Dh9uja3b3UdJ{{r9Y*oaJ)KBgV;M9 zXuNm#F1Rbrc!;;*K@GwoI|evHN_h>j*dxnJMk?$u{#PjTY}^E)>KVgc1GiKc!f}Da zkW{|aH64HJBDLi64fuj~39Jy5?1Vx|k^q0-qYflyvPZx9&G5}n3ZC|p@aKR2d@}sR zPln^!pX0nR8rYA+`%m9L)2}^Th6k1tYiPDAdgr^%zUSzwP*J-awQzdLbItsKinvdT zu~lPI%y#X2mxt6pKH6Ef@Y*G{?vUdedT`$Sx-f$Dge_P4s_g~Bv)hm>xI7$1^GHn< zWoCsm+$}R}xo**|=7P|~F%e!x)j`rOt5}K6qqwi1jmJN3x;Nx}USfUdAi=AgeGZbw z;DFfGt&|4s1@UL3dLL@vX@Vl})5x|57&LjXVt8{?BkL#ddLj0^?&e~PQ<$%W9a|Bc zSOC~uHYGp9*JrY5gq6m*PcNOE4VJmf4m^7r*JH&VjX}B_^~dDC7RE}us(Ve8(L$1z z*SaaMsVUQcfRHBdPoa}9z3&P0PGVwUyrpnSM zB8!#_5>tQ+NZC9&>_^r-bV2t08|l3rF=w2({;Fwh{G zGCoPnDE~_S3k$EU!U4e%wDKpZmbI!$K)GJRK1$_f&1`|W`UYdsjXQa?MzHLC0=J|p z!g>xiqp4!5t>rrm9JFAlfbF7H%xcBd(l3k9ST0YJ;{QzRMTgC|F0oPv12c@AG6P^Q zFTL{ZfvUkhqEoFW`sbhxv2t6NCp>U+9oEzM8m!foBO6__#RgxG~4_z!}70+Zu`2RLM z**|{&$@1d!_wNJ=qk4%iAu@WPgNk2-$o=1m}H{@O;Hj%VOt6ml;1?`Ry)|@?9jkU z0wW^TEH+ogJ=-O4(G}4n%N|~L%i!tQk>Vh~A6VY*$yjnN?x-D)Bg}+O3yNVZsjz{9 zFz*H2n3XABf{BL;#zG^Hlt68FxdG@JJ#D?txHrpL(vhQ#@7bRN+-m?`Py)=?U<$(( zs3Nx*R#Bu9@)^np{kT zX=J;}XXUx{lD#3gME%7UPEk}JFw=Bg`i{Kys_LJ5`a|fL&4skin4MUkU+2Po0p$Dc z*4IVq2*4o93|1LHZtJjd>Jj0(`>-36e~S0@)h1O`zWW9z`NBNbDi})z&N?jCkxI32 zyTn(mn`=r=J-5bRzW=y9_aDRiZ$JD;Xz1?6u||HzULTAVt#B6|liic9dMVm|KS(pk zo14A;DpJ7Vid1K{;^S}d#gVsa$FO{rb3iJDXGSF^V=bJfJ)+de1yM6Zs@}gm70wz; zU9qv?PJIEYp)!!$a$qPYDU?dKK*CS(dKs@u-#iZcG10eYte{VN7>G(@gsuwV5yP@b zaSFqvt#=55VuC)3P;|PEPFHDHE&sS2|s%ma_X*`Oai2Ukr8 zOn(y(tqu9rA=&XHh0uf3ZyCABgZcm&Y_mG{OwXHR_{{pNu7ZCWRcgUD0)MKfDI_Ss zzSY8a$|tCqyae2+{v6cwYjT;3`YIFjBDTkW8vgWu(2GyPpO(SatDJGKs!_MkiFR z)Cn`ZW~)fy62%?ovOveja?BaS&vF^sQEE@M!j!*T`2w`xS7$It&W4|gTR*@vtjKJE zmQTSD5IKQN;LP|{zGi~dowQ#H|Bjv>)C~Z8EFa^;1n-te^zc*#KUKriU*&8I4Ul%Q zR5P+Ps8>g?Rx=%@m6+(BLMDeE%rUu!}miFmRa2eT20m zMa0^UcP2Qy)&R%BJxjF!bfF?x< z4M7rFdIPow7%W{lik2g~O(cupRqUatuh=t%&?zM)QCt;jhk-Pq3SPK!m|3=z&u+>e zGd(2_e&l%mGiccU0|v!E)g95d!dsaa?F!qooEQLx!mYPnwpLZRpimCjqJD$Chx$5n z8(yACFF@7KlCU0NGPq*Fs0P{Q!8pwdq_hfi0{(5@#-jkmh;7A8b*8S~{K78EB3d_h zFzzsHM7)P@+; zmAXuDy(4eLa8ei}SF^g-p=Wihx`to*I!qT$=RbR@d?$7`pA|jnAMu&Lmv}7Ke+!o< zvt}&mQ~IRkw5RmCgQLT4Qtpsi!ZgyI3ydvrX)V3ZB)Y-qN%IE34-21R$Rqh(5(BLC zR=jO5jPiN-Na9{?S?G76H#pGqYf0QBKP^)INO^zZ$0Y}!%5^T%0$~pu20Cd--#Ez| z>u#;V2wh`)i2g+#L=by1LpW!QOx;u2=$@t(VqHsQGpRIGmw+lHK=@8sC7frN1>aml zXoNao#QN5nzfn!cKC<2{5e|~34J}6LX$_EscV(pgd4H^@)b!l;Nl?o>pV(-HTON3a(Jp^}8XFBAIh637O+LQ-))Y&fqHd{blz1$C6+EYa`qixE_W zpiQf!dpX4O-Qs>$g-@sxTV4j#C@{?fE+Sc23Pw2*9tJ|x|3->d`5ZT!x!f0H~R4r3CH_=`TQ56fFUgUR*^88uXjJ zZ;;(xx>}_c)JM)jrviT6mbuvbd2FNa^^sGHNsf}Ym#1WEJK7Se-;of0|H%m&uH$LN z5F@q}E6DQ`R|qxX;&x>Z_bFL6D(I=8U8tj%y6BMX637P&i183{hbA>f2LxXXxJ$^* zk@K%R>|3Ci2w?@ECxdxL#->{95Gn~PH8L;dSFZ^hOf0;WeP>AE2>E(UX;n*@rf6p# z1$n}!R4$u^%eip}EPb$$E~2ww>&e|>OH|yITXg26oKA7F>oAym-B9rbNi`(pFIm*^ zLjf|Ek+U(O_nG3!x1E&^;7khx>Jj;M`MoV^f+Rw?VAlIjBkI*uZ5x~XtB(tT6H;W` zYQ~2%SoF<2O4N{)Z$7}So7B_tj6_zLE_PsmGseL&x>2iCFY!=DyAZ+;xAgc*XXU|y zOl|58bu8&j-#wOiS=X+Rqy@de`&)HqK z%MA8;Q~{wfn>0h4uOR#E3H@Xw=r=n6u&b*%m2`X7Zl}pNAcF1odt7p(P)`3; z%B*U{4j21C_@}B)l^s7xp2+BEmW?~wITY}k#XS~IauW98rML0XqMP0uJxv$jCz2A@ zIKGwY)4eCUNpEaBL}1vcmxV_DWZ_b-urwWbd8J7*it(iclF$mBNGx^!wBhY9V3 z;|gnC;unEPV4jf-wDp+kk|uyQ;Mnhi_1$_j4M6aQxQ)sC~QQ%-TVce1-jq9UhV@j&<|}>V{^PTa3~; zD@#7ry#Vgh4SreH0cot;h_b z*e^^ZVMR{h8OF?)P6bQJeoaFSS9ALeQitD@P6Kv_7iB@EfL6M5nO+raJcgD~1cU_IysO7Mi0FvXjw8O* zo}{=~@xO8|WgVB*d6vrwP}%>7vNu_lCb`bU_W2Y}ZknPsp*-_+$jFST zV#vIC7qo6t(n1@tcTKGbR29ZTVJ-p%0x-M(#e3;|$Io{>{vz9CDg*u-nRm<#_v2^y zhW?xdoM^WMSsDms5?LZIWif@AzRQxM(4&yD`9Z$y=-y$T-cVo=(FCw;04u|8L)K4r z7%fss3b{?Un0_=`2n?u+_(=v_0 zu#2~Gg2M-_A3JrZTMU&bY0Us5$3^a)Ewan5KXU`yW~6V@MGj!dLg{gDX}&hS3NTbQWLSSvr_ z>JPM&^vVs1by^e`7Yt(z`cm~OX3OTdl1I->l&a#XQ^A%5^*+I0as)v*a!sm7?<>dIBMh&V}rxu|z2RlJhSfJOCh z^QF8McOzRR_%hE$lV{p~gf z$Z87_#(1{H67*@Hoh=3a7OuO4*b|Q6l?VX|VdugL!^o9iyu!(M@LQ~)=bo?7SGh1);eM_d;N~ZQH?*Gy2R}7;ho*0k9KdUr=-_Y0mNHz!+LyrM8rTj! zFz2y=h@EB#oJ*41js}ESZ=n2<@3g8P=1$c5^dOQ)&Ae#8_d;+rxJgu-g*n`q1$3OJ zDtVua3t+-;Oa?U1ke-yKJ5N&G6k*v}w)RFq91N63=rHA7AG^593y}({V>&U%(||gg zB6G0S;6|_HJK1B&^Zng1F7o~o_Ku-kJmUf%!|t#Z2|g#hMZb{+G+yGJ8nNTH*Kqct zm0nV{4p~?CMBWA1&0T+j?t={jT}lT));9K#X&cz&wRG!7{)Qe1PvIbJLcxdO2{M&Hy!7U?Pz_XMy&tX-2TtUxcerK-TbCo@wE zV#_u_H6!+-!hB)NLv?8U`i>4`g?aX5D|PyJiIsMweTpelbjxEBWqZ3^y!0V4D&?`vTl^!w|L?XR2|KwSF9CD zg?$4l!F=R60^zYa;k+guba(JUuU@y3+YPV&xTqn*{gt55Cdi6HU(%(SZXMF}*ihnp zg^T0nuf7YFH8>@^u_hp-aU*ds_u%dXt-OmJl8q2&$Av<2VcJh;%mYoQ6}h)%M9JOB z8cAKf`@ZZ*M4+dbmP$QG`Ucv`c_a8&0rl<0zXk1N1dF4ztu5eOUG zW~L1vnt@^NX2;QKXO_vgY6Ndi@Wj|3vp{r^jO@0c_0XtYwm}M#V-3RDsMW~4Yz0FL zfwlUKvnRF?u7fi|K40}GyV^kp zK)|iA?=}D<;1rA2f5ESq@wdZ(Fu+TI`MK=uMGDzbgJ(5a|E1OG4f}SJ%3jhqw3TQE zFcLP5J(F}Yyhjv6-pkcts1hW@Us>6KW`pt;jP%h~hRBVcCR-D_hTc&B(o=yf4jge0`}Ah4Oh$_&`EE1M*%^?4Y>~Gw!sjwjr++Sw^CZG zr_dAnMvLL^Rz>(bEi}2e?iy=CpJ%XQfC7fPw;kIBn725Se1anig&{}f5-fX-#d~Ip z7ejxzPv-~eIRO(f`!IEoB?bo<@;ZS;8!ZVKU8@G_<%iN4?FIRw)S;Vc5dai+yM(u< zt8_KmGv8MUBX&~;PN}j40}uaUlG?cq>?7YGEo~D?$#$$RuEW!=P_#|HyRn53rku_1JvW7j;`X>N{VDCy^L+OV1XLiJrtU-(5a+J6xdjNN{EC) z72H*{3q6%9gqW)dxdHGTw#zX9)SX3-(R!M0T~bL-#+VutUC$U)t*^eR4pFd?dL6Hz zf2tAuZlfd=)^TOU2&>HjQtyNVXva^2EB9KZULIg`1|xP#8YM*$Mu`y?^zh~@)j!x3 za`p_W2uCrw%-DYanSHb}`O8C^{`MIR7xKmL56`}NTmJX|p4Z<&`8_A~FZ#AVD%$xx zqFbFmoKSWL-LyaL@?Vhudl-=8#)mDt)P$<8{SBv|O=&ENX));F4i`#F!Yr+K6^oZM z*lP3WMx2nGEI3}Lk)jc|oRpXaHNpscvV0ta-q7lsoQH>$PnoO>H&4N^05kkiAvG(R z@!bngsgEm+i4Yjj7q@-C^g-2C4Y@b5zo+``?6E_uv#9Yo$9(AgmBZw`^Cp|@8K$5E zY7@Hrg$FOrHrj*oR&S7-+amFKRQ88Su+!yeWuNqRW9@#6$X1OdwyTb8z8)=rVl*f_ zr=Q?f-x1^+FOn`>Qib_2YF5j)vaXOF^_Pp)MVF-DL632lB(KzD^^3gy zo&dd4Fc!k4BP>om5mdbf$x5WQ1|qr)J!#{G**utKHS+OygnjSM7TraxXt|UuCZBxS8xXTIK?wB)MOB><= z2Cwo_KFDxA;Nn(&}s$iner zTqiI`HG*l~gSyHAe{VPBJnCb^8;`rnoi?ySj5rP#HD`%mGS6!vbp5 zwv}=pbM^)4ERXj-&o(I=(J3~uff|cFk@W~`chbZWe|cuj&hT9A=!DiF`vQ1x^KOJf zve8~|suqG>ZsQgy3<_Nm#;NRw_a>eQkK0*^U&P_}cP0Ol(bC(S*7oW&G!lQ*_AZ*B z&^>_nk(uB`fyAJlspmx!fuZ<;f|k{kYV@4QDo8H?>0^Ug>aW^;ylir$!XO9}LlVm} zw-X?~xG(DQLsTD_P3ehbUn!9zCL0 zC2H?B5{lHzO_OR2LN1`cD~~>Zs#^-x7Dtaaj$(D|pjxw>{wDly=KCaR$X_v({pS65 z8G`(?@{DQ6{6Zgm%IAL(-o8A2`1`j%2K=MX-a~IWL$dQU2PwQO)4)_9L1AtnBFWj& zxMWX04YQr+D>`q1@I_@_M+zkZ4oAxKdiKfyYeg~#exeEEOgETW4YOUv4^8F#Rmwz{ zWpVlhq2EH$J&<<_gug{A$!QTsUOg%yL{oKThKP9agvk0u?*C9rzV7BPX~c-%&Nb{U zM$-P^o&x!Ly7559Wuc=Q*p(}2;8J+Fs1X9upwzd9<1k?TER$EO=}<@7Zw-1wBJi)4;~Y5vXT}il!(F{3J&YQmYLP)4fnlHb`aw7|_!!RDNk4AgGnm?L{L7>BeDWh8asFVg&nW?7pn5w z;(UPx@-H;&Ru_^4Qr=uRgiCrB3_iwXm~7ImWl;kG%PaP(cbTQ^269*FCknbvYmHH0 z^dfXrg)nO{srzB%3mr6ZU`uRJ>sDvo575&^)Qu*{IMfL5#bRyqIoU{v%@Ap$g?>sn zkSNt%P(sXPs2pJQ@|Ci~*HcDT=~IyCuBh&E!#kt>trSV`zonrHK5rj_1zmYH6DR9{ zQn2?gj{vcg_>ir9xv)V{{%Mc@RaEC4!)s54gYEX}HH9eE!AEPczQ%_N-{(^44Bn9ctDPW_yfb}23 zeaf8#S4frU0zn!!21DB>WdiN;OaQf}Y%bj?*6P@iqlkj)fn`<%9_|MdO?`TvhHE9k$! z{US#gaMpK7F42Vk0qd#FS$vhU3ChG^u^jLoZAMxo-$2Bb#8%#$r%IJ;>vb&cRN3X{ zJ{4)y+1^cPO!#!YC?lYLxpy4q^+)ah6~pZU1KJkbKx-ZnIfqEfTNEM)O7=&L51>R!51_BeE8Rh_5WMg4WWAnzc&%VQ79b0i=g8qM0G zu*_MuwFES4Ni3i*C;*Cg5l#2{=lN6-9x6C2#!Q>+d(21ju3x>km!jzxg z9E=abI@D^0QyfDOaHzj5C9=}ca*&{t^FbJ>S};(8RiINJ(gR8m5;(xLR@Hi!Rf1An z^Bkk+j}c;j97_UrF?eV(_{Lv{|0TzX|2w?@5WdT*l*AF}%Zru5FQGYhEr95dwdeB% z`1hbODj$tdtiV7ioR|?mx&+0fwZ4qq_G&ls0Z<@hpsZHCcXAI~IOIuw(x;QI!X3&r zbmz$CI{kF8K0x-SW;@zE-a^*;^}t|ze#3mwr~ZJR6~ylZV(@C(l zjuPagIU-Qg6?&GP^rv?OW5v@d9kn-%JohvrY$gN$fAb|YeWm9odxFiBh;v+mr3HVEsSfst^$CN}`a z<}gzCCazQ(KnXayR`&05ke@?^9(|AxWhhyFqt56dxy0ZM|D_?G7LBqrAxU)MkQ>Af z%T(FWQquj~HAtODTz%(k-LcZjv{aVh7kY~?Dd}tQhcG6x;}oVR;iHJqw{rP)ZyB7 zl5jS##TmEgu!A)% zO+ha;+QT$FT~b+=O=V|bX5FH#UnCZ4d96y$d*NXT{azOA&>@5D)+$C%Db2*$>2AV6xAW!j$axQXKA?y9Xx?k z3kS+^tTq+Yp@^OQC+TWDefVzx0{!FL*QX~;(ydF7B!T1Et9s;;kAqdnso4{UJbP$6 zR3Z517YN5&o*mQ=7RGasUdfJfD4<*<676vBt(BJ6 zlDamyN)Ekn0GDA$jgqXBDj=P~-h(pDX}(Np>|O}#k;AZ4wz0idl_`48t8@1nY*?R| zjG8JDQsAPFM92>NtK12c0u^N(Ax9x+pw#9!iBLW4VHCrPjU1#l*r@+9fK8DdS18Dw z)GSuLAq~{23T)JzDiX*r)|*g8V@24+s8a<~8>VRjOu{a?$rAqH>p^oU9E{Zzx$PEr zF41l0B?`o#@s?t8CZ~_>!NOBVI^r{|28FEUq8hzx5YOf4XY~t*97n9exsU$G7~Bos zA*(jWluwZ72Jh?D5qBW3+iu*`dPuSr^2Lpe_zS%-K>7Cq-9t`_e*KO?VKcZ6Fd4;KCYpBvkdyy*rCY-1 z7;dU6v%}W3b>{PdOVYydw!6k>(>*NrLdUCHv+7O1vx4m* z4m8Ssh93fy)Z_wvtE#fLd5a1Ma2W&d10m-T598mIEaU+XBYFL~mzP`taBO94w^%iT z7&Nh#Wp7!I8mXusc3mgUXl&1V1G?F>Un^|5!Z7Noxwu6Xs#Z72gH7wrwHazy(}Dzf z5Tt5SIihqxiq{PrlST#I`5B<#>e4WWXtfK4)jqwG^Esgj)RL{zLzJU>mR6avUqOC# zpf!NmI$f`(5ou#bLhFRV1ux?rLPq(K%DO^JMG7O5^FT~sIa_6)T7Y%&VsbXm2xSc-Lm=0jJ*?LD`c~+}Nn2R>YR4#LT zu`$P}AtmuR86@L}HmlMiIZRVMF@VOY4w40e=#MsZii}}qu;`q*^`)gLf@TOvxY@*i z7OzcswVD0O)WX*yU#t3$ChCBActWAoTOvB>rkq&2oF#6aZc5m*xd*5=jdgnotl4o2FOZ-nBF6Ya4M-2>|)MXYn6R1KCz0>)O&zOYPJ z6YTZymV<{Qrw02dXPOC~`@MyNk-bu=2p*kp&X95|Ug2j@A|+uN=}Cx^iG*NP1D0LH z?q0y+V#f}K+o1-nK+fOMBchaRQYqNj1o%PETJQkfni^@fq*ljxmq`TB;DZSo@q-sM z7~x@P4+HZNB@Bm!F7pk)LshLU$W-VGQR1gUiU~m~H-B2PDue{Qs+LtHMTSMMO^O*{ zl3+cNpIIucrw$`(&eODr{>j_g8-NvB=co5iDjm~Y*1%tbV*pwZB} z&k<9d;Auy;uMXuPU6G))e$ZvuQW36K6{xuPnQGTF*+tt9B7^88FvDG|k0pIqHEdvF z)jeHhLQdP+e!((rfN~P5u4?tv(#7=VtnJ##dJP?5s_C$CXIYW>^Kc=j1PX0f{!;sK zF3N)%W05S&Rh>-{DcA~$j~dLnX@r*AodN7dMB?S_?l$fb3mrU6j|=)>FKo+N0hr!YjK%snZRI`EzCt1f1DOgSt^$ ztPW9J)Go|5cRM+nr7m<@QOW!N(bw*I) zNWLFY>Zp|ph#!6g(ZTTHi?{E;e^0@U!6>`0(*b$^8sNBkQfmsT5XtEPlP5`UMw+WW z6z4YBHMr0Drrl90f@TB+Ob!e%Vx%{?S`J~hgLu(Z${4^DyfpG9L%Fd*2(@wa*E`G! zb!gA#BjgFTf}2<;wQ+o&);@43*o{Zusg!h7Z5gxNBDHsaMg?`jl3%Pj1^pqo>01=!0@wYhIBTH!R9b zN`wuJu%_uaa*@YSP2eDL**rB!yN5@Oj?=>7;0|2Dww;=7MpMe2y`VoDKO!eA&Xj9p zGk;>mWCIaJ3j&gdFVq670iIfT*&!;_Y7YBDR#qy%?E&S|O&;wGO(^lw5+yii%xrk} ztwaZF?pBb%lM<*>n{`eNv1(Ni7YbZ=QSv1tUSwtg>DU z`dw0=TkG;_oyQp2+|vx?U*3NGZ>@4Z`v%t-mDF!eAAb1uUFH0L4(|W2PA`&|Niq0x zm{+`@TMf3qQyhVz$k*9zo$19RQ|4UL`!44%8UT&S!GM`#&BA-AS9mwioXT(eQ0&lv zc{-mt1MH*Zu=v5+C$=bYdn%jU9t2lDlebw>!W=Jl>iLRZLhA(oC6eGj$R517-`WBh z=%+;g8zYLUZ#iJPlVx*&H<^+#8exeOX0R49YxPqYJ*A>ilXS_f0UZ0m;7B##5=#()G#B%m7J~()L{~mJzl~^j=gWgg!mYCt?{*{Mo@GV=TDEYS}uyP)8w@BE!UdP=sF5dQOKx~mKHX)l7sk4|3R zrpJrZ4&l)bAtjDYQhgbx;u*GLWU>0l4mN}Jv3i(nJiEG7pIQlcfSNBZr<*GQ@3v10 zGuSJ@7%J|c4zi9)8QzLB?2a-N{V#+6CeRrMr~PQWaHOAivv2CUQ9K2%ii>VqPxEgX zy5Ff%G6D8-T6YyJ2Nt#xv>j#}K=K)XE5HGmUmPJY-)%i(M#hgz32$SD}v^# z(#V!R$IQ%#J@vgnc&J={8k!cbukfQ7VMygCqbkyno;%EHRqop=%%isF1ZteTp6p0rGtd!k4Y@GbW~S1PJ&Dc=%TM&&NglyKgwkWI>F#uTFQg zf(%lpQ|KH>0C+)7XAc7DjcDa?6tF$AWQ~g)Z7abh>OnAod0WW%S$P}jav%m*jZ}SX zw}Dau4UA8A80nQ-c*YC!LB|S|IVrd*2aGfAmJWktiD2^_{ASHyMC2~jEdkCV-*&cO zr6V46C2gJWDrAy&C{#JU4!mxg^j(nX&47$KBHG7$*~?hjIq2t%%wC}vOVlogD!{&M z-ou2-rp=NERGvLyy!{?7PjYPTDtHDnbJ(h`+o9U%@h12x#0H0mzwGYG?L(nZ-Zkpu zh#N-O@GabJ5+Qkj4d*v>U-px(IJq0^N!=ofqFdJlPI52%T12PhKsrl)cIn!PA>c{# z$=^WWcT?k;j%uGMhgD!~X8GL9SAIt#Tg&~b5DQbjxg&|7*&BL&HV1R#IRJY)j`2rO z3LtkiL7l%=ds45FAA2a9b$Q|rbO!~_&^R=%>l;;+Dw0=F++Epyufw>@b_SS3XNgV< zsL*(zU`~XOddE8V5gt_XRY+M5(HtYn@?|<0!LF0MDqyeK3jS93_Fqz~>U-ai@0N22 z<3xPOXOAA^w~5fU$s|MX&^&nh?k+6)d#vT;@GMQ`b4R+7tx}`8)-I-ycc^+x$^}=Z z;J~|8*7!6Nb^o%k>Pcd3o*?)_!m|1gIHr!SG$qFhVvqGc^1~Jg2Oe(fWIF==;h5IZxvmnj1~qy2V|GA@+FYv% zqfXvo}Q6){wGED$f|X$C5ASOE)0t21$=9u4QCOwtqLm8!k!ZJ*>C27&9(E z0(Zccbc;oKf)J|*=d-4aR^s;EJbPc^tdg{OUtXlvvt*-D*n{FzyE3{3aqFdpjvRSCX#O$}g^T#t5w)p3lNYiuYor7&p}aTeqI#JSlXeXb_?u^|UYR)R%~p zrf-2O_9?g7AKyM>DVaCm*Z=ObKb2B2Nd)?a@INAWgBoD+d7k$s2?YunN>Y+dKdHIKDtih0`<; zoGfY0OdOm+tIDg`&(&BU!5y7)kF-nLi={c@gyAQYn#`44SanNOg%+vuU_`ikJ~68x zVK-#HJdmjXTXzS!7-)OnQgfPC+1IAUH>m_YSK$PV?D+)fSkVKWDz&kqztwmJ1%}7< zF0qqN7#LAr$%v^DWn5k^5G$9V8WjWmO`E~;VeStmEE3-v3Hn!zN0X(!6B2w=F@P}t zB)fMHue<7Dhe84aDa?lZ_n%AkIFWXL1S=rgpm40iJ}AFyQUe6Z4m zI2NYz0Ht5$=t2LgNLDwUyzT3niUmyrl0D_JkdzT1hq=7r2kW##-U6_6qUWB4)PgB& zBv8AK-Af=fZhh!vYEuamiwD5(R7yhGNhHwAX|HPA3xwn0Ddb~VeKhi18(l!oOcxV>`g0s*( zNb4h7SK@xq$=gSj-6@tfm_qpOy`*fYuEta){Z;lw7z+e-0|w#PCzhHmoYj8}ZaPu!)^QcY&v8z6y;sak^rw(P}lDp?BxSI{fFw-zp5b zr#?cFa)J270x+)~&uBt0;T}g=>-NB&V{WNsn{4oXgV$}b%77N^z9mmpKsg~ER~aYN zw~3~&TFX(menio$7HAk+b`KnE2Nfn1u%oI_A@gGI2FDliBLHDoz7=H)&1+PzR5zUZ z?{H21e<1ewzrTNKQ{orEHfhNGfMywat&Pk4-UDR`^ND+ug+Qn4a`E`Op24C_ z?K8YFvZk{iwrJ6i+@(reBLl~b9ACm7UCDQVjU~7CzR5HPD-c;9j%y5L8jKkHT5K2- z2V+CF-C;kdho~*IL1`r{X`fvwy28sZFhivVAP!Ep2K;Y`;J-qV@(fbO#nWDGRnjhX zJgdP2GujchE>adKbA|RmcvcDKH^YCRPjb>8GhVnCv3w75=l4K)GSn^Rq4s#5f%_fi zNE7pM!LY>&+YHd)^&nX~^XV?6a~7(jU}e`+l3ZTNShC(sD`l%SJe}IEB%S;~H?Gvb zPZCbsq6`98Wfk7Gj6r?giY7^;r*Gbwd!>$kH*Vxk)qW`_1)}j-rdKr(#{k+c6E-Lt zUR#9eH8nAT2T{xK4ICwQ!DbVDuATJ-b-JWnZ7@?PAOUPxj&usw$~Bu@%f>%&p3rfe zCn*pr}FS;AGzNA^!>YZy@7$m+xJc%{!hw1KQvss z;w#wCrZTF`V(6#roD+xM2-+J`@r%7;C~7q(cL(<98r;uDib(dqG{tu-6rSaa?n-LP zLG$#G3}6bdEE5nWJM36Do$mllKyMK+q);-d(1XY6Pk3G!c%NQlaQ1#bOLZ@P7g5uaVV~(qr6^1@t6cz zT=HvGci$BT)#JQfQf`RJADjDT#*|yE#fvOTn;?T#e>a_j`@1$>4&lAo>^ zGj9D<;DK@iPbaOEApLbwp}2kUBXNMHfdemUPkiM>z6Dq6tJPW(_7Jdkb?v0A29?E} z+>Dh|Gw)lOqe6ag3&en>GQ_O{n~=UUOGCK^xSn7TfUALk1%cdlUe7wLQsbgxBAIXi z7q%?6C|6OGgiiR*9?#Dr}LplFdDE+kK;y{y8nB z&=+c~bbFP$+8`Z>&sbztU*Ar5iGb<=y0@3n?!jGc6Hs)^ane&nQa9$=kMvP>M!2~F z2Uzr@Y#2EU+m7P_+3MpKo}*XMaGnCV_zW5JuGgNdR98|Cca2oV?o6lV@4lT;V%Nmd z&#CTIQJr)&$x0+XNO)M>-yRr{ak}_kwScX{6oo9bz*VNs1K8mDE-GB%ssgfqpXr2v zeUm*kUnE0)l|3ez^#r{m2vW)`I2?cq6M;aI?{0Zvw>%$`xE^c5I;R0fuZw{}YR^u` zt)Sju15xcYeIH~s4E#iZ*n;f$7a)1v76vkvmrf2&9P87uohrdmyF$(t?}&GclV#enQ*S^xUfcpg_Eo&00ysJ~USlsAH?=aZ&{I~Le1*~z)BkGTgex_ zJ0sU$Xyn@8A;k zoUBhQwJOG|2g}x7lapgq-W(_coQo{WodnkN6kKTnEG5Z>J1a~jjJsuh*2}q@fFf*V z%-S|TzI9Y+gaPJuaKNk>5IU6`Z4d^^>5TRo#$F7{Dj)@bdAa={i9=;KKcLk1j6=~U z$`XDr`7d!;#x=63Ji(IK?%eo#mt)2H>)j0s2L)MC0bgpn`r&P>enJx(lrSzfXy_(q zaBEjE`77u#ROl1@F0A5)tivg5aWWou;F6+3bdoN>8q=V@m9Sd4KnszXS4*!AP~N;% zu5PP@LZAb4`1w|0+qi0|z(*l28}Lts5za+;L3Y9p_}Y2Sw1lX5Ui?AnWx&n(Bkpg^(Kd1@6PW1AEO;gi%kNU?DI zvs~ovvyc zf?MVtf>D?LqBxN4NuPL(if=9()f)MrS3SXAwzqE1)o0b~h;H}BapM*J`K})n2GVh0 zg|zx4aWHq0GQQtV!qoVn_JUFUqMWy4dE8DjL1!KF#s=we8iRBwwMq1Rwi zv#87Cpi~fT+2tBDZ(xZDq$5jw=EmipT(j{gn@_PC_Q02G9j?2&ws(c0D#3GdUUY?a zH^ZQWK9=SY9b<}uL$eNETq!HNe)nVAsNAP#;DPw)S{0SB9gzys;sM{MEW7VEtdJ98 zs=EU%-*kp*@UD+$8tvFgoU?{C$gr+BqppY*vtEZi*STX29wE(!kPf$MNQIbvLsR*G#1)ja%%GT(BGIVCw)Yt0!>?fVGBOXfAAC0F9V}nbvTxk3p zff&jvw*}CU(nAK7bfWkABCB@ODU@?M&wM7sVt{AUWXg3hx!o&q<06+pstx?GRnMGuko) zBHCCPH*b@Dh@#tCUl`YV&-ff`#YuLCW`;Oq&#`5?OCFH0KP!r@H9o1p$?EbeDNEI| z7Z%0^*{l+($vw?3TCx)eTSUZD9F3y&^G01@qj|7=)*hg{(^X5n48Z2e#^vb>@SLfX zLyhAOiWqBdRX#1Aj?kDSzX*-66$30uxY+WEY7e%{;d%o}V(8qX<$L+Sgu~JMXZiZ? z-+qAq2VUfZ)ALD|(5Rq8JyaG8o>CJ-ubSlZG0Um2@G=^d(mmH56p`-Wy|->9z~(`d zx2}rg+d54S+QI0Sf@mGIzaZeSIE%c6Ydb+kYTUub3`{9^o_#8pbCLwRE7b99sG+$l zx@ts&B{WklC5MfjJr6Cp13hYt>d>~Ya)mi)7{Fy>l))QtvuO@We|#&$=XF=EU@N=h z%J$~vsY=n=!v4;>`LauPa7mt6U-mGWSTTHr$bE!_%h47Y;&8pYBs~u#1fF+j2Qb>V zio>@32V0hd zc!Wtpm?pkp4h)4#8+lcVW3{AEjW&vwDa@VZJ?S4jIAf*C0yy%p(0}*-C4spAk{7v( z0*Cj1p*P77KE^t}PA*uGHN#*BxD~}P%1u9ROQ46Ja({iUyFd?_4I{}ZDL!#W6Y>_@ zBbZfPixz5$0wfNA;ytTIl|1>Ga|wgn7Q)+=9i*Q&ZH-IBT{v6WAi3dI3}3uNH(?Xw(W?` z-m|GTezW1JLW8y+G3El<;?WgIhiT>+)7tSPLtGDb>DNFMmjrWft^&Qeo>UXoPS@_W zaCdJ#e6?*f1LQvR9MEJnk+L+QXte>9{$=2#(ZGBk=1W*;D40}Oo~f;DTK;J*c(0SA z`z0~b161zosqI~yP%T%AX?ZFFJZRk<4pYfcYZTOZ&ljSp;{JTc%UvVxtBH3xQ*Ux) zJ~*|mCubR{nX&w-_K8Y@m4csO2q64iIhXe?gs$6dX&_&C0l?X*oWSUgKkJoll2 zTX)Y*43V8oJ5zkS;Ox_&BKt%s|< z=d687js=w5F}YC|Q2KQBKvPyetPBZPIqL>?urRxIN#1T*vY(XWiIs99rRUmJFef+) z1>6DE_Gf@)kkgaR)kc1)m0{2WuH%gdq0VhPYmHGgzz41^)Ptx>*kaw-Rj5yGTZ{yT zKuUQVwaQs=K0+0;!A|jcN3$f5z0e`4JJP3=`!DwiZE1p<6y@Q5xk}=aT2n1U#=r=T z4Pj_GxL+|z(%Fk0n2^l1vvMC5Bhk;203{#BNQGQz?D7X-UK++HD@Z67J!&M9sYPS` z6eFEdW3YAh?eOQhru?%%Bd+nYvYCGO{#oD!VaY$?*Zt(1AM^Kp`u^FU{vpVR&)+^p zlKQ>y{%h<$2`Io-jq=u$9jPjw2E>6WqpbdsCBK}nx6A3H)-?3`Y3U6&7}{znnNVKZ zaxXGuaOTOQn^03YAET^(e?c({h_~_RW?7c$v|b+aZo)6m&d-Hn^()+BfIuB7wxl{5 ztYwexd|G1U%h;(x)SB)*J0s+ZLAtfPwR1SF{E=sr$18U}+C>&J0@LkD3V!CY>KlBT zoE-s7VczKI^KcWR)mSCknMirWLBW7CB9PfVz)gzeHn5KE5=B_SWDnr-#5?&5z(rYJ zH^{jLa3s+vy+RKXDcim8tQ;5VTO0uhqrr-!QeezNWk4jEc}qm)%Rw(KJ;U>v|Cppo_91JA=Vu@p z+rZm%!U+lq9oz3uoM@84_>>nSRGf~$Xj~El304RUDnboII*Sy*9AV7C2`=&Y)lT?! z1yX*?A}Nk_hj$a{0>M)#rzJUKh>T#%*f02V-{AjtqkoMpt7qw-{!4ilsvg#@bxVOi z!lhR~=rb?QJVtE9it84Nb*c`~W9fL1Y>*#v80ZG?CWX{WjRmK7dsdFM)q>%MlH7Kw z3gQ@UUGb6|?~bUVwsoo?CopTwWkV@Zz+0l}KFE%JdXEtW;zIEs2}RvZ(6Z!< z*8)^N2Op0}6?+D0inFb)8I~Cko>S&9g?!}(vj5)kzSSf z&+>1!TXDM|+=Z)bz5NAFK32T{So2+c%+W!kKte>Dmg7lWx;)ys zt1q1oQ2<1;epol?kl=RSd*>La-jDTLHM8&uZwpwB6HO-w8=g0ZMj)M~h6a8Ffm4`( z>;&&2C5WChoD)*>6{3nHr&fSu9FC7OJP5~=gkQK^9(+;KU8j2J_lBXa0m88yE{$i^ z^J!F=16e>1>kA_d0!d*>au*>iEvYhXZJN{{G2rz**f23aRG}Sr4;k??ZHxCxZsZ(w znyr44UH&XMYPE8T-{EMZS9F=_U3cBD|u#s5xPB*W*a3#w6ylYF( zScj|Q7O;ehZy=&obNbux*M|V{Ztj1-IGS_+5?Vibwqq1p$qC+miA##l{KMPN zWih@&zEBc__Vkb-GM*kvv!c1*DmMpQdGJ4SEC2_;$!b2{uGpseBRfARpeV*qE*mnR zHZ)8Sz)5GkK;^42g_O(b>SI`EuEqieMIi6?S+s%WPT9K)Y5zf4QJXg$*URoUzi3$B z9FaAKo3rqPnpT{aEW5YNvR7TSTaqG)Ca}|iAgmz>@S*|! z0j}NukQ2VkGKlsw&^znYV!$yoSE=hUhj8rZb)p^VH7beEA`xa=`-;xlt91g%m%F(Fr@ zG+`PPgCY?wwp0)UC+1mdZFPABbjcp$v@UWspiEV#dK{13q#B~lnfx|;P`Jp?q4z?K z(a4^qhUe7mwqPpgM><9E8pHKeWvV9l5^_#YS~mGqcZGfVC?B&4o&^9oS0r_6_r8?A zU@T8^Y+dA)JUVL?#Zlt=v-Zpchwkamf&nq!Kg}LpnK^%WkORiQhIi{}|C2*8<;T6S zdELv3g)vcnn8Mjo<+~il_YRgq`C$TGz&x#8 zD6!h#RwKuKhH{P^{M_*v?K;xNj0q_&w_pw%^K(;(&)2e>c5zNFexd`k%(dImKPhM4ZTOxJ>e zx$2NE87z|b_f*%~TOhpZo~UdgE8Y{Jo9f`$-j(&#S}))_RV&0MC2CpUK#uRo&Wwso zBcaYxXJ4W#q1I`F*!H1>Yu<--T~b8U021G#f@A7GKdW*QR8WEZhR{oA} z^CNK=sG=ysC+XtOJx357!~^bxBHSmy5y@)8@!OpCmeSx4BuGac{0(e-bRsCQg~1lu zl(r4434NKd>`Sos(%}@}c}Sye4}i7YGal5C^(_oX4B#5KAXT$IU#6?7#ui27o+O90 z4unL5Ilb0Y*g;Rv96(mvhrpcMO`gF-Y$wX1XdkYty{|u~q0*H}95u=!0x9NbtZg~N zxp$x+*%5g#OxoU1R*^k%lmi8pg1$QdUPjUu`*4%eT+Rh(?>TL0UDc=!(i{013KrZH z@zJx-*N5kv_wadnN~kDjt3e9pMA(YlVdFd~ot{T6(woMLZD?*IqyZ_Fk$sJiSu_zh zNxA$)@8sV`0tVzdaD%uLwc&SxpppE{KfiqsR$Z?cpUcg(jN=Ia zrg?AVw!C%bbj_{9^8~d**(#g*(vz_JU|@bo9%5R0_@T1imc={DYN^9n*CNT3mH4|F zd8>WLO!vUt!CN1a^uF?`0O_!`q(`fQuly0LnK498{aJzptZWvy15nx&<`r7j6FZ%d z#UNv#jqM`$k)q9+Tq&mqxg0ucwp|L^9jjY8X6A&MTs}R~qFbK1FP8DqsP1ibjGdHq zy&MANgczP-wyuT>aoxRLr%Wfi_EtRL(Nf~IqgUn`J8fhUBEZqQ+vSkX6bfZf`1HS5 z5&%bDk78oc!!IT|vJz2hb1_hG9BCBQBjOSngF!E8I5)YkJNb;0RFq~9EaB@01_tg+ z(;W0GVGaykO3M<$N@E@yon7Fo5vdEWLcvm5VCQ1tF3i*~X=g+Vyzq;{mM_77he=@83KO}*1h2q0;jx*HE!=jD+SlAo zuVqDG{&_^N)nKi3MX?WTN*ypXjqyAvHU!C~+X?zvvN+j3l;6-%Pw#6M@xNzG`6`&r zE-Xb2o%)=7lnHYv3{WIp_y+9k4$XNg3nB2@IlZk@JD~`)d;sPF1eqOj`E62>p+He~ zWcJp_%j#9LIt0?G#fZ|8$^@(Y7w`|Pc`+joUbxDu2mf$XUImEz3&w36-1Ua3T+$ht z?a2BZ-N#+x!<_I^bVnv&jMmWvc-X)tmCCQtiwqnOJB8U{54esWQshMoevp2*wUq3Y$`zeasGVu_I z9HT7=mk=^DYN=S%z*W&FJM3o<3@X$LCleRPA+0(B)8KU|WKqL7kxd&PX+>=2R*bm` zQS4=8Q$$G$lXjZ|PSWX70cMaG?C(^Zk>En@>gNQ{y2_48iJY*r+%Qh$oU01w zexj+z%*G{3)!V_&QcG3pd#H1vQ?8@W8xSfl9}RP*$~u#|F9!7r4ol=FZt9%CGYno*%sSN+OJ0>dQZrB{*tn*L z9YVf!r~30#ilRGtN6lW};MTZqPnx(llaiO5R$Pa>Y`@*LxND3FZ2Do2bAT71Rp*o+ zml>^9Sz&dW@V!`RZK(wW&)e`I3ENCdepHYYd&1dDkyWjVIiUkO@=StMTwoLbDqFCF zS&_W}UqGP0;j#yzKl2gbAXm1misj<;;fwblynp%O$M4^l-1v+4pS=I!!;i!Jm+#*_ zX>a=NOCEH8kgswvS$}Z6&d1=#sq{^q-yW);Q?r-zkXj<_vr5P|$*VX#1c20XO$mD# z5ZkN2yJoM^_A~rsV*`o(Is9Wu-i9p)&0@l3Oeu)Y`}Py54m|3cEPZV@Ug5 zv3FhJ1ZN~}F{47>L0P@*U1?WK z(wd{|Ex5?Q7JLu}5U3pyouf56he0a>w5xYcqI=Te<)t=P+u3LXBKYYsOL#N@jL(V9 z=q9}6uRbG{tOKnV&e)z49WxZ=RZu}T2`hBCl;MK~`h|>j0!>L0*OSs6@z-{!yXEBm zzC?scO-gplYW;;tf-{4Je?*S4qt>LNQq)LLwF`=_Lu6oJQ@O?|1Am&>c;YDw96DiS zDIGlT<>j<6E9fkqRyae<_1T`N)qs-vwp9C%80=qJ^NsWKuZ@E!9~ojkd;22%&-uYW zOTJ|2nI{r!Ij21bdAiKt17@c1h#^}0rr6_$lD;wef-WTmI!%VaLPKTA7SaZWDzOIx7Ap@z)l zXZe&!A+fe8YeaZ zh?guFfnmwiyB%Xm+0Z{cOzAN7e)$+R0M%dDnu0WLT-H;n6mnJOX^5>ByznPIB6*jR zNO}GxDPAs#8aW{_F-Q+`y(R@-1jyBqi-~5ckMg%gDI;AOK}*U^d9o_5y&Y z)d8#HD4*q6rC{tP)gDF>tb#Tglu;5$(^Mk~Wl?7ZZ;N6O!J%_w72897Qo+uC2}5OO zKG;tSC5W4Id%1>N56U%1I)*D!g&O}#n4}tI0VB|L*CkHOfPCrBVD_8vo|}>nBnDDb ztLTn5Umw{L)oPMQ>a{FI&2!ojhzv51zBT{=k@#FWF(sqqbaM;CCZXweV;>@?4j$3u zG>J@KKyYW%FsW<2g87ttOZy72NSs3^8FRl!Pu9UJQD24mz>`+4BTTX(I1Vh)w6FYQ zCr}7oq#N{Isj3ehys7F{f1(6gEJp3j%Qk74?<|FEGXNqEd}4V$ zpNz3Sdw+FkRMAn1dbZ0qtyi?oP=uP)0GPtJnB+O=7u|a^;EDBw`m}hIDSOiHEKW)T z7Y$PFsOdTDonh`ZEph%ewU#8omDR*P#84D))Y5EI zH8!Yq@P`G5Z$h@nvx{@s9wz|yyj2&j-lwZQGi`w00v2^Lm>L`-!gE!V!~B`PZTssiSZ748eUW=+vftf~mR8&3FPOk=xVuAsK$zXWSLu+fR!M|M1?ieH33&-)z@ ze;eL@aGW)Kqk#H&zVQG^$7lKS&OOW`JcdtlgBH~6ygGJyWj6D}YUs^!)}V!G`fyAz zozV)hzg2@p3ltELv=T$DjTl3bYg?c7bdV2S_dLi~9Zbmy=AF;WB6bWSP(Jw@BCpQ% zPVnL8ME|ZJz^T3<%3M3Cr`ISa&rL#1I*6SwAe$R`Tcu$nxuVQHnu$8i$4gd~zXCcsyKJQ@_76%9n8V6~|;2FBHPm7R&7 zM;6V9!Mz)h$4)yh5(Fu>0;dm8Kf=uE!4jq#LxGC>@s?h+sBOtdmDDTE-Rvcp{NSff zs^kxC7<}Xnf?`fp8uFTyWl1Oo#_k$6q6skUIc4n(slOf)5r z{_Q2eS`|qq#I%4{M6);!%Bb1cTgebW`x{boOj(uD)OV*wvX`?bea#r|CT847tPBq} zX)y3vR|ynF%}s|^j7urdHb~(DbDXHS9IEkDtA~9KFp_wq4ZnHLhxFx6p}*Rpht)F$ zU@B{uV10u3YS%BE%~U;*GljXMb_*Mjt%O~Jy}&|h>nLOwGmOrJBkbT;TTALiw4__c zssV&OTFGf}!XNu20xcZLFRZ2d>HBBl{SRQj{wkPoYntc4PQ_E|gpT~JP4%ls_x;=? z>CG3HWR^o%CDeY1DYPCn{JyS_gQu|U*iK!`*i#2@cc+B4f2JG5wuP0O0(Bsy#L z<9f8K0*C-pC8eNo#00Qp;M}@0!wjD)$x~e_z0)n~O;xw*d9sc3ZuUW`GA`~^ z9~6*#cuCt*px*KUFV_Q{2E>%5EM1lrW()x+$SqAF9zVLv(G~R991^nqde=cX%{ETg zatPiv*3|9%#JogGDYcN>zmPTnMkfGGOg4HbF|FE{oeYn8R#x-~DuHFG`3xuHIst=h zKtbwvG?PZ&QmA+=Z`3S<40aX$WFdm?2Lveq7B1!mKt#toF;Ad+5oxR*Jq7k~ftEd! zlC20q)atoz!GaT+YFq73g|NlNJtnG(wS9b%yFwC^vfNEDE}{&eDC3|0UY~rOWPO=n zgskI*hFW8%Zs>mM-J#fVi?8${Ue%>)qYuf0cW^_8@McLvH>8h1>|6E^Wl4cDkbTy$ z`Pg(rGt2JFdeCphAp&eR-5xVVn$gx3b)2AugU0oCr&;bOTd^b4(I`*qNRc#+$^VRbn43=K!^9N43HJ_BOVvxmG6;h>+Y!!jP* zUD9k<>Q+Yx#wA|D745|}dp9`?9@)6hsg^iHJdp-k3d2^i*=YvT=H{Zymlrk=M)~&3 zNFf*Y{e zsIfFAcdt`@H#sQ>9L!iA%&_6Da+$bLRExY=cqL~Gz{sGL<8r*mj|2}jqfQ|8J7K6| zZ6PNn`+)L#&paMqRFi$XoYV|5_!wVpaHEIi2Fmgz)Za*j|B~dkc2Bu;aipHC~p|_By-uCsC9PqTVQ`?ftqhFo5WgFY8 zTH}X^gII3LE9=Z!xtf(MvqMuGXDCitHNj5(IU{uJe3c(+ew^X7`w!nt z_VtHvhEx7rV#@m;t!-cv*VA(c=ho5!0?!{(76L9L_m0!mj5{?wk5~qFc>p4D{Kv;EZIn z-ANH`5B3~K2lx#s(R^o6`_hpWy&94YY)bbX+N?X>#^6WE=|VyhsXbwP92XTsW$V0e zXnQGNXuzWzw8tkhf?m*|(J_qcukOtgZfkzlTx%pNanG*@v>*$7>@F))Xr&%OVD^Bl zka!G?L_%}03|H&UPHC1pxv=sXUDPM&tQV-MXTnm|B_bm(dN}d-wo_SGn8SnJ%6t$V zQoAqe-=MZZMWw^tg`sv;lpE9RdWwk!WwX!dCf`4T5_T(z2|x{&=|nbN_W>;CKpzJ; zxev-qMdCoEPjZwc9Sz2nu8-2t=#I0KD3K7FV(X9`hgnIandrfxAdZ^GvvC-ec5ky& zIdj$81en9ggb>sYE?|!(@ST>mtPeTWAPm=c0~O)c zC47=EKH1~r7V6PlvsXZy=ACKCCFk|PUllPK*m^EeNrIJw5hcePSQ~2&5C)GHkkOk6 zMVvt);e+rrN$KgurxWX?1OIrkf??7m0j;*cM584r) zl`}Z1>se)8nnq&s&T2u)MH~ipvzG$e?hMW<3KkJ6Nw7%7RgkG$JXFY+;?uT1P8Kiu zq}H2N25jyD=E~2dR6rB%kYo?x1JF=b1XGA2FoL+YzHLT=%VpU3| zYUC%~$v14((%XWFokDAXdZ@zdNxODfL9(Sz567pgP-_v{-BI!DEEDBa-n<~1E{fAa z2yGS~i5t4zah#z2y8Ad)g}Ee{#Ub+`{YiuIy?YNkvXC+c8Qm@#(kk;=Iu~B zse+d+oK?~8Nq$7CqK@JYkS(oq&1Pw;puPc616w^y_xcL2_KsrmiyTwX$yktjs1nAS z&7tyVF|Ix<-@xStKOrOwo~Ipb2o8pf(DZ05kYLGypFptA+$o_uZj3pydnRQ_Kh=Cj z^?`tn?pn4pTF_+c+Qbot(CU9V(!4^>m|ny^l|e?#sYo;!!CGe50RWkXxUwcF*uW>G zXd09tm2N1e#s*CY_)qw)%M>ZjEegA@hn>Y(tBFn3$GxVR_h7&YXqQL?M|*L*NSL?k zXkB;LoB-%^(0qeJ36PB3c02NNzQM^vS6o(O)d5r^cj>ZY?m|gG$QY}j0{!7AM|uW6 zu5}wN3>u+3+5p%Efg+4w2hKSmePGdQEW9sml!X$mTw_BY)MQFF_97dLQN2k$MZRO3VF~WgfkE{u-aFP$uyRg1ZR4t%o4)y)_AHV-7eE8nmzr6ii3Xsp<|M20{_fOxxlu!KOPyhA9 z=kGs$`xMW-fAQh_Z@+%~^@s1tkNvqmV?3_t?FlRrTYGde}ZM}KfV9(^x+?9 z82$u`wLQHcrM83vqMO@emaCa1A0X~s4Qctje(kNjt2C97rocwp@~&j}UfwRkf>yLK zUIIjvJcGgL67HfatC>M|lf~DyE7}0iGl~w6urBXf1B}R-=0X!h$XC7OnMUlE4~E`pp`eP+QMeiR43IPiF^VsTNY{00L=Yg1reTm)t(~UT&Bx>(zCK z#cpS#lGAm%j6to6-88F%!uZzZOI(G=l6N>n`$o&9CDQ`9(J{hknMzz+-TXwo$a+6J zwZ>UJJRuKb8x+6>S+kHBM?Y-Aj4_iX2+;Dg9ex$)vdV(+EUFLFu7WR;6uBh#P%wmN z2_f|fjqQ%(9tBUA>bjA83*V6Z0Eg`Bt944Dl-4~gziHClw@JPCz+X|ArPl-3nw}El zR-M{jfY(4FYVmEos5_$j+NEq7LkMt$E0yvi<*r&v1-%hoRZ<9&-Q9%eAcc?$WYGib z<_CL(#oq!4O919zoAo#0KX_Ps`<^*MgRHh;AOZp7q{R=V52Y~b57ev( z&!D$o56?Iw#f=x;30Nq`-S6+*L%piQ!G2j&r~doY5Ph2)c?R(F5THS`H%zWg8K z%Q`W~mIqQ_H1ejs6wFaib!YI1ml#!pjD$mH9^jUU!rJ>EFW(LOA{C(iL&g@86~LRGrejW5f_1puCnbD|cEjf1KR;81y211?%k%|T+NNROYT6z`zVly5z9Zi=l{uvWBdP7|T5 zl1|O}fx89nPkt7t0{5LoM%`QpSWpInDg*K{gh1e8m>)}t>{eN*cG;GwBG^WGi*Arm zqkaW0DqWLvPHwKWW&NdA<6vG}?L9<>{a0&l?qQ2{%2LvMn=wgEte8z>R8 zW81V_ASK3{q)`E8I~f{P3G#udyc5x+WN9>7(xG}Rp!=6F~DDp zwmC74V>4G(IL9JCgLWlSWVC^N{#f<9l34;8fUIl*_1yN2@a|9ODOF)jq~+C2HjSE+ zNv_`Z&smN|Y84-D?0){I@U3qhdOU|=&riy;zjW8Ww?AglR!Kw~C9f{Tz1)?v5UJvV z>cPSdut%h*q0cou|+xBSAYK5-X9J`iM@$+6C@lz9Q8WP7c=tVsedf3+Z@J^LZS;muU zva>BR^~JlolI7WUgr3S*(QII^r!^D`YhxU&0XY}Oyo(}o$PfeSiZE|G#Rp?&zU$e>l{Owoa{b#2qn9z_^80p^kNZzDHT>`?+ zMX^$#TBy1GjUv+$l`T1xVrf7V0Tti@e*#HXJjp$&BIrKjfNDho-A&D{17TCRQ?Gzy z%rH6jgf_rzs}~ zZ3%4530HC{Sj~sBdwuohU%X}f!m~FMK#XK(av&Z+b3Nz;`B1I)yKTgg9cjJ9G%?9$Koj3QI1PL@{I#$e=C73ep4V*24qXh)YdWp^SFyOnSzcimqnB>Ug z2b4Nr?T}C{WWQoA4In7XfmJn9?6RUp+Ad*^*ux+e-S2TU%<3WMZv$9+AY50;yh@SDHUFdJD9=8Nk1!FFr8uT^S zie&Ldb_>PSvd)t71*+62s1T4txLH!rK$yBh3^6zz+F$se*QB>P14 zp^o4q7FC2hQfH8~(sD00oA+)7p7v%OnjQL`{eiHtBfV)to|sV#c^{S7wOc!V*EgBo zt+L1Q&Tz+e+IW}Hw_#CRdaCpSAK@y0$o5*l2Ptan#c^*^fJwA;I*@vGkA4@I4&2xL zr=p+U*?^85043UuWI@1q#_}%JLdUrV$@PC@&~7J`92XB@gW7PLXx%#EM^?7MT13{J zC7Y>{L8sh>#O~PSht5u~DSeoEEXua)pQsU_$PiOO?vQ680VM7u6>jL;jp_rz#G->( z{%8|4h&kHO3_3NGoly6uVh5R7=7|PeS@a>E+C~lil8Oq(t`W6Eq5GAK8{5fs z6XawMUjv1M`~aD%L-R91p_k1Y7W|i=J*&RU;(nAV?otjziM`vRV+%3uv-b6fMv%Ni znHsYi$go9HEAP9!cX`YHhU(uRdAR=i?Q4VMeE30l`)T&C{Hm}4{lN*1gn{l{*__*~ z1RyY7oERSJDZQZsWE&hhPqtw1=UzVBpG%P29$+`rlef6m8_T2(aNdT>NRrgTWC9St zHb`y>Y7Iqx=L8NH&s%h`b$kWC<<8GMYwZC1@2cBUyc6^%M@tQ-y0c`R*3?AGWxwJh zDPC5BW2=?p2rBI~%%?GJ=e~P6fQ?w4+D)1%Cn11(x((5-d|BlYQBX zjz8Q!ImezB%2c&5h1pqbHm}O^8KygR$>Ke`tn=ZP;IuODBYRj1vO@<2Gw}(&U3<&w z{)`ZA73T}|M3?kDrK}HU`mL%|D|JuK5~!RKrgFCR3EJpk+a?Uh zS0|5EfSI@%I~qGjdPFAIl_W}yv5Ms~8klwpBjlfLT23q#T(>Cf2b6<5>P_&avj<=% z4XnszBR7$_b{gvak3NR~uP;ymrMF+IjFQ>$sZVo)C?MuH!!uiv*$YB_WhQ;q#7%B^ z!$-WubB_W~{(j0Mg?M_%?J%v;4sTulNxS@nyqh~Ip&*zf?~d==XA$2&s$fEiUsg#? z=78d(oEi{b_Y-UmnQ}sn<_UdJlvouhW@vJ9kPW%BKrr6kt2nXJd?blCiq8aA>WzbM z^97q)(LK3zhs0VhbS^eV0llf#}HUgIjwe(Q&wS(CwA`?dTNQNaN{m!(V(m zuTP{m){@axy;a3`aw?OcEFx1VeY?IXc4|Rx@<}5LP}6O2(&*F^R*}JOBk0bM$5wsBLvqw@nDvo^Ij8|MC7) zUH9^ao~}1}Z4ZZQUnQ-*owAGIKIH6lE#_U_nB9m<&!8L6NE_|*isf3+GY;$NvRE;u z>a{tMCi-iE67}^XO+(->;>}FZlTTh&z%HnYgI?a@Y@9~PvD#CsvNn6yc9OMjl8a-s z$-yPWbI^NGm`*QnBB%CRCeSvPpPC)q`#3ehjCaJo;mjVF%>Z7s=di?Mf zwqs03P#8VJ8vUS}2raRJrUDYT9Gt z-LT_tp;p!0(wcx)=f(~xj1v1Edpp;oQ2PV_pz2<24`-@dh;ELB)j7htBKQ9;lS=dz zejN%-)tdFgvfY>cW0BH!+R!Xd6;j^Dv|;QsW#pXOtP+FN>a}x?EDTR9OIFc8c$4Sd z_kt5LouuGw?EF3WE^E?v=)YqCy<_gl87D;iWi?G_$xo;~hrS>{QBoplktsXf3h4@T zd{^6*P4#pPdT)H6Dz}+AK~dMY-~koW8~LfF)elYKhkH?VVW><1v_Hkky)hw?gXK%f zszC=i`Mb;x<0s(&{xk&|dc^*Q9e1N!4^=i8%`W#2m+j~FO%wnP3~g} z#PH~DR0+%9@ysfr>#Wx$E8Z`jLr9R7-N|U7bXk{ao4YVkcLJu;eYg6fo@ny4d3KVZ zsi^$kGJ~BKJ^$`bU0DcTo?zr@du^(K5y+Vh1_+*vjBFEk;pxEeE2n!ylr!o^_A)SA zfbvu}VwI&xG_LF*Nfe+|(pBuB+(tr?01s%^=?^u?O-sR=;T!#e5 zE3Z*D5@>!O-havI($9~oSU-FJv3>jzjp{!;e)dy7`)PUh z%lDs!48eHqsH^x$)kn$UJ{NKvV5fH4Z5{Z@w&=Gk7Rqtb1!`}xa;=M4@AGMWD$r@| zD20l4=K%z!sy#EcFQ(p;o)rob2TAbab_YMrR)@0~6ET`VJG0Sx`IXY&+X@9GyDz9V zkfhbUOM@d@u){6a%GKnDBM2tYTb(bZCkhEF$!bT5)T1^_uD0i&=<3}Fsn~qzGE6|Y zTLl7F88zBiXTXSDd|&Z74~20SInK7z($tm4V+&tQ#*gBs(x*pg7OT5c7YYLW9*D`8 zIC92x(@o~bDco+19>7fzvviFPZ389=^IQNfZTGJ{JTGa+kgHpL8ql_Z=GH0@plvZI zHG?{BJNb@iS-jzE$nfL`Jv`9KPmxFA<&=s5m=dQ7UaNt#cGLBTVzarRkt|!&;seTL zigRisjbQ+YtP34F>g}!-+^HVc&>DZR#tO+-%7fo7&OkYWgCrq&b?M+hDrzVdDNRF50Lb$S24bZ~owru{HW9_)TzKtfv_Spn1^ z5852D*G@*P552co&k%)!8^K3HS6^B?{a;C*GnDAB(MA8)@cz~5?MLD52d4*8DA}jh za_BS};PeWaV`fRna(5^PC~=c&TrE^{+~9SvIEQtGxHf0PIJoagKC;8R?h-!NOE$~i z@<__Xe>(@r$gg$?=14`16&9uW>Lz7lA_t{7J*^oS!CIz4$Y>EdfXpab92H>F_7|hT z3yXUz&QibBlXl%;4c==u@}$GIeBW*9)NI#8I`V||J?Vu=&dY2ufeuyo{&dgnzS$UnjRGm5x4g-+h9AW5p%@Aw0@GR5-KXo4dtJZFv2z@tv2aoszwTps@YILcHP|b#Ly^zb z2x5B`tSIZ?8D$j!wLwAslKwjoBl0p`{}L0*?8{*jt zk5Q#EI8`7GkOhZiMH9w-LC$uzOzo>#0KO%C(?kF)WrpKg0)@83`B6)RTCGEq2r0Ze zr9&AGHk!Ts@r!&&M}G)|uS1DYwc~2vdrvylW0e959>tRL^d!fhsCylYl~Pl59Kzox z-ln={^D8Mv4?mr0gu?H!f-iel2iA#`e1{e*RtnR>JGVJDmV(%ICK@ zwHaPo^ZGF?RbGWHr9)(CFFn)DwKOP%c8RLZ2w#%DX4EIo6UalpqqYvbpFJjM}h`pBM&dw6sc>m7W~wlLnX>f467vjE0WsD=a~uNb3=&KwT{bB5pLI*fEZ^Q z>}20WXQKwP`rc9(xDl$5x0NbxMSfgCBF-MCOCX!F&_7NVH%+2k06 z25YR)I;|%)r8rO0_&&pIAH2>SV;L*V3`uV-(0%4lF5_Un{&wI+e)h}o_I+SqetqCx zUYNljQSvbhdbz`Et`+a-&G~Zgaql;cxp1)br-C;RcNLqglVV(+Dm044I)!r=Xy98b zj`F|mBbE^zo2Fbo6q1Udu`7u|UX+REDJk1J2e<&9q8t=RdHmK%WvHOmWn)s5ORLYz z*S5k)in6>-3-7R2y^F%I*KV_mJ#x6W(;@z_ro=CKjT=C3;bH%RD(+C?PVPWX0d;Rj zWava>Nz5^oG$vCT|A>9v+urDqzAZFPz`e(Dof>zWG7v zY7C_nq_E)zMsB38-qM9fYx4;8|0;^GBSa2~idPX)fs_51lMBF8=K9N}9^T*!@>|b5{Ak<%} zlIGsYF9TXxD?qZ4x(!Ri74uGQbgnt=pA-c2;GycoGV$2;RG6kfW7*w|;8?<EY0Rk9&<9c7tT@2Jxl#5}{Fb>Kqi;`sw>WzJ2};irL4? zUEh@AHmQ!^{I}ThJ}~{+`)?4Ce)|50_pkJCy@uQ62^0cJJdd_({jBR6BrU4e!A0AB zze`s}+#)c&$LxN4N~-CO?TA!rD%-uYG11!*TCKgp%fnJS9TXf9@<)M7!3K-LKmx}h z(A@@K{G(O0iOB+T2*~EWO_3LskfaTO{2rK=n0VgNo)(McLliaUu`Lx~wM|8m#($&` zgM#sZ+PuKpP;PnZ9iHB)x&eD`Ddk`MB+Ip>7azvM?l3W)W)YUu`1ii zVg~%^B_o(Po7O3-|rP~61jnHg(FSPN>im%|pQ7ZtXnceXGsaYTEj&r;?qD|YmbW34I}!;#|Z zJ4c8Xf^-vW?n%KRl=N;L3j%JEo^lK)`npmn`uI}&nrpDZ1js{)ig1P!0FS#X>N zvmn|C$RB;F0scEQeeKb7ELEWJvJoIKN7we9q@L}C+&BJ3TeJER8V z&NGe!koyvSGWWJONxQ^e^sU}TV1wSNF9=Q4r^k?Kz?N3cW;&lM-m*<^WvYIA=sHr_ zR~nNr_(~_#$l)#<#s8uKH_~0bB)Bace(B?_m!^!aas(V zTjC3pLV&ZxQoWYah^0tF0UpT4@Mt&Dg@X$f!t(1t7HEMR=}_&fxZi+oF;XrVEQ$V$ zeLanz>#NDQ|ws2*4Qo&=K9b2V4FuG^&p;uXggUD{M*uPrm? z43IMn4{dg$I?Oqe<^8Xs-RO~iHF%HQHtUSF&m36#jFTJY=7JU`;YVew^Ual$jCxV5 z5F??(Cu=RtsbUH*8Q!GSo0YZb72%TODk9B4GGeWR!Yw~+5?1-% znyx;>T~%9{bY^faPsV84!@ArWblvyU8(!LN2f+BU$Qv+9N_ufA;U%GTbf4uV!PPF7 zPTj>5U{15!T;g563qzShgDy;k$=iBn`XWirhSdz6>wT+=UIxU~&G5IIp2 zrR-YmN|+vYZH}um^K*m^B_!HdiN?B8{R;H6tCb)9^a}d{0s|ez*zGy%=>sV!>n94H z#xl?i&fX)7%2AqWYa->7ld5b!q57!JUc)GbI2$yqCg&VpOq=8dZm0Mlqth~>ghWzb zwd{j(a3mNGzJ4iTxDI^deDZb}^Tf35!y{)Fooz1DegFsX2Rs45Z7R5F4zgiTBvyKv zCk8X9`dE{AFuJqy)=iQLeeQLKYS&$_x>&1E2Qk}jXp~zZJxCl2-;)37Q?ID=E%LqM zCdzN|IoLn^3>+B&I?Br6q3UI5`Jm*yT)F3}w-N4bk~v?<5~B;H)@SaED|g$h3M7EH zPN!B-tz2qOov7TfsiL5&lo-kfC;yqO>4ScY9q(-SkRNo4ES0(sbZfGw8|ZSOx3ZJp zgjl!<<

p;h0vKEhXpGSKyBfF!Kn-^P=N`qf5vJGtRJ1m9`#4=&3@0#4<>R*h$5k zg?q)E2Mhj#W^9Y=C$(Eqs4JpIZV|)rZmudafuADfm36Em+8SGdspV5#+(kxWY3o|@ z2UP{l_e)+uXMazu@hE9AwHii7d+dt(e&e!2z`VBkdy}{EKMXGREpXB2SAizdHZk6tcJ?x&S z0<8>eeA$V(0P)oMfxu5SQPWjYvt`w zrcfPgiznrW!p&3_BrPNp$XK@%U{ zEw1d-T~Y9%nzquwNQ&nNWhCWM5y5=0kLu=2#*1^ zEnl{BR{+PE2h481Q=o+CpIDxkTps|S*|`9ce0Nc6dij$UW12vkj>?1CjVHCmzdORq zNuBIZ`Pnakko)09_h8@8{|)B{`M)`KNLYQM2~mQY4~AhEcU>aiw;U~~;A5_FS)X#^ z75EA9cn=R?*N&y5XxJ`GDbVSM9q+f6dxI6x%NN_Kn1_ntR4^b8H|^a^@mU>4Pqny< zD7RyoqUx^GYeAw2)-{CUXQL{Pe|umu37=K$4NT?MV=_6LQmH*a)qQMSfUK7ji#y!v zg3SJ#FB3_x;HiSyaZK4I4Bc!VIi^R5Popnm>UtTrdmlBB)Dx{`r88*cUhfljCM~DK z-C=5=PPQ$_C_b+Q)R>~fx2aO>5Afv_MO9iVL9_!$GB>%QFRenfZ1J=#;mVFnqUL;Q z!(*3F)2cQPrR{XB)UKC$IUJ=CJdQ129o5^Lp@e#9(jzFg!~%;P5tg>smW29i+7GU1 zQXLQ0A*rEBeS0!)?33HdA7CW_Wxbz>D)*%h)G&_W2POHY0H45uNIW)8C53tmZCvee z%YiOAe8EIHe~3CaRth4|y2^)4{s<5Nr`T<(AF*Oz#;4>KZFro28Ej&45{3B(dPV)3 zLye!j{SxEfpS=A&1X6#ffSFIf{(r*T-{*s^Tjvu_M!Eng!kOXn*x`x7;41eL?H-51 zt2ecdhRab~0R)Tmn$IRWhExH{0z*k9JK9mlcAEN1s4M9}wI+Ej!_-eTAD7`E)!egN zy*AufRToDGF12Vmoy_5v2=~?!G+2cTceGLmvLc5V8I%O?#~ zn5fuldZxp~B4`E>*BoQ8%)F=@g3W37knWRu+Fh*;fZQ21kF{IZ&zFzWq6&ysjP!*< zeCvi3oKfFE4@$8e_xAO*%|_tH&=$xVk|0%kO7^M;P$dL`c$+x~`lCHY!g zNhbqR+SOVDY{nQR2ww|UlVoigb3tAOewdnhf7cmr3bZx!Bmj5BZxTV z6H@8Q-{LA7K8lhr68kEt>tNz6=Wvo#k6R1&+DE`IrP6~(qyKZL^Ru!Y9a=Gwpnzd> zIJ^P}fw@cBro*{OA=Z~dZb(dP8;S%L>JaYvT7KS6CZ2R+rWeW+yJGD_C~Mt-O~btq zK=3^?V6^{HbvpaII1KjD;!~xN8nzr(eB6=QB&u}sPHDUfxrdFmD?4a-#*ANf7xb|^ zD||$?m5ML*hs$#{vHO?8&`Lx!NSF%SZ^);8%=wgQcgWwZd#-ME6o5`N^YH1mFm2Ku zTS$nMFE6pTI|g?U3AZT&nmL1^OzV2K3zu&gTL28=>A#}OT%utCx@DqP;xoWPRBr;% zzdMLR1upB*T9tV^i87V5p0%;;OPem~UG zkgEqWs#+-VwK;YA@JK-!$PW2YyXpkSel{>v(35@GqYA{4+LWcSu_&2%(DR2QLIq3ACwl<^jx6Zzq>lv?uHv-$n-BPouF&-nEHkKygh%M(K=JDyJnTpR+LS=6HJ_u~Ap znV`P0rNf{pC{NM=grVa|#LTcdI3)3e~7h^+xHTJT`%AmYK3gmLF6r($|a17M63sY+82c)F(nj6M$6C?VoZrOdl!gLnQ-Bxr^&0wgZ-| z`^LBi<+kTVwZ!BTKiSnnY*w1geUmGoj%MW7$ghhUe*1ZTIN20pg+88?M_tM-p4|Hj6~1xe z{Z`hE2fOE5Rjo-+{j>1re=c?N`=8!__x@GL7cdd{!P`#*elg9{SBy@Xm4V=MZI8zc zaQ@(<_&kkSt;c&PUke_y8S#n5xFI^%!$eWq04r7iNv-Jm1QIcjx^w25WM_h)C8e@m0(D5O*%+u>MPXNohXoj3qsmZ7SRV5r3Dnj+y zlY+i&Jw#_zJGy(3w{w@1-$_xL96kLOiQB zosuQqTjZo6yDRy5uZ>h5OmTa3qY3o z$fOvsW4CehQ!9wns-G*sKRj;B zu?7Poo}_>hcY#?FUt?ig>?s_I*HCWju-w^vKD`-R9n+~2^?DhGfv_Dc1$>kM;sriD zCSS!cOQV5(*6xCC613#D8(4k-)+HbM-0)!yG%>c6FhV7U2R11bjgg%C(LU?9;q7Lqc00jVa|^HSP{hJI5s-%B%K>dUzB#tIz+AiCUqJ~6m~8Ev z57IU`3X?B^KE@G+K$xgtL4JHlh-W!O?zJ$8#wx-#5=VBm1>@3Q!*#kK5c!y@pYR>Y zS-MaCehjM;it%={X*FMbK7p(ExPZ?{dt`+o002IV#)BuT?wDIepi-45|&V^1MO=IA5a@RkaonDs3qZb3%)> zptlDEdTog7y|n;QNn0J;#T)x7b#h<}aIH}S45dU1E5R#*XCOBPl@OMj z>nfY<3YDp%CNq2lJQXUim@t{Fr$5p?a16JGST``zEn4jb%%v*%G45Qds98+r){^4t z=rUOB_hGORN8Vhc?uY!uMDI99GdFwfI?Vg^y2HzB<49f76EZCj%rJ%=KqRdoH<8e4 zlaAcMtCdm*(2z+5`{k~$HF8Xr20JJdX9H1bM5S_NUwH!_`eSNVI3H^%cO=?2p_>{u z=BTfr6cH#{rF(TrSah<$-#W(c0139 zD3%WHg!3rIOarw?;KWT_iX)`a6&Y*Fr>a4GBGIqBWCb@@cX{S88MvH;?26_Z%NWkEzBuH~rApVWem+c+-2dRNMa%BG3=5Qf*WVgw7hHd zOr$HJdR}qJx+MZY(yN{eScwq^=I|*2VO0|J2yOUd_FbTMyQn@rV>KYkQcBpLI5wT{ ze+qAwy)hX3m7J){hyO3U|5%@Ug;47!`@~!2HO;D)hG{(mRGU?_IjHi0 zZMdEQj^s<-a|MKm!!lDM)ViIDy(76q?CY|P63U3-``bGHG}O}iQ;C9ZkaeK-pN zPTGI-v9fs6wppK{xhi5sXK9cc;LR#bT(fA&(Rn>A*LT+)Fdt z+(%k+2D%E$-63y%+&5ey5Lu9dzY#5fpOOzL_M)mVLxNLQenN@a%c|~~d`}S|sjt7A zujd8Z{)LrDRy?uww^RrF;(Zo0GD3vBQ)>$fs778bLfyHtr#|F2bt3%I{;DQi5^Joq!GK$mX|T!-WjkSG3F3H*1^Xs}8y|FadeY&%`P9Qq6VRF7L5# zvFnzvjP6AE^bgrTBz+Txgon-J5Sc9xy0juleP&nEU=u)gm8z2$&b{TVN-8#lhY>S; z?;|;CGc-&b&hlK@uuB7^i0DH@N^&`d3V(N*Hf-yxbWq_yRusMa3P3T|XAMLtj0FHZ zDh5uv{Zh2%mA zELb>_uZ#TY454>xKnU2mYoOAdAV9osDfD0JWYb5G^JYv8 z%poh{a)3X0?yPRe>9_ zke4kpYlKLqFKljC1KF88RTi-a&D$R9P8@ggRn2%@@eU%{L`$f-upD7aL)YlPqjiR% za3PCc5@C%Pz7?=BTo1ao#KtBnUfBM| z1EBebsjuXu8%xV|%L0=Z%yGH-n^xKwH=}T$wj>u21o|>vQ||RXVrjglJCD|H$WQ9GD%S#p1y`i0H<)L zfLN=D3DF?yaal;5Gyr)%6g5(A2H+SHhImIL7{b>+g?j87`ai~gvOV0A5S z{+HDw=k}7cL%Z#}5Mgl${;q0fJ4*y@>JrEXJrA;;UIONmaQYVRb zUN2?u()#KdyaB~vYXyJ|3Jm?^gB|u|iL?dBKt>MoPKmtoIF);@NTuRKE6$@+Ogmn} z*q&gsukNy3Bv(KN$ese25!-Pd)oqhha?-{Ij)hE`xORtY>L>2sF8#QD5t-T_Ob6u& z6F__AkEgsyw@F)D?ix28DcVJcbs>;>`kPX|qp4BdqNy?CrmUxsFU!DYA%iO;+}bzI zJ2vK@K8DuX5Mq}|_9CsMJ)C`xrA13;FdyAED&Pxg+eI16!%R3;o_t;GM{PnR+Xh++ zg7KnSbCaEtS+b(^m1H$QhYhk#^jB-4*S8YuG=qv0SIBrwT+Pj~2$biOH(Qb9rPTD6 zeK!jDcJYKu!}dX9_$vpY(rL@jnkIHC7+<{FRcH)PFoZ{M2Ol4&SxZ1S{%Hkz%g?V% zP~D`^BUT-DhM`9fppMaEv-ey+x=Ta~EWt5lu0u^it_eJwEpc4&O<;7L57%h&KN8oo zN9E9#B{e*d>SJ}97y{NSdP8{RUjc>L|OTd#`H{ ze&r68d;4KALpvl(B{o9*`n#78U&8V5m-*RG-~agbBPtgCQ$CV%Gdl$aVHjFh2Tt0kv=SF`t~9+*L|5T3kkUlf$m-R10ERSy{sI;NqwH zjFd^MyK|RvwpWdvHb7PX6~@6Hx<-@+!}h*l{KYK)B%Y!MP(Gb+(>-uBpC0YW-l$K> zESePN)gQ2}UV`hxhZxd*cjnuJOS^&r#(c@cU7FM0zz>u@epBFQy4sUfUIM6W2vCmp z?pnwfpC}zo?10FR$xuLo9Jf{$_mLvjVk6 z7DS1`tO_HNK%Z*Y*^vtWkWq<)wtFQ3w({9-CZCF;>GB`L|Mee_jQZu<@AI$W?N_?i z|N1-s{J$aplK<9!{`%Wtu>k%WuYm>%^0iqD3hjxH%q;K0GSaRXJ7ij%*+VdFKWc3S zy)s-#P@v6AkT>MIgbHS>0hhy{4cj#J#MvXrNqAvC*0rfgSsaIFg*rU&7xqXCQtY=} zgn5fwI0OxygSAe+>0E)WBCkbGEpH#4sy^UfNa8eNLW`|?tvV*uoRst}uS%j|vA`GB zi}Zy!KREcP3=V0jklz}jD_PDe0L@{aw!5L$me#BH`J>`;8l{Mq-!7Ps#`LnuYqb&e zScZbbx(W!-t3#m%^?r5xhY=ol3^x#XsU%5qH_>AZLzlTRudpm_!-v|9DT8Vqah*^B zAbM=iZt7;_9QWs}@ce^>HmN8dAHcSQbom5k8Me%P7=h~APqHobE-x7Qrg!u$UoW!8 z!WoS8ybDb>6a3YvT%+7o0))U)3T${G_#S+B3q8n&DBJNscFWh(V@bWj$+@F{i_EAkb+Nz-bwN{uc)A-S~aO0yBjQo7XoTK6XB2|Y15j(Mr!aBjVFx2 zho6E%`qK|Tktpzgo9n{kHEibb245TaUrblrK3KHn=P?qS9{5#$aRaG`QW<8efiPQ< zuhzh{>l|7K`$?87MoGXPEF|u&P`6;tp3|5BQ=DvmqGbPAU_q zE+<=ZU7^`EOj#{w)EJ?S*vmmLDP?elokaK&&_n?!CEVzb$mvqGWF22SP+$wSqb|K% zEM{;G8N~y;ekcTtAAT+&2NaH@wP?YhYd>J!i@kE5Is}a^Ru;Ni;sU?5F-_5`6GK3y zVhOy!-V4eS=w2iIR~6Dkm`i%eUK$(ov;0&qu(7Se;k2?f$`Jug9@+bU5C6xJwtt^> zWB$3C`TOs}+wa{r=~wyrFW-N!>HWKJUvlsCibg4)NoDC32O&n@O*QqiIXa>)V-RS! zjS#vyTup^06Na~8BA`#Y!^22*sSG$o2(eD;M%0BaPgVlS}Y`h3YV^7eAZ?2?Yw)UEp(+es-js2WTq+%zjV(*;;!29j zOhBbD>_9PbpEbpo&|e;;j&Uvwrn{0WkD%~xj!5w9_dnRqiKvE5wEI2W<$w9Q-IQ+1Pyt2k#3KM|tP96&@Y-sx2PqaKaJw#5d#9)J?-M|nYE>h~ zG2WwbDdy=>srjCPFrdDv$Uz^Df3hDsF>(}ol`fPlo^N&qWS*~ZOJHpSNDeC3r6mqey|vcNadlbq9?7@C?y4n2 z7XC}O(v4B5$#|P^Hj$=o6Yh1XzJ(MoOOjqQi_fhCj;1! z8702)cDX?NDbcL)*-$Y#=M03otywOnC=_(8qS6!%2N6X$1W}<2I%KCNo9sbJb->V| zU{e5#Z$Pjy16+40J22TKQ#2Nsw&nNsm-4^xm-@dWYJ3GN=ySnA>8YPyKK#Go?KhXF zlzzFMd;+s)EP92VuMMTq@1Yo=PRsnSOO(}la!*CG=PyZJnAicx`#7+BfZLk~8`}HX z7pv>u$xTD@JG_>yeTRrGaF8@q0TX@hC+kDkuAQaEdAc~NWP(GaWldzHz!0wNoN*sr zT}n6UetlI{H!6Dot>VIpT1(p5UZy8v=-nPj3b8?DJAvJ6_rWJStlN*ohAGC~S`74l zyp-3%{&!Y*w_$@Jd%=%~0&-Gd*m}ZY?jS^f_%fiJkomU_9Zx1w8I|6pgJvdJ#*OUFbOoPgT1O# zko&nZQ7d5i*UL>lq_#wPvO_7882p=q?UjUD18QS;60ED%cu^H(h>1%abV`4njWY;x zsGZgaotxD(UEm9sD27>n19Jd*%+Xi1X;fp}JK^rBlLp0t4L;sTv*~h~KH2lqP8G*t z5aWMKU0x-x7)}X5{kX7ffWm=)Wd(pckn?cusf}lSZ36E?6{6cMLO{g>*s!B32D0MG z+TxEq@+W_SFDXy;C4J<7_Wom?BdC|#4=x}6=KYKC;jh2`E-pU&wRs!BgmiKx4ejzc z>j%t+nk)c8*AT=RVO<-mSdUyc-WB7lmkMc5>>e5w3aFlknLD0R(=IcCjGI4QmHXHp za6xplyL%?dBLw(x^&t%KqtlploFNacVXH6e0JI!e{!oOKRJtnkix8Fd8eSB2!}291 zfC++UD(wFQnL2H$3S!HILBoq-0U+TmE$RXbqqb(P@d+ef^Pva0&KLL(wQJ)%F@ldz zQzxMKt!e={X@on|QD#BJPP!SiCnxnSq&hB6hXia42M|lE+Byn3#%$mK9N&prjyJVt z%4ZmuY}?>Lw#j6zQrO4UD*q0GKFjmcfp}pR3M9+%AC=j#wA?(a1136BG^i4Qn!$pZmmn*O`D~<+Hb7%=xc*t4^ zSl8XL*lHVD>{d?z*~|Go%-5cZlk2HffP!N68X+Y%+GU)fu?U<^SZ`3HY!0kxkEI)SilnFAc4!LQtgYX^#iAqpZwOh z!pHLbzkf5=qu(1?_`^@%zIgvM=r2Fa&w#x5RsL@{KY-=qFC=aR)8~srm*9^B#&!i`S0p%(Ay`h%+?${MkoR+OqU#FISzKA zjA#!Q*Tq8A`e;=L3n8Kg_?{6117<+p7%nh|u8FWy4JA$@q-AKY&m1SlSYUH`jVg-b zsUGS*?W$aVHIHA_BGQ%|%d|c)E_dg>rJYrY1DV_fJ;2x1X`@LDE%Cv*)(n&BqXMg$j6@Lxie1ZZAzs|q&^Y@=J;GOUg`Df(;>%A?{ zEbAu_XB0}k%Xg=uzZSYAeP&w_c}HNYaVCPBmPmG>jJc89uj@Lt&48E>LI*6EZ z0DGY$n@35&6=)=dT}QCP@_iL0HOvy3*_l(h%8%A+IktPgW&cA*8?c1;L z-|+TDjw-vqzXxRVC9I0vf?4l6DHK*;QiDyg)kMWs9a+ceMEd zI-F@d<{#ioNru<@h2GW}k9L-lps!NwZSSi~c)}~1tSM;|G*u4u9FoG`sX&&EMWp$` z20ds*a7h)piKRdXju|6*3RJu%|Z-^7xEbv21jl7)%lW8OPnZE zB*z0*^MQiBT8lO@3j*h(*n^>U7`Wa+n0cjdPXbB2cZF{Bf0hNV%GfaASXvI!nB@Ih zK7vH;-WXnAxdp1)tRaFEY3CCy3RkZUaOjvu(u6}L>+A&1THz_WAuTkS_O(;dP6HI_ zc}fbb0oQYqmwRjCLB-E7umglqD&pZ(cz-r|qZObDiLI|3hQQ#!&br@DNZ)*$Jwr?3=$lIQp_lV?>-ND~Yn4ahOhXkQE^ECI@Uj+!P(y2UJFI)w$QkPL zoGAGK0WTVK>D15uL|X;I&85elpyCe&O1%#IMtxue2P}-DbB};frULje6`R#s6+lxC zNd3N(l*q<;1f(+;;{&){+`J}9OFQNr0FobMbd?t}jCTJ-$r z)~w!{s@qhkkg&bmN=mesIJnMjc@JKpmYLUBPSKYzz@ag=U@LaqSWq^Z^~E{)Aw&~* zD@!R>)c|O;6?Li7B&109B}fm2>!(Tarwg3Ceyt`4PU-8Z-Pje=v-oN^h=Nt8g{{Wb zN$&qH{GUf$`O-aCfAaOW!`m;VO9)?o`|{!Y;r;iQSI|o>ojj9-DQ=v$M~l(AJ2=CJ z4Eb=}xE5&=^eyE?;Ic+aLw@&QV3g4o)p&jmP-I_6fg#pS`KDi$c9$EG zS&V?a`auu@qQX5LFt~pt)EVw!OcAF*!-bFU(piAK0tJy`1Twmn8Q! z&S$}yMx)9n1Y4n%4$8I4k2Qm;3h0s87sYDOu0pSkbkkl+0fBrxpK*d;!>zoa5gFTSdj%$$jey~VxQ*> z{|hUy-@fECKgD43_uOXu;O(En`>)W)Lqhm}J!N_?!(97&ARg!e5x(VepF?#f9p2le zZnQ~J`H`qRS zZeK#b@F0)sKx6%oJeF>6cTQqDd9I;)CrC(DG2lAe~`t`Q19{t_(N$_95)u z;$fkUi3b225CX4vOOL#H0ElWG8ztX1P)~P-RX3V}Cyh(Yz^Hu+o_kb|q#^d{q)mI3 zX5wa&;F$YJ@s?j}$|N-;`o!&|Diho(6Ot+rIFU|PQYCWbDK8lQ0tv1iV-@`ybah(9fxB0=B>7ESY_#Q>PMq;< z_K4sIv<7?0?FZJt){djDp(vEJjR`V-j4(LDaVYdH7E|vM#VF#Er228~q5q6OrC!oo zjv&8z`#ooeCbsmm_aB9?zjOKUJxCCI@9mHB|6faY@ZmqdexatFKq zd1QL{lr7X3MqqHB6ePQcrz#EBE-Q!|CCf^X-+;+~aVX$p+V_cFMUYk@TLoCWvHNgw3QpdjvU4ab+u-`0t9m_Pn=M1e))mPq#%PjX@1#izzca+M2WnmBy z?e8a~bqP2^>1xKxM3xW0f`?QR5Z$JPs%|poCMnH%v#r+LLQe-8LLO9(j(l3$jk}3y zIWiZd$R)KVBg2h2R1fPI2Kd>;%P^9>G$@MaRpFKrFCj%fCMy*_}LTsBBOdtsUq}3d-CNHf&Z0=No{#)uG#-k{~C+>_o3>!#x*gQVvQDQIh?S zFOz?!-njb*^=fR#fFfzJk`(Ufh)&+gRhaS7!W|Yu+5nPcVG9bmn=L2-l_#$&atBtxxSMeb zg9iqkk3>&^Vt?lPT5ToDv(*ja5Lgv*F+78EgtJ4S1*V9JiVAD7FzRpdHLTK4Nxhl) z9H|?z#f-`jFtJieDo!~*eg8+rX#DNlZ@>O-9vpstd4()nf*e5pI$v9tS9tDSXa{PB z0mGnB5h@casG(Zuy75Tio|GbD((F>;<(nFRj5DxZ8Rb^l;0K(5a~txlD>7Bo?O*pw z*@P_${|PlHWh_Z$iR z#M)9COuiC%qL6-OC(PjHVjb;brOXBMPL$#jr}75Z;t^MGAZ9`RX7t(=toTk-SkMl#M?y2BWTlCafVuCfN6s7J73H??4q6qR{6At zt)NdkaR4j6_fkIcK9vgK<{?!~#z&5<1-5!*p2J^wbiV_oYf0#bsklV|=s!x+)nczO z=>T;F9onlM2vm9%%8Lw*5(u zIL^f=$B2ltxfe*TZ=|fT@#tsL9sPaKUw$Y5{XCnl{1&is{RJ`PetCWp zmdiskuK6<@i0+59zJ>Sh>N*IYvAbFU<~XsrSkVsSP4(q28|jANgn2)xVPy&8?@7s0 zeH6xWi3S8EfL5BJdvIjk+F?Xi<~oMp9>6kGejfTQdl-&3DcTfC2OFu!P?Nj)RY#BZ zM`1*pLkjL>lqP^(DH#OikH2LoYtGz`Ld3xUS^Po)c}cik6S4zZ&xtlr1$B8{lsL!V?6Mw??VS z_-zH0AI(_}U$K0mPz6)Z6d;JDmG+vP2cY{}t4AyOP+-7m573#kcbt`>WhE{-4*v0XpqKBY~-_r z3EVeKuKy8Ipx=A@hw$OQzJGRkIr;QSK7YvHzSdJ+hd_V)W zhyei4CH-~{?t|N_0$XC8y~SIQYLT>{^$7~kN}mxhZ70ezu2{F%u5CPnqj1*1Sog5+ zNI5q&$#WwqCAp3xqPC8t7^K6s|m*LelmXD*ThTP*T)ZXwb}%FI7%Z$2p4R-u6KJ zjghV*Qr^xji2#xq@ZUI6O5lna6C_@2ZG*e)g?D#1YWh zH^uz9gkd|j4h6t2oc3?1KxxL8KoZ6flf`NEfKaLAz^r|+QOVfh!WfM&MB!ziFc(*# zUSA2TON+t)>>$G95sDoWLAh_L5*l&tq|wc$lElPPa}kr5zguZef0sP#)kG3o0cJdZqO=wl2rtSv za{(S>P;p>~c;Q3auxA9&E^!qkNT9@dM?htJ=C^!|?@zIgxR*Wdo| z!}njm{anh-&)z-@`pXYddA|P)HRo5sY_g&EVh!Sxb~BG`Uq6!m@zBMEL0o2_Z!7N7 zR>^)>8W3UC2H6?s8!xB;4)Z_k-QfvbqGq;;q7c)q4u{Gx%Lj-TtZmQ9oMecgKQKR@ zAP1$-=Eq7^YO$%~x_)wRc&zSiycVlQ>NdMBNMS$@NYoI7T&TqIlSqMd(8|SR&)c`^ zJ8X|sR3%?$AEQN=b+)dD2olovjl_$2>YNxb-HGa%vU@JJ)C@dv^Jab0;{^?pTFuF3 zX6y#=9*5sSL5qNN^Sd#-Zv6{NBuX6s zd8Z3_M-ZnT21C-dK7A|oTeOH+Vrch!U~)0J3DBS7%1;`QS6&j#B&G8RZ?`d0T}uK9 zn7R~*DAb{EsW6`}rAhcm2n9Ql_yCS~oVbIh3{Skmy@-s*>($}H|0(>Z%!~dH;lp>{ zKG(}{VbS-8w}1MEe!|=5Z@&z@P&yO5Lx24CtM{LS)TEF3Fuecb{j2;p|MuL92@v3t z{+jsV8A6>1?CY$f5688v>UZZOoE4@$7Wcp^wpf<5e6W898ZJ`WNGN+?Za|LIm=&}a zmpYw+8gh9XP;qyz>gGlY`3uxSkI*?jT2-I11UOE(shr2)15cPq&xf}f43(@ehbYr! zC<8kAzMY++;E*6pUm|o*q-yG)W1vR)7#meYvIae6c{L=Aj?TwjMi@eR6Rbuo8pl|< z*KkrHv6T-1E%W|J-qE0arMsr>D&zzlfR#1U=^kWDHB|$2-fAGVg*~?9*rr*87-j;R zC5-42%5;%>iA+S`RBf$mK7cX~oM)xZIve5%0d}Qg3tet)@fJ+ogr)S+0X=C0Q8lwI zrpP^HLv<8~1|KWJ^$9azskJbU`W$B#nDM~E zFYUf6VGtrphXU7{xTWYx`^mJQFJ)Jf+Jwc9-v&k1!!) zyN-=&L(SzSx>~NB{zZv~>?pu8Oyt&qeI&QeY!6VgI?_$o_e*PqwWbIw0N~GHJGUpI zhAn2LT|jMU=MjCh<@ZraEt~V2*5Wj7i+U~F5tJUainRF{qEsl8R{^iDyjopdM5pM( z)3scC9p2nqiX5va_u{x844^M^gO`v-T$?chOSv^Bv7m3;%7RXs2WwJW`Cn*l3InA| z<0E6`Yv&H|98^OR9vrC$)DC9@xIToI3N$8*)CAb|qVzYFh2-kf3Dt_+5DD^bmh(p( z&68IY7%<$Xsj#z?-lfK`eGgy38$5m7!z5VD6p@un1wvGWDDfJ01H@L)KZf9Gb&5V} zJ~nc!0>DpR6%Y@sCaDn!g7)lDvOdT%DliZ(JI>h^EZ0UG%<7tlBfF_t7<-0|Rn_zeB04}hST9W!mF)F=2 zc~w;xr6uWDeMYql6EjQw5OuSVRJIs$OeH&(38QsR@ut~CQm4Ya^qBPTz`Yxg5V}~# zeLkDVs^U)zuW7b~gT80)KM=`VIuWR>zr`NV_K;&u!la*$zlBDSomwAn*l*|SaE)sG z>s|w)%Cjp_E!u8c8!8|6ETb@~7}6^`j6>BDaxxF)7hY5xaJ;bq!NO@#_N!b*>h-}~ zrsh8BiUp{77@l2PHSVayIaOFBJ|}dFBY?raQo{T@ayJimLW(Puu0LIYlXQsw!7NvO z_c(u&I3Vw4htg}g?l1Cp$!Cz$NyP#9s>nxj3hEHX(lkke!;E=N?9Y)z{V-2|1sVXW!ITeIL4TCgo5pq4X^Uba=@+m4fDKg-|8!#k|YCmjBN7IQ^9k3hZvu z6x`t)3Xg$wNJ$x;G)I(j;VK`5JDT<)nae+7z@*G^x4$e+w92s9_b-=Mn`oel<+EWP zXn6_^Gj6?Moukz?dI~3c%t^rqdg z@$^hF+P!caV%(qvQ!D?-csGRdD|2ogz=E@&fLZeI3}hIOgdP>VzBtm^XwrCK#*^5P!9R z2xMW3>k}U~Rb+RyxU)Q?7#eIw2Gx_D6!_FK>dE1EeL0k))~l6I0H&qeEH|k_HL{t@ zJWM+$PRi^l^$Bk{&2e+9GE%`$zWf!{*RB=~tiGm>%HSFc0a3D;B}2uKM!*H_)K^ z@WuNNgG8hc^4~vZSi%p`4TkrhTwY7pTgUQsRc&}nT91d^XMH=I5RzG`Zp;nC9co;0 zOis0~Ytmn~_SmUxl0Vcxrq)UcBOH4k)Sb1ttPjXHxdb&ZGz-?mz*L^f;5-DLjf)|7 z^$0&+$uopwN?y3L!$bexv!c`4Z#4mBDSgS@a10DGKLK*KS!$8@unaF+7GApXyz>zx z#OXT`U0iCJY6vK{SckHVpOecm%nFNM-JDR`O1YCieE0497WpuQseQ{J_kS67r%<=f zK*?Pdm8jH@gbMq;ge(?W&{xKw9gs|^k*Jjye7q&sc36A7iXSloVP?Y1K#XCB<5W@C zA%KivQ{7-OZaBa080tJyxg&Mlj1B!5!4{>Sk4 zqkMfVZ@&IEbmM2@eo!^rH4`(GL>iw#x|UErVbVJ2sMFRgQCnQX1flk>S~+%XuuCav z#{xW!N)1o|p^2{qKdtJ@bK^BYLPSMNlARBS^?SDksQ48OKpeOa zq|tn+5FjGUD{oI)P3Tl+io=GY;jp764pC|*loiqmVCspx#r03FlCpPK|0tyGT6($n z4#lE~dpnXkh0Tq5NA!w3gJ%2{<*YKa^6w;{dq+rCJh{;NGn~{R`f7+YD^v$3#w7TZEPuX#+5NZ@?e0bGyg~HkOzK_yiTI z)s%j#BYY+?+(Z{FQN>v4M>oEb^?M=8$106yA#7|+;N zVjpH(Lo_u#R-{gsubgFi9J{`so>h1pLrjflm6w=OhU+52Rgr);VWVF?u}m0B`4fX% zpQE_tVmfG_5YKkcRN6&CmKp!)^smYyw)R@JAZUsZBI{i-A zwo82IjAdr0j}&0XS*j5Vih$&Q05h#c|NLM2HT?Jfz(+sD&iO~`(F)2?t)t)NXTS6I z8!T0S1MO(yi5|LksIUxiS;D(Cr3thNgq`47RELuE<@gA(r6rqu%@4AkvqC?=4iwKezRM9>6|Es7 z9p(PQA}CS4HL3-R?-D-=jTOQw7>uJs3IV2>MoPl$|G;U<)2dSdCQOJvpp+V*nw&a*nvPs3Bo3aGGLrJ#(qZyVZ|;PPyh`VqPi zY{Hfrl8QbhNb3;166i5f2D)Nr4C)Yh{7aE)`_>S;^$hW9EGVZF+@y-iaI=&9%MD}% zR@w6Xd30(U^?a77*h=z;GNP3g7#;RWT8jLRn)b$RK%EnySFQS(lK|ChS^4GFs)jOO zYHeUJ|CHO#O2lguuC@Su1x!$meOl*{s#0(oxS(WK%YsX#vaQrklhiiTUTRm_1`tL1 zzO7wk5<~Iav0LDoAYXhkZ~^=a6^X~9*`|(V1!1Z~!WGgguaN-kGHeCKrZe@skRp(T zAk>K`&BQ`IH;aAqssqj^@ql&u8aYbo3elZO4#Z-E3Vbme_AQ6$45k4~I=Y9!r+u*j z#Fq5#>>sAr{}w&Or*Ebo`8|*;zh^j$$1@m8O4|3k??`llE*J6zs02$IE_XnVqx$p? zvEeT2epdC_u_JaH$ZQ%!owX+0+_UdcyWwm-MTo(=cWBWE))s}+OY}}VTTQ{Fy zX-1coW8~bjxKOMbPh~0(h0uwPVHS>R`Ygwea&ULouHDQr$Y? zhL_x8HEVfMgQ>JaX#vf1MzIh2B_h=zjk=W`u)W!wZ>**_ZexYp+OpKN9WsIAB-sik zcWkM~k+4>~=S8V%aSAMLTnxkL)3>Tu*jK)ciUDE!A3Jza!!ydp zms0g54OFcoJfxoL@j)-Cr7l?qC2)))$ZqTsaKQkfLUsS9Q_b-FhzfLz>Q1_}_P%aF z)nM#*7$4k%*#|dIY-AS94FD)KNi(Z^0Je3;g@odv1?Yz0(}Wg<*K*_79ib8sjcxpO zePiQPbJvylr`p1rpelU$FYmtqq7}E|-tU)kD-Ll;Y0;zyzo%CxW-cyRJZTZVguxCJyCm)ol5=C0TZ%~BXOXs1mUOaLru)ut27cOBSvoqBZ9WZ+3B=Yc#Tph15w4aU;_U{}XWI2}{{SWwx*6Lz`B@*a zDs%{!9M1vcjJmzrsG`Q8IYAsEC412|$bHw{vdL9Nda1kEtCFw^S7)Kc&Q5s2s^}W( z!Y&FaTrh*b^ZNnw)_|IF-}n2=MJuh2w9U$f-V{B*^A&!ID)0EOB8j(P|ReJ10qi79l(SEoYrV6 z=Q7Ag&?%~WO_JyvLrP50+Bk7c=c#nCG?tisIuL?0!fb_IF@)V``uZjaEhU3(uxF% zcb#~(^N#(X#lE=dfNpZ;EjDeE4Y(3ibrO#N-lwmb-noS!~S?p(N>y zw@g?i^4Nl%bW3G^34a;>;_~O=-(CKdYpQWI|(ks%w#i z#D0yVn?`Q(G1D_!X)9ON{+6W;qgsC+0Ckgq}tx? zJpp{0y!Brph3Z*+_sw^bIuos_T0SHjSVI{Xzrhk>k!ps>+5vb{iObxYvieNq}LabHx$r7!GPkFv!o}5W*y@_V9U~0=LqEm4L}FJQStsz4K*bsY%&6u$)`hr-QRz?^Kav^iOni! zu4RcYVF&6KC3l{fUMxnnRv|RK`YXal|2_v3JotyV-+Uzh`1UJS_P@A%_^AY*&jQ?c zO%zfgHy}+A3k@Gk6mBY~(qB|6!qfXbsU67EqeQz7F2^ikOUh@I4pGYmmP#8uB0}0Y zc`$EmIf^O_btAYQM438x5~SlZYG8j8+QWzg!=QLpxbL{^=OT_zljSta8d{F zj5*zIs}1;GP4=mEm}_8H`>=+hU0?t-9==#E)X`y4W-x`oETUqtAkh$X)GAh=-kd}a z15Z`&EGl$2;r4x@J}g=5UGe)pQ@C0bTH~_WdC z*dz(0E<6n)QgK?BtXX>^KY<>eJ^MWccVL)Z=Wm7Pk(8Gsal*^AW%BEwr0zB{;Pe1RAW*IARCNk?lhfg?10vAUp5^00-p~XF!sCrS?fbpQNZ47 zdYSb-`b$g-h$S9UYAzoy;PW>qxVmj--ZB@mnO%nYp${Xa)gRIPV)T_T$Fne?@V-OC z3mmdUOZPHsthw|{A~LXqow?ks3?>pN^NT6A^+mFkjT5J$c*3Hm;(QTvaEg`{+6rtc zPEQCM*1NHWH8?EpITYLh564gvN&xs4sp*7iQQSFsohYK02ab_1g0}~kFFDWPhcy% zdIj`PvD;8@tvMzn)i^zH3@_Zf zsx)v=;cCifWGvNdAYL~wWRA#$SuGU}yQy<-ayQy>msB8kvNfQc0$Nt@9#qjbJa!C9 zs3f5vBea9|Q0a8G^TrYuN)uf{U8QEPPSm?bMQWzaiZCqQN(le>R4(=A=!IoxB$tv&}=}=G+4=y zmBZ*UVFqL+1bB-UC9rK7uSu7y@)Nj51q76;$r2Vy2(?EEb@EwhnE1rvftsaA-6OH8 zd&)V7g!zKCX}A$4oggNfLgVa%SRG4DrLBMQ^|!-`fA)hjP8!VE9|!%#uv>rq_Qi+4 zdH*52_kN5WgXR8L`6i+@!4IGe%xbUer^(DO^l_1nu?1_YN6`7VkH7a7JLR2$LaRkw zP#Xs|UMavBvV79N$3C8$w($kDGp)ff$$kqh&`p!?N8B}4=yLzes zL}sOpiSDROYZVt>rYDtmuL)~Y=wQ;k8=+sG^bQ}yKqx-}*Y5K*a^B zztc9I;1X3E0k;?i=dj|7rfM#PMNS}Q>EjF}4RTPi=WT|ka}@yR@dmlx&iW*=7j^bg zAA^uyLL!4GE*$)|bByL8=AnvN4bHh#U(~h0AR4tIwhg{nTvU0W!g7-)BTpehHpNBb;Ykj=Ayp+8oP_jhyNl$VKsn~s@1I+n-I!{ z(a0DtJ9@jr#SVhu9B`@!1?o#5cB>Dse5YF)X7!(Xs_BHs2^GcxYL>@N5@V?X)xmi? z>m+frg3Adp-HC!V(-XWZ*T6tIxX9gGxkF5io^hZBBT6WE-nCwo&gj#b*LCTY(Uc^( z1J4aCX4#=P@^olup$D}hnCXG07YEd2gJW}tdSdHCsRUoLa29-0g?(m zFeW+f14HH64n@6>`37>TR#r{50sv)fzLM9tGyTgCatyQt6jn37C?YJftobz zGkQ4Cfg8u-0s0YXATZ(Y2;nAw<0FILUr?dz7w?~e&hcq@{}ZU7e+Xvp`x>tK$3Eqs zFeZB(;g%|2y{k7v8$=P5`4QkeL3ywe9TkLm=7l|y&X(jpl@g<>(pqI#daKm$AHMtc z10AfWS2*o_vg99tiq>Q3cv_n3O|9w~Z#ET_mwN+yk15QK991gi*_<+xzuv0)+uote zsHF+^Wh_i@xkgb4+s->1YOuw-(#+QEDy><}Kv6)s|V=i!M zGcZ1F8$q3cRFFm`R$G_2XTzC~3YluKV6TDR zue$JBeBsw*IO_%PPC9u=6mTTb=*r~UbDY?yz%IxBm9``RAGDj2Zx_R&n<<<;dwMdj z0$Uy^`Oa2;+@N7dc1gq@>c2u@;o88y&Jt#Ns!t6y6Y!AYZ)nqJyOO|uC!P?9cfu1? zuA+C`g}ednM!nciI$e6IDQr7py(s?_80bCErjG0Eqbs-j*>pffZ?op@0oyHgPuSAY zScPgv4hc7yRqxm9q#`;FMnsoa%=mX#2T)HFRQM0&kU~s9RU6XKpN6;JUnEO@6MfCbM%ezg4Bng8J>0`?P#u2qz#odi8|uILN?5tT;*!U z%+X%R6xe}IhquM}4C{*jMhq5!F0!f|I@acK1vDS!;W6tY7H!08n(|B7P00DjGGaB5 z%CI|?3wskMREJT4jzIlzi3u<{mF%QHCe#mT>HOlMezidxFFvg2k&o3#FkOScpF?#Q ziUkQ@hwqT8dB7*)1^u7zE3QyO!w6E<>HslUIh6xL1&x!}sYk|ldZ*fNNxrVt_HSrS zEPHxAlv}a8u$4y@48Kzs#RP;Bg>h_8Fbx(AQszWf3zriMqF7?&K{2giu4&gp-wdYb zAa&5Hv(gg6;}P8M+btV6*)vdeP_;R$4%C){52EKBmCKqE#b`#zAwjYg@^~LfDVFM3 zih!f&?;J>$^#2p~X3Mf1*OlOVeub-AZGvPH>s@W#RUguAYL5udjK~-fL*|Kml9Byb zW?gzyy-5%Tf&f8^07(EGWOnYsfAwD5_u7${C0T>Udm{4QGiA7M-@_WJ!%0<*Bjg9o zOQFDc*#An6BL-V&MebJmbwOB9A*b4OfaM`uv!Y^NoWy|=*ZCZ>^QE+^OdKox@RJ;T z6zTBpi`QQTN@srb_HVCNS$uE*>LF{lqZFn}ujUxELsZIgiKKH`%2?(?&duzR0p4BK zPy%YW1EXNzlMmOH~!$d=45oue+`Z?G89NX&L<>{X~}(Llz@q@zx|lrZP+wHS0CIAt4IHUvva)s5IY3@24g zaEU#OVq@h5=v)#|j|S)}cfLhS%Ey?UAtMn&*;enBnF|P~ylaG6Dok3^3Rh>z+UfZ+ z!WTYYhWp(VtwK?r+I=L2p#?6N(hERSkxHSt*lIU$&@qD7(xvfy*Xr=hW4W0j>q!mp z{1P5jggG?_6e#lZWqdlRz-xjt*vv@=yi5%YdV%<;3N}Jb##-^0Ay@~rmdgG-kC!96 zKhLmIm;D!87h99eR`#_vk@CHw-mUowiV!jOsk#^q)`q9b8%8^7oca8e+n&yzg1{R^ zV}NENSxe{%^|T#2nfRGNdAFD#vF!v85FE~f+RzYSUEqD9a3n;n2G%BW1R6F1rh#YM z?=jRi?36HJS>JyOKg!}Qk0_x^&MGsc0QOfh2)U5Zd$naEYr%%~cWA)jG$y#~K2i(v zuFfO*5-qyQCV-efsHcQG>FLWi%%G)ERcMrDshhS{)JYpWiX1*B_X3dBavr@zQKT0V ziG>7oICDsVk;A8PAs6^4JuCj`wj_T%1tzhJWCdm&j!vz7S*lXW7loOf3%p2}v$|!I zilAvXbPO;Q#(SEwjwG5}e-e)Ma%R6+3>Xw7b7PmFaEF*7 z<#CRIqh#Ig1a}7ys(n|$5Y~C(ZJ_E%-;h_MgwQ1hsA;>HHn1V>@aZ{5aq8Agnz<@;Hy zUS7gvrZ8WQ#${s~_3z7Mh2hWdmN-)}h-#ZO(ge6ndosw&vo2n#l6T3jQMR726W`rj=?j=_;x5Q$8Yf zFOn+%vL%Fa4r|{r5CK~zD00;{W-U_(n&(41cFpZ-NMhwE?lT;%oyVVU}!wvSJcu3kHmBQ!R?Ph9Zw!Y{yP1 zJi}44AUR}AsnIOA#75S$^+b?c9FCguk373rc0BngdC|_H_ax~rY6Z(MAYQVnu}P5=a{@=bu_>^ZN1|j%rBS6-4~ilcNJ|Q-+*O+9D0~2%$?;;lN<6hu z>Bg3mk_n`GrGH79k6*Dbi3EmQLf$Oes{|I9@M`b8Va5eiNJ6P2G0l<_1X!4GT{pBe z=;$MXRtpt2Rls~B8w-+L&r8tX%(gw&H8aBVw2-pQw2q3`N%Gp zQ)nf1ys(7_48Sh`=#tRi*p*TeV0h@(-a0t6Awik@-o!mX;Ii*k9#gUWmPN>^vVbps zQ>>2RuJY>_QXFC6Mr@QSJeuY5^^%F|zkzdW&|2)V>Chb-K@eU<+V`GbDi z1ET!r6U>S%r+@_idAyrLor;`UCJKyvC0Rvt15bJ-Z@lT@Ui{?2x6XD5UC53?W-yJk zqkvISToEgDHm<*eFd8Z?l5WG7d^{e-cxq7H3kDF_^ZQglqTwxM=H~3^8nE9ZU5V8k@3Y=r>y-08b zZqx=%vRRDj41yV_$5k$+_A$1R_)FxT<4#i$DQ=X>#;GX8!_C7Y8-FDDOGCG16MKcnjJUZumr$7kWd1QRerifr`D~9sR&4JJ~M%3VQ5{v zPJ0?UEm0t9e=4AFXhG$Y@P_M>TWtPFyS4`$Yop^uq9ysf_r$^I=n^aN`8-9e*lC;OO zdL*i=iv(P2o=6s$Uw>)hD4DrV*K!b31ee+$#ydVx`DnMzntIH)U2*r~3EKtpOk|I|~dbgDgo4Hd=I3l;L37j`igFos{*s`sgW5_gx}?-e8$0d`i!=#ca4=L@B5Kdq)*!q;?FSvu zs%RMEw4Fb|0HKbu=Gzn*2YS@ImVftU3DHO}faIqeo*CL0ZTKWgiPB--Al-#S+{-Qn zR>hrPJ9A3X>bX*_B1DcZH_Nd+AL>SGC&@Nfwn*k_wH}(b*mjG&a7zq8DKK50qk1wVxoMW!=>2R71ffBx398s3af% z<54eDv7P z_d%J7N5^D_CNekij;_ct>eYrtz5zvYD`1~E_K@qtyKCXUXvnwCU<`DN^R4Rk?c9^< zfV0gN`=ghGa}xVqGQ|_5VrS5(X0Xi!v?BQ@ zNiROi8AR4xmXq}HKzCIVnEtdU6#*h_8(1v1P?3X?ou1GwThj~AR>;e&koTfe#~lH9 zM`Bg^zQ1s{E4ydo=9lFNKsSQ^3EiU>nttlS?9<@k@hpvJ17398VZke<V zLB0=-OX|i&1TGfce_r=fhn!Sg{r`5JyL5Ui0z|04Abl$shg9;^PQ-qSh zCxdD<<#X2py$JdejXv7x8kpel7wTlQ99Bl^hx#PpCIwNihnD5I_|ln&ZTViIqAbMfP++{comD z&3AFFWOY?|bj$IjObUhuTNNELYE}i zS)NE!|2#*QFJC`{_~(~ze|Yd)8|JJ@WpEtICLuM^8NKPJ z4yrB`4Te5EYgtg`V;8nALsEL=&KZ!y=T`D<;sCB(ya|se@09RdpG(@H$573!~u3d z&NJ+(#iG8ov!FEmk+ycs|f7%39hXy~v@PPl4_0zT=KWiy@NCMfck zi{>`aoP)N%r0SQ0@_3f71DcM@3e^VgLnU3SB@P6L3{} z2w*gWx5=!I9z?A-uEQ?h7+x?+MIroWPF2V$1_IWQB(HCdGk4lL^jnwM&s6mQ z$u1GVD!&V?!vKEwZ3HUqk{G|hzOg8pYp!yfJj<87$!tN#DXT{$TDeJ$MNOcN_ zkEv|d`+$Of@*q1Dpg{5&!uu5vR+O10lh&uGa`2eds$;D)W{S}rDZ0>4My8dZv+-)N z3Q;cGR_d~9kiy~4d`fa`^x@fgZEo&3FU7MHW)^Z^& zBnt^+X#!bgEab^z8ZSrV`OM}@SWI+D3-26OHVl9zEV56mX#R1D+ia_{P=w5Z!vVg< z#C#yQ0qn{aqQzWzu&pdX)R65C`Hx$CkF63HH4i83)}J!sWz{&{2VAm3D_wbmeElj4 zjf72*p9-2T*bn?c_}_A1`h9r&q_|wvD;j$9a=%&>{^vf2#Jdo$Dp256eF9!I3cVCVnD=@Y5fPxV&Aw4l9K*c zMd1M?lQd=8;;eSIlE&GrO42b|Vfa|62xm%!WWf}1J7pr*0hyWoRQyn>x=IGTz|jp6 z2sr6eHhq?FVzr_s?s3+-a5BpII3YVjG}}N7e6nvHtJL3BtBcLuxolvmr1DaLYV~9s zba_IQ?<63Mu@tZ%unw##N3cBTAC-X1%N{yqiiS+}C(RyIg5` z5MxdBfdckMep`hZN-}4w_p%4_sxPBs)lEDkNa;nG8(1%lvd|j6C3i)0-eX!H&Zz;? zXCMPFx`RL}>oE&|KFgq2^v$RgH6R&Kk9oBHW%N#$7L^nei^EPaL&@vH^fZ=|Cp%7y z-{J|d`f3z=JC9zC?Y3^8iUD8X4G(;3ybd#nM)Z2QUDwmKF*Cg{`G-y^w^nDSejdGA}`IlD_1 zVCoe+hSzq;?9Ot&YjNSI5G4jo?$H7nHoDar6K3P#364u}>eQ&nTHeUp;npgt1=V1NjK!!M;@!4>k*Kz6 z#sI34wQyZ^rpGD-Nf(0os!-sGdymjYFEfm7Mz>qBZ$dTmJPETK*^|(3poTeUZX4Ud z;c7GZ7E_4%`RHhoXjo&TGSxvfqSgR`Zq(hDR@1>QV~Re>Qrs(GuN)#Y+zh9SaSK& zB*sQJmxZ1w4}HlJmgPXpVJ6nhj>zw!NvW~vd=8-WmPE(l-LQho%jD8k@C$us2F*(R zFu;v9n}Ed_^-s^z!Hrk44HZoX`7apyK{arxB~+=Hja>&fY_vM)tN&0D1b_e2@Mc~v zU%dV^v`@c$`~B-L6%bP=Y9K?1fe`{2NTkLJyDe#(0O!Vh1^O*0E z1YtI4l3yw70HB4ox=j@-(G*R2ka#I;3d0|1W_Gb`ug>snFOf(M0)&pFp}$4*zLn4JcuD z?C_^ehEyhm`Sx&zi}SF?#egn5#)}tZO%qs%k`p1S+h<`~ zD{m2lOB}A-(Nh7Q-r~l#QmayVVx}Rohh1VcWCurLW7HO%LnM%LItni}kenk3Zb*xw zn4HZ6wsa|B*g)b<0af<;Dd((PFxuSA9>7n_F#yR$*U5H0m{s`-S^=7QU21s`*?dKa zu+W`(qjI*d3=1JL3rP*}men?m1Ju^XAvuyB3b*shu+Wbs8ty>aL88LMB2}m~bI~m( zNB}|K_mCmWLZ_T-6}wWv3k*&dSjEgPMFIfJa+pVBJauLOa2;@HRUIj*R`WxI^Yi#L z62)1}jSe&s?OZ{=MnT%bY|nYXvxDdm&t$WyV((~gG1|J}?KctvB%1&~=Ucgx51+n% zDX+c#`t6T;^Lq&nuipbfs}2U%2zmGahPThuLcVWW@&KW@a#6jW2AUu1ng$gX%YO}| zsr(^3A9(KkS~!>J%p!QZUMRd&)PmU^7*~KXUE@d2vwIEy_)b+pDTBB`8lKG)&^8ZK z!9_K1o{0OkQ`nZ6&12@Vz|_GNV$gq`$7(Ab&5kxHODffG z$^0G57ZmbC6@Wxr*fLEuexPY|^Ee1OH><{nB0gMAkgSCQ)zO?zsAAayL6b|VxWI$}qdYD%Jnodm_Q#KfV;M83LHFa$p&-HX8PHzf~6%6^vtv)|=E^XvbB zumQ5^CIv-p?DYGN0TPtM+U%a04n>dDDxA@trK+4;1~EzabJkKWL*#P-;G}>6#`ktL z_Jz7i)+1X>cw#-;g4;w)KJwe(&{xcmpAaQOv`H<>LLjG4i#!8Y5SQRkZ&>6shyw-z z^gn0}U_r5PoKsb4F3Dhl$xw6Io+gg+O!3pf#iU%b-s$StFcoQc33NGXVb6OetX}ob z9}hxGkmj96Rp#hZvz*4^LMa&J3WHr?93|NUnw$<41HUHH8lgW+w6uC0M#>1*Fv^s( znX2RC#fJ->)D%kXCIna|`hlEB+rQ#mrG^xkSAQx}r)ptnA6%jX#Go2q?m8GrFQ*G= zNU9xPxY^X9KT`&&qrj0jE(!(M06e#|BBKe0>kTQB_kQ zUoS8K#^RlA4i%Ty#l}>6+Y(Fddtp|Y*&gsZ~7PE^>gs-Vr{Nz!^jXT(M@(6lS!#1q3JA7nS0Vvits|0EPCW-l;RZfj_mrV z0Kg^osxka>v;_~tMm2b`QyzO83n(Z5Gm)wSn z3OC#wAl9q%>xCUfc((Rn1iY81&+&fMu=Xg~e7Te^V z_l{vn#PoQAT}9`f1xAi3ZkYw4eOK#%`PlXDmYPsMBvGvg$&-SEa&|tTJ9r5s`C}B^ z;p1f2L{sw%BCoG~|20&HEChp#v$vg{ANQ$SCEwlVQs zmvPJ@^@Nj+RmE~y(uISb4;@iCzb_yT7{*MwXcl|s4>#3QmU9gH9-IYal&R)?HdoR9 zL*qS%i3J_B2jOmeQZHHq9!X?s;OdA_$l*x?hjjqZpjA9KrK*msNfD%IuV;GyphNWn zCcm9EXN$(O+ajSCZ7<`!ujXjL)`*(qq)sa;{KfvGUYpnmR<)ZU<>tZLN8vAz+h4qX z&yRr@`nS70L&J(GQW#m@Y)5&HD96crhm9^9B+v`WT78wfn1KGr>1mAw*U3HFJkVhj zJ>P5feR#@tP-wVX7U*21{dST7%;0SCd>^O4$tkJFiz3az*;5PWp5q4{g7Dhg-=JT? zIiVvm6ae4xjO^eTiB<^}MGRYK@kA2Sy!GWwD4+BOQAjgWL^EQ-Z|2(MDRvz<6{2jXhswl zkI}J^ZBElz?~*f|}jB%z3xH*n1CPJ~D4fnZ_4;Mazk18c}sQQoKv|XB8Oz zQ7a=*x3b-=Z-JivuCB8M(QD|uNN7Ew?_dfYEfCo&A#NXm%@<86ysG)95*gH-Mr z&fg4+B9tUH)nKnfUwwLNU_wx+Y)=<-uol-F%<8D>o|*6AXk7 z_{nLwU?~R21IU+h)1=f}?wWu{%RIAuubPIuW+^EJQ;S|lK!;->nGo}BYlFmnk%hbN zlY`qK0C2!$A$22Z?eJs}i6%qkaUYV$%f@h2xKLq1rwDaWp~{mi4A-f|BH5Ax)FiU? zI$AAh{Sl`nWchK9K6;m~iXG(j!MKJypCZ5V>t}FcZBqKf-v?ggDE8UgFW-Lt?h{Fh zz5wa>m;a6o$v1DmQ*_AdA5ian@%m{FfOmKR)QoZAeF$5Hu_`p6R@Xt_pfEtW62O)z zRwD1`hnS=)Mao_RzAUXiPgqCg;uUFbDU7++v#E5iatd4IGB2l@&Z^#aC{ud*{#n~ke6AsD^QF+A;l!+f$~Lvfkaue`_{qm7F;s+s8k2s%@R;fh*WevF63 z3)#x+te6Q)P+;&HT)MDW-t&yry|iqTqGM;Yix?(WgsuznN(>;aJ+X68C1sNwX%k@_ zTc5HUVBYmQLm#P4sN*WY$xykxCtn0j>)N3>Rmvx9o=DqET{dcJqyl%sX!WEF(4{A{ z1w{xfZ1|RHkqN;?=Fs7wDtj7v!^B`SaYDbb8O zzmmVg=Zf+8=eN(o4?o7trMhVsg~pL6SU81=UAtiJzeblmm2`uR9VyF-0wY-!u91)D z4b51-U2E-rnaH57pd{%E#02?c3OSAl>E{igcbpufo zVi*9mhxybAh+N2M&t&)@BozdrVfBYArn?F`IgJX()DKx=X1E6^R2(X`18k5xFAlYI z4qgXl0fQ`Ofh3CXjoJcYpEif)fbxS;hJ*j*of^F%ixc6nqXJNA2A40nXDF(oBl}eP z^VmvI!~4CG(F|Px3t4ppns&2@MGyMG3=rTDpIJ4Td(Vsq8pF)d>k-v$eN1!jjq(6< zvrSc#NKeoK&eK%)K9UDG_Qd!n%m?e_*0kkn;p}CEl9zfeSr)YD%#~RwB*!|&I?2U( z=|QK$Nj9D##C(kI6~~L=iK{Y}%?vQXlRPU7pn2U-vi#*>CZJ8;@Qq#&^P$U}1x@aZ zXBFW01nZ-mut7^%`XBxkiG!xV1DM2s0x7vB9p5=moQdr|cl z;lJbv1~aLraqmYGt7!e8;*kHQ*DA4Qr@{SY8p4^>K7cLCD0u>D8R!O~Rmb)>#xCgM z-S8#s6=<8Hu7jrE0o@OvN}zFzrsSa#kBFlmixDOPlo``*kqw68C8X0D@{EmP2*<~_ zDBWIMWfxlevc1w%Dr8|wU9PM<6zAgV&N1jk8p1BoZP!F_uG9qcBx?le1Zi^FHazcisM5m3QUY7r6J00J z-04PYq|gp*h&QPPohp2@#%aIl$$LOvdzEXZ8f2)eQ$K8>b&vDD(>XI_ z7r9cCX;rxe;JBWx9Fk3q;lIVDilbGDNkvnjJwyvTjG&R-Ihg?RTD=~YXSCPv^qDy8 z*zA;c=z1zcb9HIvgc;{dk0IFEFvUoHnTQ`s7`Fu<0P93f4pDku4UT3~{eBx&U)(~r zlCXAn$6hJMfa?$El&T|M$-49S)Tw?YyVr^*H`v(>z#zysgvYKXid=MCGVg_apX9)3 z$U+7WK3~$DBrec%xG2L>(!#%b_v6=}hQC5YdHv{+UHPv$&SaADvm@p=Qj|UY z$bIVXk5~T{sQjFtnGc>5kUlj}?U&{T{v4#EEp{pO=yHv_f}bdSf$?^^{dSp2%>*{J1P5hgG5T1)kY zhC-daH6PKzZt<91*R#1C=?cZugNzuNA*)E>9dL~`0ul?rjN5R%Y_7Zaz19}QKx$_By)z)ib`E0hYICjj`!ydz?j3M0%BXA3*jv4=({3=WHX4#GvcSfY?Q zjx7Fk?CG`)5o-Gzk}|6SG107LfiAMpb~~-#J`M~)pT2z`UOzeA!E&+~p#$lIud^+f z;*<{7lZtB^>3fIj!L~bWX_(ZElROiHje}kd4p1+tO~(;fUmPw}84>&78@Rlu1-k&% zNqnrlVF@GXvesGHAv7Vm2dMpgqDv84lumA5gTYn9#BJ8|cp09@))-+qly1=mY@M`V zN=_zR%kfa(g1IwX-12T7YbYC9I0)XAp2kIfRWFa0%<;{)r31y>5f7Vep+z@(q}<*f z^}4MDf;p8V+Q(#agwP7J;ML-hLKu4-28CcBo{ZPASeyuZJxsK( zIzDID_^QH1Ido*VuDGA-eHvvG4a&?ZEt*J;V~Tq9R`?XX9s@In8gvYZ)^TERfmvd{ zk`-$5|FW=IN?yS0w0{bo`K;m$)51d%4b3MXi}W(NW|^=3&8vrW2fCls2?0+Pb)gs`3%JxR#P20du1UJLN32V z93nuzVW{fZ%E7VPueBg4I>^w?vDi_EaW`dD?jd2fG%uRD0E!p8?m*RGo=n}b1@td~ zUl-4aq55IEn{vE*;h&p?PdZKW=;W)~>|GJl zEVbOL8ef?BJB9yKBMOI*eP&oXYXN~)=CNZvJm4e+gj$UyAebI`m7Kh-Qe7MLMt#?Z zvl%QxVks$ZN4xc4L<&ZwqD+?(p^&VbhLH>ry`$IUaZzVfe*&8T&fWJq3 z7?6;WgKZf}uwF3Rr|a^IVuaqy7>9l21aLJI6j z)JYHgS-M9Y)WOL@l8kRUI%F=lHKrx!p!sG+K7ze{k+SKv#4 zW3dwXjI7M3T6zB5l*G4Uox=$U<=CX;KV3iyKm=6)T@`qZ!H%)+L%2 z`7IEb^X;%;Z4SyquxDP6cd1xTYW6x%jZ-_{J?%#UBc>+J*1)w30&@mo0y(sY%jO_ybEL|uogNo4 zBjW7v5~_^PtSCZ&IGunzaBcr(o6nwVfR%xSM$vF=N+IAVC16otap8q*1`h*NwL-BV zhpo}aPIE#g_Jk^cT`>~PBiw2DqdE>Cl-xWj1M4_cn)*}beQ$ee4jaFz*RmG!>--MQ74tU%dhC{z|f%J$eyYje?~a75!ixGHQB0=qghG_l3P5% zxN=7=wk*%OnUa8^eQhvV@F&t-=HiRtL*6jUyJ{G#0{Yh+L$1JdbkBnr@T&IA;Xb=~XQz&a)^W+TuGKD39X}D15 zsBV=iy-WKw9CK(&L34nXM=DXSpikKZD0E6R=ldpwYy%vFLHA~w^P%;mGOCO;N zAqN=4NCy?y674X4+w?k-4CF9dg_FNybZ*FGc`Mx z`z^HTv5pFMTuudmDMs}`)|{{Agk5`Y*4k?}RgG=Z!;?^Dc9f$RZe3LT*i0Qd6&Auz z#3=J;fA%MHvwwR13OtSn1SX`Q%+DJ-G5JgG8#uLHJl(gBUaEJAQpo3cI~ZABG2864 zNFiJ3z>LX(5FZXpDDhAVik@vsy@&S6!% z>hj6kXVv|Jl!upSeVnphch>+Aa2Za^HCQ-l`aT?vvUoOjot@@upb^-bQp09>CcXa~ zAX~<8e(I-#jAEB^5RzHG936~#D(5PY1`fx_mf&zXDDNlaithHD&PrG~bpFci5XW*d zX$^}i>$2iG?pDoI{Cc=Q+t0_nO(FV2BvQYQp zj`tcP0bvx8_k86ab&2#C`;OnF@;CP|9^yvY{3l4H0-7oa+g zx-2pQktAT=G(*2&rj-p!)S0D>*KJVOBMdS5%X}zb!LZ5OQUiJj`QII|>ilZcL8YLV zjfS&CGfUfTD`5lK{wPTSO-#VpJJ=Fp@OK!S7z&JHo>}e~h(Ck_YcY(W zLf-Qox|m~b{@TtnCT^ojsK`AoEvgu=IpnvNr$Q@fyjLT7FiJ%;C18p)N&aQfd=z^i$4)KKkMBU;jDe5BZft65OUqaN6ilMy#7W zaCIU1S@t5yn|s6%xu)dJ9ZG~tP;5=!$%+bGMwFMEyWu;Rng~hh)oa(F~Laxl|EVRm))~kBAgYWrE8Sk-~@vI_if8 z3US%MXo<&HD76FUPOqhI-+|P(S@+zbY$@dv^iW}zRn`ZN&Q#Ro;(kn!D(k!qfgX&0#vE49UptCNC@Ipn26;pFm zG@Mfo+N0X-I_&g}MkCIE$h(|JS#>U6YE(eYqQ*J4zch zw+FPLWgekNA3j_fj>NjKOEdzNDn}c9JvWR+v%!u9%+0OzYH>h-xwW6JJM^yR(^ZM^ z9GK&c@77_dv-Umnko>ddix^E-Mn+?8a2s1c;OKOJ4_8? zX7}1PCR%_8aqt3bt)&51D!N-jEDC5D8aHw$L&vGwg%vrmvMK1nbzH~p0olr1VI4i$^P}suW!Kfbn3Lq9 z-r$q{iiImn`y`Qfv{8pt5?Iw}p^>Z(ZTfmtD^d`F7f<+W7acmsZc(!%PE#QlFku!! zv?^p#^GY5i8``(wvKY>|LS5-=U-I+O+By}i5WS@&B|N&3*0?DpqqC)2)~d5>1$RBF zo8X#y6ysTX=?w~6+ zzNP_oP2D9i11LcGZXjitR$8Jf<%PYyc{oJd;hw%{u%$(s>*P>pjxCqfvFO(;Y%2gyyL>n~Tz`0rJJ?u5kjA z!F=#;VLHgwVArz|jd9_4LmCc@wVcSZZx16=sh)E}e)MXW2()e9rZ-D#P&=zG?6@9% zxh~y_hL?nGh1A?M)0a<9Ml{^YP4THE2!G^uPYp<8o^)eImgPYuSb^?hhvmehM1p`7 z(IdF`sEjWS`WO)MFy!eTDl3X_`1QarJew91lvSMtGC*p`&eG7!`M3klr+5OZ2l^Z2 z9o-Qb5?mu=%5c;hJ>VeAsV~gV84~#DYGFj$qVHq{q6AktZ_8HUA(m@&Dkfm(Aw-c% z%j{K-f$~VR0?wbS5h-|(0D)cz8o1@hVCGzS6n2{dgf3Yp*D`XQ>iDI+dpEm5=?yH* z(ImUz*Oc#QLj|-PlH`dNxX;*f%c)W`1&C0i9SC~|_>Wa{0n}s2?(&fx9XooyX%?DK{n7}wgyZ{LTxUt4nA#p0i z=1{Gc#MHuBR9T+j9yReEnO)0ce)5NjokC_~389#+Q;C>K+4##5VZQ$1$AK6A>g&g^ zpK^Zr$0rfVkDe=#Pu@NYuixbBkKTU&`Uln`{|LLHe*~lPzrX$}$RB@{|9^AZAw2qQ z76Q|zWgjYpdN&yx55s{wtQ6=y2DE%t?Amm-_GE-~MmjV*;U=P%32_+vH9vrD)=mLc zY}EBGL&+`HnH&vg6Enhvv!a$^R2E+cd!a+&cxlIb4bUa^Wx_V`IET@o$rH}#D?AM} zn;w%=SD`)|MLtVWE3;?zQIc#IeMuq)3JobJyv}GhL}=Kw6{I6USMf;8WaT`R_Siu2 z50vUE6>N=9ws`VQa!VD7Y1XCy(}b~hoOD2Kp%4>LH2Z4~Du&oDwaPu%Z8)QpSk#rA z-G?4%j!4jg6dIVrN)b>U_bBA8+L(w1>apK?svxMS1oi4!H-L2_g2WjRD0T)+-lTWxGmQ zMmJQybUP5Aa|XJ(-h*mUda`iFM!#74e}+=2&07HO!q>NGw}Hyc)EpZJIUbZ1o3klw zRlosP%wMaf*shr7Fog@P<6J>Z$bBZh;IldHI%#yuw{kiZZb_o}4Ow^&kZop#b{O6e zX)CUID`wV0_naItUg_;jN^VivuVWoM5_?va}}aWV)4iY{avj($K6ay~>2 z)~3K(EnI{vyG@^#U4^7+H4jzI!-R24Ky0;78oh8(z4*I@cF+wrYyf6B0YQB}p9FH$ z*&JRqSy+pt?XAU8-JA|;>YBkBB znxI5Em+W(39Be3H`Ocdp_LiLOF6#i90c_th6>CbEiYXc}zkvCtpQ_03j{VbSeHn#} z&rH1n^%~j;fFlQz*9~<`so0DfwjMqFp|R2xXPTh!YA7~c{uzs|T__NNu*rbshYoWi zXCqjS50ZfJHLcG9aoS>AxgrpbmP47QgUr8FCEKRyUa!6&hwrpHz%{(?wf}oMZ&x%q z>>bUW*fxtnpVI8u{^{ z6iJE6tEzh9A3)%b+zUBL!SUW!vbs?iR$;jl+%CDg^)VOeNhEd_+-|R*5Z> zT|z&k)cPnC1&cSHvl$5FYu>|(d?A?{q%URQ>!Y_{hu2T+ z`t{4V&-0%lf5@-@ljLi!Ss6zXu@dG~^V|?{ic&^#`%h0$@*uQkW)jZi6J(dctoZlT zR=VwSL`0{S)3``at3l_>{C#h+s=tGUiG zp+a8@x-}Ns7Rn+k-3pK;y8}k;S<^xup%XwX8zeHNnVW5S0rFre4{zGuyebwr<>+u( zQ6}DTcB4dH!jcc(wRPO)vDH<%t&)LE`6ge7d8=sfmYkwHfs+rFz@Eb>Z2OD7({gke z!DPf4PHtuxE6RqlD=bG7*R~o~HZYkE_Y>L}m<0|cq(al-8qsaRt1?rY$k!1)R5L*C zFvhoBt5KYpQ7avHcO7dWbA1Gy7NE+cB)kx|o;{EZ6x@t~U=>+|`zimZO@G4K_mIL( z6#|de7vf_{6(x1V1C^H?SQYe_q|(Hz;M%5Y$I4q6Dv6r$hV{npu0gU*X>u~998#G# z-e6uHZNfwmqouJ>l-4D$L%W?MDeuAK99@+daU761Or-~}P?21m^lSzgwK(RFloxkc zit55TVm2%{og>FvY`R!99mm?}crp7?C`*(A6RH$Xa$Zk<0%#rQ$MB;c{V4ojM-2Mr z^$UI^Rr`oH0ctrgOUptO`&LPUk(Yr{2A%~0<*0z^Y{LWkhdUm#Y8L={Ghu9L z#x!oHA-9sSC1*b@Kmc^}d`7k9?WTkd8n-f7n*@uX+)=fNNIe_*$?%`;_{Zpz;SJUjdTMOSKVt!7wjy zOA<1~)wuCJwdbjhnO&!1HBzNF6eR%akF>qI!M~Q zlQ+qltOgsxt!*C=>_Uf~3+y5<0oB98Zgp>ZfF#3mND8&uA}vGdphR&TcZC~TKN&-`$aliF^rK`6LGPuRW^ z{0RuGy^SxfO^OBtrxucAxABCwPx+pVnxbBVep$W$ui-C_aAoG%zkB`UPsiuKe*Gx$ zf*+s4+?%;Ze*N}!e)Y)^A^Rb~7U65N#g*4T3$H)T*Z=+XSMvXF(e{%6|5|%sIpm?I zD>)DFwU=X}CTCM*M^!=rPk48*996i6~Es{pqbCD^3YKYd7Dh*?T{`INqekkx4 zjvUb?rJq$u;?h9W;d+AcC7IsJ*6gSwEI-S1H1RJ8b9_@_EH97LGO>b_Z_{ySd8Y*- z%vtOr+p{QGNIsl$-`+f+P}_YPe)viLOb7xM5 zLeXVQ1l{zsYR-im(ef?T<1>9zG8Ra`%~s^?C9`vvKegM?!rumw2^AK!wl_F^QrNU}Y!#hm z!3;ePCh4tYMGu|HSkThi1qxlLPYsn2rF=dYj8P++MyWU|vd%S6E}Pn=NUj57xvJf6 zXr`+ngGCuRvfA;!9FjK``vMo2yO8=%zC1%upY+-0J9)Ip^|7ElZOihUy5^zefy&qo zaBTw8!|t@_AZJK=fj``#YEfc%&6NY7_L{7TfC_;8O9@sRjVs_9oP2r-<$!`mZH7+F zZhZ(KfC1$zAiDbA%Fq&0Hluuy12i{JE$9s(w=*BYoKGI&%Q4%;iiB!wLIeIFW&%pO zX+bGZQbNFBQWeFld=-))#uoZ87SqxGQW0yYD%Lz5wXs=n*bnR*g#HOn+B-NUj_Vb*)h5u+6iGTIEHSRxW4{Jw}zp>$RA1PI>Zc}Li zOgt_tNSMwB1KXPiCls>+>QZK5@?#P*fioaqVwF|sw5#jZ5reIcXAH zPX?FPNMQR6KI&Owpr;HpMx2B&A4DLW_mO&T%G<&0FI2{NG<<|XD8Uf*8LWR=SbZSTCaW<69k#N6TPT!VbLf=3ra3RGu&YOyX3{`DA>53}Vi|=N}a22^h zc(STn^bJQBsXo<>;-+JvAmodGCPGQa*a5X#AK>YCJmdpaI^~9jg|Vu}$72uv)DUWB z2I6zLlXZZ;H~@xlzNil{Sf%h0mp7IlQ$^%ZpRNoIon%PBDXjA2dLmSyM_NaV;@$#qR57BR9T$3g2XZlrZV0sgBc zFA_iRkZ$rfQ-Xu669u<26AEf=aO~aRynRXdKrX(%3v77jSHFDyg*w%J8D76Rz5Dcs zzYlNU$w$dwkm!8>_F4WjD5FW7EZh~{;+%Ezjkp*2Bwvx8Gm#8PJQl%T!&P!6b#kl&!1 z?P`o`V|%oQFk!X7Yua=;9;$RsInu?wKxD+%X5)HSpZINX0BF?dO)3uY<$XNG9aI2}HQ z$ucTr)vy|r^O5%3K)Wys-Nx`xB<4Ac0W}A}I{0W`N|~`QPv?qbGNRh6^=D8@MM~XhKkKT>0jP$%;HW zmnNOrHUcy3VXGM}YuP#$q+2=kx3dMD=pgaUez&#^wAR|Xtof4f8uZ=ltiC2x(L|`@ zP7QX{-h--v!GTQ*JUFaSZkvPO-VH^ciOtge))(TagAWo*ccu0c0f=fcVq00v;0t z21p#Bbi_>#uX^k)8_K>?7EM%aj-zr61Bm359}TvHl9?h~Vq57f8O!N^4}V87z^^H( z{Bx;@egm20Z{NOlTN}0O&42&V+aHM5-1XeP+0)oZm5#RZ2Q9S>e9&?K{zSorF$C-l z&}cV#uO?V2pc>0=d$X+)sAY#-UC0N(UIS#Jy^ZqpXl{e)F^_0%?@yMPCewOp3U3=h z#3ss?RcJc?ywaU(mEXv7CIlW=jK^CVEn8pEC*F7+yqh4!ZJQ2NV!$>eF}5!FSpysD z+k7uI;aw8AMtS10CeIW#S%4)vW$l^qW_+=+QVSrJho`&ihZ}IpR?9)Ft2F70X_f@z zggRYf(0SmoJE{2}oda=zlmFF+%SwYlG~h^9LjQ@0(*g_w9X|oyq}F=`OP0rFcMCQ_ zd}@BfKV@|VKIo*Rf!D~gIt5i)K$Dg0CS4bvqAe=@vSt&%Rfl+MOK)=rU0wFJ=b=Ea zg`Md6C|Ge*jGKJCB&10OJ0E3D#TNjZs?m>*OB!MRin+)Weg~i{8@o+Bek#fAID(Nd zBCDNzZwUqmr=`!Rqc~Glv_Tt;2@!tni5WQ%&%iF(%*I(yG_HVL>g<0f$^!jCZ`$KN|yhm>RI7cx_dGtc+*yb5z zE+x%nX1RVlIK3!`XRdy!ujzEUX2)y!*m#n)!bH*iO3~MsfHR|0EyuWIQp#-eW^@$> z)?R8=q`*kmVn&;mZ_}cK`7UlV0q655tHZmjfN+C8FmHwq!wcXJQM$QAat`!3o6BlW zZCG9 z1794(jV9-1gUbk2g05T@kTcDXS~k~{Z(cpFdPF=aKC9nK7j6toVbwovzt#zCsf7PA zHdRm7<|;PtPOVbcz4yP6Kje_4Rupl;%q&n65U|W0I$iJ@OoSD5s%0SWnbN(|%LMnI z!HSl&sb>mVRB~eXr<~4)!>S0_0T^`jhw`8LqHjrxy|hTY<4mGbXZEa}+Qn1ZjL+`e zI!2wy)$8F*3hoq0Etr#y^vuPIcHKerVWi|q>Kk!XQSz=4^N9W*L-F7JUHH2!cl;OO zZ=S~Z-@JWKaASB@0?(xYXX_d7-xq3DTC1?bPCuq*H&68xn%VZ5-6q(JSAK8Un zW+cQY#(K6)fzMVc;&Pl0$Tkjah7y>-$@|PIO;w3WP=V}4+H@*xf87QLJe7!+huTe` zx`R?>+|&<8^%IBv!!1^-n`_Vi!$6DYNw%SJ0H&>#mC!+M4{lg$ctH-|1b!YVe2|c` z>&kW}43-Wz3GSh>fNFO*jMInBVaV!=EGOm=EZx#jrC*2lp>w|!sqA(a%>dI~qSbH^ zxB3R05J>`O-s3#KsQ$l&E);sC3l9sXfTQ!#5ZIzB8nH*E-18lSHS;qBN2R3|>bQq0 z3joHFSONtw%F1ZL>#z!}h05nBnbX!rDT*xyDo@*jU_Ho|zeW`a%&+Ol5Y2D={A{x} zI_L+|uHku6Z(0XVE@M_VgEP+S)K6NX9+*lcuc+JDRIvX&Dn#I76`PctY2X|np*Tzu zu5&lS?7UP*vm_^6?UOGv)C-w@Ctp|?pUp`H!{DbZ#oX2z&Jt{2*Xs$b>o{*vJw6=X zXXwg84UEGK&C6C7^;1qh!RQbMvzc!($HSmUN5fZ7WG+%yss5( z4`)6@!-aX&61EGfy*oQhXwoAgXdo684<9w4id;@q1( zpPQ72ITFHdgvG`>C&(kWruDy$2d)Gd=15Egs9+XVRp%BX4#K}{wH|lQa(BG#5Ij`{ z(r4*=m4T&`VUs~|=)cb>&RQwowgu$}txA_|QYiR}2*6Tu3nM|Laa%MmC}xIi6zeB1I*D@A7H#Gg8L|8f6$QJeeH=7e;SG#7K&0 z6d;(pW&$Kzsa}uh#D;ZzG%oLr69-zdmI}(=I6K@pHg2OHFTtihHt+uhflR+SUi}6W zJ=amj#jnEKN2;Ry_A!|)KY9I(O@#;0%_BF!osyM{o8-WSx#3dpM9U>sM$Wg1@Qcyk)WjXO%pBqsrloqQ-FRv8Z$) zWRV6iv6?rMhI9aF;@HeDL79_LX+pZ)xKA_WaTiF~OVUIGu>{GEv{AFL?x4SWKn#%c zb*&bo=o#q8BNLi;W6;hJyc?nSJl~odv6}Vn)hyW3o?p%J0iL_$AqM)9Dg^Lo!*d>F zS*RQ;{lV^ZRary>tJSemO;#3ORdTH_%NbC1yb}j9-Mati)bA2uhp27+NIo(e;8)&U zInC~|O5|Zy*7H^0F{@`)AK5O8X3Qy?tN{xt4V*tL94SX%LYs=Nc#Eqfl%z$eZ&y`t zyVV&mBA#66^yTcg-l#QOg8>N_`e<#w%eF&dpdQb1=2RpcClc%OoWEqI0P+MJ7%jnq zJU!tD5*)6h1Jr?TsmCKfKI50GEe4>g8MMJ+w^7eupCz1?=hZ9+w+X&srBwVX({7PT zqLhs#FFZ(+eAi?ahX{RawBbn|?YKL#uRHp3FE0?K$Ghg_S76sUv6OF7pQ_3=N->7I zHS*!&lmn#km4~^w-I~LuNynBPVag9{ac-McSqM)Q)?f&8a)WBq9nYUL#Ly zXn4OiE6n()kssl!ny-dKm`Md=)Kk*QH*!J)_?f6_kIccEb(qkd0JpH8?r#E(I$pnd z#z%e3W*H|1W>>9~f;=d|yx_anU*a{$#J$fUl#n^N#3;lY@>_^Wc{;rW8?fZinOkj} z!CoOX~AExJ?J(l@?<=_sxcG znx)Z_4KyICPz|=MkzGCxs)aj|22 zQmB$%N)lF$D3fV@gx0a7Uc<50hfO8FE%>QkW7rw~9OeLLoy*PAnYL~^V73gu6$c+b0;I)3WOW=%@Sin zOq^|i4V>ryI zWaxo`4v5`is8586-l;dn1w@&itvvbF#$luv2v)DbFd{re^CkKk77K>~I>eUAN@#S( z8`y6MQuKw*6Qe^HM@0f%!K74C1dDc3#kQURm)fcQX<2)ugv9~|Dt12{ayO%DO${8a zLYuE`@lg_+rvXPdQbijba5?TR2#y87Wi$H*g-#f4#)1B5UUYUZ3B&9SR0)tK-4C;l zr~?S~E~UT&nJw|MCs!qi8k7Fd58nMahrn-N|L}kR<$uoM&T>l5NuRJ{{~m7a-9Nql zG`!`p1+W@j0!og?93AKbH*mNvL}DnR7dDYn9XM54Rc}3EyM?&BLu8n|Dg|bIflwuK z>d-v0HzYP~vAF@qpkfxRN0HCwODX4VBO^{pUcpglJ%U%w05xShl^j+^)oQ%kO(9Qc zC+7-^mBq+`BcjO&tj6l3nF*k*#uGDO-_ED0l(Z}dAb?bK)!5e<9VrNm2Yp<@k#iaj zz&K&)>FWq>dP1_~%i3kky@&y9K8#_lQ`O4%dcYy*5immgz13%`%g7kRAO+C`Q_zPM zMl-9Aqs1TX*m$UshXFksd8EC{>A}Ka_G#cH59>JZQeK`ukfq=F`9{EgU z)|GE?lwA)Qw!uj+0NUAQeb~-QUXIbOi?&BO8V~b9d6?xmZ|UFNQd}K*TQPsfnzNXAlcY|blBr~Adgv0?g=-Ro z=7Nd9(kwg()Up*-qk8V8k}r4jIC;l z791O(C4Zn07J#;WWe*Z7Ej0oDoLzaHb!Dzz&ggpANYLVI@$P||P0c*OS}lRfT5X!g zZk#p8Fd^Y9S{SibI^C0@gSN@>m>U=Dx}rq&N^)@fhy)3wm zbuPv7fJ}xC677X&8J^2_lu?p9oP#4ZVL^{91LOi?Y0gr~v$uK<7xPM08%1<` zv+%=DplJVHc>VhH*xW7ae&ogXbQs~TU|*5|q1$)WMzeM$yIW&3=M_mIu>b`H-7&yJ z_0e)aBIR4%5C{BOp4EyrJc0797^?j8h-NZOD`1z}E1}=ALAjM(i?bXh`pnZjw%!X> z^O+SY61%pnG2HB36FcHJbjQ>sLg2wzB#`L9NUKX_P0WE0+rU6l%@?my4&{RIaKI8| z!7S&WQ0+ITDI29Ad(SUpWT%pxv6Bx-TP)0~m#SJ-93nE3ijdM9YW9ZZbAVog0(gGq zAj0K-2i>MA-Am__zP!knVFmMeD9LSZ6M8iE5PQY$TZmEaKU%VE@t~k_TvN($pnRj^ zSKLH!DYRBmivlD6n^uh>EJCSDpIs7fepM_kapZ`8hA-Dap45sBL)G1V?9fJrE@E|3 z4XY&Krhq)8g%=J@aE4xG1=nFIfX9T}uRE{8s)Q{Ao!4l?$2E1&ot&Af$ZQ$Ixw#eL z2Gz0MMQqPUQY(4!OszU8@KNfI%A&qN&x+p`WxW0S&ZWFkQ^AR*v4Sgs1TzqU?x|0; zxd}U*3*lu;C2mWn&=-=`w|U?|+9to5k(f$Jerx**lJi_q%+3a0g3{d4-6}>0=^~?{ zW0;C`)?=3r#exe@RuxbgT}>s0hn?n-ijp-TfeSM24QrX_Lr7!5d^j3IT88|$sH!#< zq`M_R)=HIoGHwNibxK}5#S)HxSUOBMb%dj{q{i#3o2rN+p*-eUtMot290<7MoK{TAghu9JLaUWc?pY`u8SQ2Mc~8HP%I=$!Mb z#;8RFFO`rg7*^hQDsdo!AxQ7)5~BGQ1dzfkhw2xA0a7!|+6LMQA{7i9WA$VR zSwNQM1^QhHYStDrnxm;xM4-yor=%zNPY4qQ6`jStqA`mk(r3lpUIXdwB84 z>L6P3;%Zs_xViH^iyrKp6GhGAl{@F2AQiY2-qwWoHCtFJ(=cTF zYsLYSEC(c;a>m8sBC0i}JWMF`#nx>*PzBuH7bxnrbL5Cf)qdpRFSRg^`|iMU$J+7N zrFy(N`FttH`&yf7#V9ReBqutKfZL z!b_yj&IrvWNiAjY#_2iy<}Cau&mZWyYdyttVKs5||@-LsT^g=g-MEMV8-7qOoyA6p|G(m~hp+l5K1)4%C^(&V|ZUi4LFh zF9)DP%#1X@P{z1O3@g2vYp9-PIl|naU_1uM-YHQ12&-C*_3ZXJo7z=({mCX?0ynzA z5^Y(#$#P*I2)*A99}8A#X$$NM!5F=>V2`S-r+$Do<;ikuQ*y_gR?%U0*#>J8wD2!6 zT_&hgC4jM|MC(;A0-3pyn4k-po^j;Bm*vQa9;bZUO3l$AyyBXJb#sZ1e!;@4q>iHt z#YNI9O)T00?JjnZX9ppI3ta6I1h>R7IS}E!b&2qO^7B<<-%y>>0L~FXXz1Y8%Ft5D zxrz-CRSgF|j+Isd%eLio{jL}}P=Y&&W?>|E2F^4&MDC@V(w4iu3FQW)EUaE!imQYK z&l%KlC$ngIwbUt1r$Tl>2NLglI+wxKf6)-SpiaVAMMGxKDbN5o0UIA0-+uA>yFbwm z&=B|bUC6ldhwMGW1OZuZW*s{`5^`XB_6e2)Y3o(#jK0Y!Oo%whk1XCuEZ@oJhh;>G z*n+XB(_}vk^f~UKZ>)R~pV7#P{IE;KPB0N(>L<+lat;uQpv2m)Mr_(zwpWI7MGq-7 zqz!)v$bjYbABM9-Z%U+4sH+B$@)|cHgCP(fJSb>NG~w_kW;midAWEra3t$4-?xezm z_r?oTqymJ%4kMHVcEt2cNNmPW8HM>&rKrHYD-f z!f>oPp~R8rbUs~Eo5D@vmP@Lk{;}>0#t){xT`*99p1{mT-LDm0VcZ}oT!9v^b$)%i zY!Gwc61}8wNZU(xgER$bP{Yt*8&Ks&;Wpq3*=Sm}zXV^FQ}c&gh{Qj48Tc<*z7}oy z#kSf4ezB+Dt6H8K&|t+LR!kVM(_#S5Wl6`x7kkGmB(Vi&y;%b?y*!Z|GimB_bbAU& zW!P2M$(J{}iAo0r?U01C`lY8?oeqNvE8F}AQ4pACh&T4}p_Wezi$we^*3Cd8`1IG| zM?d<}e>%4Fuirj>RtEW+IKi*YxA5KPZ@&vB-1q_Wpi; z9gWX4_-G8HUrb~cGnmA^`W$VE?W*-rDWF?Oci;iop?J*;5xr`2)Q#;{#8U0>zhK-xN)&9Gs z3M2XP@SlAeSBwy}0I8)s*7A4_HHD)~sg*_t#OTC_B>c-UryHQ_oj39h(T5|j^_jP2 ztcu1-Up>6|tV}9``T)53+Kz@X^MU~r*{~9j+-C`6gSEgE!@wzeA77m^!Ta489bYh=3) z$Pi2-yw0rne4Qbk&;_|E`^8Rug|lfwZINQZaLj%yV3jPPK1)2=dH$0UUnPJcOMfJw z$kS;}z9CL3d~9Cqh+gUgH&|wqz5;6x>OqoXt?p%o*|5JmMR7njhC?S`^+CG^kl!BM z1}*NM_wm0H*!!pV;s5U+9AD*^Z~wxx{%23GhPR*RJ9rQM!`nyi{((Hv2PO=&E)lx6fxO&n;&7nZ-=n=7o7ObkuTTKaJLri-Q zQbOPfut@3y#*y_+n#Tk7DJoqkWx7-kS`e7?1|pJe{Bb2oNfn{D<EmAJ)`MF-{2HTbg`@V`8m4l^xsR=8C5&%O=M^z!}u9PF1 zsb$vNXvlMi$}tfkXdI#EN}CKHnBllVs}U|e^z1pSR6TW3Lt!nS7Lz2FH$r?;(up+Qv}xaH-)nNp*Y+<fa&&?AiVkO3xBNI5wDjn~zYX}FH1+b4smq3phq$Yngn(WMiDD3Q%Axa8MeLEE8p4TQybFk=;VV+L4`up=yK zsV!?{L5nxvpecQ&Tb82I4}C>2b;#8#K;f(%vIvcueMhct=~+|_INM;dmS`}%1=SVf z#vCy&hFc>D-6P%NBs}f!JJh^>OCHb1{_5)|0oclqpziQ*`Doo`0o`}YwnJsQeCS!T zxVlC3stu`;ZQmf^sMV1Db40=H*&K3H>O1x2}MGG-A(ewRSglX9&-q|grXo=*IWeyI< zei$)VQmi9az*_Ja1?WDdL)C<@fKof?Ie43A+w|GgiHo@d=$)Cs_>leRia(7a%>hAy zcm*dMSts3Y)B%du#gfsU_|7&7yo_BRvoupfmfj7R2$OA4G~emGk~aZ2;B35M_f45w zso3bSLj{@y&RUmEioX;dyZoUd0I_rdmI?z4N#~(F4&H8lF-f9$#K1}wU~VY+<#8;| zl9edX@X*ehD0YfLAvI0FSjs~_*w7O?Ycz%c44G2%gEzPo^=-YYC-nv;fo;^DJ2wk-QH4Hd&avb z=z2B^tyt&77qAPJ74{O`piA%3O%7Rz7vbbF^EB2Db9IB-Ip*uQn zX&qG;tFtjE;$k_@vXQN_sO4;hsM>+4SW}B1aj?2iele-GF9dlE8<;m%ajb``IgBDo zif2I)g@95}IL4QgdLSzdIjjfTR0VFvtyzFVqs{#EM1+AnF?K=CcO>B=};bfPoy4#xUeaU3h|ByBw5e^`Lm|hIP15AsmqO_37OzK`q zWxXkqIWd{cfn>6hSscvnyZOI#zT@XR9xtn^(=6YOz#RYt!jGTf8z@*)E6m;Q&+eh* zEet0{b+^lpwhGnFKF(@M!*;`UBzpP^1VhWw1F`|<%E)#H_sDAGCA&hSoT#!suORh~ zkevc${>g3Qfw%o;hGRUN1>YMX#KV&4w#Zv~T?aMdA3sLva5tar)8 zl{eGsVBo|SY3I(5r!81ga+=2q3^s}$oHWtwUDgJf*Sf+7q9U{f&J(RV1(Z4RF=cJ} zql5q;O(gr9DairD)Yv5R+XciL(z2Go$TNp+ur6+c7W2+Y2e4JDX2QmP8@yW&`P0$L z7P*PQe?@?;*)BzX7+C5^SR5#&=K(SEVslwmgv$j;4830N^wZDD5obE~49&aOk2&F86UOS)%QbKJ_pj^j) z4*#nJJy=S7b$D*I%5tz1epmiOv0p}Ec3t2}RVRP2hbw^lBHuypo@~N^w`WlIGN4hG^9-DONr-lo5u91U5t_i8aVs&#|K_Ad+Tu5zj1efo8c`2OrF(VLi<4 zlksbA9hCsVu6`;Ml&n@r;$Lr_+7@u909TS7=FPpn&?p7?KgUaCr9j+*nQcK80~(28 z7O~)?ZS9+D8Fj!>2Ri6ONAzu4Rlvqay^`kNTYiXuF#KM%&r!=Xl{}n)4c)!D1zzc@Nn$mRmCWjG+>j*OIYu<#mHOwuUt`ap~PR57ZhdV9|m6R=m~0Z4(p?xm)b zNUR8ZtPaYk4yT*fGf9heR@cqOG^?3o-s32&I=jDlBXzL(5E|uhF)u z1I3b{#dTdy?M)E|Btk1kiQv2jpat1rMw>Gslxk_Jlewjxr3krFjK1v@cbDS+^k_bT zODnrF`XlF!3s364<3s1tHPSsKukP-ps;3skM)NUy z-4Ynl%WG!WA5#@-&l)8Nf)&QBO@&b>`&qS5bG)rOhqa7^o5w`1#PQtWX>3G3o}_%> z9w#sUp}jO!OqpFMOCsa*Nyby*$iWHm(G*?i<7iUNYBIqFGidK{x$2{<(SlrUiII+~ zU~QGp+N(#`4yx1Z&MKr!se!CVeP!Ff0}`FByLc>Q1$-cMV8vEOObkLiOJrB`1&6^T zV?jS(lH{Dn&hEF1no3_l1{^l86qN6F03E3!Dfm3bQxSGPy9BG`g_0N%a4cI>33`OO z;5J8*bGAQqyf~TjC<%-TYVBOYBHqG)U=|X&*UdOhI#89oPp2_0amSE*n(1{f zY2*Z%U1+}gYOQCbb^;d0ekriG<+hW=N)b=PQaA|EkY|Rs1qzJ;?7HNbW?7y3QA?&r z`S~Slujdo|&2&(g0LkNtNQ|K8v@krx5FG{x29QBXBsWe6cwpeJ7Mv8s6dFwLevL$mf8+^m<$K^`B9Tc|)JnQR| zR(lLJkSiJ;h&RB?c0P2wVRR?I%X+d?<&CAzLw9=!$SihLt`ACkUnL1z0LH=clZxe9 zR>dVLk?SJ4lPrIbIap_IkTm9U!>Ft}n3kLURTvb)AuModoT@;;F#Lz)wj-r_)FGaU z-9Qi75OHrdY&)y^UF4g^B1gnB+GA)oit6C7_ehbz=Iku18P(D)AA_kLna#)xai}wF z2PGMHYG(x(UCO;ct}EFF?P-J!xj!$Dx}O#0l6McFZ2RWr%Xc5Xd>&r@lAW$h+z434x_?p}ROXxc0UGT#&KRJ!wR(EL84n37j( zuN-j90RS98H}i^_$0Hgc6$>Z5_qZz2KZfsU+eoFXN}jgPbTY%btEZ0^pcGO@Pq=qw z^UIJ>Tcj8jvAGo=I+ZmLZgl~Qr!9bi;UZ7AQsNTnr;;7(m?_YGOV{9D^AN)y_azI| zX876NOCdVG*>S)?#5VlLup_r)MpjBBh-}EE=VHE6;`Lhc|0{6Ct<~mN_|wF@18F66 z=9~ATJTl7*K()LxDo6zJPDraJR$ZdKGoV-SKE?=;rd;%pKR+meqGXzqz?|V!U5ys= zAkXCb_^O+Pq6if}!4i;F=13jFS8k1U>|m^nB@%nfzK)%gG{{+zoIAKC0;>S;W=(tD zg<{E_af={5Iu4^mh&6?s0D1!eVuvqN1oW=qj#qDGs!_WZeXSBQlUI<&u$HHn&Ae$h z7ps!@9ME^!8R2a38*>NNs#Ez2vXBNg}nb4hzH+wRs>_&^;`3!skRgzir9A zHhE3?qmJEljzs;U*)+0OA7hB_e)BisC;IgVKls7Fk#v0Z`XMF#jKTe@@BZ%Pvv?0qQOPU}(T6ipL{>fZpzVq6eQW zHn!_C%RX2zljf2QdULE zIJuclh8Rx0itEZ6djkN1vGY~>$b#?YGxr6>)lm~EFz^>u>xhS0b=u~{=_GtFt+@pK zT-j;a)|zeinedX%91jd?Jz{AI`o;&TuxHxkRJb?&=0|Xoz1?z5Ds z3Ra1MVIOkIX2W@D!zCZU70<#^wmm~RTT{YeYnZ*A+X<5o$WrA-&^g;V*zvHawK=~P zsP8VD>|EpD>Tr6f-7WZ&=9|-vI~T5#_5vvZ+NsF3=d zTW^(0d^RMGO37@N1ih`123TucClYR6+Vb8{@X?MmO+_tfZ6#0-ijWZUs5P09JOI%w zKO4ZBz!G&k!&!GfyijkpBXm&3IjNsL#h)5X>l^FX*2?5^sS59u)m>7wmQ`5i4V|5` zD%1_qiSv27ET6FbuDt6Fd!dgtu@iNcKvsZ;S>)VShfh^oNavYg3Jj_aReGQ&kg_Y; z-o{=v!r3^B=u)k~OGwG;y?fbW!yATC^o3KqNEDqZ1fXNbKatIC=^?-KZTRkQ5AS{k zE5rwg3Yo2S=WZ@9g}7jt)JRQ~Wlde==N@Q>1n4prFm309RHrLKBdav%0NYEJ{N)(c zUaD!xT1OIi9jrjtOz<&ol2$0nWma$pE{?ccF<7D$8pVAbIBQT<@CYvt>nn-$J0z+}X}BmL;bY{kK9RRgfY==Rk)XiJSb{ z-~y*HGuu2&&hXEmw$|vZBWR@CJ&Wjh^pi&RH%R2eMC|dY)1%YN8 z;9UsK=7o8t%946Rt3jy=BH(BhcLQVs73pgOt!ASg<>4}kOGnJ;uW2q+ry4gfFl82S z<{{(t;t5JQ=&HFaM>PUGNpUUth>-$pZr!>#7YSWL*3ebDA{AU=TEC$I5>;ri8z;rW zbF8n5e}$Q--h8d=H3LU`h|Q+rgE=0VAoGXi?5mgG=E!A2q?vH~Y54DbQ|*4ji;=Z{ z`tm`@FXySkK>4X2BW%8#c73QPg+6wB1Uh;{V;oF75cA?n$9dVO4>y#Dh-QJxaLON@ zg7>gSot@h!|rn0Fxui?WL^8(`hA?U3wF5_?%0@cg0h7Fwa0*AX>_Y=!+P z7{;mKhg*e7w&VD-$^shNqO##-8`eg_k-YccP&f-Ef_jAY*Knh;hK3(*xl=?xGJ?Wp z7>V2-jfE9ju@^q}-V7ZpS-nybTh!4GJ|SN6_m)VeXE-w5>!H<>7khsNb#XDc4_NOu zG3Z-YYsQT_&hjOxTsb%$1)!<@@f#zUY#oykZDhNaSU2Yo)#b+P;d+M;5*Uper+C<8 zCi=kwOfhGPjP5GQO&oeA1eoxlnQP3Au?BVAK5CU@%lOL`_=z38b5Po?PT?f+IS(ql zWZ!~Ju%yM4T+V2d$Ma)?qDfmL_Q_TOV+~LoWgE>;b#A-tg&Nr%hfdqhMko}U!V{!& zC&DJ=zC>~&e_dYENfrI_H`FqL-xhjtdb>hvtJ@i>Xv$)hzNCElQ)nPr zuvwsk04>aTU2;@5-pv+a6X)wSC}|ZYnCpyN2Nl5ayxhyJ|sv~M=MvPh3HV3VkF_?y2D zKgxRY|33WWC;13P?0+h;4Ib71QlkFr@cQd4upyb*%a`&KuYY;{_VCb2S6c6!4|kStmy zj}1(R7VC1flo{2lfhYr?BFTBK@geCEE?&iCNy;PKN_O9NwQMu_2+n=0E4{;fsh5vU zg34V|rOmaz)c;BT`c=in$u^nCo_y4uL43AiouHsKxL$-DZdIYuowFzJ9ex1po2NmF zqFdV*Z)pz~$wZ%lnqN)HGEV^PIiX@W>#B>TWp#wXwkG5jHJmGU97jvEk3&4t+WOc% z3Z&=Q;x@7fqyA)SqK6AI2J*|G7N;T+3jhE@ zyQ7KIL0MaVH*U%Ys@<4JZ%!rj=fla zd_mcJ8i1?JhrMbJ9rlW2a0Fg}^vgfd-Y|ws=!7u)I_vB`A1Bz26aJtW!{DvEC7!o9 zyLbf%)Ip_aIGBuXXEaMXh1Y1DT)ah^Tg>QmKo+L9Q;42v-loR)U9#Iojj-3&)r%mQ z$iD5Av1O}68-TcutSXU@seFz_PLNOg7Kt6?s3?1;QWGUpD;-MklIo3?W>AE-!vQ`Y zjG7B9BpOvtM2a*XdX>ANJ)?dPcI{FdhtiRm#QU9q-mWlk|r?d&sESfKK0e z{xt{;WwRLEeo7yA7n30;#HDtJq`KNV!Ur&6`~VHopl z@&$$^uEhqI*gf}M71~=j;{e*K!w@<(1m{ckxoNW1tJ~QyBwn99Oyu!YhU(ZkVQOO` z>`(j}zW+dpc)ttZ{XHY&*Nli?=kI^^`Wc3zpS}K>ETd0eBoX@!#-e`;uYb-u?|)(0 z`RDvIKYjVeQ0sE|DZ?LHd5uYbJfuc}^R;)ZpbtwKcX)CD(|CqD#O(f$Ev721CS3Bd z+525HfPLDlVlnBS)HMrVKST<~WTd51f#Mvz{C!oJqK$^q-tV{_t789pWug zM`7x@$h9U7DpOk*I6pgH^4K2rvYCqh-rhq*Cug(3iT#D9v}j6X=f)5 zjXN=#4Vd|s%FU1`E26%u6c`mI7zEuX0G2f_Ay81t@xB}K{=8L%E&Sc&0&yR z=tO1MXPAxo;@l$n%nGqc`#})u?9uwmwqjk8Ku`vD54?tg&6xS(vbp+6tOH6R3nBmq zEY^-!dnD5v0cjujOq*fiGgd8{&9$THsih*2OT5WSr)bb^{+K+;VSk$mO2Ni(BQM)C>SV8o8&W!GSF4eor!$(f-5LRrh zN-10!cgb>?+`n)V^SoC#sIqXbMF3R@9T)`UX0dtvC@JovWp}v}Nm4s#4 zTU%xny*TZ;vlpK61@=`^+0b6Z=;_jZ0No7dGB&b+SN4B>|^xFpYd$A3@V+J^41bR;d z8%h!aOk9e)>LYTD)zJ;0Z?z2r!-AR)7`kk*BvmYv-5Yr=rgR7qxarV6z%KzBzyZ*3 zD&1qGqZ_Tsu3kkrAJSWf&dd-XlTZl(4d~P@_7TGWgew)Pmf^+Kyc%{-BQcedZ@s-8 z5(;Tf8Bkxe9U;h1-u&nbOp}xGn;FU}7}&e;jucgriTOwz71B-WgA-Ycjb`Jrgyg7l zZv?baAP5?Z42@DXD0Mozz)kL+ECs{@I#O|@K*AP|TOt<)-7{OaH8bWK4fK#)DG05T zL!EEAZUV;nEw*+dALU9s4%Ob@0MmumXI53$s^E)70bJhA_B-56R|5oqMSL$@BFM6} z@Qb3g-k@@!Z27ADmQAkU^vyAZvRvrF=QshYKK}eY;lN+Leuhc=yHCQ)=Lh)=ABTtJ z8$H`ncMKO#K19xTcd;@_M`)bZapxb}C~nZnUR$qrz}8f`p4wxeTBuwM5>z=jiD*Iz6z?U%urA1|7)eTnx13k&_{xzd z(0E_l3zf)DcU##5#P!HqOWJ9XwXk~sqg&fsX2ce_(b7_XFwjY2EWWpBHBs96EnWB2 zC^Y4~x!=i&DrI=bgp57wXml~)8I;Pu!f3$9}ws9IB@%_C1Dm4ksymahaxeU=| zQ$=KBsg3FZUxDbpK1twfVFicz0}z*bV|Wv&9gga^b7*B($~(A}C!jN8j=xw~Q=ekx zz4M+u>x4iJZBR=dpruZz0%$>yYVkfTAUg{K-*L4hoHYZ(#v_1sE8JJawA{NuZl|P z0~U7;(Lq}U6?uxbNCLARj|WhPfE(tZ z<9b%=t`g3>k-1J6PUBsQ9JwkMsZ^;rA7XjB2pC)mAc5eMR4IZ~a!bPEWDlrAqm$)2 zNZfe1M=zWHH?qG&X~{kHM#-JRMfUms5dPZ6V84C&b9nvw@a~u4g#d_u_u$_^CL<>hH{OvX0p)IinMqK`quW%D0d}b>^mWRz%;7v z0X?jT##(z=7llf`r#dUX^JOmgxZ?vY*vcK>2i9&dx;jJ@)~waLsC61eWFat`11RFb zdF)#LX$h`SB{{iM^DnM@^QNq~n?0B0h!}aZjsol* zV0Xnjy2mJ_TV}9j*WK7op@eo`6TLl*A=;owJ{vgG(=Ov7A&sE+4Os~UUJ-a{xiP5Q zZ`{eoQAecP>h`GYpdqct&SouLt7eM_ohYg*+*Y*q;Jg7%y)%5?wTI%8ma@__a3Y6S zXfRp1)vhbB33o~}%yK(g&~=N<3si(2Now0mQkO;QFUYoyVF+QlEl6JYNZO2hmwfer z3(y9aT9F_#nIu0Aqw*zG`_o0eG2Gw4{0ch^vgxXiR^&h1&)^KulHrR}XhQ?=W#E(rgkPJVfI3*?sYLN?+2Qp3o7EZ-7OU3al zJG=)=-Q@_qG<6Aroy-|@28b>>I1^hMQ0}U&P@%CdRh)efm`na4+5Sy75edx^njWr) z1>8|H9w47ARVD~NorVbBrAVU@`bmERb%W|T+PVhJAaa`>CWZIpW43%Cf@Sfyf9!0= z+GWYCMrc+61ldFDU~ItEIklbkc3S3#;kF#Gi&z{}6HJRcs4*?Y0}I&TxtC2MYtLLy ziq=TXpoO3+G8V6B3s`?^t$oB%|yk zVX1SCt4zbmK=i{A^g+MFkFn4U5%W}}icY2%LxPifH|tFyZ{tiE2Vjn-?JqCjKhy|lTmphlXP|28+t8Sh}+4x>2#!lV*?E|4uFN8XF<9^A8+ zq-qTrD8&!}lFkC9I<{<~mX{!9gSn2?#emo#sdI@Ps1`F+9HIB-P35GHmdX#1WT*)> zzWA3TRZN6Kxkq+c^}x)z*jhY7HoaO53A6LDs&0G>0qHZ(G7V$pxhfv*C6OzD4Y`q2ErvSQ zrXEyiRO)d@Z^*Ml!;+?bvAg-MDL2r#Xf?t8>Omg)p?^!4<8~b1k$p+1$NFLDO=Ei zJDwflVq2C0TSVpmS@JT@@&UKK$_~Kb5CzK70F{`1)$*_ETDDA&L!yqRFJ!G zy?a}&uF=RS8sFiV;^N>2q(lR_dAv@bt3(@hN*qHlgLav!=cxsc%RfPdPGVQJTV%4p zObAbbT<}Mt&HD^d#6hCgQ_W&5PT_V_8jUrxRP7W{M4qF+$8MI2Yg-(fn?Ng?Gujqs zN;qxa>Vv$eim=V8PnhU24Qh*yl1Ia4EHXH7KXqP<6jgv`y6$eRnV$u*cnUig!?eUH zLE;R31oo&<+?bvc)VH_VD5Z7WNh2^UFx+ZEv$@MELl~Rh2~=L;UjF%zfj;5gr!U{U z*w6f7JGk03po1Co zQS!sV_xKfL%b@|xx-PQAE;28z-z;&Wjht9 zA;5JOL%OiJdx?Cq9cM0!@)(!XJl+UbRIiyUCxLPw8}$~ty%uvY4E9+P)DM^!PwGu3 zZ*78OCpr+L6v1vg1}&_p+EaWjLshGjSD9}^QE_&f$Fg$5mj)C*K3?i;MU?C_n4OhJ zSSX{JZtfJ`g|iR7Q-o$3X&x=bC8bo7PZ%xlBaMCPYX(zm_n%_)ay{=h{0`@w4xJSU zu(NJQTN$!$2{c_o5P?FW&OVHBij7(3+u32SGEZ$sk1r_3-_v_GKxYN3mgkcys}Ig& zbLG_&B<>7tQvd=dpTuBIc_w~TOYNl`TT}HI22+N6JE_2?MInqK&_cgqCZG_Rj+U_b z2L{y}Hs_(~{8-vTacKaxH!jGGkw6aN7RlVvL3uFoikNjabfTI{LClx4#l=U6NvcPQ zQ5pz6dcl-gmTRSfc{i2L>69+%e13tUH*PX&iKrK20WIRR8;NIZT$dzfO?Sp#xlxzF zCxdmUXM^KHy&%_G|5QTK*8#kaaqHS^QXT(|?jeIbkm|!7^dMHacl5KY(SkId#zEN~ zu?(4SQWrCJgI+=bR|!W!8TAGFAmy0qSjgqE;LxY{RKwOOXpjNBGRCrOyc7K!vQuZA?-J z+T^LkwcfKP-48Wp7SW}_&k+}Stsblck) zAfMS}i!p}10XVmXc*StNs%`9E?q9u&N{dqh6pT*2Z#lpLB)ta^^8N-0*M?)zIRM#Z z{fGh-J83@cOroGipt_Rh>q2RLT9i9oGu$eWiQj{GGwZ{*#T5yAl8wnaK*0Exua8lR zwB<}jFttFXN|fl36jN*>3R(FgSUQ~D6qRb1n!{yWlt`B&?TShgz`J}3i$3db54Eb_ z-&`hUaBv3FYX}lMr&9-#$R%xyQy&$JsL&v^f+*`GxD-shwJSS!cOPw?aIeeKJe*Et z2zta0hN(HaSh^cpu#{9e&V_yh0b+?t$*Jc_#dxJiT_~I2Qd3d&0Ia4>Dj`Ft2jcg2 zl~VSmj3yw&YqTVs*wx4-oh+u*4@WH25LN98*fRHKiyADVZ15@sDDhyDrFDA)@}Zq4 z*~@L_lJi2-d#I#H=qMAa(@NOgTSNu=Ag*q8JA)olq-07TO%h_mAXU)UhP@qbD3`38 z)yE$7n?0cXdCo5-b2~!k4%(a&Y3R_gpp+eLZwF6rcuMdFS^Ht2jwVjBf`1(T`tZY` zeB$5lT4`T_E%UF+&wLVI|5?%EufGZJK7RS=)!~^R0J5oVG|n>rpYWQy@9>ZFwC~}I zM=5m!t526_0bt!?|G-klqyFrePsSomK%Mk$b6m<&*YNrLWkQypWeA1vH1@U(aLI*{Wi;@Mk-?Vzu!wn>DB;9?um zuox^{w_%aD9hp61Ua(4*rE>#9L#~07%lWFDr7KJDtExy#0eiUCgdzZxZXi=&{tp-A z*yx2yirB6J`kbZ_ug|>ZmY^xzz-Dqp=}axCv(!}F+7&QTZL802&$JlK;>YS1ubXv@0-GDPKa zz{Sq@P)uH0P?SS6%tCPkbb%>@I)q=bAH<-8m!o@%di}Ig7+XBcDR5Xcz>&k4+YdQ#;&;c)BFJFl?FaT^8i*Y z5%~51hCeQ}42&IaK+Z1Jo|7TF;gl6jt)0u(x33@l8)5ZdkQcw=G(t-Bm*3<<{Wlgh z=RVw1BWZuZ+d>J4X`sA&S@uv!h8ziK3k3oaRlb;^81@>5(z;f97v9mi3Osf|j0C^Yc>O#?<1j-->1s3`z> zG$Gx+?+VQ9Xv<@P+<&|}8W`9X>Uzni-a>D=-;gS|odJ2(EeOMVpqCsV(kjivXC8e9 zi|oYrFf)-?QAC*8dYIL46Ms@RxY^=#TA#7QEPn0yh>zf=$2`*%6vd__uzUlPd@hoZ z5Bz4hZU+brTgVump!Ql){6JxiE}*^WVRYTD0hRz9s9-B3+Z&!rJ*@0vX)GWvu8>lc z5U~(0yu!lUj^(j7)i0 zm(MjTY!ONCxTbd(&XJAejlD2P9Su^Gd7jWnsffgr;kh2?X$xc(j8iHGn2;T#t{3J> z1chYD4p#)jY#neA`z0mKbEAPuYdCs?uToQ{bSkdoFdk4%EwC&rrow^Cr&2C1_iV|u zi*Fj66B0>BS{Fh4pXCOa3HH-~D|nYL5>Fc;V<0t^24h8TAc{yx0>oCXiLb>-)!vR-e<*1dUAGeahn%%g8@b$4Tg>170d1*C)gHq)6_LK ztr7cg>@BTQm^q?t-a3^Q5@Zo8(rO->qSyP(9dBBj?5- zk^3!?l`+Gj9z=4JC*?~_*@DI*CN3U{+XECTEFLQI-P)l^CESbYIbxw>qY(+gu4W=u!fTUOS#DT+yql{^)$o`x;K4XEk(AQ=)6 z$o?{Vj4D$u*hftrSEpU$>B*amEpc}nRf}Ic@R1Om7iJlp7}ZF-OFw?4)ev`ePb3adnwh+zl4~u#;^o z5W<0#JAfrE+ncR+0;QN}Ts9AStT8u6nhgNGDH`IlnTofIip-!?;V^dwJvz`xTFy~C zNMMx=ANf*V#u$s4EE$}5Wm&0CUrSU*R`W;zuh&= zlz{%V#SzoO#0bi`;i6`%%xpxS6&|0IxfGI|=mJ%FniRYsmkL1?hO`#b{-45n` zPgS9}L1n_C!DCPZk5$DCGA6gU(yuB+powv7xRWEW^`t6nbqy-S=B7Pcg~{b{W2JD>&@|eWeQJ&)xYM%E^ z6OfkJh<_3-Ef$^;%d3&P)~l)vK1YZ55`fr__n0pLTaNQhE}Qa{mx;D#(*zgQbIHGf zQkl-9WN!=LGG|_N=u`}#jHxszK~6xM2i|kq1$*5WFyBIw-8Dp)5ozt-^fydH8oF$b9+o0VTJ- z$&dc}^^d_s^55*CuCxSX>Xl1_bo-DzS`zr5K6N`us8n>Kb0)RxB?y^(f` zu*VR0Y6X(7Sf2|p5>6<_6`e(nG%D~k9=7n!<#mpaU2H(%@hl5{A%U}2O}0Y^V`nKo zrINRwlDY-re+h_PRDZUlQF_{TFPk_CQBaS{tLD=73e?|Okf^~|Bh_0(1C#X|d;uY* z=$6%Bb6ReL8l*j(w+B4yYI?Yyog{YJFy9S5OK;R|B)FYoAmZ})HdID*f|i*S3S&Wz z96?kx1YGu}hDbMyJ&aMz@i7Mj*u_YxRXu`>&d+iJ`b(-!ey9PpG!Q8Vw7QogjVBmz z9bP6DR%2VIZ04(tKn2=MR+sMRKy7Gd`Cv7ihJy|leV+RCDHC)Jh_i|da8z~(+udQM zc-AyYf>Z5=4SK+Vz>aR*%`0dLljt(i0{stZVpTB(ex>v<| z_u0!Al9&KO^7>JJ1RSN$4Iq1X_xJcM`3L{&_aDJBGtF7LRz+aCQTd%paRnqcFH6mc z-M>}ts)rFcA>k?sl*_)ZbGnt0jjI1H%n4SA>$ct*jYq_c?NDf3IKMdtp*KT*$du)E@FwA zcAl@TScJqWxsRa38qq1iyx0GGh*l?XeUlmR*66n zroK|d+`W2obZvyxl!YB^ngnQOVvvQ6OcaMg*BmLNiwP&<1wgEGs~|Ff?SKWjyV&tr zd&-<%Mz|7UT{_f6+i=7?LD7gAy_W&t=2#E1478YHFAvvh}}H! z+t*L_X~oxJ-@E=Tbv@q$pzS)@e`479@Z}fb2NoJ6CYZ2irqm_KYHLRtNvFh$?5Axn zKXb$T*javg!w|ey0PN|o0XxA2WG-cZ?1NP*A~~y;jf9!0DBsCGRy9kXXucqcPo;f+ z^fKj^QE(g}_E5zIQsYSm&Un}EYc;+t@nIY_kxFX#v@lQ%DpRIp(^-9DEl5Bx3pz!M zpBH-hJSv}r!V|aF1?6Ej!f}*jkXind4yn@^Tox~`5>zDtCT=56K1UwXgvrlZq$Yqt zC?KI8CIy774rpeLlVe(eo6NkO(s@zVfh>(ap77I02@H*@a5GHQS5%}BAKXgMqZDcem?u(O&9A8EXN?pQRC-!Vm$~d$t>4P501W!HHaw5ZeG6BySZW$!) zj5bj`skah%fGCgHM~2Thl!2XLtrp$oLpmn)9U}DnD3R){mOyY>EIXLwX#5jU_J; z!NzzeD~z7ny8OaAx=9D7a3@NIVP&FCydH2vnhNw1?B!EZeUZbQy z79b(IY+azJnII0qwDz`G*#Lj0&XI2$j@NKoYsf z@=Rt?Gme3lr1zkTW~}dy;Z2cXfA~=bjPBfg9@)qq=XEY-5=z%=QaK&9#e@Xz+_L3_-jw~sG$Nsy(l`;Vb%C1i z!(ic{72FD`Ai!S}-6gll!JZGg6~{Y^{P+wX`)kYo5_+SK8j$?Rs+l=AhKTtJrcrCo zs0Fb;&0%4BH-;mne*j{c7`rx%`z@@2QhFGtGbTvRq%s&+&z)k#D1V|-5J=dD$}LW< zYCCc08!3o~r-!V*20x$d1++TS3FZ{4|D2P79&^Biespi`N^MgaX|IDNPjOcU569(G zAuJ)sRvV65$yTfsA>w`}*&fI%?T1G5qk#K(o8;@!SFNh}fcL{G+ky_6$A1hoP`2~C z0m?G@xYH8Tc@Plvrfj@(A3&iq9G6660A|BRh(e!jyh-MS9I27OHz>1Uhcs}P&abQ% zy)ob;7+SF^NwVawmh~LN>KyB4Bru_Yfv+TiH)_3Ma?o+MsyX16eG(p)R^9LJm zN}G`j^dyf!8Ac4eAQADi-=$$&p&~5z}!(C83Sje<et$ThYX3~;hfjUpUn&Mq*2<}B^quU|ifiEMcJ^yQPoQzBJyY|BT#g+7|arG5g1`F^JJH3m-BhX--n?(12BLiw;wWo7`_XC2hO zZ72K%M@8Zb=a`&_JV`1?t3!m@t@rNQOvF;0$d%4%)F^_G-CM%-E5+|S5f}UErTOmq&h*yxhAX%bqqEZ(mdd<%! zseOz!RMiM)IVu{|V#11=ou-4Tfu<5#i+^BEf>;Q;0C}B`J;2H1xYNc`H2HYMB`Em7 z8bhjlbjG0BCMq?|Xj!rOcungv{-V4AcKxe|g>zU(G-I}kxG%N|R=`IoHr3YsSQx5V z`eHZx$v7w-X12~H!T`-TFWL2jr%c!vWmQW2$F9j5@r1FWdRHo-h~N;S?lDmC|^*LomY=4QO2vErjq- z^$3%e;t2n-^K1j?5f{BBU9v%(O%(pqv0}-d776G_MQGA$20m6j_>chg?>(O*^tCKQ zUnJkV$V+W^Wa9;u!%aP!tB3~E(MaKtQ=uqMt0=kVaZoldn$`L7V8E6cTxv*8NX_Y; z_iaX!kG437l(A7I3fKYCZ5U=>#6Gq|Zd`c#3YCOP6XtWZpCUG?wp$PBvMRAV3_{i} z+I0^SsCrrN4~ZgccY?G#H`cygz|3GHqtD88RME-UgN89fN4;1o<48KToxYbvS7 z5NWU#>vP3I3eQ}aKA`M!{(i-}py!y{!o$K4SwgHM_lZlm8<_{HzEojqfhDPn9IO-$ zP)|iS?$BN}C$;jj(GGUW3|eTWo$(yx|FpmfQc$c89ywKR(FdB_CCr{u!F3(DQX5fp znGt^Aw7dadU^pPH zV5o0eibpr9W5yTMAaZ77j2;JQ9ZtFLHDlHQ5%L-ocBu!evC25)G)t;?=-zh43P54tX*k@f9wpUqI;gG6GXXgv#S~0GGAKw_kbwR zHMkwv93G02pd_fI#tp!pS9b9+EIVOanYsiF3==bUNTw`hs9^UwIyeIPW(H7LXH2P& zi`-Xrg2d{T+v-?q1s#TB7SORLAG=CfGU|!hd0>=V5Kf65?ik`Su{&8S3=Di?Adz{6 zc!1_-Yt1N(_G|!;P6ZUlK$o}l&pM+kjr&~@Yk$cfm;DZmOcc#F%NqY-v83IR!Z z5-0gug}XfhQ-`;1pStE95dcj>pp;gqbi?yFE{HPjmE`Hf9U```diCYPkvaWiom1C@Q_wfu;D zV221@7}5;KEcd8qfAb%L1i>5(Io!;%&VNTw9aH7_#p{RRH&%R&2q2wG(tmb3%imevwO%q5>52;mhpp{bXDPm=w?*@QaSbbV-O zX&lxXLVvwV_Y)!U2&xH~PrxmUn`%x{AsVdGMp9ilzyy2pD1;U$k?mJZ8OV+S7s_i< zL`+LX7TLzk>wXN+C%W@DcDJXoYa#oycm*(Z@Gl?8D2E5(gKR!G9vF{)gAH>B_SyPy z?!}N)+Xt7CAvy;5#{2Sf_6cG&(wH-?PkW&SCL+V;Ufk;cr4yqT~|Iu%&ic3Rgli z%X^CYj3I3^bQfiTcSXGnV-NQ5(K2SKs?yf0dK@Bp#x9GRB?6!7sHz9R)m@puRNLYl z!D_=C0R<{cUb%7u&~$d+D*kMhAQhh_jG;WUJpr_q|My^F=d15YuBs}lYTth*KZnrs zQwcpc+u7g!{mbX!M>(PlhLE^Ru9ySKsF7!H_;u4>S0#yz4@B@#*bb2VAh2OOu8Q_o zHHnn~(uXRR*vZyoxjNBK(yO6xInDp(k)AI<4BYbTv55>4UG&q>k6R>4|2 zh2FHoBy5pRTcJxqzI8Fo3_RxCsSwGg8f>vB4Y#~WXm>pWBl7vIK(+Mtfa&C&U4gMn zewV35Qm73EHazx;7=%B)fYo}91*YU;4jqHzY zi>0x=NijEBozyp_;x=$b=dC`gxnbN4SbPq>;VuA?ldE9q((bPuRX&wBXaWK#^U*!I z!WiZRUNTVSu|meQQhXj7H^jJal3BSdytwvSECCh$qEhaYP5@vI$ehz}&7xtA9n9VHeB32(%~s_~q-Duit(2`W0dx zObWj^Ku6I!<&OnsMq4+ntYWa6Q)7OXJs#pViK4vgvxqE=NP(b7rj$p^Uv7|6-R5Ig zAW+*3#vI4yP>nYb*8+IqOkvz@E zJqR}EkwP*OouapNAs$9d)jS>%FjcqKk|UkOSYk01c272LmRES@>9V@q{N#;Sgq3=< zyKTG%8WP&9XOJ)j%)ks!VPak3!(%UWP*e}4VkNI4-u0$cL9fa%7DIfFDV3e%RG5{| zCzf~5r=xN@ZGP1|=@uQ7$sg*~UC@xMQo}5MWX8?(Lp^6Xlza>=#S__qS^T9(`(sG{ z$hC+UK(`3PPDF@G_J-}W&6{Q2N42oJ$$m8wa&@aRmq)5<61|V9y^Id$L;e{c?a;Xw znu<=fH!21sokLU^Ds@Hqs=XN^+p;4ays)3j{h(i=4scjiJk1gm=!sa<`wD(VY2%E}bUDklvQ&Lh znSBcjfoKGsYU`z!qfnfXD^oC-Wr>_1ZplrV590@ouO=vs-SK@K7m2TX1BIF?S~R(dl)LRSG{>-06--| z)H~&X=Jh)&G@H1iiIPt-jO6}n+IpwtW^3thU=1Rw5s0R z5$GnV>@}5vQIl4Hvc|c%<*4~?+MU#D_MTwv)ilgdP*5S6-Uce1NDA1lTS?|6X5JK5 z#OQN|kc}rQfc1GOYFyb1WcXCm!ag>43J(KmS zJ*Dtq4x)LL=tz@5BFec&j$Qvc`&u9QjC09G#(W3{T^S~$-^>qoqe_nx z01lGn1M&iQ@9WgS@j6r$`c^0HI?pKOEOvQ+e1_^Eg-%+f{CT@M_u2Q3uZ=Bxd2{bo zq?6)4-tz7MWdj6>NU>U&8A@QMh_v+~s-v&YZPO)6TH@ie4V7QoTn8E>>)jZtL<0{+r>Y^xU z_;(fxF;Q*nk@ZUpEx!|&Y&)!Id;wreLO`aTM@5V4$)IpUM{I%$wE3*9R_|Oj>^Uj8 zjFvqQINlbLvSg+m@JqA%Y-DMo(8w)^0?SqRK>sZ0y_0gu*}@(r&Pjd+rIn2rHM=jW zY9eH&R!_8mnmTSE{^mzaNieL1bZFu9h}SAH$&{ZKh*wx3l3nx?&xH_}R25}5PidV3 zBTWU(#bEAe9+NT9DA!Rv7Tl0td(3uhJYraSEUpXH&hkTw-6bn%t3ZKb$aIo=jj0bk z)@rFZ;l%NjjjzI(lYtGM4+J<#b{J8RJ(!!RAW5L^w5+A#NQ*X$MXKX5W!d{md2fW_ zn61x;M!6}E{SJ;j-}8|FJkVu+XR7Fm)c^SMQF!_6@PwJR-9b-a0rF*hJT6Fp3CDlH zaGT~G+U%q*ln(w9%;pAy-WPQ9>eN}j4Fel>Zc=ds?Pa4$x@m`ATO>HkLuBap=<>)w#i^zN(YaG>3pK?ya$k+tM;VTWSba*uAwDK=sn;X? zvI&|5mVI@N-x_33^*PU4=Q|llg=8${uf%C{p$-5Noz6to_Y7h6k2 zwH4%YY{Q(T)$Vj4$&$VDu@}M)w#VF<+N&{0YC{S(EQ~Dy#6EjUw;f7BesKc=b}J9H zt^o?T$npU9Y{A<&c{3|1T>{o<`Z_UykaxSNoJ538nx$?Fuzsk;R13yZMF@1z?P;k( zB;9P@j->|C>eeQ9*b;z3@1qK=v(k-Hkx+2q4Ga@4S}Kk$A4}S(Di7U`V>_ur4z<}v zSmfDoSM5~>^uN!o;-D;cZl0SANx^H`q?VcO5Fv*gT>I%^I$jblL7lV+2?e6G%}n%q zwSZ!CypoCt!IE-39YC_A-vES;`j-VdH1BA#jY;n#xK;z^q8A{pz{MK|uX-gI*ebfn z%|y@?ILfEk9~3exx1e>%DVl$lag?ntTP>zBh=AAL^ULql|QL>u$CLlDmNxd&{V5X|g zLLX&`n^Y@)b)4zzAuo(UO0w(D?G<(2t^!dU!9YIdV$n&_=BzunkS5fdkoqeC$4Yjl zQV!lxsCvbCb=@osGp-65l}{2Xb{2R6m}jksrDe>)oHv=D(3h_{sZucbdU%AZ;iPWZ zoATl29n`y&o4JhGkid{bv`y$=c#)m~wMO&$uDK(Ge zQ);zr!!)ha!`?(!9-2b+U}2esV)J)^Y|4KM=u-(}CZ&1x>GjeoH8Dw+74HR5-Up88 zpk{pzi18&#$X)uNjkvY4GMf+Sli{GHCI*6VoJeq)p!7Hchm%iXvjTPsM1Lj2ip7E& z*M`dII`P_>q3BR-g>p;ku1u9c(lO7~_>>iYGX{vfb_o0?DfO-!reb74%MKrCcA?@N z78iPl<6R|0J(!eVVP(qH>1qk|6|cmaXNump%-9Cy$N9-H z-pE95;d19drDFJ<6Cj|sP7f2?L&t_S4HRbBQI)vj{v%S6Y0i)Bo**WzmhD7-va*PR z7WVjHn+mdH43KDAu}oE)psO81EQFpG&DcvqbitJI3{O{*TOb#PM&(1U+r3@glo)e7 zdr3y;`%V5DUjD3)ynOKb+rWbyi!fo>DZQvz!eiXP%#-K4LoTL&NW$YtxQ%i zm<84q8YKHb%cgW}RL|S34`wPD$U<44?!k19V27Dv3smDI2k4U?0!3huALy({Qcj>) zO`oMxTM>x?j|8Wh$mRfTD$^kVPP47I&d0UK_N_M|j$j~Y*O#;J`wHT+P~!5`8clY&1G!w>1s{qJ(HE%YD#}z~<{;HNa<2%7G7>Ci*vb zKqYy`8YEX6Jc@qQAZz@)&GFbV%r%Ou0f z0(fedaSPL|=?I()*y$ND*^cDF$sKiPn1ECP8k=#b*;iZMqRz^P8875RZ8>+#YpJZ@ zxWNpkM{K)TqbJ4e=V@IcAPfTTSxa!_qrNH)$$H%5J-5-Ro|`Cp_GZhlem={zxh=M1l|-#tY5kbi4I27w=da}=*g#CZ152RjP#bRZ$Pcj zyUm4sbq-{)3_?FQ*>8M5S+l(mAi~U8R6hkaV|GTQ!V0yt=*$zi5EP^7J!nOe=b_B` zwkivxmK2Gh5A+l%`AFr39sxW?c_t|=cN>TZn6A~LvM5DHs@Czcee%muc2b+(jc7f% zpcqDdo=`Pzp@ZXEcH_DT?$J4N!T{5XIF88F1mkfShYm4hYoV}Y%HXnn!!vR>my*wn zdKtq^#^10xiMR(J+mgfhuR&?XK++du+jZkO!H z$YyulNcgxWSqA1(HR2iap=@D?1ObIP9?*2jVG%9gOL+Iw@BTiYw+mcOp;=ZZM_ijH zV9Q2whjiDpd=n(!322J4FL--dgXxj;evEHg*A%G1=3p(Q(p-VALy8~J4i2(xh1D8r=7b!#sV{Lhc+6p9foYE3X0+a=( z^B5qcB2j8l)erkPanCrFMv9d+;gOYC+ zHG)aQ!`NkOJ8fN=2y4Yv&zl2DKy8Dj(&j#P$`Z+4!h9~@fHZ*Ab!B!2f_*F=Hwy;( zxp}-b);!*t2RxXbWD6s8w!>g8_@ym~0#ymkC(wWL^6jEvWb00YPvTIDH(}_|N2=Qi z7-5KVzDRBTM^v1F-@Va{jDuljs3`q{IF|F;r#yld0<%SRzGjy}WpkXc1Nk!-qL;ot!T)e%7?$&XM@lJ zQMuy5h|v=!>QqO%CToS}@KV|`viMh7fh$kKN$Is$kk(Xcf_^KAfRs+EgH_8ojF$*L zNa_xt0b8S2XZ2Y-DHgr*X#pK0lF2!Zz=hM?V8ewY7%8pl$~}`FuDvDA2*UXdA3^9F z`TY(MWpX~iRw33(^6s-lp)3t)p&_HP;oh=PE)#z)Uy>ep{MoVmy?o^0&3cAHA zhDdH)3zoQtMjJlh_LSs@dp=50*?g0f@{}>OxTCCd0`h&*(bN4TycG)@>5fQSlaz4^0)MZoC);0D#tZ zSd}9Kc;g_O`i_>Lm&5b60H-)FM+)8bYU1q!wM9us+*C2?FZJvO`3U>Qy!8rl(iV4R zBa#ZhEa%w*>8TDY^9sU1r`>AF!$tzkS;tPY5JncW`N7iI%Y&0cydoNz#C1d~-a@Lf zCRy-e-`F80BUByj2-}Mu{^SRq)%`I1Z~9fL4A`X3#47=Ff*GAnHYB$@=T`@JP)xoW z@^b-(NpCG&Vyt|W%nU;3Xo!*(Cc#i%{ClmQHTDW=F6Ta6SY7J?Bo)XNlcWOv38XkB z7+YkUa$!Qn1WerQf*y|gk1_32yI$yJhxA4N6u5IoTn=*KjG^e7P{IeFR8KY zc0in9elLOLd;o2{MeD|*UJKb@)V-7y?J^cR40Qe1D~ zrpzFep+_reZM(uRNE`lENJ7J*anPUIF;%UEghquAXV@M+n3*WrW$VecMTrO0Pz|1~ zi&RM{Y0fTNi3Ky>W!ToW+7J*VR@nr?GN&)-%D~j>i~V=4fA!r@ z!}lNH%>EB<>yUpBO{;$j*1`JhzxFwpdt|khgHvnT`ygXYdJYlV1^CC7JC2$+n zTZ`0OXj@ZGi>n;yctlI}O%DuS|{-G|JNR^Aycm%P~8XJSW-;08W4E-(t1^i>D zkRGM@12hEYks2p}_^Uba3;>1Ujb!UN;|j+5>I$LxL5Z}L)F$o5nIV8kW2e=n{0bz3 zJB$S06Fj<(5ZD5+Ttd=7`#BwX=2!<3;8GthZm*&X^JLsQsB6S?Mm4?;B&*#;Yh#ikvrJ&#oGL@1VEO*7MbfqOd$)@jybwEq)9ma{IU9_*bQy+)y zyDJ~sM^y-mH6PXdTQ}IgfCnlVAEMdx&odTW8aJ}7l42qrT(yGdu1kiA*Qi? z6WWI{00(41r6SgWv}D^S(6DY6LbM+UQ#(SYBq=16GAVP@FbAEssld?#=c_d48?Djv zq1>T6W&tFF-J^}Z8pB6R%xGF#R20o^6;EsOtenUm)m!7-4ZR;K&u(Bqhtrwtzy)Pk zK3dhW=>|yiIBZwBP*?ue2#i8%$qQT{Mr177#hi}p#Nl_ScxIRVSc*F~a2b#YKvirh z@)AzlOephvelbNKbp|TC(phxtQ!n}1aqxMVT+(`53h!-z=i!XOMfnw-KN0yTbw5XQ zZ#Lz_XY+5ODOsFPw??Qqt2CH2#|EVAiF_n?A= zVE&;_(lFz9v@nj{Tv;v2>xi^;1Fn(Z2$y_tl}yA!%oT0j%`&?yIJ2gm3vE^Mn@>N<)5>O9-Y&qO>nju^ug06CBwWu4W)WYDlgz>z3Pr+ zykE#oA@!Ks)IdB;ThW9uFDjL6K>@@aY87Qw2QqJ(c$2KC+ggJytEo?p0uLy}dqQ19 z*8>WJ79uuftlX1VOtoPJX2=#6zZ8^WbVPx=xsjG@EKf@C&S>|g)eQ#fGdPvA6lhZL zSwnkPx)d#P)qPwSD~>7SUMX*bXvSx7*{iCRc-rWVNJY)6wT#Lgs^oTgq};xvlABtv zFn4Njec32~MvSx$S({l(VuPf{sdRe=Ab$XE7)ix@-vs=3a3=Wh<@50RtHZnhE4+S| zgC2-Q)|k2{mGnQIv;9B|Od}CAH*}9DLM}lOUq@wmoX7F7$$yYUT7bT5dzYL>^Ea!Q zSy;q0&*I|dVz3z+*>5|AD-7dMGkd&Lj?9jmt4IS0hz}?u-CDu{u$vQ#w1TgzAOPU= zDO3Wb3iO}Z`bD!7{67QhWU{*IWRx(7pf^6Va2uH%h=j0evOs{sn?lmcKVEuDlVE6` z59QSd$N?5P3pM{$lPq?~fpZ>JebO50=%7Umd&uhq5(%BxW8lBep><%SW9wB?U zN(5QUFJB>9P}y`@_U|_V^_~hw+T?D|;U9aZZR+ia-Duv9J`a@-aO@m@)Phy@v3!~4 z1JtTbR1(-Cf_|ak9Et*^oJ1*n^0t8hD%tx9vQ3>WV(@VrFB>2<$+eD{I4AjJT|EF( zWfkjMQ)4~jMm_Pkw$Z{KF~gJ_S2f+tkJ7#g_Os>SO@d%4$Nw1kNK(|3G&{;8K-9ar zOfAuWc8MO${KlX)7J-^TZriM{lgq$fUlqGH$GG+z1N@1zu$cKw*g<| zG1>Fx#PJS#;8(NDgV5?yt6>!emSA9zDVn`RLA;O3o3)?`!HtwiNWt9NkW*Jmcpz(t z43R35Ey)$|2zNqlRtXVD+cR_0hz-z!*(3CQS%PGY^H}I>XpaDWZE0o%l$H0jMo-TW)q>C3S`vNHLv`lZ z3^*Pw1tx%wX<4jguH8|SvfeG<9_zZDl#83=AF6@qhi<|!gbQI!8}P5k7LrWup3&LM z=e98zg1oxOc2SLtmtcCJfwaK}6kT?P++IDNgHIIEx$F?z^|aeCb!|pZ58DP68CORK zP`0Fu%pE!803R5%d5fy+vr*3hlbt3KL-u42CgOh1! z9p$q3JZigyB$A*BP<@}a*P@Ld5693O!58@F;@IFBcaq}Vr|l38cIysAXW8^DA61qj z`~rPk7(vssp%1*P9B09Z2cU%%(Y2QU)RaT*vULissN%)5x*2jG9%SW4Uai2xUz6p~ zz-nDB3drfjc*}-(@~YsW01pzM+i`T0L*~m@VF$JP-OHy|&;Bud|AFtH|EqEHSN8SO z{N10w{&RTwIilb<17hcNbqx%J)tUvY%9kErL7MuyrPN{iBEx zWOzgtos+FW0+}i|LNAmN>(Sj*+ZwGUX7LI@4szJ7Y`qb*CXF zHYD$&YwR7;E_ z2aqr#mOX1`p?ohA?vo%J;8>-q_F^K0H;dPqnEA0SNRg6 zIjNo@jONr`*!5WPy0tp`X;E*oZ+PlPc^&AXTMJT|I}G7TrBwkF?hlv;lAi?|pY_np za2+Jn6OQ%}smEVU{0 ze;R=Ai`2l4wmlF=-iCBA+LC9d3dp6E@(j_1GsE6RK8N#r3L;VV3KYeJMz|8o-{jMO zk-P0vHv@C+-S~b6H`0$GnpeRE89fgPXAgy5<-m1@e!qmAqQwWF=hu3)Z zB5i$~vZb_}DI|ECxETRzQ*=y~H%!NZ4V4lxqpgaiIi{%GI zlT-up4*U%)1q&pp7y6!en+YxvFvduSyjaT?1zSctm86a{#m4#PFdw9>gORu8=lCM8G0EWq=E&R$^T2qYlc5T!&B&WvFmd zA}oPP1c9O1X9BZkk;UO^9Nv@fmFHTwUAw54VhkPM;+)bqI(2-QeGJ?cju<8xr^rDR zlFW5Pwfooc%Kx`XyAmCGcP*i>n zXV_)Yc(CAhy%sy~Q_V@^DX!YIPs%KsM@g=_7Va4K6v(wslyXi|By21h(luNq3rncf ziWpSVmJ@(?q!2>Wz=2ngP%5}9*-QQM*AEpGpB(`&b>j13U6J~{0n{S#5a?=0tV#-C zcM*V)s$so30=Q~1_>W7=IEdh~t)mvF^wNoH8k-L*YE8NwyK!cA@Pj@208oTKz5B1P zzm~6mI6UPKsZM@=vL{ADY??~ItYK*(h52FI98<0PDNsl$p*6^GcQSk zQ_KFoGUSgKkF(*Xa~nHOQ-C5u4Ae9Maqs`9>rIxV$F4N7y+6e*N@mrqA$wnxRrQOg z%`OH9;Ew6X;2wyTs@U4dw9}@_w5dumIVPD!CdcGt78&_oI^VhHI~RX;D`|`XJmQZC z2XN0l!#B)6cAc=v{1D+N$z_b#uH1S9lSfM89cku!86Kc#q>DO$O}lv_l~@GCo8D`k z4l*4`y|<#{U~(zpdc7ke)w=@FY$$*d$nzP1|I9B(V~l*fDy>i*PvOrJSBWvvE^s$q zch5dSX~ZM0O7(0AgV<wq#L^HOA)3UpsAF_0~_uhiDHa-q)B5%20k*kxPwq(E-}GP(*CBy{MaKHcQG zM$;*B>zWQN!+grF#gLU@#fmsc#k;tjD83^SY^+^7+tdcEz#hwxG}=rF8mOS~JAn_O zz~YWePzpw${h0dQZfUpj&z*>ddGBd|I|-6krlr zKtny1WVL0&3x>as?k3MavLQ>Y(@qQ?zIb>XTE3)$=hy; zPM5ONfJGKM=frl08K@>Y|6&BJMyq}rwMS8(e-hiCN#5FxNSldI{C2^NzqT`$qToD zyOq5IAV+WUQpmNma8$#CI57_+^nV>nSJXN%O~*9o1IkbycH1`;KZSv0WO$Ot{qmo} z*Z=hPSq@EqeE(tikLO7B1xv-Br&oSO-082r`N#ZyzXU?o*g`Am?1r(Xe4qV*?OM=Y7|@^@`p)DIncvF?&Bn({l(L=nA<~0X&iyJT;ZV3dw}#T zvWj0f6%|5g%ofz>yjmx0;?iBaK9Q=3#DKPF?d|sHkrT4IY#mANCRLO?UBkeL>58ez zj|k&2J8ace_`yQ)!`^ulAEd;!lOo@wmh44W8FGJQ2af>{mTlOP$J=q(4k;QH0U|X* z3ZQ7Whl%<=sUu^@S0Cw&(<5PmF5|UV>#g9P*xJ2{*)y+ueO1lQisumDR;0ase+}0A z^c?*Z?*;1XQXy_r!L~e-TO?0)pgJks%?cV&E@ zT;3&5k*BwD<|AX`z4$ zP;1oKMb#aNglGeBQgQ_wW0ex{Qlr!+j0JV^mH@4?@vGHH%@%8=tuokf_Xj|#Pk^zR zRiPg2F0#JJ`+2D8bBaOeg;L)Jt;!y>l%6ObG}0|2D{8k1l)wBg!Ot?SRm+1c{fl=3 z)LUr2j&%od$g>&30UHgz8Y(rilu^;$() z0#m2CQ}=O~S~>A6SK#jNge^=nMr__8AJ~5YhK34AAgzx?a&3Vn& zQgEU7x1kW*d*!m&x`Lq2;fjK4PHuaFDJRE_x_9LbjDux4r2Lah z$I*2MTMq+M0it^bi6SMAA0)Yf7AgGJR-+1PPui23TD7OQEsx(ISp&U-Lwh9_=+!_5 zKEx+cSum*Ws~tq_HYzflk)LCdBRZBdMMo)t8)I!3=zwbdnq8rcOXJN-L2hm&<*Wrq+bGRWh5Nz-wE zMj*6Xx;A{WbdkrMNfMrZ3ms>DJcNjyA_48Z=K^u8Z4YofRZ`E0kx!IYJHw6@p}=wGDD&vli5u8e=yXb! ze^G}{OkYN-H@K1zte_f`veNb3_4>I#+h0+_dOb!sbLdWV8yU>VfWJ?X8RYH_^-b1{vE%K)- zr&0xHa7S<Wimp*Htao#lfk4xFY|OIcZzN0+h~S2oc3JBRq)?0A{S;<#QF#@zN38XiH7@kVkOI z-h>Vy`lOIt47SD0ZIC}wYyk9IqwFjvb^!!rTDX+YaDU-bq{qCM#~5iUMAH6DEi;kXUjEnc59e_CS@_Qua?ndK z{i?8zr9~Ma@wkBU0+=IKzm~nOZxCSdYcN1zn|puRl&yA`h`F+ z!-!lLxif3Ls_S`btV?<=59{bMy~{2;JPb$+k2EwtURt#Pcg*{Q*mt9^2(SRPLPpH0 zuT_+Ltq>;KX--?VD`3a_Q8$uvOGz<0++@Hk);dfI$5A!RAl+blhy1Uwe zY@3?aF)x5mEp?Omh3NU~M}1cOQIQB}LM5OPv4>xR!8&idwi8*b)tEDs9~rh-TPq^- zBZ{Jgno^JKY=i%w1v7PJOvk_wIQbAIFjPT@i5Xde7OMrMO(F7J;MlCB1a?TW+S)(^ zxME2kRX_lgogp0dO_Ft>=b0576mQ3nS5Zzl`Iv#od{L>bAxEp6tNl5gGr5nx zqCe@c&Cg0jhgZ8}rT}+`3l-Zguv+L(S=4GvaK{weI(nPph#c>LhHkW3CJI2e9c{r= z?`pY?2zBsSTG4nt6Jyq0g>vhfOzC3*Z%4^xA3FxGT`sXPgFS$3mw@HP^V;eJ5lW^c z>B#oyJgOBc>7xo8vk?jUVLJ(g$URSV{0)keR#xsAL8T z>RfGRti7d@gVJf4Fn5+KZp|b$3aFS@mCseJ4H|^1k~%L zL9buMaMH^)9092}2*+Tl6F6vq3n~r!N=t^Ws5-$<>Mk|t7|=7Ith-XNk&IPx6$gc5 zc_j*qOkgv}$0?U?ojGp=J92RiGqo{|o+4|C=yYr~`EjM=vI9gm9pa5~N~CVen;Xjn z-HX!+(kxn;N^HpD5E9~j3{licWg(pe_uGn_vp14^WyRxrM3yE$?G+hC)iFtgMaKYb zar;iWeNzr@$}>Wv{uk#^2m|%sq4Et@8%t&`PnUChdJSZE4%C5oXO*G#Xm*0op*(?M zZEl9eCF5sNeKs~Te?S6gRnxvZ1{~W23ua5~rZKr=wRVv)SUC>3T%kqa=FIY^O2Vm{ zSvobipe+NjK)9GmiYK3t%A=E3Cap4yqeGa91e4V0#2;M2Dx%b=y6{9rN1NH9JLi=u$(Bph13@unE^E)D)*_0snJ55Go=4|;#RS6O>fy4m=?m~ zGMpO!P%-i4Aq81Ek=hLVrbveBC!d7>J%zbX-+%D-x#=)JRTM5aT``snH)xBv(5bQl z`>tj!i}{LWY`cSO!OoVqc&8~1jAelNkRbG;-U9=i=@BIST(O_HE?SPz~&G!y#^4unLc^u|-Q;9l9 zzSl@k}9g=~B~WhdRlt3cnN11IFLH8BJRb(yQuL0kZWUDEaq8g`Z+H@Pqfi zU^MW9xAddrL22S98JAx8zP2LoB`A6+1q%p`LhbD8ilgf@*q{uOIET9JOxKh0C(w^* zLiz$v`hYu)nJ`G)GFxN4c`Cbhk7V&m2)o=^cDAw5P5To}wd>Wv1fv%wh*%DGo|Aaw ztP@;Y{pb{1?-=iC>eFK}s@ykc{%mc@+nBB>mJc?mG!b&19m=YP&~Si~ik)+>eurlY zTHUiLU*V9DaEDkg*?JT)`%+^7FeGRn_ zFB1rms~6kDqBadXC&qt6+V4;8^zZ*ZFX%sqx1anss(bHWeC+M;<@=BLIq<;03TgF^ z=*Z_67!m&6RoVab?YC6kl6Vl)C=?or(^WGH8=1TW6V!Mn_mO_BvwGjWFPEniy)iOF z71&&)IxL5BqDTIdXr3J%uids1!SHYY+6}oWN z8%anKq)wLhJkTt4ZXu{77i>V9O8mkBAH-G;WNkFv1wg>*B8e^P)9NzaAzo>@_J|2Z zpBS7r+rZ34DZmn&TwMmwx+G#2-3B=4A+x2<`dK$U6=3dAszW^DI6KMNw!?y!DqrRP zPsbDp;^$DrW8!#2o3b8BJ-S6nHWxOUA+KvE*{wz^~U|+g;kDLenjI z@}(fR2aC$+1IfmN4PW67%|ba|bqhXx__sjxYVwn*mzcO<=2LIUJ8*LpII@_j?5Erl z>e$q~?kb?RCY`N3Xn^%Vfc^waQw^AjGoOMY+O*VRm%Pdz^Ln0K#kDRC8mwI;iAAiH z5k|G=dTO~M8yLrtlIZa%>2X!DzEVN-RhC}~N!Hjp_jrV&_kysP8$FYvOeZH3YZfEl z8a-gD6NJRNJ1`O+>m==Y)*bW}J5nj)0kt=G8Q#mgmIAxW&QQfV7S)M>^bhu5kpJro ze;59X+eHLBu(ai8Z`nHH{|fJaNf?ISGR!CDiLxFGu&Pr?0oKVvilq1!PdbP_4>tRx z{&1^`O@@KW;$f@YI{b#mN+h`y3txZln|~zA36(x03h{fYg-hj7NKH(mv4A<*!_C;} z%Lnv1#B$lhfDoJfO18J-s%*CxC}zn2}M6p+yg>*c0aY6nE9H)6HD4?IRTLv7`G3$dV$%&2$| zi_If8`uhxq%q)_l%@}9r)$tbVWz5US-wZR!IVIO5iE$$?hy=|1|rpA7QVsI zit@h?gL9}piqtYaFlgzO-u)-wo#O(g$^Xi*4>cr0p;yNgOE!Y)QtfzrH%M0X!A!DH z-&=&xRAtpjVe-Og_Fl?^oh)?oOiruZy}>M-Ks&DR1)KuKoy&;HPpgt{#inNT$v(k* zDbo>-gU32SfS)kDHTsj8U=v)5r6&#>!g?zWnB!}h*e6bdExS|L=?Ws=qU!%iCLI^W zAJ~f$GY`t`sfs7bdqWl(0*+vXovl?>Qm?fPNnu4w)-!kf`crf7`?v7^1+t)2mmkpw zxA45Tz0VAcr>lWi4NP8F7*prTaEedsgr-hS>Yl_J3s#R4%>$c0y)Kn+Zr5d7vxzWf zc#Q4MESlhv6oK`>3CK1QKgg*M33VMxAnI{0vqO1TI8^;zJ=K;upJq>l*!dz zZjz2z+(Ms79Z)$21lhXE^_|4lt9>WD0f0C#?yHO+ODHj1w2bIRCX#(ry;OqV0~nh(?G432_&$KDsk-gor6}Z>2T`H z7;d#^O3O0_6Umh4&(ox2lgvs`-u=KjkSrJAiD;n(ao9Ya!>mCa)>V9%_BARnj2#X~ zft_(xyIeiZf*|%pG`C!;SoyK{OK%hOCI;mh_wiv2n!)}6_`Ta6-O8%2D7n(Yku7M) z!_G0hVtD)mUWgfX#(Yc9~#t}5p>?4MhmfP=%GG9 z>Y04yP5}fx(kn*JVtP8YxXa$8K#g-jqa*RczVv}QaBJl;v!_=AADvc|U1Pma{VjN# zR&Zk|)~hkf3(wVH*1lWyYtD*)E}>dLs2i>sMW1s%fJq0SwH(@`S=Ji8PAm{*qdQ*5 zLK1OOWkH)UZJw`x@&2no358FkHvH7I+AU@ckfX4%!4rUrdWB(MvYdXBru}TYEKBzU z-PkBHp)V|0ssEvk$|fqPVH;HKe)|GQ)$XLu?FSbd^3%+)(6msE_v{^tl0a3boVub4 zFs}0qz!V?_2sL+BYZ$=Of=l(O`3S9Z<(S^}UY|^A*L#r7iGgGRz`a&cQHa+1Xcfo; z=73RZl$09aG3kjNgX_ac>5)Yd*0x7s*eu13&e1TUbw5cY8+!vsctf&xGoH|;h65LB z#(Ib6vW^NVbg%#+U(=Ae#KygK_EZm2O%%7wfIg%|s$G4WQdl`;Us)9ykSv9*(Cq83 zK+b1#Cqx~|C7G0AQ@7shUGXaxWS|z34r{5mmI~^19P-C?P#<_uV^csue?A?Js)LxR zAZYV5MN^dyvSOq#b)&A9QVDJ7*};k>q)L0^4mN0zb^xSToi?kaN`e7wntt&SxPng5 z?pw)bvNE?u)N4BXG;q|kd}I`S)i@5KvZL80_S&X*1(s-tsY=ToooWHJVkPqGhK)q@-&TzIvvDwH zVihSDP&;0cpkZphpOUj-qVAE>`f}P*R44!10@k{gGbzm`9WEhbr$R|tsR0mqkf@OC zKiLhA4Rrg{VFe>cbTl1D8W*YWR~C)mX3TuS827`sPibKaT>JNx1M{Bx-LJA;UzC~T z74uX39;^z%k5xqps)B6$OOR)X0MGy&xTNr}%1z!8oEmkP>Q5ah;e1Y)zD0)#TS~*8hcY{8sNokCjczBO&;4MS8)pVX6sN(BFyL-+~BcZP>YVmq&!8maYl zqjW4ugw_ZKTdSeno}X@1%|T|Rumr^{z%z^XVaPGe-pf1c!Nx)ph;f#zKtoh6QNv(! zF#Aj+FV6?A0Q$ty&0sM6U=SHxwBj0j+~sv~flc`tA1*c8lCZBVfv;nXupWt~E*>J3 zd9HJ;#C-uj8f+Ge81PI}WFy-*n)b3v0Yl(Yna>?#2?={gZlDkt42 zfv>Le3q;AmZ;=DCWcItYPz3i@cLza@=m>^{uLKRIaZWT@Y~g=Mr$2lDd3gWpN#r+t z^M9nZ{Oa8HS18h3P4ogG5&7lNtw|T@G3oTtMB&tBruJF~MHX7umo0UsZM|Z=9x`*b zf~=Kmx`3>!Fxs-GA|<-ID1v-V&!l;+wYO4L=46g@R^A0IJRM?1FHcK}WKjafAb&8k zhQJZqtPTV&(bh@X-cG%z1Zo0o$eirlqh@6M4ycE?`p5Lj8dEZaS4&Bgj9j4e#kk8> znT~X@d>Qt8-nW6bI+^7RbpuknizLPQL`+HSAX(Qh7;_};fSkbe`c;)VmK9uGZ9t7} zTOQtmLw*NE;z4?N>nF->r3hlXL)f1d_ju+iceZ<#`)ETE{~hN&VCiJIyE%q5Yh@y)dTOvH9P8xLxdWvN;9zKj($-)^xvq|4V-L7jIt~ zn*)v>kg~M*bEwBjIt=mkC+_vm?gkjM*Ng& z69AJ(mkz6>?E}xt^mQe_SEzUZ+&7JIc&uOcuy9bY!Ryk8ftwD`jV#g)GfYDp@6bR7 zp3F6QHtl|FO0q8Dz1b%GWgoK@UhVvvR2M;1tI3{sP%ulD=b1KxUKE~4#T?$_9hDE| zqM=oS45Kb1$C;~6@x09fw}q495%Lq}cxz3Op|ya2u`C

brXZX@VYhc!=SFxwhp z35L9L)9~j~4N&#DdIB@B$p?;5#`+0waAk#qv}U0S9KqM*qre1sP(IG#r1_ynOMv9G zQpHjXDzn4dA{|PMnMQz^P2vO(iyi?HZCbYzM&_2v+yT%sBw&gO7>0CXNkNktaHbU7 zP+Xvg7gqvrTJUe5wmuWsCQ<#2)H_y>)iGU|fMtAAyI1~XwUC53jlyIFzh1O8ZPglV zhgIE#J~QzFUB@|6l27GL434ICM z)?xP`e<3Gj$2wirrgnPPH32~M{g7I^KMD9tq}-55E!w`E+b$~%%nk!H5O$q|9|R{s z4^N^6=_QEYNYc15>_VoKP7#PdEye&$)O6Wb4sTc^a83?8vIe0I4RP_OKz8yJh^tJK zJ465iAs28PdD7gX8YShZT12==VhCn^b@Y?jLSIY3%c#w$V>O2<6~rWAOJgqzbnJ70 z|IE+@e+l1y;qvv5-v09T=VT8k$G>_1)z`3m=Zx>u_pjc*?RfgHZ@&s}zq!0Z!EWM| zRlDwZdYPj>)w3sqrJuf8z(uiB8nHVTY*o*J_}h3T;dPn?$$b; zMFJ(iCbjDo!^TqWLGu7Y^0!qY=cr9NqNQ{sWyP`LzA$V+f;a;PGSq=ar43? zJpoKm#Yzj+?Ib?G$~SE!EP?hZzhz(8jbHY=dQc5g=~FaV{=nJ3s<>c^c&gA{LlmuP zKUoSWWi1>jD}BrcNfBqzO1z$eAo(yYbL;%Q84aAX2Qq~EYO`IEz;RM=sh<)l8Gyor z;+#?q#fA(r*@)N6@b&lJeh?On`Fcr_ja_^MQe-j30%MkvcrXV|hb1aNHu7DK0dU`EX74AqQ2U zktOd-c_$RJgWX0Zx}7@rg^r9YUM*4olQSfx7qixW4wii@ zmRj;yNTy&?7!yxwW3++B+8ppR&UTf-9oGjtqQk1i-Jp}sMAcCw*i0U#6ngVzZdlyz36C`KLi zF_ru^ouvXYwcT(M7PiXzz!BS6!M@KimQ$`jk;%9hcM|RmcpBM2mzSg{=yG~i`FMSQrWG5s}Tcr|2<9heUP3*lz8PZhwZA=pc&XEX}^BFjWQuWiI+iVJM6&D?xl*&ok!S(+j|Sl|ol9t*Ce5D~_R_HBttoc`)^blm zQR!>RWIR`hEg)qCT$GS2?=wh1u6XIiA6mN^K`=vY@1nEMl4CzGQZJC$4GF_&@lejG zWQVQ)Qb^K?#FT?IBxX&}mSlQikqr;B<93FtV_yLrC}z73XsftzORpwt)PP3i_RT+i z{p0tap=SH+{YT8crqEiJa6pjOE;CRXA*n?r&)90rMvM{>RTspWQV@?adCg7Ja1cUO zWK(u3zmc1AS}kKjT0~IFrs-u)fi}$eovEhF`J9KZFsITj8*(gF-;VD0$#B$z)2>Knr^kfI`1(L^H>CbtBdVVG*il z4+$k*x9yg96fG_>BiAe}&I@%kfe|8KPM#hD+V@bK>fmiEkOF%o zyvf(7!S^&gCz@Obnss}DRa^9w&Zbi%88$a~m$r^Ou&BH7y1LuK|`Pe2OLAZ%0on! zrBpWox`dZn(WNQoVOO&>tPSPNz$k$=wrHX?Io?6*D^GwBiJ^heZ9aDZ)h#lBsR#i( z+X`PuiFWanO*s;YF4vUqnXp{m!OG=bgPXBb$gez^sm^&Qr>-ZyMuET9uaY!g!UsOl zE_F~JFU|=8w*sQnPI8k0n(9(wOZo=Y=JZkl;SXX**RmK@ZRZ-tD`D8?3iuNj73QM}nZ*58e6 zd}C+Km^vxYSUAd9N0s+Q%wtPzhZ9wfP>r)qt`NPZxDBQRuLRg5K*C6mE+#dNeWbQ@ z@j~OwIP7XydhzB=LVX?;m|{Ul)rRHT-lxUqq3RFm@Tz3C!R%`YTjXO?>@X{0Jep{S zTI8x;V}iAn(AN&{ze>lSzW+YF|M~=OfF~Y4CC`M{ZdP+(WfQl7H@DENBL2)V- z;zuVdSU57dO57zLo88K4{aB#9IX+lB2n3gSa3o#2gO19ARB{+ub+WDxhlj06h|7)x z^>7yjCR3VsL7j@(+qQ3R`GTE~P7cs?$A@N${DVJ)R?Vsu%aa!Ov}(bN10d)hY(Gtp z?vTxL&D#xxUV#tlRv-`4OKS-aMc9N**0NEN@TRqB;Qjw`>ejQV@p$tFdW}YEUC&0B z8H*n3RS>gNG`2dQ%7J{nC?M+L z3%!_%A{@Q-vRyR~`bf6+k=VPk93IKZ=6Yb+fr1iWvSGVKZ=$M{td56%aHoTb^y3P%S9oSjhz?KL%^6tEf~Uk4yF791az5P`Ha# zcan4g70pv1^A>*-(<{t^?u=h@eVj0Xq=Q8(rr1zz&{jIAT)RauxdWvVisk?Ohy5X2 zU+v{~KkZ%Gt0=$uP^%11vd1QNZ`E$LFl6sLs( z{EI~!i3M44y+H%>uyzz^9cFcec9hXFh|;QTF4V+aUSG2Y;59z)nfxc0$&_5La?{2n zmvpJ+-@(=15ep@Yn+o+FtD>sYnNyZ)Lzk(}A}P=?zf$ZMtdq`z7NGY9AdVKdYUps6 zNiz|x2%4Lf@hQ=$l1p4F^^AkrQk%6qnZNLy=!m2(jx)I1EX%@Fz#GlJ12!QR?%-&$ zGwZ329KliZ4kqae#CRR7`&g(F7clliw=Ax(loZvV2!R~eBH-%cj^>`7jz{ka$Np>{ zAF;5(5g&=SBm#SH}&8Z81^6ph$NmHv;xiQgn=6}UF#3WFV7v^|y zqM@or!t2`JE2HHVojT-4libZODwq|*oumq2Jm#2qMotCHkdd4c1J?7?O&wX6SXm%70QzN+P(tep~5 z7CwKi&L>Ne;Ur8l*maQLXJ*40_4-ZexaP>FEF{H`?|T670W0r22y`9F95=&#!oEe8n?B9n zeOPo?XMF={|IHOjFw5H3L=N-LE}~k`EM8gt-hKe13}Unxw31=8A`zuM58l&wdfg;7$kGhTQJU0VP9DrUavp*|8#CiP`WmA0@3w={2ThH~#IzwU zI(b}}HvqS=cI;_L=;w%k4qo9XR}uR4R=|XM;1l91->yG5Mr)kI36zZv-TYalph;q- z$RyEFq6hw@N)?sT%epk^`)%O^+md=HXq2ce5TKVejp@lu%O6x}TS0e3DS{}$J==l9 zv^x&fCj&mF;VGG{voBHY0LV3wYNb+-z6NM#dGR2`mH@C;6so(YCfdUKOfVHffR=HBuBLpnWs~3V=P!e}yX^KVP{Nu@L>HUjf-5ElX z5|{Ste|`HhnAhdk|MLEMkPn7iL~YjhhFCW;%0XLTw526|e8Lh@olc+|GFerzuYrpS zA~_XbG{!En?v7Fboy{Jw;tRT%FY?VLSzmA}DA{h<+9l*hZ?QKCVq`6bt#*TS*=!s9 zUrn*y!f9;ot+#IAz+n}ej>^2>RG!2NpbOJ&dCjd6k2S4FR>|cpK?+yvRmvh@TgN3) zs52h?&0iS?4k?3e>=2< zYboFg(4z=$0-_68xC{$|>iijVDc9%7WgM<7l&vk$A{X#6a#fdrm{b(V1zNV^@y#A0 z zoLQ?un&^7HtZH+|S)S^%u)U)Ut=f$xcPa-;w1Jm`(GTYN1oS`~Ij{wzB?XV=%Bm-1 zI+Y5N&m{hNhg>?bdKQmXmT3b*N*{rP&@zcaYkwIfC`1nIRmd4qWQ0foa0J-$WkeyI zeaUkVb%Y~<-1G#~t{;krl!$WC!ZN_J%fb&Hc&KStAvulM%LpOX{W&Dd@tHc*ZzY!* z=9UHp5bapx-njiuAMO^4ByHzfx{uRSTbE0Ql|f`5>~`y3ODF^LN(##`xdOqmz{*S# zUAmD+fG1w!D01XO|99faNpRtl}9f~DF~s&uWrqWc!Q-12 z1k)(RfDU0gE}3D8_WSogu4({@bPrpq2CPpI~FJ0q`jZvG(V2&}=n8qOFGiCd!%$iDvGH{Y|L5*0VITdB7} zYU3ad>8QpUvkeJd4OLFjK+lTY&xnuuL;PpR-!r2MV|!^TyLt-{&6H&s9NG!~=d_WR zBAE*7S=|5!d?wd&g$)W-mBQ6j9~Na=5~T@0*vO!@NFfy;oWa#3(@LoC6G#bfibHl~ zCMqazB4Zu%M=2C~x%eIipYYaNEfbcgh+UHYoeB_HJk}v#x%S7{hINpF^hTN9MjcmJ zkCHYwbd|X}&{ai+FtctE*o4s?2VU3;RYpqXeJe;SK<_|y%Bh6u0FY(2M1~k|p{pc9 z4lvLvuv6K?)u$?1Dpd)teMUVi<8G;+q-Nch*F)Z_Uk4afJz4Rpjk;7|fS5;>j-+Ty zRq4g8FE{)an}W!3c*)u=1)E1|GHRfuV^$$yMgire-f6KS_qDg21&l%4ni{QMqx*=$ z_b*fW8f_Y;L+_BlE!a)@RBUE6(5j*Y>PkKNY=&>)Hj|v8prsIR$m%I+i{%{BEY`r9 z!8?cxZ8HMb&~TTvt$Hhln^eK3-Sa4I(BSu9P3_4jc98N&=U_R&SBkV4MXGM(O{3** z2=%DCan^E0?(dy$%*9BdM!vr=h9)nSzK+fA_#|2QBSU32UvarBt&Hp<9FIlaM{Jup zV3BNiOw?l|Q_08FZw`r;B^f&C&8@zSx4ltaOkyq7Ecj%Bf_4r~q(IJNliZFtsOW`Yp63G~TM_LORA{ z6L)XChshp<@tCWi2&B?;j&aXL&nSyN(MTlp|jc&DO@+C#f=GF z+_c}e^<)q#3bP^w4+yQ3IL82;kvki1I;y(Bk7IPG-B7AcuG$v($Q&7=lwbO}a#ZaQ zrCtdn!-SP+%ZJD8UX6%r2iD7Zpda6&PFGg2K1kof=CwrakQ%MKGS z@>#CfJ59U}cBTwX7;;hXvrtjZWU4?#;NEpk$!cEw(UnRDJoc%b7~LS*v~_`jPYO(U z>hvBO;Pba3>N&Bpig$t`pq?;RtXe~BWaLG)0=@OOqdB(_<%yn|8baPFa#@0d?(%og zvCTEAYCfv{l=~%AXTkJ|_~Sx5pEf8Ah*~MK4NwG4hloOY^f%!@Quq9|nnt(X09+36ebVS+fo z`pTxV6rJ*}V4O*E4EPif9U#AjATOQvK_WAq?K;3ZDb3+wl23AvtzoBVrMRd4Z@Qwa zlVu~}NFuZZDBE~^Bp@|5XAmRysB|PNGKGh=k}9z@#(@q67==>2@t{;TQe;vrxv#Gq z#(Ik!$um>$S6k~d!saq@{Cbmzgx1fu2!uBi7##)pA4#l6H{QeSph(mq?WLZB}WH) zMpOdAX09kZx`(nAxvDsF$Zfi)G`hoo5faou-hx5i0*ht$c306g4KTz=5F>qP3K-^K zxpy1r!3gr|uOw-xa-P$=-yEj{wI@l8VI~^8JN@N80#rmWQkiAR4i0}wYEW&RruJ~2 zGOCu!Dr8TFLaFNO<-deaK1s~J&)&WaJm6>j=A^f2wdX&-{Rl$<`TV7P{;7QaBG`*& zhkE28Wq;(*J5T{q-2#t2;;=pj;9fT!02}UZrtH;0~WWC63>o4mEb9IvfQq`2$ z`>$X0h7>L$14zfH(XPd)+;LTydxG#M1>~kG@djF;Wt|K5)?wazuj3R&^5O-i{J9I0 zH*LIuxtM|+)InvPk5!(ND#kCJ)E^UQbs!0f9)v87$%0iik?=NxC6S!O>>T}JJA{$% zsgp2*$!g`}zUn00Lfk$&XmyZ8`pJ}b0OyC3QV4BZR#nnhLP|~8iS@4YsdlpRPid2&-@a&grvNgiSernjJ`6DdMICZI#^sp3j6 z&E2|XCGi^1+Zd_fXKH-utjDuvF%kMhbqRrXsc8py!|{f0C4Xeqd6uV6C7E;J|=1LJrYrm7vF05bn1RwubkU1X1UN+E+@ z+4|6>fYi{!^$~Xr!&OQooBJrXjDk_n_Jnu~YVau+muWgI5iq%sr`I400zGA0wtpM` zXZ!p=>gT^9h36yxoxgDA@x}SoAM<;E{O!;AyMFWjr}L=!%jEj}-|>U~GQ538PS77d za)$nY-+zHk#=iGo-oKyEjzm3`MR$3D)yHgG4mc|#y*i#T&l;fQ3`ExsF{nGF!AHAk z`-m{I!tSABgA_vXu(7o%b$IO9voHe2UR4_fgO&btl}G)Bwmxll($bcjGXV@SuqE1O zP9;)y4kyh#4D^2XLW{MlI<^xJ;HiyMGgP@Dk*zi&oL7h&~;*) zLAI-uK`qa4OCfauxL#EbBt5?e6?gG{$+BXAI3vaV;Bv%bV3ESvR?PQP!BRN}Y2r|tpIfOII;v{{v?`xiTu z-C0Eo4z0Fl-Q5ZW!owUNwv(mP+WZ{qZK8e95gK}aHbp4Z-!z{#R;t#MVtL4!Mjy8BFUQ$`fBQk;L4NfoZ-1rxQ26!>04shfaoZ+RpT7U${dYRD zdiyKRzK?&RpY-dmhoN3xlrkevvt)uL(7fiKhP;Jk{MS+EFjE$N=j51nb&P2%pp+83v<_MqsE- zxG44>q8EiIGC)W8;Yjl95*=Dxl*s5{TED7dhhdy27!}!f4HGm{XuZ^`j3ptJl4d<( zb6F%f-jE_WRbCC3gByBD8gI11*=kxpp%TdSOk)OLS@Sfz!0v>~1wYM}w*+W4Xrk=^ z^x7qT7GvqAG#z1J;r2@M9@nzNkew#e1JwEH1v5-k)f}W4eU)8BlJ1<14k~w- z`4;e*9ejQ#@ltg(A#jR0m48=sBd7Zgf~76 z0}S@MP1PrWE)y9h3mBn+oW3r5i5k2~!FHEB6ys1aC3o!5Y3jaouhSS#@3uw5fvw6G zI5mK@<&DwdDUwpsCLM8-Smo_b7d4SE`O3Wum6s4Y^xpAoVk*!V>GT})V5J9T_Q2>=mJ0QNE6j`4m%pr%G@55NHDkjr(w91Ak8cpk6mhm zlmoB=Y{8+T{cp8YO`0PeU!6m%%JwV*0-FImvefh=fizqlg?9A_f zZ+porto4X=g0W`p%j+rSO&VE{%W_73Jf<=hNlUHf29TB&ly^KFK2phKps#%maYk0( zpd5q3%0{`wJv}K443ziJecLH6-D|z=_(BQg;B% zs9FK2lIl%14dh@4Hwz`F8o)qJ(M8Lup zYBF%tFoZ-JZTG*L-$E@L-_&3FtTT4k-HKZXMy&NxOxpS&L71e|o2*#L$&F~&L0=lT zRqv|g)^^#!!rZA(48acPV7F?)yHF_r%Zm@&6#@Vgv*Z^(0oS-w7XY!3;1}f7ZWRDf z%5kZOGF)xPt~*K3`wRHiryK`){?nXoE7Z9Y@zoVTb(qw+(tvulP@ofIuPkFw;peo3v6m3tEWpN9?HgQ*WhvBcuOrb)?!j$6f{6L3mAvK|TGDw8kSVaJl5+I$_DiJS--qs=eEQ}e zH5q^V_w+HGPfl)FUlFzcsbuP43qtEfKNb{}2N$~OJU%?35G(h}5U6Ti;eq`T`yH?< z%-mcP9xj;3tyPqV;bR}KN;}Vq_T8!hDEw&+B}v>!C~K!iMl|n(IFyTnwraTI-IG3Z z5^cmp{Rde#_$krd=n?zmjk!`L+M4w%N1T$ZuZYq#EmFWmQ0grMHuQ}^;BM1(NH42X za_dc-DnQwjdR1$!eG{~QQuLGXDHr=}gN1=%oAI?h3ePqB&CM~1!>^|~D2CJ4bU%=3 zw6K&jh{QC(rE2aGNd+dh)MR72be z=2|Oxu>GzYeKlI{h^AqT+J4u9rWSC=6WHb9Gq&8fV{Kl!>+r zRbKCf96)SD$w^`A5zC!SHwaxZu^i>WR|P^Fgd%(BjgFn*Lq_+HZJ-kG*FO&LKSTul z6Li`26VS512yb7)4-l$Zxd{t3_27yrsE{r4aTFl8KY^vAYm&C=jb6lTs*L;K4kPNL zrCfZbw3ye)Lr55`+(8?4Z1S%pk|CGIC%K9YMq5V0egNE#T&1vCx+%$;W}8eN?+2K$ zXfWA7yXA?>3Xe&-s20#V>`xT=>yp$V^Mh4`SyramI=KO`#s-yXWYGw7+QqU63Er(s zHUk`ssh<4m=GxA~22<+iX;6X0Bp6EA~TW{HP(LGc?)AhPuTYhE^4%CMm@K_^b4&*h`HAe zHH&fyD^;vo2^1@Pm7e-h+J7vnb&-%1A66HmR1Tk*&pMP&37Bg z4jUD-g7Zdt37r7DT@7w5WtNePLgN(pxfCgP_-~IDG_Rl}p)SZ^0F^is9nTpggS zaW6*olHblf->uaanYWf91CsO92_yft1gV7mTx3t}ltq{u$KcC@7PAhpYG#gL$Kh9k zX+F!%+T!2|DdfE?ikQK?PMyZUr^YRS7Q3+ulVL@AU!Qzpv%OC^uR9qLeMOz;ugtaL z^f`amml(mNSHGWM{fVTW`Z>J)HNE;7jHK;5{^k7#U;p#l@A9zj6%}Npxaup$5|mA? zS9#a#QIkM*)lxxQ0!wuCE+#4zt{6$O1~Xm)?+NDS5m*DXM|H#VN}@-tzv&rPL!oaF zld^duDH9||^%d|uGYNsj>ngtc##hP#^6tRL^ z5o!XR*$th$8Oin?a&R7l3jq%6J~pzxq%NdrMvPZDet--}v3limTCtCveVHt;LH_%& zC<|_VoqHOp3RX@S*f8X-?LKSkQsn{HY#%RI?)iK&sKy0ED|$AMVCc(D!Pwb->4sI) z3s?nO;4L~u4ygM4!M^UYd3CRXwNXIk)O6AuzjZ(hEKA3E6slm$x;n6d&C#<1IurgH*vn}Rq`zWNcp60@*86TpCg@Q7t>M9l~gi3oDb~Qr8gvAR(V3j|J=i!L^(=pV*~#WI17^K{r)R z0D**6fGh#Npk)>vhgslW5|;*u0{W%Rta+`TX{S z@b>F7ssOeJJ)mfE*~%&pZ(Al2CxH%F+E;31!}3;x)+m37tBWZFZir1+x?G!N-In2O zwL&1dxxuJ@b&2g{%PNTyWC@`&?o!4Qpy<#A)6>+$YgpJSf>6Y9YZrK zbXma*YjEJSe`@=Xa!SGi%APXwgUWT;NnfaK0^RH%@e1?WQ$U36Q)1F2LgCC@VB4Y9deZ9Z898>iG)cs1?S0QDHw#^wCiY!+Tr(!dH=n4 z316ra4i+Bo0LmIeAgucZE(im(F)3!hwjT!I6Xbs0yi4*mMOz2a zOMH~H68$_Bb~fQrEU)~}Bm?E(%F&WsN~@sJ;fR*EUNwrrf{)?$3bY62JyNIo{gU+r z^+A@hHPq&7DXB3uf?wOnA{#g_i+tS!Jb_2{qvouv>TY+PQCWoC9Ci<^StvcR08{E= zT_{yo+&a>xdZcy$BHLG!x2r1Gr%7CC_ZB?=a4o4cYOiVbLR$`~9dS~m7Gm(BRekV! z?wGp6soMIQ;5wwEcE{s-b{oQ)zo77l)X0cVftQzzE)yZEWX;HuBCcQm6#im=PRH;X zd;ihpd8m4RhK%ZvUbX|)K~LOk8`MkImb(8ER_j{QBCn!173*<`Zh2Sug^$T!b*^r7 zOvw?{=8+R_wICQdp@Nd(-IWY`OlMZfx+fH-VEs#$M>ygFi}#gv$x^$kFc?oO<01qH zL)?3dNL>RHJIOH{=P*6adV&vtCfS)&&O6bd?v62(k$MI4`*+t3>uXHHKZ5s-b%P$q zNXuD?73*P1mb~e5)45e&m871bU$+j2e!g~|&<=G!(ZptOiA9xHM%|e$Yx^$OUpm`C zT=z(hoYx)X;zloT9v91r(>~UOUB0SeIJSzJ@#Cp@*%jZ3T5VQ zLS4^$s6atMV4EQi@NIibz~WDP$lBS7#02GTJfoZ1h?~J=i}oc6O{mzeL@5D6J3(bq z3fSF;3MgdV>=A%y#-1I;mR#|H=Z!jb)8}Vfk8rD{E?5YPCBURw>Zjb6Su&MK)aw?? z9ICbf9**As!=+oGoq@^{<0fim#Aj$u{og8{yd+B`m=>0#R_3T0t-aNu$|d+YGuwg) zW!aQt0=y4;0~old{|XL9)mmxmdmAYn9gzc;96^^c84uDB5+Es9on{R+dC;Tca#CoL zZCs@~)0t+7gNr++^J{eR#ZLJZ87wPFBhhx4ylgbzl+33>O19>DB`&+?B*4c9R}G8v z6tc7j#CMh~)YfkRH&`l)POK5~D`W`!3;&c@s9-X^4J7>Jbe3w{I4Jmzyp8v?X&Ryi*)uc?>|D#{dr<*{B!u` zd-}TEdSL1|b!x&5lpwDqbJHy}2kypkRVmaI-vLY|zABVgYBeF%v8QDZcM92V-2ku; z5_yX}s&)^meS%Rbp>@2-HVl_ui6oCzOTuX>p=*np-~i3+L7xWj_u;|R?l<3kple%Q zR!j$8PvUewJ8vmnyhbRP8JJ26WDF+Lwg5^`A6sH^=cx}PoU3%e4IV1T$mCI^8W7Fh zc4w5sT)W8+E-WA=IU+^E$X6={5-?uFOpK+_aB`;rHNsuTCs<#T5-|Zo!y5tiSV3&x zFkud~49;;y9@~r)=kUpLq%N}b+EC94j69H4svC-x?d4l%*I^Goe5%TD-D%o*WD&&l&Cuyr(v^TkW(X}wu*8x(qAJb z#$=^6#8B82z&2WsF4U{NV?dXbR*=H-b%)001@_d|V+g>@%v$9$=H}Nn3`Rs5&}X zl49^hEut2ZMQSv(sk{C`7Tz9VacKs0tVl-%#n1@-^gp=SW3IzQ@_~h^Yr`${Y;$!z(Gl%={SbhBJ{a1kp z=~YOWd>qVgz9fQkz5a5O)tl$d2f?t|Ch$9YAD>P`1AAoWap2FP@m56J(pQSuVF7 zS}yR(GYsPm_Cvw>LpPw`(h=4@k?|^<3FpFm1EEd2>}kX*m$4f_?rhjgM~b;of6V4D zc0=2kmszvR7m#Yg7dQ59pNksDLYb_5gZnHJC9}lEb*Ya4k0G*NU&3|i1fcKmduCi@yIGTxsS3V65n$+%@z5&jbgqU7*NCM8B1*S3EAn2T-bOo|iRYuhK^px=SwJNi)K@_VpaI$R%1230~^PA{D*PuPt#?^SAkI4LYlaksU(#QtJN;v<}PM zW*oIc<%l&EnbRLWA+FVyn?OysGwmKo8oFBDV9muEv<-9;As@$r9;Pj-lQLEemr91U z2wC10HbK|760V8)kB8Jy>yJeb*?o>1Q+4kO<0_^!p{3YQ7tq^60nnjQjpV<859zE1 z?2j`NMC;2Pw38cXGf1!{QocH27}QN;ALTIqT9wYroo#mukKKNIY|@7TdfPT{A2o2O4)&g zw{7u{ZiQ|EU33%lFzcp0P_*oJ@AeH%sU$vaFNE?!-a1ng^{z}|5@W?toQLsMrDsv``j7-$wdIYiN@du;ud(g<6sOtoJ5#e~OW~GHcZ_r3u0bc3 zxPq#bbuJKoH-=j@04oWw!=R*2@-va$UXRl`Na(VpU6*l|?F}i5okT~-&1wHhaZ<`g zG^6K8z80S6@-j}~Z5cC05~FmO8Ma$i{iZxG_{&A`&)ZHY0q zqrM+(AHWPvt`DWuQKg}Ul%8UuL#H@Y%y z0|v}g%AV$ez)f%xO}z%9L9V5gcX@sYn}w8kTqX3KhY7&6bSChCHgLy~XDo>dcdZWR z?x9qwFa{nt_No*jMD=&r`>w2jN)4MH4iyx%<={A}9kEYAre^FE!i+$==T=~=UV*#Y zvLu?boeaQl^$tW(?}b4r7UOhjHhg=IS@(KEbK3qB+Mdd8ThIOfYgBh58)FNR(b!! z`)|$!_}_-NFD%9qko8n8Tstg);<{S6RK=%-!LabY+=`O7V;Ho}b;C9yl|3TgP_Q!! zkPEEG?PMUqaMO*tp(GUUhIOpBaN951?ysqgv;sLU33m#6l54rkL=7i1LKIa#DIF@m zBiFViBys6yoxGYH&{F40aE-Fk$td4JiaV)7O_O#}79F3sp}}%erkK?$FMC$aSP?Gl zi>z>3r@2*wXA&F%=$wXR&8cC^UPe!m1E8bz zVn>Ltubk2>_t0Dvq7|fQ8Gvw6TLXtI1F5!7*IRsf&K}p+^ATA z=>trqGR!9EGKS8>;2<4AT-c;Po9Mfcq+nF|MFEl2LdG%;i{e5trqC|lK0*7nkgCUa ze(cMq#Q8e40K?M@{#x(KI3*YQD)s4|N!=FQFc@w6?6Xl1=y=`p{jYn-Z!8-DF%qtL z;lN;79dA{|aJxa0am%y|sB)iU0=+}na`!zTu-+CeS<^G&pJGDJ0ue~H*Sc1vW zhUMhK^6VTo@rbI7^I-bBKf((Uc;H%)Dh&V(#`YFY_Ai^xm~IJCwB zy}T@L$fFIx)QRU;R|8wM`)9}DhBU&hHN%U`(M3s%tQKt#Lgy4J>t)zdSD>?oW+@qZ zK3t&j6#&w=e-cJpck=;?MmkJo>xoY~FB7cijD%~!OKo#X9H>OR9Nd+AWmiudy8+fn z7NY8LLKA+PIklEYWtVkGue*5z`wWak3$K%kCL4lJ%7k%wB$7>D0Qc}TRTQbCCmofL8aW2y`{92EQk*T zdny!gBt$SlteMvj5jH3o7NhfFPHXq6dsrHEA1(MnbHqWqHz=1t2M-R0E681ZlDYxN z#EiL7NKLJdS>U(pYcTu-C4=8oE?pv)ZO|tX2q%tTuU5dIZU!QEcEBVFiB#~rF7w0=yx>Fb5faS$Lp3FrCy%mZEZW13JO`wMA?8K z!JG@h7eC2@s(c|emNw5I@7tb5jNv2?45=+!i7pi3D|Ab6g>ajI{MKsfq-aFc;(rbA zf4&@(4r0UIBL5+&oXt8wvAsNtGMH5ngv-dXk-WZ^`w;oaJz^H(+@8Vq8~K}OM;aE| zyR$&MfI0;UnZC~30(zd0&Oy)Jddi~!fYUxxCcteO5QG+b2aV?CuE!um>;q$XiA>6l zW&4|E_9_>6Dq_65ftGSoc9p;BBf$hY&jeSgr4@aHc>4%)Xs_6YhM&e~n? zC@&16gS~`lt*qOp#cfF;D%ttbPv{7oR%9V0CCd8gJZf{IBBwzLr37H5Ep0rLfBl40X!NUvfjqS_ z_Ev7d*Z=1?|EQDZ>KqjYRn{E+cM-43Pt{O*uC5oX!=~NKg#8TKBMjoch zF+Murb5F+4i1@R1pqVx$%-zRXxv@xcwp_dd|W}Qj|e0(cItrYf=nPXE(%Y$A%-r1fwqYw$)Yp zjMO3$d;}5+&BY_DBL>) zc=^+|dX=MYJll7`qH1&*ydLjeoyaV8hR-Mlj|wX@#9D;m9YWV3U`)0r|=(GA~xv7?z))XIsmsF?ch@&cw2{tDEy zHm}fAhU1mCZ3=~&j#D6KC{P=lBz1hr`V%Jm$45e$Dm;fLNkOUK7ah4wikegc|n)wg686OHMHJ=|z^fuDt_hnx&};@L%% z8w#PpJH#c@WYtoO8HNCLMJvUXkqIr?Y@R85^pb7(6t`#Z0&2+advsG^XB!_@ncmbv zow=Ep0o`c~-NEt}@=UT%wFfj!yYRHGNxP{pm?3DUL_$H9N||-nJp65t zU~`y)p`NmP(-}C0a={wKT#$z%(bL$;&~~+e*8%x-xuOW(dt)zS#;kNW!_lZ676T#l zV$+dIedKvVjSU`XBg2JPS~O^`Mtc)kxhYQi21T>83=%}~SY_9&sxBtTiVyOBD0`{c zLw$;>ENoU)aN0wUpNMlw3JN4UmXY~@pq!3C5+Jm>>|rtQY>Q{5)J_=;rTqGEc-K=Z zWplCEuee&&DVsJ-Xja+@g{I+B(%r!4-LNWGvSNV#(UcI0~ddx*e>*j+5f%O z*Q+cR+1nY*?uw9-oG%CTPJ8Dt6}WT~EkIzlPN60RaDG2PG+L=RP60aUai)f zMpN0s+#062ldtRx)n^!SUeI@@I8%ihISdoE)PY8`L9*`myHAP zVsOU~cyfB;q3C->;ci_jXZ&ASTrWq6%ba5ly4(HYx^ljk~Ui0~4O zvZJJB7F7?(jzil~3)`VKL$@s2m^cAy28dI;ZU&yR%`KY&Z6`LqPdcvAOP_Yj*tDqS zt_8}w3T(5~lX9qa?0OI2GgG;22|$Oo#0H6$?X*pt}du>@`CPIuRFVh5x{LRR0+;IM-p`co0lhl1nl8e zMf^tA@GUU|!Z6Xkt@k9qY~`wS5Mex#&SZ_32&`1!TagFbF*+)p4n8TJ0*%<@gy4P# zJ9k|eBE(CfLjfhWh6A2AT|KJRUd3DiJAPN#;}g{!g!9c+l}Xddd`?JV2gtD}77;u1 zF?1G3*|GUn=O*g~)fs*_Eat@sCZa1a}P)FBnH_-Z{2q4e<;=%3UMod zU6QEBD}}Jp>#SWfyKLoY?#kBFCA4q`d{&zpN~OYZt7h`GtZ+3hb$o5%`OzWW9OI!< z25Q_B5AcO4no{SE$SjFV=bf$ks<}}GO0irao74j9F?8cG(UJ+kH+Ax+xxoy!(;<7U z-6~x8lv7)#bPI0A^Msqyvea5O8r--db(!Ruv@ktAJqHHj zIZ>MFIaUTEUWAVwipS6aSqawI?|gPF85dUg=3L;eJH+4sxVV~vv4nryG?W*NL?xZ8 zuPZp*IZUI=^76v+Q4@Tt(4ag)&48znQ{@U6Yg`?7A?%}d-hesrLTWtR5X(_k_mvtQ zFGT9&^!%0I;D;#7ecb??`Y=eR8W#x#JVJ~So4sDy4fPAA} zV>Y6Z^c4nWa)p02vgMVrWcC1j>%BuCJ$i=`lBUok;ft<;t+*GL7lWU1e*2r+zB33G zkW)7{X-6Z#4a44S(0AB@-Qiu;JKlcThir4hQCjW}L160wA#N680HR%)$*8oF>p6kv zuJfKH`jS}U#1sxnK}XcUnzZ6sa)Dx`&njd(FDmZmmW5XXi%n2Nnwkxh;Mtv=QTAH0 zwtXLtI6|F&wM}=}_EFE3WpbGFIwD5?UT>2&S#{3$lu{Zw0vmH$!MH{W6qD6j)6PvV z@sbv(agV6R?ZJww_tB_mN#|_Sc#Ktm+df>k5MU;&upyR!un$lBaG<2KX4ZUgw{Gg; zLhb1%3_IA?hQ*YGQKfU`caHgp-Q@}G?+OenEIJdQM_Z{p+yYxQ6twdum0CS!Tfo)* zU=vjEtw#ada&+qb9*&?cob5-=Rz+@Htsa;|p?T=xr<5gPi~ww+;M?2Xs@gtIkzd@Q z1dETRBFnKVi#aZBr|z$I!_F)P3T*;*v_Xp-P+f*SSlx_M{yIv`jvKF}cN^l;Emm@G zUY%wbt0y(q(FZ>W|KWr7^f#mieEoLfo9n;}`k83a z0a9?69a4+MR#EYdEtp3Zfwh1krR*(9@dhU_DR4mARCxoJ9Uhd<=N#?2ssQ-NvayF-21J4}bY}}%VujBFZjh;84z){w z^?}t7u-afaseJ7qwv?9PN zU=9TKcmW^NZT^Pqs6zBEoz$YsOp`uYmyHR%G!yz0#|$8Ic}X9UtR5^D^uH;?X%b8F z4+NI#7R4(Z?b7O8tGG&)R3hc~n44u!RIxih26C;)M=>zp+#^XT4&k{;fXsJ*Q1-ho#IqrN24_^OW;VH3~ zEvY-;x`X4_!TIIXzR+3uwN1nv7R|Q8jMU@v0^z;W6eYRJ%`rcGRFQk$5`~sJ_&}@-J$$v@XZ~K8hFDpz29Rg z35aRhDV7(`3=fryywP9mF@^_CnIse5mE)>=um$WPdk$I52G*7_Rk6QRi`XbQgQ?+_ zJgXTPgFUO?lcFFO#zaI+uh+x3*Up)Gz)3<5)v7-4Pe88~x|u!e%1Mg66KVks_>;@L zymSkt;T#vm;j=w7Qh8@aNH+2AqJWN* z>C)mOt*KoDMaL!(@e$A^xenv%?i#^csS*UFQXRX!pIU_pR7`>fFr7fFa^8*PW9hjh zi)BdL4SD`=x{jzYcB>G?cALueNu^l_XEG>oV``P4uR5#tyzA9TFgIuWyWwrStx%xk zA%846w{8jK_qUv%>WEA(yE(gJwStkHqdLalY!pHQpES59jaTv~7||>2XmGVgS^z8f zW|Z_@>YkaUqMFaua9ctHL=w9Lo+rV$Xl1*fU2sa3k&Bpad49>D3YaP+sUvgzJY$wp3XDNo}ploDxfrrcqI?E@`tD=kCkyQVwNu4=mL%?4L z_?F^ECl{7W)s ze|9|kwdo|gSkvi=<5ge1eHDIqe)y~J0YD&M`t~WCjQ=dz^6RfHuA;Ebp9rG8Q7dPq zaE%QDa^9*hy zFgpu&K|^V@D$_xPg(hJfQdS(3D=|Vg!HzlUtmO*u7LrKH0&TrpwnHZnGM{$ypc&R| zLrok-OVb@ybK^LBgr-EMP}uGRjD@3NH5?eDAxw9RSinWN*l-KeGua?$=oz0{I37?E z3>a1{GIHy~TB7Ym{bbBAI_tZ(FLbj3ci@_&cr6NrX_0>0Z0_c!JuA8EX4_C3C?{wJ zDCLj68gRy2qUqaoT9UZO4<$q743!_&^peJHWlAKi=Sp?9l`!liwEJTFP()vJq>O&t&KeE51?7 zDRQ;iN`xSS(!sj#OU^%{}!()I~8{!D7(63)O-viz*RmIZ;C zg>NXZwOEftZyuorz;3b54?-zlF_p{>j0v(JR@JuvHTYuQf8O3iKP3%`=PJ{ zCInwS^9>VNKK$Ibxr*K&pK^tt(r*xOGI-X8<;$%wP?I+L$Y*v3xrR)1|iY}fV$%kNZ) z!NDv%5h>Cjcc790G6HBRFc{xbzNzy=`19s)sdP+?k{`icz0eVT87=a*!|kM~f*CuT zs?e7{%g(#IvmsMD3P>%GLg2K6BpTRjJmy_Ny`(0l`BKrW5l>_7TZ_zOMw z0f_=%<(T==+wWd~W0ET82m0L?>_Wt*p$Lb1Qz<@ZBd~+=NKtX2GaqIP zYS>!J-EmYf>L74z_bZsGCI*en@M#0^_QBdpmeAyo$z_zynck9;{VjJG3x(2G*^-hw zfO}2sfl?Bx3nuxGCekN}G&YokvK?0d!>lU2=DN+{ZsBa7k$RTRK*wT9$UC+}0lCjz zTXs6TV3QZ1oze;o5_u1@cJex&BsJa9RF35SvR<1&Bcl|^#IcX8Ifqyb7)kCb{^;>? zX~BJ}$Rq$UV%g@prL75`g2!EDj|hm)bXgC)06}1YTOvVJkdD>Vm<3rrihX2slB{k( zwMO0OI#HPmt1Z|UUdj%ju2f-ubzp?L7V0Z3xaFQhL}?CNF!W*Bc5OqdFW_>x-g~Q7 zyH$>qrQ&}nJ;3BavfB1TjeJ!Dp=zF*+wqo#IF!=0(Vgso>!VoILD8&%eB6M-k&9}d z7xu$xCQG4{r2C4wkwwYvo|J)-A6`Rc`cQy=tp}MRg>Ai5yTPfdQKbx69f9Av?idJ3 zDuQ9|Roft}q1B*G-nQ9X?z}ox^p6TfP$?&!QYG0UOL7oiE$GIVeM!%|62}>COVvbV za8w+~338|YQ5Y<3p@Nerq9cHSkGAtt4Bl*Pz!utGMjl!ccvF-}3Oo7fe&o%C)Kr3| zbt7Le9Nj=l%#XK&>8RB{fDSqi-n%ew1#4^xSa%Bj!K{d2&={gk@cxTocYhfEw;Uj~ z7=HcNa6;OA^u6(ta;i+P?*pM@Gn#+@2}F;rjQ+{n$8JLO(RY6vUVp|w{6%=PHtFBL z{`&pjhu42$@_KlG$OS`Db#ITX8^KE!{R*LWsl~%SUhe9VX>md#r28yxayz8jh40Z_ zvdaqQoE7E@J!Qz~xHnYjlt?iB?Q^DVA!EbHH85feD0cYZGp@ z8i(WudCsD2`dy48V;st(e!!rSg!|sZ;kO4#Fqm47D z3EqKFPsav1p4oEcqnE_Q4#=Vd zQ>a?x$!9Pcit;f~_IdAEJu+fDy5r z1l^$mv!;4JDKkkfhD~qR>DDqS)j&r|`MW5y9d0eP@=PLr>XGLU8_|k#(l(@yg{+U3 z)|24jQPMQV>wxj^s^A<*EaE_=7U#_aoP0=cIVMw=XkQ54>(r5Z;}qYdStv{~snA38 z(73dTyW9jT7eJfVcHKyYm?ZPHvb|H|YI0PY2W-*uapI^DK%i=T{y={!b`n5d$`{MD zba0O;1(rFBym6DIa6svy31q=@1YC)>YbVTBU*`T=?N*fs?NKs`TT3W6u)^EA@u9>? zd(l`m4sn;d2Pn>s*<(Fod{^6qS#mjJ?r&&a8JPX{y;B8GUwP^Vx_+&d-qQ`7xM-=l}<$_XxkPb!eJ1wL4_==J0f*@bSBDPobsS zCVZ=RV!Gues^xgic4jpuf(HFAbEzBp(zH{$L-jdDo#{DPMYD5<^GQ+(K=`Txi~;Fi z4tcmxRv=5jZci3rlI;OB>fK9dl|i^hg{pw}VqJ}?1_m+*o39MDg}6;UlvD;5y^z(d zv-4cr%V@L%?I^fi2Z~ReFij^7s+20lg`27sTAr-i6|A8D%MnrTfzd?3)C`Ix^_s`R zXk9K+Pc5Zty2)Kyw_cJ1>IkWWOMJ4lK`L=c(=PA7c>6Yh9sByFrF8Ja_> zA8M}mRzaDhhTIr zs^*l(FNAVSmiK{tsKOSZtl)LyvV~pqKx&h#F}ZSpFm7&P7q~BK28phTFJk!<_TE6r zz%*#tdzhr{d~!e!k>OVdn05%eUff>|TXG9@Z0ikfa`ei;F1%SsX&%SxLB*JxB)f*h z=Y?i)XjFL=F$k1T;SH@GUHcQ&h1pUEZGyJC zs6&^8Jya0}YZs z?&?jDC?^H*OzREC#;$b(p|n}P*}Cc!@BBt};Y@TCm)meavgM5K5PVg#Fexj2fMEvi zMJtivgd|Bat&fHZEAdK*Gwgm6I*mpqDreUzRyA!%gMm1Sovgf30ikp`+p;KK8W~8c zPPV-B#S?TjB`yKxSi6o2P&!iP6=Oy2 z|7IY_B3my*A*mbX_sV*g-OjD7u_e{Xd1bul1Sd=V#_pk6z0EQ9|hRIN55?StX!+iv>swnypq`!LWp! z9jRn;CbBugQN_rEv>ed66_u$06@b*EAp9nYQU}cSW~f@oZ`sDXXp8~w-vU;tf->Xa zHLa{gR|^F?qBQxvQRQZ>L{j_k)h4Fz;=YI0O4V7vF@xg@Dhe~vNtJ=}q0UsiRXU{# z(x;JSFH9~uLaAsN6CSubziFa&7Eo_^GgeEg-=}2X}`{+``h&K3De0#q$#lw?=!QW-9ky8TWfDg zfG7%|#lXj{X-mu2I}C!D0A@=9qkCx9ca!iAb}fk=fP6_#^3=ks&ybX|0ITiUH8$F1 zj)y{9Ho`;X;W?~GhiryfqLcnf+3`3!Bq|!$F7cOh>^%fQGxI- zFF=VI&|f+G{YqBL;=WeBfy!s@b%Lm_EeMqHqo$JABQ4x8?6J;d)~d|M<1?=K$?*)v zdN&;<-nCrUUHc_WU_qWe(C@8^ z!;L%j1Ue5!5t*+1J-K@M@BgL!7yj}u^)dWIK9p_w8qxRv<8tIeP`_g1G50Dz;a4^< zEl&T_+h_QH-~k-jbIFmua zCEGde&yhSnLhd%?rz9xY2UI&D-0lv+pVXb)CE;`mx&;3?vSs%~(b^NGyh*r5+HdTw z$G3o*#24KlgP@IvThcjxs#FHHYD;<~ElKMl=w7MVCz(C9g5a(fc>DJ1mOij41Qy^b zMGCmK8+EbdRrNKw58b7VQnv zFhHU)AGO1i+%LvhljPR5@Q1@oy~U`!rKc&tnltB?K;NG-n63q<_BrdDScJzl zQhgCc5b`;fM!8V|QyB zZwT#ordLuAN1YAZ!@xOPtz;}&P0xT~R>6I5>V(T~$C6}7Y9=;6iFD zQt@XynhSMYV~(!oBE);r^fbaaxZ27yLaNexm>4OHzIKoM5D>wfRTjM)rO3VaIAXTb z#lNM8=1<=~M;879X-3;O9y_*Ihq6k9RWmabg@}3jZ{-6vlJC#zP#Oz& zFOg5yBc-p5l!oFdb~#}U?kEIg>WlL-=NmZlF5MdET6=qJ=1PIv5_dH~aN;P)Fg7bB zYllR-B*W2>`qRY5E+ldI**eIZm1AFE4}dRjepZSkAQHbOlPh9sH1Lx`)2!U8a~JB? zb~h<0(0Zr2^8%2nK?Jj91!cwp#$47Tkr#u>94n_lozVuK)f4a6K;%bKZj)=} z7!Sx-z3Rl|%PD5!owZKn!cKf9>|FxH0F(40kqVB916w1V3*!QlrL8Fhe@UQy3WWh4 zcUh!1s$q60BM$iV<9Oug%|^8%WI~7NZ>7MVWd+LMmUcq=fRvu2VzYoly_8u-lVGf7 zbb|u;8H8OWve)fWUW?#VD80kABiVL7iz%eMpjUz1q8^_S$X&xF&)6XOVZj^y>DhyR z+yfCAMI83=aAaQ9jC+>goDEtB=a$1STdj5+c7fYhPAN0!kBE`CZ2Ob9pTkk~)3@K4 zNgrAvKKlRY?f0+WhBJ8Jqt`DEO#KU3ji#W8_T9c6{*U_xj!l!jk%tO=r<$WkWZHGu zXnJ27S?msY%s?w-{M5*}4tifZbzZRn(0W%-!$UL?gF#xZz^cs>$z^vmv?P3Lh{Eg| zH3BCentH=4R}y7yIV>v5?B9mJv#d)O6dD^$aV-y(><`%VE7ACHkS8nv1`^D2Z6M~t z)bb}gZk!XYTT9(qklnqVlHn-pJl?#&LiJ=d-)kvtgc@%6e@bXaPXFk)C#62)w%ny(lcJ){L&|KPubiYoVS)ixGUrCy z(3E;m;61}C;8jF5041zLjIKMB6OVa+5erD3(6C?+oLZqc>cT1fvgwS78y>r>*8<(_ z;MYQlkZU^mNEhQF=4h>se+eIQn?8E`xA6A$2SNAko3~HHpXER+G1uC=FR(sGfL%{s zI1j1v+BNa+c|e5`a)ys4v_*!z_VFP7KVZXCZ%kV5hosq-b-i0E?`-N=Pbjj)&Ox^> zX4=RGQBfRSj;Aq!git{cu04|H$pr)CWGVbAmkWzr>luw~urKi{g~u+it@obAZCCSj zN)$=qznUo)_(1LwuRPVyVw1xrh*KHhvUh~bfI(kYnM+=w2$ zv6%s9wI4+sbzvgxTHCW4o>FXE(x(C1Bp@ESV+IiU5Mt<)Vhx||NdWcgBWA)m>$bF% zLV*;awTuDkn|DM?`Td9t@My#?IEa+|4Kh}-aFou)zp@^>ZfoJUrSVgMa}$z-bk1gKW11ENP^?cQaV#T3^ZUV zCYO$n*Dm&eWO*KNO%*hIa=CQXE(0Z3FoB~Pfn+uNc&SD;5wuhpH_f4sdv8z7zAC{j z!h6%08K$FOrB;S%yk?H;eoS&u*@V-exRiIkTSRX*O!eJe9w_#)_MUd?Twy?Vt`;zE z`;}2K-2++u*+(`Xdxt)5$Vv?PAh#jA5sub0`j-y)XRsW-tT^V&<*^-<%RlDdy0*O!m6U{v}{?DCT!U70drlIdLJ*V@(yRu zV6ku;w9H8pz`mhRH{)cf$dT_dtq9~1@% zAlu=Y?F*Jlq+~Fn_=a$O((vAl^a?W6VfqY#^SV8?5S&p*vD~#oMC@a@FPpd4Y@XUvGzzL7az-(P_ zSLslzqOfGol~9wPhDNQSw9d{Cv1k+^Z$Q@X{?-ybfUzU^8T~%_A}&qNY}>o z@*K8==@r(CO+Iql)aF|8q=E2owJ)gg%k2hKy+t7?HObk`-BESTqmMJ5K+Vuc8dq(Y z>blJ{Zd|t$gdp}w{Rx!^VNsit9OVt6_a=EA;vz$u+%;@_&(NQ9fD~MefebZPElm87 z)E44s%a(GkZzT>QC!5`H9MdCLje9;0HI;H*pdK3)2Vh9ZR%!~zLp)10f)7`E z#nCgF1^Y-TH}+E5H7~c+1WGqSpCoYZzizVAeh9!(ApPMahT*7P4UD08=2x=7*|2Oj z7miWUjwL?KsUCC)atCY6x<+;q9Xo}h6YZhvQfr~h3`q;A#iy57SQERRuJrrJCxmAMs5y=2@13UKn+4&91IL2 z)f@z1E=8|`eQR>^xt}eyJE7cwWWDIcuyza#4W-|9|5cKV?|%GtGDZ4zpp@=U-hT4- z(~!Shl-=`lGe&y<53hd+^3NaT|A21#kNjOQA*0>3g!g!p8`-RiAMz11Bm$%ymX@Fs(7@le%dkqDTF`V;#RP)q5PY_)g;s$8;n(vb}-lQ^_Ga>yUUq+Z0%oH(7 z%E}#3D`X<2oOJI(p;S~`lb&)kpts3eMpsU%IIMyG?xG*~!;ACkFig1IjKR=>O3TNfesxMO62np=tHN$i#-)AcUMv=Fn12WuzlY+MClYjB_HDumXO6i z4kr(1H;ZB$ZVyf}f-W*_?s8Q384!di*njKohK0FA*#rcY>pUAKJ=#*LXLhrC%>pc~9zNYbyyddovP^q%`YjoEyd*%;iE zB<%M#=f{ka+P$bPOX_WU*P%CEcauu#CDWp4k-Qus3P9LMfTz6m86yQkkimJhR7Cs8 zt5%<_Lu_%4Y83T1sHNtZCD$EEM8WHSi|dXpRnE;*!t93Db?8albGs`CuIrV{p;0Yk zk2;?0*HFt1Pu5helXam``pOw_1~`1bB;2g&a+O>8a*cOc?20jVfuO5yKTChP$`+AB zPIrTr+MTp;471!Gxj`0PLEv~?ma|xC@?c%XPBYYAaxQBB93&4Ly4jT)- z&Frw#ejL4yq4f~=ov!9EjO!$5Z6D~KE$w;i1KvQC+OQg@6}oZ>1gwjqQSDDcJb(H2asK&V5an)~!v6xOBoYqPnCZY$zz1*j%YrJC zo-o;)8(-VJ^pI9}8ay^SM@EW^!_qsloF2Y*AO z!8W25EobuW79AiDu`yo;Egh}T1aO#bqR1T&LoMY9E8@v@sunbAdj{NFyoHU8h-Fk4 zN@EB~k}Q>cK1N2cxUMB6SBlofj$%>_v%4y6RaiH^0a=ljoCeEWa?Boq$5TF(jhIIV zPh<~SW)qTJ#%BlbOh`RJTi#lTcYtthyLguJNCy*W@ey(h|J>wC9ssl&4^rxalj1m( zCg3Q^o}Yx&lalN3kYsk?2BB*xAH_pJQ}WS-ki9{CV^s0l)i5Z1E)OuySU&I>h9SQ8w(EEjTQ9=_)aum)!-Dmey-n4Hv}FKOK&-!ojqF6C zdV`q*rx;;OqFYFJhNS@x`nivve-Y6S*syK?Kd2(86=f~;sL|-6$E`q5vEx2kjU{^UY>Y_ed83>Mx?>?8+>tyd z)PsDLD&>0~PTBP|A9lG4mY-)gQLd*XA>;99i}nzlE*h8+S;9~t;qh0&e9b}pIW0RN zWQC$UNtS|uyQAOC1v6(OL1zMDuVi>uPo@g-y0WipayTsiK?m=x%%3PE=n5v(tf@$`BMB!Jp*>My>TMlJ-E1YicCs;3u|~AKecX5u zw*%@AF9%+ngB3uAO!ae8iHv**2VDl}0M*&d@P$^u;g{N}FOIqMjy2_kMl_o&NN-AW znJ02U2i#6!G!##dZh(4elddl1$U#De%gqUm)2b_uQa)S5cJ#R4I7-n8+aoTJt#hW5 zY=5e7bIGF$@7{KRRVFpPupGGswoG&9T~34LsJC=i1U-u)n41AaaD%)%EgGLBh#FSp z$y7ZQG#}jfR<=Aqb=(aH>c?z$-rb$CL9Xc&Fx5IP+I)6_6+Y&|1OCJlANT|ei4BDJ zExS?7{G@bD3&ziuMqax>{06k+BgCdum8ogG8pROgbW_S~=CLp8T0hOFu54qa}q}J&DflczDmTF3v$`T4Msn4aX z23eJd3mRZrv@?ZGHWiEI+F#*!)gOo=iIr=lp2+ML^?+nWka^f(PU3g zs_<)36Cl@->?ia;4Cw=x(&Dl{a=~tc!NV~Ef?~05R=!9mv^qM|k-V`U*x>~3_3i#B>uosy~#(jLR{ zVW)*AcVL^M3tOM{L322j#0^7vwqrX=LmloxtHukLTbibDyBm#9-CJd|-wf{Z6dM?! zr^>jCs5#0io0j&_oFLZcenp&yEcVK!hwLF31=bmz#^A#>w?V-lAfo zy#&WS$mU@bPsz1g%!QvuZjtZ5c>63I;Kg5s!=LC=NjZOtyz}$R`~NGveVZYRlYN$b ztH(u=Lar9q*`|hRR3>XaSj#?ii?u`YZthWgf$E2`85I&OJKUl`Faj%x`_W?D#xcJf z6`rJSXPUi^y+JbfX%@UAm+NSbe%NXutUJUbAJyts6I0~xOV+6yYb2vkJoEY0^{RTy z62IxZv4Pk@zet!%@~9&fTg1>crbH-ZIVHNz-NN=@Xoexg66$(ct+T$ z5lPp32BR^4Ivt+kLx#1A8?V~!X;+857F{T8_ zB4P(cmpe80b}Zr@m4!2Lj7N5Zt&i<@w^>1(`8c-_6OlYOY~88mi1^kZx3lnxeePxF z+&zNic|qqw>KJcdwP-xG=rU&);~e}Te2i%kr9RPcYfqylD`7A)9a>j+Yg7R5(v)Et z)l0(#LFX3z4o3;KfICZFw^*yLk=Lt^wF!mQEFObnQ00w8x4Zxjv<6%B@gLm9ER7W>kABU8`y7B(uKOO2{&C!&8)bJB)`M^9{zN8#VNDH`*Tby0Uy4h7P3d5J#6*cLklS z(R#9pi0!QY@yTFk1PneqWr*T=^wJe0_!r9%+0a z^=wQ?e-?g_`l|KT}LwZsxJf?z=v_YP;B?n2QvFZXr@T2CDe!aF<~k0D&4f za(Th^Qo})TqEfMBS*h68jO>u>Q;#d-CKOci&;$y1(>h8(US)?-PCXJOYYV96KSy$l zd7M*0bjlqBf?>383ldyS5CH&<^5KlbqkkYDN_z<`7RWwqd~T11>O+2&DK2m87}~x^nS#G?wO~#9b!@0Rt>e5(EdV$Bm1Q^} zo{K8}=!3rs|LF+V-$;7=zn>p|{Qa-tKOEowGN6I`^S4i6B=W`E@7}&*V3+Uwk;fn7 zyYl5VD?9Ji>?5q_=kVMbzxg@1bvdSbvMg2b{;;#WqaS5?CN_bPtcbt2CAtOeay0KH z4fL7(mYFTq8pgbQv)>4x3<{w>nnDFv+BoM7*0dkrl$k z{>Qsbl7cy+C4sJmqTsR=6s1G~zFPO|>a~L1Bc33gKuHQ??F34cyPf_V04vz!+sVt8a|^=C*TMKIlOGcc8?K?YoEv>% zDe*zBupB$iih3r!qRO&$P}o0A4nY4wJX_2+3T^@FuTBL*y%Y0sI0fcnOE7gv^TF!b z^)0&fpf)V51q^5D2&`L2ysQG-;6CcMOksn<)XmPfL1bUQxV-;=!rNDumls)t2hi2c zzX^kJ-1ehU*1xq;L;uWhCFk>Ix8Bx6-^fB22)QbF0-lbS*s9w+4)S*FCO1E&);9d* z4hAIqE6cX;5Z#)i%Z5NdyTk#$Iu&LC$JFCdhnhYMm41NGk!MDTPub7NvKX(|Q0$eI zmBt~2v%3%1Gq_-f!bIt{r zbqKa;bHl=E)JeYLVxgbSlPuR@JT%BB{1KuJW;G|X@FS-~GE^Lt6LGERkTjO?4GF`e z5#{Ab%6X4_w3l!)N5v2ji@L&6?WR6;lBSJmec`RXS~mvhNA5GXg(6V5bk%-UzMr%1 z@?!V>5S~VG!$&mLYmV<>{+5qW_0?NPZ9nn7;nO%me*n6=wSYVD@%fs+TRid!0lCThdnqd6HKC!vnl0ETutCc4aQ}!XdmrKMxs`Sa ztMckmZvs(mA==9InBl>OPF^17xao>oT%vvC@dx9W>6jQ{7sz;%8QD5`Rk&Xe0#1Mx zSX#+DqfhLFO^GUTz@8XX9vU*mKB7oQoAD6bKof|rZ;-2>+%yp|g z;DsU^q8zOPZSSfTn&aG#(T~*LN5i96sjrnF{afZ7jgWDc4d?2DfZeD=n0(w$%O0$L zS5GoZ&u?H>+9CQ>H?=U&AyCz9IyN9wFJxe>tB7eq54AiXl&$WLbb-Tee;ut2+sGf4 z$oOp9%V4>hOpwD7fs2v=VqzFD|HNDfg&&ceO?=$27~Exe_WQmG_0^*0*+&qHS?lFG z$(1ADXyjSHqWMJ0#q_MGXC)U&>1^p$R;2*|O%1G?(bdk82!WG1ZtjVIF*C`scd&fL>nd1&K`R6?<{&1 z`&l3tLKusLtErvUKq2OS^>hKz9ss<^=|B!q-~BDWhVMUdyvh-&wCp%NaefsQi)b~Z zmTz=^(|_~xfA{(eV+x{LTpXIQANn{tLdEjOSVbS?V^v7gSEw6YkZjYGhX|5bmA_}z zV}mZ=#A8@#DJDshEYy-1rFtPbBO6o=Wc6P6i8$&$J4CnysAxRlua>ctO~d9wl7~yq z=XU2R;~=HLy6ecDkm-2}J!?m)+mRhe6h!}r{ls_M(UOvqa!8kV=x9t^hfNvvqQ%G# z93PX2z+Bhq0T3sr8Kz`GS03Ij!-)RfWq1lLv$2O{D0!JeC10wG9Dw$)?-rOg_56-i z3*okKD6}!n004h7n|Wq#HD`HBgQVAns{<(btO+i!T?0Y2g;NaK){SmZ3z?7xh%gkwx}dYkomi&AAp$gnR6Z>}*jK;?YVZt)dC5{XdNW*7@s-;xQ&Dlx@*L=Q%3c#1D{ zA&VN8WC58;q+}1sli532if}J17C>Cb>I+qyTqvJ5C-^bT=XLU83ePPi9|P;7cbjaf zt5<8dPH?JHZHim#$r`MC1~xM-@6(Myc}J^ciqkk@kU=J+>=QZT%*3E+rKm3gjZZKX z00IeKWBzQ*8NE1r#*J9wY`Pu}XDWit=>xF?R>Z^{~0YuroiG=5m`6 zSyNms`1f#rfVe}~Y8dLGrbxp@Y9bT6kxHDB6S7CgN$EYVIIb1EeN@@lZP2g{P|Q(0 zE1E`NRMTdF_M2D|F0?eRaTyMBkP!roq9xRG^>rZo?0%JqW zeXv0sc06+SfwQ9yV^L-st%I$q0=Wwn@*(ZukQ>cw)8OO_dD(WmsNzp`$T$p2VU7c6 zuwgfw9hj$0k=_Y#SSE0>Zcta)FT`}(8ZkfkLHP505Z?dT=CmfD`#F^%l**Wq-sj`+ z?|maHh<%j*4f%`yrWfq=MeGQ=Q3hC~{J3nMAc^8d{+j#IpV>5-bXTf%Bc=!qGD;e( zGX%!Egm7Eg$3$_bK+WsmNLyN^38)%KkNMUfahYxe|0=l2ug=@IPe$agmJ1#;gb$$UX5! ztRE^BQA4NDmJ*7!{$N_i7uniupH#!fO5zs&j|3{ zHq;zFcKadcw2n8RGh1UeWh&wXRZ9X=df9{?ZZWnrNI4KI_yEU&GeS^Wh&lm~XUQG0 zf<+$m1?~V}T2ol35J(}TORa#Ca`fh*_YDG)1+W8!oVg_p^}M8vJc7WSvIG`;_1Nga zpka~-6itXK70|U5t<7p-hVdJ3I`3G~N|V*#{j&XN)lX8-N_=X@lNi{r^*T(f!S%)< zFo%D2H(s=n|AP79Rq8{!kieB~k({i=Y)bo+7VU6L5N#%D#xA)hI?#(Mb_XynLUW$blN>3UU=qg;Lh!k)4lpdG6RY)NC+SP|GUW%6r<{vOo?@8NLtwqzXSswuglcTeDFDHji7@Pz2;%*D}kD2FXfCZ|i4 zaAXN!8p8|6GQb4oZ%gB(xVf?MjH$A*Ol6xxxj zXtb(U2p^#d*1_ia-2VcHTGFrAk56p8JrC}3gnEQ)`9WI(ypLrB>tn+0mi6~IUwcG2 z0u791%8Um-&SmuOsXnNdAU;nsm9r}aUy@0;QA`DLtpKvD&F1JtIa^mB$0!}70#a|5 ze0`$?m=;R`Hnqw+Sq#8u5m9LkHX+<0@kATQWk*}Bu-%=H@&j1#3}}EopzlL~vJ^M& zt)P-!!;AeYm|aUsJ&%M~KtK!E#epk}_Rr-8r}7~yB{T)+weh)STg$Du(a*M)x(5RW zon;@T^0I86tw9h&a#D9tlwT;Tf%61F5JpN~v~bQ_!qqfgQ@Af|JVWBAU0nzk)AzVQ zw;RiqX{>Bb{Uu`r%%TPze_5dueLn_pdzVPUxE005#$X7$Mx6|gzMAB3?DuEeu@nBRQLzg{Q_JlO zPy~DZnS8}iiAopc4!vs81u=B;0`eZjH(}M?0yvOVq|Ckz&7^^GvKTk-;}2;+#T0m{ zNWm=|0dkUJ2JDz+atXk%2{OhN_}+300Oczzs9g>@ZES!u>2y%JqMj5cmOjc%56Mvj zbTR6qR1U;~7CP=*vwjBP9)!k?t((_Kez@Lw)NE$=P4O3Fm~>v+%6({&6U3IoL8dS~ zZvF#N#V*10%&=^b#+Hb?_$Cvm2`1X_c|M2>!ta$d1 zQrQ0E+sFEv7g#RK72c6IB~>@GOhb*nES#ov!-YO)6%T-j7l@zbfC_lbuXKN~04r74 z%xUL6wkyS^V3sW*)R!V2kK3SbwmvVAeBzQ@de`;nN~i=31PWKxZnfuvo71Fc*u*t$ zC)I@QovUg#Q3|8*1RSvX-OE! zt3xhY!u`ZlQ%=gsgM0=mLpIsYTH|xNR}gTTnYO6-IV8DYA;*0Z1#!#3xrJ$?{DiFF zKE7DPRX$Ip*(M=96O6cr$grl+42KL9~?$snyaH|m@IA%9A$I~B_?7lqG?Z4 zaH+W4gY2NDgAqVw+>-e!f%d$Qqx0);O$2~&Fxe5{j+#KDPE07QvGxRMc4KLWcEt+56B!#R@d_az>V!I zSMB&&a~p{ES<7Ww1+rdZuFz1bw5>(v zsKb_vYLI*=@bjY|Ss1h_=g;}@lt8+b*1z{P{Lfy%uSbOa=IuA(hxs9#a6itzFF(uA z=-)P4i5ke^l8)QV$}yMcqh-#IY|vy8Aj7~!6q55*F-AnsvR}Ica?e;!KkOA8nn(rbVFhl z2HHmqWfPM6bqDsBRFmxGkdL#ESUy&&kA=*zEKbxzT4bJDAjq=v0Bn$!A+7~SAf426)&Sms&uE?g+RG+z3#3)6w*gr~-Bz~Q7~4W!6?{5El>SYp zrj?Z6Qm8Y@&Gofk!Y5RvpIzG7Wg*)^IrXw84(}9Qj=4pWp8$ctJ`mGF5AUy{#NijCdZ9$x)u#T*>$!veFlI=nY21->oi+V#H zWeqKpA#m@IZXOvr(q>+isQ`Wn+REcV#K;rtajoVdCcpv#LJlzaw7w(4I)(MYc5P|5 z(&qN^oqCR#y>I&^cMx)v8=(nrhj5dC0@}K1^c!h(f(+Y2ot#d!6kv*1A>)%rlIh1{ z*=FsgIu|0e)%WMQ8gGv0e*OB(@PFioE`kk#+n>MvmNbXYUw;YTsxRKYc>TTn`$zln zmo~U~;4?63l^wRdq01hU>RCDXQ0bLjbHn6v0JtH;p%Vu>q8G*UPF1L^mz{;l!l87D zobKK(o7@RhC6n*E?3k>p$#f1EG#{7NX1wYT2sP_;cWUo#H)cUGK08cK`-IH#(AOl+ zSQ0c`9jmaxUd&0z{3t_jK?NM}lU(h%B=xS$5H}X}3QT*Y0TqxXEhc~*1grQQ zDqn6IL%dFMhMAnra)p+o^y|S;ZnZRCd8hYdMC_x53e)2*rWx91=zyP4eJu#CM)73Opt%^QJ0ez!4P zVzSTqn8fY8pl(Q(IjO-Zf3aKo7H7<)!(uz_lX}uRzvT%EbdvZbpi#itwybXRK5LD2#mWNWEd zt&oPLao75+4D=NiWXk-NxWe9Ei7nO#v|#r-su1e6@3ur~m#h>C1q6Or?W!b+$aBe5 zaqPeqQklsPCV)T>W9(GzX3ct@H@kbJ6af2yb%AixvapX_z%8cHRwXjwr;&qbB+^+1 zY^m6mQTBLzZe5~bydI?Z_|Bl(5X&0_Sk5FlTMGHJN|;k+1xFw1m<0l;uDh_0a(&%BN&-)_Ep2q; zS`hv$m?Ec#Vu_B6fvPEqOwwmMH89VQ0m#)jixrSA*%QD5Yy*un*9b?$|F#w5%5Nv; z_{iTJPL){{5(N&a7~rH^ng;4T*|oyd0wPS-rG()O5?>60Z8kQ`l`g8WhnLEDKj^75 zWFk0~scXzg<##daW(fw=!sg>7r@GqQ`T&IN&648LD|@AlKj)ho%#X8n!pNjlk$5vv zxkF;|ImDM>(>6ujWD^6EzQtty(3n}9C}H#7f>2j2V47JZg|W@{@0~ zR7sFU8|a2Z%3?v|G~RutV>2p({3O{4&3q)7lI4zf_gfu6V#~8_iikn35pqTFnv$D$ zI8@2>Z?Ohn4oN;(xxC1~l_yCE0@+(#La%BLa`4@eBz{B9=b8?hG}v*XGnn#)r!c#+ z*if}7GJsN!r)NB!2Cx*mIBg&Rvl-z60SHg4`bZ8)kR>`nSHvDcTzcQ|8`ouP zpxm7-h`T32ekc`^rR4Q69v;#)w%wJp-a7Ulm{!-3F5!scyJb>W$&s)5$5SV1`KK7d zIgth9VdINJc(mW4{!2}PN}~1Spb?j|+MlZbMR7?=|SkFcZiSrw`{sN$S$c?e$ z---?PUleDQJOk{GmP7F6#0!bQ&&j2<1bCW2KgEZQlCr4`tMyHLS4sx_Xao*09xDH_ z0Cmr?uz#a1gul__{~Uh!!yg`7z&Ee|gI~ky6 zi@tdK-Rsxk{m|qt z)_GI;gt2P$I3FIOKVWY}=e0b|$Mk50e|zU7Vg&FU>-P%H{MgRO%JWl_yb`uKmTiKV zF#2Rn9v2mzPV*r(mJXRil7a#Mw#{V74Ukb4Bjs~8utb(LJ$M=cKV&l=EQ4xADk%T7 z$zYFm;uox4}+c8?az$K{wp6xtPP9Ar4+=0f#Mxq}2yu^ZQd0?}y z8K+tGtb*%;8z~AGt-LS7X}(U@OEir!Q*bAhUEI3)u zPS|NuRi`5|)^(u2#4tpPSz@3jSr`E263eiVa_p8Uvg@;Bm?p{G0bI=i7QI->b2F8% zMnr}JUM~raj`3-TTtS0|##>vV`;?^NkVasqAt!(hXB%aL70$JF2eC2@w{4dUf^L9| z67#`o={V`axbm*)l0PHqfMs;W1_x!SYybicY)%#_@ji!#HVJ@or*7_*4n1Ci@M91B z|1}FuggfrWz!DqO&n zwG}j9ny*M6&g0dz-EVn2c7wgI{~SAjb>tvD8T!tY&tWib}vRU+f`n`>P4i;K$u z)(Jxc7XyFc%P`5R$=r`%7f|1J2yD+{Mu!dXqD`7h9)8su`*(l-{-d{_Ny@Gax)WvA*?|!8wZk@q1J}b4mR=Kl=Rj_irD)|G8?~y#GQn$glGA>b7I{68|8%;Xg{I zDF?s3ya0A>#l)`ePBx4OWE{O!^-^s+PYVG^NW?(}ir#MXiPpaL6gPpCKf(PFIhv_K zyUyu$C?l^eM2OvVRz1h!B9RZa4P|?WVC*iX(gcE!VQLmkHb~b2sL%q|Rgy1GxRy_L6Us ziJW!SK~%moJ3^2@A!$3*HM0J@eW0IfR$!sey*&q0s7g!wF1W8aTB8xF;O5e40jYBt zDLp1&og&&#h+PtvZd%n_j0#JMh!ip?Q-V^LlsmG=oCs;UbqII0(@_sMkPaNDhTX?n z1!8+*VQTXOpB>0q0iD+IVc1<#yp~+$<{T8HbF$v9I<>abg)^f4Ye}V<7F{t%&cW&) zMv5yWOwIEVf}+*S`1WCNUr9MIc6TM19n$;I3xU7L;j*EAVA}J`$(=eu+KgSQwg}$Y zLQm+4mOd)pjKaL0w{SwW4_6SHy}?tCeOnelHTfqmn-NkEzLgU8BDYGzMw}`Ja8#=% zW7r0>J#Kz3PLRwXLO%AVOIBtk6{r8Iy9)dkJGW!#3*?cxjch&JQArARj7`Tf#BGJO zC7KXX#pEdpM#f@#4w8!WvUY0wRUGfXepqo^pZ44E{U?rB{qpVGvqIQsuU}E`fj&NO ze|q~Sy#6vDT(mU*7fi<7?hLw*KZ7LL@2r;JQO~qIjPjqwU}(+f9#{^)v z1;YnpKEgUB_&WSE%OR@8Y#Cmx^c*%7{E)A+Vzrvfusl?G-@$$ zlrvL1D4}kZPwXVWgS+EM?+FyFi}R-C2W^sb+YUC>ZQO_nx;24n-&KY>TcFJ2qU9D( zT*FOOB=T|Fqj&vsY0E4*X{by2FEshT`~>_KvE99>!z*Z9R4S^+F0*3mE?V=tjzu9` zY{iRs-A+uHYqueR0WH@e9vUfxWtK|fKUFkonW7^0NUwtz!tJ7%%C56KRpN={LU5^- zFo@|zIMf!TfQp^RK3ShY_?^sZ;H$x=LzR3WEIA)^3YXaI5(-sYEeS%`Z z$pO2AsCOBUH;0kaV;@j7w}CNGw-q^Ste4d$m5R>Lo0Z^0HB1D=O1&>Y6^Z~fk$)wz z4+D9&Vifd*eHFGfa4V$aasdar6L2>Bo*95?R)Pu$jIm$h65Cd&g5Zm;(RSS& ze1y?akD5H6wg)It9>J8gkRuq_C-#=_(Cv3aTXf6wA+$9sXQ<=!nrRt`o;iN08u*k( zTHPy;o+>$`lg%<535F>0EE!o@J3Lt$8e}2D9(LorO4sK#-cqNbuBzBZlzkafOq)(D zE^eQV#uAjeqL01MAo2Pak|Xot4;DuYbO1Qk97id2RRSm4X%(7?AT>I19Fk70>!GU= zGPhv~mG8DuGgNwsNp2+fr|hT;cU!QSD%bbgp)911kWlGor8%kf7b0e3#dNq?-%)nz z=VO!wYmSwHlxffqRlqRA7U5b`Dcnx-rm=L$a}VQNH&K8+7zTH}qQe#cuKI~mKa6w5 zxw~A2HWuneBcGc9XT($@YGFoO(-z?>m(Mstq3B@lWj*Z{oTrlNeTXd!mA$fPjr<*` z|K07$0z7emk<>9n&QhcXFT8yRuZ}a5n{lOa?vQMAyJI@LQITE}an-$NMrDk|CbNQ8 z8Vq06kL0TIjTj8kiyL#M*26H|vDK)N(;axWaHmMm=K18Vkbr%7lvb;5YPqYRx7s*B zvtl#nnX*-Ur^i?L$3Vt;fbqykNGQ@0x-+0Pd{}A9T179V-Whs3VA(nnv`S>cRZ>OS z*`xqqNqh2*FS=H(foWt1Bgs*{nd;h~34;v?AexLFzPY$F^-`z`rElmR~V<`@7fA1G)XXYN-*h4q(^-=@`rx4U$GGBpd-}vpfPZ@`!yBq0oDW3Tu*^Q`=u&A+LdIH;7*na3BWTQ52&O@kW3p)<2cGWf6hwsEDlm zlwTwAKIB@qG>~+T}fGQgh*NMrF?s{ITUOYDw5SERJ!{S zECHgjyizCnLNqh<;R&QbejcGJPftL3Z(%6`^g9};}hCH6gqbj<3XP?u*Bf`zT` zzI}Otea;8o3N20`Z{j}hqUn&rz;xRN8IpEZ(QKId`0O4t0V)wZjtrUdcdo4T2i22K z7|T~DF0uS#ejZh*)mfLq-wEG`S?*Yk8UAivMdja^*>?=@E-j#OsHErIS%i>CuI7jA zUWa@sM_&n{&o)NsC@yyNlCl`L(L!>_goQ6i`^%&mpkKy)0hc}BcF&@sIMhm9zcRJd}&vp!HtC9 zp!n)MI#Y=oiV7T=&&f5bQ0Jo9%~2!U_s*c|2Xi!n{@wDiNAFSjtMqcKCNt3{Xvk;ZCixgjLQ zpC~nh!88HJU`|dBVVA9crIL}_Z5^6Ai=0>qs~uXN$SUv3;A{_KD$=|#UN1`>xS>KD zv`1{tkHP_cUJm}lye(3PNN~POF`+$AD?Mh_Y01JFt50AkBRi+FqXy8^Ofls~?)MyA z$(@^;F%9i=(C!hDq`)p8QXi8xk?(9`O>(*O+tA4jsGZD9Mop{oZmizGdF3!N3W8AfK7J>HrS}*TBYj{6ui* z+Yb%zAJXRuO-Y7G)?%FJ9s_!Oo6Js zNR9a zLUxK2tCQ?(#%x$*gr2}5i{=<3bW}?ovX1~8rah}*T~y(+v%d@QsKRM&cR|}jvWQCo z5{FYXfIm`wu*4Nr6!KlptMz0|as%5v67!snTy^DnyNy?0fErQ-cyw{9UC_D&kSB|^ z7=7GG+LUt*f)dQh|Ln}g{4BhFeR=;G3Uh4;I#3=86cd4ka@Rq5lnlu(LGd8g`ToPa znuJM9K#iO3m`k}~rh~)|dUvqV@u~*bhZ|w0tcTK7V6|}UqsBzX085Jc#H>_32zsQa zx2SqSZ2>6&223;{N4jfC`a=DP1?omUQJ^V!>IxU|K`mgwxtOi^$$99SMn=BHakL8B z2tIJ1A-ePgs-%3%)i}0VSA#q!Y4eQD?Q{8JN^kE%+<*;b*A~c}_L^z6`3c#A+~{M< zB9>lRuPVaV$3wqQwV143*~%g#wniNS8v-_0$atOUl6?jg`GWq0CK?Tc6(Cj6 z=jefbV~{dLsVs9Dpuw)|ep=v00%k!UEs5{gyD8l`>(H*p z2!x<0bUhEJZP@^_2ta-)1t1Vp7PkQ6#hm9*YJl-_Q zGzkcfkcY$$W&VT3HL_8Yx~5x0b33}fRXeG#y(dkQKN$d~L_3T_G^B|Ywd-_*4MDp+ zhxq^%S7s}+GS1i?r!~WK2Dc!S5|nC@3cmygg*hXNt1}xNfO^;)7fN+9Fb;6<0F9|f z9}$>C2G4okI3Fm_SVNDk@G9wV{wDmNM|k`8?dO39$FtwCclnKJ*M4)>uKicaa{uD( z6MI(j#@|DiRu3@r{^<3i_kSPWJ~f;pV2+`s^J~Lk@*u_=eM}gfCU*VqkTR9pXbd=M5BVQcksOWwulJy(su{k8YWhJXN z?&d-y5+~u`=3O!a>!L!>*}=~@cL~>v2gGk zayUi`D(_)#CC(lLjzI#!`hj9hrehN~3H)@T!fw=JivXhFI^wefMI=@m(^HZ6*z)_V zLo#LU%T-H_lRkPM?gks$4pJvv32*`%x_xvbg^{~fc@hv+K&0y~o}-DT|deo}TTOYE_0D@7FU9wtZJrMS-L*a_XD z!(?Xx7R83#U>{9OFIez~!_bCddcNG& zKtmP~{DJhriNNYMwDp+ILj0=fCL56RA=O2mm_*r85P;iBh3)6oZLL=|0P+zvoFRIW z$5DOb>VkX2&k4X{jg+^~5TMR-ICaCGHu-uDtFt?5K$1ySyQ=AzdZn5QZx+>%6zlMk zfE+K-%@((w)z3X~Z^DMr(vBc&eVdLdnm!b`Li1nhjiks?qg`sSX1_aW1Id!?YTP8( zlNVp@zNuQ-=b$T4CG8Q~pk1|-j|3C78)=#;iwT?@ib}lgo?V`DJZw1B9)^s}q1HOB z<-@?;1ZAeh*~AM{N-f=QvlRRmcIDo#)tSrw3SjmHdcG1CAsQoJ(W>vW2#&=>M1mZ^ z7Sy@2(d?U%|CX@govE?)gX# z_!(f<5qoOck~XAs*x3sGtMsbL6KfqqV`*{JSf@=aU%#kN`@TOFgm#v z>$19P5r*JSjn}bjH(HM$-GzJyOj1WX3=?xNCBlFiYoBhCjV`aoQJVzvuQ?`Erv|_n z549o5WFk{$t!ggVDg32FDUtGn$;|)@18SHIM0RUbl`CChl07~Fdep??DeoXXdm-Hp z%j`j7Yma)!8Rrtcm`OuKf|2s3@`$0gW~CJ7P@pnM$PEi?Chw)yrpC>N;t3O;o~^AL z9HLE^NUp|V?D^D!tH{8V@!{}BW}CJ}9cR5o1r?;|DISt4+X#>&jHHw|sr4PA-jr=` zG*Q`uZt60A(cMTrRr4EEY0YRCPJ&w^j6;F>2DQZPU1Sq3J5>^-VWANA-e{0RrCgh& z5&;%XQ#NS9h$|RvqEc2sLFu=VxwRUhEsnu#H8V&vn_?9tRFu+561+NuDKDpYM=a#$ z?244#R(xQfj=8sLyDL4i#~c7t1+++v%A>+J8v&JbI7a93a7ZYnnuXjgHyht0Y^o)5)`mDsWJY$OYJAi(H_H*sL}7_^B$f1<-W> z`kB~8yn+j`>^AO^-`-ySCj13ON4_Py@mpr0e+X9Ee+zE>?_757BVe2UaK<)4e(oRN zJ_d;W%gc`Y_W^lN1F};gt#Fr=4&K3W9tY$ODjR)5)4Q(&gT9J-x@ z3ZXZNcqEKvB)(7b*H6YWD{zb;a@)jR;=K*GSG5v8fxFf*T(4|7L9K2%{B4pd{Y`*_ z@flVHhz4w{wqV1p4&+qp;qkIy%nb#i!$@$#fYB@Z3AQA$gAwKFHJJm$3ChxG-LW*> zL|i^>0SBW{*-!Z^)_KMIV}_nou!S26l|K^^aMawCa3?>*xr?;v=BCS%OPWc z&>dMsn6k*(Hwz}6KUv6Z;lByQD>EIa%3E__J3Q{{E$npHp`r;pwb~?Gxi5Gh>DnEF zfmdu))~{8gUJ{G2gR%9J8o*Zb;dO-`N{-E-5!u_w$flxQT+euX6eAqAWEXe)Ls{@9 z77J!O#244rnUZ6Vm8#mLe4Gk9A_HPC${WL%8uGs%(Jq>Ws-#*E*cE8tWUbY@IihQB> zMTs#NTn1}3pq?tguY=<~B5bt$?;&yNZUOq94*j}0voY`CQJq3HWb0iHw1-=v1zbpu zPb8TGSI#sC4Uc06k8TcbZkG#N(8GKIsg-I`Qp2;=aCI~FjTR0ewamR~grP?|843VfK%~EoLw++DvKL+cS;%>w&Bi1= zVufCYL&IMQ-KQ=pMqmR=${y|FDqXre#}OUoEDS$gI$nAMhL9v~FncH}A$c-VFpGe) z130+|nblJ)fqRhTMeb6Xg{?^HcByB^nqz*QZyt19v=Wv_X+aNWiR-1&Yglsjuimf+ zIlN^@0?H@=g-S+>PQ>+;tHK&~rFJjyp+!hk2DS5*`baod;Z^2p9s_OM(l=_67x#qVx`_A&V^#R9fO4 z_xq1y@{fU6L@|Wam(%z0)T}Sl4+$&JY^tuNQa+2s%t_4`g=w8;vcr&2P*jVB+yhwu8 zF|_sP{di~t7c`t1D;2;q{1EeJZYBtEw3+@nPPFq? zs6E{St&B!Nrz>o7 zTMfB~hIr%iQs7hk=n)9>Mx(3-PYn&Uv&Ue?FS|cvl+4qduF*a%+FIRWa$X;`+q_Gz z2i3Pz1nVfx7fZ^1@V|y19^qL2AGnd9{l)8_0Ze-TS$O-zsODec@sHu{8xv1{fZ=r7 zH|kWN6EnL^t(4pfcF(KP4a`~)A@d*OlLY*7Z1#Zay!dXl$#S8pq3Z3pZosbiXiB{@z^k5<(`YeGkC51S zF};t|yl|R{9?)EkXnHP*9*i?)8ZWj9LuvQ@(-cg8`y6|kpC}mKVUtoVU(!l>VMNZO zcaGv#u5~GfXuC8H?L&%j8&~hD;z>Fp(l-TtAcs3!qfl-J^PpE%WLICmwTDBy+@Xp% z0$M%NyPEE3#7rU|pj1FNqA65(W1~ww1ofqsvwchjZMZGz6Zw&d>$}FEV(gqX2`di# z8|{x>0~M4mVd1toXCKNL$YYnN6zL}jJc@yNua@9F2v_{8oAN8>{IXCFSb69+ibFXZyL1R{N zN(-gzffzVDH&j_XU25y*RNbjRU5)C&SThD8yMv#_*ux_o^Frc_pmT|#xLlOHc0lu9 z53PCC;B3?JtxIUL2GAH1ZknRAcsJM#F^`i!{)doIpaxE z(?y+>99g~+HX^ynx#Pq{tzLBNh04;J;~XAvcVPR-yMg0d7@6~A8jid2+`SoEgQ@H6J?h-f8c^3@aHjU`6p&?D^jt+DdtBfY}%?GuOB{aMOux`X? zA5y(JM$NT~I1i{x-ycDCxeMa;`BRE zy|?|;D+V6HY$+Y+P5rJuqH9sP_~i^D{!)3xI#{C*a%6@Uxeii=cj@qfyk=*gyxmIT zb2d3kMQqCTB9V8j)%Kuj6Zzjz(jg8;V`dVHastxv{tIAwNlJS z1x`uhL4THA;tF@LmDMUXM1m^J(NRN43Q)*GXH-VDHL_6na3diA+6-td&(853H@#)I&`D3{bI(=#RBzPmiH;ejpID{0|W-E8O4cza03TNxb$$d0Z z^-$5_yFAEm+Gt^u8bGDfo|Mxt#E2@cj^vv*v1Nv9vVM|OGS-ZHQXt9OUtFo^9SXr| z3)hV*Ww7g&fVFPHaKFXm=^J%`G)&SHmI&1i|>Wxr`_2U;X9 zMRJj)PrN}9F}Pb7Nn(t_Q5&V z&=~=<`$gidB@N|>QZ>+Xq6DsWn*PcwvDCU-haYYP32f7lYl&j>;b0*P(XK{Z z00Z(!xaX zvgO&2IE2pR!ykO_Z-V?^{+FX#cHznV#J6AZQGfQxtwgL};N!qQa@8|sA5^Eyw$$Ds zU~efWwcB+bO)4RldIN4y5O>ndF~=*k71s~a96%|Dt#+7E=yR33sNCm3E{*D{8$!I< zB&|i~AMkI8;d5I1qIOnnNlI`4k0o;m*I2idy_J=*#faE;gURkfsZY*OrL!>Sb>}Cs zvICb#rM1g-!$3gRO)8T~RU)56;{zLjTMgNMvTP7apv?W$5X2QM6{M{&I>iNl(ssem zwHe!Zh1~UN1OmL1#8J_tb(>Yw;7W9K-molPQ+8t~m7DC?vlg^63Cjo>B?Xwc88 z#toQ%1p4jsVUshsK=Ok_q#D{kw?iLWV%y{45+Rz^De2UiGP}j*x|J`q(d7}Ozd@NZ z@>Sju*}YVlz{+h~wXu>U{v2+W=}GxP`5((^R5v3$*$q}!<({e;sL)tMV!h|J4~H45 z9AH3j$I&Kgva)U~(byBgC|PmLQYwhiVkk8=J{#>e38_zlI>(&7XvYbjuPsylLYG1{ z(zeJ0A_YrTmAvNBgbj~PT>ys)J;Y53tBF#Dd*4ki8#l~`fTy9C9lQ+I$1G*3cl0A} zYY7xSr1ef~?9z2}7-@uWU>Q^q~KIH*N%l^?#t%mdK zHfJWF%#{Ud8{AcPR4;X!a`&n)c4M%T7;6?1O69Vk0+g!RC_r<9mfAR0$~wVnr{-Qs zj>f9gz+$ZRBfa9siZD9*a%lN<)p&z_eNFvIZL4pU%!RJWT!wXUZtCbxXPx3 z=qg#JEU6v((Dn-|Go);0yEawO4DS{%Dnl1F5W<##18@2DhUVVql3t}KecRq8x7WaN zz(yj`CBa}}-HCo`cfKcJ5FeN`%xoG1eyGLmNiCDW#@JZZf{g;(?MC9DWV9%W!6QyJ zOI`T+kexh~OxobKJ@9O}msUW$*(eE$F3;gBry01*M8}2&(?6Z`&flq$=_J`MR z-+%i0ad`bre&(aM-vwg}KB7w(s-A)5MJ89)$f>$V6+2pJnAl5&WF1Bf1qlxa!v&gV zyItzHh&j+{Tgp)9dkvemHBCN2+#p3l$=Ypbm2(cQT02g#9so_{&;&w{Y#v*uOs1NIUBfq8jWL04f9=iq^o85+W@qs`RQg(iV){ zGZLmC5@l9XCvpw}WVB7hZBnk)#)^|eDS)DeLaK?6QnYtu5K5fLUdghF^~u`}lk#fh z=~hL(6-^k+{g7WA3S7}0VfFpi_u80$g1adAuau>yrFG--Gyz3`o!fUCSvS{wcS296 zj}RBAClhB>>$IZxy*r1dF62t95gXe+ExidP)v7n1t#4C3>iT6R zxz1j4yp}h*SRZjh8Niz`Nfb6MpKW-C?N%yibJFh*88>?t@;JpvDM>)WMpdtqTeK?J%)uWWeF00cJff3z7%PEkNOrm>>iJvpS36@MG9Gu!9EjqxHJd_*ZDd51!@dE_O;!#Khe1VsC1#W(Z*Vn$RPvkH3g4^3+ z{Z_g(L^;mzb?ErQv3s{68L(&uM|%x$OGC&byFz!@GK@N|sT z6DmN;^aX>#r8pFO;D0-7ArA58d2^uLd77;z!r;C)0j#6Ul3Q2||R3reEl zo!MBZZnT|^|0Vp$Vw&oafkOzdt91J%3lQaWL!KM>(}xpp(`=7#0j z3}NPNIBnN35qSmDu-xZ|B_g+^GA zgdJPgoPEgV6~amkdrCA1-VlTgC&a1`ZRHdax%7^SCJ@joyDSSR3yj~3;jZ!y;5D(W zc8+W+jv_%J90xXtAvWX%f2}$VrpeQc6?6pW(cuYzLIbwo2L%GT>QS$I?>1RKkO%-o zJ#EluEylZLehU=(TAS3MOxze*gCl81d@zf#LsB@s{6;&qU|R;C<{-Wj8UV1B1^H3_ z3#M#@w4G$-VVC258yIZQ=hM)1?(wa2v4O)Ii<+PWj-1<|<2tgIS23ZPv_lmDT_Ho- z@u}J2{TO6h@1_U35N#@ZRjGyvj?A9b3hpUpCrd^FF}L}n_Caf%=ICtAisPYnnc)Y;x*+VK;KfFwq;TACK zt=rfrhEZd7j)zv>Oix7!ni~%hmuQ^fAXV#;!pP$Y-#W`{)UXm*tl1_8XAGKt zCl7K_T7ZU@6b+QC4ZggVdROz7WdiMeC4=9T#KZKfLIZ7JCR!yr&s1{D%ldACJ`~Fd zzOthe^Z+U(F9?1%j;I21wcwwg0P6FAL zP8emqqy#S__;^Mlsb)V`(9e1WXxBotqa=@V_thW(Hg+)s2e)R(o*U@`^~Xzp13>de z`SA(rChD2RCv2Lo0u?|bhO-4+Ajkppo?F!%m9jE163gr4!@Qg$I0AtZLGn~Nj?;k< zf;~A0-N4JBw~p)-H?i9ctYtW>u5V$>?V>3hb%8)Mv&anxa*x*#l03X*WSPA|Op$rv zl7_ZcR<`r>pe9&B_|~3)-=Cb%1rh;aa8Wf(>|Awo!EJ2-p{)R^%B6XrL0&%rz(F-5 zo(=x$Zi92(=nps6mh%isZ^(chPO@j*Oa%rul@h*sdJf82kta5`rFxZgmEggSAVhWI z^Yz=SE@kglxN?nNn2!STJXBACuS)8nqr%Sil-yI6VPsX2G+XuxS0L06)&y;z5PT9x zdR6-9;^V+-ba7M4tl28SboeZ(Ybf)(U!@wAid=pnIZ9gI4LwdSHab~zS52mp@`)tIuDz{Z*B9kqE&k%odKzC4;$fF|&g^=wudt!%Ptg@UXZt7#< zV{qhc3pLG0$p$qx2DK$G$!VUceL9Uw7hw*I?wM~dhS-}D204d*Ft{|BwmYE-9$=WS zakUy7d>d;CFj-dJGgk9BA81!5=+C(ItB+(cO@bCC@kOdYDR(4)+PS)`)=gB3955K&!DPysICvr zF9h0vt~+3&vb_LBnVAT1Ib%W1K)F8!CsK#ULoq)!yD}wo?Gqv@#CYSx)D*mKhnUNm zDXm*7SKJ-wHoGXHFMPIi92{-Ac+1j*W5+j+IzeQQa=9uf3a1=KbF{BYjc<)cy^`7Zwj`F{>;QIX_M+ROB1 z@X5f_uRjQFP^P4OHMlPoGtb=6L}oe3TEWyZg+o+asVu~&O7^m!G>tEb90TjHfLlZ| z?x5Tb_d}l)mmVhR%4z|l3cWPeam)FsDPW#py7MlqC4(1`2Hv91&I{c}F8b7Mxu&3h z5af=sAprz1bp+w2)e1^#2T3Qv3!)fWarm_k&=oih?E^(|5lP!}0Vwb3kk>`TA+J)E za-~#TjM-CG-WrFhG{KTH*s&~p=Y%4G%;~d)#lD5r7vjI=baKt*Wfa1=aI9b&*SSMt;8Fxt zw=i~6Y|}p>>4oe&>5498cvsjHQvdp?uhdq_(knHawoSOtAeogcYnhAzy#C-#L+2ORl`e=6#T+DZEp}1KOgNTtf?#&)q{&6KtYl0SE$(y|vmS zq@Q+#nV`lG7IZ+AFidv>`_2cFu`Cri99Rc^KYZ7%YK$lSZy#AG=MeNSj8W!b^U>SS z{_=O>Z~klE!|dhl_o$X-#bH5w2NA)>ETOjG)XplDS0Z1Ky`g%NyM~Mit1YQbEo;&H z#?RQQ$O<^VQ{yJ7wfGZ(I=#rjlRI`=vYO4|Lb#!fP%{M>f{_LdWnJ?KTxK}Jw)K|! zw69>o)YPKcoVTJPHM6UU$41J&Lxg6QeaT+Np|#2~tAzXFu1fbU6Sw^enZox!{>zV# zY0a&zb4KM9Xp_65rj2Ghc)T|3FRJL-6QWqPd8{xlqT0~r$TT}Td~n^B0X;1uh@dcN zE60$~tfjepzeC1qeO@wpbyld9aV&RSN5J>Bi7F-zF--M4L|&44ea_L_UH}2H`W14M z9u=p?t^o-#R#0E}4LRI6o}fzCkwJ{iPgW$^C{WA6{WVUok&z|vq?0Vue97TW`LwO6 zU<0qMEW9DDPy8{EM=-)pHgjrF;oIzYgd7i`>ZolOW?GPwd8qs&on^4xvPn=!Reef% zFe61u;>kZNk&WviWFOUp+)zZQR1B&;fQte_dP70Vecn-;SG61A)v`Ob2&TKS89BsJ zbpeZ%5W8RHN}L%S)eU0Y)-K*jJO*?G=gEFwLeer0$E3QHmFm3an^_WHn0C!ip0L5i z=uxdgjwpMy#sT9PEVPV;Xa*jgvGsF@+l z+O>tM7}x{NDFSUrsfb?^ll|m;{ngvg8PtBx$K$8J46k3D-v9jVSFgVg+0&4L?~mc_ zTh;sWO!(fY;wG=5nr5PN3VT6!g`Yio+bE7(2vK0u;H9(z(=(f9EducTg(pN=~2T> zjYL@1iy-)&M>*tVq`;ccClVm-yQ3BQx{EP<6dYq-Qy6D;v9@;9RsE1G$Sf=mt{8cl zCT*1Kya?)u;UlX|7*SKlvpkp;;D%w#~zd!lSNS!?>Ov&-o$pWhJ~=hii+C8Bd~mxjyuB&QB#Ln#6XO6(y>V4*@q;TH!O zwwN`nUV>L?TBR!GC>ARNKAOkfDku76XD{HfjA5cK%8+kjQ<1r$GUvtI2 zL*e>XAhi{)h^;!Rry>CAmhXQ^aBnuo1QBro7&PzUil5lY2k4;RhS{547(!?nI2%kN z0%MaW3V(S0^slA}uYabf%%4vWZNud-u!W*H-Q~k~C)J9C43F!%g4d6zXUP$0K(3FA z5x~Q?a4c9E+SFPx)PHId>U3Q@C0EjfmvYT8X*t>m|RBJ{g=pwYGVC%r%9P+PKBA}o^Y{rthZ5WVRa8@l2@XHIp?M7)rP;Rb41COz8Yy{GdH#)`0!Mt3#zo@oVWimyjq6${{$l;tH2l5ik2~3v5s7&?{cXx070E@^oZQn z)x$*Yt<{j#AZre`ffEI|)m0ouQZ8BGCij;6uR>Pl@bUuE&q2`F9V@*QllIwFO1cZ2d!T(hPLy_NL$aZURmYM|f zmQHnOSa5Kjkvy?UCGsrOJx_i^v&VR@nkNT_n+)73SF7B0Ye(j?9ij4zf1P0CR|Mn zHyU_BiCY~T=m!(7>?f|ea+*A=Iv?PHXesqxi}DbWP_v9Vsu)e6&$FzKo>2ohO7u73 z?os{L;m@NQj!NGv-9bhDu`E5;N%pdxV!5g1>l20No40TNnvC=IHHO8u!TSA=;llyR zZ(i*g*)Y+GqsF%t;xk!E-hPYGGAN{n4)l&zF#gMNe=~S247}v-w;(Ci`eDO*Z?x%8 zl{$5;g5$_WGlvDv?OK)6tqsx%xi`E?+)yR4ip=6wa#Wm{kQ|m1BOI0gpaJo!TBgC8HS^Pe~iT1;crD*frUo$Q~dDAm0H6-^Y2; zz-^2Um>&7*9m0xbt)79LAWQAgGLy%dX$cpX z*kd3?b+oQkpW1@+28_ia|_8U6n+=A0kLO*=Otf8)ui$}TyO{Gqjbql zL))&^OrZgxQBAR->4QEwRSpNWNk-=qq09pIJ$KiP>_XY6`tF!{j1Ellphk9j(72&* zW%|9f1aYLa_S>)?vYGHKr{Q6npi7LyNuot4e5!+7!CtG1mQijF`vmdbrj7o* zBSAVmB10(xhrLQ`#zRvsUL-f7q4a;X|AIa0lmF>IJ>zn|cs0S>FTi;G`0bPM`fZMH zBmCL6(~Aox?gKnICku0OJ{MUxUE;QB*X&|LM6Nu89FoC2>)IA5T@9IhYqh2+6-K|< zQzbeMxOwxwoX^W?yHgcPC$B^81HKJ8s1p`Bn7$o@d}OU!8y2Sm1Kq4PLy#Rtfs6Vr&4mJ_O*Q6GNd`npsd%3vE#zofDXI@qihn>sfnB(SH zQOX67^0|JdbKuX|nUr-F1)A#wfWH6CPzMqm2bY2reW1zXcnwWQ{`MgU0s%AhF$aZz zLUL`FZ8aKU@Pkfze5hQ{gu`GVQ{L9v)cruAm>yD-EMAcx0XWtJ>faL$2@So6hfG;3 zPKfiM!C#jrzStG4Njpwg<#)6y_AD8`6b4TYF=v&J%KOlEgqv{Qt9?M&Z2hG0x?_a1 zjt2gNaFzqN!yI>}Hdz#Zs29c6OpzUm&_49vrL)C3n+ZV41|_vC_Q0e=0wD-%I3L!( zskOtDl@@95C9lCBVASh+^v~>%pTk5s3v#t@NFm8Qpr&TD=K z2|HWj*+SR*x)m~L>q9)BjB<`>A;lwy?YAKlG!J4s7E_=)Uu>_R3XQyO^am&4G%DOi zZUj!m<@)PrP>AuR&vimg(34Jc)-g-a7M^-S6rL={*k7KhDe_KqFx04+PGH^Fb`Aa@ zy#Kq`EVA>x92UQK1j29Me#1x3etvWO^fx-)`G>cU-v9mUpUnE@V_3g@BO3-jgpmny z)1SENMZP!H-dWP;n+o4)64$aTBuN}ZP__9OmRO9g#vpoexAd?kyaojU zS(K}(mH>#iqQq@4J;{wD;Eb@yRz5FnSfJ`-!}M9Ts5>fCK(*?c+>B+yhm|YEL|*{x zS>gb^Vscj&*W^Z?Sek3KYEsBmIuTm{=|}b-kW(HUE7k5Eh*^wR@2$bS_1QK6h?%@m zMOXVqAY+FC0=DyLM%SRU9az*J7CaU{p+aW;p6t;Du0Lx38m@ZFsh1xcczdhva-0`9 z$LA-&(+)uQx86I3Q?kU+ZHH4&4x1{<@L;nzPy`I{LzNCm>j8h%!4xDBe7x4K3zz94 z+W4e}oTJ6w6n39hgMmQzt?eANA$IrC__D}?Yn$qvVy%O;8Jry0Id%+;Ui~C;Cgp`o zy45HQi4&J~S6K$jW(P`EP1Sj4qy=nCMOuRr0N4s<>X%+(ndagNGEu>m1I)78A&Cs6 zSX`Vp(?%7YL+;adZu{!?ni4PJhK}N+bHOsSrY#Oa&`$2|zHv2L$eZ?Vo*?A|?Oj#; z?o2Z>mB}zRM_e1Ax1LJTIB9&52l?54Qco_28p_?XwS#$v#1B=fW0^%6{g~U7>L(mm z{p8{)#s964EB` z=-G44$~dJitE8Dsk{z0m*j+nY!^I`8$E##$o1JKY11$_~>WGlG)w4zTrTCH~#o)w# zBvz{#OmRl7nezw`+`(D2olD?&wMPU%{9xwaw-pws{zEyM9_h+CIX5N_K0xS8Eth&# z(6_i27F&$EG}LS3H**&&P$!9dq(9vip40Xlm+h*iI42#DJ&7dX#2Ac8@`E*tEe+b7 zN4QZ_a}y)67$j@jl_*L{^~wg|X-xUfByXxBV}okidX@NM`QX(G5@Y4tr*Iir-ELv$ z4D0CSogoKOKkL(OGb5Gi0X=MNA6_ig>-(6m>Z88p!kJok72Kc*DpwFNUN?s|E|7^! zwWNV-7{Rbc_vs|7KFAJQ_nu^#k>wAFo`(gebk9XXrsc(Z+|@2Mx{w(F5exZeg(_F- z^hlP!?r?hl0At%kcW?>HSCH_3P6^Vuh4!>m$F(OB-I;r<3=(L)sjTEB9%sv%%0EXITL; zhpL5qdyGR_tKW$_k*K9C3EL@;zSj!+RxofJAT$#Ll$0(kN|5bA%p4a!NO%Y|Yuo`; zmy6Fm0;JZ4{i9awTVbVOp0_OYe6WW_vFIaGmR|JF#-aNQArz!7Ka?=*vD(*krYU9 zTOT_mV1%wN)&ubeEL|-zdaP>4Q_HPvWhK0zsGWEX#Q&!W_gH%gkIKfX$}V6bg;Y375S zUa6O&+ND&A2XNRa;myJN8JJI~wsH$Qs&eR$1!WDiV??@+cp>NQQhO7CStFwD9^H)V#awo%>( z@U56$vet2 z>%k8e4=3$9LAN?rSb+a#lnpuYD@GIZfZBEoM-{5_iQy8TLZ5_*LpKjH+}T!)1n?!Q z4rtyERh91=RHVIWNCF&@)+a~kF8D+m+&!r6upUJ%*E5(#1v%X+2vlX((n1@*f3QWCDf- ztO^zN#vu6Aa=3t%5h4cmBMnSL0-y-&g>9hQ{Z?yb@1IPL#tlBF$0#CL4N#^@bu_Gv z7jNOIQv$i#)B#!9E(`ILz>n8tO@>sP_ZyctWg405SEmIl`_Ww#I?!g3_{5=d@gQAxwZVlbD) zB_(9HU?*c8r)~tomlP0!i4;F0_tgsWodNilElljwk5hACF44k>Z7vEU>p!_Xsbo;0 ztwSNM$SLKVoIt5#&}8-1G+TFY8Yi6v<(*Orp&St)aHuAE1~oxKmA9tgQYho0mH|{W zDSgPEcqR7Z?de=lwg3XrHuTqIso&KWvyL!jvStBX;+^yg6jFIo>tSJ{I3oYSJ}O}RL9!%W2!QRci2S8eT#7R8kTn^nw`2a3)$cF#)C z>q-irBmjL_)-0_K2%+)Cmsc_F_Mbj___&~3EPL<1z0t3)+yf;!Iy1L)UzERm1 zv|Pe51STo_y0-&F0|xaVu?{|pUUO3EU?I2g_Q%aBH;^P>-h8j!3{GX_OR)dVzfFa1 zXvaCEC&?Z?vzw|!gJ5P9s0crT=!}<$o}|@u-wS^u|K)h_&#(Xb_GyrZZ{B`(djJ21 z*PrO~FWMIcP;ND9&0Sa2ZRgZbNn))msyFa{Wzn}>9*ei};J4MGU|8(7mXyCu>ehD_ zK}t31*-z^oC>ypN)_Y>Z7b%crN0QqVDf=i@RYMBvn&jZKJOjSxaNCBQ>G`ax(>I5^ zFR4^h1}8yEawJ(L^xw5vjmY!{rmeiZ~)KzSFV^dv| zk?Qo6P``uK&UTu%;i70Bi%*i-hTe(U)2OQ5P_jmiN2QIah$wfKi9Pcfl~^lB2%nl3 zO2{(d++d-sb3ljO*90c_649mPvw31q;%*Po`9ntv^NZLOHtNe3A%HKkyi<3c_DSj( zgjz}it|84V_$m-{ZM#hONMV6)11YHHc13OSO#AmH8ZbV?$Q~64aj^!|mU*MX61;DG z#Q@7a&XKT7z`Fo~%{slEX9~{%fNfpSR#FwXQc@(abU_v@Tlu)j)h8*X`V)|mb^*cA zV&a5;PYF3wbqSm-Jc4dS>C*^nP)U|BP_Y*J77Xr)q8bXI<6&kkdF9RGC8U=I22Y4M zIIIo==9ciDQ?EQ}#!$JjtW=zrgJe`GqQLngx4_2y0(Bzq)3<$YOd#T{lng+XCuwix zo|RR~{^LlcNa-lS+9=bVXJ-n z`o+H^T>T}dn_oUpH-Gv1dp-tkZ9WsjkM7fhE~-Kmhi1p&&xKH zjw93RusX!2Ah$&QfJJG*?pX|K5T=+QggOZ*BjD^8B=8)$U+%~r;XDE3C-J)9B%o>m zY5}}wheTG>ts>0YyP5OYU^p|h@_l5uf@#I(0`Ch%*zbikJZTeG*Bs24>XGD=qP zQgl(wku}xY#>+cl;c(#4TI*xD#w##uk`Q}bQ{^Q9j3#QL$je&x-y{2WSM|ps|D;5g z726iIA3CabOI*^7W@8WMQo@fflAa6^#iup6keyopX@izZ&yFPQOxwfM7oL}A+rlK8 z)9YpoFLaYb>4*usq=KQ~lPQ!PksZApP=+?dy=z;w_F>O(#xsNBEA);Sjd-n?lLaauXsjad*jKv=iXr)|*?1C$ z4KvjJ61Onn+z1C$7MAysN`hVFpP=)5{K3+VYI8L?at?xilZK<#o>eK=DrK?=ITMXO|+?#4+w zL58ocafaod_$fk$0bsP^y{-@857le3@NOttTrHPy_S?pY+6T7j!O8e(Jt4GnLB z-*6V}tlq-;Kq8Mmc~Z0&%}ujHb1QK^5$2|OE`mc{?jsCGU)*swywC)rZNF#(AtU z6TdRTOI8QZ>ec5RYW$?3oP7bEbd2YxBn7(G>tSyo!F)&GOp!KMxjGDK2juJM-d3%` zRV^Y{9z;idSuQt6$&DqdMwRWV$+Tdg2zGe=zo)HKqnBA7>4wszK9n z>RW{m?Mn=6ly`e1Og07?y8}~?-lZfK6UbWjgc9!@i=05jT}@RBsuyi(UZ8Rl=OBh_ zLe6T>o@T8Q?w;+chxkyrb3nM?Rbd7_84H&A4!4L1<4^d0s^w_~Gzx(0`G*k6SWfEF zXfdwBfC#+_#>jIxv)>upTJrPM0sY93gm6j!chm;E=C$pBbQp^rbt3ACgACvpLnrt4 zskk`P891sOntb?NNE+ct&O$!F-S83pC1t*yo%!ZtGpS98LXuVC;XP3G{e;?tlDcba zYRQ*7BWvhKk*lnh*`T({`}$ za$VNOv%tA9VHt>!S+i0Z5Q!rGeS)mNdlssx-pFpVN@S@R0WsZc43w^39o)Cv0aReB z30GU@lV}&u7Hb!X+qV=u9Y2t@T%@!&knqxn4rpR2CZ#9=bYF4lH_38c6Z!(Bh=*Ke zOTUS+m|~Ng)VO>S)38dIh#FZ?;v| zQZjT)^zjfR1SMEu%vx{28P|az#S56>wh774a|R&0#nI((EodS5ZT<7sFSng(B*x=` z0Phxv^u`_g8o5-HGCdF=C7#{9iBMh@@yfIkR=K3ao9HPi7fOQ(%#qIU^{w2z_Y5W` zwNB9uI%d0P9U@xx3#3Y0S@Myxr2B9}^AChJ%O9VKA+kt8u=hM~MnbAuSv)u!mP1ZG z3iaVZo^1smdL38A^GU`h%T|?{j7%nxEP6AkObYetsDxJRBYGTU0dMqxfbOY(vO<$n z`2tq!tNTfJs6|vvZ3|pTl#U2DwgVQ|jz9*!;UUfif+@@uVU`Sgbk`zO6I*)neSE}2 z72{Hv@l%WpZ~vP2K70G>Ret{I>wiC~_|8v)+a`be`fd1r4u<2Hg}9fJK)=B}D!iSm#VdR-pXcWUjwq1ksVfD3aBoDp~}jxDO_Aja!0Cm zvc5@yfbiF~n)XJy&XfY(L{t8_O0p2qQ?_`1O-a6ze6qHT3c2Qr!}^8t+RG9tU$h#a z0=YHpRh}5nu?%BbvR|z22Sxqb6EK!`tsPlES~#sPQ%emhJjJE1!N@2<=*V{4o@pmc z#J54#nBf778Ek-VX;6bv`^Fh0ZmkSVTP*-dK(@cF-X%Tixtd_rJLIS!x(4H{swKcM z9nBYbcbzKjM_CFjD<|X_^3FlPuF!`2))Mj1ucuN?T`L1amQwfC#9fr#G2B5I!ScYt z*Z`OpH5d1wW52`Ur5gFE3*=2yFWSHg@ka9_eSl&D?d7RqAlG5X_h5JtDla#lFZy{|9ySOO{!%$Kk$cN#` z;*qDTMlI^1D<^nYwDCd3xVBG7t1hKW_8a9ho;O@nCgmqo0)WdsBJc$TL73IiWmg=P zaq>3I-ISTdrfpd5CTTF>Bt(1wJi@j+#D1w6*`-yk3{@du#ABisI0NIT4{=a#3|w0+ z+@bpUz`*kyYRjHqSg>Sz(a7yHysaahlwRjJy_ zXJzl5A-+OoMEjVEtaS%ldJ`2_0`E>(5w-}H*%ggF3I~~#Y6&7Y{0;}@g>kV&prTr% zVlDB@*pj=FWL$8f-GR01b_iVBl@3h$Np0v_bRY}`CR?}iDX%UGQC~N}CW7lh{s&8z zzw@2%z_#TGiNvY{TW~!4+qd7ET+Z8{k7vIGWXoIz{#uUhc-^mFzam{Q|FK{3(O>iW z$=h%F7`Tyt`p>UFCsg#Yhg^{Eu>m04#59plk6V2%EDCpLb&4eM5V8$fmMhsf7?Ks) zNG|Wn@}2gRHWs8MCKNlh=u~hrk$Nczd)4~jgu#tYsmS^ikh@&B0W2zqd3z|X^xL*4So467`MWfDy>_^ zo=WK0r9h^lS>A$A z<@)l$MR^5NN{UVH6vcjmWYu1^~>h193QGTWQ(9Eh_Iwu!xKibyXwGMBe%oEl%HU2MFeul8bLIObl5`yz8rDX%V`rponBYLmOM}KXhOK3$WM7r-79A;tnpVzurTNO@%d15CoSS zVKIC!{3qC+0KpT=R;ryz&u(=#YF7;BAdCZquiUt&cPy``4a5=?J)AJZweIDl!es8? z1u>Q_A*`xMsG)f~br{>qE}b9_ZmJp(o`yj;iUFH}?O`CsR;o1#v;C=GSkU!t6E8>+ z9pdoP!j=qfT?nk4#i*Ll2%B#m6Q_j(ww_@BF2X~vCJpK4kj(1^%_Z;<&_jc-fa|CM z$kLXnM4mh&4#JEzs2N0oTovtvoZ0DRXE6}y7M*4{`vlmT0m)!HM>LwGkq1g2Xd4Ae z?ulbbb-a%i&AKo;VB*L*l17J6;_JRD5YEz%k-no=$6|p7; zrJ#gNFtvczzzzXqJ3R+hRZVt~2PLYp&!rt@^q7^~ZDFp1Z4hjdEJp@prj?)-*Q}GA z!<0m~OLFdpgGLUfuKy{Z zZJ+EnhZc<@#q#6C#jFm>et_JykU0QdLGnI(RxM!2#h2t+(erjxaCMj%ON64;hz|50 z!t1x$nfoI+bAJl|LU0&9!@uG6r>FNnCR=ldG_utUnY5`b6XvL@SfP_c)q98M8MseC zw5n(!kqnaGTTnzauUuWYy#dfNsOBG^8b1WY=WfNEfU9CS9K%!@Tb*w9!Sj3a zL1>4Gw|wZH2{V8rMtdCOd$zRk!a8g7X;r0MxM={INsu2491Nxi1h5u{Oaa&F~7A1>!=Ea0@l)I@%XfbQ#XGY{lS>P1VGe z5Gi@v;%YDGoHk>*(sD*slE}yEt_OwS-03L7GWavhr%yUTRBitpE^q4HXrsE#>kR-x za38sHq?Cd{fgR?b5?-%qmW*(kQU{aUPgLELO;#64Ys?fKkbqgsct$FEtc4Pbkbo11Rp^m%Oc!)Nq%3#@4I|cE9Xq#EEXHD# zm1HEqSF;dkbIk4wpl|H}fIaJb%>Zz5hG_J*K`Xa@cdk-cZ!vXDT+r$mj5omC7n(^m5G!jdhxn@6KsGL`ewi0FuPc_FLr24M*Aq!y1D4S+g6fGcd)zi;HGEzX7CIk*n@8lL! z-y1@GmUmLpb7;GC#A7cQwr^}5B(w$CJdksX5he!q$)AJIIy$(ZZ``C7H{NV?Tg(L# zF_d~+n?SYgcU${FVvY_x)+ju&@_0=fCiTqFr>sVfI7iU#s5XT&qVqVTo18GDnAu2_ zgzTOujyVL%JR&79BS&-bkTi<`jk~%yf@3l@QfVJ*NigXqrkCm?Ym$%KMMe*Q9>R@J zF5knGz<^}HH&947!V!S)b?08FHzVtyRmdD3%xwqxP<&d#u*Gxa#U~5^gOk!aP>hs; zcGyW>bv$Js2X;hO`y;cU6D=@XM#hcL`c>_44HTGei(m^|BkP(W&RVH}>rURlAh_UB zA`Qx5Gl#sZGHL6>ZXLDD!9TA$;I+6ud&j;Wd*!fD^LP;d(kCx^FTc05Rt zkFsf??xRZd;KEIczHly3D&*#{mT{i0o~k*kjpQdssN2#J&5S)6-8&FpHYU#{oC47= zR+C#proI2a-@fLmSdMonTG2rmO#sTihsP!{8m3aNNmI;QUr0_9=B=h%QJ3IwaDa)6 zlyktN*^YK~jyZAdT!uS7HFuGNdjhSRkXQCj)V!SxjPNAElt7b`b&$TbVD3|v8Ic?F zO;CO8uL37Ga8CW*@Hap3IQ;gz*H76c_}TI7*MIrjU@!Xo_1A$cvnLU`=j{*F<^GGl z^s!-y%pd46hR1k%0B&QLw>@-K&Z4~+ig0a3yPD~R`%#!=VNQ$8!$IYjj9!6BsZg$(J{FR|Y$P5xa;=-P9YiDgw9@8K z0xKY`E{O$QDEUhBNkV|35VnrcdbQnXhj1)pleX_}z%!t3x57--iK#9X`ua3EMgwXF z3IBpJd=69Mv|`wU3ei*DK!P&SbSg7ljuL9i13iMc+pzIatLOpI>ph@|EH3*|F|A7x z4YsS~;@ZQ5T4(HGL042#P6Eh*IA zr$s9dx#98~U1(p2BAH~IR>3C}J{ecY4=Rd*q&H{x1BE8H1mzIq+BqDj8dWw}ohl7M zO?TkV(pkZsoe)|9IAAcBm35|oU3$j;o=4=^J2*mXg49##33W)6MNk@nJ>5M^BtS55 z2A-L4AAID^$fK#nXpb+gLgi(0g_8fO0X*TeD9!gqkg>uV+1wZoHbb{*{a8?eMT(xQ z$|NLfHYvH*7?zlkf;Lge%lyEtyFn0BM+I(Hul1EQ=q4u#hX3bh?@v&Si(TZ~f z#=IwIXv~{b+B3Aq79y1ux#|QAoxEP1!UiO)0@RPqc3s zuSsS@@rLr1Z$y;(!sj0hzP@ zQ9Cor9x7efrYA6vi*rkrKBz%i+%2UdxKWr-N_VsIl%q(od2KzC5C;wUg4TFwaV>I# z6JMd~ig`N}W_t$+6}5M+Xf|>aeIjetOMV1-W(@z?=s+8uB1unm4NiDmio&#m0MxW8puw@{)s{nRX^+&60 z--U3ulh*qykQAV-Emwr!@azHvi-J&fKaZu5G{) znHx(IFz+Xr))RNub({gubieDOi*-b_)=|W8ei`G$rZsWRADRt6J@KJ%!{@JGgjYjS zd>URqI%zi~_nP0nKpwnD7!)CO8DwJ)?y0^X6VUs338i%>?~pWtTge?cibTF}$ed;+ zGn4{{o?t2zn3DX$xMRq5-a3EDP4Zw|s`1gf`RE{Fu>(($;6Jm%vqrSjDb$t}X4U{W zK@s1;69A^+5rl#+6?Ab1G5LN~0v((?n)a~q7>Jr!M^nz$PH9K=dt{44F`|1wS+(We zhVfF~#)sG_YY+J50ZwkzOVpi9!On6+bg&jrk1)!o1WA-S#x?63(G7Ox@35&FGLB!bkA&XilhNYv`v zE~olDwu+XqL>Vm;OH0oZ-c}eqaD-Qd-I^4Q>gIXNxd=B^k64+4Rbv@^wpFRYpQXKR zQYACpD4de4T?i=a8{Mu^z|O@&Gy<{rKfn=_?AvAx7zIjtJa)R8?oYv5ijj@Bbr`*o zA#8CFt{(Xbg{9FywuG8?dKMZRCvu2ajtvS4TxVj7)gjQH?@(O%@K(K?+oLrCpwj3) zY^;P5?*Rt0?(@SGhNG$@5H##fj6sTa1}IspuA|C6a~Hz9?L==`6%OD_t78b+={hxk zp!RCIuD^Zz#qq3U@ZYdc{WJEXf5ylBx?jBgD@1z!mdAgPoa zSFLr#RK72)sSJXMkMdS^NnW1JOk4(8;S}S%^%AC6EpjU^zmlln8m8pghU;$Wi2sJB z51Lgg!|>+9Kg+rmjqE<_yCPv>`KtzZHP*o3KaOf0Z|T2e#TT$#+FCx_i-mO+Ilr6s zD==^YWSm>40ud-a-hqZ#bZ*vF>C}4{N&Uh zPHz1z%o9WZqPVWSm*y-NxI7`B7u?4qd(pKzw4Q+arEqL;!4Kr*6QR)(cT2f{NiUQv z3--(I0xdB#n@!ms$aW75A6Nci)Z(7TmzdfQ@`wis`bKjMs7GueVFyRKhBilA%#vPDX0r$sHFt?X9S zHK^v-QcXf}jZEy3Y96&Rjfd#nmE_!kvn)0b*h0yN+MR`GmUwwP^tm#Fp~`wn=xPVv zNa@{%2{Qg)6MB{~drLD?`uvjLOBqf2LK??(5L ze8gT5)da>@w0I4MdX%lQF`!{=y&8%*d$ld)-(kPyiDmd?2KtRZD}nm=u0HYa*-!uC z?e}k=<@QW?|MR!6$y@x{>({Tp$p7N`e|h~pKd&OVe>yz^*UI}g114apH}q&FWn(;6 zQCw)E-J2bqznQEP_2WI=wCh8phaB8PCl876(#XR&NjS0yE-zR%sK9SeEEGk3WIl>H zq2wU`cu*KgvFz;=OGOegu!@P8lf*Bw*8_5FIxYK9HnU<;Jhm!b{K?S(L!yAwtb)V# zq(ri(&ZO*1v9d=8lVDM&_BZ&QmefzXb?SX{lmy~ai;Jhu|X0&Uozzv3fJ8Mr5<2YV zRL=53@Pw4mW_wL00a%$upU`f?&1FR8?kr?=>tcDxc}RL}%_FJCBn!7AiNjT5 z7KE;o^^COjkOPsGCm6`eZ97UTyZDfH0!_*6worLPs?KGmRTvt&3#>~}zPtOldV$-T zCaZ8;*DO2G_6d*>vx)__j}MnQ2Z%*hvL+n1ttcWTV6AYTalCS`ZYAnGQwGBBdwGA? z_}pGxBev`NaJE)&hn(8l(sGPQ$COH^vERG`G;E8_h?UJ@jhC?*B%V4-CQT|IY4wVn zuj{ED={JFdUhb7<(|K;=yux9TJlpd+B=PY~JasKe3Af$uxmI5(%78@HP&MS_*j@rf z@|IwiwM1M8>P?7w>QLHb8zj(@<@_1qvl3y>v+{R%otb^CSDyM_0bCw!sJ!Zn# zb@y5+V&{E2_&2H8ND|=!$up5H1v;tjiw^(yQP~N^YmeY&AI+({R+#pc z97)B#S#`0GKC+UvOYPOU3gW{UXe-VFe-yCp7g; zx%?J43}!a#@&Y}AsWP;B*ZaP6h&(xY^BW~umG!$yX9fh5$pFJn&o zZ@Ig0Na8^}$S+r^tMuwUw}&JiTQZX}ej}CVruM};(v!MqLwHT~M5?g6a~Q6pcpBwY z?;Jnpp1evTOI^VZJ$AxkBwD%buMlMJ;aHC9$fu$+yX;6GK@tb)qjtF`pb`^WP8L+v z8HFxjsXq$xzLYd-oUI`56_%mxLeM!aoTfvB5L0oW6dm^0MHb^%z}4)lT>%ev(d0I~ zmxwPce?{5qKNG%4+IfFPbm@yS;i@r zxuCIT3*1*^xdkPWC6#VNmNM_P^bIMLR72`1;$^BOb1ga1%0y3Ybh?w%0k1=Y0&aJ`CC=Z{aL(+cOC+f8eY5d##3fR#z z{~aU9&{U*LbsI*Bin~G7Cb09Nx8~CO)2uRq1|yqBv~MYb4E-)QYdzduk!4J6noH)K zSg^-UQc((sjvG6UquO6uD6JCse~XJzNx-+U?5MW0Ql+m4F<3t6gGg#nFY;!fuCeN1 zK&X!mkOkku+1@k9xsdLpTMqE_c?q91HcTpOEaG^{_r#eiBdsRXcALtMrd%7Z+#NU8aGViESP(HC$yh)YUZ!NnSH*}$_ zbsow=1vF?{S&qY5J4vM)??udQ^A8%y<6!I;=Y~(HWQ-bjLsPAbAOn1K0p|q0r3H z#-JeB{5j~uCu)`!-oF08Gvp5p;y;!De+eaz{F|?zTEvrt`))VJt`bxhzhOOeZ(;vf zJ6is3o<>CO-9u}axgxvanv2L{&$KFKWy%cOd{Z#m98X*61FSU*CCMWcINAdxi0s%i zTb+6i`)RG!>!dgi{cwc}zxsVz@>HL(yZ8XtM9BF#$Q}hsTupOlsGVq_- zkAyIXEc&vx+xtAVm?WbJZ1v9x4N=KAJpjwXWTMNXlBx~?&}LjFmC%`5TA)D-TD~`7 zgxXrlk#-%CoP0?Q=4TE%xGj?7;`%kr$%aX{*+(wHyxay1EDRH8F!8gk&a_rb5dQ5GCMfdyMed*n%gvugrC)}(f604)|N5u!{vX~xmj8bOmGBZT z#4yz4_{(yWKhB8X@D@<=4di~WYy5+30NLp;kDXwk=~iK$m|1JH;w8z~666t+lLHAx{F?BzZ6`G>>wUG?A)(HY$feQo zUY59AX_CBLgV{b}*hDx8MlA+Pr3rQGpJGW`sJrr=lrJmH`}*YLLa6i7kVQLL05CvE ziEMR%Uh`()$Y@^8W>EqYWohT}c#;h=Wc;0XLs}SIx$-}tCRfh(Fif#10Wnc2dgTwp zS3EJT2Dp1!Fh&79 zakT*z^p18hR#jSoAtHle}hLYmF4bX<>wJ<3JlJs?OcVSsw-c9aOY1(Wb!4zK87 zRU?#_R@Et(;pd%y6qSCPL#jrnCi?Ppjq7gL!)1(W0D$I}oRJrMQuoQGEZ=QO13XaJ zs1zUk0VoaRqFq99fyjuwK-GL>!;yRoafaKIQ3R6n#>o-QPHAe z@|wuSZ~I9q+nYq*Jn9STC6oi}tZ7IK6!}rJojF2EI()KJAi*-!{3t-lshPH>l1p&~ z88Qbj!p(+4)(e0q+v0eULjx3I)?2=8b3d}B2c0Q%}QjLZ16z>f!uhA+`Xn*Xg zt!=>?yw`$#6Zl&h(=K*r#b%}>H2(^YdbW|D{bztdevg>^O|ZCg-{jUi-N!7BG&7m) zz^Lm_cW@G{4=tIxdzR?*G6&T`)_J6na^U3Jq-7Pr%QmN7ANW%&7_tw=6MYUeR~4_- z0*gSvF*Jtig}2q!rlU%*Zs%^vd9GAy+P#KLQ~o)Ib@)Ww1rC{EmQ2DCX6UNi5;EOEKZwBzp-@RS5Z4+B{Zck{lIr?U1zE4h z)}>JIq(MbW-PLs7W>uD9$ei0OF3~}Z36Rv$6-6!^aTV$SoytS>4lPPaTuei08+-^p zqzz?7*FG%p4KVFtPhg1d@d=}obn4e3urZC6vTdrwm5=i(9g3R=G*VC>&jIpj2`NT! zBWwZDMqn@p;jvMCUc~$kI0bgF@N$|3;6t=$Ty4urTlOQs16LqA2v=U6rA)v#g7VONt3sw&JP@trv_&Lj3Z#cZ& zbw_4JZRhO?P`^o%TZ}*ev%7&TL9n*$T!|K_l7i@m)+P|;h(4oR!Ih&_y>5Ykj8@jj z9zEtq*zBe)wc_l21}nMMsA_GV$VwV-Q4?LXya{xf+Flqm;T~4t~*OBRDmwjDj;$;hsW&0Dml^JdzW?*N*xBM?BNqRO(Ytmah@ zZ^PmQHo>x-hE{IgyRGdW#VBk9YiqVnA$R#8@A?6Lmy?53nedQ+>sOReaUG(Sa-9nB z<;@5|2io`ol%+nTCE-(7iJOcohn?tUtBz*)WrPh&e)&Z%nt~$Ah(Z!_kV~hDRjMjY zlQjbWNcKQU0f7rsTpMq^*IQCekg?}J)S>gHIvv){s@j!uvDTq5_H7onaJ3?|4-P!U zxof8@gaswegmgZg%UUv~5A!C9b z)$J&^6zG4Yfr$|}E87MP(-tjI=F8^vqwj>_O>Tx^4kZkm1Bn|j;6T1MPJu>vea3Pd%}xhR-LVTt^}Jb5@d-uS zmsj;?bN@P7pzh%UDn}b!JQE%vsx1^tK*M5*H-pu=gpiaBS!=HaC&So%vU2`WB^&du zqB$Gk?T*J$M^s z%>3Z*hrjvm5ng|%7=Y}S_epq87=Q8h=K$;a(|%L0aw$dkgi#$(_SaqK`+!YA@%@%U z1~G6&K_$0!KHcw%Q89T)}jndMppQgNVaURT_MHI`WBW`3(91unL}}^ zBAnIvRxskVY8$Gt7AD6)C|64{xdkFR%qXFh<2}nB8jjSD@6=|QV;z-(45b?&flIw< z`nhh0W15bMUZ5Xjy9+$V-9&!QJ{i`egrW_uC_8Yf|2~h%JSAp$mmi9nmU{ZwY*Z-M zX&karNnT#ZK^tkZr0@tLqApiix6C-ti%?npi8Dk?v0XtAfEF$M)*o?FO|{F~;;gs5 zvEO3jn&5IuZ_vVw;Or4|in(rBt(X8W^lV$bgYB-vNbJ}3saJf3x##JkUZFWI;l7r` z+YYz*)RB^}C-Jrn>vp&-@45BD(Y#z5ImiM%knTI~xPjfQ<; zpbC9s{h~-w14U6P4HTsU4iDeU>sxz$E8?fR08>@}iOe(Q$%t6vH`H?f=7=Vdj2o80 z-8`@*Cizgo)RNMrX~i-)Za%|pBel)|D03t!R3;M?V@qRR zN=AiDfgMkn#e1OZA?mWA&*Zn)E5x5K1Fxa-94I;5b4+5v&%Lk^|7$6kbQuOl69Qw$ zL0tif6jp_W5)5y9IV%OE4F<6xFT$oMen~4B!Z30v?9#l_iIX}bl57-ZpH$G_j-iJg zO-C;R%1Gj6>;OIB^&4AxJDli-Rg@*zyg}^c&ym;3PoLYM!o8|YywY6MIi24P@40$> z?u+>2vmbG5^t=7p&%&EM`o-%X!`qk8#>^b#FTg?m1r#xt@SYyTI;zIDJ#PAQa6%El zY)`lxHUpb&Ns?_`h>cPWQEjo4qG_lRG(VcNGKRq=AYN30pe7N?04JqpQsn{Q`xUEk5S&6|Q*0EbF#Jg6X}rpx`5+1;o7dk6 zc9jw#*=TI|`o}Pf{fS|x#+^+vV48?Y9I3EQl2gO=dYX_zEOtxKl`P5mBA78GGDAtC>RFfebjXsh zeg-r|;+Dnv8a@hCEe3dfk=PDBO2fqh6l8yk6rF|J#$mt3=cR-2QD`|Rn@ZYKbpAR+ zF3WuyQHE>2?b|Q;F?{=pzXCbEuX8C+ zkx~3HX9Qmz7{%|%DE>rB**8`F`7yz;56L_ClfvrcE>@fF99KsS3TwAyMr(hDHl5rC z?+L(z=)br2dC0uvF_;yrm|(>Vtyt!*gKrwZI2JEgH3NVHW9ekw0X|!W6A@C_BzQu` zZvqik`U#skDkADVIdY%{e9;c#GIWz9P}sarQAki7{;(-9s!EA{KM+0kihx#tpZyrT zc$H}HS~~#Uahx%!jfx$@vvW@SQVE0m6+bGDxB)H1D}V`TyA^84*5SYCP>aetaI3dg z8Ta564l*Z$WJqkBe5VDng=8X=jvtn^i}q%P%bkx4BZj>Z>?6W=3#G@}93s$^%Ae#j z0O>Gy;uiKkb4g`NY;bX>z&I9aOpS)_8<#n9n&tK{H~xh!>;ns?bqP*LimZrt$os99 zn@*xD;=9f|JMScKpb)M+Bzr-D6J8s04c^S|UD+sEJRg=R?|Gz>@5tuG_UGW*37J<~ zaA3Lsej;^(C9EtpF{iPB<(8a%35OSpymAI@ZwkwxnI$4<3tgF28Fu-pGg$QLWjG^i zS?81FLXmsW9yD(833aDNRXBs{F}x?oP^AvG#LEov%=d6$fQfP+cY@+V2%?X24vphbfC1>Mr%0~#zYkykr`LbZ)$s=(gnxe+Dt!5BK6hWf z9=1=vdHvjd?)GQDc>RRc^Cuic{4N;b4BUi|l$-F)5A~TRN|cGF&)XWd^|Z|aqX}us zEN;F~aOTlK#f!oZk}~t#eaEyf$LI-zu%D7&&`I`{LdKAIay^!*T{1vsAe>Zpd@P{X zUe!tFF?|PTQkO^`2LCU|L^!wRm-1l%!)ooXF!-8=!2qBzkG+F^ zDn|{}wYXct^-j@%I0j#b1FdKE-_V1VD0$r)Y>Z0>dTP`lYH$}$h4xqu2YL3SJsmyU zwlH5^yuBML(1Bcg0vc%Y_iKsTx!O(t)LYyh)wr!K48jw-*X^!F$>u4M0_9_Gf5~kq zYx#8z2xDACsdNWm$b85<2IJ2Sg1}PFbf;^!tMLVHqxb#^y>=JYYhq80+H_JlV?LcV zBqLnKw3fGbskh`fnp#@dR-z_%RM^jba$f@%o1X$a+XpDG+3a6kbQPu^CkFR;S3frM9nf2K&l!R?q{%@)>fkL zvg9%}J%iovnJ9)LUhKBL~vc98g1ko6yc^+fNGT>`Uufom0-HX zm^l&=3dK`r1N5p6B!$`98ud%gqO?cx#`WoUz7zhp90)&o`z*i}>79hsFT)RV^c&V? zgVBF*QHZ2jSTeN*Wdx!}9*JZCBrbJ2bxRx|~*Rwr%<1Bm!AjHQoSz@dz^*nsI1?c4+9TwdpX?Fl#6rA+8}B zkZkg=UKS-wEDjfy7l9?l;&6a{fZ45cc@Py?cL8O?klr!PjVQPs^4WwUFTf56kjz}t zm6trtKS-BdH;yF`aoLZzYq;?Tw!@0K&6KKJPa!VMq4)=)kZKjMVu8OR?zjb#MP9?{ zwpKLqxYb(b>hTrUo9;gc(08Q&{AGtBA>s`SoK+SIl-BXtrlYA`D5DZ_=S01n3o1T~ zg{|B#JA*Dsy>Yg`Gf|kc!VJSgOof?@CD^K&)MCX#9K1A5NF5#K1AV1b;S7M~u#Uv) z%Q>xW2mqk>w$cDOLYc#&Q3Ivr1GfqOH9@z*7MPwO{HNY2%DTDVVH1U(!5nJjbs7X| z-eDXPs5*PLRo|N#oJ-esYyn7u6Kg}FLsUhAQ@ly~_Rx1bv|9191_SV-(M%`YLLdm( zFO*2V|1XESJW~Ay#UHJJ{Os+E@Ma^&442Sh;< zdU8FM4_5&5a`cmsN>nP2v%1o@1+ZSx;EjR{XwR?q03_B+*+9nbm$Q zDoW+u9KDsLn7Y)ebJfgyKtymfxD;x_A-DGDl}QUaEE1KSFxX+p#_+DeP(H&F4}9U@r>Fd2Rk_h*tV&84RKXTdW)5Ei#@m= z!y|VwSASERSwj6d(qvPvP;T{m0NMEmG#4+R>ePUU0-6U!&}+cd4z+NEa(D1@RIWrR zLDRsQ6ROZEa1wk8V~N(kLfP5nZIZ3Xu}ajGSFCFjpFpY%q7RusM@o|l`s_M+aM_eglOZ*c%C9Wo{O9V{E6dd7^*?Jv zknvKlASx(l>??bKZG&F*`H2F<@0GtrD!7X-M=2TroqtMwNNrC8&56TzI963Ovd5wd zy8{?`QoG+m$qr^w`HFnlCxXA0#&yFNY^Ws@_2hFeP$q9F z1dbK~%H)7W(9LH`X*pvmivrP}L&F>0ojHrwx)O?9@QSjsaF~MOk!Mgv+%bDDC-wF{ zs4SvvU0iZS;#Ubbcdp>|Oig5Ss<{SK1-RDg`+IYZn+g(HhLbzI1NUfIL+9dv5{~l` z2=cS3J764YWeJ!}a6iruu2OM5OuiQGUJIOq2hJ6H$;J;SakddvVrv78ECtxRifE=2 zl~X+L)PCF|Z0i@^Ax0X|QEx+0|1K?YtkIRygIFr}t$DCY>~#XT_9eeQ8`Da^0w?=y z5;HHWscf_$3BIUuEd~VkoMa|LOQDZieLHnt?N7R`E&$W7B^p)8#@g34z*E$XA;KW{ zBJtq_Wr7AeGEFzmj$55PC;;JGc{% z>-~HYrDK1a` zEhPr&`vWO0Y+(q#GrpEfDm52^$oqLmS1l6RYS+jrZz_r-AG;0WKd@9y~GX=GP$Yw_4%#&+w~w`$$XPZ+@6d+n;Hf z`ud|h7X6R;>;C~-x&IANe);R9sm;G}1BHiJ+-(=#ew-!5$e(cMXcWwTHEPM<_oz1S zpV3OK_B<@)moNbq>+F8@_G@ej1(G^dRv|oyTRAziUs?gFx9Wj5HOtgs06?f8hFaBX z>wC~j&uVb^K<&FoUf;4lC5in~}nYp?$&xeCE| zvwC=SDKFp`4jVUhhHIocZY~$;`Zbc0RUj#FfGP}li3jQ;@*&Aj%^i1bTw9KJSNR@e zN&zL{WG*laVtZ##*xiChTAWsvtH49g~|9FDo@@;IwW0VIVj>j zR+TBtT*EF4nsJT!PzkCDFa&^~sYoWZm2z#sS%@47t0&n>YCU6vuI+xMod@N4v1YW( zdFKVnE0>}cdVN40;BOhI+|_w;FV#B+ul*@qr2R3%K@}dGJOkLM)yQ{OUQv|Uk}lJ( zH&baNkPk1Y2$22kQwb*QmOrXgc}Rs|mvoFI(NxiEWr_2!;k0skom}}4lzTe@W|`RX!?qKSdiYN3zFyMKQ3EsCh_rKTgttD^!7V`4Bvj@ z^!3l*K6`ryD~i9oeVM=K-P>20z#t#^%%5QO`A&YpyZj(O4|3N36<)uBJ&|33+qR!m zo&LhY>&}PL9$!;3)`z(now7u(Maj+0T3%)tq@uF0J|R08G0Gd?M=E{Yc006o3y#D_ zO+P?YcIB&E28f5aF4sVdG_$fW$e0w2fpTuB@>j~0&T7?VAv*SOJSf)@$K0Zg@J)lQ z1H=4?R?rQc2PgM}k4p6wiQa($NFF5cRCeg~4AN2Stp6EJEg+Bi5qklKf4T6N6#@m3 ztB^@eh5GY>Za%>a)J2gX$kq=#^Xz>Ws7aynofNWg<5G>l0bw!pEpsO`DNgBklVAhZqy2Ir=NdYeKqF`zoU1aS6 zRD$-{06##$zkjppYu1<_OaD4<;U+gRnt?{nj-}dLvq8A(Nk8YBIG1Ll13Ma?N9+nt zRtChU_N2LUX2_Hy%vBmStaEwe+7)vol3m$V)QC(Cy9q_7QT_{(N6`A@}-vuJu1bG6gJgQa^Np6xW z_duG^ptpnB2PRCmU86_}DxmuSbUva;F!CC9bEOLjZ7>Jm9a*aOv(IJ*{R>FnfSL@* z?I8;+*^_}UKTCzlFD#iSkSMj8n4EX1!e);A06U=YVNtkPUm(4=g{NWw40A|CHA|8v zhz{Cj1kPdIT_;*;sMzT82%%2U=77Ym8Vr-1&mob# zjt0uO0VoC0B;yZ9B&ZTnHDQ=DkAuop7|Z2X^xg2k?5XNk6b$>-E7Q(C@c#evZ}^u! zp)+u31Ig*xYr>cCJgK`u>7|(@k@e_^tF6N-8OK`(&Yd7Ka93JCfOK-HudZOULaj8( zO_xK;y4z_$;WuqA>X{Aj0((3NE+8^y^r}4tRsh}Pvc4bER|N{7+2Td@ShWmpYtr67+J_W^d;QLO^aI zED#u{BClgZ_RBdSQZ5cx(Ty4;b|B53cTSc-mcrouN+5(xXTPU1wI3Nq=BAS5rSjYc zQfd}}yqAL?g~W4s-R{CGVD^O%^SmGV3u;4B$-_4q27m=_PJ5ey?Jg}>VTE1MT3c7_ z98y8o0>CsAv5XOwitT~t#dSELRbPj6^L;m*wI2g@d7u%waaPu<2FM9IY?1VBXqZ;X zwsRlIf8lSxx96nazWwRHqpkMax8H}u7kw7qK839OZ^P>s7;}9dUO&gW<98TI*vWY| zN}O11wf>9{(uI9Teh4cO00T*ldSoH5-Tq156^R1RSlqagZNi6SCaT%nC!i>TOmA6d zG2{=<8azqUvfJ;O*w3NI)m()71IFErbe;%%CZ&(SuNI-`il+uv)VQ+47(Rcs4=}?rQm{K4kVS z31;T*$}K@+bRaCIUQ^)y7?6KEA&RM?8@Ix*cvHiSV|VAApnBwe5v__)v${LsM8Ww< zan=eiBCA|3_ZycdZ5}rqCts@nOBs5k6v+`U=$8qsd8i)}fZU+ALM+GqDf$R%8`r+j zb@Y8g*PwhY+JW5e9&Sv?pY}L#xFdJVO&W(bUDRfE;`aBUo#GByxiuhg+x{XdLXjoX zRgrA@&{eRp1xDLE*I;Nj{lQA8LGe78ZZ7-qy5ZPS&g|on-xAa!%Y#>y^cd-YOGICm z4<%uoHvkXIn*-G^sOxJxPSC5vB)cM190XQCLR1#bcjagvl4_w%^ti)_3!I_U8#XS* zEHQtnU6NDhy+N6W!`!i113g+-&}FL@VAo-)I6|rimrE~I0Y+}P!M0{)LfLV4N+d)g zF~AMf`*p_ma65RJ!Sib-;sacr4fES_o4C4&lVYkI?i~SrAZIaO@%CuM!d%0ud!Sxv zPpLMlKrz@uK=1)FKVr-wT~B6YO$>89p9A3ag72%ayP{XXi9?s#Mv!Iss*b$Dgi2KlJ*sUoMG_6#GKPT1LF`O%` zn1|->!nuO{Gzg^)TOg$XrTE4XQ-{B9pm#0A-?8PD^USY6V+~kR+#GO+set^UDwgJ~ z3Z!B1uvx={=R%39dBF0CWj|_w8q#HFhuNrmweIZf)M_0+8?1gBRQld4?7`^_6W+*s zbCWQa&W`OtQ|}l<>_bu{$tGNq{mj^7_`EFC1ICbATBdO_!0b3oK)XT|2BaBSK3SbP z<_W3;$E9+irpBR4RqhQmElTcNq0o`x_ zf&tiK1xSan%f;6PFaoqgkmJj^SJ|Xf!0Zaz;t~jey6Ix=)W=}^w040)X|nB63&JM; z(f{SAP@LI20+}#sAHhy8^^-eYz+glo(*OyiqEV1}PkhcIeSloJcHQ1k{1KWSw%Hx( zFkJ^5_llNSO7@q)p^*ZTq^bj~d?tjeUiBUBL5*C@A{F%-1ubjk-w?|Pi@A%unNn3G z?u#o6xkDHhFwP;AI-F9ja4+dpsj?p3ljKeA5^e-9eWe+#DI8TLP`~OiKjdp=ceKEw}z7Z^q|jLz+RADvh`%8LI+3w1sJsEv3>SrL{`)4!DgS8&uSt8lv+f zj7XGcbshN5$f;^9(HIr|mt@uad4Ki*p!}7s7@Rig$KhZ41WNCpQQr8WXNmRhBjqgZ zGmb}mK5fkc25F!*<-NJUK3o1|YwQ80HjANqoL9LDxPHD%Vw7^rFiiK*8WJ57oznNo zDzcP?jl46%Z_YSH7#>}873fn!aL^a@)vtq;O$2>!^>bXy8Zb;^3 zy^m-{`Z+}~D)M1CGm`s6Szd?4fRRBRcTB}040NK@4AKI3$7m##tTY?e6R5Osfafcf z8Asq)M%CkVC2x4z$;Cuv5Y7x$1{74>X7p_5eM-apsN;BkA8yhMah!6Ka&{vQ{U#S@xkBST zKTK{Ra|5&sr8sm>_~q9%q=TjsiI>ZwmZ%YVj++{YZQkq%m3@~~bJIyjC5Q{UAxK;W z^bq1T5t1k;{cJ+om}%icA@y=-&%24xMOo@nmKCllbP45T+ILcDf_M>a&5Id~k0Rx2 zk)UE<2`WGdgE+Tv+RK$nUf85c!!;qgszUi3QdA3=4 zmo@4><&5M1e*2W7n{edF{v6Nb`0Z`pP4m!Qo6Cm!lS)q&a^Ya!N80vO@_?l1 zOi((y1dH2v3oA4Nwv4(jyY_^H#g`XMya367LMMoNsdpMAbS@x@mLDfqBAeAr8~vH8 z)n+s1{24IWNrZ%6m%4bYSl(HfJ>dS(+DXAB(e{B&|6%QFV+f_^EFrI~4iY2{b*2orLU8q~>4*?xEtrP+%tHZ+9iCTI);p{lkT=)dqj$X3Von=To7TOa@;(Pn1aP;H5?_Y z3(zYea5$xo(KdYjzkl=hrwD=kJC~nP1-ESB38)fAE>_q|T@VScR5BAM%aA$PI@ZOP zQ2RtAP{dT?l{zfqP4f3B7BkLrBmx-&H!Co|7rysF4zr(x*UwI0|JU$pv>xE)vAnl; z23)1&0XJU*z{{-qpFNxc<8Vl(&HmB^Y~#SA48t6)qv1pu`|yVf8|yu4q4^~kF9Vp$ zhtbmWOdkk#uz#YNmfTSi5HPPiKr2;;GiybJQDyK$&>cmc1<17>0ZsJDF@uP1D={6J z54#mSshvKD84|WbXDOeucB(F_ix0S)a{x6%p_-O?XonLdhxJg8!j<*4`rvUOJV8;f znrx~pk6Pn|!4dCj&JG@pc?V&!2q9pXr#BN4Jyta+6@$_q!wRwylW+6$kOWjZD}I4R zFe~Qn0GYYn311o`LgbGwoFIc4a%?Le~f<9A!HB`mJ<)c(x=vbK1#Xn27Bl*&F8DT?1ojP$BYjke?=O zvz0p??EB;ZOEB@}3O{3h;w~N7rb(upb}u0nhMEV9eBgOf)lUkzro?R9Op{VS!4DiV zb=+#U*mCv0)6CJ(3TarNnU++7v4$@tE>Jh_DXOi2nnDU}cknm^50sD8{WK>Hy>s*7 zD#>-D{)Cip8x^L)e3Q_TFxHS9Pw-_>R&=C0;uc#$-xDk_^2}pUcVtSgt`}_Yv{tMsFK{;2{U$V5`F_pU%)R%9+%FphA_t!5Z z;1VZ#S5KuRS5xjeu!*w@ex21n*P^ML8*2b{@R6EnK*O$ev$ho~N_LsdtG?%Z+yoR1 zn3J8pY?7c&!~(4&$#WV8XfVlnwFo!>aSnrv*vfT^YT6~ii z4v}}pKTIkm8m4`8H$`3J^-|o%sxj+g`wSj4mrrVW3DCF&$3AZbDps^EK7%0xt}OY8 zbbWEzJRkx67?{E?amGKYwKdu8VKGeV0QkX$hf(U|2A)*OMVbI^-}acUyDP%g6ZmGc zoL^d7_6b557cTG=faPPlK6K83zlDMG=$oqCTku>ftVJC)FHv#T36N_RAWov2_o#|e z`QBuf=pmLsWu#3f;F00H1d=E!X-qr%O!Ts7djnk3#};g`+or|9oYDJK#$eaJ0Duf{6!`La`$hfQqerTXdIO2!&K6 ze$Js^to8+pUyuG*jAq}xeyk7vP52*9Uw{1e$ME(Egzf)HF%l|p|4*l{|DW*sqtmmw z$f=dOc8Mq5NkKQa*}df-%2Tki`jLu&1s3PDt*ZI&TS|C-S(sQy-1W*A;8+4CAM=PM zTaKV>cv2Q*4ema%ObB8Yav@E;k6>r@|Bymqq-nWEVeSHPMlZnK>AEJz*d;?$EeZqp z;5Ov*m>_pU__oeZ?dz~~Pf#eWYK2N1exr2Vx7YyCu&?|;;>P>^R{IVv#^X!VFZV z-5=9hsfIf-;458u01b$fb3ZFc2cprF+rsIjqh!!Wyut5T%Igs~id?NaU(hjeJM~k%!7c5 zpvp2tq_@Ej=XkT7D;^d6A_<&hf)O3lKHNv7M0<%CM!3jyhEl9E-0D~WN)-cRURyAL zt8;IvHKW%pO=%MAc^FT%PDJd2tR*1!Rvy*qI-f2> z75pi<_Sq5IG3S1!K}k;%jqjjF8O9DGpVQ7WDu{GFw*%*JXSo#^?^6dQ#)BcG#>wWC zK;f7gED0e44aP5!+?BkOE2T`J698cl?hCE9&A}7RUF&FVcsX$XD?fpeRBdGD%QV!a z?8u+gEG~c7Qn07c3fF~~BscEJz9N(u;9e9SYr_CJ9UK!NRW+yoDg5gr2JQ7%{20Fd z1l>m7QF|`q(SSeG!R{aPv+v&i08WmUqJIb~P-m6v{}JB)e0od+;CYYP=2sex-xHjE zzz}x3Sud=FeYp*aV)uP~q~@s}8+J)aKyDCGgOxrQog8FA#uCQoJ@=uD$^|aFqpAeV z3dz>qMNDIx^QMk+PRW=NPpAS4(2RPXSkEu@l$q^-F0Iaw6vS`zCZsbHJPiiKTx{Bw zO((Nd7(t!x7secM31HN#mm7)nSW>$)ucA20<}eIs7!32Br8Or(!vlJKX+9(~0iq{& zwZ$S0lnjkh#8SJjeDT@?kBf1hkVbNddDj93tS` z?O+uX>_wOoam+a{s)PKRfAE828T$cy`p-PRzJ45D|8UBN+n3>ve%sLb4;M*Q>=`7K zXs_PFUivv=A9Ca!+oY&@5{82W+m=aor9X@uq9!WTkQR*m{9f zQ82S#e>T8-J~)eA=>Xkn-X@hmmt0@bV}4$x*50IcqW1`9zW8}N2wGfQ~$n_gkIHIlw{tLL39MLg#kvy(~^{ z35T8B2#Uzg>5y*(H#{`(XXeax@PWEQ*<#HHQm?{LPIdjIz-^(eZ-sn&DbxWV#WT#o zIIn>ua9SXovOwbB;5#>{chEr;iwkG21IT8^QSnA7h~^CScqLA4P+-c2vFtWX1gx#Z zA72J@6PT?kzYO8_U;#TQe8(2H=ln-a^GORpFF3FrSV4aWF32XUF27N!HQ8-w3wsD} zS$l02H2p22%T0tZ#=&Xgrl*wGTB&h0A4(ZdS3^81)1it7AAM320Gr~gY*gE>2=s3H zL=5__Um~|e=Ub?L`{%bm!5&HvPz3*3hY{~ElrWbQ z1p0UR-*9}OpM7!N!$&T2E<}@Y4i7uMI9>UmRo|m~V1Ki!(R+@!nT3(PjV#~?$C+j( z;NYqm5>H3?C~)B0CN&%9XX64*x6^X8p@%}lE~5$6scxm-b5Tbr6iCxRsiMXngbhQ? zjW{AuhdGOAuo*F+H(0-J4GG!>hQk~`qfM1=U8VRdmdjH5li3a-t%3Xi)okfiWgj7t zYS2J??Q$YTi`g#Tm4+V5d6y;64xLrh(vr;NoC@UV{*h&81S{rC?6pR9|#XeKg6;)LaQ^^Wex$BSC#Gcntf+gI^4H{UDmFk z(Ke{6EWV@f;^aW?Tz4?MVNJv-D$tB=l89~_m+OkY9L{Wqn0Nt@;q=UKA<y)fHsigvRr*x4!E!u{az;Mp>02%wJLGe-P3C1hefFbO<0|KHxoiDyp+tx1d`O0 zIZdNZpx{-NMpa%0l0gD-?W4I0=ku)o#N#1WL{J~0@$WHaF zhk!SXad%rQHLKE$tVUVflcBR|m>s2A0Y%Fp5sK=D*gxZglweL62i%hl zNU8j|i?7T;QY;65&<<7tN$+txaWRCqX(kE3=mC|}@V~1T0Hn-4TeiuIIP$LSN=piUBSYK;^ho?I}uBR20f|TC5A) zH*%HPL7esHGvm^Gu&7i%;7pPFwgKG3EgrgCZvX_ann=P)5Nvc>0dYC`l5*!6zB)YI) zfX`OgS_}WdrN2RUER~2s7pS_a0H~E#j0>`f1DU)vKGk8oOV!#R1V}Op7Y4UC!-oO( z&amv|;~DBnBfPr+m%U^ijwsRC?uK(1xpYbD(1HD#;mrV^vA3H`E-4OSk7bb=#t=J= zS)%h4-R2(E-rYrmN=UbN94wZq7oa!;I5Ai-oput&K+k4v1#Jgc!Kg#=PX@+H;!xDOz=&=2R317M zn55d|x4JhDfQ@hmulCWyZ*$1|L;~I0SNRwL@}K_t-|#Pe!nF4O;q}*F|F^f#3|nTY zciYY4F}9FGQ31)2L!;Ek18l*5A4fct1v#tH zY4R#s;(%$80=Hl*HEH(^^qWBfytdjasPMS*Uk1S zZQM2ZJ11&@1j?Eq)7l7*!vFZe2N^8;9ccah@a>C3zrPK% zM&Bar-wCgJp*_cA02?C!RAf&8k0-GW%4#a(BWXlGNEDZ=6C5u3f~-*Xv%rK|XX=&J zD{;m!p?DOX4LqRB$%i+Ngi!>_EnjaH0baN&nmma$=49`a}w6oW=HpEtI;8rGB&fV@YwqW6u%D-mK9-YX@Xqv(%Pb*&gV`B{cc0CTKsl~3K>smvO;W8_hq6u~Ua_a64#N#6SlUkui1m>A=7lTg5s>dnmv9r? zhYTJocRSWi>W#x~GVY^&Z0w{|uqnj=XG&))pS2F*974iqx01uB!gdm6qcwqj8dT}t z!IOPrN|mGAFrMTr(=9|<7NrBkJ7|Vh-0pW+rn}}{H!~Q|^81apoZz!aDOJ4r#`5Z- zE_#nLcyQ7_wJWH&I>6_?4+>|{rOgkKw-u`eMlvB_m>@+(rICQFh7KlAc9R=X{vY-M z7;P(zF^6N->{H__g-xr}X@*5fWniSX68NE{Z!XabH*l`=u~Hf$)f{1Zb*bTvZAw8> zR@ibAK2&SDhf-xR3@13YUWPMF1Dn|?%<|i)Ox>s^j|381I#cBR;d?*KgBhXDDcN8Y zB{g;)=V0TA1d??YxRa*BpjZ$Vx)gUy5D5;}>EMKs8fWlS4OoXO*&N6vw-HH|0}+Lk z(D?;BV{U}XLP1k>-gC!Zp==vmBJW|M!HNz}uD*= zO1KhP^$tj1v=X`4)&pL>Sl2*Xm;prl+fZExN?h~~kC&7)V>C@7o@DqZtSM2Hvzkz< zw1gtHHL%MDV3EE7*Tm)*P`Q&gpxfZF4c$pr>X#azJxnt&K|O(im(Qi~nSafX^xFP) z{><-RzobL#Pxi0>b$I*Jd$VeL4&tl7eEa9{_0L~FdHrer94L9e2R|>o{sfi(@7`2+ zRX#|j!>d6BUkn>ol2Rm~hCf3`0GBMN;x{uxNiDE^yY(3=x~2 zNPAeP);Q5w1P>Z`VdF?rj%f#DWy-3cbf5Uk<#mAHFK`NWdeAa7?<15K?M$=gCZ}tl zTmgfRI@F(_swk!^@Ws{H3vPg!Spbhy#RuR*LqQMMfF&rrZDDpz3`ieMD&T5-Fi1VP zND=DMVW5#XpuM#pR>~=qup|G^R0#)j=y5lOBbtHy8!QZ9eR+V6&1HQciOsMcd|2#P z9D}_;2~Y)5ACuGaq^aaM8(_VWaQUO5=<)a(78Q5) z6~eZrV3;7s_IPk^Jp@`hL-INxw|meJK!2*PshlXZ4>JmO{uW4$)8v~X1I4<9WuQD6 z_!Y*q!5ez;L@bixZL4@vjVe0VL~JedOXMp=Y_D9l9CBF()xqq==^j|EyKl`cRK}*Z z*=sou24#u3Ggc)MS`{UyA8e0riJ0sro{^OL3Vc(Dkq z;M08E@vVQPO2QrR<44Gk-0+JkyIPa5_Gd*-F3ufP=aZVp3NmGeTjbL8djpqoo`yde?-*gnVlIoGPjK!5 znW87BPa`UNVvYxNWA^omQ`qgj)Mv{=BUD?H+%S$tMq6MT|7`Rfu=0`P3c8R$(>SMX zR5x|{goS8PXLt!@62oakIy8H?hWWvE|66*C{m?qyw{PNw&I9NY=3(U?Q@;Idhj7-J zHpCM41aMP40_@e{kmbA7Ju`XmEyjJWI;VR{*ZsMvI-Zs9H3n#BE3&UiZpLZTMsjj) zN18BgM_t7<*PukLJLwRMNL|lMjS@GmRb#9ycMevsYzJ^FV}%#J7W4R*KTM9S z@wu$17MvaejOYO(dKpl$BR<<(4v|nG@_e#)QQu@1@bE2^^E)yM+d2h&`ofOXsI%qP zCIRD`Bl3zIdZAbm1mYA{Q75{E4dnv9KW9D7<~MAW)kfW@7Mk}12yxtZrgPv|;&N*# zWgS`6mUAF&MA}JePhlS9jD&J1OZDX9)JNX9hb|f086qPVB!M1WISGP*8EtN3Hx^h~ zzzf+!{8oWs__EKtpq$SqHRgi&=*Nt#y7m}2Hm`yL#Ir}AdGhrsHh6WOoqG2y=Vk$Oe_ z(iP^v_NOji|M2yzV9S(6YSzlvB?`pD8g6k_p-Fv%XZX{E83dCBcg?6?xNc3OgHb!Y z$T??Ov`C3*i2z{1vbk#wV=5S{Y9DgE4Q1gGs5%_t9%asu9`JH_H)qKLj$@p)+@zEl zoXfzewYpkOqvXR4o+H<$BccQrxW2-~SREz~J8_YtBWO9;Ay~+m3GKFyGo=10Q#4^- zF46kw6QgN>u^@QN7x>t~>5%xlagh4}v_9hdB&GUNHH!33 zX(BsCXG5;V)i&6ARVpy;rWiNHew&^sGHO1O3(Zc?b%I5WSxOFde^6?^#tlNYs9X#v z9y@72%$PE#oGF}7&A0XoSz8^>D-k&&P#9d zNsyrq78b#@i*u6;dpL}vg|LXL>7?YaXfZ+LGj4+!4n@3ofrF6}*&cxmWK!C$IlY7f zA0|npo5B?cM3TFK2I-m#E2G)7k@ODMEND@NJsZ_tD{wtxX?xssXAG?(u7*p!`uu;L zoPL0+E-U2OLxmMaHVi&U0SiEG==88hSSprNd;p}ApQ`hwo)17Cc$dF(vef&x-wWT<|Mu+j z8yY5j{`M0aAptdW7%Tna?T>H2k$-<0-ab1$LyFmPU8xuuzz*REpwz28t<`UPK*+|L zl=4U*Q8Az_GJCpXMPtHvKr1!-Av{C#BXCKe;yDn5)AEwPhua{R`pquV^(Cy+riqHv z@dX}0tmF`wJM*eo$_($YenXc7d7=Yl-jdH2VPNwU&C?y%y(>NKh?ylqDc>6DyxlD) zN(9U)xN9rcE`;YuGD=v~HoY%uA$D(v05elf+Pz+;QUd!f!aZU6MPXDZ>^s>~D#`)u z$qlb@I;pAk?rAcnd=?-B$9YX7HAiH^uuEvbbiL(7UJ5(}+=JM3s0axM^6m*Xx~bD; zCEWhh-2$~au((BfbFB9ix*gvr)#;)lr?Aaa7va#E{pE0>uw0&;b8e(c9TRohZw;nM z5G%!A)DVrU>jqy3&>hopH+)6=c6Lgn^s1$Vd6-6UU(%qRg~&*Lw3CGpFF|07<>q9e z{tP=eD&+MQe3_$);03E-9nsg|?^C}y+U9fvT8BWVTg;3e@FK=rbh@Y#{Icv^Wp#1i zxxw&%4wQz2AfSpD<={VQ8|WsR=iveEx$(l`Pzj%*#zImm2f%`%=XBxQB-h@EipSCB zQ2ZS!5S7k|*@oDF=rS4TnEp8YM$H+N(GttSHvl#1l5i(=ba`;%DN?TmUrxZ`PE=piOsCGn*J|x9&cFn^52!Is?+M6n6#WMg&j~ie% z?S}O-F; z#-n#{|NQz9RZQ_ke|Y_f&;HfF;jf>{zeUMO;e)@)k5unkE#TiWW9c~nl&gH$4gJ<> zOT(@w0f*{s%ctvw4EGl}vgHV`OP(F+t^%Mt?j6JdE0G>aSrP6~fMCTRd~cfrMCHEk z006v%?Km463E9?s0KwQuKLU+;2{oBg-^N|$P+T0F=E} zI)J_bC-l@S{Y2i~Isv|poHuc4i(>r&IM?D*dmu;JZ6MJc?h7t%-O2wcM0{>`Ve1ap z5-^YJsEW0id3EwOtgP~(%*0pQF5x^CmI3BvC&)@Z!2NG^xf+#lau1U%fL3}CLl=S= zv0}yujfR-$2`-#P-c%PZAIb%2m&$ceb(!lxOU-LA2c~9*Eds4G(XX|8NXJw&KPojt zoRsN8E)J~?^-Xq-xc%1Rb?1kIsrzo>ksz2j%tYWL7M zAGkj`D}zryOx$ptqekGqk|PP)7i@|pRw{Pe@j0o##DfP7c4DU#IJ-;XYAhqvS##u{ z4;U{P4A4Sj5~~0T3|)CN*fuNti{^nMMRicH z_5o7c?t)do1HlDA(BL~rSPe235K6HmlFGCsZ#x17kdLZW$MySpwN&vrKZb8Vk-y@1 zFwe|;;+r zDN===hBZ#l_;kSu2)iPx!Y#g+Lbq70mg{TyMh(Otv1jikVh_7+78Yk#PNE8K*Bnzi zY^w<^0*$pd0`goFxNn_$nZTo)F^e-N^2yYOb~KbT?l{+*mOn$V*N& zd25|-Hd?rYVj$<=MqJQ-03OSW_YS9mYX^Yr$!)@#SPS+#qD=9s2h>XWCbKwDf(w+e zp|L*PxLW{IY@#^dG(6xuV(-gE{ply&{KgsVrr2**SDcmhOtd{p|8peyAiY36WA>#y z9O9E3-NV*yUkG0&{dX7pN>Z}R6}noGPI8A65(Ir=P%n2G@k)jN^I?M39MM5##3n2r z1PFRLS9?uXWhE)p-V`&=r14)$EoF2yD`g3Mb5!QL<%qMF>lhrhd|WF9e11fB z7BygKa}99O)Z&_*NIfaxlPvwfMe@Lt8;^KIPuZVw5W^{er@kd1hDdxYQmf1=cM&Pn zE7jVP2z{KJa@UwQ;JC*&;z{_Jy5#7n=Wa6)X*M#_>wgaa?jX(KUd3gH` zyu>~URA_nk_LsNMj!lCkk^C9RxcoSm{(shhzY_nt1qO5Y?_vqjtH8>mZf1CucN^dJ zdvk#q)8Hyv)qpWg%V$=)VrBD5n%e-EjCGs@YpF(Rdeoze8k^B)EWN635B=m38^hL9 zHe(=K73u(({-*v$v?Y`_L$#X4CF&}0k?084A9xm0(t?l)D@DV>z(Lw!^uA}7A3!h3 z9#DpI52;eUxQ;6*{>lL2$R_1AbI~5Y9;Qc!W$|_ioiCW7%Y-C0&I1AJP$wuIPi0T3 zzgU=2uGlldOc>=FQw}usUy!71r-0nnB^#iO!1~YpfxtGXFVotRn5Py|U(Dokl5(?5@CQh>ns8bE7k&{e^%Y3{-+zIvWfq z_TJUByD5!w=0cQ@#fG)#;>IU17L%$=3j3Pur>2*FT`D#S`CFN~9U%opZi2+G14nz; zRD-TpOHu&dIL68M1QS$B%yv@FkEGGjI99caDq2=R#*K{qRq#>#xN#o^iJz!YlvA~x&n^Rt_5fj#!Vy&! z3W@!X3sTo&6CtJ8gwjbS@-;1Fze`m?bol|af@d-dCJbo{SD>Nxu38}@$(C|q$$3|m z83Ykds`aZ!f(6c_c=PF~MTismpMO@`CYROi{{w}3^+$G}zCEdGp2 z%zjQK9qX(Rp-F;!3BfyE9omKQZ^FN|vHZucpNF?Us++>w?-jZEDUQGSVaNsxIh_B( zb-eO-{o~umLH_w9$L!%Mf5FY-Hz=6At5tRjB4&0k=EqLzyMt8nh^G~FIrD~u@a^P^ zGi8dd>8wh5d*cY*j+R6Pa2>Q6Jz<5s7f&h-lggdVw8VP=g=r*+45OE7-|s+Mz~jse zoE}FuH`qhk3K@ceYQ&2q~)7IRsZECA@$R zjxo3nWNeS66dt~EMZR*6t0yriYhT- zU6S27hye|^!5^-J*M8XPU8wy9ykDOMESI{Tm=zaWn@?v0C+IPAS!Fn z85Y0gTxM<;v6r9St@w;_hWzL^)3}qoDwU z3jyn=z7xLxeZ#1}d;9A3&+pHTo`a&Y^RWU)jOvT&!#cxW7?Hu@c8`2j?Ews`9Z*u2 zi?(5>0Ii!I8fL&K-G^Z!(bvW)OV(eQlNy`LB2ijdrDE~w>d#q32&0m}h#SNb344HFED8fb}jitN~+B=)#2R}1yc z!HtsQ7mn5|7v%`+Dlp@VfK{T-dUQe@=2F-09PbRlyxpn!BCUv_2!`US5;_*nu@k`Z zgdzXoDq*G{h8>1VMb-%D&=qG()s0|lu=-kyh2fhdlG}h}*XxEr3t5ZUmHb(@2#6PTUdi`2K)wc3 zZQX8IZWgOTYsGAqr+RoSgIe$@cA}c%g~(GhQ_^U_0qRz-6WfG+h<+JHpgyqLsA;-+ z0Uw9>(n-zGxIR)jv4t3#^Kfu)Iyb8MWQBT%P-zhzyEco_FmKX%BKN_y^2kUfh-f*z zdaR^X1@)geA5cn@nmaVDRZXZ6rGz_UF`%2+Nuu(oJVO_rSshJ=Ly705VboNop;(`$ zGd9JuTo7FRl$aD;R@^+iWlFHicS)=g6GsiK2dDb;IZ>On#7UzKCt`4~2@N25wi04&f@LUkC7@?}z%mJ}BDMTG`{CJ%=S2}LG= zbFlr2=d)62Srg~6|Lb4)G4Npj?5D54`1bhUpE!N}^KbrM7tCOd9Z6&F-hRqez}Nrh z>+gg7^SPvgK*`r9Tp7|sGQuqHM}8k)I6%sa-h3XkHO&b3JEmx0U~#bv-GdcFqoHl^ zp;m=Uw&d&CT;CVzN1U*rXn>u+1)uVR3~-c4Y{^eTy~LE$5^nj#Ev^(RZHOw0wqldVAI^PNz5EF^&K!%$Rlp zmMb*?O|dse_!jr`!$zy2)}*2&(yUtRr5f$D{IZC=dzuam$PWWNh_e1!J>YU(c1?$y zRLYbLZg3VXsf;?(10^BuUdf|`DUccL0VZnmNjk5Z;*yKn6~o6hd%w-IQ4xTF%||V? zh~+g7SVLDPzEifiF>~T5%IXZZOLWmn&n45^qf>V!N=is{EAQzJw^ECIBTe9`L*OS; z6+%8c0RZZga<8o|_uF{kj#QP?3!WL?MEea=-Wlo$kOTG!*t zS!d5JSPO;guB5ba9+`)L&C~d^70*;sD%5!8Z zCXl7GZzXLtmcn8+ph*YW)SiH}k}J7YYf0ue7uNRi$3&t!Na>H^?H4@$!|Ts?^Jagb z?Z_n@6y$eM+=Ec;tS@x)8IS%gdu-$~m)AtC%o=0Cn>G(4{|X7{SZ&s;Pc26XF58P8 z4{l+@&X0fs1)nYa&rxa59HZd`Cno@dMrVh?j`ZNO5$93`uG0MApuCR=trpxtT{g&( zG^N-Uq!Hai*>YP9anki7G58*O4rL_!blwbLHe<2&MN-iXlr&T_yL3d;Nvcov<}5YM z^7xxeu9V|hP9Vh8B#b0iR%2^=O_kgsu?_`q1zi^m@&WqewlwI^K{^_YcoJqhTw!4- zRHYABs8HY%#(XEg;Cg5~xqb(V30-!lz8d#>B!>+E2WVr^7)a_>J4ZN5E>JJmNFFI% z;8$dT#xv}epD8=PEu4I5|IiN3H-Jsl=HV376!?Notme+x$-#QlLaTIl+wSst4sNv! z-Fl=$x}~K%b@{Q`?-%^o&J;!A7thFwPKPj|bRn#%>cTUN7_GY3K$G*5~XXcV(UQy1K~(e?rpexa5Z|U_*tMHK>VQg zM74!t%TA=_KrmYYha!e`Ike%Iv3l^^*@HUcc-ua%j*|k|CeAp zhbOFw4V&|fV?7w|d&2^a-b5G`cdW9MJx~Q?i+vUPkn72Cqz8u(i|6N38i-7u9jGI5 z>3t1@G(3RGRuBq}<1{hTEj2t^@?mU70B1m$zn`?sE3QO`|G+T3qyrN+(}?uFhWozc zSg1=c@P6!l3M5ra10m;YapWiBmlFb9vTBaAnvU9oj)$;DtR(ms z02Az@ZZ+h2=+~T=2eYqcMit;93vJNp%LspjUM=q&?SpiA8ZS04l^4}me?Sge#auNi zE{pkh?Uoj2Z$)V{Gt@u# zLmCToxc!G-n!8fbNSGZqV|JSN|hgYQZ-e`Is zn6>GyOF=ofsPxNy7wMF0jiSu(3h0^mTKrP{3oz|1Yoq3rF*r0r0ZY=Z+<;fK0$xtM z(aUd;)H3;0RPYiHYN^g=IeQlvWYRTyrumPO7occqu%m4aHzPsTT{zrj>QBT`Pz@(G z?vizS^uqK|e4iKKf>bx?;;XB2YC5Lu*c-2f?8mzh9P2lse9U>VBh8LWyfrWIQR9JoxL)P#(Cn!Sjw02a0qA0v za9dmZg5XNg@g8;~PNli4@r8kZR25ZK>_Lvsaroo6KZn;ZPFri3vKO$t_MjT(ei%5W zK}mJ&uUDymBKc9vzybj0RqbQ)BXqW{&)DUK+kjs8OZo5|mNofi3A2?2rLtl&)j+`Y zaHNKm(B#Uc4q?PR413MoylQKW8v(7Ab({`5z3HyfE3GHV!J1LC1mIpP5ojMI$ok(uPT zb&6cD`TP`~8yLQ*Wsbl{tTOD+9nq=kFF0dJ3^EqW@acA#dyhEpoUsll+}Dz3l7m_{ zjpK$nJj~>|Z$*x@z`MwGICOBVvmUJH+^d5_1xM$ux6(nyd<_h0%C+GHrBwCu>{&;d zHmMHLG+nqmkW6=WD`o7~EYd-0e;2B`<$1^^h3;DF6yf3=|3-RXG)s}IB>9_fapQ0S zgIYE{7pzl&ul9%qk`eYBmjlT*VWiC{h0DqX8CIYXM-Ix)%?p+%Kt`JXCT!rXhLr1J za-}oq=2(gZ5FUTasY0BR=kaU-brxoUOu-=9wk4>wa3bwl7M|mCDx|C_LTYxB8ssf!oKb*&U zdpU9s)KNJfjoHfA%FQ13%md)0_N`JNY-F)w&Q%gpo)LlyHDH{Mh0^=pN5X&g_U=fI z`jP}-}C+)s@n*gDXT{pZkUCKRS>>y`C6+>K0EZCJi-_IdiE9Zx6(J6$( zMRg_!m<9q;v8!xSxLQbcSW5Oi$}%#CXPjm)&4{!@xQ$i5#iH=4&Fv&d(n8KGi{@Hw zXHMFKDf7aj>mZf%Ji7U4#@^;*xwm#_5D7BfCKc<5MWESlV{FmD;|9b-@(w>-V>Ruo z8i~UekVF5%5Zc(4jaddXbbyzQ+&7OAUJ4D6O((?X#Gy38!{vmo?(m+dgJ`gjFi4J4 zRb|YS?HSd^ajMeL#xr0XlY9XY>`>sM>2iF!Eo3j}9ZD{6jk9WVgNo&JGEF87t@HEf zByC<%s!$8DZCBq^*uOQIDU-$Yf2z#E-Nt<;{zB7C?4d9DWEeQ)5e2-%!y;Dq zzy3N5U;pQC{@%*$C&}X599rl%hdUsV2G)F}aMK-RhrZK7ybeZ8Vj%7)_7UVf0#^DZ zYz)*;bhq=g>^hGsft`;AGodUOSDjRNWW(>m?0FwUE9f1>9((GHxr!YlJHmud1+`SN zz+Jv)sO_Jr@XWGaWnj==oZn9l(sps(SwgJZI%g@%N6xexCG;t@GFF}+4gl!+fYve_ zy?v?yC*@jcOb@5IN*QOOI#BEw?8QRfpxQN@u{+?5LpLP6@FivJIG}OJ)zv}?de!lr z4%&)i9cXL>xdUuu;9N#z11v*SRm>fuFr|+4&Uw&pL_Qzal}X^KeF`cw{%RJ zXDwY|%e1hd0{7i5KaU z$dI80m-e-&Qzl^< zn8i_8#o-CdJydhi(Uo>Vjb*{^=p+Roc+bmQ-o1?faG`5FLro}c0_B3%z^AXTOye%P zTMiHd!747^o4Ydl=ahw7E|`W{uv4$&ZXA4sJ4p-5;qDaXi!I+AMXqm&{2;A&2h-?9 z9kXPaFbq0vb^%7&Zb#=VVqMEw`0Bxcw7>@YouQR`K;ouxFtb6g6NDo4u&GHkuFpWi z-MID;1;D6hTp7v70e}Xs7S;7=;FzF<5?LHFk{eejW7KW|2M|U@*;|KE^y@Nd`Fk+X zSk-uqM9ej8#g1<61}rb2WahwZR2eQ`l5IMqOm}u%htkRlTTs1O+fJ?t?aD9i?uiz~ zkg=*Id2xRcWG{Kobcg9+iw||h=i9zmWg&QLU4bUJ5`Kfy_r_pt^|Am^H zT}U~V28B3uE!eSNSnSGII5#Jcs3Ro)DvpMr7`0*O=?{BPo#%tiV|s!5zWiIS@?kn) zInz0~hL*e?1X@p9E=eq!ZgS)BK{G3?Y43R@4*~G$I+F{A;1rJ0o};A18uo2&o(sr? z{H$hNe5%`aXJ2avsI3{qkb1NcJjJ zZ}ove?#}YYJcfZAqkodo;(T+>KzQ4;kVLN`G2o=$c&ChSMx=@z!~ieq7*Z;XZzAlX zU6dhjzXT20r8z~6`Sa)~KVPj*e*4aMTt$W-EdfZL_~i9R9E<#EfA*tq{@y)K^RvHr z`{~qV^yhoodD~o8Zh^4(N1E^)8ci5F6UsRKNwRI1$x!`wmlZNnrxu{Bv{9u;^ZnvHy z0_`YG^hS)`qO`U7q~wZHZh5v4wrh)kam$VOJl!M%u2M!?k9AXfYzoTVvRo?_V1T_k z-5|Zt07A!s*|iDJr(K>`e23F;dgv`mh~%;ZREc5n(7$TUbx`z`P@gYAaQvk?)!7F0 z)0E|p7`Pki0k=*K_-4W%b3Ns45a!sk)n{ky?3|XUkPYab6A!0Vvc1RWW_ilnhLyT~ zTDO8FU>CL)1APZXw^?=L61vu$+g%zyi*Xsq0;C#~1%MyUL1V6pK!04gNrqF8u7#wJ zps@#rbhB^nlwPTkez6?T4q9duE(wXHJr{X$iW%}p)L6rWavhYVUIoLX!Wn?TkZAHD zrzjJVadJ6_r!#y2Ot-jyrP!nNUh|H&AU5EMDY;zo8>=BApe5@%;fA}IKqkyo;q4fk}-C#ecE4PwL| zFuypiEwxhKEHF1<$!LY`(pn`VpgNP<69J1)egnL!q~*Oiikd1=U5macnNo6Gz}sRQ#HA^kI|4YmsB zNGW^xo9n=O-{Vd2&8Z#CU4c_F0h=wS7G(YgRm|cp6eFs0<{X zU4eeI$vA%2YWeRfEk^}Bh6LeE;)G$1yy}?%CBLw*?=R9H||J#8fIPAWmniUE|EP@K9!{bj6ki?Kv_FLOGBmj?KuFZ ztw~rf063oDxNG3O%Mf;5lnUL#G)O0a9!XJnn+r#RpXr*AuzXw!W`cg%sKr@gYer#S zbOse>b^Yw#ghMyN+7{|nmbD$c@BOgI^mIQuLo4y z0Bn!^s$wXL4R2Jw%CpvF>i6BMQP0T-QkfilFrfyiCzS(dpbyAU5VkiGuZ<0?L9b_3 zJ2Hk-oE=jL^uZ)~E~5a;j!)Vt!1*@xAFOZl_k2J6t3AVfNyUIKP2({S+2203_Ta1V z?I-eAL2}?XP$3A!0IG}Bk8*w)_A%xIU{XR(U~nzfgIYtmykiPJYEsEtC5AnQ2%Mk2dF z?zaqTWWf-RsFR37sd1&NcEgUYa~{9)pX~jI8j%ZJK(LqsY&Qs&8T=$pZBREcd)V|5 zf-o*^aYb<FR7bw5nlNN>Yhd%f4y_P0Ha6wO!W3{vi!!v8P=yuk* zEz?1VF7;prk=ueAU*hT5l(aIC@v6{H3D`=__1KX^GRvhNMDi2V?B5Q)#gNACNjqW9d`T$7HS_DK2b&(qh_dr0R|I} zbDP$?7(lI^xDB0a3-u+MgtmEF0MM}eM~STY=nvub*WY&c`dKO`WX0jf@b+wOTKPu%4EuV~7xuDa`HaYrAm zBe-OrT7>}VHp4SM0vVFnO~l<`dzqAzwMv=iKSk1rTsNmhZ3gVia07SRn6wF6c*FTA z^*eVJA#QuBK{vZnQlL|^!SH|peQc|*fB4N0u|w#Fdhq!Z2%JZW8*ifLfrPyIO2vR$ zZRPsBNR9NGo7Chvw!4IwMdQs&xe*>GTyd(ChkZ!`-e%!abMZy>7=urMg5MFkQ;-7M z1p+2#_A6)$0Ix)b&jKuo)I@>4!+k?F|6VS$;bi8*8sl^qx{Ew@@ZNqT3b;tXT9tI< z(2Y(l;n_#DYWIuGp~N(T!ck^d^d0L!eQJ0CcJTttFTKS;6~bh~2NSK@;PlCL)NsdR z6Jccmd?BbeADTOaB~jckk!(OyG|Vy!{IQ0%vy%a>HCreEQE5)WVxoin_k;v%2Y)}lt>`)Oj z9D`$SCvl3?xwDF5aj}XCP*ea-E2pLRNf6XF$V`#~b(Jb>j?DC>}yWt zr0Dzpa#D>Qh_K>PolRV$L>JUj#ZmR>QO=|KNOTyN%XgwzY_>Cjs7RB@%GVuj=q=U) z8fn@r(yCnX?*&d#ZT7KPP&sjz+rYk6UfW*LFAb)`bvzYCiQ7^6upSga!IB2gO+MzW z3vgR7#tm?EFieZPCrA$^LFHKKSzO*Yptl zITRc}J7Ja|UVodPd-wLU@b+7kcYl2s^us6FWa=N^K9-L^4PXDmH$Q~Ul=X^IuJ3Tt zM?>Vx1H}MHmZ_vE$8ZgI>2&Ye3V^C#2-D=kV}rb!%i1MKSqYQ~7dFyK4pp8Ld{K8h(ph!%PLupnVAl+5vK9c7 ztuGc^LH$wjtNX-oD|d)G@K6~Fc3{q&9pzUSUR)Q$1CpJL$dmM%a_$d|oM<6&9Du|K znI31)1a}k+q@Kx5ii)`8fJH4XjT||c_vD@PnlPGYp9)?S4g+_unSQ4mbl82uI5a+b z;zyt)UNc@wB^;^n-e=2K;PXa46=vH17*w{oI_*|NREkde33dQqwwZulHP z+d!hEPT&uo-Uu(45G4prL}cU;l~ZKpT#=YMIhefHX9q&k4OPMZ6@ZUec;H567k zS>26g#-eD&TU;3vcbmb-shQPtuLXK0JR4%nhd>j)&^-|>rT%W=!(kCKjN>I9799pu z{25I(a(q-No|9uygWFX_f1q*;>Jf&tB$lgLjkO(8fI;`hl?}91B47{`OLr)WYETUY z+#2)qB6f$n5ZFhh6rl@bD`_#awri(W?8vzj*P-RHbY9cj3Z5@%<1ik&j^(!a9uxB< zmCE5cZs&P-Pu5USzz`cbt4_f+%~B3@?ONIj(pMBU!!V;x6ikti5^IRsg;BtzLWi{~ zcwEY9un%3)e?esdEFhx!0j9B{R~5<2jBEd7=xp995jE>fotY3h7%8{is$H#9UFNns z{5I74h$@D_&9su1rM90?7OgL-&0PZ}&REZZQOj2gNfR5Gt4d-MtMPeK&r-aNwa;UB zJrvAGx%-qkn1gOBzb3ZIcFzyMU9}+APfd7}We_M-UR|j~v5YekE_Dw#V1|ln@e4J{i4op_7N;3LPX`f72WME{+hIEFdyJ z91||r4k6%3SC%iNgKNv9ZMn`PRG*joD$l8+Y)Y0zpIcW!lq+R?Y6W^#wUg>{g$P!D zR%u=KpcnD^8di_iIr#64jUW!It{(=Hr5m%3b6(7IpH$vmGzswZ z%}IbZRw={mt6I3MTcEELmm{s-Nh?FbK85uZ*oK!gH7>#qRC(lxr+CJY;ZFH93ld_E5p9u08Z1>nC5D5US+`dQi77&P%y9Eyu=6_sp+jqQ2>_NpB+}`y z!_LCXtX`$9m6!{X^epj$MjZnzbl6;@QG=jLA2yPhcDz|sK5+o*{~*=(Po&b88eB4t zp8UY{eWBR?>+nDSr+jt@u>biVE-wHb?T&n@jm=wdR3m(qTE|I0%kYGdNf$RaXdMxd*DH~UxgZo-yqx6)je~Pz=X_=5<5mH;Rh0aJ zGD0)C&!gazS3wJ_rJo)Ia&l}3vD2uPBk1(!xt(-w3%0bZktWCkbMP^#bsUlvK?qYi z<&3<x-~e%Eryt+2 zYQC^kF$46lY_H8la0`ewUe+!Jm=311f;5{@!!NJPRW|D%lb&(Ws zpx`svN$S|a{>L0$qP4oG`>Y*VrE^LWbUH_(xSQaf-M}?(b2O=S^c~B=Z>{APv7Cfq zrlb&f^fpI-b?p=xcqb6Etv84SkWg?1Y|VmN(q3hR!77v!EdDnJMF)=?!xDLa5aUhd zo;%XviZ!ytYEoMf^oRC5^_1=*)*Cd`aZ?ABxR|G7hyRx2ep)I(8z>Hw9|OwXULqI+ zq%G;_jf_;u=f<P=fM4`eC~}?MW^&RpO3U4cOr=D>+Gql&k>m#|dyOab&;X#v#2?;?#%&bL0{=DJ&}i zW~rn0dcUk?=3=yt7F@HltsT2a*)q4cRvD;KvbW)Lddj~n-NPkKba0ktrwrXg`9SYb z2l;(Eyz#Xtrjv;9!Kbn_E_4oV;I_&w-y9!umHQ5~#b%H!e9&PaDL@^R&aLg0U*5M0 zfkgRg@BX+42F+3WBjnIuScIP46a;bGv~WB9B$5ql)KeyZqmXE{sl6WV)N$_l=}G*S z7GXBci9s>ZIc)C`KdvtQCbepJ*r<+}NUnG91WzBL+VfpC8=@i;egm%Ya&rX?rpT)D)r>5xy&vRiLKlYlBp}2Z!E5E zBWz))+tQ+iRkVAy(2ExLB^dVVTMwDnWj!#KDrrtmQK)9>h}973ph6&$Z@~^Btg1I! zS30q_K#mlN@Z4j{Hy?_v=}l@zDe$F`;3E>zN1b_EpzhrqBvm!`(6+mQH8y^)Z@O{w z655P=>_EoPN&r-jLVhI03OjW=)|A`aWmd&NU*~c=S*Xg}(@$L{;oD=_*8^&%k^weC z0FJ$`iC)3wLN%j83TufG&(lx_`#qm9V$`jZ?f~LM5wl$I5oHVbD?`5-E(yjEefT0T zO3p5t_|W+bM>#{2wnfzv7Y17xd0S5f)O!s_w3mVMvJ9kRUE*Gp?7ca+xb9v%JBb05~Sh_6}X0@c%Ey#X@?IfL$p?q>^rda_G z?dT`*F0diH5gXI!t<3QfN-$LrkUPp=*esz#ZoGXM$)yKQ@Z=yc7d5tKRK|^05R-3| zv76)ZiG2b+FDRp9FC@1~w-d}Fo!i`w0qikHMP|HvAf9rhS1nfcfY3vTTG>{r`c3@+ zCDyh?ii}&)9Ri0aUf_&6Iy(kJv%KA*l@vG>1h%Ec*ro}IN+|rjKa!ARbHLV%&Jflk~G=1*I?(7YsF z$#e3mqP0@Zt`Uw^@)nFv(_oNmH#LAJfB-k?u+-I(9PrCaruHd9(PO#eaG-+S zt^9d6D9eUgf~qYmN`=L>6al9(eBp#@)q;B+q}{?7|9f3}3-;YkdGz@h;35m~@MAhc z`R_3uv6$|UzJK=dYc4kb`TbYn;|I_hUue@Sb+x6io$R<=MpI}5B{V)If~}tiHRmyc zKd}(|@Mxe!ZLw=x%W4s@@?3yH zUn#Ha3m_6e-0tIpC=$TM={B*GA}i5)T!Vx37Xb4lTn{7gvvkE;bgzU#iTzX?`cfnH zh$X4KV;kc$&;=5nC6%G|q~7d6!2newH>zs;dW{nOT8VI|zf+Pg*c+Nno;poh1Tlb> zg6d6bU_u)`9t+Tur^>W}PUT@5*hfIDEV5uM!(FL7UFhd!XKT~IGD`}Kre+H^K&&6y zvC@vDE9NM7EH1BHjY_Rj#avQ@na-9Ew3YJiG^Mdyv}zw`&gm=MfxHzIdE&Z)H)LkY z|H&s((%rEew{`)9HP)uK+C_jT!zb7QRix*1)G)n4nsT>ry}bn~F_Ov3`nzUQ+~>6b zc-Gp!F_(gSVc)WWwe2}kw8qXT`BFDHAs_Aw^sO5YDf$M|jy9MFj0)_vPqHX;r||S*{Dp z7nSNe>u%k}Mhaq~+$l~%RP)uv42ruAcHlBS*^r@V&E=2aq#@ds*0nMA^%clTFm9ofB>KvZKqYq8I&pP)1X?7XlK0 zz^~yi9{?uh%kciI%Qv6D|1rFOt#ncyO8?5ru$L4d0QMN=2|Z*q=~>myIwXAnx#Yk^ z8tcle*j1T}(kn2G!}bT)h(-u2wjtq~FFcG$bV70(|I3A8Ji`q^V{mn02xDO4^Gq&d zpnJ-!BJA1*XeC|M8f6kCT`;^N_8beJjTR@^kwJuBit`iA2*AYsTXaaJGMO^L9XsBc z%ha~-!+|!3z^tc=1mvv!lPV#;T$V$SIlllflafOO0l?zmb?UZWHCywUT(;6)JAP3A z?(D-5iOh(^0l(9JHVbR%d9g5BsZsBmKv=SNQtd7+cB)nJZIJOsPMTK0}P4Hq>DoH(KZ=fssU~qB5QTfbxrwOYKOeEzN>o)>7+B=A;2uP5H9f=NEv^1H!K0A1jR;G7sNS6y9`e| ze6q>e>}+LSD(+gfcfhGr2cZQn`GQ(;)R-PAF#wE;m)c#af-jAvEAt|R$Ed|!>8~DR zOP1*(t&zMtH#<+OqFt6d1z!O!wRntG>tX$*Q*T_RPlmgUb#b7aR@|-iLKyF8`Cw=5 zd}8z`iK}v>T~w?jKY~%<;8PW}Hp8Woy!6;@T^e)7$UguR1t^8@oSp0?nlGsdN~w_z zWhifUzCq)Uf@_cLSKq!R4Euh4(*PzWEWxDf0D;@bRS-+;MHK+AbvRR~53a zgJcH!DLxxDS(_#W(kP}b2U*mtRn1yz!@9yKJ~|}nxJB3C(fb;1eM+SY%Kst-in(B{ z3Nw960M~#XmAfL z+l&i&`IhaVgm1ZU6wg@Esa&O%7HfM{T_E_jWSIiUq3&cViT_xo$n{{Xu8hj*M|eoA ztn(`+eotJucGsYiNOmeUOLov@fB>N!Ey$u2J{n&4q4#C$9rx{nY?meUhpYRXsstdg zR{yKq0CxAz5z}9~Qp8r(E&#D-r9U73ty1dO1JIAC%Hy&XQVE)vjeK4}#w6<8N|>EM zH60)4A?Kjmq;^07uP9;M+{`CK>BuN4+|%K#*C*+2&B0o|@6w`QmmQ$RbXQXy`))^c zFm%GlJPUU}QD9&5F=^y|xZQZrLR*V*OS4hCs!O%KIcSEuKm&yiM15{r6Uoew!i5LR zc6h_zToVGQns(i6=i72Q22esNCB9tziUeh|(%vyMeC6Rwu9zFh5s|onqbVXeb{SjuMb7 zrsx8^%)&{|Tgd(?N8ae6fazR}0q&2tul(mn8>O1{|TpYF3RMj7$GggoZPC{qsmBzxen*zlOhjApgV< z!^f}l&;Q{4U&Fh}`F{E#spc~tfBx~~?0fxVl{ZsI>`x&=`RT`JA3st2O!)W|$eGRy zgjZk`*cW(v%57uHH4$jwnYZKH-nj?d6EMEUZL(D}ee4VN9~lAP0%4OMfiqKt5tI_1 z?2>p$8MCk*DWQYl^K?K#ZCLdPTkU-F2TkfX$qzQE(CwH_4Iq`nHV7KSK!kHBzmCqn zT~QP5*&P)i;UnQaVQvt8&7t}W30nnV@8FTP#_leEeX`uJbyIV2RTh9w3~rCPJ{1yB zj#7EO>3k+UZ$;tLYAG>kWew+!`9Q5s;CDG)X$=nMTuxF_(}*j(b@hV;0weU26B(*{ zqf+apnPc4_%7W7C9X88T!UwV;LTr&@-de~#9t#vX9#`^d;n1s332JFAIF?cu zP%U8vJ05VK%Y7?4au@DX?Fhcz6)~6TvXrLs_ z9R|`U_ZGMgkjYS{Y6ql@0Qh6-7rP{ih^{Jg1zJ}vUJ|qzAg>F37;YYVO#U1#60xSp zM|l{=8X;nutI$`cDp}RW@4QwA|I}%#Pdv<3!fkFqHnPuULBr&whJ;-XoLe8RmIdHg2gwC_U#Xi3Vr-}!v3W%{%J+m13QubXn51}C|48pLdd>Dv!*ZD z#z+J62iqrXC|QYnA8Ys&b6O->(k-qE9eB-DC_<98BlM?ROUX(Pg>!izcaTM` zNvLC>%`|GB1U`|Qen@<{L~rv5-1r0B9XZyTl-=uxI;P?rX$0ak z^S{)<8aFrS0hM)fX_+0J|*{?p)hnAj9nAv>n_>ZC6wvkyfv(`8-nM@6wta>6T&@2-Yg-&(2LRYWmCE}CmzwR5 zVZ}uGn@xfx!~P7{6NLgbL;-<2T2UIOQwud}W};A{JTf*rcD;l9mfy8SdjawsTkEuk0zz{vCb?;m|EK&19QU$dx;rO zhjdk4(iKc1-0K5E+RIJIv{5WDW=NFc{r7(x{`N>2zsK(QFGfedl0;&bPe1thnz`hg z&))xtC4_3<|CHE!$K3z+{U@eeY|tUNxxFk4zEU%|&^lJl)PjG*O8X5^(5IyyRRvps zk7T%#t0=gJnG;MOl7=LaSr~kz;m~<{;6^_pFwh5JXTi_MJ*cJWhZ-_GJoYfp-~(e; zNFMN*yTX%-zQo+exMSyhX92i^RWLZR2sf~edDM$kwI{*TaPcux9CI2dVoMQA`J3A^ zC+ZZV9GxOp1Xrw;S84*yFc7|88Oi1S*yfWnm@b)*1-q7XUoog-*od_LN$72?vvuEA zjhzq{NFJOZYXaWX;Mygq*$su?b;>l{B~YJLWyjD+jDoC;L@BDYtKmj0Y}o__GFLk9 zHw^NyAKN3f@S$*w=QWRHR}FG++8x=CIxn}Oj6_esqx!b0P;u9;aaoeN*q89EF2eQ6 z{XvDbK_1+5j}2OHX7z?;CQ++9@RE?Pl*9^ned3VjK0c9@Jr`hSXaRqA)k^6-fVD(j zau4-})dF0tT5vfQP<^F)DpcV<9hn8qC6S?FC4y&$naARc3`|RPa$#riYT39CfHAe? z_Df9}gc?E$Emy}06Gl^KL7A!4xE8@Uf%519+9>_$4el&Ux+EPrQLZUTox{St+e&OW zSF&}FwH_e)n3$7*+b$|V3-IfK#YcB}y-E+7yq=e^h#dmlwG0K6lEO5siGd_sSQO-` zjEj~*w|Xk}f^1pfoM)X#jmv~tmpu&70o5uauqKpJK%+}XwNgn71|W^9UZVa^IhrS3 zHY=hqc65Be;0>WB^^aRQ$K$ufB7R&Oc{;FHtwV|C*uo zNAmt&Ua)_4oq`wGjKyUi5obn=i~9&=5L$r0p%}C#AnSA-+ZjOE6vLY^f5I<#cK5I&p-0X3wM7c@3o!`7c1oL34utSAXM z3pbDsB!T%zaCu^_?oMT}Wa6$<-E@n{;LSQy7NGLWa$lsnxxlDiQIKiMx^a)27qXdt8)1q2Q8w zJf=f+tQ@p|#e^mwsc1Ln$4z-jsy(+^(N=A0d(Dv`5L}es#fXUygGXyYOzN0QUAB+dN#Cs$ZJf7Q#)krd&FH>Fh*hjVV$|G@uvJE7Yu99cuVhobqvz5hZE zz6f&gYZV&6?o#nQ29lp$?+Y56q@DuL7jC3qJyZJ%9A#%{&l9A%9Hte(YBq@vok!U; zJCx0)$azG31PD%RHfWPS66Q9NMi12*NmLJo&7-eGq0+G4TJl2F^#`V;8gwo+pk^T+ z8Bu8150-LC`%O}`bxl7u#1hrwy zC-a!;HQy4ifoC{bPE*ER+sHy;cfh(AG|N$iMzE3KuEU4an{}e+(YOPkFdC9ak&uj{ z3FbaP+*nE6L%v-Jh$qieDOoWkJX042bi7ia&ut8BMZjV0Q}5Ksp{<&cBQ4a`Plcfr zmwqh{@PEH5*kX5!C3zETm9#*6bsfzcw%6OmA)j}cwo0(CXZrjhtAa|_4vgrSz?3|Z z61w0Xwbhmw!&yi;N~H<}sOf=sNkx`m79w%Vh-~*~_(W$VYtw=-{UEan6SmH`iFdfm z&UVq?!_$;~-)t+R3NTg!j~QRvKoI?+TEC&&Y@1MTxOyzBNuwVIA1~BuFegvLg(ZN4 zaq}kRGY-D0R_TUd|EraYJ(|$>gF~TvuV>4?r_#Qi((FJhKbd+fHPM0cI=YM;#vzfb zYu)5pF|d~HS&QzDY=LIXaH`(Q*iVYf%xBUqsSmZvPaXG#V%(viQt15iK2xwUVaH;j z8z9D^C5>~vx zI^PJyT2{Wze(d6xt1{^8vyu^dMP;1;+% zLOAyf%{cv#VzST+jVX(U zAWP>%7#fvi)Kl^{rvlQH>_Oiz$phorg|U}T)i#SuP(pC0ZhH%i!N$Rm7Z^Is38o?3 zX+jqOuQ^KsNEAV!#7*Uzj#62{?axl3Qnnn+$=2r(kF@#H&&0+M6)q|sA!TNH_cups zH)?ry(oWoof=qCTBV7n{i~6Fncc}G}K_0g*z#PC9lgbRGW&oD+BVqDkHT?U-*4XVT zWp-hKcQh<_+h>FiR=gJs-}A5IZqQn-N%HK1rOIH4euLgra)ji_n5nb9s>P2oOSuAUvuwe-c zFd{SfgU4ThezZE3ONpI`YHy?%k^WkFNYHPoNj+0sdJiIlDwfu~aF@a;Gw{CSB`GoX z(E?)rNV;5b)c>s1;zJn>krOoY3#9EAm)LY;DjJNe(8sTwk#8gLP76MXWlbxKgOFLQJt>`^}@rLV>aM{!a|JSq{etT4#O?ewt^EQ8tzoSU;y52MR*@! zyTJkkUdk0TTig#%hhX_w>7vJ-++cFqoq*`Q5-^DZ*}6l^q8=5JQ>!ZLaD-;4gwVbq_U`f_0^wgZ{4;)@eYLY4vV8ZeoE^&i$4;oj0 zJLK1T?E%$mm++1iHsZs6iSn9_FZnm&Z~o?pum2X_zn{HSB6k@vp_1LEzEaTq|w z9lk{!MXd?HJc)VF2DS>85lRzKE@3Hll}oHTkH&%e=Nn9yS(js` ztmU~C<_m<3H_O~Q-*}9!EG9+K%TZ;BzfeAMa*cchG$MlMwGt2Xchl8CIxv^JybX#GnFJIv8*+G!Y5iihJ#5|)* z6-^xOAhbrHt&6tv-Qi6>Kl_asQ^#&|%95T}Bob}X)qzT6rz^C-5dsMNgTM7b$I6xR zwR1#A!REWsrn|pn^d})7QF^-*Q3&&FS`$6Po3DLp4Gf%uco7LF3YAhj1@mWnWug6$ z$b!8*P#p&Y>6$g%NE%%+C*ry#O$r@eS1+koN~3D2$!Ym~rkYhi&GuAG?`RfU)!M9B z{70-|yk1Erl^{XGd1Qkq-zinx(H`RZ0DA7pQ$Y`B07^i$zZ~kl$j9@%sECtXl)N2E z#kI>_DpyiZA)yk?N@V=@Xo6MdULo3jdWnyMK4&g&%>c`u&eTLVMB9^J%bC8N4vnVmwcc)A(;o$5ek1z%PBd_T?>Hn+EP=dl(Lo?9tJFdIu00QmQt!$ z1=JETK<`j+0X32eMPDK0Q3Vo!Mu&AMo^f{T*HyAU6lv0d^}r33D*?0*)Sg3sS~5Ew|$!l^u8o=g)QA6X2-DNn9qOWfld2H2c* zLIKi{DU_wjOl@lmU`b(z_i>dAy0Anu+t{4?6OvmnTZ36BQ%e_~vpdxGa=TFH$Q17Qy_19~3inYXbfOv-5AApJt=j}Qj(y7YJb&8Ae@hyL% z5o5SFXwA5ab0O~|0I&I^+mdR2QzE8Nr-9Mycwn+@M)F{AmM1xOSDTAW*vTNI+X^o~ zisoz{|H9$O;`{&yuDiVcSz`X04GW%wlMtbLMgOF+DRp6uCudWzxg8k`5zIg ze;+=+zHo>6GjMO9F|f_%Ixw4u!YAyFqlS~j~&p&&pBfC(Q|J}zPYd+bW({dLcCmGYHXxvg%@LW1w>zT&t%o7ag@mf2>`5P3yjSH;viTcn^Rk;emG?2 zzN?t-K-qmzcI-QIgu41{RF^xpXKv~-=$Yl*`ynKpX_;2l1JopUVJl^27FBAtd0}K# z2-XnG%wCjJ%u8kpvtg=^JEQTqsK)3P%Lf9GRB8YzI~RRJJts*5 zkpu5~1R!$&4jiH(SL|$PVs-7XSG?PCe5m8nP!r|-fX+e3A-w8PTvUbfcsP}J{LWQc zcm{az?o^$3)nWR|n%}LH6f6bspRRJTMs0f#dEn+c(=|n|=mHa4ih^z7ekm8Yf?2Q! zKmbq1WCb?&w07x&EX@vO_QSUv@M#!d5$aSztz7OA8WooT#1JQkXz6ZOh|-08!d%R% z^}Y}R4kY9?B}HulF`J|AMi*wKCv*>n=m0Req=j z7m8W=)5I7=`70X`wUv$8Z*Lo7gy?VE9) z)lb^aDmOiRs0}A|^Z+rfXg#MuG!6uC+hbq^F)+)KD(_f1?|uvuMnJQYj4cZQ(Ji5x zzD-!I$C)f5`G+E?mRl9PIzv;CC!9P@x-pET8ZS@`=nrTMIw$gimmWKuLo%j=LaU?* zU%+O=bBSo9fm{~l2h3QoqIKjv3fv9Wh>Nu5?C@1{*Ym{czEANAAluQ5%o(`MdC-Vo z;};whh;PvkYYg?V?>CC5TzO+hq#cJKsnnoef*p2-5zH97pZiI!@<&R;tsN+BB3H>LTcGe+ zuPzK!uI)1p(2fK9hrENuRH(`yuO*3L_Y9`mj7joDdbW$n4roeX$CQWs(9Kl|2YY{^ zQ?E#Lj_7Cq{r3zG)?;$i5k+!|=17|V0XQ*)@JF3#VXvEBmiZQkm_Nj+`H;NH;! zp^;po?IRqkbq*K_an1%m4V`|-yoYDgCtLIouWvjl&NUR_6Hr0!O6o4@HAW*Y-&&`! z1YCo;0;3$oN~Y}6B;nFvV|7$1|3J8j(L|jonyU1MJKfF`8t~5ikb!uS^z-7Jf0kT$ z2;f#}E_P+POJ;~tJ`+9JE4l4d7*$e4b3iYdU@*jI351ayf%oJyeI5C`sdA~-;QUrL z;~<*{#Qa3JLEyqACD?``4&&tO1~@U=Ohulv)MXuM`q;=aX-Izq;TJpc9YdiGYeh@R zN;N5qGj{>Hv0c2g&~;fFC%JkH%$A}f%8Qcr;)QlGNqw0{XjTH}j8;Sch&1h+wfGz^ z8q^MgQTIB1U>HZhN5x_YHmiNQM6XI>1$INQTV1O?7lk!q(I0{x{4PKGU&6;%!1IJx zV?)_J_6o?c5AjWFpvxPk4F=!Q&DXXbCzaPDNE<0x9!D;!d3d7ns*3yui5N*M-I1K! z&HWLcs~wPEv_9cFQC-$eN~s-NiNUW7X~Ol5;S4A%Ro>kS8w6K*>wpG2_GNNu%bgF= z=@aE~*{&>Pq5ML7;YB@q*r8}-KS64M(dU z?GC#&$q9q5H~H?|qDo5UV`Ok92}y?)s5k`6W}b#uf=ztJR_dj~&am?tM#|sd3R_wq z@>m`Kt3OEnmd`MaiVXRMJ9YpnL*VjnG7hrNhu++eXpjHF!)hVbNmgqf@Mo zwGUVjjK~#BQ1cJfsl>8_F?@tj2t7d3Q5_db*j(jn-2^w&!^EMIW)%@y>VCrJrMZb1 z=>tQN11cg`Viyu0PBV%?ss;DAMgWiUkI_Ym<8Ms(^JAFk8`dDVOGrq z46_q@L#=~Rjottg0mLi2&o^!4C}ax9xmH?iewr92p{O{{=Hy{|)m4sE`NfG91MLcV zDU8+NEDnA=%~okFdxff__ihe$9&>t0lx=`p;G=88#lU_dDad4*!`<{smZ=>~+2125 z5Y`q$Q<~KKSURZ7ax;BY)tpR9j$^OkdJ)-j?Zk3AEx2Ppsz#9Sq>BJ0O(4e%&xwSO z(Q5nRP^pI^zVuP_)Keu%%#+qr_?y6cL`y7GS6Vj>qkf=Mz5@m+ z2NqX(8;IrYcObuM%e`YXN&+k3RqfG*$P+jr>mlpyEgCu=!s|gK@2-|LW)Fc`ktU}H z6-n)wD>gOSy4*7>sNn|-kxH17U^~!t`_X?$D0|tf(7E^uDSPhIZ%I8VI&Nxi@FbPJ8pL!X8z-tTa5h} z2O@>s)4pKt1o#YItTd6%N~y5ds$k=L0XtBv2CyTs#|+>82}v`D7k7dAVG)QM8g2@fW#Yjt zEB}6Sg{t^qoP-ihFNs6BGzp_8WH5O<3eNrF5VI5ym1*3IucFf>%tV8Q7kL&HIj}aP z`ihHRocs~0URg5W567eb8a{rR&wc_Z=Pxhc{5W8x{OQMM@4v{xli%0H@y9QNFNlBp z@dtHm{V>JK|MKU5uonAO!Hw?D!4iy*tbTt}cx}!@Kr#R^H_o#a*hYqJVz)YU^bR?` zqG6_jHZ9dBPz4|JmHq43f(xTQbTS#M({nUaIZ?uan&p} zjHT=NhB#l6Wtw%z;1Ya4Qj=w%T|KI?b3T^C>jv30Pf{RDGaU_%3S9tkp@L1{M!?rC zv7oNUB*7=j*ayM~w)I6gR3$Bi%%i4APac3)ahHcsP&S)uNGc===%2w%$kUoL^-@69 zh8v4Y8x7v3l3pl`3=u|Y7NJDE*i1=TK1xA%VRYR_A};3(eNdP<_A46Y8KI$F>+u|N zg_XPhEjq)?Cne;uyjM`c*JV^LRd@k9HalptkEexckBck1d#t{_n=};c1R)WJeZ`Ya z#2Bo^@7g};AhYbKPX=&ZOiW^a>JsmUe;g;0Y zDoDZ9Y8+WwUqkd0z|qZCNQ{;jwZ7bUS*lQTZBK_ue384b%Deq zU_0TYGMR-7sP*WeM>UsPP7J6k`mn>@Sl83VXsdv0Z01(dd3ux-vkCSIrnh*~c}N@P z9rj7Xs)!3}SEx(v>@T+(;UdwR8)c>HEyqs2Y8PPt7avW5GE%lD_DdD<+4bYvK8^^X zd;tPkx7@5+O0l`Bejwsr{=E)8zJB z8nfEwJ4LHr%(mG89fGM@=`1dSs_o)gG4kOgU{8C9Fv~?tVtGETOl9YI%3R+*njd;SGy>%)Ih4LUoIOh?MeaMk2j`nNtQe zSzhR&?2Ubek*WyyP>_}jpI%t3QH1jerDH~7_mN>FpsnMxAg}>2S$*`|4@&cia!EzkAi6PN zhwWkwI;XmgsTd1B1YX}E#fDYtiVyVW>+$)xsid!IG8L_|<-yYSkTC_Rk%IZnrZP!( z0@+f-Ff~4OUF32aAqz$*>*iL_^QekbCW$asV>dNc?SKV-XIxMXvI=Tur1WA+Hs;=C zS&s3^G{TSzi;UI6j|!BTE?ibfC_93(r000Lu311L9u;Nodb+ z39i|Lh#$67hCu+?XcGCx(l>!abV8Jl1eM?Hgx)PQwpGWw8#*%RK|O;4_KGnby=6LsqJ)*jg?a9(!Yw)KZq)=TB6)l2c4qsrN`9E6 z%UB#vaEmG2*hMUEm(ljPcQ0)P?Vg3Eg$Hq0HG(n6OJvp3aTV8KzvCLJ z@{;z$<0V192D~w#2yeER;Q@bC2mz(u1fzqROE zW3}-@d;d`h4A4@Pprac;S4!yxaVP;bN zcg_ZqY&fmp088VVwITQ(_4`$dqJDEkb-#2mK>X-%I6=so0K~K~JU~rQUWUcpLJeV6 z?8^f2+PaSwHVCFaxq;6Y7d3FS%TjLt1Sb?J`fJsXzci_} z5|@fyBk^1s$8Gu09zr`9*#dFK01l&FcGN0p13wr!icm`-1QZqC;I~Wl7D`~1PKa3S zEY<_rU-f&S+&0*SS-4gz)3G8>=>cuDH!bb2EJezBpWHwK0Hr%XHFR` zG(lWQXB|OsHw_EBa})#+)UxiBlgQ+T!;S!Rs*}n-ve})I6lz~zd7IIUPe~lWVcPW> zrv_Zu$=01wssL{&bg86$!wK995fFKp{e4seY0DC)yC2xk3T=zUl>g2C3;Jiy8(9wM zcl;Xu@`2;0e)aJi^I)V%8zeD*9P$^(&3+|)1_Tz>x8x4Se9kDUygj2`uy*93!%RD@ z(#X*)1njL#fnn~pHb%9~52-!LeCX(HJw91UN+VQ$qyqptb8}>aC(c*Fe_#wrX@@E6k&Q|+J zz@P3?5cb?sU_wC*7wQSQ>MxL3ekd_OT9Vq=75Gt!i#k!a^%ta1$IFQ5ctO1=Z~o1w z1J`hZ`3`vN8cJWv764 zw=aQ?2dszrKp$@4BQzuDwtYLl;>0y*uLKJnA<@L-P=eT0`KxsaiLe~Z>+URhneS0v zfC|8;esQO+h^yVZsQT{X(}7MS@Gbnj?vfpxwW~6EKC8Jyj z$k|gw{yNBE3`m6!7q3$#|mo~J6#x^IU5mT;wRK_axVVC#tKZO7B zuk^9M3g7wbBRK!z<6pRZ_#=fiKjQ}cXYxq+_}9xfKT>$?=kGs-Xq$YI5dP=CfB)x< zp_M@X{^iFP-)66U{qbx2?qBnvKZN%$@b!1^e>6E{Xuo}txoqG2_!0tfNCx`zJ64zW z()UsB;&$Sq?D+^CAxpx%@U);E$$hc4x5V1pNDD=n zwNaf2&z^^vnY*PkJWyJxd)5BLcJQS}M2FHsFeJidl)LZJk^0LCcL0nmT0ToK*rrF9 zjl(2e>f^gaD&J)k9bvw6>WgsnGLkE$Nt;HlOC+@v(xns-#4A>GkS6tI#BBW~? zX-kM5P+D6eWa$Pu`XXk4R}3ZN;a}V^p-WMCY?=nF`=}!XR8Gq!SHHPZKtBTZ;{NGy z@gaP+Yt<;3Es}Jn4_%M01pGrEPO2>Xb}7Xx!L-sHO4FQ%@d`o*x7rmP_cnGmSQaa~ z?C5M1gJFlb-q&L%fs6#GH0X=@0bCHr@cRyFt<(7RK2U)2wn^3*B!$$_syY-1Z@N+g zY~@CD%q`R=u{?6NpLc&)^7wqag>Fqdc(#$~S!QJvdmwkUKG{cshGuP}c7GM_m$r<6 z0b^RXz%?W18#QuST!&Du=qggr**s^b6J3UZXm1-+iza6wzf6usP7YEM5;a)BhCy z&;OlgM6&ENT__usz%bI>op)IUuH^}FxCmH+<` z9eQnR0RU^4Nkmz3ML<=cD=?B+=u?)~Q z%McIR0A`0`$fmhRu~t@fdJ1EKD|La=YK#z&o>)MSrIPoAsvE_-^|O1)mglqT*< z6^D3CjwI2o$3;7D(CFAcvD{XYb~dL?r;<~v18Y8rNTYE5*)#2&DkDveJ-E{)nZB=tr#FjblwmAXEJJjSq^y|3yQ05RBW=9PCwy7LMH zO70JPm1`e#D7GdS9z83QLR+upH>Bvb;Q_EyU1+aR9L2OGdD{aNevw=f4@{7LUhnL?<1_n-FaKtr1%3Z!6NPd zA=UN72+Zs92h>DXwy0A5LxrSl>~2yS@gX^!sYfontox+WG!{T5I*<2ayx-~kK5i%A z1;$Dk^JhW5h#tePLEy*W2z0D8GHn~s+Li+U5);%iQ5wJ2p|w&@%b&$2ox{_Yq6<`k zF$A|;bZL9tFLiQZdc<4cFrN{&{(vfijPBWmgYHfQJo-fU)E*B2+7FpiJY`sg)9dAyBA>{jv5~#I#aA=lPx-Dd`QLi4O6?8Mc zR#!i<>QL{+-hOe#C}o7@oUn)T4*iW+G*ZBztyV_M+5?jG6@F!F$3yXLNYWn3&k|S# zWpiU|n1pM0D0A$(C2torJ*8QMNd^KE5{byheZ9Ph)e88&DyQWn0Nu;y(76y4EP;>I zbRxG(f*RBIIM%+se(c=u+|wezR1z4~3@qzgN~?wcdTjqZ_OmRgMyy7~bCrl+TF%RabU*`Uv#nv(ZC&i-vcW(UE5=ZJkGrAn8_i58KcSOjR3jKYh*-Zhe%H!l0pBE<} z+yTt7j({#wT((gugl>GgQc0?+-BeH3xI-2H2~`JMvBb9^@t&UstZ;Zos}znD7t>a_ z`;E$iD@69}7OC@_%aXkVsq#8@tqWvJlEmJSHpvUT*Avzca)B{rN>Kw(Udd=B)6c{7 zOlIu%B{sRSaMJ?lTVv)(G(dvt7L-o5lD$Y33Y%%o5>vw<7!7B&b%7#diVqKW9oHuRcb^o%mC&Y=3YSi5`Z_Yc1149^4c?6CM(Rm0y zv8=zz#zi;m_-7q~J6EOrT?H}Rx0Cl6$i}7QL%NoQ=bUtfBPBGsVVPW2+%aVVsziiN>u`X$IZ~9CK>Aatsv%L;>F}hyn$V#FF7x@z9lYV~oSNeiI z6_ie1j<#Mgc;T=Rf_ee?lfmW5v5b%9Wi6DM8Oc)IszurtSA-b+1LF>- zABdPw+l+x*0NFEVh0W5F^ds0HEiD%>z>&pryn`vXGO)vw6=2$WGb)~9K*IlwPxdg(x4JRRhw4E1Vs+0OXsXk-iKM`)r2vwuS@F3k5Brf+3BjM)q$UkY&=K zL;}a0wQqr~$^aa3T<&C?sNR*7tT(bpP|(cr8ol|Di`OIxF>u1NMN zamrv@W0Bl46G^q?*2C%wYC!%PVo6YM8;ESsy@eDVJC@WFn+OnwFvvOC1k@;)kNF4Q z<_L7K{WH!)x^AJW2_?%dLq3taKa>fBGR|DDu`3S;IOyCOL1e&)Lluk(nN7Wm7^OSb zE(##?t%#y}X(|lxjc@bku^Ci`+6#BE>p1Hgg8ie?4ybxkF*0tbgo(ro-UFa5QA*@S81o)}5Rb#fzB-DRq6kkF9f!ECEtoJZkf$wyTpK)I3~J#sXk{MW zKhNzVS}9#XbAA_O8qGSbLYd~`-wj>AL-6s8VjhjBy9pmJaq?F{t*GnCDCNj8HUqXJU!K^%}%^Ek; zQae87E!X1PM(hPGfN}LsFo`Dx4|APBA@F$xSl;bfr!F{Q`;oNzZdJb^(vxwD!NnSJ zocyqfWMHpP$PZsY2wp7cjaWLE%@O%q^TCTk^e1b zLJiLTNpue-g#y*SMm>M20$xkByiFDx_kh>(vNP!fdD3(wSp+oPrOuL1~IJ~C0%9G_yn?M{xVx4{9gd9Se)P>nZr{93~82q5n6rKD~< zoNxj%h)-r~?Av*(LcaCzIH+66ZzFct64^+gsU?lMa|GbR(wISh`v@e!L)t(IYzyXP zDfr|vc}VaqTk>0BC*&k0bS*V~hNOYq$0azp3ydzgS}?a~uLt8{{yTCP?-VqFqy08h z3te6e92v{|rGjAKsMZ%i_Nl~`4UFb2U<$_3hH-G7I9rsL2d7s41#JXI=L`-&*e{Sn zDaTIv4@?E+h^oBG7DQMv0VynXXtk00o^507r!_;LnvfE-;>;%WP6x}L&{2l``WJ*Ei_HuDtIg(#Jp&$$&f~!56Y9 zPGIknONT~@qc+}xeYQz5;zzkFk~{3aK}WKt9AYfXansp=p8ikrUy%QE+RMuy6-W0) z`|+KxK7Pip;V&QH*ZkA}^6~k{*FnDg-mEsh`TYH7fxe=?qz~_A$)O^=zKoZ!_HAP1 z?#6hK7U~nU(-WJwr}T~i}T8a2n!neVe2F50nt(y&o_u`hyjj|72gXFkUVTuCZavpuQ3=*kC- zBHg4`T*T;eD(xaV>3y6%zm&FhU4Xpc*lbk!D`@McV-vDS@U!lwfuj1u7xsxmjTwlZ z{h}bteK!c$rttY6afvdbPanC*lp>=%nLWp66E;@UmDWQ-lXt6O3 z-zC{xPTV5Nymn)T2l|&3e34Q$+w6;IUFi>!W;ZC+GFwPhje*1=PS!z%Us5c@Y3S+dbh6L0Byl?%pK8>*pT88__4 zeNnLGdPo2Rk4kyoRKbStG^GO01m!=f|61x?iXztvCN8-LLWWxw;*QV_9gZYd`6pgv zroT-}GewOg#jKnjXRNVO2SF`)`@Qc^pxWEwH&v2&RNjp_6uzIh?Jw01VY7_|GZxR- zn^a1aRRu;9eW{Y_zT1^+%Y11zwg_?0uI01U`5)*hE!i#7{uYS5j!G+)P_qxirI6Z_ zV6FDtjsQQThHjQYb{0-Wf>l~>Rl;+YknYIls9QaQ2E;bpT9Yn>^0##H7Z8$-PyR&R zo)5JYLg#Pdh*)V?Nm-6Dg%Lx({mrt&ZL3tBo;FuVp`$JRZ5a3wLjNw1;Br1DO7iH-}_N z5D0xJvW{x5laF;ew4c!ykj2uiS&t9%co6c-%#(|hD-g^*$yrI+`~+-MVSC2%ubQ4-0Rouo7t& z0ctoF#3XMLQi1!vmay~|Y&zFSDMbc*4etobbYOB0^B5M^VX@Xthl<1=H)$qOIdr>atq@si|cl>w8l66dd+n`B`NOqx2iK_PtT zDbd)Cf#L`iOy+e!H4+%o4My+o`D1C?V0!tu8A~NaS{d7@MjPhtC95Wg1w(LOLMk6n zk%_RAw}z{ND^~cQ5|)>_662r@2`Pl(&dTTnDUpE|C{X`1$yQ(}L%E}7ZJ9FVE)2~U zIfhB0uBA>@UT!(J?ok$D5B9u7n7d#G^V1KfA%Hs-UKaZ*SqPeOUMazn_W} z3PD<-jV{qP69LM|u4gSVRH=!HURC!u-^Oy|?Hrf5#o7w*A)X+q%QeTza(TbE)k&pc zL1|E-$VvyFNRs~69V8UpTJ{qDAUSN0KzP4rXbIe-0B@rmDv>q|h;wu47)c;rNPLqs zlpTkBzAk{YHum$ZsbFy@v}8)iV;H^A&3oEm=XUIBB_7=sZ@g~Crab^RECoB*&J&d| zDKhB-$v_BHjxWS|tpKM{-U`R%Nq2rM6#>jtVLuYd2i*up6%7K-6=IxnXP{Yb><1<^ z`=!@`s+9{FRJq>elYbI$j|KXC!p*5aq~kq-zex&{U;N7IPf}hJZ zzs0D!9-olb;kmke=+ZMs+Fr_i4j(a*HWYqBFI^i9=EOzwhVP1w)x;?vSme{`nG7wt zwMsZK$W2b}@-+n>Dl>@3+nY`wTuWjHSl_oXrMkEw)&gfuV+Co0oPw(!#_j6tpt3of zJ)qeF@nlS?;g&*~FI=o#ZUWS)10##I)LrL4Xub4F9?B3&!KYP zW(fRAvlF*fa{JrlepD*yN}*MiTDQ0>znT2A8yli5RV1Y#3c(e_aO}dQ5TurbVLyM& zmj9>6qhDcE@U6!Gi}3#2%Qv3}5XZhR-TxQ=|33+y!O8cXp7!yl_s>rAh8IxPBkk(n z+TbfqcqT5Fr(9aOCVL_P+$BXlp}EnKXsoPbKr!;EN}G{~`;a#=U&0%lY?Mc2q~rlH zk1ns-;YR5oLc<6_#BiZ)WPxNE*LUvgCDpf_$kMi&a-T!SCpswX{{`ycjh~BceZ^EFS9c z7%s~-!1r06FGcja2QZl2o)&O1pnqDff^8v6g9l4D-VV*^qH*`il`r?AA#$>!etzPg zAU?SFr(~AXEjOwCrF^Lq=KnQk28y`=M9jGyBZPKZ(l7^X$(U&L7|PnfOeLGn4P&bk zIvnDY`3kCL_(bKjp-^KKv5jVgnmuBPD%s{Qu-<46@o)Lu<$h{hKI5KDR{#hEpD=`k zaaRrSj)GyBOiDOM=VPb>ChiS7%x!EV3SDa(Ufhx9Z6x1Fp=R@!o7M`Ja4@C9z7z!k z1_6gAw>+tvqz2<@$t^TOsM)1nKoAbTaKT_o3ie~}+=Ncv|4$w)`0Gu5PV5A%{E7@^ zxL-)|%pGY9W&{D10RJiw2M%YgD_*D~vqgWUYME>{dI4DS{m5?IG)F+A@my^J{Xoy| z!0HNjwpp_sbHeI|d&fn$buf5%Hn?#RQiNgdN@({IPb1aS_~4KL{gFq1NxKy&D{_}f z&2K-iW|pPZa;wA&(I~$cAiMTQ9{K&p?=1xw_%gizTmG&Rk23?=NXNjFhS!S8KSqAAkK07%?KegG2Sw1x5apB*Fs;>1~mPo4vm2j+VV z^1LqaxI3DnRUMJ3oCL$;doRG+N2>IwF}71%q0 zyQ0gDF9l)gNTMYsuM$boOdsTa9mneRWn`+;5NaAIlra`e&;?F zZce2*@^s;mxRyIP0#+G)CmD4}lvc=&f+)hV268L}774YwwoZeB*#S3*v@E`ca=o0k zByu%MrkQUci|JTEMH%dL#!45VtMZ@t6KxFw0e10~jzo}liC2`Kq;kHyI{Bz;uf1q_ zAgWF&g6xU%T26s8SSi2)7saKDns$eBbsM}MK%9M12t%$wxfl*9Fr9lG%`r-I4rq1o zL4A>;*;JyB7MSp;*Qs)LYlWPl|08h=R~PWa3e&1A0Hlro49)zCVOmECR+MMOxg>2h zRjljO=^AokLk~Y3s)f=jj+zjE`PIl=fBwh6{F?vPPXeIo`S^?XufqEuR5KzV3jfpl zZ^DORVg4Ix|L=WJaa1Q0tO6YBt)^a89dVU0TqFlY;BJv@OGu}Pye zHRWovtxYW|)*W{u!|3FCoofM?VNh5u%Trq5jfA7x}fieT< z7oL|X|0E1CMV57FEHFK#m|4YWNy;Su96p%$-G6*Kzg8LhQRD>Q5>JBWBCDFby zuJ+DCh1Xdc>Vr^)ISqY?W8IvB*bI7&#M=iqVbc=eJc0(WgaU-S6-XgR{{eXuCaMrg z`h1y0^(`2}c51@Lt)0B4Wxqfs*@DCrhMW9RTF%z8J8#$X`IIzYEHvvKuhJ3N&pKv8 zQ5j`p<*VWg?HgtWtyPSRO26WugES_|Jf&7!AdB}EcHWeUC;&K2tCPyHI)X61lAtsr zt%{IbPM*l1qdzgt!2q={Bn?QE&jBCxi|tSD;LJ$$H$GE4+#y^?UM&n?c^Tg^URh3A zW5%S2()(aH_0szh#t5+*`wif?_LeFj`cQQA7H(DDY;l+`#_;pmFthvCln&SB*eG#n zHCT78o660KZuM*Umhd#B+obfn#}~p9Wr9$KHXKV`qpp*sDI4qIAkV2gvV>A_{4cK zT*`#*54gCiMC8SI7FDV@y;%5UzVCe=J%Z9$WU1G65B0P-T<+&=mS(_|9|;TB;p|#zJ1) zQ?|*7xJ#)oErm=YRXA7}@|)}#MDtc#E^1`iU-nH3y8Jixgxa0lowr`$M-Of@RXJD1 zNGv!{n6Jo7v%xx$(a9zZ&=MZWAOL8b<^bE_6$S$hvX?M}9p~ftq;k+MnTKo2&c@w2 z$vMwsjS<&TC#QMNZjC%w0gPPbqNa|`CSMOpUrh1ggG1Z-s8=C#fWigZ)`5_v^!FPK z0SEI_Lwu1MzVN~SaPZ`Ss9^U8s%!9nH-YQO(mMh5l@Fn_QM39+NjZ??1Yes5p$qYR zgU15o4~CQO%ABqnl>4QWZ>^?)hO~lFEJa{U;$+&P0(F&c^)o;;5AY9hjA|aHILd!n z7H?jpjK|wM5t1M|R0Y*nKt5E#^wa^sYh)qbQZ9H!CvXuEF%OsY@yyi<056+eq;7jZ zEgZ*4wPuTKIes490~i{RJC$c{6PE3;$B}zU-sNMB-NRLUR-vD1oTheIhd z_Eto6Sgxbo6N*2wDb3M&sa=8Uw%Mu8!F^IAmxSf&I|jz^gdoQ? z`2P8Zma>D~Ps3n=!$G|_ZS1X3N@_#FWk(_hsH_dx$Tk{oB_Q;(XzZK`1R1;QbM|(NK{RPuOM;$hy*xMDX9{R=3JoUPWd2aWXw13W-G zCJ9{iNK9ZIyugc(P^yKcO-$yKND8V`N)$>g0CpdCHv_thZ{BtKE?+L+{8womz6(04iRQRw4!`r4-@s3r z1=~Nqf67_jF2x7UYOq?+(!Yl;pyiWJ*~Ss#4p2&k66Ho0-AAN#lnLj^U(MIVM(;5~ zLZp5CR=tHJ(Zk4CkDyg$X#x6_Eb2FP`yIQIvr{SlD`=>AOm|U(CBuUdwIu^$ZUWfA zAQ$E~u-1pi@S>BHg8C1rz2sF(Lp)SE&TGvf8=J5>oL05cr`CguB!o|FW&$doTni2( z#(ijayu@jJccjsg`0T~Y)Vjwo6b)iG(pD04ZkTkq=o+H0DHuzYj?ur>@N#J;hTUo- zy!|QRP@XlVa^l*x1)%FI&vWGtY)+X@UH~w)H=gH^6%96yP_vIlo}kN>iOI-~U1G00 zTe-6`Y{b!HeW~UjR@#^0-oiSHQ}ovh^5%9jqc;a__^_wRY(>O&g}ca`o5Qrc78Q|Q zsV91M4gXI0YZlEVWV|RC3Lvf>R*PCnJ`Nn%J#_60LIst=xsMSMIQaGDh9bG(94X#O z3cg|bHdhe@Bnf&jX0)-;w-^MHq->E37`vjG9P*A5{^VZTWN`xv{VGsoGx#mQw&PM4 zVY*Eu6-~K3K`#KSVYxRzD)QK$Qnv(v*}Yhv0U3w;H&(FIrRuom0kdY0^T{oS^B#QO zXB9Na`q>%?%1RvDSET(^!5!^kDI@XSqquZ}Fq*UNta-db_)skcsLckYq=EDJc^s@! zI(E1-BE1yCORW9p9QRu)Pl`~!1dy&SXwfRl6>%vF@2!gnc~_2@G!&?As3ZnngGE-M z=D&xT6o=>#*Oqn%uEsM)>nFk{Hu|`bte_vH_=$Jci7-eU!D^M;+c^ekWo_>qyJGVJ zRz7jZrjypB(NK+d`b%tYp=$7XAaMI9?_Y!ugK5jr4>1q=DQEJQM!x(0M@bQ%%h%ro zIrtYCZnh_wAfDvpP}8?;4U&I9nvJL0WY`=3Ozk0GjxmwSUoa*=fOIn;rpiV4XO(;m zNy_^$KD*>=zg3!*$$$Z?v=H4W#V|K*E5ruq(Fn<6(q!^xb_$RA=uoP|fDs9XEf63^ zOL(F(2G`=gWXAbHr9|3xnS^^%eLM^gAyo#36@}K`LQ4pe+|D{bKDgLR4`#ckrf!5X zCmFEV)|@s?i$d@Y38DBLvhtM9EOlsgix4M`FkNI*xRem9)}KHj1Ry4nNsok25!^ne zI4EfHL&A*(+ey7hNc5ov?!N@ z6oY&$iC(_mM}XN96RfvHi&7sHb7IN152NiqfN)Pvv}@71cq z(k?Eum%Z_lgrCH^t6yA23}mm4nWIkL$mNAlMKpk&Qhc}CDQDA0G(5z(XVYtuyO)GVFiAGyrwhap0ov_w-PDo* zNf?}XV5+v+bFXTFT_8(9J*8&j&b?UxMruZRksQOh^LNwsz1&NeMxm2cG*t?4;~T$& z8el0Qb9~8n@ea>>W4B48gA~3lhvXn`;Ek%Mpq;LS|giB83n^a0p z6wXqpPZtB9Q#y@Tv5F6m6O!M%xGSt+@{wfN(elVO7+$MFIG&Hx2m1(6Xy)Xgl}ajp zxi@3CFKp*d+p`j%=57n0y@YpNbiGxi>#gI?9Tu<781-!>_>uB}t_v!S-l98}VV`BdHyy3Tbi zh`m+SX5CS_mv(OGG0Zd+zJ%c(a8`T6r8e-*+=`hCpsO=olvWjpuzU?J3c$(vY#T5E zgw&iAh9gkK3;pDDr6if)(4K`-c+?frlr@?w=G=Gy^%v;8rj6+sPV>$|kSzDQEUv?> z`yaP20v-WhTdqn~^%~luIc+JW6(Zkvrp0+t)e2LpKnZO}Di+Z8_V0kCw@Rly&UEZn z4?M{r7dR%uw=d@=bu6yo7N>LpcPNs3WtkkBJG*N&X2K(tBXT~{KG*)9ZdhDQr&s5j zoISv(VTIX2SaxmMzp0gy9S3f40l%^6qg@@E+WbRz9V4jDMBBGm)R<7Bv}{RL6e&N^ z0%7FTDiouz8ZSKw$h!vP4AnMDL|YAE-V@?_RpHO*Oo9dw*h5=eN*-&&8+mdBS1F+y z7+eeax}m((@}C4?>+vvRJU0KB=4Yq%{0LfGi}4+F8J!21799x|94|_`I^k_^#B_jo ziAvO>qg2y&uu(EtjsVV;Vh39qZmzZAlb8*pZhJNdhVvAi;!+q3>}o*o#D+#*9hWi@ za%77$j-+~#FboH5p6aItwiXO`Fn)EPQF&L*aAIn`)l+S*d~BeyVq1ZdFl<1c-5g-C z0{gE)rTOu*(4l0=lE!d$pGZ0BRL_@aqcmxRy){>xykqKSJtamG5vbsH;bLzb%!Zm9ex@h3AnCe*f_m z1z=5g=*REB`}qDhU%r0<9M+c~e|$F;yYIpv;=Au(fAihTH~%+<^IpU>>>Epj-Jk2; ztKW}GzbZedrdbPvFK)pbAL1I2K6G(;s|Izhk zyV6`&n%I3l#jdg&s&c#P0fcr{zlV)(?1_YB%m+`pZyY3>#b{V@#mdVs>op2Pi|*MX>RJR5=}|ukIq$E%yRE`h$QCAPs7;ofadB z%`R5dB~_ciDDGu{R?q{IYjtHv*F}Sk=vD_Nw*ydEYhyKcE3f#J$p$VS3Nmb@B3&7t zr&|pfRaT>!$+QVWm;f^HW4d-vdeWeHUWUz9?Y5iZh8DOG-; z<5D7WVmxj=dr$%?v~Aq`WYydsblzD)Mj3MliHnbOXR z6D~n=+a%CE@sETCDTLBV=W&ihr5si))jA?SpMQr9$orJ>bPWWP#6CXyvtZh8KY#n` z^#er2-@Sb#|9->j`J=aQ!t00fF}!|>^~(Eizf@bDxA*hsfAspR@K<{Hf|?os^>#rt;=3xEg(STv4oYn!$X>J8(-KXBRH~l9DLoNN*zFfx=FJ%0vQRM_{*TtKTN|r zoC(QC#0LN1!Q`@!Ln!z$hui>Vm; zWJYlg=XE2`xrP3y19E3TCtL(ELmfNF(Ze7zhiMe^j=a_J+~k9_4(>-&E#V#tk_U$# zAQmaf5SK-*PMj|Rfj+qipO_2~wy&D$JMHd5&*2ubUz4+~+8RzrCZm9DoqNWGu~T!= zwP9_Kc{yzX0S&IXg8?grq)QO)$^kYzRCiJ-IAZ*?sJD1}1!WOp(U>R>(0A>kv)Zny z9pwfo)}3#+48Dok$dZ6^*U(Ba574$%JW|=qRi+38mYJ8-qZpCO_!7ag$#=+kQin+Q z3|$mmq!t`Bl2*kSE^}1YG&tiWL1osiB9$qNh7(i=&YUuaOoFkK-AAJu6hV_W^S-5* z;=Qm#MX2OsY&$ECae!!;!Qs#6HuE@2*TX|JwV0zNQu5%KYy~@nA3WEWL#2BE&XPuZ z0*J1pv$Y8>Iz5m(r)`dY8g;e{(dlGj*-tL1lGcD;KW08@P=R8FU?lNdYXx3Xmc;aw zCAr@wLq#Yj`B?>0DH#^f=hE~gWeZpR(r;p;^N3E5hve=I0xuV&a%)bE8c{h}sP*xN zL+2DWb5#O9-uC~s(*>_xgbpgLBA|gEAV|Pg+MMQoaa1S$)!S$G(a3+lG7zv%fj)Tq z%3SHbriSTXC}3v+Y%5DQJlkA1zKqZp%gO8xXNqvnm&`*=1@>X1B7=APMhP*vPo<{G zE3^APV!lhvkvn6>QdT}pcK}sDo0FH%a-USlKwMazrm{%VUOJp0QBOi$3oW^+6b_~M zQ2Jn+iQco=H$iIsAz4ff9XzWhI9%GXyv@{1S>)$A40@Jo7#Kv3jsTl8p&J|ng9o}f z_;rd>R^8J>Yl7gIO0I+UPqfKlOtZHIbE0zzb~F&}PlO_brtv*Yy2Fkk(A01OwINRQ zX($SSIdal`Put4Dw%DWYa41WP4jkj8^RPRQ=>~;31>9h}N_JbD93D=jt~IcN+Wjqb z!jbsfLM7PYuR~bY9>C&GF6C2yZq<~6cF#Q~A3M4qzNWE5B2!Ht2@{t!Uc8v?0MfMl zl{ST-*v|nxvZ_aBq-i&;i>*Qi4qE&eHTm$f-5~feQ2%F4PiQ>EYM`-CAR$Cuvf0?k zv+jx8(&CM|Ytt8_KQ(tZ*l8f0&Yout&Dx%tIphsweo$Jd0{%Y`oJo~VO>)8;Rtl5c z(gTxZ?~)=)sR&$|q(OOMLBuq~+3atiiusi(xH&omGr~K>pc-Nt6zm(PdW(G{DX~D% zvwR3e0fUTQDNA_S;6QpY_{im$e9UVhd%RtC<-!YGZm|ro*Yk|AaBArv1g@q};Lbw} z9bBq>qq$J@M^1W}S1f9ykld76+UXV@j7NXqx}3Hx#p}iLdy@Ocv?Efys4y6XMF1?w zCXf zO`f3RBSnDa9m&VeRF(@J1yiTn3YuciSSwnt16i{?#j!?tJSTf)Aq)Iu9@E>AhzPtZ zN;C}Z9ZE*(nvg&Dzx`*L%>DfJH{tEi@MQS$+i$|RpM3XE(9X7tf0IHi-CY@WOR$5t zy#_b}geBRo*!h>@$&Fj3NwoQCRN>1Km>)#SIo4noYEgtC#~WhVu4jUdJAwf4+_ zq+}fs!eRoB#~1vRm4FN@NiFz0GRcq+EUHh5R8p#bWfqg?!a*gr?Kr?n#Uj2mid+Yv z(!JL<*&LO6I1*G$nc#6~0RBa_eDS^dnZ#XRt3SMP(S~Xd_by_z7{PzIYX2c0<`@sl z@W0T-z;tPM`#c}y+I2yVmgnM_v8e>ay?1>h_|w=?gg^gW1;u^J} zJ~VP)blV9^odK#O(gZ|0B!KShwCstB^dODYtcx3|(ZG_%fwH9^)a|P0HLyv;OsZeQ zu2k)_fci>&yf4;CPF=JDC zym=Ti;8ldVwET%@2E}r~Xdlo#G6N;0>2OP$4vl<(64A8)-H}|P3yu=|{@A$N)Bha) zj~op1RO?Uwrt8~J^Y|)%?hmg&^Up~^|MmrjTVK9?n*R;Qlhad;xXqqM0$h%d+H1*; zv?#*s;+i)=aV08l0HXiyniU(z;F(zc1NM2c7IMRUS}uVe(34KCQqPFK#CB`ty|wr# z$2u@O&dcUUema{JZ$3gDqky%>;_^>l&6hIv-wHava=R;c#;5v)9n1YZz46$tZ zd*qWkVhRrS5;qGHzleA$$sy_1X@cSkC^h!T;2NWye4V)kbZRTJxU_nw#?z7rUUs_( z43;oo<9H3Be+at+TF(T~Mu_%ACyqnvissJ4W#2Fd zmlo>Oz@=~Ff=th9H7}?qZYDS2I1pDXPvOoS)WSA{Xxj>|^H0N=Lp~LYEJ-|ep-P5qvo{VGE#MR>PmB*_zB_&? zA4z}`0*0uwu#r~dm39Ve|BzzM`H2mYNE0t_%*8-|a8as$Ru2oppAO^G60&0rG8fc= z*~z6yM1rc6L#jYq(sE)qnBOn&#?>E4KTI^tj zxHRtf9bxnWW1Z*-vv?llYDU&QMfA}5_xf(i zU;3zt^QpIQ-hT7;tB?;)-+mI_ehv$VkH7oTU;Z18C;9u|fBX9N!|-2t;%e9LT1@}{ zd;)ZrFM-j@_l2B&YW`RMCFoDic?osLT+Z*#wY{2&{@~yRPPLbIS?ozzlfaQlZ*+32u#4Ji3K{& zN4t5<%(uN z#YJpa99qeeNse<-l&nNGt8p0G1hu`+32dDdNgx;33X57g{Xme3IUCJa5BEZ)-& zsMH0ZFM!@#Az5kjFO?4Tn2{>ok@TjR4Z&n4KUFKWYzA(E>H^3y!hShqmmf~x%0VG` zuzF|*wQb)uPD-h*T;2m|3{#48nO-hFp31X~A62=F4PS2B3ANPZa| zmXWo!Fm-X10^Wa#O@;tjM`VqP!C`GS+XgLvnEVQPOrZ__!a|n+on^mGR-}C zrFDO{&QZn7tZ`eftl05_sc>W&}7qz#$eu z@45lir?I?t!D8SHOV#l_9j(}!DRn5zp=42${jVJ+B`BH*PY7VeR`TO(A} z0ME1G3KS&2svsYe3bqMg*#X%L^5&Hj)N|^ODIo084?xz0*x41aco;)-p%ie1x)Szi zweLzRl}@ok%novhfFKuL+H{6iuH2tvrFep#GQ&ift@#H|*uUiQ zr}X`NN?5B;&xjRDOcJprsTr`=fJ=|}2=&eiTOE2vH-Wp$6|V*JGJtIlho=1G*BJ_< z%`uLzJ=*MEQgmF$nCjy z(xj?qK&EB!u&A21+~zFWrr3lIv?SH)kvPt-0Emm)7i@F4%B{!RaE2~xZ(sv>)s<>{ zVG(;=pdm=F987z60SDAI=uoHCJZgP6CXLGZ>~^3Ur$;}g^A4)4*dFx?ffIk$58m=R zhTD}wm8Ce*NE-Y@s4zRb1yZ+wW9HX#c(h)OWF>Vha4eEuRK*(8Hu5&1vzYwYf?$R8 zFzqs1!+`_W4WI)mBfr`*3%~bR-j%HinBE=C8(+e0kXMt^it>IuRdQwTRJ&~V$ZA5~ zK-EGi73N#-`_3+^{gK4gj##gd8VRnT%a9(ZK6zw#D7b={V{Dwh3`A!&L;nP9>KbVt zT4P9?l;;6u5s4g49{Jjf*{D!1*@I}*Vyl}OW2fFA?^FgNqW~+;5BVcdOvNm^kPAeD z&<&m@uHjOgPq-%}X{X2ThdrOw4O=J1IjpPHuWn89c`X@0!yAFc8vuBA-1ihux`y*= zoTW=r@k`F!Flsf@9=dX?vCgX7*i*Cxmez7r`I1HuXl?iHz223e!3|@d;)AE{~m@dS3sLews_cUXJerrR02`XBOZuWGcrY;<#$`@VM6t;CPp%JiaCGD&OTH78XEO^GOr%*8;GE3TamgrTgV--`9f{_l^8VVV>W{Qa-B&`I8ZQ8P7 z=>w=Nv>|6=y;c0N7~0b?x{}l2hA4fi0f+A8098?0TKw#`>@_EUNB3gh6y17wuRAQi zA>$`GW+je6a?f}jvf*dV@f7mkN>MM6%JX3jPKNyzR0hsu^_w)6?m-=?olU+8fe~G5 z3lMZ12M(nfZXK}(T86!BQ`GZ8FGgN~!jcZWb)0(!*up5u5IAlKtzI^QcwvVs;eo!V z@&_9Z@G_|Fishpz3q@2u+d|$okk(XJs_t9bEqHD>;8Se$)LI*uAnKw6+*3kYwKinv zfPwC*UsMgsJ27!ZOD6NK=YpZC)E#mWK`m^z^aig$jm+~IC`S1RlB(9)faa34uCw!A z!;dGOwUVpQkjc;iC(H!|^=YVxS?{8e@)G|&Gz8&O7BA83%`WM>F!QD5w?`#pC zS35XIIE}1bpH%|9CIGhPy2^*j?M*Qsc6H+`nlEfnRfYE;RtnvC+LFfxGfmPHCnVL? zTP|t2&B{*I|NN?zR;0*R?LUUU{o$TfztX)>)|Ed#`pfSLA`|cM>Fcl6wgfrz!;tMs z^Jo6wV0rkd?_NHP3g!WbykRdkTB?J()?ohMbKwA!N1=W*?a(txJy5^RcGca7y#~M6 zm#~|8fYZ2jke*JQ7lN|jZ;wjgtfME+6>qw6bm}_*^H8!uO|_iNm~AH1teglHQaH7gY$~waaw64A{R`}%vN_D7vuA&UU%0xV|s>(osl%>F#(&%bO`1r3^^r^=Y7tT ziy>$jaM*Um=7gVsAbnXU@FQ z8$P^;sQ~rWvWa>EzcP#?@*&8#4G1(Ba4uZcacEOB*Q~Gmtjn5@Lrob-Qhaqfp&#Q zr%JdIupl9eB8jc`{J~-tR4rWruUYqQvcYTj?SFmy#8Mad4vB4Sqf0+&W_DB!q*{m- zz5y}=WlKq)L>X_+aYXZkSJ`F?t#vyiiSn`lF#ex zAUN|ZaEfwCppDy(M)ItJ*(LL>Y9u7lmpmS*d#v)T(u>Mw1Ck6s85<2NJ_yaVoyyBU zEF7InM1LB*FkPLbUajB`+3>W2puOw#!*-7+=QEm6GV{9uVWJL)TA`A(W2!D#T|&*J zf<0_uW+rPpzLR0|su8?-!WhEVs#2RL&{ky~C@)n4oKPVz!cu~Y&Lx!Z?W!(TADR?W zU$CLflzq%43wXU+NhGgmUxVdDwzIT?_68K~QST9%kbxJ;NN)Ct;8_46oTGnPeWDRz zc|aX>D2<1^b&GOA@5qNXYeE8aQB#r)^9SQDM>Suuas#5B7(pWO?b+*-!2a(iuV04m zeuQlGQFt?%mLI=^{WKtSxSb&G*u%u8iTUCsz!mSqmRn?a4*?z_J$YP8+$bB=RpTukMj z_do8QI1k4h0G-z9keH^30hW9_DqfuhVovd-*a}F{>$2?I8h7Iw&5wZSy9qJ`*eqkr z&c0VE|83+5cZ8P2aLOv*fDK>4@83;h|(rH&Py@|;6?YeUFpeiB;X!NP*b2C>)6T<@mq;!v`Pjq#tGAY+Eht#h%FW2v zO8dCzIj@0lA0Eg}-y+9?1YKmzF&+LTGY9h>Ao+>h@yusi}H~Sz_RXh2O9UQJ5yF zjACN1R=NiEp0xInimBptg9#&F!wRqzx_?*cEX6{H-YtRAU@!#WEURc9UCM=+py%AXEXDX7IDgYAploP;1Nc5s?O zxdrr39xx`D$gtD8>-^0U52gT;)+RfYm&}cpaFNU32)&MXqz(`nnT{}@pU4dLhESea zaD?1J)ensW_Fm!A?*!7FyoeLv8`90=2JYsLLI?o$-t0?5w7PlLO$YpxX4UC%oI=dF z-DE{Q{J&Hd*UfCQXY^_A!Zzzl?4iJE?!@}+zA&c}X3>WmWQG>XL9YxK25-a(t_M)Y zvGz(aaRf3**N!pzqzuw~jgK%q$Jh~4V#sy`DGb9Izg!NaNDW}mBRf7FUo4l`BDd{h zaKY=OBE_ScwO@BVkWuMiC$M1$#{GtN= z4>gUqpHPpX9Ia0R_437bQFWVzEbRnk63t}JE$&;H)w`k_@uKuf}4%09^V< zbT=2dQ(^nq722(EJJrG+`xu?__R8&Z3go(QU(NebF4O$5bl;?DmXV6Wam^Mv{Rsm6 zA=8C0#dr_?jn!0x&*t;;2!AZ8bp7J_yT1#6vq$ki%B#N1-Mk&Gd^vObH%4;5c>RVS z0}t|N55hVji|zcS*3PG|pNAdJ4IRpSjK+ximH+Max6mp38ZFXKS}DJ6ofYnqo*$2J zv(5)n2=a2ZOeZ$&dgz?o@`!F0b-sQ_422)Tpjt%U#BddZq!C*e7KjSVl9bVehT4*0 zv0{IL41uk(pef*YXzT=S2lcBUT!qM?Kq@Aj4G zg%G{%dXt~J&ZH_qn%IP>WWoVTEM((VMTv&ej`LVT6oDN^zDcpstz?W$0dT0hl*#h{1g)s$JLLrD#r(XItm zwn8NTH4gEV>cT~e2Qc`pL;{D2h%rySY)A%8q$*yE1Dkl0%rY*~tW z+NlQ6fFaPWg{Yy^_Mxi8l?kTsa3ga19yq2WwgoV7Kg*kb_Vg{$TFrJHKPO?(?3(9Y z`$aB=hKrOL^)NwgNv)AN1%q6OV{@itRqxrpGgg2U?cnWkg;)(>2i4kB0Bzmn%YgJU zsKf{~95wb~JBA9mXZ52__omQ1#$6UprEn^X>GCvl_!(5w~aOrkN4wU7w4^;+fsjarF5sFuUNXQj#Fb!# zZItYZv8q8DCP*pjo97%KpxjuI!Da<&J2pn!4C#XISOUn$VW1q%d1!YS(OGiFB`e;N zo^(cACe4GiG&ks0Qw=6{qv~IulA2z_=N|Z9_@>b|qk;#TUMZ()q!pb!Tfjgx1(d@q zcMydVq?L&Gla9gQMo<5q0GBf?SKLzvy5T-T0@@C&hMinn_9kz}TBdAkg?1iHhf4LM zn=tpf5;3Ht5Cv)5KuyXi`GenEVdrC+Gu&s0E8}XaEm9UbDNK+^8*n*c^jeo3A{ANq zpJ%9cDi^I;GWDcM(_oY@q(6n#lE?~!g)S|W_lF{+wO{~Rdk>5k&u#DVQ%M8DJRvV1 zhz11M)KzFwbKNn3B}_qQ<17A6_}}+D_{Z@23#Yd-#r=ZzJFh>rwD|U=Z+;X!Xq?q& znB{+8=;mny!NHqS^K*vGSOf{V14`?Qp6AbCca@KjY=FnRKm#j21}byhp%-jw`YrT_ zG0G?H6E$!?f^13Y84}pNb9VhqSm97@9Lt+t8X1VcxX;$2wyH073>La2JV-z?qvuG>@If&&JG0ZSoyui3RJEi=DMFsilG#Pea->}Rl|#nm za>{v8(thIJMXhcQ)0;85_&p9Q5>1tIQ#1Q52g*8jA13mun>FP#UadDAia?S$YjwC9qrF@iT0J@zHDAih?+#K_^m9j(u{)dQ>J)Ns*wZ6${IY;w0 z-20kAx7bOJyeOA%hp(%^bYT%TKO|57I1X1Qxx3jAOCu$hhFV6D`2&Sk&hK6Vc)2+t zu7oDFYoRD$`}5Tr`6xY#6=7A+-g>t{zRXfvo)p?Y5Q7fg*=QOa4M_HpO9$*d+Lifs zR){=zN9rT&VAtFFg1cn!xP42()vcfMrde)=%}^X1UJ*);1{Gftv2HU(6s(;}fEvP; zvp%WL2rO@mG#koVvSlB^s#QrTOQ%SWoDf}xMegQ^t!3(1KVS@q+uekQP&NW9%ml2k zs2vUw-aEL{%va?%*wucHQ|~vt$_;^xeq0-3Sa?y_MXa(crK5#Tk^t8hg0bA1RETT4 zUn}|>DvM6!2bRMQk&uD}QV%-ub2z@*J%l~`;U=$DJ80dgGm6%`F-u_p#s=uhu>C70 z_ooAP$G!)V6eB>1fDC|u^f_~;kY{ll?loFGy3nNQpu~oaAjg5oo7t)kfM@1A=Smg< zD@jsjGuw5%Zj#`n$+fv37^q$`#ZoeNfa$iMGHOOm(Z1-h6!-Q!cZrdn?t|BF!s|~k zi~AX~!WOZ6-q@r`?|pT>&N*QuN7R6X@|j6?f!hkS)g`8|3zNv81b;JgP^W2|8KHt` z01Tyy5J@G=bp?iN_U0`@XRS5%vGiw!^m!gymIxDrgOgh{KhaF;akA+_>U>5zG!Vj) z&Jiwzu_)Z^c|k?)+Cjiwo>enwauBJU@n->2#AH@gVK*ZHMwh8ZxAN6#0z8L;KXtg& z@(`qoySN;O81i<`p*}E30Yj=1GtK~0f!TrM5c7wpy0u(zLslPYj2*5_QotJ2bW|iE z^irP}rYiWbgO6+Z>JfZ!HYy~`Pzew*t=$oLz$SHeqI91Wh+&-?`z?8~rDf};8MCNI zKcBkGd=HEHh)KnUC0H+kehVDtbs5UZllNA*A}ka-=*fvxA?n(1l~%rr{LdLM_^Cq)l8p%|)JXpoD?fI?n(s2S-?fRWIYz$U5-B@1ysqNG!{ z?%=Lg(+L+f89`97+_1LUw$tU2yFSNc1CSHXbgI7$cU%-pk?u7C+=6<>%W!B}DvSyTHbNC|dGtO6rolPW`XA*v*A76NF4?D%=VNMB4@h3d z!Kub7<^VIxVdOXs+#wf{21m%95#;A1wGKv%k_f*W%d8GwmB!}*_8>P21#EA7;?`6e zL@K<=x_pTr2OiKmWM(vW0d6)n83y$`(&Gh@62Y#I&{mFO#6yEas<|(a_w6UaNDxF9tn!OXu zv4=TNwL~-M4(yf(=v)BURL#vc?ds4#Mf!ps9C=cLhJFLprE<+?H9kD)XgCMaM*?6- zJ|dCQMlMJ9F5Y(d8y_k?*t2U`r4~!jYhE_UFK?>gd><$vqR>a6jL| zd_yqbi3u5sR)hE* zx2%-UY%g$I6N}ZWZem?t7vi9|aDG@>F9FBZ>RhgdrvVmtx)Zr@BGz-G0WsX;BBGJ| z&0Lln7)NA!n*@F}D(AKx&fr!VZz_j}?QeUa)2JERut)?3G|v|zQOCa*)fZ<8te&R} zCt4R=wQ0wO!)Ez8fKzj?UBZ(Pe@OPl#j9&|aO^1QCl^|wU>HhxLiTtb&ewsd?_A$% z=+C)dkxII85;c%UpB)n{0=H6eYk+y^NGU&9N}iSyTVg}AGC22*N}-ix=REohQLMlb znA98$nu7WLt1dc6tkQjuOAq_a`g;K65&+}fOu9{n&{L^L2bcWlqogu z>?9t&8_$*ry73^b42vHEz^-ct;tCO8Nm)lLw=`0(K~O0`TVFxPyf_Om#aOW8PR+{I zjN>*`C{&p`A6~U_pA1i1s2c&Xx9Rd*#;NZ{3tpj>G%?=`<0toXpdO=7#+Hlm;0|I-n{;bANS9G{`L!g z4BvmighgLJqL9s>4rqe+sk&zV0^j{8$aj7QC+d&GxBuhqr>AGy;A#>JNh`hYs-D=0 zZF_o=vXE#!%(xsbZ8I`h!i_t^tWzg?x>9Euwp+lSZhwdaG#!iQSMsjNaqklEbeOqk zFwtpkN(Hgt;u(ozU!`s8!&zzz=M1f3*iOr$YJALS`o;r1ATc^yR0AcGRZt6EIjQ)h zG$-EB&JQUdsBDT~0jTtXr;gjv@n4HZBxyEa(>!xTI76pNr}&IV*}-zx<&b>Ug8o;# z91h|nlTy26B_J zXCT9_6J`P(nm!5}V8a}C-EBFK{etRqbRU8P!6${?_ns=&_Kjh8X>RMgGKEt`?Y0)Q z5$jceI`b{hnVXyezzj=z3N=rp^1v7SDj(&3QDm?_4D+FM&Q{7$O zQ3k2Y0VMh4{&bmMBZ1X=6iF~cMfEkgq+p>F9(LPYun)lcddmo=^WXv6q;AHrOXdVnCne(9)+k~ z-&o%4o5pkvgiL}S0ng6*l)~90iX=fifN6<4wz;q61DSW~+ol*bwk+@p06??^3*1m> z=xS4jhWn-_z|T+*dY92JQJWKUpjxwX4Qwz70KF7L2Y?M6oYw2gZMOZ$LivXR%0;Q2 zRe_JWMD5(%yb=XFZ`wjfqq}82b}_gMB%}dS;4~X8{MEvk$*S1NI!DnT)xg%+qjGC6 zlAQ*(z6@zS{oP-niNAjPAn<@6^Jm|G`$lp{#uNNceCX@fpM<~W$?sl&6Y_`r2y}Sf zva{v4|EK)i;k1GE8em^U{J}L->~oldKx>+gFlBAt%+|OD9Nm%v5L5l4-fdwmVRMYJ z^)cIcBCIy0Qt=EPUTubwsC4RX} zuE|zxq&-e`5$G~4{SSrP1_}G657wmGwVGD5 zQCmB15SFxfk4y!0)VDLb0MN8-!DnR>-Zv-zYm-s3UKqxZLzabr++ywHkX{N|U0L!A zfOsGUvmdbGsC}T89kF zKw!>lqC;v|USlj5&eA}(8P!C6}ZRH@7I801c|8pvl;^ifQMVKB9~ z6)psXwdwQJ9lFld#TH($cn84ERKl-WtA`qsE9$Og0)XZox+-}C!+2NL& z)u1r|g}#hsvo;UDN@;hC$J7HuJLxW*>wRv4U@1U<&F2Ujhk=J`!RiDY2snTXfS!@g zp3U7wMcjH$*U)zFq)v#yS`4mk;TE4y$woSjCln3{T1CXQc(d@mAtkCFjAkQTPNNhJ zJqJdJh-({Mu^NC@CazZb33nJyS@Q;dD#vjU>)&d6^0_X@WPsKMYyx=imJW?Ai|4f_=^e`04(2 zzkT~-u!G<4kACs?bx@q$pO0|ue|`I1c>M%ALm$3=f`8wBAN=Hl*AMbTmKG&{8d(%e zZlp<5e#cZowWE%+=7&_J7u!)jB6gdD;YrtCCGI9DQJAzrc+5y{atXHwY=MgZRFOKM z%D^JL4(Wnzk=>Kp8*%Cf!8^sRaHLnvb#;Ko$c?XRrG;CFqJF}C z4+TBVQZGYKDFnGro8DU%U>q5G~!(hXSsxq~3UchL`{XDX278m6cwG!ig7rS{uH zz@p8uFMzl@ZQGMnI_#6rDLgEm@>QB2oV#+Ao=jm`SH(Q ze}&=Y&tE@QlF?UhhQIst^>g?~d?t^7dQv^T_ror+N8H_N^JZwQ0&;OzQNlQ*ZNtlu z6A+|mylD$BmbLQc$xsEu%K(Ki7Sw2nrkd~Df`+9@7^B00VIG;{pq2plK4?y64}Dj-EgofkZMU~ zc?lflon0kR0v51W(f94DdN5Pp+PVBwtPL~q-l~DhMs+Lq3yKS>N9b7k&PoO1K(iVL zDd}8Z6vvxcVC00RfP4{a~-yRo?i`AW+w&nl^of$s9K#kfc~k zlR}~qLU=xD^8+%#mEItidQwn!nxN8SmhKmL1UR@LRu{zAJp;ItwWLCiVp8BQYA4z` z6FDgtmUDL1$;anT3Ur>_g|5X)%w~6GwzXFdP@1422cPIt0cw0g)qo+ZZH#V`fckz@ zvmYt2l3zQyPKSlZdQirxU6a+!fTZBT1ZJj)fwn6CGg6x_XuF}NBNv4Y0_CYmcl1Ev zL7ak`G8_he(+aD)8XF>eO{MP{InBGPr^|fBq)(?WiZ7EFK|e;Df)}gy>h3;L44al8 z_G1dw-;%dJKG3r*5x5NRb>L|}RFuGhZY$Jqr1(36^G1L2*OXU3D;Vp}w zZc@qYWAsf0#PjdiVl&(&X`4rN(1i+Sd`a)r9%>eLmB3;NQiyl5L#6VHdLgR_hHZho zZIJ><+CK?101O|rk+90~=njQ4mhCl3#Z4A0U`NQg7K6-ot z(a0r5l{uPEAht2XFAmiHP9ydLhYbu#;QxaS4hGeX@TK}i)OX&P?Zp(8l}O3@ykA4b zx22K06pBOyeSsOTg)J?cV~C>^@OXF9PR)j_w&amzwR^L^E4#@u4}fr2_$(Rx3sPE6 z`2Zls0(I6aw;9#|@ati0hKT<3A=WCnbC~1md?RUyHC^(F!dKSTh!^DKiGZieu;|>& z{`$*+V%|5L-o<<1Y{E+>+fTbtc$&MJh@K8sH6T7BHFmwHryOVJz#;ftYDCr_PArl?-=wCE4mFeO4J9j!_0ifL%Ml!mz9M&&5Qh; zr_I<^+h@(1+a-l-b=$YITMH@uAxD7mI2Q5T0-Xn9TQfvX3YBVgQYh?G33-<0uPXFo z1t)mxsxuV2*g66Y5gxXZjesN!uSm$PZB^*x7rPyZV`IQ1UUrP8ij7t6(T!xzJ|1^x?FjwT{}34 zyU*`6b?9Xms%B%YF|BqoO^^23PbbgulJD;Au z{U3nl{qx($Ihln=i9E){r6H1dIC)1cRV8#jDnlSod9c^#jy=O}{4` zR8c7aH2d%k$AD`|Eyh~2CB=C(4;bIBAV-X}(FQw+eRW+|-L$+j%yOEr zIvUbKTbdgC`({<|VY;b&jW?|YDW^1d<6@@9?M<(3@K`U@QvgCccOZnOtwpO~kkoCG zH)fQ8mP6(l^R0m}Y~1}cZ|i9=s;Ok&sE-POfL!w%mMRqc1gNcAnOUmPd76S^NjibI zN{qGqtcN242HLRQcx_8y0-qZSG9yeNAW6ft0`WYXl&wH1=0l9sW}2?mxJm1c3z)E$ zoa}+4868KYqcq*zG9}3E&`943kM5o529CF)GRWA}HN7cxDgWMp1L>MQ+ALE50%I)9 z;n@y%Ogk$}B2ORLHCfKO?wt&P?hOMIS_Y{hm22co1{P>=L4ni*X=H8ewEN#FR<|KM zx6>`06ZSB}9b>dGpRykj2l4W2vm64jmxhkPdny;=$T{5^&d|;Vkdo+fLAieb)&po> zpMe;EMoLku&{zI}^7Ta96|BxKkiwRKyLv&Yz~m<@_)y9XBAygJO!s;QJk(n{KoDRo z*hj?qcnIHXC<o5T}^F?q$VIF!Vggb>)c2#1yIF8F2JEQ29>7( zE}#nLM8FRUG#ywh%ZHJMovQL+-IZ!6ay%GSnNbzbIV$+8@PohCgSU@e69>`yHxvi> z4ebhkA?=5S=x=}i_R;I_!?!>G?ngwbef;*d>gQlpk`GYg!EMqrAP$U4 zic&3W(n*+PsN}Tr1=^#5&On&ynSi7{AhGdGkNVJ zGgtGqBR@2Htei(&O@s=-)U6=6cn12VA-day490=yfeQ(FR-?ta8L#dP2SxjVz{nF= z7h&Ept4+8yOR8)T>j|z)=>$gW@Dze`V6ol8 zn0*E;Eh$-*%Z)JP9Nloqkc<^6XIT_cz6G9CzY*UnsA{T)q#%VPe#!dMl zOSVt2<-X1gAtjn7^FnBADPnDSR%4p2S0h;T_7HaQ1PIp3Wgo2n$gHQTmVVlmMz6C0 zssR9259fC0J*f(_v_GwR5JeDAP8W$4_F7=Y7^~gsT#<5;e6HR?T(E~{WIaQy*bc!? zlIA1btcg=kY>ZqmDXbNEYz@u13gg8u#xrCZ22K)#SrMNRrKNf!#9LnDilin$D|`h9 z)`K&M!t$4$A=_7X@4NRkdgwuA|uR7(X{LMxzCaL)@~SVUjO zqP30VDHE>CcAYtNjVkgiHSfsmT2bB_=mzqJBV2gZBi1-d;9GHX1(a`3->?4|{%+5+ zUlBR}l@U~}hx!vBa^ILAYaSwo*WYBm(nsO&wXYv&-qqDpc>6tfP@lbi5#BzsQQ|&H z46l}z^@ksI?!JHu9;ALgXEUc=nPlYCxBpN0?w?=^E4MxE9cJlf^PTV_HS{p@l6xU6 z^^p_=M-^Rp*HxAfnD5ggJbFpCCFu_6+W;^#DpOFvmdz9Ak$cQl)9Z|H*~PO<7|-&w z#C$r%mc9+Z6R9G@=A=Y8_K7tEFI2vi>Oo?GY*3oGUhjFx0aI3X_<#-8&}21FS96 z=_QMaFZIIUJ`E)#e?qoJG9X?V#@!WSU(^97>HBps&;YhRh+W4O_bL&1OY(F)0y`Q3 zyE?(p86-=5q^Qw=OQVyNNL^5=foY!o-~vzS*4#4c^siIrSobYLS&r1`BBr>Uv}STq z2Nmv_b|>a8huwXmClUEQra$XwAtUWWxMrR9RUvFU*rC;$D4KAggF=$aV2f~AMSScA z$@}C8++v6Qam@J*5L=zPF~Qa8lJ!pS_Lo2+Pa0G!OzS4Z#|d-6#qwLZ8VvWkc9N*z zr`JNy(>Es9p#mwL75uf~u=JYn3c!5G+WgB}U!;m-TL#?#aPf5y>yLRZRQXmCn?iNV z^`SHnY9WJ@=Nj^t0aZ%=9_o({9%tmvFgemRE6ZQUI#PL%B4 zn^arE`oRvdu{U&EeXo@iFqM2@hA+Jex$ka#b(~e*&US1NRDh)}iWK{bGCT~;aJSh* z2{9z|51$k_Pq7`mL_BVltC^WjC|a_Ekh?TsIhU;GEyFnvqKb73+=EFTy4jKZ8S<0R zHa-U$eJhQ6!}xC6!eirYiHw%80F#T8?-ppZ;4&}vY67b`Txy!(K~8wi+c2!Y-3lgl zO5?I|-^?_)PtZ`uL8lO!dzR$XzaDeW2zQ2=2=Y>GFYw-5GWpQZabJJ`JbeFwJ;VJ* za+G~!@A(^MD|Io?yR^^qV?TcV5aIm^aT%8x-iGX|eZp2S(|(3^k+XMf2{!25S}#~D zgSYmY>4EA%elD!U)s<~xM~P{2g5}UMwCeA0r_tD2agd=#Sv>>TH4QkPkwT)fJT`3tu+C;paVrJU1NT#N?mr28}AyK zHn4!Oml>X}JzQtfOntY9lu6RqS$DK4d|V1!=b;Y1dFOcInz@)M~_ae-XZkAY#^y(TlWT;>!6M&)nD)`wt;<7 z&Jn;$r?cdWQT@YD_2J9ZI?j~RdUbvR){=j=6{83|?3z04MxPXFu6NsLoj6Ko;sA?r z+|>Dl&}oR+m69D;q+WrY-H5R3-$^Ur23+uNxcp;s=r3Bpma=j;K^nfmsTQEQ;u5k$UB=ssk zi_CJMj+AmQn|TA80M-B{S}}T^%G0v9pqSPaF4P)QB!$ygwIkwZ^iFEmGuP^{U6`fF zdBjOm-|k%&u`jG=bJJ-(^h=`*XE@wROe~$`$|5bQuspM=2?M?2q-w>a$drqsbe8oV zx)mvXXjndb{rvR{8Y#R3e%`Uq|3(Y)_3^>{RsZt(!RsG_e)xqx@&uWm_4spO;!-UJ zDcGfNb{k>9aDsIno*pFNb($WsGROwZ$jsX6am9P8z(=~%rK(cXcT5WnrTDV z1sDi^Ud9W$l0nzYtDpH!CN8?`L3bI3f6)84X`h0bC2 zS;2(JuPklret`aMrJE}y%wE)1(NZa-pq*@bg+sEmQSzVT%ylP6&9bY)w5=YxVlYHq za7??UL0~S7P>6sFIh@Di+=3Mk0ydX4n7T=dx2c}4aT$*e;piOcL7rZKj|W09%D?iH z7JxI`0E-aYF(i1kI07P@z$mN+YDi$mTW)+977(R8K?`UX-GE#&BxOmR9wBmtm#vA5gkjG8TBzOnTCk3IK{68DjkfZF+`6#n;%c!}5FpRH@B&KAdE9TbO6sj%Vo}(sl+6=rtbkW>FPwCg9iJ{l@P!NTz&&0Kwf80u=u(* z@{e!gtlBv_UawWH0>vgD3W0N}o($S1#b}*w^7*oHr33k7Xg8`2qVAa}6s?|5wmWKF z`A%Vz!{k;TKxk2ObU4cK3@!@|-5p8r4zN0-mhdrF-9xS`TGI|+gk8>AW%8C&f-p`( zxT_Vpmcy+SRPQitcu4}5y6*U~0^SFK_?z;Xi7@#D;*S(yhC!--)x`P_vlMJ&Q1U0& z)#j|c?qiu$PA#@z=M+1{B3ef7$S z``wR^kAB8DeAtcrHoSf5XRjZ>{W<)lj$8ixhp*p+w?F7a>Fv{Zb$NdB_H%W({%^1b z{co?o%Er|4E}ZMiBh%v=)bb>U-qo!W?;vy6C)9XOc7VL)WsMshe*#C2YlDRq*@7!- zl6BV)?WN>jox=mqH>lOSFpeTVr-pbnoju<{#Kb(cbo)1GZ(C?p5NO@|;$T77e?GXe zNsu^f`8n{yEJg}oyC`R@Qui%?doFRO%&TkWOUv+p1heae!os%Q*dEMOgNLjDLD@)M ztpeG=`N+W?7-VWIpa{z^#CuSRGyPA~_|GOD2@I6FL#=0UY}cVVhbP{#yTn;`sQvINB zmf{&G3*Wb^1MH3-({;No{Aw74t7M`@^9clb`%Nn8FU``#Nbf;8Yh3CM$uj5#Ja6nL zFp&<$ZkupM9Yq<_ceW4Oo|3MkJKzhk9jR4)v@?*!)^1CKQ3vb7`CuJ~IFGtx*Y}5-@bYKDkxVUN6O;I0f1{CzI_vPFlD@bB!XXr|HzZCUcY*GBxRU5fYd(1zv1<# zr*Ho+&o@7Q{lbQ#n>6gCK|H!XTuDxQq`KOhQdmV_Pme-+g!`Z_YKA>iqquyC7o7TQ z?e4ZCX~c)nYcD-yS$l!DY~Cs@_uv@+MS8EkLG4Tejt-vNk=X`vm#XbK+bycTNzSs* zo^kDdEZwimheEC!9gNM19#T6}t44=i*ktm&kgFG(Ha@VDICTV#&U$BB>Oi3v)VG|8 zs0#yYI+H#Mg^1+Pv)(|AU%oo6_T5?D>UG(&hQ=8*~K;%@LDXq z1Vis5O|ZdGM`=)`la)f-;AAbta*s6IQ2{HFYZ7SPE?l>#LA5q^jXJDR>Jk7o!lJQF z!A;#QS5R_D($eG)Z%I1?V{{?h%#hNnGK4sA>EUr&z>kbQiDVjJ%#?sy)1zj|J`1}B z=*8WoK+NJFqUmILhh>WfM1p-c_*sbH(p=;hoQ(ntWJU|{8MZ}|B<1}#V_B4$L1Vx4 zDB0gQKb|0+<@RvFw*E+4Xds}5lvC5KR(xd_uaT~xD$2CDRH#~X?i&@zi80vM>hdM8 z_3@pn>)=B}Ih<_2zDc8UNqsmk6NiJmAzi-{gF|bmD zvbH>>(G{!#k3X+>>qNPdI6r3B$@z%9CfzC zu-jQzt4;x0No6ZsjhuekhN;}SsUWT)r`fGn!cUri1Ui}7Ey+s=B#e-HY>$8wtjsfV z(ej?$F|$(xAq+Gd#kQ1R#~!Kf6|rMCd09w(2R_581c>Kz`(6hK6!H_TA3C%{Qixyc zW!A0-)50)!i>*@HA$1BqqD(ew?Nf0DP|>nu6==5w2^(GgsFsagPembrz0@Y_zF42V zXv8?{0c`@$t0Tia7^%Tm@xg&)V5oA!3)=babPwDOb#B_TWuMYs;1)V`zI z**lm3N`SB*9wh-62Wslq-g^BxeE$Jv~c>VneU2BTSsYf@*yNs(Dnt2 z`a`!N!s`x>yeRtA!cNN38Avq{*>awgJH%2cdX|FfgtJ^eHycpT#)F!(n6Bm5dr}R& z3hKD_&;;eVU57hj&<6(SjE*1K*_iIrJQmnp%^h*ElM1HE&3yK)5XPkN=MGxFQm7PN zl$rv;g>%yxxQ|8w?ST|6*-M%Th@e;hTuI9OLGrd63OoXOK#Ly}8b7JE-yI)f2jurm zRsG@YV#9SQ)yD60w;l* zet8)2cXp(7Zu75*z%sbVTj)*+c$a)CR~L+{q3zIho7~VVEK}>S5}430g(TJj5QU@Q zPEYz)1%%#ZsMrubOj=g%D!>D{e%Z>bq{i)xYSK{_5vMSgJ$Ubw_>;?(2H~MTxIjwP z5bkarbRA%-=*dCO^-s^9anYO4GG0uXf-NTSOQ|L4tyF!#m7tGeJwq+eUP7}3PflTi z3S2cIv#v{hUMeYaxyguUeOnq{6MN~cfvL4w@O4_9)h2QS)YQ%kh)O!2kyMN-xz=OkQ-!jnc_2bu{ z1Fz7+ceyKd+IsA> zS13BnF6jV;HU$z8M}TMtMN0N~>s;lXfDI>$8XX0rzT}NdyMb@Vs|`yu;1%{Sxk~jI z&YTNqa*{Rz&Z=k4Jc!7yw~%(@vl;rxMjn`@dv3M>mu~yYYjkXi{52pI`e>2UFl86n z(IY_K$%csFuTPRm&Pv~tR8n9KTW89(rJJDgnMaekB>flgo^r)W*9ZYp_I3({lX90x zHVER;4Se+%Te=8t(E&B66+SRxGJ+A8V-T``_p-N~FyEn|2xgG}QV!LcwUuokSwJ7L zWJ#}1>NY4u2I~=t)QR-s`+m9ewuT8o@%Il-54&K)d%zrd#p})p@^Wa^Kn0ff|IFP# zN-c}BVB?m^55PmeL;pk@ybLrt@+ED9(!Z~p;Z8b{)Z9{)N%X(7C2xW&CP)QpCqeTd-wc;-8Z##qCC{h;w!YUa;}<{_D_v z?P#A1=)#tCXfS)0KX+mcbsk=H5P6u3tMHPJ=a794WFeQ-I%DY0-TN7GEHyyVfY+k8 zYq{P^5JcUrS^&(@wLb?<@F%+LzIJj4$k#vXjoIuHOv+j^k_yQ|-heOxP;=}Z#O`W$ zo13!li+(gHo7NmWv>6;y$-}YFlQe!3zs_z}T~5SqhiNcBwnaGp!@M6bN!w)mc|z zg*x={a>k6(3Izof(r>%AS~6bUps3iu^`mLMB=l=N+jaU6|G*I=vcvDtCLNbjZ{LKs z4=`l>Z7?b-Da(BZk0b|42i!zBB*L8xuT|Vuk zp@u6%WpjRv1fdPEtH`OsOg6J?BF#yb4*U+J4Zb1>`}iVE5M5v`%kI=%JgLx<>L=vJ z27Sg58V3A?o$qDs^C6BxFK;=~X&}VXz8&)vY<}5ybSjRUBRg6Rc%i!bw3>y^UEMJB zR}kd1W5_An9VPc?wP7>H3;{~PR7+=nK%`Z0b?2+|-a3FvdlbwE0CaO;+8Of=SJ+uw zrN21=H9RS5-L3HYkwVQNHN#|KO3(TS7BfbF;5$kyS`idodqylVT zgAvNEB|XmSR*V7K?z1qW&|>Exx29SqIrLh>wwvX42_SEIWwbrnZAKwH1(>~!`@0hR zdjb|pm}*dlR+@Qmp`EC6kxH7Yeb6ddH{$lDx4cyAqqJpMV7YW*BQIx;NR2MvOcbF; z3)m~ntli{8;li3Xg$a`Nc#A-Jkd>nqwjW+7S#6Y()hCN(TiXE8=Z9FcXJlE=x>No< z__G;C0VoVDL@g0b%hO$Qfi~4my7NU>741g`P}ZP@bBrb)t^|i|vb@3RkPJdvq%Bc{ zY6_2b1gv7gL;X^TN~a3rjE*WA)dZ&@o5n)ysbeR?>mRkfqO2`~qq1u$P%bUJ1nb=v z3hoP_q?s{DO(qSNo`VkzuUcM68nE=Cs%m!F`fyY=sgr_Rd-oQ;~)8)35YZuCpDq7*YocB5u7>-WgR^(wd_9Zch96;olzwd%k-6ip#Fw5oF;so!{+Ww~JbTK-D@^ zxBdv?4<-}w;p+zhI(Mq-kcA+!6sj(EgKB$bV^w(*J4BpiV(^+=*cVB zyN22c)Ol(yw)#qinYTqU=vbVeMEAmo3@&wQ$BfA6;(T&BF3n^>A}3?a~cAbKS4vQPJPz}Eyo|U;p(q* zr%o?}^Fmdvz_uLuF>L&%?9$r%ehPLP%kbhT=~|5?T4pb~%c=SX2bkcde9%a+%c4V_ zU)zAIouqnOJPRFsf8e0TR%z7{5K>d>r9JA1%GCi#gciS=b1wrv?BkjSYGzEm(!R_t zE`$rL8anV5l&ybHlc)Gbw_KS-(8I|)oh7+#3BSm$v?fyND`PtpHpq_cHf%7&t>Fk^ zZ>eJSBKimWE{xoJ!ZhVf%DWR@%EGv=P-f$sB_E}jp-_VcRgmt9dBy6IG7i_>)%p}4qJBxc@$BlNayq!? ztgR)>PHoDW78i<|p-g*M0aki66&$9@wuXEF`jy?`!#Oaw_Y%K^EL;{|fM6_{NfIn< zM>Z4?Z}jP0PsPiuuwaK!&ZtqdSwjYL>r!jiWo1C2*r?hQEarihh9ChNxCX)c(~lst znvdsO1j*qkFSPoWSXRY;wSqpGZLF~R1)A5ss~9*I`(J*jBebs}CI_P-kVHS;)797e z-s+dfM?W~K(|!K>N3OAcy+8WvH#3y|;`L|yqo2I~I{c6c?+>pZLcZ>&ufI^$gtsph zarkPxFl4nSN z{or>`sq=QPPt2pR(2Omjm$iZGBmtV61y~;2q|iJfvK3OJNL%;(lQfOcUNf^UDa(ke z`Cxt!+aBMp&8RMMcdR}pg!ZCzmX|AOOc^94sD!=(rLrON~e`-$jzB`Cl~!j+;%#3lG<6WuWlqtrc-Qne#~Y>Ed;)5FVM zu!ispATU|`W1;jlm*Px#f-xQYgb_xlG;zV$k{S)8V%~dQX2_Lvft?b2E!K(>-e2gO zB`Ny`W2FI-c=-`ka46fgDEOR#LB{qAvELH$#+sp1JGHvS8VqDgZ@0R1i8}e`Dcb86 zRoG6tgdTcH_(@w+lBiR3lqX}!Y{x`Bt3ah?69CPCB7d<2-9M2Y6IHOAaTxcM+?_+! z{bkZ67Ny2yO(vc1AG(-;!Bm#iriaBY&@>Ko-1-45Og_}HW>jN3Cpw+$7U~v` zAFMk_{U3}jF6;0vuey`_>JUjpC_@WY%e z~KVA`>ybM++u`P!^a1kL> z)xk}RlCgETS-&_1YcV8SLoLHP&I@J%Ge`xvh^(s04Qu3}_V2&Bw_?h zJ41^|9lk*D90DRsg0<`(`R9iO!>d}5)=-8RX2bEXF!r@Qr?je)6+(Tm-5^9tN<+Yr z23F$I2XVzQt6cb(ClzWlX*Q;{S(@Rer9RZ_7@M*;nxINawGk;3O7`nhZg1XOeO5R= zyn)6}t)hnpbntxe3Ad@Ezq|5xiOAClfU;Oep1d>7410>ldB*= zdSKYS2PJboI3x|59Z9*~IA${JnDcHjO_pv@NSy0UxY#6mDm7+V;crC=zS@h6E5J>w_aTvSg{P#g;4VbY|u*WYsIpYNZ3Pc!R;B{$>tDLF;>fe$yu9=w6V?;F*gC z695_8t*K~rK1{9O@<1xq(j=RwC}Jjr-M)eh_HN?zdS8dmA2 zw9FeuXx-{^FiAs`wQdt&d6ur)E+}b1@=2@G{%MDYRr~x6UP)AmsFGR9Ke;lyfGlCa z4yd%BD)67nm1G^*K*+mJ%I#EfWe9@T9r%cyd8^vx?D-r$Np0d16X}+KNQa5;?O>(m zip)i>Z&FJ6r?TMbC3;_9s+g|r3Q8%jE&E_0*KtD$y$QMg*)T!_p4q21HhfVJps)vk z8<~yXm6?{F5x(G^Bqt>Jbvx-ba&^oH#w5&ML#H#_ewe&rFLZ{fCby2shTlp=#|XRC z#rGwu-%nzK>i-h}BDYp`QmPzhsB*VL^vHGXu^h4~U#z6znAo@|Ca1#0QR3uMB+1u} zwFkyq`z4dsSNYMOy?q|uK9i5(?YBrkpGoS;pZTxSJsP$Va$q(Ng?rm_ZE4&NXtJbt zn-kp!h?~}@JC^N>6V24}iLD!J4k<gbu1-2!->) z{5Z{98}d)JjoVt>pE<-QCl8Wi^Mv#-5JrNo(!nLGf z2Zc?Lan(khm%<9gZPN#cYGYz`%K6u&XP13vF5e+9VR0|)4AyjZ7{==<13yg;%CZ;b zYGCej&(7q`Ycr8?*bqEw`ennb#kBNRkbx|*DQQ<5@_{%rRj0^Gx9H9wVrt`AQ0gCc z1i9aV$PzpuTFy$YeDd(pJIA9-i_1zNQUoubJE?GY-}PH8F>jJ5W%!T*w{0$+4s$@L z&+Rf3kadYCMI~Y8Udh=3o)10t){m?pZyq4CB`W)cg2_;-tmn|mD{A6?SMZ4});CcX ze{wnTYHF~ro>cM=ihuIw`m+Kh-c>46Xe3WI3a(!Ky}n6c#bT;n=1x&ir48C^AaRS~ zVQWO^`l^JT{ACen;)_){*Y%Puq^`p}Vslr5Ua;6@Acyw4V_Yra?P-o5sU5?4ZBJL} z5o_gx)!Z@4u_fb(?iHz}p!J^w>9qEzONJ2S%nYc|lO^(5x84A)%uA+k<%iL=xl`f` zOfOS)O6Xt%d^l8a_5_`?Y?9!+OF%~ru~M$@t}($tXz5!8^Ea5e*r_x`<#knTb5$|c zm%t2Q?gZs^Bfo*pFg(b0gNnZ$N$SRg$uWo6vNVvWXr&7b9(y2qJ&XtE*aFOH7)W0T zM#;=xGiGGYY>x1P-LleTFt{5OXmp3x%_w!J!xV& zKuEo^F$r6c*Qya5}uYH&!9#gXm|e*{`Qd6I1>H!>(_?r z53k=4&Houu{F3B;`TB=Ic;mmke(L)1|NZp~RdP35k30c=0`GOH8<;#@?Iqft>{+0@ zghIkaA|KkjPf=F`RALGMO3RHwMT|6Ard$`(>sobW0uOCzk;P!BXbzGtG+$d8-C2gfn6{Cm5twNb<3G-W`fV|A?)~ z%c{)mysX@Lsp{+}O19tp0pc440we)~AV7c;1%gmSqw!y7j=AQTSsOflIS6uhX7#nI zGUs(%mTqgoGl#Xn6N`G}R4Qdeh;?!YhO-mq0>7|+w}f|BrCJl z9U40a9B~&#g0SA7q(FKJEj8BhT3*I|>mHkE@W=|9ek92q5~z1-RE*sVWX(On>6Q#h zVd}X*tZ1Jj$?V-8Gt&OWlG=(YHKXc@vuv6UH|Cwo&S8IsozA^rx*jB^PX^J>4!lHF z!f{)Yt>Y?3>HFhu>FpjQ?Amx?P-;-;WqGgdg=IN(F>I9-p6@%(9%_2bi!l6N9)y_8 z4X6h=@s6QoKrS+6+tdP{+28lHliDp6Wn^WX}bc00#5!1hj%Gz6pvSQ=Dq z*k;)=4#RxsxS)fk`e+#lawv=i?JUo8km~!9cZWZe%1x<8PJ>>ab)TKhD{tTWgLBPFuz@m1?SzJJ81&uRbGgk7a5{M&D z&_+aZ2OfDOcKh_3riuRb4cXHb(Gv&mv%OeIukev2vq`G zz_)|yudIk>m2sD=&*zqR7&2HAl`o<%Oo`X1^i7}?*t29ha6Xb<-MY-vU7i#H&&R+p zS&Y&QKCbWN_vNFX*na{4oZ08AH_JYMeAGVw9M*?65M;jjoity6pHoY);qU=Tq6jfZ zQ-g)Zle7)eYy~pl?ihQO-fU~jg^Bp1r0HGBoJ;Js%e`oWQ@(VVP(rvNKTv~ca#Mdp z=gq3El$j_>4|XenSh4L_r{x(^4%q)t)wS*mGz`ln;ekN2B1&1DUuSi;y>?(_&4X)o ztq8xm_}WYg4As_L%#N`S#hjoz-eWLkqeLuoBT`Y|@LvvVdRi6ITPtEo8?S+G?Fxz> znOw3RtDPZLyX)eq9qTK=d6N3fp`z%BUKBY`Dg9X$)+p1MS)%!{3bzX&SoY*5)!ns2 z7&H5xsfEL{g#Co8E!dD|gwUdU){c-yzjnSsgvuUC%N>eUh)EZ9Qj-dHBC5NIFda_J zFlHc*;EO>A4DGlX?>ds4mwbFf53O7O`u2nWCPFJJXOMjvc7zBB2t!^1xI;O=j=?G4K z7UzYS3P~Fy*GR$O?YLg&=G6Omh3_q_-sD7rCdt=zhaQ5MpSnEJ=egMOPGwzvVZ_+2>HL4bCkq&|VV$ zp+sxB>(N2!7}27?GkxG`A@>mRmeQCPTaoocR$3Iw!)0hH~gS5E{=-Z`97 zLw5j6P5wg_&WLY-gyqmllXMgsYuyHzn;F!Ix+QMCQ#zZb0lq`|x+*$FYXiSuA27t) zAK3g4)cJE&rJ5j*kA29M)Wf5nzx|2WkY8a0XcD)-c>5KgB>Ex$n-kWly8BYVv&jG< znC<7ph2bmj<^zx?IXTXhrSgEq!a2Np#VdBNIIZI0Wg%T(}D~N?0gGFnUhsp zcyok~^u>6N59Khlzuy}D2d?A+;4vKN#DGqhrhvznT7Ca=o@2)XES=bSM_3QVcxs~?x4BfEPoo?)%Q z)?>BcZ~=3lD-DQR(99j9$Y~3wXaa004XPy#6yyQ@{+{=6BnW;)*kw-fG9!f8)DAK!>F zfiKCi8+ZXGR_3#|<+L;$$YYhXBu}J$ik4W1h*NGWhS-D?_dUR}aMztxnECf>9;BRa ze`g2VV>4^f_UTEzW)1z+jbx=*vmo!DVv1+FLJyJsTkqs@U|P zf38;xhhTVOr;-oGW93Dia%}Om2j`c;H>86p` zHTSfWiOeNQ6Em7e^Lf`lZ=yjHs3P7;6vGabt5q$~l-X4H!m>j+L4`52oR6uPzFgQB z`I~G4wLf=RmyIEMk=*bIc7aUBuJbL(%vu=VImP@j;dvkBIQ#S0&%@iVvQ7Fwh1bs{ zthx+~#I2P)TFHFJMMvoA3WG`VWfy`@??6xKcHF`w9E^A?K!H^^na~5YF9>6P(RL{v zUhGJ_#hVKlY>B?VS>xMTvJ*qome-6{59I+9E3yP>i71 zyS(}Lc{R$nj-5YH02Fdi*@po#dKNH;;O>0|h)j_4eh}&Fk#}>{JCrwcfzDS(oMPbu zZZ6l4*u0Qhb(Pnu^_okf6NoO5hPu3y{>t1W7D$=t#?y_7)a9+FQc{?Qq>%GN4JC>( zvC%-iW0Q*?*2EE2cdm~8^rZzO`8l6wb*3dcQkFL@Q>5Wb5->4B+FCVZc7xge!7O9M*izm;Nm+AboF0O&M;0LV;5h@W zH;=P}Ljx++fYD`k{y?5!56Ll``0N}z^=e*|4;49Zc}gm(yF@kF${|>)NDGV|WE+h@ zgOy2rTK%Fe^{E{|0=KSK=^yf`Fd9;j+R8A7@r?~5+wO_CK?ZAkk5C!>vQZDN(I@3t zM{L~3T_X%vAyW+vGc9v-6n)-6lbP|1C{$j^e0Gv+TKlF*(UV=;i_eN?R43f9Ggyz0;+ISF*&Q_5_RzYptq z)mY_BW`a#EO6<3A-Z`YF zD8hID>-&GmLFhk+zxt~j)^ol63+~vzJs>o5TkI`!3=fiZcQsYDix24Q zn<@waw6!=mch{}h)Sr4m(7;*V^XJ_##+49?EHW1_NE_-wkLjpuz($pvcX(L5l?aKb$*Z)R@J_g#}#YWK;+F} z0Ifut+7C;eHASfIM0JmK4~eQBA7KQQ?QvG!UfQ9~y}9`BdAPu-LAv9mWe!+ksxxb-O+o;Wu+?HdW6u=E(2mmtV&bJ9e&>ctq8q^j( zhtEdo(j*kaL7^yH{@+`ZTi&Z^-mw%1%nhv;01H@m zWm;7M^}jAnAVa5ezMYTN=1y{;dRtKJ9Pm*KzUWyh|1O)gRRS7hS?bjl|$y>=YSh_e(?I{*;K()Zt9ll^!Le4$< zGC`gP-&~dVn-pse1bj|a67ZftR)X7?L9T%-Qw#bVcQs8+c9~zH9g-is!kkH3PXnl7 z#gzBDaSVsesG0-PHYgdW_y7V877SJX+PZ60=}>O^x(hFzqN54$RT9#9@4{fQicod{ z5SqDbfk;M${h!(oQ9WO(C^$)(I^O_9mdel3F$>~-Qg=b3%h1*UHh6ad$RG9Xq|yuQ zE#$_Kze0z}lB}&Mu5`0t?`bJvPOo>Kk(#ZsR%PUQ3Q2d%PgxHiuCmZC>*d0YoMk~T z)DoJMPuxYyeaw+@ag#O%kg*+%t<4xol1>Yi@t4c>g58xBC&v6(V-|`a;|U%mm@%33 zE$*7jkA9RnN)MExuiw7?!CvDLAuR_F2MsXz6w~ z2q^=>TyJ|Cuo(3j`*a;@$nPl)!ldiei4{Bd?!A4cbVYqzTt*ez(6q2_Wh}CuSGc;O zGX_!6Tsp~LW0H&G`Ai`4zj>AyyQA9gi0T$I>TcrnU@Wiz^68blyX5=mjjg+P++oZo zK=NHw*R#+CAOn@eDWE$P>1z*6!5s&C1a4E3I3?P8&?QQBsTdHo77{2W-@V&USqNoU z>V2mkt0s~jI>R<2bG&$}h>MmHB)O`XBv-=9h^^B_oBTumLR)EFf!lP4y#;HWG7Yt< z1P$oa+*2F{sx7R$1}p?z5679F@aCoMS%k!*-{vD~5iAc@^uLr69TjD(5SJBK*`uY-3p*U#Vn6$*2| zg^PuDJ?xQk=X8X9%h%~$8kfr*%!ub^x5-xrA%lIceZ;CF4Sp5fwd9?NOn$nh+C5D$ z9)*LI&dZvPD+aXb`K^Mi10W;oST)wHVvcBa`}Pb7WL#%@ngY8F#p{(5H0aj?8ke^Z z>&Xa3DBm6omz9;e1Tspc?npCLARv}NFT7iD$YBh91O<-pP)lwgrsCJrC>)UFg+rIM2puy@ zW9rXK1Yl~zE<)Q?e85EX)FYjqLhHxSqG`B+Rv=4a z8c=S$Z6Xe!HsWy^^1cMSdzGi-;C29E; zu&IM%H<(akiL`(z8ufn~q^?sQd<%(=+({MTLMC%sa){0cz5?GeM%_$UhP!4wmV79f zgSA1FgyS|hv1vkOVA6O+o8stQ`1zdrs`Y^ewv43C6tL_-DNMmr%=9pO&@J{&yN;eP zCP*QGWOXqbCJG^2Ypb?~vt<+nE+IU!MSwuYkr~M9@_fn6AtgTBq-=T=FOil7Lrdlv zaA-Jt(ve(u<*_^)oyHXv-bv2ntE>v-@?YD-mspKVCXb`zGVdqTHppLQ9! zQfU{Ga8&ullhhW-hAVM@5#<6}W}SFkt3JE^e5}{YM7thorslwu3k1*Tl6C{+;NIVB z|3#L0U}%2%_T{6Q>+9zxRtJ351UJ*6NfcYVV<0`9Ru}5|XVRlkVz&txK-$-?I&Voh zN?8ED<>_wD3K)_NLwBldk45hu07XE$zZZ+D>-k1{z;Kh46|7KTe&AnR979@0=mc%t zk8RS^*`nhGhU(rht}nbOv8QgGF}GqN;;^Mv-D491yH@QTX(FnY%`m67Nknhs`{nA? z0vnWUR^kZwb>{*E`WjNShg?LAtSc9`RZ+5?dOlOcaIbjjSiwO*QZ6f-JFRR)Ro1lN z=m|~yKCQ*JFDIczu^5!0Tdnxa=|Qq5BYkQCXJML^8ox4y((E~UaW{u4-cUL1gB##! zHJW31)NvB2To42p!S!gC%P>hoEIL}%LH_BYj1~3p9f|mW-j|UX!Kx`pY*ej0((x7V z%Hs(1C)gAhh;*Du-x`BAwq;%{0)*~p$a)Eb8&_PrTZwjEwRXbi*$f*v$20^MCPf9m)+dIlcLx6-RS zTs;C-NHt7M73Rwa*DS@lyZ#KqLU843$$QdG&@BQOw$o`7gCj0NAmYKu?juG3pc-D; zWveAmK9*N~*V_G%R{r6-W3iUv zzlI-YHPQbR{+oXMtMDHze*fnCpN7|uO@_@;NFTiYHslZak$=K0>1Q@a0x4#)jp}ol zHrw^K1_wm zUUw?XD9qhLHZDx9%5@s2^>L&|j5~zaAR)M_Gw)NelH3e6 zHQf>bDctTT-Xzf0fH5Ha>Q#z^Y`4I*wmf0#zs#_0yINRL?;fdIC@3%kh=iT>NrNvy zd^=Erw}7@9O)izl04(2$^D)Oj@RbvMPyKf+k-7T-hn zAYvJy7BB9)Z}#Usso?LFi*esaW3Y_-OL4BCD73{(=m;9xXXul(Q=6^~)Y%{b2L!CD zLQe~yXdL1QUt^^Q!VCnC@=3-B8&nmgX6L3AP?J#KoXFFr^NsNplZ%>!iE9!1ez%|= zVA|}432{>WWD^99;GXGWRPrAuXSFXnfHCU8zC#2%6(npfgm?M8F*X12X5=K~m@a<71jORZszuAbR2$!}BSDeYHpeQEuy%=X~ zucpK`L2$elg7_1_NC$pXlszv^?!pPjOu55g+H3$MSws14p%;k)0wefIXjcfWo6mWWo#6yfbxOckFfi4V$U zABFrZ0aPV^)xl?I4zNR$9C9V(6!tur0N4mgGDj^J#txYQOD=eQ3ey#bgcx}|)_&hZ zRa;uPslJxA37CfDU#lHMx%mbig?32|%Zz9}Nu(-LB(=$Mwh+ea!EOP7)F$-=;hK-Z zp$AVYfmYnHyRdHtn2EC`KykRc+X|_j;>DKz0ErF{O0+sklEku)JAn~v9%HiZ*A@i3 z^1?HTs{NgAS}Pw6k((1mdXez~)|MF*TP{?eA1W@dsMu(rHzcsK>~|7CyWB$IFa@dR zr4PmqL=Ds>8W~n~*+&O^z~W%zfNBCLGXnv10Az`?yIuoi3oMN`z`6P6egap~p|yx{ zD_Dz2EUCAs0^YK{U+<)L$1rfT;ebv7U@>Xsg?xTJaf{jpB^ON0(xxObN}*>^G~i`c zgBZ^3Aw6_)YMe^{M!{t1lPD$(t7d}Ha1A90DPSNWAzKX-<>Ms*RAx^#Wr-mZ83O4Z z4i%7SX9ERxm3+hGg}k&gq`3ePuoCb(CjIH7%|Y5jof?XOH(64N3p=MPbq>Au8@6)g@!vrV`tx|+;Yh!$b#<) zwQe`TeW<%(Ai{Z>g!nXE^s3qPlaZe&s!ID-3Z%Vf(xF_YhI*I9!d8-K*(49(7w$)C;`@%^j9AmRN@QLZg>g>Vw29Arng?dwdTUx1VNe{dPkAhfry zR0;I;S6K=4pOHfUXnVRNHRyY}X{ptzc+M;XdrbYc%`@W;QW(!&8%I_3O-U>)Nb?&u^9un@Y2=9c){=PqCXTm8%$y6K-Ca2X zSmGS$BhhfcvP7uodtTd2VGRzJ;OIWtWiBt&K#x0hpjeA@f(H`g;bpKqa0NnON$kFW zQIq@jGD9xN4UL9Ee^Aa`mF_vzM%LnYTF{{==AKNGqgV#eRg)A0`4M;#b<{?fc8EL6 z8+IdDKp|(gB{1Ellbnf}2^sohL6r5aGZA$XYos#T)b|T^Mr-!D;06?Kn96lbZkD5>1s;UQZYYO|#_2uM|B1vSF1No)91UWXbL*P{8 zNxptU5`U5xj2KU8BBal43&OR5tGqm^vXDALksAu`97cy!XX}+=UZhd)fb3B6?X4%msH&rOoE;`3Q5!0x!+^1-tN-T{B zYVspsu%9U<?RWZDYHnz4UdSMsEFrFZl8Nx{qIT`}#3Z z+b@o0w?0uKPVT{v=kL8^xW9yM%tgi8q zQ#`^cIl8@2LsHFVQ;xn3@6J&pp#)HS>ZqS0$){)E^R(x=v8p`BrQ+&XqH-%uOSjzMt;vxh?zEYQ$pQe}2;3Z{szyqi7^knGuUe9+ z)!J(z+8MJQ3E(3ZmL+6)F4fFpNMbhlvo6&M3j%AMI!GhZL!;_KB9{!U2xdU?3b_ch z>u$E0T(o&tRdk{E71WBw|CZANhSQZN1>Zzf@XJ+QGY{h?Yi8{ea*mfONDB))sR))e z8Jd#yF}|Vbv(D2?x;^-N1t*7+7z3%mCN99$4Ogxh@b3?&@u=`MrvhM)GzN^6hU5q? zG6pW}cEkM61;D|1H;R0DGbR$Fi1e)pTVKiFdH1ygIp*lZ;LjH?PC=D>7xq3b554MCKoZWPHHo}V?Aowq8xyAV95G;Mz?%jv z3w3mDK!<%~V=u~v-YGp(p@c4%i=t}j(YpHx0XlcpX z5NbKBlk4-~{0+lU;*CZGag83p#yuzt4%h)oM%y&R45?o+OJjDsF}EmZ-=>(VI(GW* zDKmr}j&YZJAaPaynNng47(gvWgJ8j@SPeLL*lVNsMT1uL5$iSpGSJ42T-KoVQC4qp z5&)le)I7>+dV;BE6%vPlU=Y$yvg?r=HaLY3j)Up0B(--n079HhfiOVW1*$sd@T~1a z-kj$n-27Ygy~@RBvyVz{u@egQHE=CODU#9Ki+!i5Nu!sv<)9QLmXJfef%XHg=~c}q zB@MdW_#BQ)e2~no535CB+5{i#M~90VK#{fBkq%2xeN^p&*1vM?Z%S?>`zK;V7*z|v z%>6Je8x@q#aifHLDha^q2?lF+8al{Z6D+KjE}lN?z}Vp5xKb@oHpL zfGj*{lY@O=xzyQf{=rGKlqlEPcp4T6QXAf)rYqO%lZ4gxOjrYC$Fan7mo;6&O>AUZ zwQ)nD!jz=IhG~hAga#9D4N80_XLUmJ7$ak%TJ#WLH-K-xr6yv~uL%xZci+drhbvI{ z_`J9OTgdWee-r-h%x}L7Z|IHQ{{8Lu;q4Ppcqn9j$Pd}4%QF^`#c;VFkhz?g&lFxd z>{guIJLtMGt*Ich_pB;vkY7Xf0I%aH2WjC96!9WT$~$@D`-&D=&F3wN;kwF)fL*wP zrrZj9uTwwl>?J2XEX<1fCP@r}mfJN;ODql0sy|Aj`T` zIfoYL$x$Y-8dpuFcsprTVM9T01SukW$u#fYIZ6T$yK$$EnRLyglS^Tnk#ol$Qm} zv{Y_p8@eDzm!Pd$8iKU6Q{m^%v1YS6c_1NJ{G0Jd1@4~HstCD!j5=IW6;>@d6CDr( znxw!nF=*qG(r9Mf2iU!nTR(0$6=AxJ%c>S80D2zWP+`u#N={19qL|E0p?i+#PZr4_ zg9}$+3bqafoLE*Du7PW6dl|DQ(@M~W{LCg@_eQj@2%-6y6(BdS;Ac9iS%_oP6kyL5)#>)I%@E z4OM1HIQU@Po-a&t}K}_B#0YD}73E@UJJabTm?G@TrfJKjZa(#fo#_gL!{IP&$GT}f6 zRB~BCyNI(a$pE*jbuXAY$a}e37J$Fo5q2W3k5Tb}J55p#%$CsvxwPH7mwA-xa>@`v zygOEW)mkDA1ZQ6#8A{-?1&UqD6Ig7%pb9rm|5Uxa({{DNEnvwYP3NR<0pc}G1YgU2 zQ+3Q;s*OGm>F`kwD7VV@e2Jh>O%6i97Iy83exAEr&F2&RC3yyD!F%GqDM<&=6f+tL z`Ac0}5vut4AZ9-tYbs(1D@)rtPe6!3^#7)0bxLS95QEGN{%%sJK)_hdLiNPv7KZ6} z)U`m-+Z_&)f3d2gHG_zai`Os!CssG{e==VH6c#YbHReC zDrZe{R+yxJ!Xmj^c4p62aCi#Ibh*#9qVd~7k6zDjogo4!*pMiBh1HS}QE%YH$`YV!kzWXe^{mWmf-@N_d z?HlHle?Mn$|B@g3-{Cdm4`G*PHOc`QQ@5zW-1iRat9vXT(uxke(y2XJ)1&bouEPbG zp5V-%=q8&tX|Z>gP1{X?ZhMBy1bK3s>TB?%&0Cs#8g9Nn8P!dN;4C?Z5Kj*2cWS?_ z`;s*;*>WiBQwoxLuUvEvMQt`{#Nq`jE_)p2*b#=@&&WEE(I8F$>SC6F`hDsj1q-?| z>%1r8=vt`pNR<&+ju=)Q=VPV@JzgsGqFGVIyq#$soKwq@d=LjM0acxaOeIi6mbjwo zis6Z38n&Mb5O@a9Fmtrt0p0@nNM~YUJs#n5^A12l0isfgw%exOb1Q{qL*oFbiyIfIyz^7sZ7r)a{0T5f>PZQAy{eb2406@Qc_CrWk40&VPkpvUL>?3#?B$v8# z@d#*k;S!sY<@BA-`f_YMmayx;ql;FK1#pfhhJArppS;%7(zyxgB3&HoPN@YCb{o6; zt?{f3zSvijigR4HK?N}`lA|I!OGK|#w>MjBZ*s2^Zgx1rn8=_wPb%z9LfDfuASHh* z#4=%=O8+(oc|pe@K=cEM_pJRO^`n)g(j|=src>+b2kSMtFu@F16bCO|S)PVjCTI&d zH64oAsz{Iu#x0j5_YNDTBTTz{w{?Sa?g0XgbYi$d1hFHWU0$FkiekzoSk$g^CV%+J z;Q?AI#2M;06+0RA6q-}#{$jo1 z98zQDR}IsuDuE-aYj77Y4pb<AEiNL4XD{lQXl3TvQRCuQf+YzWbow-wEH564#kTE13CbmIC zA%CgE1YB$s0}j-vr*%#?x^{PpcRK`h=3QQyo;gN(P-*G0t4 zP>E;PqM68-oxCr33Z0phbbyY^mv=fFfC(su5f{ueGpNh9+w#mM1ptfOPbPo>?_C>^ zHNZP-C6!OnH&=EaHtjwDQr!mSS*e9sDI~D6a`c-U~QV%PZuFgl-~Au#UhSu`E^VP`N-lccU&8DUWi{)tZ4n zr@l}HlOtvn?WrUgf$#eA;?!4_lbGERZ68-(SVJKvY-@XG^PAz_&~}>nfKnxiKVWXI zR9pX2!geO(Z6!hJT9-{$33N=Ok_9?*EW>Oa3Vh8jl270zg9PnLpWUefx@ZG66>crf z{GxJdQi2fgS&X1JbgU+U*j%Y9TEj%<^8bXt|NG02P5k*!1Y7_7^&`+*fByR6TNW&M z2}_P&hq{;NEOQ5#IF?=GORalHf^TNAmc)Nxb@CuKAqic|T1B=by8PaODfdN+e5WNL zu$e9p!RJJK13?N%>yvXdg%b%N7YXQNQdw;TPHtIn&OyrBwY9P027Q}(h(*;+;X5!x(BBT#A@zoa>9@^t}wnVSV`+2k;$U zB$t`tb0t5g2`*AOg3^#=Q@RJvf1zNeBt!%nx12XW5LBoG-;f3KBSvzO7F+Tg zJI3cqfsdVZV%S8`(WwGt)O32(B`QRhSl6KKg8E5q#~GYMS%GhJU%hmwRCCRv?%GlC za)$4aB0ag(m|UW4F%ij9Qnn&GN-%EkZa=BO@e(@kWV;3uhVpr#J{H`K6$+TQ4TVJh z)}rw;DZzijo*ep{lw>f@O&@5js*W1C$JkJ)g6HbGa)nA@<-=~tuEK|(V&bAA0QLq* z)dV#?7|~bUn>2Dy=Ft9V!t$34n}2!zNsn3|7m{o z7jKd}z5daeGAg8e$Y|a@4(pk7(vFIn^nVDI*>R?^}LBl9IRD5>1e3|Vk3pLB!~ zscW~(>$I*%j~PfAPK|Bw2hWXtyakfpr83cAyLFCEU(tB&nxqos8=zze7aCK>iRuMC zc=MrgPco7{P&T;usLUbH4tH7pUGI#nHQ$LXoKuJ2W~OE;CswFmfi&ULb8IQQIhmIW zczl%NG+!5xPxx}995i&!1dGZcOi3r&`Jqm?HuBZ>*G#9==Y%HB>0dyrCh%igmr@-o zdGVIHWkQm~{^XM_oe*R}wa%dg&}v`~N=Z{mDF%cg*gvC6S zG31JBw$Z!lZ=V2u=B_(>PinyT|+_yp|4E0CJH$qmxL zFKt!UnIbTf29ncJI&8gOd1r=0_|AEfIZ+<9z@E0HRcm4C*N8$CC*)`^8Z@-lPe;o9{9?-9PN$wtUsNhU! zj>-Lkq=#tiZbpGIMsC${CDr?Em(M^t0s`;|PspOh&Ri0sfkKcNUoO%-8&PqT7l`550_zgYtz{~nXn3fg zC+Tk_0JCf#cU6)mb`__sOBOFpr*c&50~-a!Q(#EOOW_l;@${6D8wR3??kyQZI@br+ z9hh(np^Lk>bV}Ik^;!0$qX5G{TeJTJbS%lePlZ%~b$C)4j@dZ9fsq}|<}ENzKvezuflj|zuZ?3VE_-`hA%H_3|Fx619!sE( zik0Xqc~Jox2S5@n7||2tBSbH^u&$>{c@JLj#}VqRR0*wz=}3*UY8_UG3>=QyeIYxyk%9#Yl6 z^z1n?aor`aP%89}YZCwDfY~j{<+X1eG@2wO-*g#B4avB<3fv77PK&ftbvjP&*nbq~ z%ng7c+vx1ICq}3^y6_lK2%O9u7MD8$ zZ60Os%th)9AT$Ou5BnFK)u+>8l@CL_?#tA<>$l|H9Ygp=t9c95cO|niYS&6I29d%| zCnY8izJVTxlF4v9mGq!456$2-swGzuw5WG$M1>&wk1G}}!cJ}=E{}(cWQd)Qa^zCf z(SV(e!PSWI4sjyb18(X@Tfr>`Ov zVA}+ukvp~#Yx5s8kb023hwAy9k9X?Spq7T*qd*9Fh9k+eDnp7_ zGoYm1mr`QQc@vaUB*g}$HtdYy$yFt^o^0w$sf}7z z(%VT4L}bj@K>-&)7x2LN9k(FxQFgna7{F*B7Gka_IV$yCp89imV0RWhu7V9IWi5OR zbGGB~vgGXGZ^BH`R>=Rp9E&7 z58gfvZ-2_kN&@sptdUuho$Q~_ufj%1q10c;1 zxfSjl#lx}M#%5Ro5tqdXh6dAAc-c|3c6LS_ zF#iF?L}aDB%eLctk`VVS{}Oiu6Z<)+N^8zxn{>I`s>=G%#~J!6cM$H`$R6meKw z+M{05^8tH4OM9WBDgBlHyKR;`u;Zu>57whBc;ctVP18!tb+rfxnqEBRlyS9q&*Gl& zU;x9etEdT610FFQ*h$AJUbzB8VE_OCAxs^#2w_-BEf-j}K)`D`m|Fp+d!jhlq*3-R&0upB@<$_RW@-_B@n?9LY-lx5AoOyh>gKfbSgjSLxIckenFWg?QfT zy$c6+!P&<0bmf}5Nj^H$qs&e_mIzhd3!zy8Pm_OUb_E86L$@-9&6O9dMv}Jxp~eQ% z2Nc`6u14m{igl}8Vr%1iB~_&!=mats5EY_P@YiqIbn8FKe*ypGEc5BxFVXUR`u5H1 zSNW0OeE*N(^+V*JFT?8x`LX|@ya%qBp-o_9^ndZOZlW4rC5Zd1ivmh|bX9Lus9D_)dW9;e-Bg zZwVEWrymP9(ZV(^kAcRTX3Lry1I17djV!hnS2`r2+@js z1qg=fTwHp{h_$ed!bYy59$G(E^8VMx?noFvNtS_$mPE-LIw{BjsNxFnspmfgh6EFap&Q1aR zxKJ@SLsrFbPobD~5sri*w|!Exgq&Wc%{WWDCnZ&?ST1@ws+zfpuRyC6#>YznTnyYk z+#Oxtli!zyQhJVUBx_I?iKnR?U{6zkYFE$PUt?W#T1VAIEpJjCk{KjaikG&MqDuEN z9pPHq*??zzzVZ|MFiRCv{)EeG>lbC$H68Xq`nU_o>h1 zrUV5$FYTnIQl}n|T&nBnx+oImF%FXe>{!qZTk=WeoH-1YUq4EhTE^i@xmPtrE+_>J zKSvC@hNQ-Mm+cYITZi77tb2Eb0=lXAIMm zvEi=3MPIvqAC;0%j)zoYtsioLi5p`jhPIG^vEExX#f6VE^dlpsA>>3Ii=jQv+1(gs zX=>6I9G{{RC!odN4}-u-|yMHWUHr_R(#ty)dGo46z>_dnU5 zMXSq#x9DMZboBPN}Tewf%L9MUgwqclE%2h50`Y|L^+lNB$$n3+aq?blLZ6!Va?!*kfIOor^S#6x0e^g9T zCr)&RsTEC8yXNsG&s43(EpbeEgXUszn}Hc)C;xh=R0l&v=CW1-^2qJ=4y6CYAq(jFZ3mBWa;tv;6=pD^(3S=N*hv znYdqy)^)9RQIoaWC%1oVclE^v%8jXGIy>l4_{8P;qgjg6F!j@tp{^-T;@VF61eX0`p%I zN@y>##WomVPPLK|$!KtMgoP_1cu%+RxLGpDh-nGBKzJQiP*Tcc#c+;D)KwXX1ZTBN zyswWw0BtvC^LSN}EC!;obcNJmALR)jg*5)OfoG4J7}EFsK=lh$Wz{pZWYxhk0{z^I zWeqbJM7SmFAl215OMyvh*sC2q8dpwGeuCcJWllYqSk&hl!mj_Ojg&-r`%cDvp*qQr z32vtQa-Qy?@8TE({uRtra_J15xJ#;o^1#yrb41rx#h3`MknCum1_HOk2$@!CQ@jJE z=k(M`GH^uiXEYC@44f$vs+|}CoG7u`zE;}gLY^$55ObS#a-i@o_1ffZAbZIGSw|Q ze`xN&65bMDxTQ-YJr#xHbFH*TZQMSK{LkD85bmvcw04r|R zQ`HW(El{P&UAyu}|92b9J>Y~hF@%e#Kb^ViOUqT#A%!14fOhGF*RMnVkiX~Wub-T~ z(WokujMpz61u~8!`0VmfZJh;EyjwJi?mbeB>9$Hy_H23MJ@C=~kfrwUU=1Qa?CL7K zkRj4g&AHx0aji{*r*Ej>vj%kH)f!7s!&Z!HyCEOzVYuHN)}XdG{aE>ML>`mYr+xp= zlm{~{t0}hC$B3DCh3)TUE1)|LFT!<)#^kf3gXPBFcD$wV_43#(kE7H+b+hH3$EEzh zgjo}jpCH@PEqd*t3b7zfEvLR0mT=8wd65hC<+5l{qL7O^H+1vt5HuLj$2!|>uE;IT zxd6zcNGMGf+`YVmKJ%PL8W(6!h1#1!$a1&qaK+}3e(&Or^EENFjn~Vx21|)k5AiObmQ&CxJ)|Hb`{)9YLL*!;~7-Bp8L@#(>VT+Dy zX-U%P8wwXXRMa-_oEzWnHNdI&j55v-rQ0d|3zdX*i^PPr`UVz?X{g;O^L}`9-9R+B zw()thAH-WUdBI^iQ}$4>Mz9H#fw;;mK^K?-e2MK&ExK#BNHA=ca~fBL3|!z$uCFgj zE+hg%$6%1!;&QKs!c9+mzKxfzXS8Je(xd*!B@st@?MddSXer+B>-4Wq@HQt3SfF~w=G z+pM^6=WthoeZqMPHZMOLxGVx{g$)yylE_EFH$o+7_w_|8@fKiWB5aGL&q%64I-m*l zm$%-y?!GnUmKA4yI;Tk7Tcx|U%z?#2B70l0XF_s)_ydAu}XSa zb$)>1D*g6qD<8e;3yb>qvJB(71gOMCK*yT@!<|;Wwg*u(L3eIHKk5V7&kJ07{7{v@On$l1M5ANrL01 z#DYS~5A(d&;M{^LCB-HahZ0NJ)5!f}2<9H!DP)EE^s<6JJHIk6O$U|tr6SW^s+60x z4QpsRz?Ns;Pp1E6IYGWoS`+mYI~`2H8pgFmeYFJ&t60%fRU0b-G=}ox*#Zj;db{A4 z0^|15j-~IFjtA3Bh!yL8gRq5#TIe%c2kY2p5Q}T2k~%#;qmOMo2jwpxd?d`?7w_d# za7@XxLtMw83&oZFkF+N(8zpRuZWpa5UtYL0f)_Oq&A@MSFNIP~(~q|k12f9dmGGdD z%u!q|2Q7^@bavL&4)X?m%vLstUqwMy36zlGVbxzD`<>Gcu0|5bF@~XfLkr}ikF)lG zJBv3Krd^UXHncA9$rd#VHC{8p!z!)De4#yIT!)=wt;{s{i!HCjZ7?;-<#vEe#TOmG zxO9oVRFN0CP;`Arin)}=E+e5{d^V8kR#jP1tkZC*8$8A1y|N4vCKLxiGP%VH#`JbB z@5s`5Dyl%pRkM<4%Re=uP%~e9wwN2G7ua%!L~(z)b?+wz3L3tuspiQDx-cghG4;-N zEagU(|7#StK^Hhq2PllK3N1-HQTg6iHG6G$k6DL_j!X_0LbO>r5783TPuR^*LPjjV z{mbR=Qcct@ zW`9$I?xg?Sj1i6oiuvszr)Q9^KEVfkhXCV)J3;GN;Ezd%_tQOt_Fc%hE+qEq5t$U0cl@@!R;o!oCAxv5R7jNy~| zq1uup;y~cASygVrW-CwUb{}jxDg&VO*`iuZky_bf%x0Sism+UCZmvOEA@^BqPJ0z> z^VO?#cPe;LK&{;l9dHz?n2(libnSFi+W{k=*mD%q@w9(JB0hs~%w!5`6-nQ7l}ptK z+*^mdZMt1HdXX318clPgM>XcqC~1I;8JszQ(WzYsq-&GhWU>a?&p^Q2jaH$jW4vlI zVdBz3XO;nZPwfQUZhT6D$Fzluy2g0eu5`@q$ z%+hmks4sW<>g)|*WFa)ezHz;W?o@n&caoRDzyTnv8^Z(&VOsO*sK$zDz+A0_ zHO8sFp+p!%*UF#&Ogf&jrS;#LBYP;!ZZ=cXxjdXRi`QKxnj09 zE6)dCU15l{adQp1GNz8M^Vt}LZB5Eni`nJUsVFo=|2PwB4|n!UAQccptTmAqdoa7t zmFj*X$)s$UwOEECQ?}EcyJwR8lWh0d>e?=j6lPR|SSpEw?{_&3<(!%R60}p=q zF@M#Eum2X_KKlOPJuVQqeo_1fR29?nFk@u z;a1dla2Zx*720ir9wNWbQo+j|iOF_Ewb)G5MBtd(<^ z(q)IBcYLOfQ`!fNmq+2h=u0ItuAda(aQ0)>d$N ziRH)6MZ&7LjC2a>8I`y%M#7#h@TM`7VM|b}Ng093URe2qKBlHXdw76nO4>5fC9GMe zqmfs?JEg5Cf%61Rcz4mot8tdPNf{m+n;F!F@>;r+d=tZYUK*E@>`;w{2~bv}VtwO{0aR zpDoBfDP^p8wi=I^AaN%F*oh#MSiU$RW+YgcN%`mFr zGy}n6!M6}~cfDd=VCS>G-|JQ~D@yLaR$IFdwlS2r-FDlm);xS599;dEsB}-bK#B0Q z?U-6al6N?C;Mbk^RH=hwkXEEtunxD>iJl);JwRQj%d`rcQ6PSEz7U4+O!wJRWL59l zS$f-J@CwhU#I{_}T?9oEv(y*S$HS~(e(U-&HwG0%J}<#_Tw8C4q@}FE`NgFkxxSkGR+ z#J}O~*9t|JpQa!3_rDaOX}Q-tMiU4;sxY0*jOU^R1V`#?+kIH1RH_V%=o_ZggIfQB zc(bBCuw;$kE^qmXK$g-c4d6DqdN2Y^*2Crla!a{ZFmi@NktgPHsU)?;wo@IHUKbM9 zm6R|%7}F!!qlJ%#R365x77Uv-`vOzr7KfA z1>1dX_t6mrs-+9@0IV<|2e_(va5qB7#R@M>-%_6Wo?mvEDm{Gh55 zfsiAgvsR0`*c#&DRJ}XumAS;3uU$tVGNkT zYKK>fI~__-wOxAZZ|7Ze?_TJ7cn8K2g7u-?2@YOB-9#X~bzBd<$R+Y(-*QuGvMxlZ zWrK#!AjEQqS5c`P(KVjE8<@I79OoC6S4rT%VA>33TvaH6@o-IPR?4>1_)>JzFZ zw-{;5a;8^pc4u5L!<0(42RLAYN&&u>P2ydOrB)rnIE`!r*Y*YFge9F?BwkT_NG4X{ z;baBMnt-axa>SAXPR%i>Wfj#zr{Zp$-4bT)nn~9YHoR1O88<;yTl=Gs{1rE;9$A)W z>9MH0Bb8>Rlb9Ow*dGHIJUh}@k#m&fMq3iOIT~(Pm{O@!F?60KcLB&}+ad{aOo|fG z8X|OO-Beb?eoiuz2{>t*0@Ny>?c4hhX+&;$pAxg!4$Iw3QqyQE31Y@YmtkzCFOV|E zh+#V9dl{6bl(Wa;Hm;K@XswjCpH3R*L6Io1NbB&ZdrXzT5rw+Fl%uYP3-`wX&t>*D z)U{Y}%;~_Db$noLq54O_@$+;-LDZOMgoK4B_5G))7EhaA`tg z?R|UDoeh%I14uG==g0&Lt$?TjV-9!5!{J{ldY%@esWoa7PZ-z=MM_Q`m)MYH1Rs@?!+e2$14gnoV}r;2O|#l!uLl;ux=xXIf)b@l#&pO~g=nBh<#JT0 zjiq*fuV2#@#uU$RSSC!L?6AZ_UNMxGxoGpuXgr;{+Le&bQ9zal+zM)`E{U_XTTG1NAnW91u`t9 zQJW0PvO~PsK@+H?HQm8&7@#T$<+AFOcLK(?c2Y{il6zlJ200l$>}5n#l~A|1<07|1Nidhw}~v~O=I1lyd; zIH^PxoqjQbeU@yaiyby&&w11v3liN%l`R`Ex-4#iuDSAZT$w%gV8ci##UZoltuC*t zbYUaVw+rW%!FOg0d44^{@B=*)`d+G5xqFM3TYRZ0U32rH+!N+&8X5AbwM>dlSgljXmuV_^LVL*pjnX%^ z=F|-vEU;93lioV8i~`?)Q77KK{l;R z%A_-pE8p=f#fiz@DOkL<7`V&p$;5ynjWt<`&0hl*8CTMOd65VYSNp6Hbb(ez;iJt$ z`I3X$_eh!UPU3*exDJgJd08bYzsmpdKZgIT2R3l~oxvugzk!9;4+t#bFS(TJ3;g{* z@MGY?`Pq+Ozo6*axB1ae-@bnRHH2=y{r(^GBOl7oW;*!r_3PKKgFR{ag&)2CLVoY} zKed6}QTX=q8369}Gyu%fG*=eZcX{cK+}2cC!aT?$OqW!-cf0|OM=><3<9G60vo86T}}ZJ%^RDMI5i}tq%|Us z5r&Z~cKHR$2iH>qG@fFGMc`BF9qQJE(+~{IUlJ+-cj^h>2z}0I@4~*6T#ZQ&M$`p{ z1x{$$e4T{lTJC>TGDpIC&%6YbLa#EPa)g5b4J!MbbQ$J34Dg#q{?TI0R5LkEnmVV* z8~~pkAnMYC>GvqbxKvlRFB{FAW|aCf2R_RHTN_U6MkzWZR=Qk0lxg63wr`Hb#wzSR z@zrEl7#iPw&k znv{;D(hRVRQ)Gvvuq2(ft-ImB@Ic*caMe9U#q)8|HQL+>w3_QcsnTXh=MB(k|23Vu zHV-tG>!3~m#dgu2gZN1FF%-bYafHY~tjYVA#!4RBA-blP^*MD-x^lEPCE`n*%^2%( zmqt=@?b#31s`X@=w6;8p3rtSnOlC8@iv2_l$(6)BNoq2=51mewU`jT`Ae}cu) zPbCGV5v-w}XIyJR@Lw|aKa+&BbSn~4V~b?0!0y0bOJM?+qpW6QeO#_fnpQ`4^J#r7 z_gzP>Cafb@q_NgkR@l8;idvyQ1I5pCU8g9Y88rgDH##p?3hLE$~W zbG^c{IGmdvlp*ddFpM^$lOj}-1$Fx2WtE8f!1lvJro={z)O#h-7@lAGEWnOU9$au? z&(>l|H_)_R1#K-(w=A6-?GJ*@Nbv19h%S~Dj+cW{hU-0s@k;Se^g8-Mo&V6GJg_)W z-Mr73+@eHEEN;2~pox(_#FCUtxIju;y$cQ|5$OdkrZeLm z#u8UmcEL6zKAOfNclaT&xN`AtoSGpo+Gq@xLUQ9*v3LOPtuxDrG{aNFd>Q47)Vp9O zOY%B0O~e3gh!eNBk2ZxJBkZf?!|qPg(hBSu2~iW$AzegY>=%^d<9jyk*g;39s1LAQ zo+P065wH~E>vYOFNi>H9L66ell-rk{#8RBbbo8ug*tm&VRw%cn1HHnLv?btocH`{w z@aQA$?~fVTE#I=K=)OZju%N zl4B=O!KmGD;iv*nAzRI@B_);QsW-$Ygeya_yfADyYxNPaAeyGk#*g_BN76LI(=C7g zNzHN%o6rSGi=?=q#W2=XU0kWvFSjdMED0N9wj1+7F9tbz7Mm1>+$ z9D{)cFcc+ujWF}*Jdk6N&V@}m>=0?fP$~46vV(4wJn3%I9glrY6HwMP#(OC%XkKkf zW@9LpHv8~}30wl10OjH6y7SO*-a3Fm(vn9+4Ffb%HwpDq(}#f!Ihf4O7dSg%9@$@t zHq6j_v3T~QABDd?gRnLRc5puW6-~9idVSdXe<>mR{awHI9)$Y+9%d>T3jUF!zcc7t z{{7Qm8hCvM4&?ify?*%m@el9@pGpVx)pws}H+!H83}^l`tb~5{_6bb7zL^{ndu-u) zy&S0rX2Yhy8Ykf9x+S(U5Rlo*l+y6{?>jIP=G(+(_x%-N`FPwWe$3NNo(5AyAaB)e)%YxT*~mA%duz zcZjy2T*!4~x1yU#V0IHku?S zX1b126t#K)@vW^Fpg*M!0C~UI@K)8iUO9I#Xd7+BRsmp}u&5su1c7!SOSwoh0CQeK zW2ZcBrsm@17GU?{=El5b_HD$q6nORiW~N2uNBv*@4vLXabB<6S;wdc?QkQ zinFawRKVYk;BR0zy4`0{wy_xQksX*uC?AWYpk!V7f;{j%^< zuov$v$hpVbHTTK5b#AyY61PJkdPCnm6kVMuA0vX(!?FqvwcD)?YLj%?@s!D_7t(WM zuZ}Ja1jWPJGa2Iwnjf(0E%!OtmjmZTHS_~ zT!kSq41ngDbSgr@>WXDaB@HMQwX!Dxn(yfCn?l97VNwYLB*cRSM%C%HZy69K_A{Px z^`P^tIvuo%EB66DPAYvS>CY`d%Hc+aU>VVr%il$PPI(sZ>@cIl2V^*SCCSTYD|blk zQ_`$k_8OX=OmV0mBD{B+T^)Ezl{lNAEenjc!NJuA(0!HdKS^)-$NU&OnSYcfO8-5R z*6&`wA|LnDw_gS>cs_=Gn{{+QfBob4|M(#K{QXZaFNK@Qz5pmu=!U=M7T{h;m>~M; zE>|*FIYTxx;$+|k->xMc>Wvd-*70i9bjYQwiZb+5OJkBWwzyt1-h(ThbWpUe=w4v= zBpG$yc8K%2OiWUJxq)>LlE))}NtcK6XXO(tkZ#ZjgWYd_Xbv51$5*JMN(Lif4N`}c zA6qSFtRv8o?#2X?R0Y8>!pS~sjD%XvU2dzA2$!Pn_&SN^e%e5b;ODa#%T*lB>W@n=6-aJJdX*K~F%IZDg&(BwmGDVa1 z9Nn62Njkvf-y5A`bF^)biJ=25t6sRbIRKQO4apXP_XHtV3W5Zt$l!F*%v>@+fbt>3 z=)Eg8N&}!<9pir`UHc&2*MW=Q27!(0VRP{#;S1W=C-_710XP0QwES_6sy=0?wX56@ z#GYSaR8tcb2OPXLTsOJ`Nz6lU8c)1coHf}|g(qq$#{R|RAl4{hxIV2G>V%EW?g(sX z=ip^q+;7g3PwXmLF)aIuN1Ac6z!ExD}LxvS6pO?Fl#&@8EiQwfTK4I(ARNnd)$ z0MQ$z66Fk->Utn?uh24kH9t5>cO(z(y@YGp6~HmI*&{YIKD#L@tbbMQ%aRgIC@(+x z$xp&h{==Dc9;Bb&7vKE)?du9<%2j`<-apETj=cAv${ed58=lqA9u3(KS zkx)+#RCoC=e|`?f@$B7}b2_tdT0*}hDSBrUbvqf9>gOhX{A?lemURW~cmgzQCB_pY z1yfa%YuW(Udw8Ze&!RsV&d%=ZW0186?A8YK>k}oPZ%PTJRa`&iVV0djE2dk4Ww^=P z00(olZ{AtmeR`i;F1a9Q<{HS;0O@2&Z!clEvw8kpb|x3iohOvvoDM?qut1uzr~FW| zBCc8aQ$Thg<`2G(Yq6^&XGgr?8sF^_qbRRdg;J8=jxptfJrMv86s1T2T=vCH`XzFR zRpSJ56}Td;I|2y6`zEOf)aS+eD`Y%L5tg>vLtf^&)ghuSJ%P`*1P(nkly&k^J1G-) zp5j?pPKw{AMf5$xD4^|YWf7Kf^cRBM8ihTxh~tRv*}(^JsoO5Yq0qE5%nb>?UhSjX z3&wvFV-bXLA&u6}fT8r3kq+13!8REeS2kZuYPu$GOVvvUvtBO{{ozUqMUGu6PZ>%# zNz##b38*DESp!NNgQ>1A&bc%=S+zX(CrdEsvMo96(64Mc>cgLNaypt?wF0fxkl&b~ ztocl3O}wx4gI4#L;Kkf^Va<4jYu{a2aW;z5tclLBkc7PvCQ`$r7BGrMUQUMly(~I) zOr(Tnwjhn5+yo9y>LMF4;9gly&MH7-J33wIg&;a?@HNcqAO!oc&9D7a6R+<40Pd8s z>s@rGisg=&V~tG!t2Po;EuR`46I()Q#gBaO*1@No(6nNgCJ5P}@!XLgL(rGQ{&6fJ zZA(&+3Ec<4yjo7>H7qj+4p{WmW-CyGu&$;ISN1mwea{<{{J>7A1nip(vaG0B$JSx_ z%PAoIAW@g;huTz!0i&b*Gs={u?%esjs3k;0J^-1Djv+Gj`&{PTsRk`7QFlUkHMD96J?QtVohpm@LE^>rrVt7HAI5;8c^kb+ zRjONGs;gC{?p9T+8_1LOzr4P+*S8p_Gy?1{^huH#nHj;$UbpWe@fDb5Y=C!QM*|%~ zw?2znsqqN|#kiOuh+Ej8U#0lx7JiCZuo;WBeVc%Q(^^q%aV_qF0Nhm`UG${LQG?h6&n5{M$h+)^Qy(RRZzB{y7&tnWg_MOqCb@WI^Au=4 z+NO$t8QEqFk4I0`ng*Q}vYLvYTwGLBZY2zt9@<36$AViXO~~Y}gEobJIZf(t%J!H< zoY|v8P)P|+l2C|p&NIa)jiD(b<1&a_1fLM0@UX_6~j;^C6W;EdCTL)Dxz?8D2=ymK| zQk2?u38O?CX2GIhxl=5%kr%CW3y`oaZ`6vGvvQ$ocxi{EGrhP__*Tl}gjPMJvtqw{ zu~YBX!Ki1Qy0lW~0C`l>fm|w`DvM_E%+@Mb*gcID>ZtmTGvI2RP$R}+B(@^V*%63V z5#3Rx@WL>MsP23pYS>i3pv)*)32s9>KRQiRifbtDg#u!2I)S=-h}n=N5zs9=60Lw; zE3Po_!cd-Mh!X0D)|KnPlZ`JYbul0gLZj8BF3A$23_D+jrBUaBkva*BWFDp{I-{^& zJ-3x#2IXKfRHamdOE2#=o2Vs8sZ>3PqkIXdAh70bfIk)>z1buGcN8Esw8Srf$k%~sg_5E2f;hg9T?$Hu16 z*1ZZT5Q3Qj5=Y}u7779))cgpJKlG%>SZ)aqI-i4k4Lj}lvWF-2&m}j#!8fq|Ng>qM zUyKn0nF5RIKr7WWgWaoMSv(Rf*Z~9>X_DH(wDL4VeG-)r?!~R&s5gxTf?(z|{AK+zrgr){SYZi-PRO!5pvfmIS6mxCfL73#gnj%{J648MJ# zq$^w>f+fIY^jVD5LG2c5j&!OB6Q?*^ErSkFb%K5uM}a*Cb#jAwU+%y(!}2pYU=LHy zZgzQstCE#Y*FHY!Cg8^{2yKhn70d%IYdSbPk8I?fuK@hMBRXP(CYA-JcEmh=I$D!D z2&w>x;SF_xT9X>W&9l#kmMQz&XsfZY4xc<9k8L1~TYd*iTfhLH)@7*xiLHeqgTqxi zF!zfIb01jUmxOeyue4dpb=2Sba- zmoq-F%MryFJeA!*?4nf1_Cm~G3Fp9w{@H&RG9)ws0M?^hCBkk4G-jW8pAvNI6XVu}=ooWz;Dj z6uRZDZunAIL^X^dsBjFC2!_syhenp9+E&UTF9Q=If7m|_|LcFq(dUcs_WkMoXHew+ zy}|mvMqK+f$g27UW2=7*KYU~n>V;y!FLIac#x_-#yL;O$AXWUxO&d{pVS}&g(2)gk zX~f;!P4OgmLu38AZTPX*O{mI+b1ESH7eYEf{GGcj$3r28;s(f#O}^x%S2WvJRku43 z5a91;#KR$-y@Z()DXF{+em4-|3_Iv)Vn~@u&n>tFKBk zU$xq{5fko7Ssh4n(10N;$D!L-^p*1PKhOY^3);-d4Sgj{+O#FZ-e6h_s|KJKwM27d z+XOUErLJrkfLpv#3K+W&X)TzCq%{~%9{PFP$aEa}azL+jbnoFjTIYR)_R3{DV+veN#>vQ zdhq?M3oFk`Wl;r8`scbsYNlj2qimkfY#3#zI)2>FL(}gJeof@*Z9wB9rQwW3Coie} z33e@MbvQy`f_4VP!;`9Wk?~n{GSETPRlVC_MPuP28?h!}*eSjTW2&*H!~)m*=c1wR zf(OA`C9iCAa1v;>sj@R9U;$8sfg5@i2X1e486$Wrma0&>(aoi*=nh(;c25WXRN_Jp zuhjV#T{;1}%%}2cAS6j`MFoW|TP~zSf?jPJR<|xI_b|#rP`E``AYZe}k9QS7p`X$93vlRBI|sQw6(keXEQ%;TboJmXvYZr% zB58Fz0DdKUfG(F>``&&Q-hcYTN3Wl~|MKm7b}#?_?eic0I^-{>U1}C~ zpn(_6X0Jzx0sbE)(Nk1>G9|usvz+NTB-7QrNmhXzgCn(@>TDX)Y$^}KZ4Y2z!axoM-USkT5Vlo= zZNTa5cnk79qYFk-vwUd7KuY3&4$cRcs9`Xw1+tX(l49oL45?#y8L{Mr&oSU~o(#$| zv@cSnoiS}RFhQfNAx3xPy~CyaO!gcKPRQ3S8P9s=J~Y6MKXsiomj{tVSF)t$IP zS^ajcerOx@f(GRagmEp~YLB6+w@aWS+?)q=rkWWFECC|y5C@l3pB1#^yNeXjm{?il z#j^V(8G+8STX1jlv&(?0n5BHB*~1*!+1IPa0Eh&`ZvXmd!Pgjy-pQ^V)S094hUAdZ zu|}1YMMDy|iERGrhAy1Klc*_+?mA;5;1E(!?WlpsgU2imP#wzIwwv4&esLuBR`Bsf z!A!LZZK}Y!03{elbaHEWSe+d?3i%5T8WKz7S2v2Ni3)hByB8ZPn>zv2aVI0ovxZIQnPYJ;r7c2$3b@A&S2XaLUe`1)-=`hNw3CO#sZh^@UCD)@O@3-R7{ z&qFUnC_KL24!(ygeU>m@83@<_y8l>pu%zXCWm6|`C_T(1*shAW^AVW}L*$(ZU&`dp zZW&)u+~`|}teJQC3iUFy#BEPyuxYfhs=9m4n9{@02%^Vnw0Htq_}$I2vmAzstaj(^ zs6OVjs6VdlsO20dWUVTw&asRYSc_ZZ+NT|?6N=ho%G#tU6I%Mf2{f=ly!YD*G@W>dj zY|#0tz0+X;B6=S++-M|3 z)e1+Kb##}F8ADWu(n;8q!o_-ydP_(tbJ1oYYD2T zxt3>!H@^~-*EuAyMVoDOse1s_7T!6nj-y!1xw;TEB287QE$$HnQf6gXj;Y$o12ybe zZVXQF{*>ozTva4Qpfx^Ly9Ap0$ci9>gw*cPDT4medQv#06p#Rc6rF^d zdmwqOlsEXKXa^d1xz!)wK*}A1vQXp+S?!HT9nzc%cvG(^;JQ@`t%W!&xyV_8i}u}^ zTrkEK;|{Y_nCwt~y#D|P(xcHP%PGUdZ&*G3hF_n8$Lr6-ALm`ps~|k|pYoxPrQrG0 zrdmI-C<0!TZYs+P*xl1zThr)TJLjrRC@V=Tzeg7o<6Me;6jJ0YN6Qd^ zt1E@=a2sqyVvL0(MK;F21bO%Yq3|-NC)P`D-rZq&EtIO~wt!rmhX;8lPqUO(p~&tW z1-l0+ijS8M6W@YP=X!<_oh8}$X#<{JGHl+ksC?X*uK{BUSgpGkJ2M;`2B6;~?chvy`aM)`yj%$AOZv2n46a=kJkb0;&N(T704`gOL{M@j)(E!5aP$l^8Mv@bpP;EBo!xTaff+k{}Z$N`wmrMtuiJ z^FdQDrFt5HBuoTnOcWHtT)dYcl(aC}oIs`AziM~$!Ud&Tjb+?|(h6fHN~!`+h}NKl z%dwz5D%TWssVbx-Dmak*$xp(MYMb0C{G%WJFW{dXjXsk|_WB9PzhAxmA-w=_E#35w%TED~rL>Wr4?L*MF!_oyS*R z9jxi9PQ$FPpofCF1zUZRZAImXlK>WbRX#ecxswM&DxEgBk>cSJrzFRfH*b+g9ycui zjxt!LBj7J%5e_020uIAc_YziuHM(Is?7orw_E{Qyrm28bYFM2uf})5yB2>0YvoKin zD=fJoE)E?C@{Hl6OBIZ;L@Nm9l))KjcPu(V)3Mxs0^E<))%0Y@IH8qgQLD#9Lp`0X z5tT(pfZyx)XLIkRKm!A3*v<*Ch&UJY(Kwn_3fBLErij~$*iwS2@`0LNnn(58SP8+? z`A(W`NS)*cfLV#;rX|&L6cw;i*+6m^DQ!XCq$)>+AvY~%5rG0pUSlS7~Wu6q^DrI}|c#!TTr9pA%-waW^TFK-(iaUOU^Een7Mi0BaoW@~1 zDvpd|%u!Tsh|yN{KB>5ug;(T0b5viCpmH3lJx?SG8tOJJ#vlV~4t;SBPWONkP2M;g zIUJ~wYFpW(xP)s@`B->?3{(H)5Z#S8;6G+yM377!|h&BDGpfnx4(SZTq3%7c<#w7g$d#6K92l%l*b48ZGq$k8|MBGB*}_Yxfpzw|p6<`VJ7d<38RChF+}5c+PLh zspsH40qU;m?lWb|3mAWz;*$#g(9==wnB+NGHhMxd1gkoGj^^4f%}VZ)d-CQ5TPPY9 zvkHEeKhoQs4obz^x$p(_ie`ckCHc`et?CXI5s~{9Xh0U{v#YWJIU@N~GpEf30Bdse_Nuu?nb86iHq3>`ySzSdXMPT|;rrP5R{ac$lFZ_7JKV z#T{QHR1_{4B<~zFZ>lnZlH>K;2q;yc2+N>$mL9VtktyWXx)dF^Wi#lVmtRm}#o%ON z&|js)qZ~B0kao&?^r?C>t?zXLn}bIOWh2yW!K6$sKx`Vz_%5X#M|7CaK?~d9jllL( z7*_339X}i+9Lla3r=gI2F*@wn2hD_I@ne6nhd<2@h=sZ8H=5lff#_?oEGG966WfdK{{_HzYA$0Xpo)qA&M3tzK@Z;XiK3dZw%S8NVjd1~A+_!3EY7!~c z&8}7@*?beTEd`Zk(=udQ=|a9rbUcU|U z<OAnSUVKfL3gzw>m%guEqA%6OeJGQsVnsO#O;T1E`3`vULRn7 z!+XHff@o`)Bg$=BS|q$e4fYmmTMHx#K*cyb-qDyH{Jkrz5pPl}Y80~GX3~;kg_NRBdo*xjSHfbfz*#xF<}HR5$4_2xhO6M&lbxhexA`*oQda8 zpz>H)yvVyd-II z;wm0fm(>jjnNA>pa-&s%a@9ap zIJMwNN-YQsc6#cq+GcaW5s?ha$42z>yRcC$J1UKhC@I@jU z(N?hHh(n2oU~Ofyg$26BFmAoQ%;e-W}+$saNJescu>@59^Il%4-A^&X$}jDPv|HIss`os#z% z!}@Q-YyMri0(CPVj6vn>QV8UJ=F^x9P0EMJI=&;PYvZn?RVySLy^2I<|pCy)sf?AO5TbowZV%!)@$KI#qNCxL6G&usyY3XB&(QdcX8L1rL*=84TwO#GhQX zk`h;?>iw-wtqa?1=eG}Ii+@;xj!;@3PS9#Aij~kwi7qDHpw;P~iE-12H1t`hVdAnmJc6rHf_5LDOO#RB~`rC?FuF@ z?FL#5oDHd7toJ)e0WNFT#_Fm}uzPp);U)4mz}>TZ@dpHQDUBCS9vZ-HM`bElhoZ@J zwHB6K+RujA=W=S)q9VTniFhIL^yX>_(B0w!tp%)0q7=2;XaM&i3;7AX82Lo@@>p*b zVa4pbmV^g^J><-V_;O76H5M)^g_Zg<>qZd7*?O&!Bg);rOAM$;QtQzihxn8Sp(i^{ zm@*n-NovInNVKbaYc0IrVW$Y>!A5WkhAwl05dLnLPs>ON(?#bkJ8)$nt7zN+=sU3a z38w_7sY%2$NTuFO?$I@dhy01wGu%Q#vpp?Epbvm9|Gx{bKV?;@?6lvhto@Jv^;i5` zFJK+{t3S)X+S;C=Wq+Yj~_Tte=b}zYUa_6VJEGiY^4qy_>uU<~K zzTond;gf0`D3_KBB{*e!cY?4uo$fa-@M{PB@3B2IWJ7}%^ECJ`B9|-(BVW~?uTpU- zrO9aQKsajI;Ft1iO2CYe=-fholvA{Io1g4PwGjz(B8w5)|&ck067w=YE2!GOewEE5%TXzP^xfBg6~3m_7kXgFLSQSqUM5qM!L%V7KO98dRcviqmq~04GOPD18F# zy-KAQzLx7mCUt~`tm}q;0PrEf4@#xzl(Mmci%rkG@v8hOb6Qn&?ri*bgEFo&5$v z@*x(|q_X3DALhUz=f<-NM{zxan0z3B@(hvUvLA{Chk}UU7ZPk$h zece;Ibapjrc`43WjV7HE&1WjUmmwM9Ps)J{EJoUR>*j_KjT^Bem84zglvYQtK?fup zf*NwSwT;pNvLJlz+;26D((LORch(VM+6-Y1F%c3L;m$j7ZY0Yy8+J8OHCS8+?X6*z z^^hqGtgb_w0@DE&l=`s8zXj(?GpwH^qi^Q~H$S;;2svMY3Ry`L8)=_7?4jPM>wqe9 z-5{kQ$tNYbRk0zsXul45ZAC*%cRWy%04P`q0Ys+c`hWgMmcjq&-#y|1uFQEp9^U+}cO+$YTOo%}5X)E@do}A&G~%Jtg9k+~^nVXHlFO4P*?3=Ifxwk{?67=~>D={h z3*RA0S5adRP%VSTD8WH$ZOHmlz6zC0a1NN<9a%z|(Mo4)oL}K8L!|UTH_9C-Nr4q3 z!=O~3$d(h3VTUm~_7<{&bM%r>+{av%EH9lk&2+v!Sj?(-*|}4~R~`3QptQN`f8EgA zn>NNU5bhUM=mpNQK3!qJEVlq8sNjcnEsAOK2HW*Wb}k$3buJQ%3Y=JoklWvr^byJY z+;RA?Wu2>ZWxzNee0)!e0QT#~_>xqniQlc^AFF*I5)C>?vKK1z!Je1|gL7bfP_RUf zlTfxrzutDY0SV%{tDe}`h*nk0GDo61ltQWl^}&iLlF5LPAMsJmrb?D{6IOcvM2$Bo za=g09kaosgbSKo>F)!8mFgWYm_1G?xTXy4|R0q=npNTGH(}YC?&`Vmh07{=@><+XQ zBXQbFa4U!gs+9+}KJAcghbf>`W1w$KJ+fGzC2O(-1!LHO8KpPsL2o>vCrE~29V-ke zMi&p3H5ouDSOgqBytLD*EDbtI>p%rqq{gaTl%?uPJFPnS@wi^5>iHHgj_Qm+>>R$u zl~S$s%b@D*RWWti_OYa<1nI}ye(CB-oa_w~dZ=Yr?KB&Z>+wuKKpg<92!2rnDOvj)(0iSVuclL{J78 zFwktmKKmb8jQs=ku0H&Z^}-w6FM#9`zwu9S7TFZXcM=q_)z*b&nM zg=(ezZG5eQ9;B>Y_=+X0yRuflA*En+M`>0g#u<$uoh4utXsLM^M{6D30)=AY`Z+%u zU1eFr*sWR<{E?(cn}RAnV^z=D=h~^|(IF;@9BtW7xj-Wv&qxLq-=)NmCqoBpJFzMj z>AUcvT9J@St??2l`{eH}Q7Le`B<;j+LQ4@UVN4Fj@niz5=o8x_tI%F|djU<^QUdrR zWQAaI6^bczEFAlcsOiR|c65id1yBW}aLZleNM%HCf4%nB3#ltPf4lAq+dPzbkt~er zgUEb*j%Rs}qtua`HenlV>4rpmZ)d31BSfPkd9&|a3w^>sWOC}@1d3rx4m`XNkNg6t zC(yZVu#kW_w1TvkEWti&YWv{gnec%zhMX)u@_)$!rq1O_B?Z8PUz8>FOE$J+v|Z(l z?qYnPIG!YpTe;#4D#l<9N=)E@isZ>u=NKOuNa_ps;G*knQ?^2@V*rcaB_WqrNTZP# zkGhjA$Ey;I4K`V*$0ope_!knpqlD=NT06V7%Pwk0X&|Z#d}`0iDdZ*S)@4x6+3e$S zIRu5`aRWt!VIF1kY}*K zHg|5_0~r*s+1<0O4nAMh*%IyvlO=HqTRqDnqljzUPYTetAJe>;kqu_|iRjcCgo9xt zeguLb7Q!GCOYLJ=m$*#H{QjfYpVFcM(5O*e(Jl6?QsdK95BzBdMXK+8fT}tgj_enP z8!=Sn0$Q~Nr7c`k0&-I+#WDdJG_zH>9!LaKu;_+DOM*u*-%zfbyo#d+jI9h>u9X+> zE0rzJjTb0Cs+*GoPoTSyH!(Pk=%W&|EhjvhhMp8W!wF^5%=WF^&yX|5C9$Q}Lds{1 zF+V?!{!@7UL*A2W6oo339X~yRG!S5B`FF4X!g15%L1()M-~p1ozT|nowV@eIT8UG{ zVyJ{iQw-ShIU00t(g6QS`cFx+FR#g_Ul5`uARY8g32_q53aVkj?}GCts3W-L@r+=9 zk$aCIj#hI9$sJffDuUyx;B)%CpyAr}ETGq7e7bX&he6MlT`uOljjRvvu|8k`a>WK` z<}cR-4kGo47sY+D;8e6Wi?T%}(+U?;kbN}LR5@#o6-!6?t?86ND$M)HJ*?>L)l5RZ7H5o!Wij>mp~8-U-aTxZ;K4Gz zsIJap5^bI6L6&QFY7xuxxEms5kQ{5QLHp#CJR(rn?Fq1kJq!>z zlx(1IG;uATWN;Vty7NXjA}P_9aV~e2X8?0g#c22qJY2H}$YmLF1&|NmmOX44wUH3! zjo);<;II{mWZtlypsw?2F5 zTnbY~F1yBak`fIKv?pCg6#k#eGPFI&(j_YHVU)K-s)xb;a+ospeD_dX#~KX4rR`=o z103Z!L~$Y3VIAIiS93JvJn0Ofh{Uj60Zd&-UfB>d;hF#qH5?`#hD4IDkcV#xkEzk29?(mHuUbshozx9lQ+`({JHZwxE? ztJm*yZOU%+6AI-kVo$!Jv*<^!-`MJT2i93t*ITK65&W_VMgAtjjJ1&N-r3J3C0YP9 zW>ZJTa7!#+ZpG5|@rDP>UQ&!|sTIcN@U|)5nQiN)o$YN@`MW?MyX*(xNM)5i%29=p zt`OAh)d)_-nDVz~pJ&62#fiC4{-Gj^!x^*s3hQX7ei7@6lq4>cWr61Bf)pbYk4gfQ zmsMd0i)y?gOPIixie_}c-j3{59HoO!aU}_2gaQ1#I?frI(PL&RV(fUZ~Bz-phJSe#%#bv`OsgM zMf?IFrwcMde$57ibMlK`q{#ys=v z3kkfFOVMc%20jKeM`ynpNnWKbWe0YFg?75~ch#P)*iXG`20HE?RX@>}QZXct)V(Qo zTw!KO;(W@2n0EbX< zbXM4ts^`$n2%ki5(w$NO6FYBJFd5=!>44)eumnhl6zkBd$vuGSb-o{k}QCKaU~ihN&rFAwF&jW6#xr+`n- z?5=i+XQC(}Q7Mo9gp?>B`}ZODiFN0Xw152e)sMrzROw&-NCxfOAO7n2{x{&3eAsyo zZ@ROoG?Wc}AELUylM`);?9T$BxvP+DhIbryZ4kMO`&T zh{qQT*`*S6w-F_ndb|#YP1mAxCKtZNZru^-v0#mn&v%Q;&&bCxkhPzM6$`^E=o|3l z!QIfIAB@Ek&Ox$`Y_vGdJBsIRRFj1UoQoG=n$UHnGX9(;oo5AB*derh--Ua20Dc!1 z3%%-Lghh4Yz7(Fc`o6ms@038xfFo|+1+wVSS(7W14%#koNci)UBsY?3*=jg}&+NE2 zSbpl;lLKeBJCY~gd|4}a1v0<`ru2;IAJYx~Wu)E%z=*ac8T+%O%@>z@lo<4A9n2&v zw28Gr^_Rd?sV2h))%S-xvg*vFqeJ1D% zTFwhA0ApJm*ffYJ<2s$160AwUoeq{3^gCtMj;Hgc%%@{|0gr_Z7_`Y0Y&{z$`k#VJ(|k~^eq+N-DLjww zeg(N`+c>@d+3VMDzj^=jw_o7sFXTsmpI`ZDc>Q|>reBl7_>cf%4;ReBFI13yk)ULQ z+JI+}r3<>os3N{QT6y;{wMOf=>`>KR<%!km z8#OmexE?Oix7er2?|7X}O6jCwMSgZ{Si7PF(-Bn*_^Qg(a?q&73+V7kyQ2r^Z%Ry- zvzpEV;zC~DHw{843mexqga6N5z_#|f5YoD=kR8yc(q7d`SvjGTuD{;mi3CuK8_}nx zleQaX)s;DTgaCZY&u(j!+EJE<+N~WFy##um$_?g26JWxISdw6mT5ddz8yzKB{*RYn z5vOx|`!T+(auS;(kCw;h$#bau5GXmKzZ>OCAdq0#(JIfI31mtZok5m5YaQk{Y9wwqZogHS2!rgu zdQqC^cC2b8@`2c9kp{&rM6VL}98lIvBv|!6;=EPvY*e;4^%+bKlaeB#;tA^^a+y^v zdJrH;mb-4F3Ncylx>t(FN!eaKrIN3$+^`Uim%E95SqNp5&M|<8P^HpEceB@#&C9x2 zA{8C&d4Ss^3)tll?UXbsG^vI-&9lz0EZ%$<4aQ#FDjXvWc?n*!L$Ag{XO1F>ruH|X zSaXz;HyRRc+HMu45|ucHRTI3X^FC@2un|EXvYQ0SjD3|#X((l?QnlsPob@E zff2)rg_

B0o?DtF!VT!YjrDC^S2?RV?P>**rUM?tSk)et zMFAb(!zQv+s5=>il;$rbcShA_T?iz1b7B)$XCoFoujmv@X$Ba%-@E$Px9V>d;4in*8ShS{{H>n=>D-AUVp_` zeMY6X@Zn4NijQ7DXTy63W5Dju9UWD3D}vq|@>^x%=LSfh#@Zpln)@Ej4O4(iD{)wN z*eTaP@;SP7;lbNqw#(Bk%z1B3Eh#j;W@X*7 zx(*M5e?j@vVF6f6MmBEOH;!Y|(EYC)!Kx#WH$%!xVs5zvP z1|iYeC6R^Vcvl;@im16!(b^a$Tet%lzKBkGpSgr(>X~gy48^PzAqqO>z?4mkK`{}w zx;%1r;7@T3t580(6jW6jZ-r;n?$U81Qv3zXlt*j5ELE%HoChqEGe)BeoQqOmyy@Wd zJH#8TgzZQ$K@%z8db!*D>RJ0H=MIkGN-8gDO zN(y*~DHIy?$W98*MU|e}Ff6z5r<8TNs2R^%m+z9TN=KiZh-BvcfnjLytHZ4r&plBP z!0Owx(nNQ)Y;?2=2~sWH(m4zVnhiSG8zgNoGlsWFv^C%i>4pUjQQ+`>6*z}!%@0g` z#49{C2KlXq8+ws@-Ws8!t3ZL1AFCGRdD7;0f@?QG#u{RcHuTL-s=k?(_<*+!hiN?2 zNMSNzI|o*$8Y!Ka74QeBjl!PLIV>tYnz!Y4T2AG5JtQp4wkT9-06q!eICT|V70@+4 ze9cFkLiQ4i3)+y4Y@i=Gklg~!W2XkrNTgI@lzxyHfzfybV{kAVUbex_$*pdMu?^*7J z`?pS}v<;GqWzDNx&yAqfps5Z!ge`0}X$_=)(f!$BMw)k7Ucc%Xu2I+@M}s@Y=nW;a zBqzIdH*`!k3nmbNTH!3=jzUGXKL^_d71bzT=0a8A^1=QVC}9Mh(HWX2_6x3^(i$Z* zr!ld0T7Q@{&1{9md5PHv1_7R!4}@t0hkpfPvhWLm+wS(mJxbJ3+I59&D$_3 z^0n(%CmieCzm-Ii5N~A*GZB@Grp~HInb{N%MIFf>feM3zjqXAH5p6Hr@7zM=nY0N+ zP68wxp1NOC58@atW;-d9!bYvysSC_erxqrRu+BDo@}&K_i~G>_KEFv1cF}YQX{aU` zBqYlbnK(22ACVR5%fYbSdiWrJ7rylsIGmi%$Btski<*) zBqm2$^<|o=Fay8%RY#C^b3$pRAw&*9*J3%fDmk}UGS+tT7f;Zmgql~gK~T^`lj^Oq3PAOuVkdNikrmgrN+*vtmg~cqdKVsr7Npd3;bL~_ zkkOEg)`~C;d)93Lzm!+H%zWs)EzeoW!n}-m-T<^M;9qHT&7@*2L9~&Snnf!n%hODh z35q~J(~3Yi6%agFPK6ISkDjFt){bMpdi&H#9RS3B8(x2hp5#~I?PsXleiPpR?b~Ok zhx{+#AN|P}bY>*|os3g^-y{W%WMgXIM!Ozrg@;0RCSqpAm@=5CS+GSWtA~!;I(L3! zz}rEp;$Az;IRr@>arTi6){L_3v?~ddlG6(Q7Af*D0gxDFP9+?AG4WA~m9FSk`%Drd zeE7AZZAZW=>I4Ik^dAc8E!W8PQem!gRr!Y$d}0mDN-;GL1|!T?*vc%CcS$HgX9La2 zzH89DlZP3)oqfl)w*+`R6$3>T*uE}geJ~Q3t%gf0piw5E!pwg7n(JtgNC zUNaQ6_hnty+Kbe&XRt~x$+DhHE$NbZiKD3mMK4=_)hJQEOdUj>LvvEU*f5`LL?chz zd6gx&cAV!zBA%SM$?;YoJKO=rbA=OFCOi92QGJwkUe|C)f0h1OFn%)l%{e)5|6Dwx zw>8fadbX}tzL6bJuEZP<9YU>8Y*nqJp81BtC6Y-QG-6kc6;vWp@1b=;xWyP%1Vv|Z z$3u(AZLo#udP&f#avXMqkY~_%(m`tGAB>)w^KB@FpeDKS=5Hn)`Rz3Wy?HJ2*C& z=b>>wvn>XzBwLMN&yc?T8;z!>m9<@(Cvc7PU{stztnlcl)BOt$R4H1aSZpwJz!+ zZcVN1aSorO6@CpaJq+?5i1H|LSc`%AFTqWbk>uHLmreh!XQvdQodtNN-13Oh9rrg30guaTauB&pFxUruv!lji1GsJ zz>U$hp^Vrb+>QY%YR(rljD@Zb=XQPQFh#==Fz9-;(JEls!ENtUrgJo5?X%ojttx0YM#D(GYFihy*HaqBlW)6JRZ5Kjmazqb+2INQA1@ddOM8kEPY>vL9jbcx7Aln1E%sp{Y~jpfai zbYP+?7n@;ZGLSlJ(|Ej=d>mAGP!&HI&OtE~IYPyJTqQI)?@E}7+>3)=F)ELp zg!%_4K~|R`5q2Y3IQ1Q%ow9^m2L0-b4PsZ-0el2K{sVSAqzOGoDU?>#rV~6)!2Ibd zOwy$6J4rDq1*a6G3x-gq{~Z3ypXP}A<=c0#WBBy-cdx&VMw#_E|O23I((kB-|+ zf-vh+Q4-thE$u|KksEn`R>g!Nu#%5ynyw@?hMjP?j$CF3%-e`*7W2JEbpy}f1$0@! zx9T_t8x)9nI&VFjB4@cVtPqw>M<+_`Qh&(2GlX}>4nSggSi)B8lI^bSyul9ko+~r- z-||MG$k$}}D%6$(3d=yO1=gAB8Aw%UGze=;;O~d%7EculySrP9%Niv&3<1Ovd`#3x zN45l4ARD&eF_cigusD+%N63_D-Pg5>XTog7j&=ZeD4yE(Ay7v7W`*J)$xVzt=vb>> zD}&CO1^D`>bwzIXkreq2-3qJxAi=nz`*U>rJ&_*P3jB&>JEP(Kh7+t`y&60b;Eul!|DHQP4R0Bp4~#}0f!%j7W~73H zB_8{KN*t?Bx3Jl{Q$aK6uQJ#`31_Pt3bBlC@rI=eqPVo(%mHK@j)~S5mc#DH7JA?& zj^>n9aV*u)JfygCdKRX9OuMGx3UjAbz64sMwM zkD44IwLfzwOfF3wh6qHM7+;9>9NI*N`~YqCl*b}gUL$ZyF*IlY^ACES5*&t1t^(5D z*~Wtoloaa`6@N?fDu{#2nV$$(gl|N_D7mf~br0}o--p}4n5okbJCi-S14E}^nwIzu zlu+!A_Ugh+$eV;w=RN2)^Wmp=m5*a}SE2CjSxIyOL^|iuVS%+JF}q{BjuChU zeNOUVbx;FHi1_Xp;#O@b*n(?uIZnCNfKnOc7q?Db)<;{ngdTtWViV6AQ?dY}EQRRUS)Ziw`{b8~v zZz<9@53}P251NaANIfPiyd?%z53ID>iXm6Bh=-HyUIudi8a^MxNDqq9r}!08TdS@% zmFOV68gnbIyr`z+|1>^;i=ej%q?%IM!2?BHf*?mKfIJ@d`y|D_*;bt!D23wrTtPt2 zLUm- zWc3+nX$+1fk~622WOhQ-23P z=^V^h%E=(Wj+uONL|J5Zhpv{Xo*s^E%T``s+RYHRV!<&f3JHnfdZ0q)4?vy^fGPNl z$47)1LL5lRlD(#tfG82?sZ5hXG7%#vl_zol+iq#Ywq(-eY1aIrv4?1GZozWjIS!$H zXPY&8dN?DIf@`QWp(N+x@aj%YVw$?zs-QpcdX6nATE_^yo8a~|ffK}$-y#vnPRgXi zZf}XA2J}6-dCdC95Fi#2J6%AU0`3gzpcrkH(6$W1hS|NQ8n#v+$mb34{oecNie{^n zqsW?BRzic~3^tA`Y|8^BU(u+&Q)(MV8}7rXEc6DHG@LXksVJ=7L0lR9s~+%Fq#(T% zSs|$r>?Z&AlF8(khLU12Om!4wzb#A0F=2m{RsdJs8P619&TaYqKqt;tSEeW_QE@*& zDN<=-tesn>jh(U!NM6yI=rgSs6lu_~z6A6&QLGdQZW?a4GbIyX;s+*#>$^)#JkWo* z_xesXyji9-60Paat^z_Pu>-4EIt%s3yh3-naZ@SLLh+-s1WaXJpYa5`cDKVa7PL@R zf1zUVqo}6ZqWdTjNSP;p$=DA{ge6D3!LPNS>zU;NlhdE-tHA-$Y9&>)j;IafZ&$0! zbb@?SZQx}m5Txrv3^WH!OlO{|;;PraWF2f=&S^Q+T!NE3E2tR`7#?=&L7}Zr3yc&< zFK5I^7-eu!m`Z@UYd=pV%&$R>wdi+k*UrUW%L3yPB5zA@r8%R3a%ZO|?Os*^Cg~o2 z14Isr+Uh>=U^eP?*WvEi!>>(kD~$_uoD}dBH-78j4cie!)eJGA! zYQ}821huT_9sy=E>(q&Lhj{C=!Fpcj!?F+Hvv@@)50FM6@655^yTB=)Jo*J{EOkoM z$(6EVlQ#*s8QQQfs~UJO+zH(zUqUG%NUn*mh0Ea}ut?e9NNeoCXc~|a=Hm+-L9%wZ zcU@3?7*ccIref=t00Balm!Lw;(BSE?nYZNb*a%LX{4GjRsf!AWwu$W?#GbRta|7XD zVM%oByC;T}2AA;!uW-3q9i{Lma5%bFdE9^ zL53U>Sd*#kH$ubvEFf&>0ZplqZW1{6EGn*txH^C>YjL{VgKD~PF}b8*l9(4rg4PH| z>8i7|<)oakPHQ?V@7lDgL>psI&S2$1E?DUG7?Ct{!B($Y+9EO2Ugq88Z(2xzLCUY$ zRG3T_fcXSB82RaTv(ScmW+vARPJ?iiZ90^5`b44P5XC-oZk3;rgVy*%Q2ggWC?*+`RrmQkp=$O<`#YD3oHggWM;v zBT(a1&KQ_gH;nZg`j$vkkd>x#=Caftm?U4-t6_fD<-u$w98B~D1!U5C1eit-c2HZE zzfKLy4&G5)&qAYfwMigcHfx2=YM0q7jah1>v*D9uPvTm7GAEuuNGse+0V>nZQN9Pd zg9DF!m+b9%n1wrz>Q^W@p!e&ZrD~serxmR1Bj#8HP>8&@2~-!0?UxifwgGV35><>x zS-i3GP&;FZ*$`~EeaWTw+{5c;rQ0@C-H0pnWik38Tm_OEw)`&~rVnsy{9pn-Xp^uc z%L^0z1a)d##VcGlkDS0vswyYCMEx-=gNW(;=yJIuDX-x(ptl8t+aW97N4TQR?g<3h zG9=R$jISLQj2NCE>fLzVQM9fknCV{tvoM1mNgul^_apPTyo$rXEgqU%#a(KaQ0y#C z&Wh9C7L0(891H~;2HG7On6Q7O&G|g14}41$1WBuemgx94l%=J8D!5S{-8_velxPA} z3;Kf8wnBg4fNM9}_*yu*0^+J6BHahcfS}i@M_DsCx&Ex0m&G}*J8B%2)q$~7IQY+~ zZU!Z50l>||B~VQX{J3dCl#r;iW)TiM%TT*T>4F5s z3eYJ;^)=8lw;yPOt5Cw4ezGhCdb#x+&0;hzif#0|Be-1vhN2R^XYQAKuZ-5h*GjO3 zEvnqzph#WEECkIEo~utvrLoy&@s8NsF_RY+*;i z7*|%>Fq8SjntSGLQGVMiO++^XABD}pbC#1^(m7d3X?Qhiz< zAc9zcT8z}TBA4!z3pw%tRInu|B{~MK3A!(M7rqjyvB23j;g74T4Pm)QgfLmApk`co zNJGof!q<2-V|5tC^%8)`ybvs449z+60M4AX73l}MRG}uMV&ApbDq9lmwi$)WHJzk# z&esB{FUU^0HJm!j&fVk5Svx8`cjhakuz?2~N-K>Y(Q zJ(8!!1IkVV*-IhG=#?!f7(d>*UR?rOFL}X+l;=K}VH7$C*%yGPQq7}nX-CDYsU|g< zw8vJ|)x71Kw*~ZHa<9d$qe&7J^H$kNZIqENh-V2ttmE0@QZS1&QR!LGF)`yiU0V7z@ zk^&1asuYrxRA{0l;0`ymCu}8}u=S|~iC$5>`KZF_7&}Ty0AIYNSE~FW+dy*iQ0YJD zU0{X*E@O+Pmpn6Qca>5Bt&&W}VPX%i*ucht)$x_y)LWI2WUKn)<<+o&Bo8Hvk>|8- zl?NUWoO+7BmehThb^p))H2j5r^FM{3{KXMmo@@i2>AObm{gS%D-?MajLhU_+_QLy5 z-~Po=@>(7JMvEjK`Rnld>FFVlX=Mztho{{8hVc%?yzWTM@(G1BTb)1sO%7O^v#-etz(-z2~UkbHNZ>4TYzG4EFB1?F7)p&AqoR(cJ-qYYA z4N8AtIQDdMdQ5H#91;2%2ANBMhBFHenLSs!zJJx9I0!7zn$vaI5C5j^KM3T>N_&V-Cg zJjE5`$1<&j_0*)&csMf(e65~D7Fe1u1Yye(4=+t<3Z3&ZX}Ur9j4%bjXwdx3x<&&p zpn1`cgmPb_BVTKIACUY$cv8^BKY>qnNv79_WQkX?Rt_~6X8@zms#2&3@>!YLM4tf0 zLP;SIxFsU9KOp&uoITDt+6Ws&g9s=Ty0<7Iw~tx4>1M^u77=B2xuOn!X(Y7DgCh4k z+NF6PH%-UUzpP993E=6yKqXPqva7_5Bw1Y8~*uu#s7?!(Lcp1|J(5Tv8xx!+WjP4 zvp)h23RSS-aqQ7*_AV=tEO4f`e20e5z=9l@;1}BplRCeq6Ao7 zw6B8)mhqaP9$Oc~(5cn8PKB5c?Z5J0`YiGmqLE{5Mq~_t|;W`GSxP~$%!YE#UhJL zp?~m0(vDM1W*C zTUcod#FXurhNvE2Tc~sdizUfK=BLUA$(D^WCaCr1MG}UjRv#w}f7cVpFc&E!WZkz_ zf0s*mLx5f*q+G8qtEPOO-rcHGe!8RYk!dqz+BiVlQ0#)s&6ri(0ZU_tBzK+ab~Akg zhiWVE43pl4PM-klS zb=M>rC;B^i&&@clP>eBdkgCDf9dCyVFi|HAvaIU_jOT8JfTR$`I4077aQCCcNeuzs z9g&<}V5NMNW}&+$&P<~|c@1azO}8~igqwRP zFi4`>v=9!*5ITP+u5#}kGMSiwKrqRopMol5ap*3@ti@&Fuo$nMI&!9mrPK(Kj@wqb zcMF$=wwB`Vt|@WNeJ9&-%15@L!+gY$HnB0ejA%nI8=3^@XIfMYL)U1?lSQzDpawrr zHf_oGf(6Y29rJ)o;a9@QQfJ_dkk;5ioig$Xk|o6y9UL5oj-of#dMh=!7hI`bqVd+r z{XiikPFjKgM%@4{5=Vrq;A5e>e)g)+tm@_2KpeTuJy>26bn+UvcR??)If|tiUDXJm z6dF!!x?Q2~l!FpVHX^+P^>m=yd8Q)LyA45XWBi*WSzoP&!N?X|qazG9aBws=4-7R| zVx@}`C+|r+sZj;PNj{;tA$Oei|<|EOZ|Pn1(VCV!)WHn zY;GH!g&-JFqGF&j@-1)$zA1ZAH#f|T4pew-jGPqSZHd%iXElP>`=GXZ#SUFQsn8no7)n4yb4bIJt=} zPz7x!JYiKHa}l!W9N^Gbf#w7f-@_UO<_pJO7cO1#I4!VBYDOv`#bTUP7yXJ^)aV_) z=+OWo!GJjM-74!L0xk|T@QsyWfs9@Cb7!xy=Gk&`IH?pRWp~%j48Ea;y2vSCT30-} zM$*mZWBs1C1Ina?VP>)j_i!BM$ZF<@4o=`VY9GlOPo)gNB5G1NRD!p13&Lg z;8eV(%IfTR?#E6pF4pFPO&K&%wF6G^+&jT3xhQ<5PJ*(Ce|iE8ZmRS<#>n=UB!X+` z*`>*%M{@V{_k!(3q%wIEnrBJ5y&$2YmLKH3$O4;r;N)m!wgX2|D}3gCdoAwV8AFVQ zc$4DN0{V4_akYizZC-D3L)zpBnnabldSBhz^Qtx(Q6l(M8MXit_D@Qh;O7kmI9Wk5 zGl&90wVUML8@rS+TgV~!B{)9|L&VN#)#~T{LLqo$niY4NFzibDt-?kt?-5NtV$d-{ zru&NAAp==i#uG(&zeUKFtFsdIIv@hlfF4K}?)VG_&so61XlSyU8Rt^j-s1_Q-5}=n zoND6zDrn=rBayOwcAm@44At3(-vO)|HuyKZPzr!NHKeesH=B?|8 zfnwnmD`1Q=4k6s&k=0 z1dKaX4#VtAOEDt!jp##A{sox6qDd#P6_Tsd%e{6?&^T=^R1WA=NF{E8)XLYd-+sog zIV4+&`=Qd{kL5rzvR$J2Cjn9Y{|UzVdL+3pl=R-AaA9$52RHN1?fHn+vH=&V`<312 z9Lrl6ZEMMk5yCtw(wX<99+r%YcjdhewR@`s61r~*0o-89w=RKBMPfGG0~N@{y?(2% z96YajtImtts{(|2#|(Spfn#`#GCEh$K#-3PcLxnkQ-FtoiLnjMdVDQ7F@ggNXKQN} z?rNJRDWj5@S-UKgruCl2FM}-SHc*qa^{`yUM7hz}Jxw}}i`_M}TW+gPhh;0wa8>JY zd{R+bly(6)0(lWLxU5viU)2F*g`5cRShby3D5rK<61+fxcdFVkk`7%BlRWJfumS2k zV2ba^s-MsVTU^hhnbp$rS@&4S>+&Gl>my`Tq=sW5FX!|$Rl$k3le)?j+ni27AaE9f z-_cR6H=V760!0m!2{$&q$A{wa^Y$HzYuoj{S=g4`XW~5uuVfDR_H4&P-JoGZ;m{f= za1KNVLMuHHSy*b`2JsC^d3t(b51l@^2m%BV!U9*3E9?Y2?{=tEliXcXXC>VizKhoL zK!m)yv_{ha_EwZyw7~cqaidqNZ$7P=E@p@dQ2ZXmd|wjFKSbtkkx;xWkS^Syn%MF$ zVm4^3FIj*dC*{gX(1q@kaiwW=+Q}83pmZg_!`3gr0XtdT_h%-UE%C}t-fVLSZoANI zprYr^DO9$VLbLJ0K!en+-&A75SRDWjTDS2GI&|+&X39h%lmte@5^bzUDG&IABg7hN zhW5*9kblWThWKtTWd%@z^jlE{w!8@>)|GQTw15VBnH5bD*u1RJ1&KsQpq+{#f~lri z*eeEvt8@l(5Wb=&U$LQU2hLOEe#k$e)v3Gl8M(CK{r#o%BN1E&CmDhL-urs!i@xG_rA3cv1c$ z{0IH|lYga1_%(%gzcx3p_g{v$Z>4aAsl;i|NE{~RU>;A*V($G@Dt7Objz|m#sEwO# zpUd)}VHdqbmDEYvVxT?R}h?3?nS0Y2Iq=1i?p?0PP(RJsHEmMEiK%VE)C-euIJpp*JOS8YYf zQckYbL@eP3V#Zn=EGcC+ng&$bB|w3wWDx;!7y$@6+wYMQ%}+aex(=PGhO%ssD!gne zhDXU;IX(G3&f${R@poJ2O{!e)$wwnQO~T$N_f=9(JcMq$aNazq0NW1pm>dRnpLglF z4<2bY>cbE%o)XY1HuA$*M%IM=N~L#rl%S|X563V5aHFZxpx$m4DpsCH^lT&4SXk7R zoxBIwraSsip7`_xE(3j|7hpj0I02$TyaLQ*&VvVY!0S;cnq|zpV zF{ko2CX7HF+l}8#HEcgC!4ySUG0_0DFC-m5#GR0Nrj6W(E3yYG6s~Q;%6CmSI%`4$ zK8`FH;Y+d+ha&Gq$?7WMn-5jtv74Lb0)j*eIgpURh*yQ3+iL znFf7b>IS8f0~S$qIFVrP)G``w(w*bgL8z7Widwsh!LBziZLlI*yjswswe6Cew?w5^ zsik=cY6`L_T62EfF%L+t;xt}#@?@b)K8to=JoiCwvhyuT0^sFUplSe@D%}GiRuak1 z&VeesIvhS-#SB45x=TwPGRjKxZab!n&7Go_{XVNHS%0R8PQN|Cld)i{IAHrEz5Ee4 zbaAirfY7UI<_R(eU~X7Y0tEs?52(8}>C|JQUNjtIUC}}7Bmf~}P~RR;hA+VV%FXT1 zJ9IDbIWT@<$*n<%67}$bTArAq@=oto{Di$A{&8%8r}j~K3*R%AJ0*HIhI6mI-w4(V zFw;jRnp4x+0=^^lC{_-mY4yyweNpNie>TEY9l$Qk9iV zoqHD{pDuO@E_c>`K&~(#%zMI&_Nh~V-eXdfBY=hsKnIGR;)DsdHMJB{>%2j6^3H%0 zO<%lfGjbdJNge?GvQVW#EH(2&^Y04nx$&9*E47reFaa22*)^1q+c5fWuOK`}BqRPq zW~(^5imE!)#w%q9AT?N}8{$(5yuSQ0&gORDuknZvLEX!+;eetjH$QXl?xKJv@gp9XID>t6rCekV5a z(Vs(_!z8M{c>8Ji;je(T{35*m_O!b+_FX-3Mz#HdQbE)56hd?3Dz~hMyLeRv%al*R zHkUvuS_5V4(M-%7!yJheO>dbV#(m&_J;l7T^KDtjkbfZn!rdJ1x4rMQUZC55=yWwj~x%-jRzAs;MERjc;c+7s?L?kms0#LL_Pok9#yKC}QSe9W%!) zf=q&PjYU(6)eNuEgYTSiCTo3eByvA^Lw)LE6_1h^e#;w#w1_B&^(&x5a5E($ENO?7 z^t4fy2DblFFrkt$DX?@z?!I|VI~LxS8l-Sd@iYLSgm%q6^&G|z13Ok|@L3Hf6(1^f z$y(WU1Z~Vo=R*O3?4j7y^tc#l1SU^+p&lV=t%#Dzrk6m%b_8QXiZNO%PnPeZ2V03!{J$rt4k(26z#}_aHdd{vd$jgmqTvX6M zICV?5%{>Avym`28W7N}j;mQ$Y9+e%%Vwa5qMZ>fH$U>CAARXZ5~IB|9X28oWtfuTzVbmk~40g%a0 ze1W9cNY$1IS!Ii^^8=P*g9XHcnwfEUQ20G=QD^}qra z$e0c|*?6e;Vp@F4bWz4p)i0cPRknbcOhnil(TE->m5r8=@dWS-$m#?)VSqOn3^`IJ zL4rFp%nHPBO5K3Z5FYYsvkEKg0`D|!#JBixQ^UvSQmN%a47!GIA3qbJzj*zZ!139q zuV20W;r-|G6W?U$%U6o&|Cjt-v?_o3uVfN`AAlD9NMaE4W0lAsii<=a5}v251m@T> zwWh4;C3w$TAj5{q!AWhF!yVv*{M{Cz1b)>7kLH&4F<8DM49{c_DAvH@8}$2NqdXT^ zwCHkJo5H%;wcarB#W>CzoGqx-E2Kf!cAH&IQuTn4JANqc%LhYw(&l$*kpgXM`cBG9 ztlkTUJ(%R@1B(FXwyThBnj zhC4HNkh`(TIjbTq*bFXKI^kyLsv^(-6xU~GBz2MY@-tw*WML7Lvz-Ew%E>l(Hpn#h z&XKg(C5ZtuHlL45Ihxmm)VmQd3Q&j098ct!g7XcaWG{a^!!`!AyNEx5$jys(KA#Gw zK~;SykumRwv?OTMM_*F@7WlnYXj^4Sz(jNaRt4<1g>@oyRiZaQaRU+08k<8XtuHEB zc%%$)Q0FzlOM+6(k{1SBq!6IwQfx0qm9D7KV$re;+x2vnkYsQdectT@UqB12yNV>b z@rH3p?Tb4As>jp^01eX%>uNOo>_vzpQg06Oj^cAAx$l$)-b&?`Q1vN=M`wL$*@iPT zA*LAtVK5WeuSTO?uuqx#KHYWEQqM_tFH@${f*xX(>073L}yB7jHO=eMk(0 zR|(ON?%8evylM(RArXnxs(`(MwF`BACXuHCR`Gz5OMq+Q(R~8bBjonx=ncq9^}7yR z<+hOQ$&$KCbv4t(sD~4xz87FH%n+@URfda9rNn#^>Lu8{fS6~IF{v$lT%Q*V$RWtv znVD_FSf)E?C1GkNLJVc2pG*A6YgO^>%5Y5HfVRQNBQT*A6F=b1Zm`+tCyRZUE3*JCDo7RSlsF zB3W7I!iHLFE&9h#82J;!fe#Ez8z#%B&{BWOC=99XY*YsdmjO8>_;fW@bvKykr2#NX zr5H^%F`P!=rgY{2Q$Vc0?RZLAp3)?bsNpyyxp;VUQvweV8?uB=FyJgMb3QWS(I7}KA| zf#-BAh;kqHGoIyxm?8NNrKEJK*Cc~wF04&tH&nd~MPY@8N#&Ylfi0@(JWp;~rwI&I z1Add2dw73EB{58%XS*Muo4-NX)Ot%GHCj;*I-{&qChh^!T5q+ncCdZZT$+!c17~YV z5~A)fJA;%)M74G~UEnHz2}2LKN1^=-u)^)?m=z^8KtgWifARQ1?VYS`74G!^{z zE0p%Ue3RJ9?u5!v5Xi3R7Zt8rJP^@DK|Pw+lWEk4ipY)hVo9BW=X0P!GIs7|otcP` zI2R>OL4vJW)x)dI&9>qM6=$dr7~mu6d@b{R&aH|d05URV-$u9 z1b^tF1Bq`eZgy-@4R~ff*zcx3TUAlR9#iHq)=-qSa0jQ3g=i7f!S+e(0?^d9xFu>! z4G}72oB*i(>aq}8g20zI)mH(a9}@f&p>SyCDG7r35vd1@x`5LxWPEZ-Ujl){$c6-f z_!`)iMx>+%%D0q{_hP{cjpbotjEitg(LRDsgDrwB-j3Ad9oSAFC?UY+-j?IqK{Bia z%47t$YFE%n>fJCpp#f&KWDgw%$j)%}hYTBgmpw|DSdubQT;#Xd--iatnDC$%hgr&B z{$==+BSij+V>b_xx)a{M`>~4FS8oPck&S%x%h&G$yrr#R)YtzR<18ZT`;UM4YYGgf zO)imjbpaB!`(b}ZS;~z=0)IwWs=GY*oyl}pU!yxa1^06>{y=VoqGw=j(D?ND-J=VW z-BCrmI=~$S{;O=13*MZ zy2B67zOBpAIKPE?J#FO?U@@NlfRAC<^A%;R_!Z<`Om|R#b=tS+sj)vPh4@Aj89db_ zFJfbHTuhxI+uU*&B$E^8hgs2HcBso-Um2ez$A(#&PM*LuUsuJ=;jrqCID@?iW<-Tc zL{5<7NTVOSPZ>I1G#p#BkM$&y6^R0q8;z=Iu%Qbk5EiF8^a6wBpr9U1tdKF%lWlTeOr)bAlU)7O4I%Y?$8IYD9SqSA%L-T zmBT7}q_^J628M+r%U&|ijYZyOTf9zY<-_gW9S6xm6-MdU}Q~`u>=vNzL$Cpo`nPu zVV)Og@G?97pvV&vi)R=P0zFOMz+B{{5D?4NSce!2E6{Sa>`oFQsp>&2*urh0+!h$Q zW*I8C@!|{unoUDZW9isn%!;{o+=3l!VNF|fdi*^qn*8MmR9{lq@yoYA99Mt$_7Q*9 z=mP2k{fPyn{+JJeqeUf-eBtO(?dSetaLo#Im01Rh`4Smm!fdE*4YNI4*1ywtaro#^hFwU!v zFYGf%op&Z0RGz~P(0>=A2QjH(8Cj|mowqH=#e02AZpP{HoD|~foO@7hC<3g%0b{mq z?iA6wxK(EjP=2#@Jw>_jl_f%=I%e6WtO*mBuWJC?Wt8&KJ zT>*T*1Mrm}@U}azp`d1|>?9X3rRX!X*dil6vU{7-sO!^P|6v+zDte{rc)Ll|;-BZF{N~m>C zrwYR84v4Ih`+`X%P|Z|~rR4ZLZ-nQ8GzQ{><0-0IWhU(S46S`P`KuHSXn(On@(CG7 zt)J#@;z+kbQAEBaTnz>%l7k<{w~RN1mxbNuC0u z!yIdh*Z>I$INcL0($IkVGB}ihnb;YVNGfJMSx(P&qra0i(i9fMlHl>RxC1CNdI_<| z$O$5*08J`W&i(~JOeB|#K$_$$4sI}*$k*XNJ)ORO7IohL)zYAqxijw=*W0d$GD`1`s85oB# zE{Kzw4H8YcVNz|!HKH(i7eL|dFm%ah63}LT2Lf&MzV5=1Di3S2htTMHsoOvneHqv) zTi|QXHTjg;=92OvVY!wMV$_1gOB( zf}OG{O!04R<4ZLKw=;9Rtkt1D*@lH`?`Xt~azELFBcAc5o3s3*@UQ=X zq2Y$C9Z}8$=2r}ro5Tb3jRW-EfTHY9{rzYifXUX7F4O}fXT2uG^JscA*L2m}$VoBy z;~oaD5;HlBQBi=rQZLyG%l-zmh$TtBz~>M**rdC=c~%ZBAdQC89G6Wh@~V6O+j23U zJ0Bdwp&c%Y#wtc;H!kR3uE#L5ReU|4IOx|W?aQzk1_?%@O=LO5N)2X5>KfP2F`2Zv zOc#H)MMg=8;emzW1VpQ)GmX?9+4CY==xNkyivhc;=~cEpTp$nu>j{gkO>MRw&Uh3{ zPV+L|I6m7rI95Vjnp$%^O}5Ek2(-u8GWQ;Q$~uP0$e)D*8cca46UJaY>!j{P>t7eg^OSmN;bA)>mfybjty~{+C97ws{(jDhSPBZ zbE3BAK8L5)FR}K+JE$>yPty ze)RT<{QuJ+fBej4UmmWA{Bl50QV%4utodV$x({K!YaJ*xUn>V!lnz5C>iI`?SBWx< zw=g;DG2pA@$*b*m-|EJcKM^7N(|QYw#=^eFfI$yiK;2h(ruM{BXrqlJJ#{#t#ECpG z=bCEC>yDXapJ>+!ZHQ;rG2n*P4IrN{N9=Uc9b0vlr=mI_?OS>zQ! zvB>h6H^T2173Pzyvh5v&iGCFPHg9TlZjr2>Fjz*Elk5HF_~<#px=HqTL=Z9=B=#_- z_4S|@n)gT}zbTX>Wchc{X-2#fl%X7sEoisEx6RJcSR$M;ZS;D;#N zfNW!g?gg5M$!iJ3BiZ}cvUI@>l;aZZFfOZau*qE1ZTCz?w2SPb>P=kq)aHbhCfbN7 z)NT@^yfe{FbGJj_VNq|>L*hggN8vPL!KHKHKGY8p2N;Mn+AOkxJ|bDq05WnCB*BKO zrkN7}5Ze^Abl|lOMQM4QIc!GG!2g9m@Dd$y1I3foH@`;BaXfUbDVN-K0o`zlf7VDz z>?alBsOWKDR~cy|fw-Me5OxNA|E=iT4@5k}_ab*w0_TMmzGC zQn>wD{`|(&I!$>jlg1y(ySb24epvMBJ1g3D_3^SX6`m%*KQKt#@~Z1oI$_EQ7a6ur z*QA15t2e{p4XraxICQRkpucnr9>0ne6E>oHB2eM%YjlV1UTf7)QVMIBXk-V@Ti{_Gjmx)Hcp`d7zg=osl~Og!D`EAx1P9DtI9>0utbr?y zDPDsuX7%Qi1RjbD>C{0HrS4B%Aw>@KfGjr8RHkZGrR-k2t@Yr`uZ84{NlN5s`tai` zx{@AfW!3Mp22Q!!l05W~7d~7~mt}<>BO%#v{gsb*bkEI{t3(6E=j40vz*bY z@2LZZ$=WVo8_c8H+R>P@QP6m`kX(aOT@YtlPikG_K$Llfb*j9EbPnT^v$3e+v#`Pe z8n%r`?blFwbBKq6ajZawnd7Zv1f7W&2X^Yo|K`irUx(*D=JB21zJ0;3fd~1!KYjZ* z(Bj^I`u0ny;ZE;=DD~lNGluv747JXW-hTe}(dhwp;F32|*m&YUo6yO&x+-I2?4(lD z20cq}6H;L^aLcwf{eFVpYf>$z*+MV`!xWdfQ@=|Uj272blOoRCr#CoO%W`I0bAi+y zAcL|;T3|+YO>HlLe!YvObc9sWKYeYogr-F{Aipz7K(-UdWD=0FD7l3EfOy@bO4M15 zoPfBo$F+chvVsst-PhsH z!-8DhY*3JGz;^Atno!}^2i_k}X(Sq!eYo$HRAd+*lOSHBTj*#Hc=T`x2N(OJb5YDF z4$2-BiZNw)G`@ zhLG|R)f=~DXn-knQy&UjNwar99f65oWw&6}HD2(@-0~h1`x`tJ2!0&YGK*p+A%X>P zl{-7-q~*T^HVXChKZn10jxfJxE%tk>0pBpX$ajME0JFxVwCtM`de4&o^P*(l(+MkeRL*}%KZl^Mp$dN- zNW(R6p29nfAd*uQ1=1wF`nyqvcDaUag8eiM!cj&r&V{p2aNeK4ekR@DX0F2#;z+9BY~^-K#)?bCE|NHMbMEGhm%T2Cy^cNBCv$K~M@cC5(I|9fE7g7e&~xz3J4iaKuvo*s zV5{&(JM0gBMgtZ$r+62209mC_n}=)(=@UM5IoQ~g8}ed(&sIuE1#G&?K!cC%kgRKt zft+jzmCEgI2j2nS^)s!lU$B?k@#2z~3YvF$#Lm|dq-8x=d-EZm7SkcsaF(b4q}niyv0&)f81EpkmP#A9 zxk`blR#a{2|e(OH?85AQAuoS8h?T%ns)XUd@M&_xWAYG0{+mm zzxkW+y(7B1h}V~I|MqnC^*8()ct9(nzvQps^|$`>uOGvT?%$!Ye+Pl@Ymd%vf5e~R z&CTh48xEtoPu_lx*!{7|i#?#yYP5k}ZD@=eFgvUtJqBCcgto9c>C7CMqc5ez{H63wMjD%|)!mxp;UCBLwuQ)(#%SdV6xMa_sQSw0L+ zVJ@gDpvnel*Uw4EmpLTKGhKCu0@jo!c?bzb>6Na1P-a!{(uv(ShtGh!-9J&^$Fr0l zxt*BL>$`5%P%cA_M@Xdv-@bB`$HM&+{2NL_=;K|RMYU|dI`>0A#*GHbYbVtohkw}X zENWbl7`X1pbzo+5RWrPN*dEI4*SePX7gX|-gSUZ0u&W0V#Y{pg=K@m&SbPup)#WVm z9J%pdS-!WxN>R8@Qk-i<2?h-C;+yy4tGdDaOLrnJFtDLb=ytfmL4n?`%JO-)atpWV z!8tjKMM5SJ9C_zOo^edCRz#D;PF=2pxThoe%f|zpEja!Hv+j^Cma2gk9QD=6YQO{9 z57%5}wW=YyV|8#G#+-Wv7H=vfPpWEsP}F26)%)!-$8|X0885P@ohrINnbs9R4O`^6 zNdbSZ=lQU#t7V6d7TI*Ol%`DP=3Guy zueAX)9;7yja^0fX@e=0NwMv;_uTds;92-eOyNM7vP=yG&FR~#>#WS=|w%tz-tbYl~ zj1xYOkgh&y8*vmCiOCj&W-ab42w`Bs(Y>Vp3Sf|rY2(BQDVKzs7mGXU__K1g#pc8xm;w9z>I68yC=90sZ9#Sujugy(*ays;JYTdUlokMHYBOW3Ugiy6#94LYu1v z2BpL@ZtKw=OmYM45C|q~mM*oLL8vYJQd%Pb4m!1~nZ%nmrFN;b23`ryLIX1(M-BPM zuF115xbmv77jciEctR_xTTZh>H1RO!kN4dM%RSPWF*HMa(&Ej0Wq(`6ca4+{2s=eX zVDxGq$#@UTT`Hf5LJ@89&Ut4u`&l60*hI^f42CXKV}^}J3(Aa^mvW&>g37ptSna@j zOnh%Bs;_lc1nG|)Yyd-|W8D+#1;eN2D0$==q`+iqL4KQE@#^Ny_Pz$A1PzrFyt1 zwq}z&vC1Byz55IIC-)XRA+<3QoW2wY|^1E8Q^rG7)EuV z%MoN-_G1@=Qm2~V(OM*5zYY zREx5q+kTGD$1Go-^djBT<_kg_fByPqc>5iXzmQmWdY~l99sz9a zz?;?Zhw_oVvm*%KaX1A$!PO2INF3_~3(!MLL2lrhjL@v;OkHxDoo~O%T{*+$*UArN zno&Cj2!7eqt!c4#$IDVPu$R?gV(18B&$2ldHdm{KkdF9qrouWx1yxSRq6VciUcF=T z`%WF5hs40Uq{C+5LX+C1Q;;|V+k`RaQon>Lc`q&_D^yN|Ds6ICACJVtt>sbEbc{eN zl*Mw)fxcq}uQ-!LR^_%FYHo?WlQCVpZ^4(wVhKuX?U^DxA=i(heGKocUeTDbx{3#& z8?wph3WQgGus%Q%*5|~H4l>BoLj{j=B>Vxc^>WPvGefIm*uTSHm2EXdagQ&i@9&3L5F9%VavL8NA< z098sBo&D0*Y&Ew~K@hgy-qJN|%` zP)fD-uTbT4$O23`|jMsHS$_mg7ixk{mI8V7DSMN)nq3 z`^yD1kEkxWNWj?UG{<&>x&ZlRswZlP0d%xEY*(KF#Bn2dM>g>R$!f=88R8zCRWU(r zYiLGpjfa~L!_L!%Z+|_4)bHMYr5KH8`QzWXSg{HGTi5LuuRle|k{^eKz;hq(zrX%U z>1;m&ZvRJy_U&ovO%?)B?+5@L8Jf{kd+j zaE667DU8giZ9621>+xnrQtP;C2hV~UB);nC8;`nSyM|WLZ`ea@>(IH^4CWe^eu2@J z>w%yzWKHDd9yXBA#?=|0NSn}tO%(b^SuJZpvK*T+p|G1FH^-_kE#L%GcWjZpy`qr= z)KiCeMNx;xo#1{fM!7!=WhvqRnOvp|1pGO6CH!qD@-x>JoWD5p0zass2L8JZS{YL4 z$#zLpqHOv%2T?#TB^wXRYfOTw5yb1}jO+JxayC-jCfiwG;u__+gJ3 z4_LY>8d#@rq#hNSRchS^6Y}m6ww1kCH5(lw)UCjgaOT4Rb8%A-8=^CF2kIpb*fVlu zMCuFG;U`QhsxWWa!1IcG9rSnW^>n>s)aJ;1Ele$@UXdd?K#*GdD$ju~2Add=``5vd zMNsUQ78O_ZsJ5^uwXGIUh&aF?oq*o$oZHr_5=tTkEDQtfW!z{c&N>;p=NS~6j4s;W z0&GgOV1x^Nh67p*18tJ?7s(pcmceKJaF|hol10B6!#hSo3`Z?2Vxb%2Kimne1Y!F! zemGm2tej*p1h9T@{Wa$ya?jW&Wryi{T$<-u^o z8uhrhvb(H`|B?w11p-2}JfdD?fv0TpS+bolBP>C%kPHD~*DJU%luvW2Ze5>G^y|br zE$fS+{3>k&E6{!#q2GvR`e-Qs*`+cH;G%%)M}A@Ij`B|c$y2{%IzqlEfg2(-E~+&* zNE-iyQCO>EFGk5q6~EvkAfY-(H%!Ksc6KFZ@C2|qYr4hA>1N?0xCJ%TxYTHl0W-`> z^j4mCn2v1;mFz&%(_TJr`wK8bgOfp(We|zHkX;Baq3D_B4dL(p;UB_3{QVIZzj^z0 zFjH~LhA`Tx=w4?%&U-w%1&{-=t@PG?C~Jd~mRiS1l5e$Zhe9GED^$@ke1qbLGn-d9 z*O7EBcjbs&pcF?1ZAe^Ff2uoWmKXU{ej?9U+zb$l`QeswnDvE%qeH(5%k#Uj3Rkcm{AW0$=e7KwGTn&OMK4VHM_ zR1(t88kQefzW-2Xl*KH+agb0wOw0;qfNw`ev)f4DmDp#XbqyGiWp$1J#b5+PBp6k)r!z2XiS{qD+zl&yV7vS`1hYizG6*S=> zZtTt-NU0WRSAfiVZGT=jn$F=Vn~5EPjj=@EDy^RKf(>Fv-MB~~Zc-%?VQ0j3PBs?e zWTACzmZJu{J{x9&mdz+zJ5uHn5tI6!Md?<#y0PIbLcDb!5V9pb4Mg5Iu=Qhs0ui-S zr)9H6;kB0VK1{?=Y?xU^22H57`7xEE0Pao{%tE)&1g^j}^eRrt(#^JelnmPlS*&i7 z$Eza_0gfl##AA63An#=!qjj%X3xiDViY!s+q?Cfz{fuhtE}vShlpIQ~)zq1(10UFG zhcU=JQBD;o{e>G*m70U*EQQyoRyJg^L6%NRAP6Q)`O{$5H+mBf;*ns6$gXu?6uy6t z502L6;ItbFtJov*aW`W)wGA6BI??)^CH9_WFP-C=y-&z8P=qpOhHfFLI$8ogQ!O(0 zVWD|LINV6%4*yR z(RU)D&Yf9Hf~Z}^MJ1)J7?jOofS5T8e5enw5Al8bFMQvE*E4wjZ^QRbR4bwXTX+Uz zc$9nn>FbaAHSi#R_tV!ugx8;-8vJ8;{mb*;`{CG2x@On>MJDVBsGZyU$}u6V$mLB7o>uBk=RDd?ee z#n+)$JR0qELent#NpyGXvjMz|TkQkGRx%Cp2%0fvt-xNlIA^R~0fC&1&8DC^z#tE; z$s6+GSU_eHLXlJQs?~A8*BJsaTC;XbHb%Vxy<*7`l-^$~j9%~}7*w&nsmLgYdxJbW zE&?Yt`Dj?5cAuczkxuOv?==*4Tr{(ljXhg|SlI0SwL?4)Ye?33_!#P( zK#g*o&>0Opoi|1=)3f6i_%}qpV27y-Uw{^Ce~M?|SLM1*5vvWO0}hK6$$*{eThqbcy?yS16^&O5y%aM! zF65v3=vTnuBzI=q}v*D0FgkYd(3KaUIT#wv~V$UiYs0r2bzF{#YD zC9=ng$*xoX`W`g5w#bT^bET5bngKIbj^HxbF?zeZyx7|jN3YvZ7`kQ$>=LT`XY1nk z=@y>mK)rm>J`|N@0T64wo-o&$quTT+?qRp)Z-Qr2>2~L?w*@`_TZhoPwz8`-Gr1xT z(9_^*!as^4wb*k7XlCG@yW+;JJVxu0-|)%dRr2PVM?KAfFPj7Nq!_Gy;GC;lh^Qqx z=yYTIv_h48U@-kZPs{@8{2GZIX;-hMuVZ6xy&W^Bv9U;gF_qDkUG-D z^EQ^>F$G8ew{oU9=quow^ar0@>GmIr;GVmJ_LfRB#*WrUhJ|Q{B z9`EeG3PDP@Ups}up#yUI9#diUdn7&K$;JTqNcXWVHU+~u+z0Am28S<@`AHz1tISEO zRWq!p)tY>z#4ai^)t9#NH5(%XiM^10-gaZ9N)jcJcCa?DoJ?IvPFYVhOHlgYlfAa& z3zm4p!5lam$r}JYMIXX`1op3(=1Pbi6ogad`|=+{mQwkTdiK5Vg}?v75l8>W+rLw~ zzJ2!kX|RKD@>liB3vh4!m$zSsPX5daE|0vc?eU$IUHP-!75%fEUP`rYl+14@K=z)V zbk^@uJv`_Ir0@eN^zW_p?C)W-K0dg^JBm*YppuCXZgvG0!D*HM0{+Mm47&VByp&Ku z%nclTPpjgckHGhCL-%yUU{$8)19DfTZbFw*ciQVre= z)T5iu5D}Kp#d-1$9Q7AFu1DU2fqo!8WP?Uz3>e8)safbWHl$r`Ai-Lw1GP_PbaKL2 zl*c(dk({)k3@_`qb_!nY(@DEVt`wwd;Ozb97n&`eA(~|gms)yBJjHm^)sg!eQ$7U_ zava%*xs=jym&cKNcoZv2}|8d;-wmk4{jYP8Mn?Z zC8o6fQ{%M+oKk|v;}B0OlWzL6-O>VD*|PkLdBdE$n5j#QIfQ*Qg^r|AImu&t#mo)U zy>4Xp5$F;d=qb2A>GW-u_ue>(OtzU0nGlnhI7^&&)ev+h2(W}oc0L@p2?^n(wl|1& z+{b;|@$LHON#gMfUj5?j7rE8=3H(bx5PkeKy#AO_luurNA6`F!V)9SJ+fUVW##PDX zb4sQKa!+cxM*0^dcMcCy%w1RSBR;|bSHD3zgL?$v*S69CYIoNfsWKPFYWY~Kc2(oV zrP*AJcdI1u<-K{Xi|q2mQ-w%BkqlSW)pqEvEJIkIF779D4wcEYtwc+&TH~_eh<`m& zOk{xs;!Q(pgaSWzXbi1}?6KoF15|5Rz9AH>@KJ<7GMazEVvsV;RzNEyksd60S)g*@ zJHKoN!@w3M!0j$f(y4AM>zZtVjn=*^E=fq6RIA^oeQ?Jk^*gGWqU8m1jou;J-yGzf zH_-2iU2a zRHzR1PN)t33Hzmm8L1Rl^&}O-(WzdM6y-9q;62}9@L@aD8PJrJ-{Lu`b>Uf=c4wQ? zSwAx$k4H`^)l70?IQmKwC3`7eR+qy9`P<7IpaZE}fPUIU4$p)BAv=OC_JP1_Sa)o2n>ZXjA)Wn%?WSS^YBT@ZHH4wAUvB>QN zB1J$|H{8E&!VGq3?X{rXSeTp8?ZEqVl^=PaZAPy>Mdfynw26x93T4}xgq4}@i)dV; zu7O)2e-UOr>?ylZe{P1=ujke-+Z^Fyz4iRdGv~ayk zB+DY!s!YvI5-G3ASwJ+>_3I#w3bUCuQ&HVT1~Xy|W=Ijhilj^kl-24d%}IHYFmWoS z2w9HTC{O3zv5^Qd78&jtWU`^PbHEoQj6s)mR_RDIi<8rxw{?WJXh;Inm& zgK7|kd={r>JWm_w(l}gifusF(@v{-H{OEx%)pLxNP;=AV(OzqmG%N92P-TN60rMs) zS9ZpwNNK<+!SN&aGN(>0R9vk|cC8%U>}-_C*eS^=hZJP{_KwhFyQsaf$v~4JYU-!KADU}t;^TqdG)Rctvkfunc%rf>^2ift9H9m=u%y(5Yt*Q0SrW!o1^$qP>#N=Z;bm_s4P4{SQ|3m(riOV7&lAFk|nW*1FUADp-vDj(W%D=D%e$&HHMm~X(T>{nnTO$-ab)9`rs<_4UjS`S)FtPBOkIGT{$ z)KjAVq48YI8iq^iDZ-7UaP9n+JB);hl~&oj0&EFHIApbg-lV=DD;NaNaCk|3OlCtBM2EQy51i)5m1gbjKPx?~5_dZvmOgg>H7 zX;p#tdT}VQOC9u$*g>B!ouEL6p;QC1H=|GmEYsm{6E2eCvmH$A2eq?)eq8mQz-xj%dT8HGRoVz807Z~k4;53Tj&XaARc`pdVk!mD|Z{sN@9uipOx z5%CYI1peznLr!s{LSpf8h0uRezv)~!V(d0 z?-mJ3^p-6&?2+X3xjUbI*&<=v3WiE$Dbd3XH(_>htm<$!K>|He zKSXNI5|wJ$CU=pV(!EmUuxGvHr2Xi)SvwFh(vTtNehW3B01!*AbP_qm>kV8fYLOU~ zGLf*C&ju`slhh+}$6J?~8281uZ?F*LX@}sOox8sDs7a^<(}o10VS~pd>3kAUt#HQP z_)d`^T~)Ch4nu_GAGBu0bDvPNV6mdz+?4;CnW11OA zQ|3o)lB_{ODDwo6@4y_}A#zfOjoQQV^kU=1V9G=$H(4ScKRf8D0ioL#7h?o$I`+(u zkisG#G<%ux`B|j};C7^TRs90+xam%feLP$->tR;(MYuvMnw)~3udmwWX&kNjSD~;_ z|HDQ7;3V5y5m6~XY$78o8MakD^#@O=l4ni=u=Qr_5{AP$;wcAOa*3IRBh1-u`X~M8 zVNzMEYXte(lCVd~K$d+#gM$n@_(O+c?9r+BLj~9DINW{mBOkcxjzHl%U&1DFj}_4uF6<(UGZkJf1;(<;eV5D_)IwE@C26Q*K-Z) zmvC3og)0NA{)-~-WsO3xwMcun(0Nm}YNhT6)!FV21e}1*EIWrAC}j(+&KAf5(Htfpz7oXb35%+sx^Vt;ti1GWHa z=3r-#nCuLvF|=Wl7$9Z7?2c3nmN5Il*auqgtMjqsreyzG0_iI-NjF+$4z6S@VF27` z>s$AVWXXpLW+1FZjj{%3c=S+ubR{Jn(BR(j*2#P2V=Q|TD3?yVy>1v?T%ieRw6_EW zx|+w5X{d^p1VAh4fa{7K!P{4ag=&AssDgg(yO7j*?I4NUxpyx4CAGxCO6Ftuy-xd3 zoMQtSbB$Eak8nq;I)eO_G7$m)Z}4X9DoWLr1IKQFI3_x7j;h8TdRp+xu=C;)T3}Mx zNi70-u|sH4KC@1JXs#r^Ayds!E0e5putMfy6`ec|Qss?-*wu5C{mO#a1XOa6!U_#f z4y2TiKnjEWUaLfv#%&bs?iP00W>z}?u)bY1Y^8Or!mjzt4 z7yU7hKYsn0N-n;*;2?>Ivl9{T1ofW6_%PNHEfel_b@G|8^}4MVuW zR8@IBSZ~MHu;uA3YZpnF2K+(%(~3+x9)~c;hF+}v9SO?(POU>JI}R5*lLmlea&*Kv zwv?Le>I7-bYDZYH*clqlZoep@U42_=~@TK^LE zDTNnhVQ_lehBz`Zk6z#oZ>k@_4mNu&UnLW;w!w@kXgOfSPVieC+#wxRKg;29u&K&J~s7y%b%8q>3a#6500TctS0xVcm72+wf#Hu12!z3N!2v;y`sACaiO54)+uwt{!ajBH4F ztcGS-c`9q~@nC^Am=_JIG?WBc(F@c<9LeK7K)y~g2ipS&B`FcF4}GjtzpL{3z)-6# zOgljrHb*uX6pY@*y`pHgnA&B%3W{b zELK`jX%rAr$4$bU`YqLt{D&nW{JCa}m#8N_ z5Ve~sSM{+SyCa}s^B5S&RH({lU7HI!m5>a9;^PKi^8z=s@vi4lVia-@;Z$US4NU7B z@d!mrbtEa^N8FAN?oc6*llCB;N9_Y0Nos+5wfs;C*GU3Ve?0h6MZN5}amO`9xsMl6 zq~#%DQ}Gji4d1@N*5N1o`rJbN;_Vmz-q-N|_XBJ~eoeUF*MN)sOhQ^#`Ty~g%KxDz z{Bbay5_EA(laJjo@W?yT)A2YWFs^HMr z-5s+IQ7oUG0RsZaM|M+_PtwFLAr5%}0Bdb)$A&2}D*4eV+0fOzcfA8O&gR#F4$Qc! zvD%XWJf=FZ@S%gxG^c7Sfi#sHlqMgjf)S=8{hnj2sjK0jv$!_aR3kY=mxWYp9UZUQ z@EfpMI&LGN#VZF;;4~hXa)rW~Z&JbwSc>+l#%q#5`XJbDRLi9KgbXdd(;-=@Wi4UJ z2o&q4q%R$RcXBA(JFPNQheXm}%9;)Gl+G~uEU!@tpzKhPg92W~kB_K8@}_L~Agauq z4_WWNTL1wY(+YUZ;36XOxI^!u};#{=@4H8Yq;z=9Z@Jm&0|p4@?ndoEADV9pCv$e)FnOu&cHeBu{C=b%zPm$UrKqBL%>7s&J{R{Yor=ue1v*(w@pCh zw>}De38|c6xgpF;RG;cUP@)Qf!43nT}4g8O9ABQJcHqvXEsFkVYB_-_5?aDcHHRPoL zLqNR0(7wPn043p8m4v-uSfrdsd$Q9m+yU!r9B2UbF8Yg=N`@qQ0x;ZN>z51Ddknd< zi}FdO(|ZGio(ka%axQm8)Afyre_#mEh}?|s?`Uys?W8Oa2gy2hpx-7kzZCt z1uJ___kAV1x zl|0M#Y%C4fL=RMAA<1PVDP^r;WOyg)XstP>UZFWhD5H*P2u)aX1@6qwHKHpM&6qR7 zQ&|Nq;AQRoz7o~e;!u8-n9WpR)>v{h!_A6AyIGCf-FI-Aphb}?52#R{7~DT;!H$zV zWDJ~fo}O%j0X%6tE1}@_4kL5M&Kp~Ny+Yzn^Hw0)le&pg`iYJsbAqMpx}4??4(!Pr zdq60%0xN?t2(prWSYJGD0%cEu^9kza5=XBb`b9V^$X4viRWbE>DmooGY&xFZm-QMc zH=SbYWeG|Iv_hbZ1K<&5n`|3{RI0+7Y+&OYr&XIUD*>PGNz-MUh-9OY2D*t|{`-w;rc=#Je#rlgL&@~4OsF$tSwSHK z^Obk+tfU1vAKK6iia-SgTF-!_ZYT6hIaI6X`S`txmo0f*6mtYv5-Yi*w&59N_|N6b zdZ%@nWa9K2#Y1BHqzJusG_IC^)@L;lt|_VfBxq7~lX6Jbr>quq4}fmZe5@)7b#gy| zDI0hNc?hdf)Eri8j^22Lq9-slX>&kGRIj<6!50a3?N$Q7(qC(WvA_=QBb$m@e`g_* zw1CRXe5i64#gis-qmCQ2les|8HXjG$ki@M(i|hkc%y@0(pUb1PSly_kQM7J_`U64^ zfBo&RM~wU`JhR8XeES2ZSk4do0|1SmzWv$eS}@|;iKE;Dtwc)z^gbhlhKM(6Dj~fO$A1HyE zk7ppFQSmDywKC*`bw8UIJqyXN=}f2Vnu4Q1RDr2DP5T|qyzlB55NgPAKSq@ zlN-&6tWLnL5%iJuk-S`#kJ~4Ps3c*^;_8mG>$&PX%YR9w@)}50Ee%@i)a8JKt1>i* zH+cz)JmBeCwr7=AzHz_o6)W%50xe&9s1@6{1OL*~-$5fkN*UTF0NY4Z>mkZW=!yIy zLLgrtt&}(bzNBzTO9$~t?37;eBMU}r%<*|MHe?rDz?eG8v#>`JfFfKZ}ld_dtq(^?o-P2&fXSG_|R{JBekOe(z45F4@rs zO%L=oo4}}^zx+N9uH*F%)rW;8EyzcKC=g(VAp8%~+bQaNq)MZp^R+;Nuey22AzYssA4Pm^K!q(DU8k=t5HIIpce;Yw36gHG!p_Lv1$^ZP>ZS9uthq# zsTQEXT{=4!9s=r4kIruN7LPO=(m14z0|v6#bV~KiXFzPqmTd!{x!o$Ly^IVa5Ve{O z^Um?r{jiirM0kQMK)c8GKZvT0C+zK# zcf)4T2kf~ODPq7z$}Zcj+UR1FP*ChZbwQP+iMA#>5P5YwS1Z`&GP?2_Tt0@r0D<>l#NF|L*|>3*jPcOhJkhL zt(&+}lI|=If!v@|M)#o6wvsajx}KYkoYTt=!NGij!KIX0vh=CUD4SrjfoOmg#;ySH zx~LU)2?f)3s$Zgai4}ktaQpr4*BHJM9$P~j(tfl|vdXx*RS6F*n~fWMz}1zlz9x?3 zP>pXRA&L=#3O;;m)glvsFzS|K8rqE?APeQ`k}|b-%LA`CB`t$p;$|nH0Je5)mqM)+sb>5fJuD0tJX!b_%zN|&~do#gr}T|H5`bWZ$~hkvA1C_FmR!lE`rsJ&3BUWbl%)U1>HWX{ z^@rj8zrOzF^azDEQdO^4O9TtLea73#QE>j`z3rwcsmqBi^t%q{?XKMGt{qj8s^;Vp zJ&XdLknpR~Yq!m!X&z7>qj_ZeQh(e|+w&)*Jh#OeS~?+Nk5vf{M7h*T%6Hr(CnvJY zr0p8K%wK_>Thla$$qK{`I)EsTfmfdqQWxR?l;<5;lP_6^Pz~V1B+2$Ngxx}|+&IZz z>FlmfP?9ViHk(V0$r$v9c>!!w^#9r3Rhf;hl&B2?m1+9J>1Np=*uZ2Rrrl%Gp5GB8 zG*nBP;lssS)QJgC!!0goh(f0dQWeYsr+8RrKuIL_nm6BZ0wY<}r54)dmQt*^thXs) zix_GJbx0lQbrw3Uk^`)IAbB->SiI{RTVzzDLlj0-5rm^aNeO}>l2)K{QYsqD$pO;j z6#)To6Q|9c>i2scSGkwN5G!QI*o0M*n39U1rZ(PEyDC=HYAd)|HK*&yZirI47c)D) zD%PQ+GNS4=)92!f8Pt#-G@;Y^drl=>_i?`Y07Y#R@q;l@&^3V|eaM_kuQUvLl&I`F_!TfkOW z=k9H27ZyneV;Y2mqGRt%Dktr+co$19)a4dvxjiV93#59~pU+2jw&k`%|eZO zbyY9kTyUN9Ektvch@YF5ceJS3AgIP*IB(}Ou`QC9?E%R)=ao@K2`P^P5jH&4y_?3# zvzsyUv};XrY&5~?}9#86SvkcXWB2Yyal88>?C;P#8dB476^F( zr8E-9bGXH_qZ(EzR4sXdJeNf98tiUh1O}45fnM4Uo&c&+NZE!*Vdrc92v)N4#@baG z#t0=0^yYGSR6?=bvk_GAHBsyl{1q$9C3J04W8)KXEtR@+i7l`X+71rm5jFS*=BY>L zTE#=-QIlW0YAJl0FRQjP%C{8h!P_R#KL!+|SCLo>eAV!7XEbQJouO?(&vGc}xaWY}pe**}&4(HeR7m^1LGTyGMf)Li#IG4@Is`J`Nq$SoPnmUZ%2 zpO4{?bVKyUzMM|7^N=~AX(8vCsxY<9)&eUa1T(5>jCE*l#tbRu-Cu5zdZ4+i&x;mL z>uP=l)O1`txm&6yGGifSeHq?uZ1{rY<(5BjMzod>j%ZtSyY3Eej`Jw*ev#dz=nwHs zS;YOW;94mHVDeC#hE42uFe0m33gPRAetfZ&(!wxE<=Pp}E6S3$ZTkIB-aZL$-{9-V z5-jCRf~ow8!6;5LhzL-A>uc<8hkS?dEjx1e=H=@^~=R#MmjnPKge z%&nMrJ%D_~iXdaZ5t#3KdbmM3aQrm(DccWd_IKHY0Y~F-QEKrUMh>i8vz8#OJ5>Y* zvdMM4;zh@+_ne`@!!S*P*CIhoTPf{<7`iGleEDF|2PnwZ2ca0XojFombfjRMQQb@{hxUDf57vWK5^i}S!G42VrFQctzD)S1L&DO0T}kVUbBV_E zq81AUZ{Y|9PQyTgKq^61-sEKSu|a)4F>f4Q?t197&yP@hV{C;5Ogf-iLtMHegdxJl z5e4xrc791#1_W0&b>3NOM9~l*KB62ZS8s#648;boX?z4i8u1xG)4O?BBR#f}gd)*F`>nz5*ZKg{hI88tFq9V1~|667x)05!gzS zKuH+fEjmE-kmeo`%|sq*Cs5rhT>1=HKK86-TaGt*Sn2rLU>!GG@3Q`=g{bVH&>h$* zD^3>WKMwkBIsp%(y0x4_0=47~2MGcBmFRWl%A?}0w2R$A-UUJKe#mZ0 zv{PcwsE+9#qe@w^vNzLEsMyNZy%P$o6iJx}E8Eozdv!pWGKz8+Ssv{=eQ35-xDvU9 zjjl$<$$wJ{=L-*%IOG^22t`=FU&!5wPqSvY`JldCwO6><1F0iH^5*9mCLdS{7~0yk zDllpR*e<^UPf$(94jOYaC@%?=<)Ln=)CuBapKBlILN0+K#&|>}r$--80(M7I4dioe z)GO;akuZ6NW)~`R`6C=T^WTT>$$vR~=W_e=@2IfpFNX)B0JTbnf4NAOI5XJkW@$Y z+L`xgoe+U5&qQ-n#S*d3es+Df?Ov|(N{(_85^1wh3zjZhLbaWrV>`FwQENDt*pZaE zp>Qkskwxa|yNC0Nm@hA;cpa5DmVkdV<9o zM$aawmgQdE170?N3k2Z!J&)tZjJr3TG&7bB4w^(M{LVdfd^CZH|W?7t3rG1wT~k0040uYt>X}sjXe( zO%O78fuh*);B;uO;!(7O3fP=xeDcoew0|z)TC$^4r`8WSYd~qszB@KS`BK(_Sbsb_ zY|AS-lhbzyq}#*PVgW0(xI8rpGKliNM}n7NB2{ysE_tglaDZ~N1=}=~kdqA^^fu_+ zk3RQ?#B5z>P%*v(A)eGXDxP~lUC#FEfG933z^FvGthtjCZLGr9Q4a39W)|`zAmV6y z&1gB2SgEy;B^n^#tgQw;EyWvT6Huzp;dn=np_~BqQlYZUR?wMU2#hAAYJN} zb;_Enl*nT(c0l5woei_@i4Rc$>3G1M7_w1MEO({oTo2qvp;2}5Bn9PinlzP}*TXRv z5T!Hb#y9&%i@33AQK*zuPa<6bwSZBLf51@PB$Cef{F@_A%f4mf<^gpOWZ}>iC}tg^ zSYXBDGNZrda4Q%e(?AFxDZHnnZmqNW@<9Np&M^^&p^`&(CFPf(Twn!PmYVxcMY$th z|319_#LvFV68G&7uU~+cs=@=m4X>Y`w5|QG;q`YpfD@U7p5Z$l!i4}t#l?d76=KRa zpb+x=dXc@woki8{ZzKjwo(uzONt$Tx6}6-&PyEuN#;TCw(|bhgT)%j>i%L5|0=!Ny zsvI}a7g0f|mNF>a!J&>T0C7@-OXi*fOF)-?QKT)MOy&*OawkRW15ft z5PIe$C@hfA)>+eVkj55yLLph)xoJEqc37|a{2jw>xYKXFTeQuZy`8iSs8_)c{Pi4 zi3J5CHjJBMUnC0U$y!?|pipH&t z8;ThP;ohg0eB+MlUkZku?3chIxL8pA z92`{DbtLdXBFBBS>d-Fa?vCsu7!X^i!*Gz*ZoFOrTC)wLxY&wExhrd|rc4~{3_Q*O z-2;sksaK_x`8I4L&PXcjO72Q_zDtW_gtq$RQQbjMkgWOYx^VCawP2S`KFF@j~oL}+~b?)IVW(l?ZI%T&|1-=5xo65hW0K+^5&{1ZP4Z(pDQ{UpdAKRG=h z4IK-FD1GG?uPWES2FsLi?v{4+}PHVY+iZe z9O{CqCwuzY8%+@L?$F>|)17tWJ`^CHS&-O9kYD5rXFzI$I27rms0qoV5WH%|vC0wD z?ZHT}us3XU^jcI2jDV(2YA%aXNi+JY4P= zguyN5fPYHyXk~4}&9|}BD|#&WKyfJN)stTw_%qNJMD26G-kCo2DtiN|L#q}gz99de zIj_DZ6*@8Ys12y$44v46p2HZM*7b)bNbXXpH7cP!2f;MxCRabXB3^3DvZE4U5G|o2 zX9XdY0-u~fTG{4X7*MvV&JV!@#>E}^ge9IWVC1{cQL{f&6@4wXYH4&>HHBycTnrmr zIakhrw2)7ucf$_=x2Y7TF|;D$BkMpY_RHdEuLdLb-A+D7{+d>8Qwh)3fJY{Qd0W$bp#YMTkMtKv=eXwVk#i`sTtfR-n>qwNRS zK21980P+PlF19YU5(~%8*!AVPG<;o2qMK;UHoK}hPL&1@5?<0buZrn|%Q0;%bh-f(jCLqa$Bx=WxAK_Xyy14aLsmijQ z*esUS3A^>Nt6F<-r0n864=kg*XFjobCvTNJz8^UK^$UyBZ-06F?He%5I5@rkg(=y6 zN}r592AkKuP*W6!1`5i&%f5WJuqx>mJ9Rghj_K?+c{f0UWv%)unAKjTo>Tpy!>sU- z(MP<}-@djphYf6aRJDL?q8?)eRjju-Y%V+5Q|Y85mb`=d0JiR7;vUYMD=H1zm{Ruw zi0AF}6A6zAAU%1RB*is{2dOU{9l6$Mf-&gQrn6qNmd(Rr1HaVuI^AzY)Q7!CCUO1u3BLzI}mT zkDvbP^~-04*Duw0{qwg^-u|MDn?Hs3pTB-kLcPlCHliz(o0B>L*P~jBI&-$kZnODp-Kc0U z5mM@ryP1<>_+ki37$V6^gg9VT+w5TgT(7u56 zJp7TbBd7+vU1&BhG-|if5dJ5NN|Vnl_%_$YzF<|_{kQ-PvGTYII{{0D?C3dAcQb&O zp3!w9&|H-l zoERDrd9Big96dR*^5LW6=^R>BC9npdhXzOzOx0IXcdGgpT-g_3+;X#phWX$MNV>%; zba5n~aj#RzRaXb3w~ekYMCujlr_Dh}D5)C#(>X*KJ>!%ORG$_UJ%n|4#muTrj!GpU zkz1dDaSEVihxLPgZN&UK0Aj=Q@FHQbIzyu-@8=lsa7;LE1tis_0%#q=gDl>5kqG%r z0(DWTvG}S674^0hA2b?C=Z%Sav=#sE2U3^){eL*(*B@R#rsUAGlI`m!-!ixV#p`dw z+s|QM|MpWdN&i#+7WBtIRa(qXpCrj&e|&muPA1z^6Yl|CwjDyE%-&!`pa(CZa1?JX zN&dXi1@m67PgoO)d=m&-oc`M1UsD2J)>_&XgBs-RVEiBKNtbzYmoG2leMd9qB}!{lX#+X{Qw&d z0*$#%O>TJr|G+vV`@2pwI92I!x_J>&fkUw;)=w=6saJO>5zSw*%DlJdKWRhXD(_dcG? z+)}X0|9PD((<$lt7w&^3IHCA$b~;k`~0 zpIfMJNLk-N8P2OENba%kiinm5ic-|U0W*D7CWzx>9FZ@zYVDi@&?dLiVi8(~4GAit zk$O*?kVi}Atjb(LN^U2PL3w%`IQo+}crnz=yG^~eR<7E*R7F);Xa|N!Dig!>;zO!7 z70w_Fyi(QUeAw#TOcpu;x9S&A9~SI-B_xz}m)czwwJ&ckuAF5hFSV0NKj7giRc&-k zjpUUO7g;!%M0MoG9^e`U|51nxt#YrpuV$(#3rYOvTCb`h4* zD#{8J%ClhO6B6yvG;|cN{Mt$Oq?H|SbWOW6BPdjUWi!7?NZ+i=fxchat~%T7#&;X2 zF#5`v#1;w7)oVvoQ1T8i#Dx}GBdcGwl&Y!>fgtVxwjx3!a2vg5Ef6%+D=ASYHtJZ{ zJEwDfNA)xFwn|vhM$rb0BFA;A}_^`*`{nB%jqA(KmMbBpAa2J-mfWtn_WMC zM-O5fcYgl%OPCpd{`RNWFW_tSZ#wi;nfU*2mH6=fr?0<*zy!P}Kl-2l%%+q%+&^UZ zEzvTsPy2RLN=qEC&|fs$@Ewc8LbxnmL*Qz``sA*rMe8Duyo*HO7a5baO_-1FCZ(2j zWo4DyU&ZROtq{Z|t5}1H32vc%XYqE_Q6mt&OPjq*)+{(?0k~%JzN$XtT`4;6HXY#S z>!52?$$J0mh^n+xrd9;;srRO^!c-5h%&NoaRGFA8U$2l!wNT!|c06k6;gey9W2y#}@SyMi;3JF0U+*Y~twmI^F zjAnNoM6@G~BnTy9P~7*bprr%{HS-D;vd#YeOS1Iz(haQL zF9k+s#4}ywWjsEhaa|%@AwXS)VuoXc>V_2tptQl&=po9BF@YNH0wOs)^@VAwHLs7O z-~#+{1s1xj%^B7-1QUTIZKivkTJS%Z9LPug;>kg?qso0K*@^Q})fWrAJB`$IGewuQ z0$#nAY9jFZ>@9=vx+eYmRxhizq~#HSl|_jJJM)ji|CZ9AutRACTQrg$i8MlBwzsP%8i6?~Yjf4dt4?d42Mj{6m1XOV*qC zg@^99zr6iXJHH6+KY8|W{>c**_a`4}E&Wld?!Wbu@b)oqwi360^!9m<$`At~XC}^- zN*&4rpCu20wLWRLPQf%*AEQ%@cA*4VSevYDzX4<$Z9g-3QAtG21{lNMq12`H3W8=9 zllS)0nq(Pb|4+BBe&*22H$a8~1h?)LUbL&~V6yOahew|Kt=t1aYnh*VVHXLDpJ5zq zvu7`ujAF4U*=ecFUM=L@S=BE?(w->#ypy8ffspNho^ucqC3;(!-wcd~_XFlNuh1Cu z_!bwHfVju2`|-_HE%^|P)EU~~CZKpo>O{aF%bEalq`J_%tj+-KgKc&gGN7EYQJvm} zDL*0;YNZl>)eEilAl(nxcUH`{OOjS>R>|jhstieoCN-UAuJoRs4sPeC==l{+)S5b*cJ#5fZ%{m^+ct}+1Q{%Pw|GK+x25KW=tOH z4y7V{>~Eo^xGEku4OxU=HTa*PO9T3WcgtEbdI+J%4Z-_P_WYCj@2(#DS2Fzjg39FlR_=-UIzK>ZwP2Xdp-V_;l{5mA&vlL}1#a)M zQ#$_Ht&%CYD6~n9j*P>V952xRzl6P6uPoP5Im$pagxlDZAJVZilRRemX54iX2EVu=(bY68wZ{9j(*+Ur{p zmsLU&;LV80GvtY3ujw1&j!&!M@?{Bh-Hl3`s#~0Zky5vi_EdC^MZ+^l-r7m2ZtUGq zcYQxY=cG7mQ=f{E;b-QB?x2f{oa52TFg?Qgl$4qVx~R(lBuR=A2Cz#!CAr2eEug9q z^|Na~DRW3x;DYVyG)ax>G*}%RTUAs};G$NH!7#;i+RFl77ijtl*!Bbj5G40p>k%GfCGJ%-xTU)l%&-p`6{?gBeA^?vSR6y8 zVBjL{!&)pj^2DApwa}s;_&c^$cvImDZ}8(d6|&4MQt>HIt%9aoDk$M@ulBn@+XF7B zJXGod>wRqHaQC~D84yXqr>ebFF(XwYYAu_s!N2CVvT`J#oMZl60`Mu4A4S~wG+BGc``Y925y7|BkV^D>7B585eU71Lp z8k)Ea7_N?>gQwDge^t9E1{KXL0z<0ZB)duqs^oS+q+|dDiNoMUay5y;C~-ZC(Ite@ zo^ohzITkKSRCd|0#omz=Rt+Vf63O5QWGw)PBPtbZk(8=d$u6t+jkxU zDOTl?#EYC=mw*`6aT~(Jt3>8@S4omb{&6bcvS+PlBrsQiXx)BXDNyJec%UnZdRI6T zWgDQO;J#28g*|!gjq$YA?CRxpVV@HMhr4*Ngi6}E9X$cnwpbIx8 z;B`M)G?YrBJ8i1l=e)ReRtE)?iR6XGaAi)q!jbdbQMs_a;S$?}1gJNlI%F%t5z8NG zg#&KTg8nw!Sw-GpX!>zaf7EqFATRp90ysIb@&kJoJ_v-M8Nu9Us* zQZ0WI2&22pK`?oCpo^XPcinpau7cQg(3F z7^VdS>gsUH<+{LwD-rrrP3rDxlOtt#g6EXd!=N zP219K7PK~X*{U*TKge#4BzCxEaY(3;eX>`;~K1K`D_L|CUdowH4J3dTK>|) zirFH(w~us76c@|$)e?YRB}zWQ0j=D~2VglnO~CB4r;NDH0v3&_k(T1fV?9y^=M$fg{RTZ}^m!y8 z1LaD6|64m}O-u&yI1!4s%>a&IhOQ!PHaG z8g87>15eeRw63c98K;0lNSn?>q~Q=~*=2Qi`O1TJT1{DBj@z<+z( zATM#YaEz)-tybla)*f(#E8Kw!t8R8V*Xy@%ZAK_5g28EY>>h?Rz`OPydX)*>c$GfdhwdW1!0bAP`VGU{w!%fZ+B^#od$VwdyU1g#NLE$N5eL{K!)QSb^E;Z<) zunrDO_f7?KeOHJZciOU9zwN3nV)9b3S85@gLuY&Is6jCo%AFun zXu=4tg_gx2xyta|Mwd@Szv844Kyow4`Hz_BNTQhE?i_j{^*Sqh_1&_74jbzqh5z~V zZ^DoDztg`CZ+~)-TYCMLb_QR(e6=6_>hJyDuNSd>*)A zqD|0j3g7(|!~2)v<=eas8K+lc-71Y_pQqkY3PToz4Qxmo;byoiHqN5_pyJgMCoCx3 zv@JNFHp$rXmD*}*B5!56i_y|L1d&+Q%rl@{O}M!1BHD8nks*~>lK%sgmxW&SHlYxO z3IaG4Kco3ZZbzwX`Is%EN@PHwVnZ3Rbm|grxBa3bNcI~VTYq=#mEyKB7rsh1L*@@; zk|HtHpesnKYc+n^^y(37g}Dk930lP7hs-zVM|5mV*Si7=`W;e{ zuxA}7S-4ZToZbULnM~dSdcF-rDA=q3;i=%5Sk5n9IV4VFDA)QN7%-|n`wvhHMb;3^ zWn3FMjHj`b<)b2Gb$Ad7I3NN`8p0;KBxtZdS!Y()N$SM7F2vb_v2kSK&eUY;TVnM~hIYj&IKwF+&+Y73#{EUu{m9+vETe*zG^iD( zSTRB=VHzi>QvhGmp@3Xz@CxlQySng^lUPTuS0wEgwjc7#9i0ukWw{Z6v|v(kMHEX! zaSiJRKt(Zj>aJvGfUTSJ#=&L+T27cfdaH5d#?I53tl zsKIi_$^CgY+gMbBvX0c4ewDV4*AYvUd>sh9vzmBudb}z1K$5ug9EQy0)z-&Bp5xpO zgTuj)r?zw<1W>JzGRAe4vkt&+9gvi$R9;VNCfq}7Sw6^eeJqC=OSM7#kStx$fUFs$ zl2Of8pQ;PQ5G$O^y2b;|S$x&(!v0mGj~}Ef@H2=IFVl3e2aMGhVFv~UAdnd~ zKPJB|U_hWv9$ERQav^8S=JXi#gvqegI$Wl5suI~T^P%nf>SQ?j{zX|sxPxto@G}*V z>-QutWr&ikgd1tXxl>PuT>-UHOr?&`L!pEQ{6q zUkc5}YNU4`=G7ZFDKZgn2PF4~>=D5d zz5F_0sBA}dq^6@1@B4|<({z*VYF)O>VDco6?F zv!Tbl+##D^8&&#PrcURu_61PFTELQHeTtNm0xW99Zso;Vgm)bdR`u_>M*DjfZEU*I zAaa5=c)DOYE{h7mCtRo{BAy3hJ2AXf#PB_ow!mI-Z-`2g4S>r9oe_*w2 zb6efn`Z_?8GwyB;5D8~0ab<|Pv{Vea$P>G*Bmsjf9A|1fw747k(Z#CdL9Z!>Mb{#t zy!X(N-3g~i~k?Ws&p<6IsJ@FbbDECuufMjEJE$ytEA+zuiiUBuiSw6A1DJ&8F| zj+lAi7@oX@s1DlFmFX&zd?o2Xe1=zXj_ zyDMb~v@eoGv*cQ25~#ocu*egX+KP>y19p|paAC!*;Peig+6zYHVjNo46gO39a8Fsh zqgY*1M+%2KI7)Nq@d65z{a7^`IS3Shc!aK`A-3Ej$Gzo8Ne?%)kbojr&0!p{tO}`zLWVMDtki@I z(msckf~yX)@Swc&f>M^iE*aP~j}e3Ndf5^NG0!$<$ic4BLrSZ%5%Qtybn)xa^(|RYXd!OVV{lQ9vxRxy=(C*B_kJ&3SIw5#FOcD*ftP& zp?TD8a+e`UNA5p0uJ}XJ!9NU5ZE$=oM8;jqOTz3lJx*B{(ypr{viD&_#8k+*gEo)5rQA+ za!XE9IRUvvZ(_4}sggw~J*9eX4M_sZG017LOnF;3ta&x?lruzANJ?L*uql!DDP>V*E*$6wO?&l*BjBJ7U0Ur3@a9(9wcyX7uPiCb1J-Z^?#cI95!`A2EN@C4gJ{ij zb(IqG!AL8KDoKX}-TMHLdYD$j<5!nZ(l!Hq6pn6F&+CksvQm|&N^++tiG8<_t#Ixo<6TO6 z$}4A=bJiJl#W1KvVHc_7u_*@L{oHl#i|H4av2swyyLx35oVRWV=PKrURkq1vKL7^; z_J&dAI&2GhA?=6Nfsd$b%#3PQn5dG=jkKaCZM$ERKe)ws(4;CbonUV?>vJeTUzQG5 ztULAzd?v{NX_2dekg8k7gCw*?}$~tzMsL|pC6793U(wWzkKlW{$F|x-#?JQ>!a^}8eZPd-n$>D6R-L0 z%J%!{9m|VZ*+1mJ@X-G(Bug%9D8G9vH_zR0;}CF%3!l0~X0C7!!K1p?ZIimPGGkdc zMOS!7cHV%?M$Ekh3A-d7OATQ8)Y|qvA4sJ*wRKJGqvE(F9a|qtLJmZFK?Gs};_I@j zMs|6weC|AELYb1@J`p8T&wN;Q-=xY1(cCzc7^x8$1Fgx%en=;)8`cSXM;S=2$t6oq zd~6g9NlyyYpjzaDK|uG&VOmwV>_(ACYa&Z&!2N0ASW@#1;3!tNrCQu_QVf}p{MRT_ z6b)?!WwSvmv3?At#yL9x`THj-J!_Mobh~afI$)ALNl`cw;e{xJx_%1%YDV^JnkM@> z>cwVN*YHeXmO;@+z1G^y|NC)4>#0&-iF0Jufm*oY&{!6!N?wE_@w^!O`L&oQx`H7je@ZS>(pO?9mdY zuFhy}#%9Og!KPec^l+x2mHpkYI7JOipgr5oAJWhFObHC8e2> zV7#lF6?!FYr}Jj(_Ezc^nC^*iG(1||qNrTe?7s{++0aNL;Xv;=Ys=uEkycemfi3wd zAJCe{f~osZBHJbvU@qgr3cXjQL!Lq(yD zzo89=<{qnu1deuPc2VlW#qZu)^VInAIW}(`Bza&}DAi*gp0!JcT|m({-T45yKf; zw*shvUH%y|9;|>@Z4f&?E6wLE^j`axrFqwHGe*o`Qr2EJqr=7@2=oLuv(Q$v8!2GOd6Nt0vah}B zbI7|6!J6UP1_2s^tO0ep+nU~oy9p<$U+vIV6;(0;C)%dUdEBU=F-qsvK%z1=Byx7) zskF#D!7ns#%bmNe&wyyb-?k^s;TmTt{i6iiodkZBJJgUH@i~BUI|5p`Q8 zK0u))Zer!r1=XH|8r00lSeY2*>m+elmRZcaEwH9x7m`m;;{;qoLZdloPs-kiGxX2^ z&~k_p;y#OF2*BO? z(DH6M%U#)kd~oy-2B&O{bSVx}grz%0P-NYLc7vS|Uet;eA|Tt*DG4mPwE#Paw(TPQD(E0IhsPYh;QuK#e~OTN2WT~zW)C!m{V ziXIuj3VMLv%t^9*>&QS1uS$ZVvgHI;+SO4>YmYTw!YU)VWP(x}YRnE!`og1ilT4^Y zlRFFt8)cNw6|qZrbG2oA$p&r~PTTIfvq)tx?Anvf`ivn8V zV?}~7cu^6O#aDSYtp#0qvaRLsd7MwPLKM%jI$P$dpykw@1~j<=onfmPnu`Ot zsQq?SDwJ4^IjMW~9nhLmrnmJyo%+V_JawT17iriTGav!?8-UNV2^urfI+NO3)Nbr? zZ6aYz=p-{=zQ}E1)nnWDk3844+9z|6W=?tcad50bt%z(`(8cQ5)RE8EsKW)(E!ua6cKI$+*R*hO*v#3C znju?`A-T}ZhcGN4Sy&#WWjs`#J+nz=FqNls)hj-fW<~d4v~j6GmHKI9vW)G!Q>9H32Rus0*h+;5R+jU!6PD;3D zHjWy1XssUuL21ale>pOM-kf@!0a8#JV3(*+_dV!^Ku=9l#Rm&Yz%f^Jstc9uV#zrp z1*U9ByRRD&>P)hTjX)nPhCT!j3U|0?_&`R{vS@Asw^Y2oZQNAT1a z;pI1Z@3ZfIg8A*IufKf#Bp-S6`sVdF|McIGU-H-dEWCaN?$9s7>o=!oaO~tmpDh{! zq7P|b}(<=Dv*$hL%Y^A>Xmm%t$M_WfW`$A){mw2qo?c z!-od4_x1=uY*iu}BW!AbK#0%A3qr^TMk@|i?J4s!sLN~W2oLtba$Ew99?qeZNUWJj z?mlnMO;Tw$>VU*&NI7x<4c4XUSArmpVGFwf6MCBRuum{ZZBoUq*wpr|;yvWjw~8dv&mV)=-n>Mpz8gMUIVx_k@Ez3G$f>~vYN4b9eRsZeWrLR zv$%??^8wNFqpgt?#%e%n7uSR)(Jp23({&lltxmfuZ!4gM_<1DHs8`O9IU~7_v#fgf zMII3W@JnSwtskpnQrTDowDd(WHYl}g+0T(S=Gkt21 zdNtw7lKFxad4ItV_*2} zSwRK{#*)h5eo9%E45+T;nK_>M*3eo8DAOJD2h1^cKA`zPG(z``m}3Z3T2QJ~(a-`V zz#BwONdkNKQn$RKtxO10iKGcU1l#LI%wi;8cW3%l71?Y@5)`HX#1e2Rz@!;(Q{a5N z7#rMa@`zdN`9vvCktb;#9djYb!8&u_W-;s)Z?da zB0*RddI2pPF& z#UCDE&^p$ZiuN217SsRkUxpw4@Q1qj`pG*eXW8Y(_h0v~`aHaRe5Cq(`tob#>wNg~ zZFv1K3rc^Q3*?V2D9>_zWl^zy!2>fsIWLv5*Peo1_&X}H$Z0OTOlBwebnWiI3J^LV z%{80T36A0QiJIj{l9J8>C7#~MbJ?bVA+T4bc<2|8-S;6lx_!;9P1~NRu_3=&S5*tw zx@w$s>Jg+`Jb+A4*{wQ#;!3@OY)9DYitapp37^{F!5Uoi_SQ{@2>s6epTjc0d<0xi zKG6{d-N^@^$SH#%lPvXwI?FkhGiOzA6Yqn9Pvov*Xio6VH9<`TP+Qj&sYTG%aP(0J zaI1iDRK;c#V6V`>_bVpFU(s4EIyXtD10|#R3S=A7qd1vxNP2H`_S-BA69nzx9Nd~f zvE=&TO zoH2YbwZA@Wczso6aMjO}7?8)mxw~|cYqi7RFHi+jI(*A04e!rBX>7(dFW4Q)C~VSy zb)4)qyG=`U5vUo=TNe4UFwBVFh+3wT)1dJp$rgh(=9le8qL4(J&Ai1djxSr^w;sNc z4&)JsDtzQ25oQvrpSc=Ne^w!HomLzS%@EKvmRQb=cf;S^E#TZ?_^+@Oj%jBMA4f#- zRA~ZkKd;1UHYn9OAILUznFzXuZ3qDA&@^{p<*dGiK6vDm?$9u!OTfaiHf z>Y+wX#5`Au_b&U`uq8bxc&I*?f2eBHAHDn`uuy*g^-Zuy4JV~_w2A72x(2G22}%ev z!n=eomB!3_$S3Bb0o$#;=x8Z*#U=j;I2gJCvee;4=#2ok4XUKmLJK2O_-gAAV(*l; zUsuIU5M~tz2~|KLm$Y!uKtY2f*oYQHLc=nvultpubgRfUWEJUV z&Spt21cRtC#K|tBN^35ZZjdlUrz3d2T7;Apc!S-qs(-jkB9PSbgkAS$bo72aCN*m~ z^w8wMv}fh&@<3#k{1kIkib&8lB?^&ctZH1=H8Z9Mo@y8#p4pGSjdB9XGpg&|?ID$F zk7&=uT!tG*!#6CmL`h3X&-Jhbpou092oh5Vf<`_7YMyHPSV-LootbhwF67$|t~>{f zv=zHq?Au~&I?Nh?l0NwSqJJ?AV9a7610wojnb=SQIc8xI-;NB--Dvtzf($?a74-mn zlynYmm27i%o-Jfhq;@*>Wi6Qy)409}M9}v8_!Od+)_~|^3p;ZAg%I=nwfZjYke_aY zJc$LF4iJ701v{A1FIkNGFdF-oNn8YFkEE>^*gBjgAD^@-|VbqZPX)FSq* zR$Jr6cIA=iwdh_Vy&mxq*;0o@imQP=1B7JkD>W^)wEEmqHyRMHMcsS7Jp`ZE{OHXy zoe1irLtlCXo~7Erl>qD>a+}FmG8tk8Nj0|Vl6JnRYYu2k8h3F3sjy+VWs_8}T5V`o z0f10NsX2+^?&Z44LYJ2B?av%rgY~8fg+hSsAba`cjA56f12CFS^DRqF9LSLw(gNv*eNe#s-$4S+V1Ebc~9ML^nMrN)2 zG9TQ>l?g^%;H5fIb|Ee<5uBNBW5+TJcp8G8;rD%ab?cT~CMbPNt}$~p_(Av~nML2& zRQJ1|<`Dby@BTWxddSX!jbP_unIb!O|3 z6!{6r?u2`DsEAvZNU<@C2f|ctBIby43F?H_bU#+DyJf(V!9i3|gpjO6E;}p>3)2Gt z3m5)N0|PE301-N2d#YKYi#Z?l@N3RnlL?kM>uWFC{nydEMH zMAY<|yO%X1(FIMb4{J4n@MTzGPVG$b$aM*ol7&=EO_BBa9W>8dNHiCk*k8f+ir|y& z5onpbtqb46J-Xm#vDM>(o*W-zx!f=ql#IZ~vQQ_t4fup6 z?{eM>Cckwt;nKCBVUUgMEQp}YYX_|v`xRPJcdIESPuHIExHu3A%Q$7i&yfZwK*!9Z z)Oa_*(qZSNg&g!$&pzWV$&0X$YVZ9zjLJR$5g%TEqO z*8^nbed##dBFR+;Mx>M>A9+ovYf7^flLHN%YG1wnem{BuF8vcE(_cn5 z!SeS&p#AdoSI5@y$3PT+p;KPWZr}dw<*Q)tJ)z{tLF6getX<2~g=VaGU|}rW!OG^L zRN5PvcPK>Vgf-kjrbT4&)b9~+Vxw{0R0?iYQN?5fIP8IdcTz>i1GWfWH8&M{M697J z0&onh-7tEF_=Y5O?HTR6xF65P35qv@;)=z%Rlo+u=q@35Ul^INR3K{Mf>U zlFRLF^XophlY-rk87d@_I#Ru7IZ2i~0~6f)VAQ3A;q+&*;Jt94EEvKm({28eYHZ6N zej`!GS-sigubypUJB`X?;&K5L&j|YqhSOz*pAohoe>CZO#bg*>L*q!k4qP3r6Dz+M z@J`8a?1_d+-_nny)ePf4?rhiQfoMrt;{mx*)y8KFs&`CbCx$o>Y@>06`|)}A>6Oo| z9aS(~b~z464`I6BvXX?3lbrjFBUIG0L_hWDUMQ*3zFE#VtrDQ)Qbudnf}tDR6Ogx= z?~nn;Zlxo4c`Ok|wX4ATE`cCoUcB0wMK4(6B%t}8yk=*jdM7>NZ;F`N$|v7-6l=`l zIC{c@U&-g&3$O&vssTVS#xPBBM*>$MJor)uXz=Rgmz;mto=})cMKY?m&}=qqG8c6H ztkqVDuDK9qU?qloCGAuflvNTb`z({8Ly-JNL(Pn{tgrW6sGil5!&;nZgizx`wYyIU zY8|JY>8aFi&Pr$8=xvm0gZ|J8iRGGF6s;xzZn+Er7Z+B9Q9)T!IvE;?P?kJtn?SyU z-O&wqY@}MmMmZ{}${^?M;Su1wM3=pT)Kod{w>uopB=@^<8u}nN5W(e0k{z>p1T>|T zmODx!%=Dmu1`~f1j144U`qA4@PjCP3_2+N@zt_*h z+rOs<^4|vgegB7q#ovY3-<_T};7{^;^$hXA{Fgt2$NfrVqDX|W@t2(~--p~>65~JtLyXF=s61Cms8BOm(RI`3B zo45c46MYW05wT2weiBp_wGlL)At|N4OY->K#xh#x8x9lC__yILj=84@x?G7ruZjK*B1R1#71R(UTx0rvDvaSNcP*wr1~Qw8R9%VGdxfQ~KXpdE{TM(3`9 zKrIeBKy5F!W>3%>9~ZE{o+!wPwW^Y0m%}qj-_Hkun6avWgBwC~f zYX;rlJ6MRNYdrg1(Z>Zu9H$Qn3bHw3$)kT4peE`NEL3Pf{z7a~3+Kd&07! z)nJ@$XmsS?DJg|BpHw=-i(*-kDViz^UMpog0?|%NMJ2a@9h6Y~I_U_Q&GJ6u$69>e z<^qazkkn8eWVBR`Hzb)ErajIGk}sIYgC6pB4ZLpZA_^>}{nRs)`4VCSbKF@##qQfw z>bh>?j*Z_JDt@3NwCQH0gOd3m?7nsHsQKI*C0JP7{tkYuZMlyAJ+9aGorPG19_1ga zcO@Uzd(&=$o3caIwbu3nHQuE7*|jh>cw#K6V4Aqe<3|^?_3m1*D$Y30dFE<89o4*; z{Q*_bvRp5nullE4Q`tzRRzK*hPzM_|K^$@*ZW--p8@8_Fk(0W-w*igEJ&2P)Qoy3F zjI9D{0$qlzhd?ze)z-1?3I$-x=nlXdd)Lh)3{rA;Z4H@lJGW!o9ZWSO2ZLc! z4zFsl3~pKXn7Q~9@Q5{0`kA1up58?}e^38S_;=9LJ>s{U>V)z$+d z8FKyDx5fx;IdyvTkcb(7l%{3G61-O@JTqsY$0)Ei10K8D7^l=Z04~ z2b+b`+0QE+k>nB^TJZ`B;v^AuF^}@o1<9K)lR!>bDTs*L6V7zTy6X5u$v7o5+FiUA zIEXa+oTQcK?WSsv|z{f2Yu zQNjbGU`04?04n6C3G!WFx7+?zvRz1KF*c9*Tb?XVFUaO7b}X0V0m}nG%$f&{j*>di zTPvwbkQxSb&=l$90L1pG7CFPgv$nzpyCte~&A}y2 zh>-xUqWF!lnZRp_B!6>jZ>b?iXW}nVW771@I@XfwKPc!wq=>a}86;v`79jU+a-iaJ z1#ivBJ4jdXcOGcBk$}!c733L_$2(9};l5+5;2K-I$-oetp$pN=wUM&Pp~D-xa8?8- zsl!3|(FIkRx|dNNtHR!ew2!Js()=iP6I60a$*c{uOo2@cv?+Am-VhJ)9p{jEg{15n zTmgAPlvFJz&j~UzYGI8&#f9m_6mHc$(5&of zLKqorD0>C(DdsDBl{;#(;stPI{ylQhJ5~5uEJcv=d<3S(mBl5E_yxesupdQN4CdZa-|CKFz=vDFUD1>{)H+UorXoXeQdl$ZB#LtbyvM9_n0Qt zxi`Ld=`e4;(Fa(a2P7UVL)HetUHc@#z@jQjfUua<6Wri(=KvyM5@85HdiMSqa?|A8 zpaF%*qjv~#XjdouNCmNrG!M9gBp7g90qd>mplT{Hxk9OVHe{H}ZK#f+{17VON{o(Y zuzS%K+egpPqq1%J{VYE#;DRKrhL*EdON>NPQ57CeNukuaa#r^Xz!{_KErEDq^StjR zC({^I=0eyIi1Dg&4HnrK z(8}Z0m%FGMOcw2Rl9g|OABX>4U;o$eum86_lz;vD2fhYw?C<_sV!yqH?;rRlij=NE zi5~sWz(rO{G82MtUw@JR4ac4QFTdu^%SR!<{OCvfu{Ur3pYZyAP9`LuLR$z6Xg;@~ z@aA*$6sGQUmpcgtoi3rJB`k`OydOFfAGo0o#B5uqNKvZy^>*5p5q((F!J+mcHz_TR zufRKAmwRLcT{n;{;i&2HYn3u!4X$R7NiQkI@|9My0FDQO#*V5k9AXXFbeT*$dD$+z zzyd1xSqclnq%XMpNIPy1{A3*gYV*quWCbIR*%ff?b9VT*=WXCxq4$^fdPy?!7KkAY zPl9A3D|De$DlQ+v%s-ygaMmE+X+-?76D_Gj5!$Oa^uwdo4ggBWX3Wid&*B#hQ!98# z_AM207HCVuM1zR6-9b#Eh`L)GxJo*|F_xpz= z9uU@29pFxKj?KK|`!O3Y*a^iFOM~*hozaXn@*gxr(2aJ#Oq|5k^=Of@l;g5NyK9yk zFtO*Jq|V&kV|z(F+0IWmz5|HhaEhE2*jMQ=-H*ij(6gmY|bXv1y;%dKnSqTa;~ z_z8(So0~4m&5q(W@2C;Q4An}_o2)MY;Ho45#$xUQ+XZ2Ar3n<3q^w`!^K+<>0GfQJ z-26nnX&c`JtmRX1z@EVObtNwO6E)eI$Um0cZX^N?fR=}(3+oEL(TYxbG2R`9Stpe8 zHW;ZD6|i%f_y|FI63Uay&O?HzXiR6gL#V|Z?jYW&Cs z!@z38z-a3*E2q6>vB|Z$wtKNXP(DOXVuNw0%SZ3b?yMd?-Ur6j+OV|^hx=8MTXw85E$trYJM{%UA>x#Mnk-^pA3(6nZA@fzuOj%iy(_=u zxw^N|Iat7EGtPNg#YI*{#XZ`7EA{sGUc>*gzx^wkHvH=KQ+wS_hhIMU?yn3c_VOnU zw=b?e`42C@Qe&k5B0tZN(`dGF>hwULO6qPTo(Iw(=78hDFj!K=d#Z88d)2v;bF(Xa zl+UCVhd!qv5(N)9K=nw4VB1xTaCXnPnuM|~6jqljn%cBlbz;5E@J$L1R#_JyT#EjP z1C&MI8g?2@$v0UQsRN9WEnw)Oy9Vrn@_2R^kB7mBg+z3I~=KUpPAceGd>ypSdmGL(P8HRNeFgp zXDCp>VgUXvmPHNCP6LDL+HKrUa0k#hYQYjNJPgQvSwpg|6`&gD>p0Z|I;XdTo4CRClV8<8~t*mxeM-gok(OfV}P$#vTv9 zM4pT5RTcDZQj$Ud6Ws%@~SG#~E)S@M-8Kexm7SFqlEsof&%Al<65Ekulf<)A!?QXPq1Y8@Z|s={}yBMcSh##S~$J_oJZcUJf(MCQDq=}-keujPZVu%SsEOK6y~&ld zT022Mi)4#!V3Tkiak5*JFD>E3>h&A0SMDWjYk}lWu$A@ z#toCk4Rl-3o1NXfwCm;s3<thjM)H9%7g0+ zRNldBy@xVL>A@j6Pq_EA0*qJ~Pe|!#jeqdvS_bduky~xeEeL+fGUlI4b-AtR&_=uS za4>2Hx<6seO_6i3DxS4!ws;JEkE7oC1n@NG`E06phw5d@Hr)iRL0S*DfT?{+axo$2 zrg5@Fb9ovbhaNH%H6?{OL)A-Gs``X3ppJIg-yLU^a|uGndA|xnVJW~Zo`&_Nn%Dz} z=yE&78n01@*gPDP;dX~I%4%V11w-V}M@nwRU*#Pvr?PO{jngZV3q$g8Q557T#k1Vd z9SBOZ7r@%_+e#O>2BBrAJu8WgmQOH-YS-s0N9z!WEbIfqeOTqpFw~Od;29mRm4YMk z+0T38002zuXf_z?S>_-=z#91)N5bL>;kAX;NF+-+$^AcDd45$>F9=^-(gyT~r0H;k z#-?sb$ve|=4iYLMOK!fJ>&B^`*?Ay%u3O)BU<}tE#+{mB-zr9EXs$<)mZka%mPUkVK4Q7NZzz? zL_RDEhj!f%FoHN0S4d#&_iSO-NfbbDm5P8k2(E)2qdPpJld5jYiE4bM%Iy2!R)!~L z5vzf>U@YaHE|NANNMqTZsV)YSXX_XgFiye05gtRsN>q({Mp0T@kuFvZVoby_`wh+Z zppAA}jBk_#M^*o4HMFx3Beeerem`V~ugg|r(6UuD}&R2MST6?0Fd$DynYM$l8;`#lz;#5 z@>TxMH?Mzw{fG>*H?M!>j=b~oS$O@^ajgG0FMoRbH{s<=%;ss330TYH^zh!^LkD)J zr(%2x?hA#49)LP{Cf>n6Rc|PHrkE5YmGH@tf8FcpZ9oCFk7(Ad=R*VWX=;|h2gjP` zn6}`dPV;?aEs2ADyPWA9f;^y>tO0;+1GJ-f{&e30Lb1$XLxq&C@{xlMUXHL1oVSp z9o({U9g(TN{poixO&vL7E2ed#6=jt)76GE#_hZ4~srOKYzvQGzZf z{2EoCiVM2rwcNBsvbWU`r@(nD=xO1Z-;XCW z*qhC~ffZXS_4TC%p{yK9u|BFKRPd|8^}|0RFX!+;LtJj%#T)1vYWpb<%iEgNxl*;Ll?A;AfA|&`@T4g=-b2NPLaaR% z>w>W-8lsXAocEp%BB;qZ6rIw1-3kQKy?6@l4q-!Km9K;H9Qk3uwuS{Y#6IM=AsE7Y zfVH#Q#*D2idR;fRx+grP?zuRk+>m(p9H6=6U~?2L*HgBMhkLG^5g(Dp?m0sl(N0?u zou<@|Q5OG!gUhJ%_q-|hNAn&x&y=9Sf`X4;0`wal;rnCxFUbF=A5cy^^R<8A_46KR zfA2i(KZfrgV3kdZ+w0eS&EGGPH@tj>*Wc;u8;Qi9?BUmUG9d1o42b(YfA9YtUbD^P z^Dz^AMx4qw=>uLFG;WZ3%EsF&H*_Ef0OS5Zqkb>9?@Cm#r5P_z+9?`e4F+#iDt{i!W#WD+S2xW=)SlR&G0$+5|u68q{xr4$}t-P#@;K_8D^JtV8b)4Q))E^_Y2wb^uL$e>c=MOHoOtG)8c$bePIm3+_Mp>oWcVzp@8Wa+k)mW?5@uvLxc{R*P zoh@b=&bl@C)wu7bhOo2?HQQ@y#DK{u_sn7?YmX4C-Jx!g8|wsE6am}N`5~K=c9Ycz zjeUoV4X*7{;VN@Got3gfR5X?zgT9q_CzEAr!RoPWo5L>dp^p#4S)+C)8|YN4ws44* zLe;1~^(0?wQY9r|)(0?3^1xw_r?{cKh@8iQHL-gH4r>F=+H#{?Jg6+FUObb11yDcB%I zim=I+Zz%|32a(3*y^WoywS}+DURpJ?oIp3TQE$MofY+p|ih!D!r<=tKh(kustyaLF zgX5-wSL)lxBT_qZ*t@cTdqwL74{;bcoCSaXq=G&NS2e(!nD{I@AmBD+17Y+>w3Do@ z#PBbW2XuJ((%xEmObJCo#lmheM736K%MH;_BrqpUaR`r+1RuuTY%6CSi{;(6@(@uh z-raL;DId7P7WDw6AQXG69-(eGADV_@5qi~HUNp=hZk_rg*#+?Jaa z$H2`-RLHC_kSy(F2UKx|m1bWU$O^U~>@9EIZiA>Tqnf7Ct6z+YTYA3& zKi7}df$ePZY|OsujC}G(5kj7~(*y#QExkZ@m%x+f9_#7Hxm zQ-6`-CDBJlqG?u9Jy26+HIRZaR_|!(x>Uu2QvaT1)$fLK&BHm-b?MrOj3Z%;W6bHS;6f@rG0<#KrK!|gHI>SulT*6##aq3cbiB=DU zq{g-bjC$Rm4{EHGKbGnm42ow~SCAB>`4gteojV(MxnV3b`1 z0*fulSq0u{@rRuIrVa+3o5ex$quU53c9@B*ksvVjWidY}T7?!p7J6(PoFL>`s$s2q!M?XmBG$E%~#15?1ffJ(0LTAg{!{ zg0saZK&S2TMS|oG;j&m47F2E!_agCUniPIyrx#&vXxLrAUTw{2@Nu6Eh%_F`@>M6e z6LTF*00T{k;K8QRSgz;OMD@okqqxe4@J=M|fnM8_c&0-Ib6iV;6?*j8fk(*d-L#(G z(~CR_vQ)Q2ZcPG-X1F4KDoGXEtEH?`;w9bE_Ea)7mB@~gbs#jOjAY1~VMxM&1(2M} z8l&~lCgs!EKCDZRWZrqK$2*HOrG6qWNDNj!6PqECBT)|FM=lR@hv~)u0RwwQZ!6}X z$7;3WBE$jOT9eavrDCI8@|@8Tm5w(}&9Zf(FYYD>9m~l)x8C)Zy>gp&qW{#XUAsC2 zuB`5qn{$a!+3HjV*If$=pkB`E{ABvd@=+mVB?)CWT5U7Pm6%O1LDIR0Q)`EG1N_-K z%LDLsWouJ}p`iZ}PC%3lHcu_xJ-HtTmDdVv4E2)oP_%hj7C5wd9E0~n$os|+C?@-{17^bU=^1_fOnen!ZB}0$f z8k$i4qOYzLhyjw04|Nx{F{5OtQI$Xy$l@39gmWXVE>t!i{ApszKqd`b>fCj_j$Sn*2UQ)`O?b7IAguFPX zm&#~I^Ml}F;J>Nd<(Ui;?`Zvn^DO!Aksh3$gZ!HHOpipleZVV`o3{hS(psYn=%J@H zDbFoIFj2>Zev#|{35O0yMC1Qh}_ zERINm8!uXyz(8Bj1-44N;8uHrv@7@U8HFV96C89(T0LO=3RO>a3rtFXofo&|h4#oh zzJN$PVN2*<@@15|<$+Re@HQ+U?JS(pO08=jMn=V97Ip1lBN)%Ww@KmE0>s^O{5aPK zd{cy1GF(69fqh7sIq#uABBh?3=>}}M1uRhtu0%y#Dg#%eNoA`~ifXU%Y($VgtUPzkC{Ae~GT-pI(2vcO`u%f7MT3J~q>$ zhf*$a7h8P^=-E|YjBEPzga&O#Z(CKY2=`RUjkODKgh^tu+*QN@-+Ej!mAJs)TWrqzJ z?d@Y#wMlz3CPONj1171Y`7YiOQ%TB_qmE9wEG$SQBOV?m?3{1eYh~f%lGfeI_Y!z2 zTio9_gYM$nh@my8)=U#zL_!>p3sP*$4)<%(tAlYL?m|_#*#&NzQR2RP?&5Y=vG0^M z?RR8vygguIQ#UZuo#YnEP`KE+A8#C#gUZo;1JMGLyujZgPdfOwxlNYNq)qmZMg!CCInhY6PESu0j!N35qOiT>?!G!jcH5Z?LJ5b?|t zSe1Pa7e-E5q~`G*e=W@A=jsy1j;VnZw7rDg!WlJKq|AG6a-v+aH?=UfWYQ=o)^ z0L$O-L}KoFJ(ZiRzIdE-5R(eW&F&;9>uR*Oc1Q3nZbT>@xMy$4A{>p~7NERE7wXfl)_a%l4(JdN8oV4#lL|?w1K1tb-(UoBbuC7A<&`1qoW(*ixOP<4VJoAN!g2&rz~8E;`@xRCj*3o&B&%F- z2IH(~$Wck0`$F<{Hyc2&nB)sIx*zBc-^lAlW7BIcNNZZnB|&`7L(7cVdHdPxpI^R$ zWAC3|{*ZU%jn7_wo4@84uOEfik56wuk^=izL0-PW=pqF(XMZmyGj`>g-%bhH{ z&TU?fAhThe#ce6WHtnNvxHL1BlC)jK!S-MYJoz*e51DlvF)VhQUA?Nd4YwhS z?db_hVB@3#zl)&5dim<|pgm|KJ6H$Tj#wP1OBO}TJ@j(-`qlC^d5~e4Ou&v5t&`;B z7L|3J#Y?7scx>Vh?7_$;s#~lpc^?QK%j>QZBuc4I*f~%Oz;Z;S^#iekXR9PGZ~yCe zf1MvL2u@$aMxS0Z`&~Bb8fSEq4c;?0RCbes7aTat3KqG&(gL|^6jJ$MEJG_fLT^>> zf~3#%tLIcpzoN*5d29QuYeXH_3AAtvd%bao18dxA$|ThOe%r z87dSR?S!A9?Xiq!a#6DwmB-dT4u|%-RIYNzUfZdJHBk=y#Swt#X*tej@NJM3Us`du(7UE|_NURT&OrLT= zT>&`49YBT59W(G1?3nWzBETFFf)Mi*4moOp&w)%O8rr!Sw=NKuQD7)x>8-@RL2=N< zSmUp-tT_{7yI81tG}eTIuwTeZug;Oxu$Y%hHYkdMh^hj7nhLX0M}oU5#$>ht`U$^0KKy)f8s~=3zcX6%=ik*7~IJ97cP;44O~m9mx?a zZb$j^+uBE$vTLJF`L&f5!r%S$FTDnCuw?$0uMV^QXW+K~Y}5M-`UZYM!y@c_92l@a zhkNfYU|;m>@b>Rs--nM;e&=srK9T>w#?epY|Icvb=d?M(hWQE>l4CTm>{~gEe3tV= zhoj90+t`e|kj-P1rOxEEl1hWHZT3+3NyF{v>>fo89c*vm2)tVW%Pm}ucLv&fbA;gB z;e!mpCs)h67qV=sk_HAe4C_16SBJq1TpOwU4)B899axFEUsB&p)i0B3-sm(El zFW3!92YwTEs<$xdj2O3_+>f%Ew*n(so)(u8uJYbERLr(#XB1jiQoXa|y@8}|C9guP zK->kiHNo^(o=j7ln$Swf6WX}SQfxC?xMSPcS>pV-Sa}YUgQZmdO^~17jOCTw7*(`* zZ)3v?awt*7Efdft6||w3u?I;PYqXJapzJ_KsQ!N7c-o#oV>v&NC^V6bn47>*ziiEx zu8%-;K_41K>J^$=vYMyIa>9tMp$K57o_H4SOFlGEmeo%+wL5WFt_)?PAM&}?KQLV6 zZ?(ui0>S4yl%K_nIj{wBMTJ0+$u(SLF^BiB-sEYC&f0CF1o3{i#?8;Lq-$>RtKCZa z_Cj0*{!O^YPi^7U;|43tB-LW;_5Fh^+-B^F{%F8Nmhw-{{|JG?G9Y;+d*4wOi4oKr zlBm(NS71!ull56DGaC7#rB$}FAt$7QCPd^+=ZvcF0m2QKAf>5F0~ZwPaj`D(Id!Pm z-mUCsB?WWHZPmSG7*f>(h_K7TWGl~Srv%9wCZ#rF$|=QM?s#cFM+Zk%j|IjM<2*OC z4TNTx`#wQ_R_f>z%KZ)K;-IMDBWJLJi_$p3K3>j@%3TjTe7u}tY?}@W%Pz05Du<`avJ$&eI$SUZz8Im?U z1F|EfkL1TzOe2lOG8rX(2xH+Bym;1jC%fur*j+;}?i8yHO@(~8Qr)#kp6w5Q$Pu16c59FCR#O{~@%r zK6&}(<+pD?{qC>G#{KLCpy9mz{_C5UU$I4h*vZZNPmaxdhZG}^_`BDS@f(QDzW{e1!&*(H>*MvY}n&X}cY^q~%?4UMg*j`BpSJ%q3!ddV<~3 z2qWS|2=Q|w`N#slJiI1lg<1M$As;Nr8<1aj3dt?agl+^I@37`@ssvnGUCL`Y%Y$Kq zaPuVO09=-^^Z5k)rhS@HyX~&3DUTQDeZWYzj#-_96o#KdYhxsQY8v51m9$)60aBrU z1`N?rT{q*zHq?aC9pgFl?bv|I22e+r4<+2@a=@n1j~(bRY}(*-SmB_PX35AnxR#}C zGuce3o?FOR+1O-=r3>j|{7^mA8)9_n>IEW8AYK;8>`Zt%hgR@{aM>P)7rKn`D%JHc zS~aAAtR}4olzsaQ`i&84+XvO5TUE0v)1y>hCbC=M+6sq6r_PKpe~l7A(MV{O%j{)0 z;x^sJYAA;0t$Ez0u!~7coSnw|tdf?MrvzC#ZEw{`iLM=~W?Xl%j4*!hKT2i*?$@T< zPNJ=Y0-f_-?W*cEhF{8zclW3a09-hu1_j-f3(sBlG?UyQ@8@PZ0AjObfv0SHLODyh zi{~^MT@KBZaamv#HBynR8Z!*O($pp&l3ynYZ52`Rqr1WAtv0=Duu-G3Sx^&Lw;k&O zo9E%-m@gGZGZk_)2wVj#n6kkxdFcQ$Xa+9cEry|D+;a_WmjLS3-n^rr{Qq5Y;|BO( zBdd|b?Hdpd5BCiy(Q7W-aU;W4^{F4+Q%fFivJZG90f2J$&ov#XgM~J745+T)8vq6D zK~S``#Ae6Z6ma()8R*p#zK{(}n{H7J6}Ju;v=J(B;0>`k4*Xf(>^fpoqwpil1^Z{O ze|-JNAR+l%9(n)u{qXun#LDMqM$Idr)ly)e?oaXoO=<6b$5K>NJ|o;ohXpF#r{C(E ziuxHM_9r|BOqFk75OAz~iz-@Yac8T{cTsK56K#PX(3t@!Thd93nzzUhJFd!(I+wQJ z%(8TtfL$)4kpO#A3J*m&)pDcR*CR@D8)h(M*8(YcTJ9)wypydlRZ2BB#y44)4$fcz zTx2}w0pYx+78G}vj$7a%yqgziqV2nO6AEy1GLh`J9d6j%`hx4(hJPy$))4Yq7^+eI zUq<#}vjMWCEqReukaU_yvUkg4R}RKfR+U3}*B%9S-Btfu)`!iGYMUacYomp9jQNcw zg0r;3gaS2%4SuKXi~@is3sM{~$nHE`K>VO!6Y z&g`irGlb0I-TDpTU-huioY>6zlcLvAYG{9tLrXnNNf|JtzwZ89eTzdi zmbJW}8u*L#s?*1&JjA)+yCJJa)f!m{E>I&B!RT$6MFs+wJ2hlpA_Y3mY0=Shnq@~G zfU}t*Nc9@-j=AmP4eI>xW}Yic6)nk-2!9i^xUd6Be&r4~rNWq#NyNje^Eb6mzH z;litf^S~qplbO>cozGf5RqO%KeR4TS*Q>&N*a&`ugL1U;wox;cnV2?6phAzum9~R`uvL5E5~~hJ|qk@%q3`Jo_7J0bVhnD%d`Q>LB7LTz*Yh7f{NmiB0Tn)^*}IN zzDo9{dS=1hLY`n(x=a6{I7p?nF*8G%IhmjXp-+OgC9~<(;9TpqE4f zS*n`BrwSGNCOwt62N1V+YZ1k-r|?9bjt(=>MAlZ9C6w|`lewX}*xoq2hrl3RFya8{ z0y7KMDzN-S9{6q_awNr0Yahdzj%6GrNhZ`?P6S3CBdkk1W>3)h(#JfcCyv+(Xon$G zS@%J!7H>^Jn49y7G9#Ps*%3V-l%jzOX3*qT%744aHdakpYz!n6pE)4_8aZzveQ9Z- zdDS_r1l;m}1c>{GWRfb@3>h1#5_6<4lV0ZG?xqREEjIpS-_pQCkf}t6N z#8-o!=+Hf#a);B)46q8%q4cC84)7_cu+>WtnDPjICD&k8)ej^M=g8FHT~7%NcL8_l zp$$i-lZ1I4r6bg$?^wOe^jzoj*MbgUDr#Gom;5`y$vXT%jCWnbNfI#JTHy1sa$f4pfCF}T$hdL zR28(P`+T}=1qfkLuK9!J7ZYjoM*MP!9YiIfZ?ckt84=ffNrGWO z>6kp-WA{D*fZ^6v+PGB}rLuj;Gp}xOZYh_kJeQ%C2VS<%;L^Hq4(to~i{D+a?`ltbnFh$ZrGimPDk>%`1t3J#N(l7HK2hGBz~mm`f-T zT50H&WHojS$VNUoRf70N0ejb;h@%Q5b>t%mwRrUR0EhHOrMhkRn2VQP#DaB(i#P|< zrMfjN7zFJmkqx^2eTlDk9vO)FBX=PEZO!C$q)?&bH8M`)4BLo7lBj1>=;S^g1d4Qy&af&plTL1zp(av0%eIJt z5jv_IV7gfOzbS2Mw1$K1Y8R|`nd}8K;gbT7u0RqDYb)haDJPKT#z;65oBV@fYpGfv zdoYVycx7aN&3FM9h9tRjm<{!*9_d}QoH<5w>dt#1*)q4Y-QK+Z`Q?NB@BYqjUOxOw zui?M<1$^Cq+Q%>75Ik^j+kkym#s>Z=y#4g$ccxSF_OsXD1kMTmTX@Oryyv6OyVTm_ z?n5i-g*_rDDs26F3eDP^ofcX=5S*mXg`zbZ@RUxLZ%KWYW7J&-u}M`#T%Zby-z&R} zko^P>6TS=amX3I1U;`}&}U-E+DleNn4sOCkVvr_|2^Gj}iU)G~8m8X}14qia zlnx{bLg;KW#@z%?9rZ*Z4W$T#2QwxW8e5J{4p~D8LPS2sdeRtqQF|Y3X(S}+qi>fI z_bze1xoo&BO}hG9vH>W8H5TO8D2Z>9k5t{rVVV>bfv`rNIPxHNG-NT7AGu1Md`n)- zXfr5Tv;Ywg$V%#ymEj4geco%@PO4fYc@oh!*C}h*#?5m6_Qi3~vR!wEWw(ix->vfz z3*19vDwF7lpdsQo4*3Z1^+<199d=^pIZkyA`+#nYj_kk>?NJthEqp3 z;0`K$6e-rY1g_AED~ zmpRQiNmUcF*=9ZxyYs=bwcc8Y+o30IgPFO*_yvM3##2z8wamgrW8{3$F(1({!qEa$ zqWog-IK|JOnOcQmAG{?%)mh;PI*<2k{3(kS0bS>b%zOoaI$1#$x)E|{6aH!K#9@}Q znQmzjY>7epLkb;0quAWI!l;#UX*xS(36~E6`bGQ$1lX!%UZE)qjFPz!iU#P0B|>^i zesx{2MKR4(|a( zn1}kmmjAyA?+o-Y@(*wS-iT_?cMUCFvS!0F@l@W+Fx@RucW_e7*`LnxfdXr#IE#Z#U#h#u-~Bi(gaX%nb^foa%zYih#2sn(^Kmm|7)<^a0=B1 ze16#ZgjfjSbLjmR!0#nocV4gu2@(AxoGZFTkMQc5N7k%4n4R71N>x%cJ9T2R>}T#v z-_Xz+JT9+lM0(~?ve&NKgNZ##n9Ki9*PAU%Z(V1C z_xTjtj_$55m#qhIMVBANu>tG^kco*HG7mC36lKeG(U*1Sin=LNA}LZ7C6TlSN-`r3 zkKU`-xAyuL@=)bp;(vfV`R9OPujw09+3a*t$H&woa^2IMqtq@DYHCmI5+kJX9&@yF z0&+vc*rPMU9yeh@q@M)oYto{hHkV^?n?aZu6;{J&|H2u&O;WvlBTFLtC2$Wm%r}NQ zNnvLC1lP<1B%lG`Ip`(K1wTi*dULeF8Q|oV7MhTx1i{qYHrw+GB0yspBXm{<_-_Qa z#M%IowQUtBKjl7Ucb1S>$=*SzJB6U`7ISRYQJMLfg&}H0f&XWC^D)?dt;D5ACeZTr=BhnK56clU&C2sX#SoD_e07L>b1q zJ{kyM3_F)049?>l0-eFe!7GlUhp{r?k9ij~hfGafpN@W!l%(Nw2B-O{;4SAS+~lt$3TB`t{}-f zHN-J3W2)eSHGju`!}lz<-QMGCBM0P^;q}Y#{~o(vy?sHz!_SXLzXV;-Hu9sNzy1U{ z#?R$>*+JwX^{7uH9+HodBe0jxV+u$kUi0#Chq7oom}+;akVw3OU*jL-bmTF$%i<{(gk4=nyGRJONVjRpOOkzkfMX79y5*=f<1bCERJhuGSr>TxR$MW zZYS!@3K=!%f~eQe1bxY>d>`eyNGB*gQXgFINPu1sM=q4_oNlNwCQ%81;`nx!=$*Im zde8v3z6e}{=27KK28sbl;&;>UOyFVLDGJ!04*N3HzZgVMTR%ahtVD@VSFc%{${R5Y za;{YZBkzt#DSSr?oPp)_d}yRAW{S$BP~4hN^5Nkt$R5hD1-D)s)a~51^%An@z?;IH zC?q^%-f~=#7&=JuO`O6FC?s1ehS*?*&fB4{q%L1b=p#l!&lq&)Fr6e>5ZXf4>7d zJ{%5eTBJHJXD?AwoPAsxPiR&mw0rHz)XY!R>0MR}>iS4UtS+%s|T>Bbe3H=q#8k+s@96oup{H{~DbBN#6algk5a zi(ZURivTERI|f$*;36qh4UG5;_y61#jV|Fcy((4!A5yilY0XNKy}01J(3CtLi$K8 zJ(l*cwM{cx8hzRw+aKx!MhLyMb#)#gaD-s|(+6|&7A0_`J--OFQrEB?dr)>*f$_(M zyAXy_j!2s@Hq5&i8CVCVOlRQg#v8}?Xl%8;gUVdRJhf^rafd3PCSF2JHS^}zsWC2&5} zCsR`EJ<^LXZt4#MNo2k$hV>H(jM~V8{U#C?67`3yR!?l9+%n5DbEg|izy^B*Dn-R< z*x;a&g9SUBJ=#KoHD0co|MFjGk(sSGtd%btr|&*_`*C>vS^h0xfv=y!Bts(We}DV% zyZ5(cc4!-P;IqBplrV#q|TH2uwroyWkq}K!Nb0G!U+eJ49!(s zAs$X7UpoOO$l)iDQucf)gdvq?J6>6UFLbc=8k=XbOqbh+L3M2xOA=(KY!+2^+1S=z z6u^9v3w$HGZ6Ip*HaP^(i_@Jg^{eWOcv>7D@0vgRiM}t;qL6OU*4-F$V0=hLV5u+=Y zwSzNN?>He7?vd4DmUaA!u*?V!h~Z4jcQ64Hz&_7lmpU_UN83?O!I}V9W8elMs|HLy zJVuS+6-I_~iP*Y%MzLh|emg@2&>4b~{`9Q9&QSUzuMZ;)5yzo$&fpWC}Ck&L#}O-+~cXdN5w9&edDAN zz`ib$eISPuWP^LqYt2Cfas$=wNeyjUeq^u;D));nM@-$|y)ET?K-tv;4C>gwHl4BT zgp!(iu#pXggmBPm%fKkA-b6^fp2qnb8Rx3Men0ec&`q*!eYv$~IxvHonViH`Ns4nP8zBl|n_B0*N92mmyLR&JIXba)_Pm><#Hpad#F!V-~xAROo) z+g0f_w*9+G^6QtR8vwQ=%yk=7^>FMELp!i08*rXtP?|72AlybC*(0rFbmtV?m<+ZRK5J$sIb=zSXiO zKf28-h`qD3u2N0#*nUdYvhlX8UnZ}-p>lbD&B4aCXX3S8b&icW*7|@n&Xp?cci7nF zO=$RpqhGu#Qw}Tf;*%r{p|-Ue;nL)mB289|*Nr7Y9bQMXB(|^V5!i`THv@nPF_&er z9(6dq#&ZmJK7`h5K~@5SP2tG?t-$(*V!7o5*^n?AX&OV4PQf?EY?l1+F^Bxecy{XC+@JV=62 zOI&zRwNfI7&(7u2y`mzokUf@9o}D_&3(obK+CaU6DKCtNOSiiD>W?&BS*`0uVCx*P zPo@)^_u~s_2?K+?ynR$e0|LJH__b^|$-cI9P542DoR{Td1-+bl8w&UPd3?#r`BVe% zpF30iC?R9h62Ky~>er13$scU|7x3Xm?T-3@o&l(`pIx%iLXZ2Y50`i?EPd`KpiAD3 zwMP}dIwrrMZbHZtF0#y2x~TJ9IBt%|j6iL%i2zKy&aDhBbH&-dGQP`#8w{PoAb-`x zvXQctGJBmjL$Po}zZl-x;Zhx7K318HTquO>D?Fd3TyhCX;ULR8O|O>*X<0;<9TM|s zT1h&cpN-D1ZFL0hhh>+)sEvM>OhZa&Qftppg|vh}y+n1ee7cPikTj7fgWLveFod@I zHic(7wT1MS%`!3GZ}|hx`|S zYh79$OAnoG6yQY*|7`gi!JOT4iIT>}2PX)Eb*0?%r(zk*);fnU0B>D1O5vQDcSkgq z{9`&-4=P_tG@DCH0L^e^j6$yJb$a%Swr92L(Uh)?Gi1RD@wFgx;|JldpNQ>Wy_uop zSC}Y6t^Lcl&qCffefR0xhpHNjK=qXh$w{2rfvbx>2x}TYWdllsk_y}@_IXcaIo)Hh zV(hkc@cpx(GRL5>a|=}y(wgd+9gk;Kc3~tN@`{^yUbDl&2^QgK$4Z{rxp&AtNwT$^ z)?4PMo-(MMH_STr4ol7UOLN8e0t7pdz?+AdY);bQY0Kt=XVmhSxJ&L=bG+QC&Nem@ zq={G1z+_=q5V4`!>}A7!FPkRNlbQrlw1RTkdlXJ*^Gz@V;Jp(X{sy(XBW%vNumUV08 zfLojToMo#c1`B5ZEde+y!kkSTs7{%?6HG&{Ttxp9(jH*|(8rx# zT-jV&PWxHjIp@qhM3+dX2h6L|Nw+&u)>2z62PYkN)0Dmo2K3EGsoOeuy2yJU6HQfdfMy)Fn3GbugSUC*Qj#ASIXJclLfgx z1+QvB4y(60--T!cbNqw>scj7vRueXRDpKolOR97E z=AnJ~5F5?r<(L~7OFq3w_&(KruwiJO(6(o2sZ}%8l}f>Q&rdrenFLoMx{0);G`KTW zwW0NTHZ&MK%eBPb6_`-9`h{vYo)s;w7}JJrA&W5(8dhN(f0a{5FX*gW-1=f8m**H* zOhFoH-3}%0QtJAXGGQJb3e|xu`8`?UQq5k`faWZdeRm0D3wt3z{5X}Q#PC!uS~-=D z+5(za^10UG=u)Psmaes}!?X`xXCAUK7`U#a1c5HwA@ra9V4*_|cSi@Zs}Z!?m$8zR zHG83?T^(G!uJYg?Av$DZSs%e+OhF?`)gG4nf-6Ft6$OOvb3jCt1{`jOXnTA-m}tlB zy+B-K4(7y%wR5parpo#G_Ne-|yndYb^hG#R_Q$??{f445`4#^y|K^|ZTwv1v z*?emsDLHxkC6wn5&~k}Oqbx1=_S&MM(K~RwEuM13n^OKyunU3f$2hn(8JgT{Lxl*$ z_a)Ul^)X zp@Kfo(1KG_s?h~ua%o$&uz7ZuXL%8{G0G>)%5iA{;X{5=HfSuv!Gr^Cbv8p);P$=hgvn9jHPE+@2Z!lkl{2h%fkSBkoFzbR)#0GrjbNm4 zd#D}vjSNd73>POT%2`6usavRR>QvV&^iCZgSKm9YSynX*PuqiGN~^@SE6AHjqOMRw z&sP}CHGMh1Hc`EsZ3n|)!&!qf-KvT#gSN`z#d;(V8{FO;iBYrBN%MT@KehuX*Soqs zS6*kfy&@wzl%y?su0f(8ddsTIK-^WM74yJ;@~q;@tYy(*I~0?#8}?1d!zKdOgyoJA zvDKounkquX=C~CwX86Ov(*VW0c-F>qWyPZ;MT#WNI~~5OsoU0C%7DRTW9CS4>ssz~ z3+r;5hw<3V*jCxBWySYg^$a@dv*P@qDiCFK_@|23%>X&14QKhdCFBxK<>&eske1+q@2t*2UoSD7_MSMtnr-5Cg?pcl0-n!Cs1u3lYcW% zOQ0!ANvcoq`WkhftIwlA7zZjJR4}%5vUWCsk-P%DpKE%u2$k$=n`=6{s`FdlKZ*R} z5!|lTQ@=n0gZhAYM*{6`S&k&TN83I>6s8SI@;eZ3ZjB9#8XayoiFzu99L*=4z@i1} zp-44U9xrTJgL8R?TOkyioOF&dAN3syYPnoYm>0_Jv>`RQZ6e8LAd*q1x662nHQtKf z33}jT&%TH~Haiwc%2TO7|5X&ESn_) zJ(c@WA@!yLlOKYV{vwBldW#r1nT{8b=LC-#Gre@6xe_jH3mgX{smBY@aFZk#>dj}Z z;~{MlgC#q+Gyw!4P)>lePlG#vB5dAO0)wtH zI!l^arjUOX;HS&-z+RIJeZJgrx+m~<#5Ebko8bBJaLlGOyF z^zsQ8?h_y zSW*$^E%k>t0x(@0`x82&_lBzV!*~nP)TOE!MpexT4xM39QP`_TrmBH|nT?*6jvkaN zVGjVgW}$X{vRJGz#p>8slD)E_SQx%#+^w*ept&2%LUkh~!n(_;+Lz+OqMU4_l`+{% z#ilM%6$)+Dte2dF&MWX(Sxo;HHP#NO=;~0g8PGebyU6Oe$`2^|1d19;SOo`fW8EKT z0P$2q@W6?6262O|Tx%WjLjpc`SX|>;1uahM1JUv}kSw?HSw2b$*6{0sOU+(r!rT&? znwh42=+w!_*%ht*IQ_t6;>=P-hrIZcLnnUq`!}nRWrIJD-+se7`5oo^o7d07(@T8u z`YqMyzRi#R^zFy5Uju6P_A&l`{WxzUe*c6e{D*(~(c70+ivO)W^!EGLkL)38)X2ws z{p|E;@ogvK4B?R#B^p!yeWAxl*68V3hC@`^HcKo@c^hQUL?rE@7aDP!`jl&N4C8edO< zj3U!x@L8H|T^)9<#@~lkREB@si=+W2pwU6COKM>})+eWosUvmZ&^g6Cva@s;J@>LD zY#h>yCybmAr*qI32uv$^A?0)L@l5R&|nun(Cz>fALmtqP|@i3?D(1!AEC%SDwT+>hU5hQX~$Q&+ONtLXv zFm?y2tGNa$-UF%mPMbhOO7gw};EEO<8s#6&bXC2feyiJlKwH7O_wAvBQ-c%5#04Gr zCpGdq^oE(mY=kd)-V|JYhRE5-c0Mxi!G-6Cqcf9U%ERIqQ@z=EOqnf^HxF(=P7^wM zwN$kg3=-CIQA^<20&?2~h1+6Br2^;~EQpOk79p`~v3`b(SLMbl<(zK7n?AMq<;d8D zR${=zVUH{ufc#Oinq7WyA*n{&!z+&(>NF8lR82c7A}9 zR|7Ci>%6B`q(3J8)T0>o&LJo__`l?%K3OmU6iIL#)ZPO$mUjMLDlnTb0D&!u*}xr1;EBeb z!^S7crH9+P-k_Jo(R{22RVJDm#@RliI9`E~wOIWi{2tn7r~$`2s%o{Kujv4{0<=fu zSYmS1=@ouvK<6w2<-4UB*HIZ8?9PM!EQL12ymI_i->r*ngAy+(rEJlc_@de$R*^r# zXpIOc(rO>-2&t;g#@0G!;3_ubt#$`_E5C}_bd6WnmKfKr+mSnpBq1cMZlMQ10324443B7ON;8M>Tm^m0Xa5F3$1Ec( zVFpN@HdPFh%(83|>$Z2w?GSF4>VL4~S1Rouo)o1N>PJgK3Du1Hg_@w1G;5pDVxtBs zkcKwpPAY!oS1#6A)TsSfX{p*!TV2v!b5q0Yj>(73YJd66ar*T2rwm+XRPxE&mw~h7 zPozeDvw-&T+aDdx{G-=jKk5`}OkZaEK9APbiFatXPo{ReE3Ek?81*8Pb;4m0s$H?D zt{n4|OuDQcCxA{4LCTvP>qMn{zVQ8>{(#^n;}!vXzqs=5ko{pmM}Y>9G-`5`_Y@4_r1FEE9?>1#5u;bY&tWd`~4_ z=+vnr>X;9_Xm^MZjh-I*#*6M=YDUkF|$*y_=B6E~nIE0To#k ziWoGlWDRd?cC$E`!{K|;agrrS4H$P=lJ;OsO7W;i#i!Hr)OdQ2vjek|nRhrKs)1rA zpv+q5HrA>@n?nP@Pl*y*aN>mE5w#w#N_(}+PqJFM;_kKsYd(t==*oMR15xQP*!?4+ z1%9u9*8_l6qo=!!BY#=zs&n}4T>xW~zoou!XO)Y;!df?Rl+%J%CW)52je)A+C@#f9 z&*LOn*qRQLab>?t;DR=cB)e>TLX-Rf?$Qjk5FcbWY7r-Y_ZHDs%}3<+=~xhAe4JvV z{3c$*P27{ok2Vm-l`Az(S3(6Kdpg$ITs;QX5Dk@r&(z+|Blx&U$GXe2D46Q@yEZvm zm`Wwis$V&r-Ow*1wI)g0Z9XP)F}r(Dn%YAJPNjbA6zLcPGfIkj!I;P*S`UsETD7Hlr#bkmGih|S-#oH1F6VF3SN(wh;V4z5s+ii8K*QUbiIYjOd*@=gfcy=l2(P~sMB(=I^rKE^Z zo~X)id@Q;t*&KzP-RE$QhyMr8w0BSSevp&_cI>e0>(j`mXo7iq>CDap#j^o8xj1)UYDcgP|r3xqR>!_J_HE;DbPIcZVsBVJIm z%VzAs`@N>sak26Zk!IR^qOE#hlhIo>2Tnps}QoO-4%CYI$jxNy`!-moS!6%973_ zmFbgnR-Ugqj0^GrX3=>IhYVz{4Hr10m+9$|+P$4}Mdm1B10+;PLBHJUotfyX_vx&#-z<190kAS8j-$fBUT&91Rs$pxr3 z;E^NKpbB7 zhV&r^0T9TNINwK!6uf9}T5(+1@s$*brXb+Jhcp3VHIsx2kIY02^$mRi`3b9gIomK9 zvtYb=V@T?tp)xPASeDG&5w52OnyGyb-Fa%u&aH0K_fy#l1XnLBtPgGav23b(16BPa z8Z4`7_Ahi9#D3^|M^#OLnBqJ)^awjs(lWb*aM^;|1+oEX);qo`2D`zbq~v4P=BU-B zPEJJEqE6m=0<+gAv+vlgAxoOb_65T~ownNQDdofn;Bk(^v-rKjqnZnCgskxv?>IUwYqZihyv| zEPb}*vcTS`q?1*z3U2PmQ!$Iq@hrEpSG#cem4(>aL1$>x7&Z#HnH3p*-tF`PKc$wv z@>FWO4?@0fss)#ygTW_xd3X4fR4zE7GfPbS>CT}E@pxdIDcvrqQ#`khWTuYxQ(vb7 z8=PIg3N7t_JOcl^nL1{lItsCraxW5k%*a-bJv!$ccb47ZZmqf-Knq)k7+`!CwFbx7 zwmU@}Jb|Cp5d@0Ys9>n&rRgAd(2fFeD(ZXCEx>+RcaTn^l5qj|oK+F77Es}o)FvlV zwF{g(6J7~>ka8O;)zhw2YIRv$QyUFVQkuh!!*4}@;cYA_0CT-L0dM&{l^wD_2v}If zXbgUb0ixUk@8Na_$5Xj(PEi}6 zKC}EA`xEfj5#J@)e~;bdQUA&C<7aO_fBi}L?sIwMYp8d89Nx^P!)&(IUK@H~->M!M zI^>`DRBa!(TdK!Z;dc2E+~*!=_oUic=XBa*Ru76^*uDgt0l#GOn_GjaC>|H+d)pI| zjB{&ogu-QH$@@&Hc-6o9+P1N(*Imc-CveYgE z(v#yNm=l#eY*fSs5r9oQY9L8Lkqti)j*n?BUjwcQ7*igPAkTMdChfRp=KFKhDVt4@ z}g@0K05i?~Rk12wBoJ zHi1kcDZOBJN=Z!YQhj1*C8$b${vz#+LJ zz(sb#b#uD)1?eHY#z7mNPc2%_2NY|zk%iua#b8nlm^SJ3XklkTHfy=AE@3SrWEBTg1^D3M(~R*7s)K^YApFX zSoo;4YQqNf@FoHbR>zkx%og-Y`WG2BS}WWcO*j4E!3j%5fc& zhOO$OMy={(ZBwe2!jx2CMJLo*B=qo%R%ee>E>oB~WdHEjpS=CJknb>F$khBVX2GsCJIiJiE(B`L0#M1U#_ij9~$OmXLPaC?Y5_ctvp5S37A#Qb4 znUSriFA0|B=xSlI2n0sam zRgN8|;0sN_r?JHRQldOzVWm?bGR>`A{Q1wa&lYR+6&>{caA(m3?JAi zLM}}Tb&u~l^ZkxBSiTy7PLa(Fqz|M>_9KKpBx_jRjUF>cx%f8Hz!hXCTy&f z*m=ctt+PY|6!PIIgTOL6TSa{ZOyvpGU6?}1Wy4I24L=?D%Wc@yM!dO23I!FA-ofEUs@)!vk$Vbcb|a4gGZc9oWYCQ>%10 zmAl_f*g?p9CyoY;83OfqI#Z?(B(9Fm>}gL8?gpl$KuOP(3)Du14XCmk03_{D_6})v z;pVFSGx#!k2jKX|bZuR(bHr3(Lc!GfSt?cR#@qeywTBc}EOa|>y5@-14lCdmtFz^Mjdu0kA*z*7-0#t>L9Ycxx{u_H^ojrOvUaUYK zTgXMn^bwWz6$q))lK<|RXwhaBQg0U_jrs6hEbhZLfN{K0Nosh8(UdKs0sj9O2kNiFGhgeM zufGo8H}w4C^-BhB3(lXtejVQaEo-5Dt+cDxe*u~5*Ka@m^S{Ht_Y3q3J_@ftL9gI< z5Jy3;;1@Zt=Ng3Kd*p;Sk%U) zm=F6ceBcaflm5UKB!7ksYI2is3C^LhzCcCV^afIfkLy9VRlIj;arwn=#bxh~=zP}! zs0CZdxKwUR3+Ol0cL?o+$$+d3i-vHv_+9B%TS>BTK5S2}9+i(%b~SqWWrC)-Tw~V9 z*ZhvF3r1;aYSI7K8J3f=X80!^v0t(q{kt}>bkGBlEBhP*rDki`hML3LHtQg(_-3IaE+~thFm2m!78yft_CjilzW~QFc@Q z>2jSZe%pn5(=d6q5Q(mB!wEdTyu;<>Y8xUh7)P&PWA)uXz5Xg(0c|zu?G1(sM~!Zo zIS?M+jnDLDn8C-B3RAcxQnQuUgM8AA$_ATlN*{Z0K;StTi8;GSoXk-*gm8w zq)JwoOBe2hjN{T`Kpzh2f}~=DmJ6gwVoyE?sDKaoYyfcbW;)}vqYEdc?bPuKuOvI2 zocN?hrq?|)nb^0-3_KnY5>?5QAhtK`p%DDSiEl1h`&_aTuC{#bG@-72~}HBOibt+EH$j_8}g(K1|=xGJ=+(8)I~E zxyE8+5ms)`I7(o>1?9b2m{o%-R~C)hbk~z_n3O_|q;l|EAEB2r&O&N=6w< zInz_6SRml~kXEXYVddKm8-8@fxnff8fr)y?tR5_}_>3yL`qsuiucd zmBTIWZK*^p&)Zc^+@^Fdq07L)`^ZL@I#NMo!y@Bt?6koxZN@>WuK$Ej*TtH{2U6d?Kz#h`pay>Ocz5m?$FB?qv zEoymFPt-t)3~e4k{%B15Suw{| zDqK!#LUNqneJVrGx%o_sxhYQShge>-0JhZp0|drSgWN^a3{8+hR}ST#C1Sua`@Wv~ zH5^6Xj3BtF2Nal|(avI@pg=KU&S3kM<{#RK4r*?RqJNvc$V9O{Q_~PrFU0A%u{|AH zl8(a)?P@s$R_9=_TPj^i!PafLvaINUFRsvy;eMbLJZj#jkR8qho5R8&`gXOMh{jby zv%6HxuFrf8{Ui|*hac-$4w&*W?xRJeOH^g?7yIz4kDF%eKua}==5af~a}Rf1+xu9& zB7m+{W9_bEoRg4yg+(}b5oeZ@di!}xdT?98CY((_OnsY!mAJJEkl1Dw4iATn_+~aH zpKEyP18Q@Ju61XC#uo3r5d-5yJUG{|ZPSY@1Ps2pKM zK*22#IW*Lbzar#i2z1#+#Dt&yiflx==1$wMrg~HG!Z&j!s4AM}l zc~eQ?I3&vk)|MBgk(b<+-*EVB?B8dtEs)iogP6owh$A~D4FQ~}vRaKR;3gFg--yF+ zA}ZNen>y|b1@M@yfJJn3nD~&CpIqJ>#(EYMp%=xX6U&z=|s<>P$e$5E>?d#X__vf#_gRkNr-^`@(AQcCYV!4S z*gX;Ka|fkMR#sV9cb7@Qu|TH@UCy5E^t)E}c{9A2cvhMfToE8(!;AP9)|`(?c6vqE z$qvUh`^}xLAfUbmYei2Y*A1PoC#9(j+g4RLDryZxi$OqZb@>dX1EXgFn})-6K~n$T z*+~)u{l39*wmS zmIf_}yZwwe)}X*ikSmIb96cbQY9|>SwY*dm&tefYx_LQH^9Z~MlO@@8bCO9V-ty)+ zuZW&H$(1w5;jI*!n}?~;u{}GPbRzeWf=}TtrC{hA%w*-(IgJmS?u~cI)JVZOS|pO- zaSgW2Lgl{oW-Y)t{b?-K{B+oX0;NpGJ24EDi!u`n=QywxgLO9Gc)A_|%SV;qt6rY+c6G)P=8aZShjhiPGCm_(L(uJZK?GGyOEbo$?6tI zC5m1FB^%3Ab`;pIcT>&Q)+ywnDT-YNlImJC5qO4A-ij(5jfSgjxZ}~tfY zU9)^_D21h}gM)9&_oUb)gg79|+cTo(29>*9)V5A2u#ARG7l@lv=JG6;TfWzI+Nx>7 zlf;W+LF4XnFtGrn1YYpzegtC)u>bn(miz@QEIuf~{k*dq5#R9Htq~>MyStuG9KLFNSI|97PkPHHM4v zhVLi>Pm5e;wP!-vrbZ(I_me8IGd$C@Zh`$+o3!pcpO!N;U)QoZdtE4%m^>X#)6HDj zVT&=YpbF|P)E=M`Jtxg_v&|ILGEiZ;b_Tr~r#-yb&6a1O8U8E*4_74>6DBoFQRQif zNCGqsbd{Y~B}FBpeo91@I&R$7VN-(;`6LP;Vva61xpAl9*|(jvCg?S;O_s6tJ50#> z4Y0bD+#?uonJTJHK`|>lOkWzzbEzzQAlxisrAtfSmp=PzStJ`E_M;+8tt(Zun2*KY z3r5Maf$ni33x!T4x+6ts(XKvl+)8S-WERv@1KawwY3J|5VVc%OSU^}L1O__UIQuGB zW4`zPBH+Nlc%m!+K=!)oPSb2Du1GH=yfCRQ%T(`=AKW-E1u zYsttJQ)MJ)k7dC;E}EVKx*8A)234y=Pu2PJRpWy5kc?_1rfO7gCTi2nL#QC%*QNK z8`rmpY|yLBlfiX1DGWL~?G;cJst5?$V1|pzPaPpSA}G`Yvz9Ut96F93AuoweOXXEy z)?^07c_-tEGR;?hNLhNqQ8squ;m4QYL&gL|8$}>ppj`1aSNyO!i{#VevcaqY&Hma_ zNI>B7#qb}(|8+#7Z{B|L@BIwlf4~Y!7&TZ$nP2Dgw?8<^_tV!OhqphTzWeFxhvD^S zC?MtMzvQSC&r{qa zE7@RIIII}bX3?l~yf2Uz?P=?Dkt!rH$d87~Vk5xn31ZA!f+Ph6e^og#8!e3h*^n*V zdYyr{p3*Svz6a;O1dCZtM4*3B`Mm&dD9LH%XDF$!EGcgxA%K;nV*SYM9VP#jnxca9 zDT0DM+_kW53;Rg}&;dxsXiLJw0!oA3a_V{1tJY*hM-}8@SPx1Z+n}0J(Bc=~WpwQu z^{V6!MurQtG!!)J)%KiVnL^FQ>HrTxUM8eP(yzR&o2YU~Edpm_olPK8MWza3Lh-dQ zn^G2${97~d-Dcc=n8bL00C^>r|`he&G9pr+Ld zx*42!)4NezueQSO$k%M#lEc|ce6ql$ryANidAH^G0>FO)EW4CNMc-e>XmOT_ajZuD z?*-iCB29%&^saNdYqZ#(CXnzovUq=m>ZqJup4_Vn`@s88yNx@>jIsh_jV3ndV8dV4 zjC`OGk~V^Y(0MXIxWuxQvT>US!b&gULQpSG(^{yIetty#7A!uZA(t!!4rA^K+HQSR z*G3|iLqq^cHu%kKHhVx;x{0be8NhQ^$d5guGNlZOun&`40PaVeu1XE2`51Aku!5Fs zXnSIs!|1od^mU}beR|0p0mdlBj7>AgacQ97FI%eFzWoHH0*k2C?pl?VvR-GbiBjuM zDw^t=V&?pNym$rfQ+uFqfg?~YW(bGbz%qhq>GUKdoGW#iWw{u%Q7e~h1@KpiqKu@V zHJrJW#!r3$W{P+7PU(oih1L=&yRj)qr*QuD`OoG|Ni;mulUNJzJ6mr?X@I2zx_J@9WuiR^|Zuf z_F=#~QP=E_roST`bIefYj!br8Xa=h)z-MYDMn+;Ztkn-XqFj?LG)KYkcZM85yDfjO z<8iwWZ`xcz{O*z)O>QVXM-S$Fw3eJp?$~SR&4LXh4Jh*-(r7rt&cgs`o}atxS#7`4KM)ifrSJEUnT6`cjO*1OV|y~DU{L+j|ytlf+OEg8T}`4_oo z*cM){6trDZxoL|%XzFRPJ=E>ZVLTX8_8y3pn87fh@!HWtGc>JX%Zs*qO|=0iB)9AL zDMZCC@%k~&m^6mMEXh>Rsv>d^ZCgrApkAeXR(rT4$aY1M0nm!&jcv9G7C+l!sN0{^ zH6-j$2^yH4Z60WeDfJMY>)OZG$NZUcdF&1C2$Z(0h2zUv12CjPt<5|gE{ebgorWF6 znW6Ufv0PY}F~91dBXV|-(_Ky1Wdpg3GTJKdoPZD}0ZGjmI#Q1tB&?Pq$mKk=PC{mX zsc-j#wbKsj9G7=W9HvB}E!Ad{oF;?RsauJZpLxeMc=e5_LFUgO%khv0PbIUBGh{Fp z_fu#rtxz`wN&0#ZI9JuJx=Y1#g>}M}a@Oi)`#cImHt}$fQX+LqZjc6w4wtq!t0y@` zSVgBv`9kZdT{`Mwn>q;4a|TyZffGra>q|3dRj*g`|N=O95!>qqP9P>mLd35YZjO3op^3zT*2Zfca|9pKGn z!_gnt6YUzN@W2SJV02C(96(*Nrv2~>c)otp(@U6)^@B`9qTG}4deWlA#Yd*LioqQX zWw*qdl)O8xP$v5rsR@#yv9gDjm1m-Gn9r9Pq$;K2uD2%*J;^t8KrlFixg0n8zTnb>#%i^`9ljz2~!KH^DDHMsNKR6k8OA^){*%SjvE&&oDM=gMUm_(Jdl1K%b+&D;t(jzfH8 zQzl3WDEGm73`ME6og`VK7yC)SFVYpcO67;FtZYi}f%e{#vUF?^#BEW}dqSc@?SQ6P z)>*U!*5R;Y8sHHFA07u|$PL(+lCJ?^nU4$=1Ivp|$2xr>mGD$_?2(SrB<>*7{Z0bmM06GfW)fGq< z$YJXCxKTP+8N*lss68?yV7Zpf#$}^cPh%tZblz8qvSX@^72q_$NR=H=g=WbUB#{V3 z3j|haJmBmg+Ktpw=*JC362dGgKT=6gV|VH=@=qTs&M9Rgdh&hG28CL#b4PBr-Mjm7 zm1_rLu(o?edFIUrtnEeH9pJex4+2N$`Jgnl(9)^WB%g=TJTi#`6^gXN8V$I`u1pNh zcC%lSE=;p4M?W6V{*tmTm284Sz6%EBehNMwkTA}P?mZFeQL9xLlrhyV z0n-pG=~R6e#i~^@wW?UoR`t|RNGxn8J{$-LJGkXQEUi0h7_%sQ&XQqyyS=3d zwCbIZtge?MKPwzKKa$jVg~T>^SLr>b#N>?&=%dbM3}XDKb|MT{i$fRaaw7PNxptknm= zxp$FY^a8m`sCZaG$<7AmYDw1PvIv*lK&=pYFNOiIj=IVo!rzIgt& zz%wwS-$Ug>ByrAChO>4fDhr%Q93TPV`tcFuXkxh5)-mJo!O9E{LP7s!G72f5h=t=k#Tw5geI=M3u-hPp{eiz=pwypsPN49Z1^UK$d0yk*9 zjLE=|16G_1@{0Aq0EdOatVE_Q8F*gDyL@#Je^-3ZWeh->?RxK~xN!t0{@AfJ7g`+fIM z06Q&2YU7WBXDp$EB32VX4#Sh$lpJsbq0{(sfXBwny@f+#wB*nS4-gN0(H(cFfS&48 zjnVIiXFz|K&tGsDkKQcW2pZPdF@Sr9iGh?g4LWOo+;E2D5&4jZfbvL%&7AOH4^BLR~VB7X| zQP(8HUZ)0nP1cdn#x?$aCZ#|(&~DatyyGIhUlWy*)a|)IOt)Nt&Q%Z$+tkGIY51NL zo?smVi9@TR#4uI3w0-NR2>QpNah#Z39=8NKlS4u45li{0ZilFfR|7F&mBBFT@T5q0 z2Ir(*p5W_e%(UBdN;la4L>Iq@o*F?^X^3FH`FKNe{;4@sF99lH_e;ukY7l|NRCH3d z4={RE9+N~r)abX7geK5j38W1xBDLPv*07h-fo*v+(Ugr6#@q3Zw*5IQ?im6_RK|FW zHwL0P$_Vv4|6Zkjm38Ev;>K{3NvMSv8_RI4uM#Gofm$xy#c@l~st7&2jB!^d53mYy zfXDD-lU$Ob*Yf?P_y(0Xw!l%#f@lanAgEA^bC^D)Y#L*`U}8D+6F5#&a*N$av2E}j ztirCaM%Y_Q(tM@7%MZZ!`SA6_BaVJ^h;)8-Jo@$PXC~75Y{vM@w|`|j|MRy`0{KWE zzx@#$-;dvZOSHBW-r<$pqd)!Q+lPPtclh&%?D-PPzX& zzYMS6zEcqUgeqdcl>dGw|H&uHJAc%F^N5n6Ys@Ep@-BsejR!#DKEx5A00Neqtzd}P zNZ%|$P+txA3WOaafb}?2HdR2^4fcb{0{XDSN5S)noAwUr1i2j!RIBQZJN5!{lUZAx z{eY>G+Et~&%F<&uvi@Q_ihh-^^Bw}KeYqG+mIfBeE_QDspfKr3hm40haX<&x2%Qcq#dJictxJbomQ8`WF zg;fs@%?7z)*6^hx&S4rD8LF?~pm?2T(af-K$T(i9)n+Z);=xg4FZpjI~ z3rsB*m}^J|YB+V+Q^-Sd^`)+fHkC}TYyw~j}$Z6w;2zeQA`r3 zhK*&0E$5*CcPn_oJ`{+2*0lp9N>=0h)ia7i;~6kMEY1Dat*sW14&j54R4YF_2#`|Y zTm{Ib0Ez<>8Q|3)hdf4~bUeqM3W0{x1;|m`=DHT)$tD_Ok@(`xqCSSpW{{B{>^I2( zGhVgZd$slk_v`E?6Ib+PrTDv!3R5(f$QBowbFLJe-jZ&tdof)`Uj13jyvx}1-X7{u z#`OdzBI}T(0xOZEx-D=hbf=W`byL(qkvJ?s25C+I?V{BD7Q=uYbMP>EKmhcvT2v&= z06Awgnj|7?D_~JsQkJo2_(8083!YV-V^>M9846Q}BvE=%aKzF1S2aSnb)ICUlhx@Y z1(Vq#`W)Ob57Id7!cg35WV4Sq($j#W?cf)yZ*?ocU}y_zwz zgHdV=Z}mD~2{8!8gBvZ5BWs6pluSb|)>;x2J_4%lQabowJN)>t7-CV2sB9H#OxaP@ z`qZCY32&;QYAcuM-lSA9*gq^A1LSB<#hN?s?`~EQxJ;R$==#7cJwE_~a^0TSgAI*7 zLw5e)KCVlb_!`fN00Yo&ux?NY1TFsr;2uV@R(k^^hF!}j`mj-^K0@gopqS&yl4Puu z2I+9!*`ge;jhqX666|v#eKBNBsi1=*m#_W01Yy(bIiyPvWy?3o-@zC9FLR3WgCB(N z;}Q7tNJah-Ob^R&1izyb*VoJtzIN%be}a|dj(Pn+yGZybz)WDZFg!DF+%PP5YOe$V zqp8S}CQJHbRQ{GTTGzIFvRDJFRxxF#?DtC6ABcg6k^8bCAQBp8Kbs!Qq!#H>Y1S355hVFJFeXn%4;fz_JH|LfN3K><|#U1>9T$UZlYqe;5DA*=`Z%A;fxG!AUt3w z!=3V41!hxZ51{pOxA3vmMCZ!=H%@5S94+zhe)Re;+`|-`w@N?iv^Rp9WYsm~j2Se? z5GU5rYJ|)k<#lBusGD^#Vdzt-O?V2a_9gJe$#S(mqV|&G^kB(7z`jO)qUH;J3nGISP)lf}JbELBz*|$|D zYo)>asaJKK8kgdT;a9ap!CjP>GDY+ydD2+{e*%YIeV}7DbWzz!GN+S@GF(7h zoGiu8rjSq+pCcT9BTTfL)K+%_gS4B3D-_;jL&X|E>iQH8S2)>4)#n&|32Vuli7+xP z=T<_y3ZuoVvCKlzN(IvF)2O|To+!gzS&ZX2K^4VQclC#`c0Wu}+5MADtHxl02l6IkVB@k7D@~5e*KtjhEKxlFR~cP zC*iO2Lm$eUfA~Fe`2TwS2|5(`k&FKa##dH-KLR=|yQ(GGEiTo8oj<4@Y4m~!X5|m5 zfcDEvc(GzX8$i`jO1TxRvq=ZE$9pD*~M7oUEF{k`d;Bi z?Geo4QRi{Cu52zhf$k#5dJusm<{8^rCEDrW%Jv!amV^duoU@VxQVza&6Q?7sX=2m5 zA18oKGy3=N_mtO|*c)i2^a`7|IlZC35SzWIz`bok7Nr|E>W51~Z2TxG=ZD|~0BF1_ zprf$l9WZ&>cj-gSiiVYTIQ0cG%|UH#sXlOj1! z@s!;pB}7ORS<$8klRXjz&{1j#aPx$jz8v-*Jn~%AvFSR*85N-9^61M$vnEIIU5=YB@ZfOERcm?!ih=$qbRrUcUCDOwHnF$?YuxupoTnW zi|@6al>Udl0h{r&6R=YMM2*9Qu#{D=W9fmmyw#;}1{rAJ3E!A|3kl|8wtR;_Ij+lIp9nXqNZ`Ox;N*A^7;hZ@gt={;Lt3#kiPHo+$Cz?ZC za}dyBtzEqm2Ci_*KsWPUQIFvqFhKy%%H4fofi3IpnJsxVI;u3ei{q0h7Rukh{Ojj% z{0n0BKRO=$^7TVbzpZWl(d#$iz`cD0lP$pCKI9`me*3*X^7eDa+MkBEZ*)G6*ODJ^ zpQ54u(}0e;GP)~Ud-p`lm25R5$Z!HB1umSOwRpyXhR&@ojz56~wmxjiH62+k5I6FGG*C{qo z?Tr@RYZ{1KlO^nIaTpd@;NDa)(?ZY8JBLzALz83nqM(mEIID%nwz-wtT{5>2flFhF zJ*b-|ubV!)QY<(qGfL{Mf-1H}yez9b-=jm*pq@yHD>DqqM31fZ7MAnD5{+-Xz8)T9=F zmu%a@WKS7$23yAfaKW&`QXDu~7}QABV#e)M4f9OkSOtpqGa#x0!b(=dp#GJ7(vVa; zM81`+Y#5=(3mX}l^Ifl~l;v6?C8$cxhRf6OrR5yYiuT@yvhD2bVh`+`422I5XRE8C zF)h^5W%7T}_rPr)zFX?9>n`sSw_gaL3o|J1D*lO!-s1ESsEpQ=beIR}IyZgtvd&Fo zlP7~7U!GEKUJ^$a$i|5R|77-=J5C|(QVJb`L-5?7sLCL6+^<|I?Al5oui3%IN-=V> zFNqC!2g3;h>w#GA*amNCOXfSBV)1}>i)94`v^{Qi_+ydvg=NW%dB~{`|KEQT{vM8* zfA{QR{mt7){~I$c*Wr|nj?H&A~^o5P_@ zhUA(QkQF1gTfv7(7 z0eOFkZwS9mlgb9!Y(T2zY#3Kqpjk!yP_t83F-yPVkqvM#i$Q*7+>Cg?O<8juP_Llrls3+Wh9FL2J?2I}Mj?6RC= zCNa|cJ9f%h^gXn$skw?t{3uVQl2c9*T&ibo(IPm_XGrYGiJ)9}1v3X|mFD9yM`)7D zEiB)ok;BG%WrBqa^AV&xim5CeBR?a#8P$V(W@BT*tn1KU97poRB%o!GRJ-_iQ78RX zJ5v8oSN3=UMyh1s9$FPBt-LAI@4N(bZVhnSi(7G;LrDw7+(5r=%{TgZu{~dWRowgj!YB^3BdBk1C$2a2XWj533&pL}6@^FAx~pzCd)VWgjkw`* zWsmgQ*&)vjzDV*qYe%#@C|BG8cf`tX=xwDPF`nTaohG!a&ojgN+UOLyrqEfaZ4Ik# zODHa;B(njtvtS-P5N}^8!RJ(sRj79f+=u5x)t1nw?*mT*uBT|cwaByqKz5fMl~qGB zsx!Pc?|O1x5Smwf;1Z*NBPI`6#aLJOz`Nyb2zsvyRF#F)df~WB0k6z5r^J$}!iN%-!c|Ma8NL(Zk6YaS}HTc0F>vJuE5G*T<=5ZR0&&=iD z{T?VZ)8V3@i8b#C2!OW?1{88&@1TGK4P%h;3k>k`rYsRQIJg~%zb)J*51dO-7$dZ& zH94FQ;cB&#y0%9tEDNIqQ~CUI|7%n&x{;dO>SD*r7hW)qF>BITfy#V<&^pXOEWC&B z{^{+<^5dmFWkpJh!)VlmrqHwrw>mtj`%#^#R+iCP(#nghv@}BPAg4oqJ}IdJSf&CRU8^pZRR4t^&E00I zA8eY6IudMikl3dFbMkWPKslp5ZFTbqpjFu)I)co+AnS2qrRgt z@C6xRZ<`?b=S}!3%E6Y9EFa4}q|}P4y+LtxaeqzBhk*c~O0Kd7rfv6WlaU9=}b6_@C)Rhfmw(b~XOv%}>& zQ@eeprtM~rlWfyNib8HG6&T}dLbu;gL>07)G5>})xv{k_)_9lWk!KU$S;l?hWosox zsYF3Z+F=7J?dwupM=++GP-^NggJg>8z}@$^K6ReAeXZBl2w<@Vk1;t7I%Eq$SEsA-bpXY z?Z3-~099OM=uEn9?Jz1n(#9QfTPmo*llYqwW{r=a!U-L;UNFHti2t`NA(l_4T$<>+ z*=+X^2H7S}ho#Czp; zD9AUodN2dHi}d8&+V`AU8@xI_9g@;SMm(Q8mHy4pb~^Gd)1Hhwo#1a)S?ye>im} z#Di$Kv_`H`AYOhcSsNcGS(+Feqne25Q1RAsulgPe!6 z1pE93YogidfiW6 z%w4GfbDNCHbvsbnL^70ixsEs1dDpOI+rmQ(;xek{M2TRfOGOSi$b813eV3`rdu-Zx zL9U~)2_BF(Yk)$@)x;0liU>t$bVCW=LKINyb7nRbTWgkL4OTjPYgrMyQo4E6OP&4@}85KRjO0{7efKLSy0D^W=9lqW^1NB;^H>?SQ* zLh3G=E$~c;j@y$9N2Ln*kS#SbPo)r5s6DD=HlK#(7KgMWuy4$|K~aY|a^8tMa2z$b z-ghcOK=$M)E5}~tpkjp>X$x7YR70YmQ-8>=mz~K@4iX-Kh3*0|Qjj`q$OAxs0szMa z4d8CXPJN^XuFYj(dj{~qEiztFHRR1jOLdiH* z;KpAWh`0V^AR4y;j%uoIn;1jQTUDu!8(zwkRl<`TkUsJk-}@8v@8>Z53wDi7t4%|$ zgx`-|VXOG3|4N0oA4A#OY&brIeU$q;{fxFA4{)`$h@CSmYEd0~7@bB{^<>R|PhmGd z% zbw$LK@5TmlNE>QdMe;V3GC?tKu$LJuRBpYv(_*DbCQ9kFQi81tWvV>#hgOcEWS-Dl zJ0rVfKWL5$?^zpoEL*$ogKhM41)!NNMbIh%%mIb)0?qMpRW(_KXvwMqI<(trPC&9a z7E9I%n4{)2hZ#d-1$G&Fn>?#}kzF`IFk3H6g`3LF3MEVrdy~u<(*2AunjHvX#Bpbk zm-~Afsp-@M=%-~d{B=o1T2VCt4M>&Ly`Q8uGom%BYxSx2A$9kT2GdEBj}QrPk>xZO zr1Tqv77j4hC8Aa4JAf2ek9Aq%A*-zw1W@8ONG<7z+5m!K5n8TQxmwQbFTWp`%8k<~ z+}vq_xwQ_Vd3P$7lpEOZCkk;r&vVA4Q_--Vj=4J8{_@HNgEr`e3f-vVlQxXCyhoT9P5SL&6I4xQJ$-|3}hrG%uk7{U$UzDw5`VxE_PZgx@C~u_@WqCz=hE%W%#7f&Ig`XM!zxA1*)Bln zip}oER;mMd!PqKyMyX-7)GV`3hhjJ&rT9{WLZ#W0-m;K~+jZ41%=xM;2Rou~1te4# zPe{Wmz$|p1F?MElSu8^beFv;n_Sv95R(TPNXG)NKxB=rF8`R8XN&@0+ePM_S5^4n< z2FRUQ1Xf2*MBm5A$WcHEfId_buP67(xDo~~S4$HaK0gSPh1UTtXJG++c~(ip`50iJ zKaMV$(?sJLKJ}})UC`{}xk~-;dsXV&S8t#Gdq2bXA2|NiuVB;o^hy9R%x zb~TP#;lctOadyV&oNkyBYwZ**igZa70Rb@CwMpb7!!&hubNl7GTishz33vgsqRXYO zN~ClX)jCwYIM9?>-3+W=TWUG}56)5NTWFm%H7v6DkfN|uu5Ggb^;EKH0Ld{zI3Xr7 z(~cR2Ja*IEm>@p z6JW9-^X||d$coVQWP+8R+?mk1wXk{#x3dLNXf|2oZN?;b!$CIR0QP3sYN+8(einm(08=m;2^$EKD$Cwx$}2HX-fbrs~ivAC)d>J2AP9 z@x{O@l&yw^$3P-*d$aBkkVM;jYSFr!pKhV7Km=nP$>4X@P!t9CYV z3$2{3k5b$(k-US};r-2cSKSxhWeq$@CL~*KxzxyF0I4xAe&yJ&5Bn5gKeVO#VU2d1 zHLBwkwI@)SRmeEPMnEdm8sa25832YFddg|#{C9-g)~c9NBo3kQdj&I!p_Vk^8je_` zI$Y(bxdHq_5&a}5=Wow}eC4D9l&q&07vP6=h?J!iBWoq?F5HW~gbFgOt-Rr0j(U>3 zRjuRd=&CQ6m`@tBKnJnMnvE3C636urn}EIuTz^)v%#JwuGb+&>WrEUh&4oib;Nyn~2Nj~!Q!f)B~hz?qC zkP4!+E);gHqAxk>iA4j5c3MwS+oKs!^n?G6ZRPL6+gHclZ^GM`R2_T$?0wb!f99us z5?()qht?-%Kk_ta&X&th$-@6f-txW_JE_P@@gL78t!CFa5nYXQ!a7`Tv#`3b2!Qni z$D215s!d96UYgTQF0mZP<&Zp-#%#Ffu||W{@XPJ0ooR?Y+XJvPu$eT1d2K)0~ zk-Hf{XQ?!{+3RP-5j!o|Nej*Imc5h9hRWp_U#b_#3icx%urx|)hrr29tC#Qtck^CY z?tIP+N*{Lyy|;IV)<_clP>~7CBrtBl%(-l!O<}yE76XKg;IRi(2MzKdmUjaYw1y|? zZS@*DB*7$YY7b7GPK?KG;xM_AuK?o*>w(KHprs8IL|X--k$nUq%o5l3=0oBYXkPE7 zOOYq{qb^glF_ZK(J5$>+n!oveT)r&y#Z{V7}lu0}e-3@(tBmILmu& zgl)?ah}TSeR&Jd=EH9vP-d#8sCmlNk$#<`^+UCXf+V-%sJlqPP8d6fS{t8K1qX=L2 z`HHA40fM(UatGYigHDlCp~KIji*}!6@^IblW$Igshzt&KXtu&z>d?j;)Y0os1+p-8 zQp!v2;@3(&s&xW8>5>geM6+4*IaG$sN@ICQ)SWj>*JI(DFXwIp>Tqz9>scLdyu6p% z)Q!DvOjNbv&s$Y+Hh3!g@a(NsjSJ{s_U+_&$O6|t#cRi4YlhJ{H3-NR5CXyB$N>|2 zV8B!%8kGsWCh(o+WqOP3mU%4c03H^n&2$DCm%N{4t zlNh6sjXI#*-715;^~}+Au|3?9d4_IShZ1}Rh(C+8@+cPQ)!P$6-a5!i5Cn(ZvI~4K zx@s)khtOPAwWJZ_kBc(Gg$_OLp8l0`c#CdFsa_tVP-sxgnqwNDOV}2gy{LW>fzlWg z@^K*hBB4AQ+B<5K^y<82uPmi(XiHx_;l0QawiIG_u%q7n3HCFGZ3>3~NdM$WyKy#)@tqW2qEtO&rGz|cw8-Hx4uF(O5LY1s1SmE|Y$zoHvrt>HVPLQV)TVL*qa)3cOwKI?&E-0M zoUToD2`!-dKoo_Z*ue}7?gDEhu2J=;ZJGca!qVJXuA)#^?;hxu?(*hi>DJaWrd>AC zM;*aJzYKGpY0T*L6dq%-fnXIw3&OI^!#;OZ+NmL>EEW*06253jc%Un2;)XjeYj zP^z~H+ZoB_1G@PqDSZ-g)e1?~IoZ+As?e;6!wTAwJpf9Rx{H<8HYkD90`Q!X9CQKL zgLT2@;pcNoxzuJA?&|KU7jCSm#CErix}Vy!vV<;@2EABx#vMhE7SjwJiPXybgf2nx zn|if*+rl{J&bCy?dzkQ-CA#vP|DUvX>zU@d&cyEfS8T->iIExmK0yHgkMY>3!|tl; zI_RlTR~ zI_!0N4u$o*A=Cxr^b(32<1yTAWT}Ek3&ud~8zItCKeR&?ZE+f;tx@VYe{% z>Yaa}e5Kc~m9O+_Q*YR;+MV~5Jh$$E$_AyqvbOFn317O4_OS)hwZH6xf^ilL#85%( zR~2qZ9%6#W;(1CE!VNhL(AamObH3XjE*BqG*^|*Ibqw%cwDw z)`oR6=g~)uD&l$6+Y^nF6f1`E-V!1eHp$krWtgPK+({H+i_wU3^bkXyYc`h{ar;P0 zg}>K_RptAz6itP12c<1yF8;Z(Q>RYtXdu1-1jbMUhTI2$e& z_I0>q%k#U`8bsNyM^Ql6+(o6Ps0)Gyk`?BoEa~X6R)>Y6iipaye2VCMzoMSMha~S^ z7XDzS>>lkzuijB1Ihv5mHXIkLh@rB`&qqLEh3K{CIU0& zri|r~5Ot4>3F7aJ*G&ms)iX$Ig!cAH#RHHY$Q)Skoxy(N{V{5PFA4nYYR@fque=so z=OQ|R@t(fb>DiP0ox!WT#gLku2OSqzA}+?h^D}8Er#YbgDLd zL(**ALN*kROIDYCRCyW-rybBE2zG7r(HTf$wI@oS<^mKxM!W$52?8Y5pjMuavz8DJ z2^Qd+Z69-^&iPqa&8KeTn>eXae>k4q7*B)piRdS|ABcXOs@%*teg-bOK#t_WFdD8{*q0v@`BDe)g!f2tPcoX zP|(#S{6%SAFp92#>#HOzPsHlU^JPJ&lG|*2=jN{Dsa+FpKkY~G8KjJ;lnz93^duOU zyP8UT34UW=m0Mbn)^ODkB|6#}{nMpjfX#3-uR>k)ai z8`Fp*N)*$HH7<;M0P6;)Mkg*7mU9cIP*$wDgL$)|R>Sp0UM-S{A0#MLYF7XA% zmz(~8G@!~VNDz;qLM*7KLUu}yN7Ui%TUmnV+jU0+0*nf!f5pLcO7VQz@6=I?{FNH6 zCX%~%;l4;7G@MKnbBt$Pk44iUds6dwmSV_N>RQ&M-mr)ui2?jmkCP(c6Y{;zu9r+7 z#*$)YW!Ry$0+=Jx|4Fa0_Ybb{$3sS*4ZAFa0FW#kFcesDY;z1G?`5#4BYitRYrg$e z_#gF^JTU_APQ>hQ-adJkoA&X)kqv$JuYToINx6O=!%yD2a|C0`eY6qyILf z7yZgJP^aqw-37XesUVA?2sC9OC`$GMgB`T|#*>|~1TZN-?uuU21KWTf1#oCXnB%d6 zUtjmBh6}6PU$2h>7gVxI%TSd5Gj{gX5w$5$1riYQhyrSc{W$u>c+$t!xJkQL*)BCO!yXBD#) zsH6hl3r7AUb()qe)23EK;6lg$hrQQXIw;>Pb51k=&*DN8{uDTAZng>OfDiiBrZ-KTz4_`0(Qwx7uQ||3F$Hg zI--NAR!6p(VFb+-Wb!6C*wt5Ly(4ct^azG*vZO-6>IbfCkox>GEJdJCNpU>?LuaG8 zp=n!qA=+{yy8(lauCei##J|c;xU2(_V&t=`?x!bskjk9X0qw?n3m*uA7Qj~9yGa11 z*vm@Uz<$JdfrX($yR0jLylHb$8H{x(h=v*BEUywg02xHx&m2Q;DoF@RH$zcntKJLT zc&pXBl%Xt)aA_9|M|82F)4Htu$a4n6fq_lSMW+rAGd_jo9u*9e*Sb2(R3q8}1|hGY z`&&l`i&qfw(tlyvj*Q|Ou9C*WguRB&8k(l0)4iNZcEuT}p>|JlokKp5LIh6Iu5cRh zON7bC^Y~ITC$;t3o42y&(p@$Vh(~TF52ea$myu;&I*z5p0Jk9@U^5;uawkb!Uq+XL z0qiPmW<3kJ67jlb6AQQ*3lnON+BpKjQ6dE@P=XJHYk~hkcgHLlWu|Q) z|K-;@4G!-=Cp6$0GV7A5I)4MSpv0h!@!vlEzYE|0nC2y_fC~9=_dq{MqkjJSZTO3G zOgAk4XK!Cnr{xcnCI5~`-1wXdE}z=#N9i{KF!*6IQ29ktMAe8dFX`X(UGKkr{rYK0 zFAVwR_`vFKyIsdYmim`S!A|DT15SLK&0-$1c0Db$2Otehx->Mk#P6-2PS7#fI;fh> z36!;tpbA^{s*Q%pLpu7U7F-{hTW~HqRdeJ#)zfg(nsjp_nG^ z5yTnVq#-+0NC8?;+i)e71-@n^Z{|Zx6bn4TC3p&s(g)!`DBI3@0zld%@Sa*= zje@*JLj#bpTusSuns;r*AQEA35=rT1y@F!o!seJK!;9ZUf40!xW4F7(Q3k zduqJz)T_w5MdYWfi!~!Pl#PdV9tk>_T^prGDyRX2AsI6m^;&i`LMwsX(G6-DWDyzp z#5GX=rrQ>Eg&^PnIL?Lg5M9XY^x34azaqdw7Gku|+bX93fOrQ0wg9LT0}6tGeWz5+ zhop3?E>F678wcPB3_2i@xpL}!vq~Xq&NhwQcNSPT#66bmI(D`A3g{Co+F8wm0+0Y6 zr}&!qRmz9E z9c)Acy)9Jlbic&1M32IvsPd^8AEgkK$93yY4&hsW#Rm_EuA{0Lg~c*iMfp$OmQcoB z2?ZC4Ea?bV1rqB^7zueqg$9Sb8NQcdzp8Z1l`(do+%pskOD`67%N=8g+opz+_Vqps zcmlJ+QN~5*L?3y;Kn$Liw~5*wo58U ztT=p2rD(2?#z3_|2yI|rV9ZMO9#y{k7PaQz2rZPmWUAwd`L5CjP~)`QEeGOdRA027 zMxiUj0U^qjcCmmiKkyC3qytOSB|}U6u+x_0a0AvX9xhf&>ogrZ9jlRB(CvpTrrf>j zSiwDgc9gtQiIixr>Hz6jTOR^(H@QHv{LsS$Gc|q$o%5#69Efz=sze z^bWpL!rs44OYn}vw{M?P;Kn865{Vuf?BS0;#(?Bk;q9jv$z#3<|6afJj9GY*`n4w4 z0IlQqHc1yR(7fCX@$uM$H@_Yc2*Mo6bVmr?BN9f4y127z146-^QNk6vx?{6|PoNFh z6N!F%geoN{>n4RDHBzyLQonWFAzX0F21zXzG^gwf(7?2DhPs^1E~<)MH55;~*-N1I zrUZYvVmISXE&HsggYA@#-dCuEFHx!EU~Bp^qt(s!Ub67ih3t}Do?@I8** z$X0+vH7@z^bfu81xI^Ir#cBD~ltLe|FwB?v9;had*@Yq;m&rcR+)K29KTTvzmP$_jQoLFkGnOT!sxeYjKP>IHkX-0}JX$KSme9D0y zrE*g2EkOT3S^83^>Z=)(U_DBHO1Z5FAxNpYpM~T$ zXZxUabMV&38f}EMjiGbriG!-#C2U{=Ktkot=JFRRki*<+t&8Z;TG`s6>w74|WqN4_ z-z((_p{#0`A@)i2Z5C#VVyxMrZJQFK2?G9FoeJ9YLaM@iyxBG$u2crJK?OV|Fy)?S zfb0khqT|-Th2?Q+6gtGA5QZcV8ltEOeA@>a-`3b~(kGezOxWj(p(NHf0@KuKJZa=K5yj zK!PJM$zmed>%b4X7`i&FvxO)aLfk4)3v_}z@t3Pv34~c_zPJfzn^M4DHniI>{6x? z7fCY;43Ee$gkqnpRn3^p(MLtEY>WG<0?INg&~e-x!uSlN6`&bQH&wJ&>|5lQmWTCu z?X3!2P^~W|O-oiNt)~${Pxd}~h^VdZ))>gP8gN?8<6lwbdRif#pOO$+Pb9)IPP^TpbXe&@l6YKfZVt8kW*D9G{~7Z zrCZ*kBNf>A1U*k}%Sx3uM;mwDC*uF$E#;deBd+lIsn8r>7f1esx%_A@X^4qBo+TEd zl(~~UBn5C#-WF;rMG(kPSYGF`$K$$4wWDZ&l5>5ukti0eqf&_JkYhI{k0^&E05)TP zLu%wYN?sOcKKfV&+?fO|d?KQis<&U3pkp!;<2MW#(q>$AU@dk1?JS%FN7dGT;RGD+ z>@&(q#k{yiz$~=9C=oqQjHEDrh&KzJQtqK`XWyQ!u!vZj0x?xi?%q#$q&b+Ld|;)Q!+k=n*~S=q7Q`|xI|3yDivP8=`gj+&;hP3KN*w(&7nI4H|x#i z-o~LtG~|QUXHPX#Ho2P&meDSt-egKN;j^yV>5aa$l>Y|VP}bj;KLd?h*JGDooK?W< zh1sX}=t27gU#<~r^HBxm<&80J0`I!G)k_CZL)CO>r0*C*_TE@8>cf^Bv^WpS$m6qP z(;_t(Urs3NGAYn1srHGQZ&jDbf+<9ztT1eqoWgDRYHHl2_h*}FTgbMV8sA3kOqjY{ z(}!kW>?+>0rFH>wvA@*&1C8Y}yPzBou);V-`PN>lV~eY^(==Qo=3MQV!mpc>32F3I zL1!i>DjPa7F11mqC#eO-R3u_xKJfrxN1Qo8W|gD>6h#rja*I4l9l{>voh4}t9LJX% zA7prdvDZXUe}_=%{p~s~9EER_B&0eLuNw0b&s<+#etkH(~%B>W=^K>T>Tat z`8le#;(_spAuAbqD(=-azBBKma_!6nDOcb@?It8}t8w>EP`8Z)jX66DXE^r|8@NcS zVc#LO)HQG}2Eh_M8zqZjIa_y@)73C4poh(1knP{|ttr``BTLs8$}aytW-zFmWlh>aGQZ1grA+Jw+4;c7Y!9`^x z3g67}eGgaTzE54St$vln@oq6$sdK3AQvB^v)!dt<(8b%H5hN8%(V?X@v6(^_ZfH0w ze16_x4TKr@6;5B_#&8H;pUrEQ?Rp)%7Fu8BNhMXo9>?OLw{i?nDTTe*SD>L%$#wPc z=#CVNJV6kc<6hqbh96h;iSl->mi&>&~lJ+b44ML{Z3 zmnJoFQOk>D_03aR)x*x?__lsYyxnRXo*A{|K>H1F=z<#$DqIaq3J@ zW*lUf0a{0XGg@YevtLov9g_Jf3hig7)8c_4ZK$@RwXLJK(fh-oyHUXf5OuaLl>U~j z+yVJ*W9zk*GiM-m6*aMo0Q-cYX*XAAmHeq>Zg)c;+SKY4M(6YE8NTZhM2UE^O|vr3wosmg?j5%Xn!HXJ;TI+4F)N70E8(k>xCO6~h}q9x_1 z{J{*aKBclrT}lTbE)uI&DeRyE1FgqIdZ3)cRhFaV?rD|fO9U&Oku4L7z=zo@mtgUJptQWC z0rJrn^*CVI?*dCrAfzR+DpE&Gmi6Ldo@#&qMw0y|l^)_49PrCQUo)oJFguwhjpDBV zl&h33E7U;+=50q-wHw1b{nwInF#aeDm<+dvWKu6FQ?X-mZ3Y12lmmI?qoo2l5ROP& zvH@ojPQW*#lx4ZfE}!UqS>ZM+fBBc;FE2kLt?nPs@%xJ(7ix%ZRxBvfJZIlh3~lfhJTJ@9@yxt8}k zYz15W3$R?SXQRqf#92cnc#yQ9LsA>CepyD*bS*F*Y>C6QK-Hqx$X_a-<7t0V?sNH& zXPr*8ClCE}xzpC8x?b1IoO0sf0s#p48X|9vyq(n$=1T3lB_?xL+pP{Y4RB3?tV8Aj zwufw9BlI!t&mxv&gkn#R!5N1W5-;$Bn+n2oD!n8!dS~wl~ zPPEw$VEt;;K2lgG7V79}zeG;%h|sYgEp!B8Ijf`-z_V>m1N>{}-zE#0{c?KkbYGxL~(Ptga=G29jfv|-C;D_2Rw!Dq}klQ;D0y%pJK(9cux?ZW5w8H{_mNwMIrc*o+n1vg~lti6R6 z&sBZV^jp#L-G~W0sqI zNahs}{I$YChz(}pz5F^i4;^U1*<7iJ+?3fn?lJXNqK~!Y*$z=Y2%(YwvG0(5X)D zZ3}KDO-9t43T)6EwvW+L-dhQ zQH0XWz*Q)pqyaRw4_EN4Q&RSzTav=raI`pS1m*}eGCE7`u! zcFMo^_=OyY1HF=*#4o7}$Bsc4U(}`0l7$xPwN=)_{fxkCU{7WnUe-utce)Bv1<_8@Db3wK2;Ge?}4;kg#ZC0hWHsB$R}*pe@iv zfbFcpgVIt9!7M}B&8jl8YsvjSD7#v}YpFLF^a65A3ZSeIut5ckUp4w| zgtH|6uWiffpz`NotjTSLbvW=R{Vb7)48o?=DQV4i`jVA33}X@|!roKh6cW^uUDB3# z$Ha|k%9XxUY9fxN<5p0qcEgmWwI%|F*oeF%GY3pkiOZkSKsHG|NhCr`mvFhL1Pl&n zyEX1Bo&-UdIh4TdE8RdoxJo%0gnxj*{z8QxoHJ{BNI_Ae%fWlz;tgIS}Rr%F}`nv=*mE)j5a!3hBc$F6vwk~^+`W)&=Y-AjbS z5|y5|ceN>H92*C`oj07e6zFa$e zfT6rV>!3`cE64o4%XCBnWeY+Lk(+r1CT9-K61fXt_EuZ}uaG1|+k(aTBJU8=MzZ)2 zt%%kNc!!V#KU>F1E<2W%g%^zuQRJz}A+maM@4$GYi6CP%1Lp&n{4cA^5cU(qKqw6b z{7u&L8?juCBQ(TXrU^6 zi;w6k>$0Cc;zG#_Ng2I>%kJ)ivvx?;oj#e(s?sRqJRh9MHr~PJAB-2<2d>m*#n;&EAaJaY{r-a z{QGaer$_8pZ+`5%*WX*W<$p+r{_geb@Bc2m{*&%KgCRK7b!klcgA1!dq$W|xY+{6^yfI**hzH}R!LFre9YDj8d+&` zZgOaur5)VlRC8a)GoEyXzP)?0H;eo~wGcS@U7_FM$TqZ6C^ETh>htDGen2Q>1owgJ zD6wX;I~L??WJB8pK_R#VCAv-~TLgFO>7`3n3C6=wA032mA$U4P9BX#U*emvuH0K{jsg4W<@h9WFP3PMW4tMQpe z^OMxr)~K4KifL`8Kf=R~Lr|~^a%JsNrd#-I-K#=FT65V+UNl8u0(C0l)&WU z*pd3zR+8&RUk;#z&;(~M2-v$)79$Dw!$C(+-aKLNjC-KoD%qaA?3T=Z@nYX+=#s43 zWk6rhgY@|D(FG#prM!llh3lC;c|`6_@pc}op`h1W2%HsN>fx3-d{Xx(l7BAXcPY`R zIz?CHOJHb_q=o|rJHMz8Q85k9(6`#72IUB;y=}T+xg4xq%2Ce~JDj6`Wdwe83X$h6 z!^{C`A+Zk_dPj5;kRDQYf4~JvoBaeFmF1&YW!N2%Jhr)HHT7~*W&ip!Ej@*xk3;7pQ#+a#K7;*b0v}^?Klu_Z;ehzA&1t7&WHzAZ5N8w`Nco zlgJiEyJ_xF4N9>MUAh!;z}f{Z4dOQ7;xr(`$79|Ij5(|7Myj8yMllPDb?kTeQt%t< zh*DT?dhf3*#K7?h*n@1t__(YJl1xXTy0fx!pH+m}{y-*0rYS(c64{h{wj35_)XG)+ zL-cG}*vnmA6o@@i9m@Fvm_V7H7E)AkPcjFIQWJV<2llRKmm9;1kS}BQL>N>BFgp$h z5-yi&^J!rUZt<=SKkL(}FS!H?TdAZZsC^!=u)YKmob|RU^3JP2SsEyA*c3_WDV&ywf!i88U*Y6k=iy@!qd3}{106)rPSX|HFzAI z)&v6$h*qt{5UOdRPK?rlQ@USgm2$Ku8uHYD2UlZ`D%cj%YQP-j9%Vyc!-I`5xcN!M zvTwt9QT{Ch=I-o9R4BQAGhePdG7(n(a|0Pdfb?_P1YoU|ux41|{cWSvbb+a^T2(_y7-%JDsLF@LeCAGNec%=x zbCYBejx1RAA?c72o(M`D=tDX`v|~yc@~jhez&$$E9w7L!)1urp2-M06Eiu;Np`~{Z z2B&FDrFl9x>&qpVdl18wNA#_z+M{J|+J>NS(D5Jl194W8Wner>{DlG)Px#^-Ub9fD zN9K?xtwf0l*@nh8#0W8xK*W}J z<(B6`f9(%`Yqk0GEGwP&rSlBJnxJjnQ;|jW=A>kOw{|~XIo2>?LKP5z?az;2Pi8@% z{qb+ZY1HxA>vw!*9dF{ppGs~2Rl-C<7wAK3CjRv8{nvj!Cq~3nJQZJ-He;tkeb&Kz zW^Ksa_~|L(a4QkXi*yUfBVMcB?!s&R7~zdVx1Wau64NQhig$R?@>q7|?4ky8FK(*jTGC_);s_@Y`68FeZdDEQ35iF@26SpepSwX(;Wocfv0AdE z&KsXrNN*rYN$zyWGiFx>E?BL&XlsNiR&XVQSOP46SdOcIggi1QD+9tZv>ir?MCj7+ z@fRG*0T+<={fNUieYq&N1ol-B}nYhfdf#sl$g{O#LfE-^1#7r#p6n^E~aXCzmLg#2);vd(k1QabLw=$ zwkbGrR6-G8%$HXCK5K33cMDNP>M*yU6!~VP(*W+@v zlX%I2m2A^1V3A%vNasr0RVsFp(#kcAmL**=)}1^f7SKlpz8x$($*rYuCBpy%%++oJ z2nA~ewwz`ma!`GCEbX|e3>^~y_dB>MCqg1gT!Jm?QV^vQJ|g{Q9F=FNqv&pVSENwo zJ%B-F8UbuXqS*!r@2R;3>G8--?fWCvI|30-Y=p$%WSr$`gBK z{~mX#9j7#TU`}xI%Feo8mPAQAzf^>TNwDL@^%JxLPpCjB2Qp(QSdwIlzx?mRpB~}< z^&^!u{^i?m-ah;OlOPfPJ9Ik!IlTVr^8NoN8AN(pkY_{9WE~9k7cValTy&T2LBi#2 z+(#@UruBPTq8?ezYzXq}=vhcYj6w3{9#v4I%q&}z{U8?wPWJHB>=-Dejtz%nuJVjq z?u;;$gl3+_%z4g^RT)?z^TSR?xKIot6%lvh#3y!*S+Pw=%>zL{1N5#%$nAH?W$UyN zYOKP&9HN{N2_M;khg0`*)Fb)Mz?)hw7FPjND;u}~Ia+I(q`ugDsm7Ijh?Joqh z=!C>PsTv0mhpgc-hFb<&#v*Bb%g7Bs0usGuE&4CB>6z2BS4FR(`2z?6=432BL74z? z+AawMJWFnos4#3ZdZ6`kx5$cT;-kw@%bRSfhElmbM(zV%Sk>>yY%cvH*ct2LqT@(C zkUu50**qA-DZLKzk%Bc%Rh;~>e%4?!9~`GjlUj!er`&n%q5mv z@vcG_WDZIxZ?nFn=I>4Y=%Z6O(P06Vo442yksB%g_vU^GbhmOJHw?S5N>AIx94a#w zzm4s|!i4#stb4bJQ3^qc7%(li*-i3CB!b$w-<^z_C2S>3{*t(zRQ8JXN?$92YW;_U zD33hwu$_U>5BV-9Wq(XQjS}t zikuwSE4&K^FP=hUg>90 z9Cle~w~7`6lHF>Me8+hHL~BD*XwcoXe+6=;My>^%hp{nGoFHN=@8l9%7~OHMmnG8C5OZGDz0{wnBW?1~%lf7_9?}UUJKleE~=s*nMeFy9#x4_54N>TuY1q z*rjxl%1brwc^DdN<1U*lg8BG>zP3gAH9~VIZ3F1H7+DLL$gy>@MhCbvbr>NZQ~@dg zPlR+N^2U@@Z3B1RJmAx@Y*+Icus7#Eb2AFHyCoJu(tD6PA1)WC`94ts=)*%h(ajAb zFt9FMT*j#zcM2TLKnPAhAb3g`zZ0w29ZCt3^}sA&@;ID=&1vWfphn7HrTEVr zF69md5Vo|2mLFTuDw!;KDGr+3FapsJJe;eDspY_B$S8W*&#QdHegYzlSd?2UMb(Gk zqUMNHMCq}lEfnuvl}2|EBNW0{)D!@cPe!ukmV70Lr^^Md)p$n(z!H>BCoeXENHvse z5=5-gZk-?@R?bs(vaOOMfbB<3PuRokvIlf%4xb?@11OCUo`yo0UE#ik@cUy!|7UO& z!e(weSa}!lC7OfF7t9#?ZY8CJV6tsAiw({YHlP40eWRw;Edzn2W0`n^y%c1HAvjJ{ zgEH>!u0DgQZ0b1z>iz=bVOWl9uA)p&SxS6Y4*AZqu#GsqqKfDQzJ+MpzQ51&JLau8vXweqgc)jQUi5m;F|r3f!a zEGN=XoedQeted(OmMa;NV1`}^NtXHtZQ|hEc#HgQ6`4avr&CcvOs*X!n#(Q35mTOr zLOTue<;@nuY&$H6RbFkhGDz<6>d;5P9Zr5E7{=OG7$7QK$42Evnb&K_01bn1r)pq# zSTkhF{l2;64R!e|Y;cynO}W#Xr6MKDiJ4?(+T5U;i<@C1Bw9AH06{`dRq?=Widr{o-AU z=C{;CHem*6HhgNi0h)iSFRVMPYH_QW%!CvkZHxty30gD-se5f1dB7#Ftea$h+_;hO zL!S0`(gsx+d3r{0H-NvyeR*i^`t;ci4?<*-Rg&6!g}LPtEpX#l_?89QwqSVg&Zihl zMHRG)62Be^yC5CUjTv&efZVee~MiMW+$~?LfXKx zeOBa6K2K>=egiQh75V2OGJ4B9Z~UCggxHQrppccbW20E z^ChaOwl!h^s6BwhvWpQD;Tnfsk^-k+JjMCww_H z&vJ4kVyQ+%Q%5%gt+j?`^+pKbF&H^Sh%6pz#z0;Aw(}%{+zF}>F~P+F&^aRKI&f~5 zU;`w8}7@IdhODGa0CaN6#Z+9Gwm%nM0%E z9zN1QeKRSHVy(_bNj3Ph6qc*kkOwL97xiZxJtk!1h{MsGyD#>YV^0SX_~ zE_Ey+$w0o@`YuVne72Tn4D5Q8E7dT{dFzjWSb~0FDZqGWmX-+tR2};zA;yqde!HgO0 z7*ez$5VaEFFMo6&e0z|@)jR>9IB1jrdB=F?hn9B^Y>b7^rBIECcIpS9$N?*Yw8_Y_Db z!mxrAlT4k@DaftCkLb1Z!OA$cyL zbu9OAYq=X%Q!wv~t7==Tw$dVTa%1o;Y9P-cJ`jB7UW%5@l1@0D>v`XAXI%y?(=F>FUyk6}QZy%sy8$X*-bb}TFVLL6ZzoiJR z4g|?J1Rj{sM2RPuKD4SxH9N9iDtlmAT7PzKvE4(bbrmcI41|dDLquXTBaR(1eGQCg zB0C}~{gk!}PEWx{$R3K>8~d8vta@~f!MafeWa=Tr?MV0~``u>fGokKJ!_RO{>-D>~ z#M7MRwF47-8rD?vo@3(NW+!E)!7)Y{aL6sFyfecbj_RQ_9NhzjDcZKmDiG`daVA&I zyxv3My%&7Yo()dzDYWu^&{sHG*_d5eVjsa3aLHgDW;@ghVg%hKX%mh2W~OanhwdU| z04|`D7*#=WCmoCr3b!Sk;eUn^gk%hGrFHF6Ss)I%CrB+|MfawHEDk-~28lB&%WI-p z!LcA6NeO7FC`5B5N)3qR07Jlv;2tm90Xb6HGWl=lcCm*Ny$A&Fxf=<=K$zn}c$sLm{rDf2| zyDgaPT;700M%U)d^uQagi%=@xPt2WcgIfjb94J&2&Qns zx$IqUmJCu3oWtRR&>b4!6CFzrA+^2sEn*A-Yr2-rtewaHaQ$``>{ly zsLd>){HyRk>FePNothC}du!qU>udP``wM=cGxd&e#Fykue#wc(r>|dx*Uv8BeEPlM@M5x7L%i0vYKc zWQDTx3b`uo;(os@kQYvA%eE|ygw{Kl@a5LdZkjqTM$w)#i_g``eNttG23y=1+X;H2r}frm*Q1-BGjEZUa#21+JGwDB#MCen?k6c6Qwp-d3ba`ak0_VdWD(?TwD=eB#Y$FY z*v?|~g$|Z0Nv`o^OVugguZT%JvbT^YpSsd%1lSZ!d6czn-Dpj2X$xl0NRF+~)v6Wn z?gEq$a?d(YX`l{3re&AyEGTYU4hvL!YqwDX7zC)9%dE~BX)9|+~(Shsbl2{n&Kx!tzjqinm3X?c&m^G;TS}ysOJ3Ga3-%D(+!Hfp{BmpYjRqk{1zXls4JHIAbeVoff!Y zd2nt(5gw8sg_E)eP#F)&g&??>kGrdqNVY9$%?kDEY1!dHm1^qrMLa)KQ@Cn|4rcJN zZ8uK_usL!1Y6AU^g#&a+YvMnlJ3AAugn1XTS4)Mq!}b)TvOdS%mv(1lP+I6qa!>fi z4027NXi+v{MwC>uZdsV(jd`0|SxR!XL1{G|>XUO0_tGE;gI>~P1C`LSge=KcA$_MUO)6X&DQ{q{uJJipS=C-?Hk)mI{`bA&%m+rXE1;I z1hkV+^f&E0EqeAW)cfV-B+K%scUe?t7DNw}Mp$wQtSI+P-GIq=ott<_0D~7;SsH(r zdUyuJj^K+%6~=I5xxywyTSu3kl@eo;n_#jFv31IkyKK2szb4)QiQPCDLmsV6wLl~Z zZ=J(riBcUYHKp6vS>kxD$W(w0=3O^2!lg?^>?bJ@6psom?m;(oD^wkuzAFSe$IEhe z*agVFDnQ)Kr_sl{m5GPc%r4UjvCHUC4#;%T0eV>u!pPKcRMS*Twkgck;HmN~D<+az z{-R(O2ZBhQzF(|;6_Q?U`jWawJiKirk4kV84%EU)YlaObbl`0h17Z?uC2>T5iPN01 z4})QPXLY&Qmy1^Z#ECTF$haU4K1a-LGQ4a9ysaLO%n;y`clBGR)^`ph$-|L_Wvlh)vW3E6{GEZTFC#1rQpMF>F-+t}-Z?25Ns_mG##~YF23zfZeEA11ddX8=N9hW6aqH4v z(ISNck)$K*n(pNIq8KH4~5=xr`MfZ@8MW?x-8zP{= zkl|if?~+OT+_?mnLH?2@A~1}y*$%$d8c%?Vf`{V0`x4N2&ri@wF*GRdKP)E_)zbmF zaw(7_{qq!LRlbqRY?GaWtX%$x%3Z6*HWurRK+sOde4HGiaopMOMN&5Nq!o!7U`-T> zj~UjDU!8|RCz>%lp<4HyL@NwZ@XkR2J<7on`Sb%5NK~Ej8Dyd4Y-qs)K959mU|7@+ zqhmiZmoLllL9g;jnWpAw=l41@vZUZawOv#wv;OPBTgqEXVk{Exrj^+RJnq$F95XVc z5NVA;cc#)A=Bp5eK&oC3TVZ^(>;3$8<&#(hvT$)2RnB3LC4 z?L`GN!;gNXM_gg^+qVz(fbD!1k~q|H>|c;q4_nHVeSBnSkk2mPzyHS{zrFwe{@?I# zeIfn+pZxL120MHn$=JRffMQt1rxW-RR?=GL9*Lz~M!lSS%m@|jIv4qP$O$PZ%(*BY zot*;+b=DcvuzM!y4LCY0)r2-6wk2(|1s*h3hTpBF-O5%sIwI`BRMhsJ1Bju^nP8NV6w7HAD{LWas^LgGbuYD{0Z&j`^V|Gh|(*WfzF zY8h!^1$tL#K=itFD%pazMaz~Wxl#aEK&ZdbfOKG0T`xBoSv44PC#YGKjf@ve@fSm3 zFOzzFq;0GqlA@sIcZ6#L%0$|%(GG&Y1=E|(@!E?9Wr-^dcOePj`r@HWx5JE9i!3fs z|JF9XvQ}|EBny#s1#w3TxFz`;>yH3?%V9TIIg)9rhvhEstCe4XZSW`*M?z@~_5T}I zG<;4Ho3hkBpUE}5r(5JWY(e6{1v2Y4G6ST~IzWX=Y0)i_kv8FnVQ^OH`<+(be!NN9f2Sf=fgZrjoI>iPtFmuV_h2;3<`004 z+`a*Pb%AMNBw416r;HQ~nUlP&%4MJ^x+oEX;8#_ruml49ALy=FLn!S)*j?wlMz@l^m_d0Z@+u1{yr6QWTsZht$_cfov4%NLQ)Wkn3Lj0=B8ES>Xd50eu|tG+&CGO<`Xu=aVu9z z8!T^_8!jv;k->(!M8MCjx3ST5SIMabH7`L&B{Q|T15k%&Qn__>t)8%Uq48rG1RlOP zyZ2hs(3YDu*;F?Q0$me~Qt||-|8AI)Fd^vpU~4miZW>8m*S3RuZfJMLl7J1D#I_}6 z!_1BP+RFLbio^8^s(GFF0OS(L8#H=T4xQNXk{=8$tiU}zvYNS6bfp_tH_79M?$>#P z0my=mACJU9k=|ShHu1W3m%KPv4S<|569)@*$n5FJ?t#E{tiMM~{KyK1Dys!qBEMVCWN?Uq6{=A{7}l|lU*H{+k#C(jJWXT#`)}WxF~^VI72ZlykvG%H{tcxg zQh(tC0yovi^6=w${aN^T-1+A1w`VlzuQ@pR2Y7${!`qiBas!cJeS}-69iXD7Q8|O| z12zf}CbEDAV;nh=M5UkvaKDHLhU6}^F6+X0O&Fg?W3`DvO?C;q*}D)*S%}soOmE{7 zSalTimX=k0FNjsZqvC2@;R;UB3^MbN#{fLK|b55Gm5DA0tu=15YB@fPz;B}7C*9DtJEeM zF=(D;aSyE*8*(T=E0~1q8M< zh}Es}auS=_?uXgkxS<^|8X~S)KZmkM-AE@Yrk=`5&*&2(jb3-NB4R;lB-e!tH zrTRl&m)77{NTj^q10CmjyVQ&7{aE0WTmXfaTptS^XyqQGi0cc|h_ns)$VYY_Qh+YA z?pmg2*G(m%u19~VhTE5cF90=h9Y(N4(Wd1L=NCm>qT@4#(3bM zuS8Co4QCvqVm2?umWB=~(n@&`)eI(Ds#LiLHw3`GBQ-F-?=sUa;heWY6F%jV8fpWFzmIR8D6T8J+b2 z1B-&yV{keBA){P8Dx;7`M!u@wI%oJB8>i2W6S z78;*__?0i-KC#!I+VB8g7OFGx_Uph6|Nhqx-hN@P2__*MX+!|HsuDn6zW^-ar*9wN z=K+WKQg=Q>)FKU*0kkPjVYVO4;h&wY{ zE>?wRe}krsgzadZ0Xzp9{kub-34k6_5LRV`=!$4D8<%Y3cmSeT6q}atG@{r8B%&O9 z5<}R!AGX<*B(_k`zM1FDmy^T<<`40*VALg7TVbT5F0e3oVK-@MUCz0lVInC%#ARZs zAvR&}thsg;}S zJB@zdYE*~CCbipPYEALX;L1_cJl@iHdvF&Eaw*0MV-x%$wmYY82cAlM_O{ASD&j!3 zCpJp8VovBx%O9j#=;@}4Ndq_B*wQ=w&Dt}aXzv$o{#sE2izFR`*lvRs$xgDSgcD#> z3)_(ewd7_M@o&7#3$Sw5NP&Rd_D*`Kx|M)sZt})CQ-Hn`eYIz6zV|byMg6z}hkhkN zw;xlV!gdBs=qWS}^N+Mur25|xuF#a~i_;yXCV*(4IGv-04(5a7h79oI>~>L~0whF; z?fRuIySs7{bWOhhUyUEGU3^;m!kM}u&AZLe7B)m_(4MxzCnS}SWt7MYIotH~tbtc2 zjq?^)K%CdjP9xx>Bd`{^WM%_l6u5TYd}@Y-ZF0r5CfTc`9Fso+Cgi#r9vlfzgFwJB zlBR09Rc~__@{QNq?V;3kqM}9q)GDqyfqFfPKKT{J$9?wIVBkTmrPY~e@OX! zk+;@duWSLl1WHyYE}+{LO@UE8-|RK(3iS}Sf+D_5V4Fw~F7Ssf<#@S{&{`uTAfn+Q z58TioFOiik_AX6Z?wzuum=GYRms3a;8CY|Awj`esc@92v<2eTA1S4--JY@DJ3OSW` zg;lO$2iyP(`Wb-*;1u)`_71f{GxHgmYtT#f_^K{M+I=LPa)i*SMgL09Ag}_fc9POT zG`q85oQclK^N>@|dP8xIVdG1c0Fm3MJ2c1yo6$ahgM~eP&ylo50GqKuK`zU z*p*?aCT!a}<^&nb!5bK1`N+NiU<7K%cu8(I;5#uBkZ{6kWdUAdf@Tz}eAsR?sMk#f z_n~*&0CgPtEr#0Q09Sb@T}$TM5_{Z=g@nl5k^!{lfy-0`n0s&nt1cys_wz8o->D&0 z1h<`sl9XBS$%?ZbCg!t7k(}G38C^nVhc;L6o`tLfFb{ylF-ZX0+iINmHU*-k?ND%} z53M5~@Q<_nU2nR>`PTi3CgnO%QX6Jha#4J@Lj~ZVMpcj)ZrXpq1OxL%{eo0dm?ac7 zRI6gQUB+Bn==L{;31liW)5Of+21KO&5fzby*;TYoIdTH)R6s$@94SChE-yWr&om_i zioq>BIUo-b&WrpT5%@d$4>P-F$>P4`%NJ6$Tmju0{)~YY769x)rHx? znsUPqmkydMsD=C-gnHVai*$nx(hI z;Ovr^2a<|+(GzY1Y-;=W(iA71D0%)unxPaB4z>W#+pb~gY21|H`jIEU=5MiJ@J;$_XV@sF05Z6`xCN z+}{wsO7Sd>2@tB=eUFe!f#;Xa7cgZbO|?PUwz!@_nI@W3W=UnKV8F9ZMGP(r2jIe? zTvCiGwd+!s08b7y`6>VjP)Q-kT*Vh%-HuitlB#%7J>HZ39P*LPo*xtpz+GN#4~*3l z$pp^df!GFE%3V8#2Xp)GwasDuUWnXdJf_?qpE?}weX0ULW^0nUmH;sUjj$-wcyLjX z3^-f5Ok@jisP>GZWmY72GAtoHrU2B7a!9@N1)gk2vA@==Iw`C#?@8^LqU$x)@)-{SIA>uV25Uki}1t zFc~uQKgq}VyVu`C{0a(KU&w#IlmEW5?PNQ;k6Sy8k2F2FN62F7ag)5NRX-c44H~=i zhG83<<*JS?Ilgz#w>DJp5MOwUt~+##sJp%$gbFZb^#-f#w=^%XmN? zCyY@we{2(AZ`Za~XOfg(Y*oGow@ZC=E1L^`JDYKrEi&F_I8HAq}EzRo6?n#hQE>m3u4!SXLQ(`#Jyw z3P7Gpt34$1oQ%znBs8K60#(j2(JNI|5R_u#%Es3Hl*XG%_c4nd0cKj^!lk-+!voBX zLD{#NtoG4*_`?+~o=nXMJWm3%zcT%xA2A*rDuqzanZ zIvFSkws+H7h-2kRgaTt$=f)OjU#stCCm9iH1C_tl7@*G4o}-jwG4@cgvgZd3zj2mw zl3+lbt3zB>Ex0;&?=x6-lP4MRc+mo4#jWS%v!iDBkam!K= zfI9vW^whi4f~)ZW(m~?N8|`w5Lf0|Zi0+?RDfHJibDK0>w{UA*67)J_Mse6|VIjc; z)(%{QD@j}<5DuK3tgFh)T0BoYxIoHjyvGhJ7}TI_GNztfCGLF7NH)^&n_;j?le$z| zrV+I`A;Ts@ab0pKiRw0`izP-<+7YuFRPw*6;pVNWQMQk9@-a^x@2#2FiFtCgyrDmOe#fq@b)V6G5H*D5IFM&A#I z5aesFs|AFR+=S>2K_TcMYeGjPGAEJChq}Ukot!)Cwcx>lkOoRDVk%>JW?dpvEDC05 z3iL^&49V_3s>~j6sj|Q>fAp>zpjk=9eHr#pU~7y!}C~yDb8LjClMRzy`YY3ATQAdF~xm@At)sXgdtC zW+-R`vrhrf!9LKVM(<7vDHpPs4lAYy27hcsjMnXdn&h_B?I9>>(04fNK^w7SuR^Yt z1VS4JRD|FM~KPf*$Lb?W7r_cKE`CKa>iBz$jt0P zjA|WkV**eW*Sp1NP)`gwH(p&`Vvv+TIf9*!DZm+1WoT8b7!LPwDeAO!N332Z=UNdG z+=qy@taJbrNG{>hlIRGhZ4CG@KD5UI`D=nuaICFbv~bh9sDda0ZOXzmL6zGy=}^qE zXx%P5&cKy~6OvX@u<(WfJWm!1$oEE`iAh&oIgp)8kUdlU}$e7EJt;s1-eIQNYhXo3Le?^Jy7vjK?rlz3W?&f7IC(4pb~L!gHX2etHU_`{;HQ4V~T%L+krk8yJDRt;JW z#`_MU%9WU_Ia`ABD~kIt6wAjvN6&U7;y(buZ9j|RT5ewnb81mF5?PRhhhPki@q^s( zm>)RSLN%i@)Yypk?EXKMp`=|*SAQDHLr@`^A6>G(R7g)c*yr}JLVN-3m_r&1g^X(; z%WZornLAShx;cq{})8;e~#Gs zPLzH9JpAy$h4I%^9ieydJN@@_9rM5aR(C#1Ur68c{@eSnABI0quYaz`p3h(~2q|{u z3@j4On7-`2q(*kG9{b?z^Hc>(X7x~VH2o^%MD&Qihc70q;a&Xsj$Q*d0j`}ccLl;o zvX?wv?vi2~BoKN4DG&lffJkFIa_Jdwp!4dp1QmUC-9|W_OEJA>1LCCwJ*XL{uQhVf zXRokTqp=4O^upc!)~ofCS&%6iTp3$0ZmjkLYnIOD>9HlGV&I4EY`n z$OdhQX|Pa|A|T&>O_kdO1yQ-=k$?tJwB|-~6kxQVu1C{O+~Vl-TUvsI1ZsKaiAf$P z+%{6dzsV}dbr)I*$MYd{9rZfCSW2jN5>G~o9g8`xvrlK=xp zjm1Yg-8Lxi?TWS44gu;cr?{vkm1u#SK2`Lcv+#zYefj|p6?Sb}hN){09bP2~A)|TiH)s_v_)IkTdVmWyrVKzQZG`grm#dKr5 z%ZdP)oy60OC3iL-LSq$BFOo}09;-S~>NOYnRcKI_@|;4%LESBKdnbu3P?Ba1TMG2r zt(_nNQ%et6QO->dpBBRr4vl^wbg}M>x8ko?rUZ8^K`dyO@dTVwL4$RCvD+DQr|Gb! zl)H5z48zeAm>@W9$J zAaUehZ7kS$e_Ir*aEieB=F^cpffqb$P)PHlJw?kHmNm)hcmlEVVaa9Tkbi1dNqS1U zTV*q4p|=jAtMvs+hryY{8T9Se!%-sZY0;ZV)oHU)1#54rNiLAfV@>Sezx5jaYu|uC z{cSLW|K9`+*YDfTf8((lJo*)ta%au8m(W{o`qP(OCt{FmUJWX$z`zZ! z^MlYgvppbnMb@BAAb}4r`M4rbLmz<82TFe?$|@?*6m1fBlAnl?UgS`PzWY|Bl%;Ai z5uev#R*`!PAXMFWK}L?{IvtejIb`j!GjOY4P9wJ|ksEa*x72We-s)=^)EKs;*)Yn-1>MbtFuq17(J*yn zFrUujcey3qPPOW=QuQtxeGTg!!*;Zjr3~ngu|HBCEZ}~#;{a|Wp2q|glC$rVq zgY^T3QWY@Qi)wOOy%S+dmr0&2&k{*Jc&w-lfXdV6<;|i%J7WITB!`v}$$<^JAtwg` zsZHeFxd{Zl`(SjK8K16{0A$ELR818(Av>nv|E|%RmNz>j^Z{LNdYV5>lFQH{q6jvu zgYMCuNTQ7C-2`_XqVzzubqe0ROF|~8k2y?Zs4bUHLb&9&9Ywry=#PNx#l05ZmT~nj z19h^HCD2rdqf0K8%!CFw;0?RH0D>Ek5R``dO19Hd*;tC0t%shRTBYtgS^Tng?s#da z3vkuuI+*$0Avu&y@U>QM-ZyXWpC;1({=f3S@WTU~dH;?Syx;5Z`To@J?Os|Z45*rTXj5&2Y62e(DhSy2?t8dF=oZ!v)?h)|kCLqck&J9# z@+{S~UVPkP=9#9Ae;j`7ek z!KjDSd~_zg89pn)$*BWoo(98)@iIeuLSnL-D5h`Gfw5J-8&+N@@KHliV*h@m##3iQ z8>vz>k+Yx-jAIuG3Y4$B7_{%+?0}$~h~tQ1Bh#|cwNnP@@*ER)E%iw(``N&Me$#of9fF=P-v+0n;K`Cjy zo@&$)^5x84RFI2^wBUmM%?So0h{eWR*SJs*x zA8!|Cl`F^N3cDb>1G4Po}TT;hGk zG}n9e8)T2IA*$$DBw$e?I;`A-;}epd(*mW#CG%1rx`)gX(i|IrRClTdzT5`c5Z=*T zk7|gj%Vs0=(C+3lYO+J&G&q4QjZ+Vo{y+fBsu`*pJpyfLrDM=HaM7WbGD8vycW!rB z`Yl~3C9blrhj}a~R`6ci28^)|QM96i$gAZoNvjZ2h2c;$$CH7#?QH}pj3NR`p*G`8 zAO^#*z)*@@@f=EX;QXXX!MR%?nJT#i_-lN>c|vg$s0WynBn%j6QeX%v?orGnNkVcB zARwfUgt9&1e7o>~n$Dz6C?2M?0MhZNF8mS8P#sw@D=C*O(l6#((fN2c zSwLQ?-~9lZl}s^NQPke(irHv7Pm(vhTV8KPzH+HtA7CveLp*R16g-EXqPB~5z4lk6^T zfQ^7HZ#saIzNZytY2_Z3h_BXKy5W<*rBF(d+|0VETRDAn-8}B{jAPN4^XQU*u%fPXxZ|yZW2)tnc$qY@0PYb9ixuBW z9Xu}00G+1A3-_i)OI_-(JNu=BRBp4ymL3MRoUm_Cxhk!a0XkR$q~`iUFAzfK)ay0+ zF$mo>SDrno@~vHqjy!<^4MNSOFH|LXS9~4ndsS3ErujEcg}^g8D1x|=w}pKGXjIwX zmIufHcX-M`0k=*(MqTM%=pyXq!!jV?knMnxesgKxgCh^8*D65>a{xZp;1ODqpk8D0 zB-;3(l{eY}S6A5yy-Dg*nk3+mqHob04Mp?<%J|-fCX=NZat~8@K;GTFzt~Q;p8CK^ z0Nj~+=vPz@29O`KRpYd1R7#h;9&q|64X-mOWp0c+5FW6Bqb|Hh`m3D|_8V-_6|RR} z?X}xLps-W|;48^JuF%EO$=W-4#!TMg749i1xZeX44#?+OY7itXgw^0LoZMJGL*HLY zz>p;omI4=bMzKkFe`#>bcu65iK!FUsVRwNxpk;(0JK(a1+JIW0UnS}n;UG{z4}gA6 z1)%+9y=Rk>DNS*>#vB$z!FXr@<4ztV8tF_;DzJ%(fZDEUgSt36Q&2yKboEJfIqRom zh+pUgId^mUe1<^Qpu-n8ftJ$h8BdN5K;?{t<0DUylK_H^9RQr=K;5PNek3~)vR3Z8 zlQ#wQWPH)gn><3FP;wHE8Rkm9`@8UzYdp>_ML37#Qz?n##tDS-a?`eg^CBP$fbMTd zdv>@+9I6CsKQ2?9M5s_q6FLUj1u_Qat;3u`Zl;V1Nw|6dChQLfcx1psyLj<5B`*CT zQ#d%{8KyJM0_f7fdL`?U=aa+HrS!L+3Nk^Kj~O0F2X}q{!P`HBx%lDRZz&t_!Q0Q@ zKL7rsx8MBne+lW!=db?c^*3q#B)(g3d7@#y|4DfL!{s^3na2#lgvhWsvpu@Ys<_EA zWZY5Q3Em1;KmwR42e%s9L~(IB3V1ghG6mq0u1yjf9H~%p*M~A~0pjF{juCK&C3 zqTL)tBn4H$B;$(asUj#ksTF6S01}==D|u1@t-^ zqHda|zJ^osBw2570EId!eoG++#U>vJKz4d2TTd3BHS1^=30{BS49E)>Qx!*)#IKQX zzeC@HHr$BQuxW||CNWlngI^fWhQD#p+RPjEk}a56707dvMoR#F?34{Efi!{5gzHp* zpPU>c&TP02rAJ1=OB{o7lKfTf17R*}xi#2#X!mvs#M{m@_z_Cw$qorOJn3(vBdb(X zwqq2=G=GT>W6QTHJS~)s;J({~lEXSpp0q~REh-q~om^NvCc z*ypx~A%JT?*M+nTJ(Fz1tHl98vp zqbdLunREGak-rS>DT|XyHSg`S*At!W8yEroYlX0X^)HUyuiif3Yxv;-zNYW~@a?C8 ztg@fIej7mC2m9<#Ea>*ZjI3%~-sJbsJvJJj5(Tw!NS>cDZ#3}HUSa$4$PTdAg6Rvz>Q?2lQdf2jw=v@7unbb>FST=K$hgeJ zxeq%yzZV6y%<|go5MQ&;ys01b}}piO^aw17^&=M;ngsQlb{k z)3_P3jLwV_;#MQl%SRa@At8Cv;GQ|w4@xfaETV9CD4;vdcK$(?R3)O9XHGyeL?}n zo;B<#-6a)^5MUS1CCLEY?~575Xnr?s^!A)Wj9DLLY=nUrkTVs zxiD4Zr##KZ<(aL4LBx7{#p2HC3jNwc;=S8O)ii~2CO zt&zge^rvppjc&no9uV0N?z_%9K)D8_&yS*z_2Chk^uRAVf~A6OsJb)*?>c3r<){d~ zcdg4SOqN`ivKqS*byAh(X;A@c|AofO>JojqHXy|s(BT?Oqesv`;Ur6lCx9tSs(Ukam_S1#7cEqI;u>EFv_S4gudP*8x6bx*xViLM ziMAC6I8f}OoNS2}t?Th=-^bpXqWC2P;uIcBtTxmE*F-hT6NSlhb0A<;jDME0azHrG zAugGYBb@f9fqb93+H{X7P|8V7-V)p^(6yz5tQ{c1O6V?l~#JzkQ;_yArj=#6GN33k0JKTQuqlO-t2H}CPOlT-pgnY^d6mM zwrA#f_t@Vtdee0M5YA~Zv(auhg{&Tuu3(|S#9V4g027hX7=V4D{iHn1PX`{rQDr{# za5cGG7}XVu==1N1OFGn_Ce=EXR98n4U7~`euPVaAT9&}MtJA5}Jf>iQ?s%)94()L7 zoyPeQ`1Tr@+|hnb*12=*s*p1*aL}}u@?9lhA;8xiZ(d5yvP6t8=FtXm%0UkcLGSYj zg;jnyH$Abb%=Ll|4 z3FJtU!ZDc~$locKWdhuY0bUmUa=fBi#pt9kqFQ1vGGsr;OJ9W^aa+wofK-DZ2W<1w z_Y_hngw927_M!4m4@;skWbsjVlj1lE3sG)^ZKG@vB~U3wc? z7TE+Eibg6t-Au#=H!=-KDlq3)!rP#aPs8LP zWd~YN54I*&IGuS`v{GX~&InXlOAAH5%R1M%Uor}B_wdn)w+ryT6zD6WBc37qwCkxv z(cuF9i%QmHm&lhDv#@}^$+hXALo;wTt3J`L6<%g4%}B4m)dCuOLj2kUsFZXmWDI@Xd1nKB)C;74b?%V7J=pdf*~Q%Z=JK2ib?sG7U+ zpo?dnI;!$1%D3w^8d4{hVv#~KXizyG4r96zO*pNeoUowpbfo7> z!mH&4ljQvD0!Zqcev=wX(HU@19G3S1!0uWyIUxfDZpsa8^3nzZmOFgSB;sqnp1=Cl zS)1>70eX8$wC~en1pfZ(m*G#3o%h4vq@ABg>S3$NbM!^vi9}HTMPX=7sVBzyhLHn1 zGGx?-F{WVCcz$0k=po^CVc#Z_fb$_3Os_}E|6PV5Chz2T^6lmRfDCY5VaoT@HJpkjUC8Ggc%d!&;$Jr}b0+a3>NF|9zfi1bq>T3yLQK6i< zjL*q;=qP(I*YDU3Nf3TuzpwuFSRE!vbA)zj?~f}c`B^z0*uNH3%(Y}(mF#bqs5LLO zmpX~<&zaRUs^N@v+3S56f#;z9&Rn2{Af?slEqPm*ry#cgR6u46U}HPlaCT5>%S*pi z)ggS}gI6}gQb00r4&65x4)>$W<0h276xzdIA20QO#Zh6c8Z_3_mS$gC;7rVz( zBo$%D(TN}*K*v7vgE&Hw0I~|G!qgb5HujY)`P?}izO!WCNIh|CvN?#Px?3b8c5l9y z*SB(g3;3H-*lq^@4OH!+3YEw;eS-`4DR;B%81=e{^j!XZst*s9j_(8bW&9lPhp2_* zD0|`$-z!Tj)n&(_1vfQ(!0hm7^xaNPKTHOvv1aQ6J)3+eX|cKqkZvzI1YC2dUDv{h zfivRY(QxaU=%I zyDMAwtDDh`P{0PqhP8{~BXaG0rh-~$tNnp= zGH~v6h}Dd{MM1PZsSGD+h2g6tgof6znD;hF?O*{kO`)<@>b+DUIeFVdUcYx8_|EKS zNbxU0v9>h-b_>~LA^(9}8ydRif^{Lkd2ttA41S#6b%Ts!^5_glZgmjSrryb*K<@Du zdBkKAfrflhgkn5`Bj~st(PFlvDD9f=?ZpAv6V|Q!NQY#``8np zcU56DYT*KI+(AzPk;F-SlIuN>6Veh5i#OU|y0mkW&*g+F1o3syR+@$*gF{?e04pxY ztMWO#4P^z(K0J1tudWNK<_d2l=N>O=I+a|rJM+47duxjhT8&nH!gQo9P0a0Eko#Pubt z5B2~`4FPMUSP$fs4u&;;)vX|u2g1T`d>|>w8clf@L#K|9hDQD^rQ$;fHAlz@^FZt3 z0-WffIbJ#qtGkmyW4fw^qMg)1iboE=(6hF8EWx0W|9EV}t^Xl>|G(;i;S0VAC$#-< zT(LH1D}VS-w(_w&^6rC;-(axuqv93w1xrs~v1pPD=GiANA5Mw|+P9Xp?}UIp(O?3q zigL`)!KRkaMmuDwc&74{J3rBRmxz?t+cv4C#xb4Mc7kzp8Zd>X<6*5~9jbpX+t<)} zs=9$vYPrU4i(6`=-Zo>X>KJhE0M5xZuQrwH@6D6~;m2OuDs`-RkYj8im1czyV5!0e zy)$E&E?cQUw*$BDbh{NjU}h7kBeP6RXM?=W=h`&UopI6cI}igC1o*&I<}c_Ww}$q{ zvQafx(yk3$zA&ziJ&cIacBr$z zy}6P)V`0DWqb=-%O%wKmDm`slWfChmZK{K*_5E-^yU|RO&b9M#hhU`7619*rSDAeo zP=>q}A<5`>6u1ZZVafHm1L4QA3eZVN5K=ex^Px;y;J1Cz_g?3>I$2@rAhA*v!+QvT z9x217e`o?ut^$0IkT?AZqeJE7W{N77pCrmHuFt1pZ%@|b_w5b~6f!ICxS#R|e5cFL zUH6lG2>UaG7epU5-o|?hA9$AEpfM`(r*@|5E!2`uwuiN1n^mXUK_VCoaJbUc0awCx zaC@AxSIZoFFg06uk188!m;vBawa=DM0eL*I1GsS+df>kj0so_=PBpSLY@#|b+VNax z5vO<|YybfoeEc4R#bYy7=H7D1<=2a zKQXWa@F_PWxcPV9Ly+b(a6#%NS*D#IuqV)m0!=?k2_Gd0+oDLd%8A%FMm6?@Os9r% zN!ft|+-CLsn>a)yPoEzr#3MsA&y6~vB6oFsNho#LX^~#??%jV(E~;7(Y>V##b!5^E z{NKXH#Js66Fo8!E%Ifpbtb!FrydH4DS#CaqKtL0}+fIhb)d=eInHf+Wx=a=1C0?Mv zdHixfj}CrYB{^#QAh7=uE{T&Dc_VV$TAu+N&kSx29N(7mDhx+3Z$vAi4v~*U_J4E% zq^PXuXi#?X<;4H*B_xRR)v0!v+IKndXPk4i&NS4o@+ zbsPfqD>GxzKHp3ilx$d)SnQ$D-iv4GZ6+>>q76sJ?IgP?N&R-njpje|P%)}}7#x`; z`73(sKKs}foh!(Ve@W?ZGz=H(Sim}{1f_ItvsIr6-$?Y+anmLQpH~Imj5@KNJ z5vwwhbzI;pzC% z;yn)%#*4(ALVZWAeIZ-Oh+W*E{824ea7){{)KPU?^qaQ9Ex(Z8wCzMX4yrJ;0-yk* zXAkk-?le~ITkpd300h|)M05auw5+BCTE54OGy-^)W2c;BFQmWESgFO?+WKr@1t)Vj z4A%kZptR3P|KKha6(r@QMrW~jZvl|-o(JA?cWT7l#&W?82+Kb?T$t93KGSk3@SN53Ev$6Y}3q%%Ksex>VwGt zXBoih+4rA+_tE!1zJDF)iSx<(C-0v_0r->R!&!zV0;EO!)7w`_4&ajW&*(FJjXuM# z=$G?(u!A2$6)4S;AGn<$bbv0*WcM*NCce23f#!h=fJYK+A_e;83dM^BUghJ-hxMXB z$rdd+#(lXrWQTTY=TqH&Nb05Pua!~#UfyfCQO zIx#T+efG z;8T6-W+_ji*RBMh!HJndpb>!r*0a7M+Z?g!4rB&Yn5j54f;7*!1(R4;9P(b*+4de9 z@)FCepP_{8khD^dux;6q_NxZR%t$c_ zKLWYz+?mwo(q=N?doL~p0-aJRSE^(dK5Cbbh6(-NVrd|l`oyn zI$8`#?A2o5j*jWZE1Xj`7MXc!Nl|A7OT1E5t(KpPIwvF^f#vSUI*8C2pt@9{e%pU3|y38DQV)&6Hue=7=9A)A3zF5 zwg*rw$#z*t!4OdjgbHO6wsZ~GbTB=Dh6T>GoH4&}6d!Qti>GHOLDht8^- zQIB%7CcJ%JeEU;Lnf~;5`O(iMsrp&?_D65Oc>7&`iT4hoCxjx*_H*-OFIlo|{Goyh-e&TJw}p&HjTko%kH4?|hLhL(Z@Bcx(o z?ofWM6x^>i7g?b=R4QhJ@m`M=ewi|qjqT1=rIOoW+9Nz@@?&TsY!x*LTmwzvl6tgk zRj8<^yoHzH)WU$23-OQWBu|^%^Y*l6>(+f=y3kJs?Pw4IAeAHwTRzya=Ao2u_mN7< z*T-@3Oa@1@d`>_huzd5PqJ0_IPJM?jv)j)$(2Q#`MYDg^+CP3$&kBz=qCgORG| zsFJ(h<-jt`F&M@MuDgP{E^0o>ELMzUI#9gnvb-hSlcn4(tMg56Fre^6W|-j6Cq<2m zD082hTI3eAu~S-!llx(20QoCsLv@V_n`B5e=O>cfaK(;;+EUxe9k?!&Wg;16SnX3p zPkojYs8SKol?|AMvfsmNP(vS^{frM*nDQ4;QWn}GLzI9Wi}g7emVd4z>SM94D9 zrTb`Wvp18Z_(hKqdWZFCNmV<@i^_wH&G;*6jW1MWl4G=T46V~2S~Y!qt?~IEeoXR1 znA)O1^DYPyXcQCdHw7kn_u2}bb zLO)A#6BVehpf^v*h`azwO)#qgih#LG5At$zmYlpQVp;o%`5ZdQ4q(2v zDC{KHK%A2Z-(F9WjYooh0W)#}M?_D7dokXp{PJ7-q{1S^L1ja*c&|;nZMN1@?#F2H z#)P0n+7BFzOBhTcLy<{~c3+y1) z6RH6XH_rJad9C)0)7Vrol!Fy1cE$tmCgt%eFSIBe&qVC9jI!_rgoA^R#o>WPGr z-7CgYwMMN|(qTwtJC8)^wN+(h@LvW7^7>FT+-8Vm$W39Vb$ignQ5l!81Co@bF5Ib>`owufpT8rxdn+)Yi1OoL4StiwCf-IMEq~ha$(b)c9 z^!R(>zds_n+7X{&oc~Uv8E+$Vd zkbzI^jC9)y0@qxCGeZgnFxZwxAkVolkwZl^YCf?BpTf>fXb2^h+m<2|*tXd&K~QqX z^N%Dre^gA6%!LnwrRzYu8M1MbACNrH`uGz}aw;Hq9V#<*Ckcv+RW+^Bf8F7@-Q)+F@KQw;OgSWuq&cPq)Dwk_1t&)@^~KFz>0P^vx4NGDS^RlpJeP7gUe7dj_9blz(h^ zG+x<3s@n&o^_o$EEmAU92d!4!=MQkoO!G~1qbOSKr}v@iv(#xbjm z!pt&1(u|c_SG9#L>C-jkBTM2rLfT0}GOJF@`;$!Pfal~x z*;#?@!NJjvk?4)kxRP#%q#vN#(YlFf=z?w4^ao8goqAqa&m$A29!7G8S?wn6#}VGz z^#F&tI2Tf@ZE48Qk=LvG9N09vLu=)G@?ZGg_fBlte|!7UfAlr{zkLI{7TI+VMYD%`|mJdlP_;S zFTVY6;q5n)q=mL-*0L*O*Dxjkxr=w+ z{bX#>q(nm}6i5(K!>ZhwF7zb*tTlCIKs%ci>GPl=q6kpO@MijhSV2EQ;K;+gY?pG5>7Q zjM+L`zoz*Rx0anc^-QyJTxR7u?a=-JpTfE-Tc;_|D>1aeosFOc0x>o+GA9WJH`&2a zDNC3KTj!Fh72VE?>Rqyk7IGlmeuotUT%;)LO!e{`>5o?Ax=7;s^dYW-Rg{_8<5mYIuo>Kz$zlA zmV%r>@kTAL@?oi6{f$y}_c2g}0s&}I9;p>+_a+8QEHGC(yi#DWUeT1{uA{sI#|0zH zo|s=m9&+_=BedM(;g4|xkWg;18z48s75PpKH%Yh-?};|sH;yy&o0WnTtvYIw7A83k zG%Nl6!-q=J5deIXduTzH#z1-)Jzx)7PO37yDzbwd>fhb5GXZk0@VaP+ zJHRrEyPIdCZ57^1d{Z9mbltdX65_KROv0ukR~TXCNid9}ue~XS8!2nl5&m-H6H#75 zPZ{ip7Ncbsv(|R4$#_-@xRxCx17hu`LvNs(aL9+1S#SP|Y0Pj~nPD~q9Jw>0ODTB| zscT4<9oTxPa+-c;Ho>agy%Jf96FAD;o5Z}Nvj9IVlhb{XQ5;e>09iK)asY}}l}(Zi z;F38X=-wm(pLKyK*!7{q_2~g)ynxeU2l?kdfB!vLFrUAFMa|4VYqWe#0PDvRyFUs4 zT|W8yx8DZB7$kI0Mg`yTcC0t@Je#i=gI4$0L(Z!Yi7gjO0ji!htJo**ny8+x)NXmS z!`|tX(<6O%NS8cXjK*#Mcqoi1726s?=|j->@E;`uwtaC!zfJBmDhqCy1+nD~CWEzw zSM-I}R$}#5qJEIjY;iwt-jwxJH83pgbu2mgc>*W5Qm%` z`&kGA*4~KZ`6{`geUcZI3{#Cnf>rxIv=xhF)h&@L1j~SI(FSh~_tTuSbV|+ga_R>>6zfblaDp?n#F%__XYmHqd2Ho*XFvH79w1xRtw_ z?~u`^qS&|`9^q7JiqWy(wI zvZ&a77^h3;ZIcQqsO)*ka(PKQup!Dm4(3pY)o3hGdph_i2hX|esG_9QU&BEb5>(~k zLsx7bfXRh^c<-QGNHbE3dl{*!ct<0kVqyVn<(x$*)*#Gd>wn|6A>VF{9E#qHtj?XB zVqH>){lQHG<6wnp3(A)i&uw&t=oU!u!+%Wb$LC(4fOtSf^l<20ZXwlv=B$w>fr`q# zN>`gJh|WOtB${|gK+=XK#I`NX=pB};l5&@>ox+7#!ljkZ@B>?oAyixjxnUKYl9skf z|F+p`NfKy-B2^l-N2PY)3$5G7)_Fed}h8 z%o8&BHK6n(nj=@m+YhAu$h~OIh-z2VL*;D~Wy?}56mZl2#ZEfOQW2I%&uE~G$1MmB zT%p@0&uM^lx@6(dc8xxGid)?v3+%}yLffPTXS9+^u~U2=JvsDTUxhyqC90m2q%g88+zs&it*p?;qd(<=daV|LpA-;oC3XK7ap7e)g01Pr~~j zKg@9q{QJ+6&k$d7nkfAn&VCo(t()=pZ@&)k{l12>&CTRJtohw$ZPI7U`|K&%DW$_q zqEx#SvTfTpz{Nck4_RLMdTxu3a#xoQYY$W+Myc>Vg4@d>M@sDhOmDp4c(KEXL^>)u)UTE&0fR z#kaOLl8{?`LjAl7O`^{zERrN&nvqS|Z-KW}4FF64AFB9BmagPSJrl%f21nJ&K2Vl+ zjPIcRh2*xF@;kxrZOJs?+6oPML+lYqnnVhi4zrdPg3OopL{UB*#EWsseYv(iK)+Tu zLs>Ri93So~R8h0ff<48WBMN9iMpkHzM*l7eBgAL+V|`@5y=uu1z^$}>phmh%vCcdR zhng8Y93C)5g`VoVD~N}EpsL1B=YZQ*Cyz(Non77*;k z)al7pe}yh>J39aEs++hS2Kt=J0+O_?<_xN%#PkJCzWlx=;SGR-=My#2!;R<&`%9?o z)z+_4gckKKZ(4Ecv_Tmlq;_%jRagy;^DrL$E6JNKaAWpy(%_UC1@(l1tfsLZ=YxI; zrnFCcYTV_f^iW5-*g&+^T_UTk1a@FsiPgmvXWWLB@IFU(9Vj{ zcjRrWCZm1^7-miIEp!%%uUV1Kx_GPF*#ch!o%M9UY@soC(oGplsCd=Aw`SUz(rl@F zjKMXgOJ$tUa1__hT18;}D|LB>6)qK0f=i-;X$Vm56V01G-XL?*YO5GcDElUibfU%I zSks$Oj;ww81NraFLHg$XWA<-sECXGVw|_oykfG2t7W?M7NU0PzbX+RSLm;rZCW#K# zX=%gl#0*|2uBej8u+f#$7jjmuTZ48;`Qs}C!ZVcl=K*g?JPc9}+Oa~UPaU#{TBhnD z~oYdLX?JB<05g2=vBMiU@hAie6?*@)7MXrdhCW8^z+Gw>8aXqNW@%1TDuKlw~Zu7UQ^4R_4F;Gg=1XrR%!z1+MhfbTHHldi!sYiVW+kRFur`XP>nXC9gmV5TG-ZH z?aI*6w1k18_BH`A$dgmy1o|lEeggBFcr^o4sBGtlWsA3a6NeF`W;;!?7VMj%(#F@# z0z1~?9inC6o}dOIg}I}M&LwsjDlAjB|JBD5Jmw5}^0H#aInJ`c7&JkmmcK)hcCcC` zohuNxjk#8*2U>A<+^ga@%~jOGaztMaP?3_Cz6P>^)0)uUKvm{o9P%rJ36*SzlU=z*UC~Xi54R-!C)YIfs-cOw8TJG$bT$*`p4qIs;u_T)SMxQ^AW*h#! zUcEQ6Nxejf>w3Z;#|3^=>@r66qZ{~UF}ad#;gy!Eh!t{E?vmNsPYw;yKBlKfg;!K%xj72vcNJA!Zkl8@-uYFE;|9Won!KFwA5$yE6{t0A*{ zftG6Jnr$&GXQ{%akd5EQByeD>)4)wx;k2?Dw`Z8TY~-UMC}7Z%{aIAOWMi8{yZ$R$ z8V4_@LGg~hTU#>$!q3@=L<$NNdng3FJ(1$#aBQR*)+2aIaRWv%jCmeoSGf=f#tqgh zF!_+fheeSK2CC?_+#=&dL3*@gA zVVfO`+;l}gMeq$SK6TmMrfN9rGWj|@wk0O++A!jFdS#cAPSTN=;27v1+$B-QnTnBR>9xB zM*Vt?+9}^UOYkI*t4(OV10%YpiQ4GiCiEWbk_k#_V(ItjAQ)2g{?IHG}cblbJng~fEfUR8BMu4}tT1t?T^ z&6702libE07-y-Y`o8#ulH1z)57|vxlD_K(m%&-X{wssaRojcm&MXO#ViXt*_#&l9 zp)|09yf&6B7H&c9g=Y{0Q8g2KkjGZrqvYsA$w7k{`7h~yG*ZBq13_bf{Xk~a z!tEU%;?PKkK4*@-fL6(8xVmQQc(sNc^o#JIY@3e)e80w8U=eWA;;+6R{?dS)U%Y?y z_Qkhf{ONDse}o_0aD{oP#ph)iU^1)x{j%13nFS5H{Ia5c*IoBkU(t z`G(Io+C}EQ*6rvGNR3Exss#KJ=%xuT6pkDwHC<7u#jf12NsQjGvsKI z9i7dLOj*%yI2=O8tS z4r|?i1-E6oqC=qwF3sI72U)Q?4`82mBOIeXqb=TboMw!*?KtXiz5vVUkP(R`u?!7> zqbr!|NR@NjVRLQ8In^pP_f$YBP?Y0B6w-tjHZJm`)=kJrkyC01t<*2 zDMK-YW1J~XlT$OMa36{+5N6m7xJ?Y`9l%E3G(iTnSPWD95lO>CJt`^9rWav)+QAS@ z^?6;xZIgY}QVqFn<1-w_uJFP=VFuLT)$Lb?TFs>w%8dCV$^*8C>P+mB7~&)-@?+Zh z;p`Y7Lk|zR04S-u!^sU!uQ`Y;M9wR^Ks{F#zFO7p+;O8dF{)@g$W^yrcbB@0?sWIe zxa^`g$L=wtHQTAQ!!7%~&JK!{|s|BYe!{9IE^99L$2P^QAy69@vf0v)l#cjBGtaLBfoXJ!t88N;ASh) z8k(B~D2(n8gRl+L5*5V&v&$lO7Q(O_!qAvi=pWh$P{mlnFy$iyM>Y_=2>Er5yLPr# z>V%gaQy8(;vmPlIjmXieugKz%TKsZR8`Stf`EQS+*9WXzGysNz9##(M6o5Qii=xEv z)BSoNPdX|v6XF#VNpHq^N$WAkloGG<994DRKHAu8Ri{gp63M49Ow*RCJE%b!c6IJS zL{kn|!H^TpX*wqvgoFTCKl&XAch(L&)k$PBR_cqZCN23TV{GuDL93dmy%}Fa4vKF- zd;3&D44=Gz_NTwi^ow6JllcAHuMe*kKfyC!zkhN(<0t3i{5t@Y_)*AT)PMc$@n4p0ppL=g5_K6SOS_hNj1r2%uHQZvmoIKfbkRX;Y%lB|f zFsT5hyeN=n`_@&=Q-<>J?1EPQ*zHogS|$JqkJn;>?-znyesDthv$;~ofcYZRfeFco zj}3ZNwdS|>KxFn7?E8}>^KuZ-FtEr5?ZJUROVXC8y=d%KP@RByDGDHo%c^4K6@$cX zN$}cbl%qQ^|5xgzON~2kxQMuF&U2qPZS8o6a)O?iwdd!!LkDu%3E$N|`w96BL$kw@ zrOnU-1ERpGeIesk@hE_k&P*<$pNs`?=lfJ~*LIb!HJStVAbQ>-mm{d_;c53QVEhP| z`J`^$X9U_Aagi?)2w&}yS#9?$6v$~-I)zTA3vLYR-dHo88%7Cr;MJ-KT%=g%AQ=Tl z>^8;%%XSHm%1$J{Zd9;T@nuT2LsYWgSB%dU0g?5T$;9b_h=H@;>dr8aQ{~!^<4F?2 z;1A2u@#%ppM(ZeEkC_a_RBh4pQ1^Bx>At!`m5p$`Ve}N1f7~j!|O==@-BOd4qR4!X1h`CbgDT%&s^KX1}b}J~81yodi2q z8p}&yjXENA5QFwG`UuRzIM{l>wGha+<4YI%)ipm_@Bub9K%Pn=w9&?}WC1S%PF6ZjZ4%2%FSh>Q^o{qAcS`Qci6iUCwKY{)Y zAthHxP$@#+WrqNHs7V|F8fRl3gFZ_f9vxMYFK7kwN%j9xoA>;Ht9D)5mjK`pgk3S! zFyj|^lGhD#Az3Sz;)04j8;U2{@$fb{E>Yzih{$W**o-(DTHEmfF=hK9B|~V`vU1@F zV@5DBBh>R#icgf}`f)LY;krEb*=CMu56UW?2AFPU9I|>KKsog^^>GJhwbq+Cyee&sA5$iIf6R?+z8NZPJa(K#=y9OqeA(3P#1 z+|2bwjX{g$gm5v8u1a=vUm~cxaKc4=GA8XajH5}x;*u#JzgcpaVfbrzsUbF{3ZU=e*N|%c+NtvB!f~hVe}$Pl=-J(b@*fPCYiRDh3H_+%2in&J!tnuAC?a{lv>{nh8B z+W`4_Rdif>Z2{QBvaTNO;Y`y3Yw9G*bytrE^RJsX?ZLb()LNE+B|&d-ArWo+py1^s zMv9x!u!-tnyKIE1wrJJd-55x@aN8wotVtp7j(MuA$FxrAo5)t|>7>~x{E6&5>hp@j zb##XUQY(o+g*rw~$OPB+a-d2wV|k_PP2_&KOr7c!7V1v{!EW|(AQOjw%T!>P4vz#l zby>v*pzs~cnnvypNYhg`MMu8&XS4#52y6ML?3R!-x=`GF$&S7RfdqGCkc4fANlR^` zG-%8^#}^fEnO-A-MR|^dHeoRXcu(ohIhZCP`v2#_`>X5nxQ~5@);qHhSpy(R_969D8HwQ1bYEG z3+dR4C1T1{wvA+H775$)=HQR8t+mal2k2kRO5x3|t=xdKY^T6}xPdYl+va*iJi+mM`B& zpky(HI?qGyG1HCj*x%^k*UKk_3t^y9EGCMWEbtW~qPZO<&#I^=k%@+zJM}G-0!^$h zRJDg>OpA8wvOpVlR!4JlglKdrF3~9&_K=ko|p+pMG z%14ZQ*&Dn7$#+%`HsJW_kv8bAYWu|pFqNQy+g`!8T@KKEf>EDZ*}MH7v{8=k>IF{m zC-*$~qbp`t&(n)+5%Yx1s(R*^k@^y~&*@|n@pcb(H64FsF& z%sWKkcm7?>g9s9VK0Q(edj?%0nCn4E1k;+UcXy8J0@GHud}CJ6j%9JQN4~)j=XZe= zlh59Ng>2z7iRhoACGzv|{)gfTHFLKh8(wXg1Cu3-j`FeRu*zTv35%d8Fn2x4K4uKNauZ%9 zfFJ;_q-G4`vzMKzbyfltUlah*WE1-%GBUcVjan#g))N6A%;1?7Dx!ylJ_s||;o^h$ z#XbL)<1UbTVbyqOqe$wdt3#GIhvZR=H*$QEcW>wrxKdj*%c>Neju4P-NDM8;2}%tX zicG>|y@ac&M2zd&gBh_OsjfgQ-wS$`F_|%>zSQ|>qwpiaxVrh^b3II;b|bxzemGf)-}%{C~}0Z zk}tQ{jy3?r$EZRQP^55$&a=rs*ydHeegMXBc?nqnsyjZ?BL!-8Cl)~p=|O1-7%@p+ z(5{bwTv#!0mIp~-uBZW_X`;0n+kV=#sLE$eApIcrs;vYq5{lC_sPJEGJvMOflOkR1 zLyp*RKe$xalb(OZCu(Meiv7{je5I~~`>;$KVMJF{)I=$E@cpUO4}4^O9$kRrqTC)k zbcbLdTOrrLS=1%w+0?qoU1Y%m`x11?vCl&b9(#4`p|qAzU&0*u*zXA;K}#I*w zL8xk2HexO-jR#ccluNuQ*QUC&yoLIOm7^*aff-3fl!1Z_Tp2=z#qN=8fi9IO5PSN& z1GcTW0HFL75a72-7S&duP{Rj8okt0vhhW6=h*n{!cS$=-;cr$OaaJq^Kg1_DjRM{zdq~NgdlwO#hW|fuBh<`qSSbD*fT@ zQv($+HvK-l|K30Z)Yr6X_n+Q=6W+hX*H0lIfiL-)w;zXZ|4)fvx@F}E_6(*7y+eIf zYEZX>@K(MBvZO*c*-d0PqK;v#A27dC;?i~Y6FEM_ZXbxgAb67!iIdqYuk9Z6^2@fc zwU|EBHUy(#M-{k{&pON1eg;bBWg#bPR4OzRCZ9S50R5pHUm5@K00utmJz0YtegyWn zkXPOzt9cFA>k;Bq#ZEi?Xq2Fnuh|-=u?YlZhLllqMMntC9AeAzmpBeOnzI+t^<)fH zqKun}NF1~^xu93rBClZtl&qr3ZU4LB!j?u=i8*dandeA#&LkVX>-;Xsok-9$Y8QM3 zm(k@KweXQQb`T37KtI=ovXSubm44YXHVU~vXgo3m&i~T_eaH4>Ups5U5Y|JOQym4b z8wUsDR0o*tS0Q}O78FQ5>8)g@;Oi(aO2pr-}m;%l$ z10fnk(mYrLUP#Uor_h*CkpSz{jKKT%M|`$+_E1U8dm#DQOKNTCV<)=K5Faqy=14#m z_6uaX@gZ2OmJfsV<1n~;7YNz$cEn(SGkB&WeE{}kt-%0(b^Y&jPP>wTfJ`&1{^& z#wK~753FSiO-dJ4m;tUc;Y=Oy7)r3;!XeSbNGX|nOZ(qxJGQ`^|yEz2Y$hxQWC!!v+;G!)xv z2(Jc@;98P8mOqxfn5bLx+EV;oDxRkxX^W5u_%H8q9iv6&Qe!J_qYaB??MnA zWe0dxV=fVEudJXXjbQ1KUrSA8WmvqOXLXrOP8oq%Ctw#AFt-wx)3WGz9#l-o0y2mc z)poM_UK4B-w;ZACI4{IaVI4`_K%icmJag_IjL9gjJthHgS+bF$p2;2H|4l-esB@g< zRDD3B8WzDs;HA`qLU3&Vuo&Ne$>D-il%fw@H0RU4Mn zStad3R#nk3eZMvyKar`$wd_AMxR4renh^*fnm5VIroTlZPeHPqUSp>ug}0L#Sdve% zOa0T%hE?wk3u9AwaA%dBBw5wH3p@>HB5e#AF>n$}Bj2g9#YpVtTqh#*onZ z-eKwm!=;k~<^WI{E9PKw_r0njWdI#?a0<0NA=phy`6Xh1zl~%NBy_(x3hmQ@O@cK1 zE5kC9WOK|zZ;iIq2PGOK0;Gb)U6N@77|uLEc{5@DjK3 zBOCN#uxhy&Z!?-`-MvlZ+N0w@Gf}wSTAl@iiZ~Z7_HYK#p5k?_(sZG&miH3bqv4th z2z}4;^-jKI6IP4xTCxL^?|fdVUmu`#=FRX5w_NU*Fwq#UXsG7X2CcySwyuDQE#wQq zp=!>5Kq8d!@hW{e1(A>Ikh1B;y=))1dncsY=Bmsna6>jg2Q zjupR$AzKwu6Du^Hqf{fuy2k|MZ%MX?07>uiZctpd6rn^56liG|U`FLW-f1cY9G(19 zC&`vXmtJVtm1|LzLfyS;K4#9<5Aw zyg`dfTg2K0X+Kk|Ef9Ci55<*V}TJ_ot~ zmkQB)`#1a>-hYL7{-a>Tp+k zd`}foxZ3i2#`dy>X95Dzf1gx!R)pt)h2;TIU)0`hwHmnQflofUjQ09aL5vTbgwTqn zin`QavMk#>b7DycrURwCs<8^;@T-c;_yl*=Y)MOURSz5|21BjV10}=Z8wwzT#OsqV z5qyZPZ~deKbL1>ryVxJ(7fHP(Ob`i0ug&*X^mfDNz? zeD`jN_OfnedA?1-7l@ww^HK&Wzq)+v-Ijj6oxLawDi3`#9As4F<7y^gJPB8zok9F$QKrJ5w#I-u%Z-T5zT!GTR zr;{_e)wMqN_NTXSBei`F!` zwCyO#=A$sUOPMV79+9gVt5J%7n+;cC;*>bIP6NaUA{U(+pm)0}I^Ov)XbMBWbXn4t zd0-5w;Or^aHWfA$1n2j1C)$C4+p%T zb18sITlZ$_F@x+Oe<`;=2EP~LghN?plrM4%*OL2?PIm!Jtz*|}> z7;7nX>8_XB45?CwdfGB2sM=8qPLiJv{odusf3V1KAJz(L+f4KYfIH-wEme!c%kG@T zx_vOO)9#^}T_gzl7;G=8b307eU@bb|LxvQ|u`C1RQsXmB?!&2=2iF`JQDPe(0S$iO zBcf?X=0{s3?SuP+4uPZPRy&lELD~bAtW)>1SRg#($c=JTQRyq~-OB!{Wx>R(YLpZo zYT+(-55A$?=tOLnS<(9;8--_0JGxU+FmyiVL>uF-L-B=OH_RvGdU#b>s<=ZZUt9E+ z7YRYH{Dsg(B^nNDA8ar~*HKwCN%F8QxP3hKpGOPwgWNzB8_7^3dFa2gCt*G=mm6QE zlT}7o=@=^S`Xo`Ko_9Q!s3D=hgEy!WQLR;?k{eSa3%%k4HnWe4R?LSbSZQq6m?y=r z*aP{u@>K zNUh2EEanvct7He`i~=B2*Smq?{fGw2HsjvG2)D9L2nOxO$A*;{lOUvLPG&$ZJ<<0G z`bPtX&QwWokqGtl;vt6Jlkyx`;Z4xrFQ&1E=#I__dKNE}PEHbxKfCaZbn^n$;8t6z zFku1ZLvT{8J5tK;G!O!S!Vfdy0-&}SQWf-teE2#%s~Do@Cr4gUE5d>%TXH$q_>mld zzUsE-UPAY62S&h?Cx`A(+Rs+jk{x8%8xHg}CAZ@n8dp2S5U_2G0G1(PQH=vf=67)h z@Xo_JdQNv`L|AJ?-cSl3b>owGeU&VbJH`4USz^}u9uQsHvtOtDf~_xZ?JKM38>+~T z0Oxj<&7|c*1yxXLS|~?BtHGs{v(T7f_hswPjX+S4M~w3~EIkecW}u)flr^J7phd$8 zbA)+4=#PriY<*IE-GWqe_9w3}rpia^|47N}tEzPyhWD!IL`kF!Fmsi74ei3JxXQBF zhP&i%Pfks*#4{Bj+f*uA2u07a+YVe92DiP*Zd`O;<9dbK;o^zn;|u+D5M;r9Z8M4& zHT{~$Ly`j|-CAx(E!wOFmsHQV0JM?&O{RM>4^hQSxz+Bi$2)cUu)iXk4KfnDf03#& z!5Gv?Tq>!~A?Wbix&z&(##;|J6~(vROz2Rqa8JjlI(jPww~Hm()s9#txvlXYG4`jn zvt%LjxH{y2#k9)&4**QL?eb$an`mf9k7=kI?EFthsf?T_L8i{jh=>+Q$i{=?fZ!?*uv-}&}UP-Ua9ir1F1 zV9yz&26ydxCiqcehM7;xN}|J(d^Vev4*;hu9;16nKH9PKULvSgCs^?VeJqD-J`&n8 zb*pWXjPbVM-`$Z(OAuBi5>qf#7uGbuEnamq)v#xw$Y(>uUvhy#00r9uj-3OXr>y;<^zpfv zo89V+Iqr~NnH+Jj0hWqyr&8wL^N^V=f1>T1kQ-%8+8AWf%FP5#i1sfvDW^~E=Yx#7LAX4e@ z64>~5*p3S;mD(yFihn0G2c}tSO=~Nlvzy?1^^hc|l&DyCtz+5ed4%m2WLiz8QLesC zbD+po+HgoqDL@%vIbK{_$fdAVb1j4Ky#O^%3Dm=3Kj`}x74u$O$S#JvCM8Zn1IK#h zGznf;m-up4D2B;0)00c+O*a-}9^Ts$!S9XZn^Jltof9X}?~7VzEoOp+z0h8Cz2P#P z+&<(15Eq#z*Q#R(yT6pC!*r#ds!%Wa0wGZX!;cPIxr26r2^aDo<}Lv8&RcaS}8 z?l!f z)syKP(bSiH>Il1*kc{;6>9M+@Kkm(WCF0d=wQjOA#eq#K6bELpr40^@ z4o{~N67!K9U>am;5HM$wx^*4pm>?Y}$v<--kUby)IimfZUl`^%Nh+oG1m%=fv3d_> zRTOOGq-Pwk>s2Q)z)6zx0v)H*IB5dX3gcbFi43N|Ca>kuB3jCAN>paNtFP&4%U1|V z(rzggeunlAIVyC1RvbaeCbLOn`!tcuJk3flZ5 zdk=i&@1b_(95_vbx%sp*13fDR)Vw@9QOtdi%K#S zsQH27Ky!^d_6Z{ABri{p_?_+T$mPA}4F-W+V45SFRH&on4*Z3_YR#wjK)bqvYbr z8i8PjL>=$VY#q$LIFGO)+6N*U%vwmdKs{|Okq6MYax+|tv^q3U5A|PbX24_(BCUN~ ziquP)k5p{t?gGv~YaA%lc@M-^e!CpWNSe0biUyrreBbmS6D_~_$z%h_4;Bp7xb)+c zUD=$eg>oO`JkDXV0Wy}oQaV=V4LW!G05({qNiH+k4)U$_khKaeQP{NeU`c}9Mwgl7 zb)*SsB1%qTU5HX;;;N4A8Nj08nx65q`5|}=;(Z;k9eFw^g(=dt6B&ndIME;BSVvY; ze-@)JRfavsaF}D!{adzfNoMioKorMCZuLvJqybjG`Jp*0D=>kRf)1&|6fjsBh6MFZ z=o-_`R+gfI0XVLTxA4>~LqaGhB&B}5He@uQ%G*C5XD6V_mlQSlJY-b^P(pqd{`9}7 zGgh|e{sfSekKcd)uHW-VQbzzm`4kY8_upr2r%&=@pJZ6dSNdJM4g&z@`aqjvr=^Fa z8}c!v9X%BYsnD`>fpQTBXFi~Nw1?pKsb)1$_MIi*+{wh-yGsr(-*N*k?{- z#mr*CAot#I+efyS-E8SZrIt2_h&OIn3Rr?FOMFQy6^ul~J{=;~SY16N>Mvxbm6yfT^)ev|DyY<3JY!6%^ z?3!&J1Nndn*HAX+dcz*~*SIqIYcP7`f$@580H1fqt6 ztQ}XcfVdjCrd1vp``l<*aFU}6$0a?V21q!x;Z`V}a4P`3wUs4dueS_jR>JJjAio_=!b|k&o;NI2jIH<)cM$mRw&UP@h7ruvF`s zbBzt$=6r;D@2r5o-9yHV6_P?sX*es6q3lSsppe7}2v&D))t9wII+>vJAZyt?H$h=c zg=tO>7v!^kC$F&#-AQBm5gyB-&Hw@*dmaFb+Hhw*0X3#9_QfB90FP5rdXSSh_BiBS z+c%-_O<@XUb5GPqT%=^YSz3cljT2M(7&`e8+i8{g;z(4<-4RLc1cJ5l1+>;aHTH_p za}T3CT%h}wIs#ImM|)7!nA&@;WM*u9dqm#w<0@tPdGhI$VEl!~@ z^y9XdZJSz;R|SdWgE(ZXWb3Ot{Zn$3)REfHYrL5*0fNEfcu`+J6FgFqpAT8iIdEZYH0_418mxjn`U!%DE zOkGy>!tf~z%v7yGdPRH9 zI~QRsCErj|F`=bs(b;$fZ8aDgEU_$YJL8II6+c9;i_X)BI^CcUFJB>btF9U# zDCnCh9q^(3AWT>;Fq-X(Y6@5OHD>fVc~VuFCzAjx;kDfC`oJgx=qN{wE~gZ>#B>A_ z&Lyz7OhEu0FG0*PAV(7(M0GApmQ5sG{sBc zGz&Bt+_r#EuLVR-CuS|VSMdJFv%mIlpk4IsXYc>=_N(yikKTX!_9f%=?-7+xd>I7g zU)Upm#fLtA`}o`c?fr-0Z=h`W8wF(mogx1>Ud#XS_OJ5)-v{|8Gi%^1b)%!DSpnN7 z__AY5Xh!yg(HjSSb#^xIGu$f+#?XS69rhV_U@Ud6)H1v(NrY6BKt}!AQpXsow5ije zx<(ePI=UOdc(JlxZbGPwBO;THy2-EG7*v6a1oUQcd1h5|2)-jJl7cZ907{}KkhTB} zfl_EWoFK80OG0n83nZN*bxaqCyEOI$@)e1kMgfs+pjTstXt0PmU6E;{8b^EVFkqwN zf*edEt&$;3joTVU`o-?SX~G0iWln~-C={~Ba5 z9 zq+C5mV$xL=kOHyVm|H5H(}%TvYVX(}B$7bXkR>qGTLu>F9k>XT(c8x?a#pB~8+t{# z6Cc%|FMpH4-Q*KA^4fjGObueK1}A8xVyDeT2+qEe4V7=(lMRqw6ZJ12u(g@l0|FPD{`zri++c! zj{PJv2Crpnv140>_d*|Dr3ikSbTM39M$f+0H9j`v|0u6Xu5Lox9jaO^aX4e&pO9L%GEVOnV)1^f-SOniJR7ir^2{(a5UG3qD|w4UK9KTVE=Lz@sW;yX|-gZl{1UV9l;ksz+BzF{6DX?+{if zw+A2&fCm0(BOw+tGDq+QbeAKA8RpQy$u)LU;GuBnP)LP+#uw=j1nyQV=MJIrd2@*# zGXAm2!aRDnKsKpnqiY3xC$H)xIRk$1j0W4s1i?(j<5PEre7uEM*P@tkw^*eKTuty} zcO1!H0M3!^lOo zw{Q=^H!HL7)6vxoS77y+_)2;p|62e8m@F$mq2=PjZScaqQ%(0}%>u-mq~b&>*{-y$}C-eo0e{btz&KE&;6p?g-kpX3}sq*{v|Cvs_C zk%{1n=HlFL?~f!~$O*wbLJ+NWfrMu~B6aY;Jlx$tB7=tkXmD*#HKgq_Ui;4$!IX zx-4Enn=WI0+A%CUWubGD0E0hRz8-=W!$HRwA^#nYkkX?kQUf+;iib)bOk`8^BOFRm z^c(!WZ$j0P+EM$o9=r~@J0ZmXi9Jvm0H$+*Q3q8COT@YnBD8K%3F!z*KS>6ckD|86 zsCWT^AV9m!NjeLe6GMrsBsHXDnz_w!zlXcj_~04f61!?+ z0Jz?cpv#znM+@P>*(*P!F$jZ)3R+HOAZmkrXDwP)-qfcgXFObCR6)uyzY?tnoeD{g z1JwyP<7;vaLIjfvU|c)OmS53VTD|<98ZEd@6-zUd!_fSKsUYdNxU&}|h2&FTltq`n zTxMFu!GbdHGN!3=(OcKD$ZSiS4~Nz*#ero8RJ&7`1k;qJ$F!24@-6dv035QFB)0z= z*(h&JME3CsuY>1N*H;~|Ar<@*W+MVsH@OTYW<>e4(LRWpQ`NHr5EGCg^kAU!7yFWK@ID8&8HnKu%Td)SDL|yplG2-Y>5GCuR^Im z;3e5lB()IR$k&wLR>~LXWAJL13Wl+0zrZ0440^YsKv!*?K)8_mJIW`~7qQH9b2O#Y$BdK1|~^4ouU`$c&B4ZeN}rHNPQ z;pQm*8peCJm;}(#ByRTJ$hyy4C@+lBfce`k`OL!3?%xE6Iojs9)a`X(yq0BmVZOg9 z%1qJI14H6Nb^J+AlCaUX*7KgA3N;=|{#OFzvf9H5MX_ox`8w~QJl0FGRvDED%Co6U z#FmzbS7Dj?4b2Jvy1Y0x-a8e`^t5$+PpTu_kC;)zPHDQndUtV5#QsJh4ME6cu zMyJR^&L1iSk~ejvFT7yMs{zl^KS=O-fWTIw)h4WEIDrF#YLu)fpCF-j>()i3aotEV zN)(>xEgkxUnW46f#oU(2NFEq*QR)HwBI-cM_e|Z$9zyFLao%^g!1Pgw*J2uRZN^ip zU3R|a8QJNcx`U`O)d#?Hg34=f1djS@mLu*j6JVHKTy~tGlIe>0Cd$yT4dea!8q{q@ z)HxV{7?R2WyuyYF)Z9VslArR@(RP>Be=1xt&NnFs#L0gKLBguc9*Y-ipLWzxOsp`h zU&3RQv}vQ&5)gqFa?^_Wqw6kUsG_bd7JucM0~s`5x5EKI_IcOz*Etn;#vYhZH+zzN zV&QjHd5%cv-v&2_LMNpi+^5^5KpIzbM2xkZ0BA-7_RS!Bx$M_n34)Y#M9XN)TK-gI zj-jo|RFEr>I2F1<^(r61B|xe@Ik;TFII%`W4Lv2*Z3tJJEuc4nc0q8Bup3)zQr-=xyltM>$A=15KXnjZ5PL{IvAuK%@?dJF_0T5= zC|IJui(i32a@W?wBtII$Kzmedm#&v5>0NL(Jh6*Cl&c4clEq>9m)m z;uSUeTDrU%RMkl)06ZA-0jTm3J?k;+GC&8f(HoSBz^s-R2)1nHKm!31txBPE%cJ4Y z?ND{BBxM(58X3Ryj2p{79gm^XOWF(Im<-2v(r)AxLa0EqHdAO(z@ZdSKEI#gxkWVM zhyWd^-d~QZTa=XJp!}!Osdy$XojUiJgp;}REU%l~DHh{Oc!M!3v%a48xp{(EJ<9~!~mk$#D;q5D&{YwGkFdMsLevrbRiXE#?!jRp>FY0%thfi6g z+H9cHQQP%-7Ej_7#G;GGL-uu(!Bh>khbJ9*)F7#LgTR>|3RP8Lu%z0lK=@RZloul< zVb*QALsxGdgR?pt%zqXMo5)k*swjGL8`2>;yvC10yF2+(y#p3-qwIlnh`oV39biHz z*#-phVM-nF6XY!@jCZ!e8X{8bS|B4oj1=UCm%x9ae1f6bnNVyH-apucHg33bbl(C< zl)7Tx>an|EB9R7;1{6zx4Z5-%;Q>ND$&ZR3T-*eF8mHXmef4s^Jq>iGi_k9LIkDa zqB=D2e(`!mZ~CBJV*dn%&l|`+z}f?58+`zZufQN@o2+-l_bN-kpklIXR|*xguH=2h zw7a3IbD#_qfPMGk)JVZ4!9}C!zCa&`BuU3LPo}Pz#$L25nH<n26>{+1kmHAyrpaS)$Uay z`MW6*Z*q=1t*MoGT2NZY(}#s75ez=}%T2kz0P}l|F|ME42DZb?=d3 zT|2HFpavJ-*rhVtEY=Ucb(C${wc1FW8iE89D$+&0B^+v6!r%4D{y_PNP-~nd^T))X z1kuUr3q?`Fk7AkBt&WV=h#h>M#GF7=fMnMq)|<{?4)^Is zOEdd5Rn@gU21#^XEWv{6itqm*eE%>0og6{Zf;>YwMgRAYNpJj^@%=a9{kO$_7{t81 zoD5B&ti;4i*3+g76l;k-QZR&Wm*No#n^a*XSy3kBDPk^3mHH-HVVhtyNh$aC=7Bxdj z;Q*^n%Z`=jnvYOn8W)A~9SH-ZFLx*@WOK%7uYtxwjj+ zmF(}g3bL@4eo~rAm7rt|-%;lsAo9_Ky5v4M!H^c0SI=M(P5n#xM7Ay0xoYj4kESpe znLT=m#@1G9%IJwnSYDHhat*gYp#*Ra7b-&rYm4>S80si_p~a3h zkQfFKx2L5jQlXhS)RwLox+-2m@>TAPx0o5foDHa^N>FtcavRe@bCeI5l)?>nNt&J4 zI73zj?aiaQ)b+Y`2M};RfPiw5S^)Lx@Z6ba48i(6ux6HA-A*vu)`$S)m#a`+;BV6w zkfWn+1f-o_c;^Dz02HF75m@WEyUc|mQxc$i%bEc71*5R69;74zLO6Pp)X=la_L_84 zPJN)rQYhy(T{u99pwnspKxzsr>9ui3B?1^sklX>7631*h?wPOvI08T>#~lTje`Hv8 zGAPFkPE#?}uAoq<%Vej>I~W?v2Md3?sKWbLWB{&0m)7T~u>>wJo<$ zFO~ZQlpX-t43~h0U1f`kDnr?Fd>@`Ok0eIHIRUnN4(nH6WLieuTGau~C#}-mo)WVc z#i`jZtizbRdWWAnW3#!neGr)cEI=R6{ye<@2;xeL>HGZsEBZ=&_WntD`z-?XH^BSr zm;7&j{vY3e1dv})BjbN~`&F^4Bu%a$WusY^Fm85+0XT4qbcEa`vy^<=6o+2Aa|nKc z3$GLst2M1K1IrN~d~1AG&ynT5ly7&RXgyR4YbaF00=8cH$1wTd!S!CKsx%^TzzA?M zO!qn?;6px)Lp)Ve+9V0UL=I+?oa&=?KV%D_x|TBqmy1-7b(bZG62N;Z$1J;-Ja8*k zdT%N;*JsOVS<#ns5WpHA8Uv{}fP{3FCA-i_0;U;q6LQ|XbfAhu8PZaQdl>K!auxNI z>R@OoG0%D+@{r1}%{lb|U|D&Ck{#k}nJ5vv=rng$bfHdBn3JeMIws(Bn2Kd=R93_7 z9q~SAyVA?y5IXPpxVn?pHDskJPXPiUg{mO+9dqYkA_iL3@;><0GxFq~V^_II*bqC< zJ|tA_OiZA0qhI2|W`>Vrcx{ZF018AFhm4LZXn+`G9s-)W?J+R8#ENvNE}Sudw(LiU zVOc1gWK+7xzx^c)rR5Ma;9-+VpQwzagjG&G)IpNm$1Y0vUbAiTLOTsez06D>n5vH9 zvK515Lz3PtV5sHPVU$XZFv|AZzkmB-7-?H50eU@#&I3en$X zA66Lf(#4uc{BcZ{HR=Q11z!$venBS%kGYp?M)p{&Tri!q_*#Mc6JCo@l;7*iR zNbqa8#Ee_X=>i5c%u-;+M0;U4;t|XV_TlXK1Q-WP=7YSW8;L|j*Si5~5MU_8zaAM<~R?B(QXs)496iy*Z4&0Q-HfmH;uUm2*E7N zXfGcg&Z(Wnlyb08OAx z;Uk-@wsaqkLgxw4J+J9AJe%U7a{Ku&z?8=*ge!o;#kMqEsNHXLTkL*^a@L^ck?}C! zO4v6s+j92yI=1MFrz2T`Octb|mr9b97bn}Tx(=9eJPG9mWkD@Hh(|=Dv!{^K1x!Wi z2f*OMxDe|#jq?@z?#OaZ{W0U9v*tuk3?*C5hb0C~@OUzT3NkW-nSw3jMV+Ml^>pCr zH(6mJw@FS`(eu$y2Af}XCY1`p^h@#=HB1~@0wW&C80}at2pyjwj=+6<0p*ZM#KYj7 z5@n^@#%!`W)G1YTACqJ`Qk3O^ppdtR1vv~TH^=DMz% z_pdlK0$4H(d9DDFe@GIeUR_mPk5jBi_pKfTaFk&N$;?0|kx7cCNRd?ZpiNOSaC!B= zve!O)?W*rHgbboM->s^9c^}^8sr?1@J#a&+`*>iuy3z5t9qXV2PBnxxQtohESIe`ee^Eu>$DUGB$hg61Tp?_N`h)z3 zeIydR%2wWlI@0z4mKf&n2!XUsV#?Y}ky7RCi&D}62@?^?4~hyjP_Sb^C6jV_%J{1lkdM3f zl5#4_V_is5o|#)46hKZ?Q@}pJ?&v&?;pyLaN?^|8%P|#!z^{%@pFk>;Ko96DRA7PH zA-dp#O^yVbjxJ<=nqng8bA>0;CObzQ&)uDdK{Kq>Il^v^Es2P5v?29 zyfh~iLKq`=<_pNPWRHBnaYMWI)=Zx#ho(;i%!JpEFW9hcy7>ZS zfzN>-3nou9cc@1U`%`1X+_Lb|vbFKZdhAAZOW;xj$`2o5Sd9o#g5OHw6yyjaEuOTF z)nn)iD8}4sHCl*uwH|^B0F%LjQ`ZQ19j^=k1EcaVTWVp{eDZv3Di2v*W$l6e)>uZlvt zDxmQkaZ7-D0SDx^P=6*=|D4W7w<(L7LTsR72%IlRc$ux3XS$Rb-b?b!hFn%|0Ri-C zlp9y+5_PohqWUnAl7V36YC2?~){D?$xNzPs6rK}?=$N}Lg91{e3qn znUyhr+sL2j!p-;*;7nrCw#@RI4n2`3W2Y+S45sEx*U+XnpMq?-X+U)=+ut=B(2%FX zu)zkLK3V6riT6PNg6m62H|ue)g1iI@OXow3)zjMmdKa`s9wjodL1*@skYLF`SEM$j z9}y(rrjdUD7cg^adjSXGmQ4Z-rt(TGpqAU0>rJIK8n&5cgw|3R+8Is8Fy@TSmKVCj z#+3W0w8UUxLq^BZxG&X2WS~AWp3I*kTzzuS_Z*MNIwd|FLg-?f2k5)x#-Mm{#!P|b zL~<%UNNG3^C>zvp@m*synBWG@5jcdBrGHKq9{j8Bg6R^H2NAt&t2W%XX71#$(*~iZ zTA1UgB1lYuv%;w{1=<0pIIZOOn|9t!r{>mo&SwB3O|Q9E*xLp7a!9gOJ}ib_RI0?o z=Lq}B=mB z2lv()obAtSgI9%x0|H$G1?JdfC52ddxE0=1W@F@mF!-;--`U5% zOw@=UgdhEF+Ot1H5U3?xz-;li$#e0yyz-B4zYBkvPX2o!P2#7opI}v@r^9o@%fTWG z4hr&nrd#W&PL-7(3oc6CpnVDlc^-p*6LfGUs-n%Qt!dlwP#6LR#;E(5`DaOGNJxr3 z59|y8h29-tA7M)08L6a)YUQqQI3nyq_6)m!73oUJ35z>{E`8NbQa&2MfZ~9?2lZ%3k>c`8u!$ki^rB&) z=^Us*a4<1G!an=phK`N8sgKS)UosuMXN*Wi4Z{BGVuT_Fnr1gG^6gt?QaZItMe6x^ zjcgR~@o2zVXNv<>Wbg+hq|Hn`Te7GqSlvf0=SairmJ%-v* zor&>P&vYYy2-blaMLxnx-bY+fWWytH=aoDWDLt+WTuZI6*-lYHpr&n12&F6cWJ zz9|iUc~E6Bp%=ip@{~4FI}UV!o#bVfeV?>cc+9i|$2wCpXAMca%A5nFpEfq0$|d2v7g0w$o`4!IRujkE{;+bgTi|n;DPXtFb{i zz3P(~5jg_>*4ca+PezHu-f3L+80N!K5-f`aD>Y))D{Z2?cu4+W78mMaUA8mntYGFP z;d44K1V%a(14BzgKb~}ws-bdyZl|>mfC2!`E1G_jpU`bp(e!T5(RmaI?*&!v3AAJq zh(?tj3Zh>95={G=p*T#3YG}fgm<~+T)|49E6f9Sw)0=9<$I3Ls9h|?7&e5TUzs0eA zH*~yxY9(?wSe{n_>_5h{ZT754WVUpweV&6^pOuT9nc4O#KF!$*5CjsK$QY3 z8$B(MOI=dRQfY%lHk*7yn`C919-T;5as}pk4-yK<$=)GiCOl1TkKEhAD_;7~a1?k;iW- z^7!rX-+e_v$XBKi`HI4jU%q|x`o;I3zkU4nEslfvMt%SJ>n8#7kDtAM8(x3*P8%e3 zOZKhz*1-c-LUCu;qraZ|9cUmJxIr>-dVG~;g87Qdj`Xvs-?0eL5zu41Hk!8)Rkg9G zA$5`!5SG&F{cbQMMU%%XoFrKpri2S)jyO$yRSr;V$)szzRp?S!UW^>|7|CdIP(EuW zX8Ht_Z14Ft%2A(Il4Dwep)8vl9Xj#I5pU6s8E)<*v%qJAed0xS9Zpm#41=1B#(cp7 zm%!k`H2`E9S$$^3_cWhEF~y_^O{o~`X5R=1vT}!Z{ak^~X}QD>j_Afy%G#vxP@oJklM?hlNZ}mYHMm3VR9U;1jLptfVVHi{JOfYnOeBnnkSz&g6AH6y5HKrvVzp+G zXKrF_3lf)IMSw*5V`Y(EElX4G1XOD7K?ZZsw$?hv`tQi6>O#D;R|B54VC!s1V-02o za%03FUOKe`F?@T}gHB`U(`K~~QxmaX4>YHOjZ8X3p0gdbVDe_GdhthCEQXPW4*3iz z_Y&MZ7eoiTUIAuTDZX>%Mp zsB%Up9vfNNFXutOW=@TDXMx}?qK$w(j3}}#7zkbSQ+HB_EVPua;dgHYl4?}9r}ZG5 zHq}jDJ{#7^8$7L)nih1dY9JY@RdCHZyT-hYM2%YISbape7QW;Z1q!MU9|5`XYKw<3 zn#cw#V|f86C>^bJe1&E-?Zi-<#EqnnaV=4^+Zl+){Y9q;%XF#Ac1&7|^-|9AUX<*$ zWTqZ4#zsU?q&+M!aeeVgiVtFx!>GZ4ejWsbv~mD?wTe#{4la6lZpwS5iQb{3KNE6S zNHHulEwnm~S~49v%kSY?3pu>Y-1TXjkwAE8KVQ_2e?0L-1!6II6K#B(TX-V4JQYv1 zi$*WX%RsngVYhCS=V3@Jdxj=cV+e*{gUJlyhDAy17Qa+8L#f8KiDOE#ED2@dc2VG| zCu1i&h{~D3^qEXkx&PABcRYMZkx^auOgGrf^KUa~E?^F=H9vT52{5ZZpWk_afSS&LVv*wL{HAZ50q#xp6;z)r$ywXV~x}0F167?j#GwN zdIh#g-Vjf%*--dLDT>%W-egV3Kk1i~TNeTH^tf2SaiRm|eE15jur`o#6g)%fQRb-0 zWGN*JJ(G0UWT_i+WtRg4?ZIV`tEnTdNNXZ_HG^+lB$*WRP;1LcsUD6<&y-!q4QW9) zd1}4xlG_(JnM@Ew+p=RJFQ$@2GPq7uIFx3m#uX2#`y2t_LYZiq@)yiV#v58zO4oM28+jBgkD z1+)cx-DoY5{uk_Hy4bi;LCj%}@6s!zd2?Nfc+!m(v4ty%cS$Jjhh z7|Wsr$^lrIW#&p5K^Dr~ony}V#+=9#;6wmDphQ6G6jh+1-rD3FAq!=XWCVG;4o0@r z|I<}onwqH~vd!mVdGKZHG$!RyfpxiOvi3dP?_tfL$gwTuw%xG?na1T7cTAX|yN}*V zgW%%P?W=9&&|BCemxdR%^8j)8)^CP<8QZqtXuIEA-P%5~FCA|%V47|3m+#L$f3pb| znl<#dCM5(M?#hGz8mqa{!N8Ppg-c=2cLcGn>T=g}H7 zuH*9r>1f@@O*UsKc9C)k>iLJ(r>w*MVSDkYVLFh8Li(02BJ*V^hHaj$jx-1Lm3iGS z!C7GFwPT;ic&5gBR=`!Ky-iC*fxWd;H_-;oI2n-YK%Ves%jEx@#mS^>&9ANwMw41p zJ9i87zij8Hav0HEut3msVh{3mK$r>veMNKtp-b=Knh}w`YW}==P*tlHSvsy{A6!$w z6_g#OQrZ98-m1C2^F$vT(6{3RLO@jTatj1bO;bC=5$ zSwBfy0&jP)%6?WxP&$UPW^~C>)=!XQSN)nzq%z38;2zPkS#}Gz{Bp}*ltg>4XbjQI z%b_sOzNXN=ui8+nNVEnaG`UEB@WBV+ua2$!TdCOL;_&w6**p3@YNmbsBRQMjy)PX7 z4FSQoZzs_3tGD0i)z?qnKJ}}wACuqd`j-Fw`ppkx>(bWy94Vj9~gw*}Kt08S`SR)FIWXKyKNh&<-R zMZhk`@)<>|f7J;pRg0-S=YhYhaiwold5utjqcRIYI+KYLXV%9(sn zStIc#YRuo79JYpR#z-HBu#i}vglNnu*B^&T61==L3NVxxTJm8usY8TSVsp-i@z?olHYf<2fW!nvqF%vHd{20&J+ zO6zpW4zex;(eS12uqN~Q@8JHWN4M=Je>Z)y;!;fw$_B!t4Y=Qq*HbGfkwE;<^_cJD zLfr%?QteD0p&=Z2XcT}nkw2R(HL$y0+tnxc0))b0(><%5XM0FxM&|D}nka#oU$B># zocvKVC}u-7(7Y%weuc&bBYiM?PC?*;lj!UXg^4QU-ak*Ll^{8zj^;-Yxh5h&9~-8t zjw+sr6_;D~NfIf{uW7x3$Eu81%rQ2Y8@DrAV{k+%;O9zraCFHx>SlV%Y%5u)YNWW% zf}LQuHYA}InOfDj4GKx@%MlqEqIT-jg+>ZiXx{`G^$+9+)!C8!VQJ$kD0X!LD9nAv zwuvB1D9}e{VW48;_`S?p6$4pMWC5w)eMh9$1rU=zO7K4+QJ+|*xZ-j=fT}$CNo)8w zxEk3)eazNl9?r(fyhboXWUGs`BGw8Z+|_K?zpO&ux!ZGtHQHWs->+c9saDw54$F}y z?lQyt;6vx&>>m5F#(d>&*C8)!WL~%?CEC-iUf%n=Sx|D#A{%p^U_&`KGBhm zIg4pP2r!qO=~!-_Sf1_(^wlFBR|^=X%NJC=yS0c^rHPtqma;HiYLRWld64D+E6i}9 zt|_MM0)hbH*h*uONVs`~JZDJyr~yf!y~uA^Ru-F1mCv|A;4|b9^e|C)QxR?M@h|H= z(At^K&H@kx;zf8XGR{Qq1H*icvJv_O<8(%UsD7l7Y9~!Z@=F;LN)cFJ8F7Z1Wt^Z# zDgVboCo)T!Q?6NeI&}h!IE2aqRSWVIc}pmq2?tIZ^(FT)eJt)_n@aC+#QeG~#gQ+7q@wZ? zF)=aVDNn6UWI)MNE9-QY8z>o3_vyIEPQ%U6mRuBg9x}PD+~TW8i4DpZr%IJqIfK9< z$B07#A7YM=YRg%tZidr$IWiV8Mw(-+8Jq$exp^`|YgL~!9DDqDOoFJX@8J9NNPjJU zUk_PSl?=^9!H=l~^^_U8+=$!)zk*YJoMS9_<-O95MUUpc^L?b0Va&KMzD*p^ARp`m z8eePZVCHEs#-axZaCUHv4}C$B{$f{!TV*!y2-?!DV77Te)TD4yG6dGta-TPB0c%DH z5Q_jCW&qYbhU+Kupt=vmC5h(xuoc87F|H@k$+buRuH&O?0l_A3wre&X)^I9wK}e3@ zd)13PjdOkigHZYS)LAN;KJ0@Ahl9JlR4;No!zW-RK$Ly5EYYE^2?Gz$ z>AK72QTtcP^Jyky)zhi9)e=1|T>CbHHb4{gX(L)Rw&fKFux0ll`G?xlt$iBWwIw@n zI*Nef37=u4UrEW*uxlfm;{hO`A9RmH%Mm{$M<5c;EjrLZQiMUd5{c*snYUf?YO?>N zt&_$Q^mWbenX?v$=V1%6Gnhm}NQaoIt49ooa%T)BRkm0(( zC1lhPaw)Ft`^x_C*5ICSVjrt*H;>A=UDRY= zQI3HC^fe7JXUF99sT<4OMVRRU*JaqhOffg zmvA=!G`xLw*>|f|cd4H*kJ(#x1`CwaLHPx#O!0f4u^Dr(;IoifdAKc5 zOql9)gKkXzYx|G38Qk2#hVa{@oIO4WKvXt2s;;Sz1Ik@Zw(2H(COnZlrkc;P0YiSY z(+^gzM6Dosn%xmLUXvY;4iX-GR_++@9M;d6EO|Ev_Kj$FuP43H8e14+by7_a2)JxG zky5*~1-L=>4&nx|0aQjjDsc&c3YibF1l{)E|F_p)!T)4E(hinKdtLQj^nsAd+Lo!p zvri5SjEF|LLTwIQhCtq4ox#0~^1@&{xqvbMAb?nDA(8CAJd}N@w6zWIApsktPmVyJic@h`6X9YVdggXzX(<=Yl>k&@#cvYdrhi8ID@02Z>MXQOYAbD53d zJb9ep6)QKKGFz_lFrC{KI$a61hoh=S=#i4rWnI6hZCV*+0bH3?qPI30I>UC+cDiu@ zM%hT}mXYp8CKXt58DU7R`Gqz?8mmWoNRCL9VGg&rH28SE3<>im8jhii71<*YG#YN0 z5uIf$eqQQQAkez%i5-(OIe=#Zb%Z;Jgwe?|DyMyD2Aj`Ype$Pi8~Kj}{~TsB&0&=) zB}-31`w$*i2z40q*~{x;OQrrb%V9Yv&pA7f3O}TXn6lpdW>5`}N~xB2aQB-Fv{_qm zo#c7-=FX0CfG44%)<+(1 za7(VXRJ98_`+{21Sv(z&aHwMQXBBV^BgMlmr0vXNUFz6WDyijpF8}O^Y?IqWKuqCO zQ^hj)Tf84MLyzJCrX!@0Qw19gYh4LgdYGyRf$11wp~3~JW!>D)AD)@X4mh3ajK_mi zFsxl8gvRR11=NITyy3*FtS&&Ag0J9d5{kBf3K(~SwOw9dwLIYEuE6$|Z(`G}G8kv0 zd{_}F@1uVAlhto2_&aln0=oHib8t)1-ox4jKB}ws%j^-xr+cia7b+gipo)D%NC{FV z+=8+c-u!e`KbpHmEE;Xdz{82L4?sY&=d{dF0T}T$MD8Fb2p^#-Ve_6LC^49N10szA zZ*8Q;=4!qm3D0xTb&Yc|FJ#2>ZI$7FcSdUihbBz4*Z`R^DWoe}4I>7_4j*cB(#^{u z{3l)+oCYqh1L>^pYVmjWzrX{%`hgCbU;~n9s=rh<4NORXf5eLa+fRM`{$T2#-@c(K z$sf*O$i+%MGNHjX@q4x66L-m=aNq$5c-|nv`-+8%S#e;!QY1@7Yk+EQ~WtdQVeN<_RQEW zSzuxihFJkbSloUCS{6N$TF}zmFW`O8Sx1nAtV`89dmXinML4Y0?NXLl@7C?ekMXyf znIXUO#7bM+X~IgY0t^EjNeqIl2Y0$t@@%usvT}k=8Ag*Xm<}i_y2FieRZrqY9_ES{ zq-Zo^J~9v2BeY>zkyfR~YzU9BYv&laWrEGS!4r@xpRWJWWx>g`bVtURDVJ|33p=^G z)j5Gmb6lkW<@5^KriW1)S{~qGXqF2+*ucVt<3)l#=prH>aZcP4>u{)=iP?cLrlBiQ zx`3(46Jvc1-?3|Bgi4^Z`gX4JRE6dT%$VaC5wdqospPAzK`Y=B>yvw+C`eh76FIK{ zeE@laWV1|A2DdEhvGY9u-8$kV1(>^p@uxky1Dap{0H{6iL z7$1o*1p#M$aIT;QRvXHuo$R6QnjsKasvdfXtPO%GA?fZ(&aE5IZ-wN>dOC0rv#%)B)RTnV6h#zILK`2T z9Qi7|@J{+lqPx6)Olr&*Z{NVo?3Zs}P(t(bw_m>g47RS{ynb{^R%icku_UZ8*+(9QM!$U|;4Da`2!a)-l1I)Wp(frvW-@_Nq21vtarBVS$ncX2?U6T6>qRY^WU*6(;T4;0Lga0k4pDrCsZw(S~YRM&(VLXIpTr0HGxa zk#vDoD{dvzBCT}Q;qZYU#+DB5nvptJ>L7An1eZI~muMh@IlVw8IA?Ci00rfT0dZk; zyt|A6caPY zm*AnWmAud$r!m-2z^o&OMt+qxIg|AA98V9(SqV8>UG+8cHHH!}BOaousYg>c+S8t# z(7;%ew|S;J8u}K~qC)=4+T;nF#CKkB)eD)Os=R4nPA`riVy9rUd!z+mjQfbBhz~cq zrH{%>kTv^I)xu4T@BpgZ@x)ykt7tqG4|4@b!LmS0C)7>`Uvg-_;Um~E@-PM3r$c$; z?1vyeLjKM3%czF#2|~D))u7D&ewLqOhrQ2E1}FWbkR&U+|3%i8JT-D}44%`Y<)T^NHjxta+=7Wv zn5SN)GVO)~C^+@+%&moo2>(`1K%f%1U5e_k?=7oDiKm+$+^W+gFCn?q#9Jcw zGHYja+eTwM7J}&;DWBG0(s#QWa$3d4SzfwHJL%?{f<6_)XrYX19sP{xxZA^!#|O0M z*}k}0%BEA>$3>mg~moPij&)nN;93z~^=9W_6QlonBp~q5hJLa~6r64Fl%~|iQ zbMm)dwL6+J&}?w*?o-FXq44xq60E{utau5O@gCUT1*b`S*8y*;7VesPNBij66 zJ3@11a`!&P5Qv-r==*a`k-uj!mQNRTw16s*osLNmR-SkzkXwBJ(?9*xfPes$7R=g5 zNW-UewJm}Lh(f*Qgb+1$UL15UuF_rdZKah8^j2Umlf1lSSqEw60(?xI>w`M0j|Y>`eQ=M`^ob^h2ORmKmeE2>H>a~L-wFGAYZ0c@!lLP`*q3WU)j*+olhZt;nI8CZ-D)hXI# zU615Qo!*=?U=U4k^>~=tvts%U&FUxVvFLGsXb4R1j zp7?{6M?yhyyC^^yNw95{SZu=;L7cWn$42V9Jzli6FK7{CKwHHdeGILSP?gb*0~=_p zU2faSHY{)Y)Sj%|N2xnuNQU3eG&$;qq55?+$DA1|KlZvGEddDH=!S+Ima4-pT5Bgp zw#%88;s|VqW?rWju+rC#)&-I!+bretyRox0B?B?RC(n>-!1TTJ25gCT4wG2)@vgKP zFwqefBL{g?|pJsPSnw0FnY6*!CW)l|#ym0yL-+~QIQ zsE|@#Zq#R_-$ew8-1aqD!*`U|Fy6>^6&9s^=T499EIBdAq7IrQBfc?0Xlu_upX4Ph zl1w%uDPilg5=urr(lIr$eB^B=u^^!7!N4)olt_h+Tqin=}CJ3^=ce>rJKRIwLU2d!XRk z7M@zZ>VkaMv7mWqt$Qf>4p6dcHlpp6qp|0(Ro-F}%Bq7(I`jxu0XeEBUsGxURvW40 z0SkYO*ZeTgoO)3qDoe^}qs^vq!^w)YVr=uW2P$lqt;By}*SCC7H)L=gu5jqUEV6FV zIgqV|d#Qe74*sywPFqEhY2L{Mupg~q>f0bW|ejfGK4!Rnpv#6Tebc}ao-KbMh znmIX{wZI?yM0h;xz;Y7cOWH@G3Uve}4G2jtte9T}@2S^~aTs3I;X*F3hN$i;@hJo| zAap>!F~umMda<$^t9~_*p@~|d=9ED#TY0kRD@ydR2O4yiO8N!0Nq$KSf(0rksCb-~ za5Uxx2CZ&js;)Gplu|_#)y%`bt^v=YooQJfMlcn;5(fInvqlvqLDs1`>uFYsm?Geg zA(So#*-DMb?VlVZXc`Pw0xz`Vj-VZRB=2$z=xzULGJFe*y@h#IqRV^=63#QZDG>U6{w&MZ6+_oyicq8*OhetbJUakStDc55_(EsYMhEJ}kPc-L z7bsuKqQ_9z5p-L-QQ>TwX7=e6cBZll%*ycSP4dZch@?bp=mxpbxH3WnrnXMGe+Zh@bEU+8l2Ud0{YsYex z2L;`RyvpZDr@|FhoY8zxH4Bz-0PXooqne1InmCUqC&I)Tw#KW5(!s;q^t_li5?)wG zZq1NQ*K+`|s??&gh!!Nu-!_=D0xUXpa+hx<-%~9m-B4k9$kM(iA#Yy6fiMjF!i;KJ z*MQ6Th%B>vcP&%1hZ@>mwDy|}+3oB#xb^lTIJAR%s@c&XZKXJ9UyCee8|eLZb`KdH zR8iGlp*|@B%z~L#k12Gk?F95U27yiX+$l=}#q!)Bb21v~T&EN3v5?K#4)=nSQef6p zrDN&>8&l8^(n(mZX{DKvB-!ewYtRF(qa4Mfi2$KN>y%Dx8P+l=yrqTA6>VRoTrisk z$dc@VH)E!5jj|oeqHMrvbTg&_ZBgxTmQF?JWZ}$-0@g-qab#9yEXCz-&24Hf1#DCy zk9F&PC+Otf$*lv2KM*ugBP_~`e4VRZ4pQP_#(h~{(?TtzJscx#7^<@+x;)6Tcob-A`8NaJCxaO-Ub#8Bh zm0gH29nnW?#JtLAB{=b@xD}j2Yh1{FLG2ul1@TEGnO4y4>Qdo9ld##F@WIrUSv@~&8#x&Qn{T_T8v`kvG>lqSPX&q}{FW*OYA4J?1@?Oc8 z!deg7(ICH9*0gzel9M2(z&Wu%RW+_uc!au;e<+0nL!Hf#xd=BKBP81cveVVEWpuZX zc2RWzra;bD(HX;$E-k0tlAJSGj@f%JFAoAHX3{EQS3YHnpCWogAdvtD(5utcehVh3 zL}0x}whkTvkNb*&Z!h@yQZ$(~Rc_h#+ESP*s3Vi|NH_V(@WX1Fno)blrc!OYE?E>G zY;t**US0%l+(DbPhDeq!c~ao82}JJFh{DV}hb=UAE5YFiBU?o*pj=ja8ku`|^Du^T zv=&IBAe@m4Ad{o8p}=iZu$=*R;L`7hCk%4o&N31Y&qWxD8u?!O?S+nsJ-U-Sf0De| zlN*R*9-(wW`=k3vrJU6M@*S>-X+Adf9_F3h?pBmtT%QBw5&^D)p*!rx0j~4+B&K-x!m`(R(I$RM_R^9gD;O zy9Ij%)E=@uP;l#hS`f&S5RNFJlW9tmI#{S}$yRRUJ`;cwp9Eb!iZ=TpiMnaM6y)@z zqqxR4v3dFKkj)8K4`l-g$U?vCcbKd|n*owBgt5yuIebG$L^i|VcZ@o{rlTRtTPgR! z`^iQan_kf!NiDqe6-9I~P;PeT*%|(3flug;AA{5~Zn?&*X^06gGAk~n1gC4r)o^b! zxbU`WV@iRR5|vQjj%^u%vb&IjS9JAHA;uu9#XKCofbv#W0WW9aE8$aWZd3^ zkv|Tpx8P=y-?{1AVy%-as2^p|>P5|l1eo%Rv7=OHgtg7;rdr6qD$ugr+ZD}qhv5K$ z8E;ycJXQotM-dOT>?r?(lg7|$Pn_Ld*q|E7QRT5L$NwSx2ufGI_!pcRy-$aDN96j= zpZgg8Ute(1(A#e?H~Pcd|4HBT^Ve@e(vf`k`ir0+K2M+d-*W!;M})!2-DD5c6Luh; z&nd7}UMneR^z5-8VMmX+KLaDdY={(L;7uR=q!L^JdevUT%r(^USm1}?wN?s=5zUnj zY)?e&l&!KJ7?Qm{9oz^onJR=eE4x$ncZ9+rm&jtR(^m;%fJab@hH+o!wegH%?RUTc zLy+mP!{xyKOV}`7TZGA19xR0Kzjc5t3}0V1xDMn#c3(DSYZJu)k8nnl`3P&7jyq?O z{Xq@lO0qrU2KyD>v`YlBVuN7hTG1>C{ur`|p^b<}XFSqvTPy%_{|_A5Y`K~&wXkKE zI@oQ`s?wi&spcpzTuyCRZ4f~ zZV;U~5CZ?t+KL~-W{I?k-G?aC7V6qXB=Tp=zp`+;_gMxnc)W*4+Q`(zWzw<1LUyOM zfHY-A_AbB|Fo`!xSVp-w%tr&3;nan|Mm-(Y;c*OTjt~=c$l(|Rt|TG?mgp*wd4g@Z z=``e(82zZLoCyiJJ!>zikt*)xcQUC*c^9%8ZiFS(L%rNFd>~%eF2tXUK7E8wcZ*$jD6 zhnX3s2e3o5QWpbspf_<8U3RXg6ztWm) zIp*718PfV4k94*o)E1TsD6_K8$2dhB9_gJb8jZNrwbqx~qDe8P;9K4+RcT)hd|)cX ztT$*_hqiRLj#3T6(+M06$|#HDPBClAUoFSt9~oE|K-P7E>*}T+s12EcD-Y8_HP3^K zvGP#%0x`h8D`3Fq%`w$n-E2Jp)2K=-hsN_Q_>dn=mZpVWSII>dv&fLWGaSw|SIrKa zR$deQ3Sk@3Dzx`1%Qpl~uy2#gZU{Ks*KeQO z>5qS)2k&cHet%s38pM}$@Hqg@r^v9Ck3ZLdmrve)8*J+I1RL+78CDwpFi$gUxgA`f z^!UEWU8)T!M5XB!HTY@^o&L}a{!mlhBW67&%ehClVY;^v-9ysj&zr`C^ftt~Yi#So zXFb?5(~+9*TH|C^&c)y-!&Di#A(KVEr2!)K*~s9&+77529&9rh>vMqu1@el)#fGF#-J$0#LxXfSUtCiL%q! z=a;Qv(pD-IGwF(!MFv^W5H8&F5gr;IuBS9lusos6vP(gJw}EoiBo=22XvVmOb4yHV zPzkOx`E1CdJT^G!#nV$Y>q@p!%?iWB`pB!pqA0Jo)PvKqL+h5VXJ|gm3@x7MB@g9m zh!^u3MR~~)PQ+V~j%Xmmoy4d6c(?uyYW=V(buY-@{4G;r)R@Ox9wU_3t?Xwlm{(8`R&-Du!eD-Xtv3DAj-N(Pb2c?>jey=`Zm#l9!6=_< z*hARToSnZ_F;Mjvcq#Oxz$7cOTO)Y4bf(JSk3eH48&$2m;d; zWYif$1@2~WoViq>WYhU0L6-*h^J{!C`~rW3j|NKQ7J$P@_!4d#Em(EKK^F)cF(#9+{3#NC(bY)*)L?BQ&sZU1ZXrS2b!_-Sdf-+Msu` z(Q-?IVhp&H$S$yqQ!Wn-^Az7{Ze3SvH5OE{SXZF7fyr17)kE*WysPJfXv<}YM)Gtk zDCiw3lsN`BP@^Ht!;Q?ssTJdLl)1>tHUq!aThy|pv1^b`$%=F=PBsHsBDWQ2*+63* zPj4T0|y6o7q1kx*GcL1Gcwwiww{{0X2;4i}W|J9f%AAI2Ggdg>~yVbwvZ1&yz zACIp-zJ(*6Ur_b(9aS&K*S~)Hr@s&X*2W}#{+DmReEm8kx$pO%zx^x!yU*S}4{txe zBoF;F*XB3$4*40P^X$9)52$Var?GIs*w z#1EQgIxm5P>~s+&y=vs;K6`o(DbV5zbR2@Li1`6pMwNzU7}CJJPPQv}s}?Fe-z*U} z8K=I#nmI`H9)Q|W&&RPTmtJAL!!`cNKMu5$}9czj&fu9a1;y9wyr0x{y zYPR>R+tv(L*|flyLd5%KNu0C9E8WlX#G!88=wnSAV>&@sOg9NnI9;Y-b4R%3n~@=` z?m3%SdN>rBY5LN&h=Op!aB4CYhtj8!oqTGm;!qOH@`ik$(d+u<$|n3$$#QQ{4uF)C zH{|NbE1LCwp>n!7LWkW3OQpkuyQWPSH9NYhV{5;V!Y1#<^=fT5xml3T0~l8$!eUAC z9<0aQ&Sld|V^>!)rYnKN$~lKB2w}(&rRpp(U6)11kR8}V0A*}Nfmk!QxxH)$;^V2( z$o;cuTU%c%ZoT`xW1MNP^CXp}MHRQ5TXH3-GSp-SB#}L8GrFlTJ?fN*?yz^GA>R~8 z-4;OuGbtfTlC{E}+SYu1J{Srw-@@HM!)#*CO9+E#yN1*8fz@mK)+~`c5`eRS` zSt-i_>l&(xcKjii0g<~XaV~@Gb@L__89YP@PLpApyBf`@|YdsOE7trlSZ|qFgniO+RK{8-ox4FOVb+$Vs zzJdl^?UyTJEd?D87+7deaKaj}v9(q8pa7Trg|FarqZyUXP$evM+DCPljxaLnL4Jns z3Vr}-(yhid7{dd#u-t>kA}MceCjfy==&cBx?g22$V`pcO!?&Fr)H+Gu&P$4b$O(!* zr#Qo>$7Y8W1|4JTAx6+(0a<1qT09Mq8R#dlS0&V9c}|iT9sEpxy7=+K)XTyHRkpGMGdyX$o^xF+wY|{ z>?p-c&^6<Ilj#}*J9cO%Xh?M#GvVlQEo^6a?hSzaZUIJ?;>(s3^2QJ$SgNH>{}E$ z9YCm)O|mT8%QU?+rI_ML8ZE!vn%NsLl@p9gDvFO)j3)1!0h7mJ28;zJ5%=tLTIDt( ziD=d&-x>))AY_}Lifnj>c{L}f+9i0b%=9Tq%8;=_2Mh*4Qg+G>NPjlj;s!yp zIf*Vkh&?A`S$U>BT%bp4t4pKDK*cn$!`vc!DEfd7U8#+dCV9Hj%VRbs7(drrrD@6X znqJyH8&M!+p=JN_i68GkBWW|(! zuEnK(*wd$``P4+A<(k7WaA{D6nH5`u;jo$NH?VLyuvIM^aA~u-x^kFRXNwY~VT0dT z0EC8FfTj2A}$0d#Tvck&c87FeG$ucQE>4N6bhi=*`|H1p5?`8gK|23t|Qk z8|Dbi&}#S3+DwocwWIRNO01fsMQ?=`c|6Mn#dgFAtC~4pH=+ZL8auw&vkeU#RC(Sa zzj+^HPlgd5&GukmKLtWaF?d(cKybt?MQ9US; ztxONk0vixS8S>(hzAbw(#0>;C#ks|_ha+((8DqrW_Ad=hHlbPG7JCqoQYc=?dg}X> z=@SQQ4dhuRpq4|p(g#`?$z1JCMe_-s9ZCq=j%b8zcK3ZHG1D=BRYyW{d_f?@sE3m= z&|HmgkeI;Mhm!J^35$8OxjG^dfASN<0q3^NpF2JSh2Ov5RXTanenuCT&t8oT^u^mh zg}2{*uTwPnR^NXf-ae+l{Il@(HKu7_1qjU1RQlcj|G(kSeL{bx0Jc0m-n()VY;oHw zIzVB?O@_32+^NgTKrF&CdZi=_#;fQd&@66bKGZ$rBa(EUG?_*5Y5sg0q!@<>3)C3x zDHjQ08Yct5byJU)RZx}jpJ%P1PloKt@FZl9Bj8yPOMy-m){oxJYiEr>nJ)qwWT{Qp zj_mW)R04a=pMh1%Dv(aj1Q1nfowhih;WqMv}`9*1Gi{T$c5f9??B^HHhv{z(}TVD%q4)no;HK6^>A)q~X hSpdDrox+^4cgglrz7rRzDPZO0{{oPT@#kp3FaTBF64n3! diff --git a/src/diffusers/pipelines/consisid/util_clip/constants.py b/src/diffusers/pipelines/consisid/util_clip/constants.py deleted file mode 100644 index a670bb3fab44..000000000000 --- a/src/diffusers/pipelines/consisid/util_clip/constants.py +++ /dev/null @@ -1,2 +0,0 @@ -OPENAI_DATASET_MEAN = (0.48145466, 0.4578275, 0.40821073) -OPENAI_DATASET_STD = (0.26862954, 0.26130258, 0.27577711) diff --git a/src/diffusers/pipelines/consisid/util_clip/eva_vit_model.py b/src/diffusers/pipelines/consisid/util_clip/eva_vit_model.py deleted file mode 100644 index 96ed648972eb..000000000000 --- a/src/diffusers/pipelines/consisid/util_clip/eva_vit_model.py +++ /dev/null @@ -1,648 +0,0 @@ -# -------------------------------------------------------- -# Adapted from https://github.com/microsoft/unilm/tree/master/beit -# -------------------------------------------------------- -import math -import os -from functools import partial - -import torch -import torch.nn as nn -import torch.nn.functional as F - - -try: - from timm.models.layers import drop_path, to_2tuple, trunc_normal_ -except ImportError: - from timm.layers import drop_path, to_2tuple, trunc_normal_ - - -from .rope import VisionRotaryEmbeddingFast -from .transformer import PatchDropout - - -if os.getenv("ENV_TYPE") == "deepspeed": - try: - from deepspeed.runtime.activation_checkpointing.checkpointing import checkpoint - except ImportError: - from torch.utils.checkpoint import checkpoint -else: - from torch.utils.checkpoint import checkpoint - -try: - import xformers.ops as xops - - XFORMERS_IS_AVAILBLE = True -except ImportError: - XFORMERS_IS_AVAILBLE = False - - -class DropPath(nn.Module): - """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" - - def __init__(self, drop_prob=None): - super(DropPath, self).__init__() - self.drop_prob = drop_prob - - def forward(self, x): - return drop_path(x, self.drop_prob, self.training) - - def extra_repr(self) -> str: - return "p={}".format(self.drop_prob) - - -class Mlp(nn.Module): - def __init__( - self, - in_features, - hidden_features=None, - out_features=None, - act_layer=nn.GELU, - norm_layer=nn.LayerNorm, - drop=0.0, - subln=False, - ): - super().__init__() - out_features = out_features or in_features - hidden_features = hidden_features or in_features - self.fc1 = nn.Linear(in_features, hidden_features) - self.act = act_layer() - - self.ffn_ln = norm_layer(hidden_features) if subln else nn.Identity() - - self.fc2 = nn.Linear(hidden_features, out_features) - self.drop = nn.Dropout(drop) - - def forward(self, x): - x = self.fc1(x) - x = self.act(x) - # x = self.drop(x) - # commit this for the orignal BERT implement - x = self.ffn_ln(x) - - x = self.fc2(x) - x = self.drop(x) - return x - - -class SwiGLU(nn.Module): - def __init__( - self, - in_features, - hidden_features=None, - out_features=None, - act_layer=nn.SiLU, - drop=0.0, - norm_layer=nn.LayerNorm, - subln=False, - ): - super().__init__() - out_features = out_features or in_features - hidden_features = hidden_features or in_features - - self.w1 = nn.Linear(in_features, hidden_features) - self.w2 = nn.Linear(in_features, hidden_features) - - self.act = act_layer() - self.ffn_ln = norm_layer(hidden_features) if subln else nn.Identity() - self.w3 = nn.Linear(hidden_features, out_features) - - self.drop = nn.Dropout(drop) - - def forward(self, x): - x1 = self.w1(x) - x2 = self.w2(x) - hidden = self.act(x1) * x2 - x = self.ffn_ln(hidden) - x = self.w3(x) - x = self.drop(x) - return x - - -class Attention(nn.Module): - def __init__( - self, - dim, - num_heads=8, - qkv_bias=False, - qk_scale=None, - attn_drop=0.0, - proj_drop=0.0, - window_size=None, - attn_head_dim=None, - xattn=False, - rope=None, - subln=False, - norm_layer=nn.LayerNorm, - ): - super().__init__() - self.num_heads = num_heads - head_dim = dim // num_heads - if attn_head_dim is not None: - head_dim = attn_head_dim - all_head_dim = head_dim * self.num_heads - self.scale = qk_scale or head_dim**-0.5 - - self.subln = subln - if self.subln: - self.q_proj = nn.Linear(dim, all_head_dim, bias=False) - self.k_proj = nn.Linear(dim, all_head_dim, bias=False) - self.v_proj = nn.Linear(dim, all_head_dim, bias=False) - else: - self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False) - - if qkv_bias: - self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) - self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) - else: - self.q_bias = None - self.v_bias = None - - if window_size: - self.window_size = window_size - self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 - self.relative_position_bias_table = nn.Parameter( - torch.zeros(self.num_relative_distance, num_heads) - ) # 2*Wh-1 * 2*Ww-1, nH - # cls to token & token 2 cls & cls to cls - - # get pair-wise relative position index for each token inside the window - coords_h = torch.arange(window_size[0]) - coords_w = torch.arange(window_size[1]) - coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww - coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww - relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww - relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 - relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 - relative_coords[:, :, 1] += window_size[1] - 1 - relative_coords[:, :, 0] *= 2 * window_size[1] - 1 - relative_position_index = torch.zeros( - size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype - ) - relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww - relative_position_index[0, 0:] = self.num_relative_distance - 3 - relative_position_index[0:, 0] = self.num_relative_distance - 2 - relative_position_index[0, 0] = self.num_relative_distance - 1 - - self.register_buffer("relative_position_index", relative_position_index) - else: - self.window_size = None - self.relative_position_bias_table = None - self.relative_position_index = None - - self.attn_drop = nn.Dropout(attn_drop) - self.inner_attn_ln = norm_layer(all_head_dim) if subln else nn.Identity() - # self.proj = nn.Linear(all_head_dim, all_head_dim) - self.proj = nn.Linear(all_head_dim, dim) - self.proj_drop = nn.Dropout(proj_drop) - self.xattn = xattn - self.xattn_drop = attn_drop - - self.rope = rope - - def forward(self, x, rel_pos_bias=None, attn_mask=None): - B, N, C = x.shape - if self.subln: - q = F.linear(input=x, weight=self.q_proj.weight, bias=self.q_bias) - k = F.linear(input=x, weight=self.k_proj.weight, bias=None) - v = F.linear(input=x, weight=self.v_proj.weight, bias=self.v_bias) - - q = q.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) # B, num_heads, N, C - k = k.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) - v = v.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) - else: - qkv_bias = None - if self.q_bias is not None: - qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias)) - - qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) - qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) # 3, B, num_heads, N, C - q, k, v = qkv[0], qkv[1], qkv[2] - - if self.rope: - # slightly fast impl - q_t = q[:, :, 1:, :] - ro_q_t = self.rope(q_t) - q = torch.cat((q[:, :, :1, :], ro_q_t), -2).type_as(v) - - k_t = k[:, :, 1:, :] - ro_k_t = self.rope(k_t) - k = torch.cat((k[:, :, :1, :], ro_k_t), -2).type_as(v) - - if self.xattn: - q = q.permute(0, 2, 1, 3) # B, num_heads, N, C -> B, N, num_heads, C - k = k.permute(0, 2, 1, 3) - v = v.permute(0, 2, 1, 3) - - x = xops.memory_efficient_attention( - q, - k, - v, - p=self.xattn_drop, - scale=self.scale, - ) - x = x.reshape(B, N, -1) - x = self.inner_attn_ln(x) - x = self.proj(x) - x = self.proj_drop(x) - else: - q = q * self.scale - attn = q @ k.transpose(-2, -1) - - if self.relative_position_bias_table is not None: - relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view( - self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1 - ) # Wh*Ww,Wh*Ww,nH - relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww - attn = attn + relative_position_bias.unsqueeze(0).type_as(attn) - - if rel_pos_bias is not None: - attn = attn + rel_pos_bias.type_as(attn) - - if attn_mask is not None: - attn_mask = attn_mask.bool() - attn = attn.masked_fill(~attn_mask[:, None, None, :], float("-inf")) - - attn = attn.softmax(dim=-1) - attn = self.attn_drop(attn) - - x = (attn @ v).transpose(1, 2).reshape(B, N, -1) - x = self.inner_attn_ln(x) - x = self.proj(x) - x = self.proj_drop(x) - return x - - -class Block(nn.Module): - def __init__( - self, - dim, - num_heads, - mlp_ratio=4.0, - qkv_bias=False, - qk_scale=None, - drop=0.0, - attn_drop=0.0, - drop_path=0.0, - init_values=None, - act_layer=nn.GELU, - norm_layer=nn.LayerNorm, - window_size=None, - attn_head_dim=None, - xattn=False, - rope=None, - postnorm=False, - subln=False, - naiveswiglu=False, - ): - super().__init__() - self.norm1 = norm_layer(dim) - self.attn = Attention( - dim, - num_heads=num_heads, - qkv_bias=qkv_bias, - qk_scale=qk_scale, - attn_drop=attn_drop, - proj_drop=drop, - window_size=window_size, - attn_head_dim=attn_head_dim, - xattn=xattn, - rope=rope, - subln=subln, - norm_layer=norm_layer, - ) - # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here - self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() - self.norm2 = norm_layer(dim) - mlp_hidden_dim = int(dim * mlp_ratio) - - if naiveswiglu: - self.mlp = SwiGLU( - in_features=dim, - hidden_features=mlp_hidden_dim, - subln=subln, - norm_layer=norm_layer, - ) - else: - self.mlp = Mlp( - in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, subln=subln, drop=drop - ) - - if init_values is not None and init_values > 0: - self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True) - self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True) - else: - self.gamma_1, self.gamma_2 = None, None - - self.postnorm = postnorm - - def forward(self, x, rel_pos_bias=None, attn_mask=None): - if self.gamma_1 is None: - if self.postnorm: - x = x + self.drop_path(self.norm1(self.attn(x, rel_pos_bias=rel_pos_bias, attn_mask=attn_mask))) - x = x + self.drop_path(self.norm2(self.mlp(x))) - else: - x = x + self.drop_path(self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias, attn_mask=attn_mask)) - x = x + self.drop_path(self.mlp(self.norm2(x))) - else: - if self.postnorm: - x = x + self.drop_path( - self.gamma_1 * self.norm1(self.attn(x, rel_pos_bias=rel_pos_bias, attn_mask=attn_mask)) - ) - x = x + self.drop_path(self.gamma_2 * self.norm2(self.mlp(x))) - else: - x = x + self.drop_path( - self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias, attn_mask=attn_mask) - ) - x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) - return x - - -class PatchEmbed(nn.Module): - """Image to Patch Embedding""" - - def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): - super().__init__() - img_size = to_2tuple(img_size) - patch_size = to_2tuple(patch_size) - num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) - self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) - self.img_size = img_size - self.patch_size = patch_size - self.num_patches = num_patches - - self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) - - def forward(self, x, **kwargs): - B, C, H, W = x.shape - # FIXME look at relaxing size constraints - assert ( - H == self.img_size[0] and W == self.img_size[1] - ), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." - x = self.proj(x).flatten(2).transpose(1, 2) - return x - - -class RelativePositionBias(nn.Module): - def __init__(self, window_size, num_heads): - super().__init__() - self.window_size = window_size - self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 - self.relative_position_bias_table = nn.Parameter( - torch.zeros(self.num_relative_distance, num_heads) - ) # 2*Wh-1 * 2*Ww-1, nH - # cls to token & token 2 cls & cls to cls - - # get pair-wise relative position index for each token inside the window - coords_h = torch.arange(window_size[0]) - coords_w = torch.arange(window_size[1]) - coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww - coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww - relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww - relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 - relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 - relative_coords[:, :, 1] += window_size[1] - 1 - relative_coords[:, :, 0] *= 2 * window_size[1] - 1 - relative_position_index = torch.zeros( - size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype - ) - relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww - relative_position_index[0, 0:] = self.num_relative_distance - 3 - relative_position_index[0:, 0] = self.num_relative_distance - 2 - relative_position_index[0, 0] = self.num_relative_distance - 1 - - self.register_buffer("relative_position_index", relative_position_index) - - def forward(self): - relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view( - self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1 - ) # Wh*Ww,Wh*Ww,nH - return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww - - -class EVAVisionTransformer(nn.Module): - """Vision Transformer with support for patch or hybrid CNN input stage""" - - def __init__( - self, - img_size=224, - patch_size=16, - in_chans=3, - num_classes=1000, - embed_dim=768, - depth=12, - num_heads=12, - mlp_ratio=4.0, - qkv_bias=False, - qk_scale=None, - drop_rate=0.0, - attn_drop_rate=0.0, - drop_path_rate=0.0, - norm_layer=nn.LayerNorm, - init_values=None, - patch_dropout=0.0, - use_abs_pos_emb=True, - use_rel_pos_bias=False, - use_shared_rel_pos_bias=False, - rope=False, - use_mean_pooling=True, - init_scale=0.001, - grad_checkpointing=False, - xattn=False, - postnorm=False, - pt_hw_seq_len=16, - intp_freq=False, - naiveswiglu=False, - subln=False, - ): - super().__init__() - - if not XFORMERS_IS_AVAILBLE: - xattn = False - - self.image_size = img_size - self.num_classes = num_classes - self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models - - self.patch_embed = PatchEmbed(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) - num_patches = self.patch_embed.num_patches - - self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) - # self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) - if use_abs_pos_emb: - self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) - else: - self.pos_embed = None - self.pos_drop = nn.Dropout(p=drop_rate) - - if use_shared_rel_pos_bias: - self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.patch_shape, num_heads=num_heads) - else: - self.rel_pos_bias = None - - if rope: - half_head_dim = embed_dim // num_heads // 2 - hw_seq_len = img_size // patch_size - self.rope = VisionRotaryEmbeddingFast( - dim=half_head_dim, - pt_seq_len=pt_hw_seq_len, - ft_seq_len=hw_seq_len if intp_freq else None, - # patch_dropout=patch_dropout - ) - else: - self.rope = None - - self.naiveswiglu = naiveswiglu - - dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule - self.use_rel_pos_bias = use_rel_pos_bias - self.blocks = nn.ModuleList( - [ - Block( - dim=embed_dim, - num_heads=num_heads, - mlp_ratio=mlp_ratio, - qkv_bias=qkv_bias, - qk_scale=qk_scale, - drop=drop_rate, - attn_drop=attn_drop_rate, - drop_path=dpr[i], - norm_layer=norm_layer, - init_values=init_values, - window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None, - xattn=xattn, - rope=self.rope, - postnorm=postnorm, - subln=subln, - naiveswiglu=naiveswiglu, - ) - for i in range(depth) - ] - ) - self.norm = nn.Identity() if use_mean_pooling else norm_layer(embed_dim) - self.fc_norm = norm_layer(embed_dim) if use_mean_pooling else None - self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() - - if self.pos_embed is not None: - trunc_normal_(self.pos_embed, std=0.02) - - trunc_normal_(self.cls_token, std=0.02) - # trunc_normal_(self.mask_token, std=.02) - - self.apply(self._init_weights) - self.fix_init_weight() - - if isinstance(self.head, nn.Linear): - trunc_normal_(self.head.weight, std=0.02) - self.head.weight.data.mul_(init_scale) - self.head.bias.data.mul_(init_scale) - - # setting a patch_dropout of 0. would mean it is disabled and this function would be the identity fn - self.patch_dropout = PatchDropout(patch_dropout) if patch_dropout > 0.0 else nn.Identity() - - self.grad_checkpointing = grad_checkpointing - - def fix_init_weight(self): - def rescale(param, layer_id): - param.div_(math.sqrt(2.0 * layer_id)) - - for layer_id, layer in enumerate(self.blocks): - rescale(layer.attn.proj.weight.data, layer_id + 1) - if self.naiveswiglu: - rescale(layer.mlp.w3.weight.data, layer_id + 1) - else: - rescale(layer.mlp.fc2.weight.data, layer_id + 1) - - def get_cast_dtype(self) -> torch.dtype: - return self.blocks[0].mlp.fc2.weight.dtype - - def _init_weights(self, m): - if isinstance(m, nn.Linear): - trunc_normal_(m.weight, std=0.02) - if m.bias is not None: - nn.init.constant_(m.bias, 0) - elif isinstance(m, nn.LayerNorm): - nn.init.constant_(m.bias, 0) - nn.init.constant_(m.weight, 1.0) - - def get_num_layers(self): - return len(self.blocks) - - def lock(self, unlocked_groups=0, freeze_bn_stats=False): - assert unlocked_groups == 0, "partial locking not currently supported for this model" - for param in self.parameters(): - param.requires_grad = False - - @torch.jit.ignore - def set_grad_checkpointing(self, enable=True): - self.grad_checkpointing = enable - - @torch.jit.ignore - def no_weight_decay(self): - return {"pos_embed", "cls_token"} - - def get_classifier(self): - return self.head - - def reset_classifier(self, num_classes, global_pool=""): - self.num_classes = num_classes - self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() - - def forward_features(self, x, return_all_features=False, return_hidden=False, shuffle=False): - x = self.patch_embed(x) - batch_size, seq_len, _ = x.size() - - if shuffle: - idx = torch.randperm(x.shape[1]) + 1 - zero = torch.LongTensor( - [ - 0, - ] - ) - idx = torch.cat([zero, idx]) - pos_embed = self.pos_embed[:, idx] - - cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks - x = torch.cat((cls_tokens, x), dim=1) - if shuffle: - x = x + pos_embed - elif self.pos_embed is not None: - x = x + self.pos_embed - x = self.pos_drop(x) - - # a patch_dropout of 0. would mean it is disabled and this function would do nothing but return what was passed in - if os.getenv("RoPE") == "1": - if self.training and not isinstance(self.patch_dropout, nn.Identity): - x, patch_indices_keep = self.patch_dropout(x) - self.rope.forward = partial(self.rope.forward, patch_indices_keep=patch_indices_keep) - else: - self.rope.forward = partial(self.rope.forward, patch_indices_keep=None) - x = self.patch_dropout(x) - else: - x = self.patch_dropout(x) - - rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None - hidden_states = [] - for idx, blk in enumerate(self.blocks): - if (0 < idx <= 20) and (idx % 4 == 0) and return_hidden: - hidden_states.append(x) - if self.grad_checkpointing: - x = checkpoint(blk, x, (rel_pos_bias,)) - else: - x = blk(x, rel_pos_bias=rel_pos_bias) - - if not return_all_features: - x = self.norm(x) - if self.fc_norm is not None: - return self.fc_norm(x.mean(1)), hidden_states - else: - return x[:, 0], hidden_states - return x - - def forward(self, x, return_all_features=False, return_hidden=False, shuffle=False): - if return_all_features: - return self.forward_features(x, return_all_features, return_hidden, shuffle) - x, hidden_states = self.forward_features(x, return_all_features, return_hidden, shuffle) - x = self.head(x) - if return_hidden: - return x, hidden_states - return x diff --git a/src/diffusers/pipelines/consisid/util_clip/factory.py b/src/diffusers/pipelines/consisid/util_clip/factory.py deleted file mode 100644 index 0e005a2489b4..000000000000 --- a/src/diffusers/pipelines/consisid/util_clip/factory.py +++ /dev/null @@ -1,527 +0,0 @@ -import json -import logging -import os -import re -from copy import deepcopy -from pathlib import Path -from typing import Optional, Tuple, Union - -import torch - -from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD -from .model import CLIP, CustomCLIP, convert_to_custom_text_state_dict, get_cast_dtype -from .openai import load_openai_model -from .pretrained import download_pretrained, get_pretrained_cfg, is_pretrained_cfg, list_pretrained_tags_by_model -from .tokenizer import HFTokenizer, tokenize -from .transform import image_transform -from .utils import resize_clip_pos_embed, resize_eva_pos_embed, resize_evaclip_pos_embed, resize_visual_pos_embed - - -_MODEL_CONFIG_PATHS = [Path(__file__).parent / "model_configs/"] -_MODEL_CONFIGS = {} # directory (model_name: config) of model architecture configs - - -def _natural_key(string_): - return [int(s) if s.isdigit() else s for s in re.split(r"(\d+)", string_.lower())] - - -def _rescan_model_configs(): - global _MODEL_CONFIGS - - config_ext = (".json",) - config_files = [] - for config_path in _MODEL_CONFIG_PATHS: - if config_path.is_file() and config_path.suffix in config_ext: - config_files.append(config_path) - elif config_path.is_dir(): - for ext in config_ext: - config_files.extend(config_path.glob(f"*{ext}")) - - for cf in config_files: - with open(cf, "r", encoding="utf8") as f: - model_cfg = json.load(f) - if all(a in model_cfg for a in ("embed_dim", "vision_cfg", "text_cfg")): - _MODEL_CONFIGS[cf.stem] = model_cfg - - _MODEL_CONFIGS = dict(sorted(_MODEL_CONFIGS.items(), key=lambda x: _natural_key(x[0]))) - - -_rescan_model_configs() # initial populate of model config registry - - -def list_models(): - """enumerate available model architectures based on config files""" - return list(_MODEL_CONFIGS.keys()) - - -def add_model_config(path): - """add model config path or file and update registry""" - if not isinstance(path, Path): - path = Path(path) - _MODEL_CONFIG_PATHS.append(path) - _rescan_model_configs() - - -def get_model_config(model_name): - if model_name in _MODEL_CONFIGS: - return deepcopy(_MODEL_CONFIGS[model_name]) - else: - return None - - -def get_tokenizer(model_name): - config = get_model_config(model_name) - tokenizer = ( - HFTokenizer(config["text_cfg"]["hf_tokenizer_name"]) if "hf_tokenizer_name" in config["text_cfg"] else tokenize - ) - return tokenizer - - -# loading openai CLIP weights when is_openai=True for training -def load_state_dict( - checkpoint_path: str, - map_location: str = "cpu", - model_key: str = "model|module|state_dict", - is_openai: bool = False, - skip_list: list = [], -): - if is_openai: - model = torch.jit.load(checkpoint_path, map_location="cpu").eval() - state_dict = model.state_dict() - for key in ["input_resolution", "context_length", "vocab_size"]: - state_dict.pop(key, None) - else: - checkpoint = torch.load(checkpoint_path, map_location=map_location) - for mk in model_key.split("|"): - if isinstance(checkpoint, dict) and mk in checkpoint: - state_dict = checkpoint[mk] - break - else: - state_dict = checkpoint - if next(iter(state_dict.items()))[0].startswith("module"): - state_dict = {k[7:]: v for k, v in state_dict.items()} - - for k in skip_list: - if k in list(state_dict.keys()): - logging.info(f"Removing key {k} from pretrained checkpoint") - del state_dict[k] - - if os.getenv("RoPE") == "1": - for k in list(state_dict.keys()): - if "freqs_cos" in k or "freqs_sin" in k: - del state_dict[k] - return state_dict - - -def load_checkpoint(model, checkpoint_path, model_key="model|module|state_dict", strict=True): - state_dict = load_state_dict(checkpoint_path, model_key=model_key, is_openai=False) - # detect old format and make compatible with new format - if "positional_embedding" in state_dict and not hasattr(model, "positional_embedding"): - state_dict = convert_to_custom_text_state_dict(state_dict) - if "text.logit_scale" in state_dict and hasattr(model, "logit_scale"): - state_dict["logit_scale"] = state_dict["text.logit_scale"] - del state_dict["text.logit_scale"] - - # resize_clip_pos_embed for CLIP and open CLIP - if "visual.positional_embedding" in state_dict: - resize_clip_pos_embed(state_dict, model) - # specified to eva_vit_model - elif "visual.pos_embed" in state_dict: - resize_evaclip_pos_embed(state_dict, model) - - # resize_clip_pos_embed(state_dict, model) - incompatible_keys = model.load_state_dict(state_dict, strict=strict) - logging.info(f"incompatible_keys.missing_keys: {incompatible_keys.missing_keys}") - return incompatible_keys - - -def load_clip_visual_state_dict( - checkpoint_path: str, map_location: str = "cpu", is_openai: bool = False, skip_list: list = [] -): - state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) - - for k in list(state_dict.keys()): - if not k.startswith("visual."): - del state_dict[k] - for k in list(state_dict.keys()): - if k.startswith("visual."): - new_k = k[7:] - state_dict[new_k] = state_dict[k] - del state_dict[k] - return state_dict - - -def load_clip_text_state_dict( - checkpoint_path: str, map_location: str = "cpu", is_openai: bool = False, skip_list: list = [] -): - state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) - - for k in list(state_dict.keys()): - if k.startswith("visual."): - del state_dict[k] - return state_dict - - -def get_pretrained_tag(pretrained_model): - pretrained_model = pretrained_model.lower() - if "laion" in pretrained_model or "open_clip" in pretrained_model: - return "open_clip" - elif "openai" in pretrained_model: - return "clip" - elif "eva" in pretrained_model and "clip" in pretrained_model: - return "eva_clip" - else: - return "other" - - -def load_pretrained_checkpoint( - model, - visual_checkpoint_path, - text_checkpoint_path, - strict=True, - visual_model=None, - text_model=None, - model_key="model|module|state_dict", - skip_list=[], -): - visual_tag = get_pretrained_tag(visual_model) - text_tag = get_pretrained_tag(text_model) - - logging.info(f"num of model state_dict keys: {len(model.state_dict().keys())}") - visual_incompatible_keys, text_incompatible_keys = None, None - if visual_checkpoint_path: - if visual_tag == "eva_clip" or visual_tag == "open_clip": - visual_state_dict = load_clip_visual_state_dict( - visual_checkpoint_path, is_openai=False, skip_list=skip_list - ) - elif visual_tag == "clip": - visual_state_dict = load_clip_visual_state_dict( - visual_checkpoint_path, is_openai=True, skip_list=skip_list - ) - else: - visual_state_dict = load_state_dict( - visual_checkpoint_path, model_key=model_key, is_openai=False, skip_list=skip_list - ) - - # resize_clip_pos_embed for CLIP and open CLIP - if "positional_embedding" in visual_state_dict: - resize_visual_pos_embed(visual_state_dict, model) - # specified to EVA model - elif "pos_embed" in visual_state_dict: - resize_eva_pos_embed(visual_state_dict, model) - - visual_incompatible_keys = model.visual.load_state_dict(visual_state_dict, strict=strict) - logging.info(f"num of loaded visual_state_dict keys: {len(visual_state_dict.keys())}") - logging.info(f"visual_incompatible_keys.missing_keys: {visual_incompatible_keys.missing_keys}") - - if text_checkpoint_path: - if text_tag == "eva_clip" or text_tag == "open_clip": - text_state_dict = load_clip_text_state_dict(text_checkpoint_path, is_openai=False, skip_list=skip_list) - elif text_tag == "clip": - text_state_dict = load_clip_text_state_dict(text_checkpoint_path, is_openai=True, skip_list=skip_list) - else: - text_state_dict = load_state_dict( - visual_checkpoint_path, model_key=model_key, is_openai=False, skip_list=skip_list - ) - - text_incompatible_keys = model.text.load_state_dict(text_state_dict, strict=strict) - - logging.info(f"num of loaded text_state_dict keys: {len(text_state_dict.keys())}") - logging.info(f"text_incompatible_keys.missing_keys: {text_incompatible_keys.missing_keys}") - - return visual_incompatible_keys, text_incompatible_keys - - -def create_model( - model_name: str, - pretrained: Optional[str] = None, - precision: str = "fp32", - device: Union[str, torch.device] = "cpu", - jit: bool = False, - force_quick_gelu: bool = False, - force_custom_clip: bool = False, - force_patch_dropout: Optional[float] = None, - pretrained_image: str = "", - pretrained_text: str = "", - pretrained_hf: bool = True, - pretrained_visual_model: str = None, - pretrained_text_model: str = None, - cache_dir: Optional[str] = None, - skip_list: list = [], -): - model_name = model_name.replace("/", "-") # for callers using old naming with / in ViT names - if isinstance(device, str): - device = torch.device(device) - - if pretrained and pretrained.lower() == "openai": - logging.info(f"Loading pretrained {model_name} from OpenAI.") - model = load_openai_model( - model_name, - precision=precision, - device=device, - jit=jit, - cache_dir=cache_dir, - ) - else: - model_cfg = get_model_config(model_name) - if model_cfg is not None: - logging.info(f"Loaded {model_name} model config.") - else: - logging.error(f"Model config for {model_name} not found; available models {list_models()}.") - raise RuntimeError(f"Model config for {model_name} not found.") - - if "rope" in model_cfg.get("vision_cfg", {}): - if model_cfg["vision_cfg"]["rope"]: - os.environ["RoPE"] = "1" - else: - os.environ["RoPE"] = "0" - - if force_quick_gelu: - # override for use of QuickGELU on non-OpenAI transformer models - model_cfg["quick_gelu"] = True - - if force_patch_dropout is not None: - # override the default patch dropout value - model_cfg["vision_cfg"]["patch_dropout"] = force_patch_dropout - - cast_dtype = get_cast_dtype(precision) - custom_clip = ( - model_cfg.pop("custom_text", False) or force_custom_clip or ("hf_model_name" in model_cfg["text_cfg"]) - ) - - if custom_clip: - if "hf_model_name" in model_cfg.get("text_cfg", {}): - model_cfg["text_cfg"]["hf_model_pretrained"] = pretrained_hf - model = CustomCLIP(**model_cfg, cast_dtype=cast_dtype) - else: - model = CLIP(**model_cfg, cast_dtype=cast_dtype) - - pretrained_cfg = {} - if pretrained: - checkpoint_path = "" - pretrained_cfg = get_pretrained_cfg(model_name, pretrained) - if pretrained_cfg: - checkpoint_path = download_pretrained(pretrained_cfg, cache_dir=cache_dir) - elif os.path.exists(pretrained): - checkpoint_path = pretrained - - if checkpoint_path: - logging.info(f"Loading pretrained {model_name} weights ({pretrained}).") - load_checkpoint(model, checkpoint_path, model_key="model|module|state_dict", strict=False) - else: - error_str = ( - f"Pretrained weights ({pretrained}) not found for model {model_name}." - f"Available pretrained tags ({list_pretrained_tags_by_model(model_name)}." - ) - logging.warning(error_str) - raise RuntimeError(error_str) - else: - visual_checkpoint_path = "" - text_checkpoint_path = "" - - if pretrained_image: - pretrained_visual_model = pretrained_visual_model.replace( - "/", "-" - ) # for callers using old naming with / in ViT names - pretrained_image_cfg = get_pretrained_cfg(pretrained_visual_model, pretrained_image) - if "timm_model_name" in model_cfg.get("vision_cfg", {}): - # pretrained weight loading for timm models set via vision_cfg - model_cfg["vision_cfg"]["timm_model_pretrained"] = True - elif pretrained_image_cfg: - visual_checkpoint_path = download_pretrained(pretrained_image_cfg, cache_dir=cache_dir) - elif os.path.exists(pretrained_image): - visual_checkpoint_path = pretrained_image - else: - logging.warning( - f"Pretrained weights ({visual_checkpoint_path}) not found for model {model_name}.visual." - ) - raise RuntimeError( - f"Pretrained weights ({visual_checkpoint_path}) not found for model {model_name}.visual." - ) - - if pretrained_text: - pretrained_text_model = pretrained_text_model.replace( - "/", "-" - ) # for callers using old naming with / in ViT names - pretrained_text_cfg = get_pretrained_cfg(pretrained_text_model, pretrained_text) - if pretrained_image_cfg: - text_checkpoint_path = download_pretrained(pretrained_text_cfg, cache_dir=cache_dir) - elif os.path.exists(pretrained_text): - text_checkpoint_path = pretrained_text - else: - logging.warning( - f"Pretrained weights ({text_checkpoint_path}) not found for model {model_name}.text." - ) - raise RuntimeError( - f"Pretrained weights ({text_checkpoint_path}) not found for model {model_name}.text." - ) - - if visual_checkpoint_path: - logging.info(f"Loading pretrained {model_name}.visual weights ({visual_checkpoint_path}).") - if text_checkpoint_path: - logging.info(f"Loading pretrained {model_name}.text weights ({text_checkpoint_path}).") - - if visual_checkpoint_path or text_checkpoint_path: - load_pretrained_checkpoint( - model, - visual_checkpoint_path, - text_checkpoint_path, - strict=False, - visual_model=pretrained_visual_model, - text_model=pretrained_text_model, - model_key="model|module|state_dict", - skip_list=skip_list, - ) - - if "fp16" in precision or "bf16" in precision: - logging.info(f"convert precision to {precision}") - model = model.to(torch.bfloat16) if "bf16" in precision else model.to(torch.float16) - - model.to(device=device) - - # set image / mean metadata from pretrained_cfg if available, or use default - model.visual.image_mean = pretrained_cfg.get("mean", None) or OPENAI_DATASET_MEAN - model.visual.image_std = pretrained_cfg.get("std", None) or OPENAI_DATASET_STD - - if jit: - model = torch.jit.script(model) - - return model - - -def create_model_and_transforms( - model_name: str, - pretrained: Optional[str] = None, - precision: str = "fp32", - device: Union[str, torch.device] = "cpu", - jit: bool = False, - force_quick_gelu: bool = False, - force_custom_clip: bool = False, - force_patch_dropout: Optional[float] = None, - pretrained_image: str = "", - pretrained_text: str = "", - pretrained_hf: bool = True, - pretrained_visual_model: str = None, - pretrained_text_model: str = None, - image_mean: Optional[Tuple[float, ...]] = None, - image_std: Optional[Tuple[float, ...]] = None, - cache_dir: Optional[str] = None, - skip_list: list = [], -): - model = create_model( - model_name, - pretrained, - precision=precision, - device=device, - jit=jit, - force_quick_gelu=force_quick_gelu, - force_custom_clip=force_custom_clip, - force_patch_dropout=force_patch_dropout, - pretrained_image=pretrained_image, - pretrained_text=pretrained_text, - pretrained_hf=pretrained_hf, - pretrained_visual_model=pretrained_visual_model, - pretrained_text_model=pretrained_text_model, - cache_dir=cache_dir, - skip_list=skip_list, - ) - - image_mean = image_mean or getattr(model.visual, "image_mean", None) - image_std = image_std or getattr(model.visual, "image_std", None) - preprocess_train = image_transform(model.visual.image_size, is_train=True, mean=image_mean, std=image_std) - preprocess_val = image_transform(model.visual.image_size, is_train=False, mean=image_mean, std=image_std) - - return model, preprocess_train, preprocess_val - - -def create_transforms( - model_name: str, - pretrained: Optional[str] = None, - precision: str = "fp32", - device: Union[str, torch.device] = "cpu", - jit: bool = False, - force_quick_gelu: bool = False, - force_custom_clip: bool = False, - force_patch_dropout: Optional[float] = None, - pretrained_image: str = "", - pretrained_text: str = "", - pretrained_hf: bool = True, - pretrained_visual_model: str = None, - pretrained_text_model: str = None, - image_mean: Optional[Tuple[float, ...]] = None, - image_std: Optional[Tuple[float, ...]] = None, - cache_dir: Optional[str] = None, - skip_list: list = [], -): - model = create_model( - model_name, - pretrained, - precision=precision, - device=device, - jit=jit, - force_quick_gelu=force_quick_gelu, - force_custom_clip=force_custom_clip, - force_patch_dropout=force_patch_dropout, - pretrained_image=pretrained_image, - pretrained_text=pretrained_text, - pretrained_hf=pretrained_hf, - pretrained_visual_model=pretrained_visual_model, - pretrained_text_model=pretrained_text_model, - cache_dir=cache_dir, - skip_list=skip_list, - ) - - image_mean = image_mean or getattr(model.visual, "image_mean", None) - image_std = image_std or getattr(model.visual, "image_std", None) - preprocess_train = image_transform(model.visual.image_size, is_train=True, mean=image_mean, std=image_std) - preprocess_val = image_transform(model.visual.image_size, is_train=False, mean=image_mean, std=image_std) - del model - - return preprocess_train, preprocess_val - - -def create_model_from_pretrained( - model_name: str, - pretrained: str, - precision: str = "fp32", - device: Union[str, torch.device] = "cpu", - jit: bool = False, - force_quick_gelu: bool = False, - force_custom_clip: bool = False, - force_patch_dropout: Optional[float] = None, - return_transform: bool = True, - image_mean: Optional[Tuple[float, ...]] = None, - image_std: Optional[Tuple[float, ...]] = None, - cache_dir: Optional[str] = None, - is_frozen: bool = False, -): - if not is_pretrained_cfg(model_name, pretrained) and not os.path.exists(pretrained): - raise RuntimeError( - f"{pretrained} is not a valid pretrained cfg or checkpoint for {model_name}." - f" Use open_clip.list_pretrained() to find one." - ) - - model = create_model( - model_name, - pretrained, - precision=precision, - device=device, - jit=jit, - force_quick_gelu=force_quick_gelu, - force_custom_clip=force_custom_clip, - force_patch_dropout=force_patch_dropout, - cache_dir=cache_dir, - ) - - if is_frozen: - for param in model.parameters(): - param.requires_grad = False - - if not return_transform: - return model - - image_mean = image_mean or getattr(model.visual, "image_mean", None) - image_std = image_std or getattr(model.visual, "image_std", None) - preprocess = image_transform(model.visual.image_size, is_train=False, mean=image_mean, std=image_std) - - return model, preprocess diff --git a/src/diffusers/pipelines/consisid/util_clip/hf_configs.py b/src/diffusers/pipelines/consisid/util_clip/hf_configs.py deleted file mode 100644 index ddd2c672fdcc..000000000000 --- a/src/diffusers/pipelines/consisid/util_clip/hf_configs.py +++ /dev/null @@ -1,57 +0,0 @@ -# HF architecture dict: -arch_dict = { - # https://huggingface.co/docs/transformers/model_doc/roberta#roberta - "roberta": { - "config_names": { - "context_length": "max_position_embeddings", - "vocab_size": "vocab_size", - "width": "hidden_size", - "heads": "num_attention_heads", - "layers": "num_hidden_layers", - "layer_attr": "layer", - "token_embeddings_attr": "embeddings", - }, - "pooler": "mean_pooler", - }, - # https://huggingface.co/docs/transformers/model_doc/xlm-roberta#transformers.XLMRobertaConfig - "xlm-roberta": { - "config_names": { - "context_length": "max_position_embeddings", - "vocab_size": "vocab_size", - "width": "hidden_size", - "heads": "num_attention_heads", - "layers": "num_hidden_layers", - "layer_attr": "layer", - "token_embeddings_attr": "embeddings", - }, - "pooler": "mean_pooler", - }, - # https://huggingface.co/docs/transformers/model_doc/mt5#mt5 - "mt5": { - "config_names": { - # unlimited seqlen - # https://github.com/google-research/text-to-text-transfer-transformer/issues/273 - # https://github.com/huggingface/transformers/blob/v4.24.0/src/transformers/models/t5/modeling_t5.py#L374 - "context_length": "", - "vocab_size": "vocab_size", - "width": "d_model", - "heads": "num_heads", - "layers": "num_layers", - "layer_attr": "block", - "token_embeddings_attr": "embed_tokens", - }, - "pooler": "mean_pooler", - }, - "bert": { - "config_names": { - "context_length": "max_position_embeddings", - "vocab_size": "vocab_size", - "width": "hidden_size", - "heads": "num_attention_heads", - "layers": "num_hidden_layers", - "layer_attr": "layer", - "token_embeddings_attr": "embeddings", - }, - "pooler": "mean_pooler", - }, -} diff --git a/src/diffusers/pipelines/consisid/util_clip/hf_model.py b/src/diffusers/pipelines/consisid/util_clip/hf_model.py deleted file mode 100644 index 450b0d85c628..000000000000 --- a/src/diffusers/pipelines/consisid/util_clip/hf_model.py +++ /dev/null @@ -1,270 +0,0 @@ -"""huggingface model adapter - -Wraps HuggingFace transformers (https://github.com/huggingface/transformers) models for use as a text tower in CLIP -model. -""" - -import re - -import torch -import torch.nn as nn -from torch import TensorType - - -try: - import transformers - from transformers import AutoConfig, AutoModel, AutoModelForMaskedLM, AutoTokenizer, PretrainedConfig - from transformers.modeling_outputs import ( - BaseModelOutput, - BaseModelOutputWithPooling, - BaseModelOutputWithPoolingAndCrossAttentions, - ) -except ImportError: - transformers = None - - class BaseModelOutput: - pass - - class PretrainedConfig: - pass - - -from .hf_configs import arch_dict - - -# utils -def _camel2snake(s): - return re.sub(r"(? TensorType: - # image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(x.device) - # attn_mask = (x != self.config.pad_token_id).long() - # out = self.transformer( - # input_ids=x, - # attention_mask=attn_mask, - # encoder_hidden_states = image_embeds, - # encoder_attention_mask = image_atts, - # ) - # pooled_out = self.pooler(out, attn_mask) - - # return self.itm_proj(pooled_out) - - def mask(self, input_ids, vocab_size, device, targets=None, masked_indices=None, probability_matrix=None): - if masked_indices is None: - masked_indices = torch.bernoulli(probability_matrix).bool() - - masked_indices[input_ids == self.tokenizer.pad_token_id] = False - masked_indices[input_ids == self.tokenizer.cls_token_id] = False - - if targets is not None: - targets[~masked_indices] = -100 # We only compute loss on masked tokens - - # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK]) - indices_replaced = torch.bernoulli(torch.full(input_ids.shape, 0.8)).bool() & masked_indices - input_ids[indices_replaced] = self.tokenizer.mask_token_id - - # 10% of the time, we replace masked input tokens with random word - indices_random = torch.bernoulli(torch.full(input_ids.shape, 0.5)).bool() & masked_indices & ~indices_replaced - random_words = torch.randint(vocab_size, input_ids.shape, dtype=torch.long).to(device) - input_ids[indices_random] = random_words[indices_random] - # The rest of the time (10% of the time) we keep the masked input tokens unchanged - - if targets is not None: - return input_ids, targets - else: - return input_ids - - def forward_mlm(self, input_ids, image_embeds, mlm_probability=0.25): - labels = input_ids.clone() - attn_mask = (input_ids != self.config.pad_token_id).long() - image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(input_ids.device) - vocab_size = getattr(self.config, arch_dict[self.config.model_type]["config_names"]["vocab_size"]) - probability_matrix = torch.full(labels.shape, mlm_probability) - input_ids, labels = self.mask( - input_ids, vocab_size, input_ids.device, targets=labels, probability_matrix=probability_matrix - ) - mlm_output = self.transformer( - input_ids, - attention_mask=attn_mask, - encoder_hidden_states=image_embeds, - encoder_attention_mask=image_atts, - return_dict=True, - labels=labels, - ) - return mlm_output.loss - # mlm_output = self.transformer(input_ids, - # attention_mask = attn_mask, - # encoder_hidden_states = image_embeds, - # encoder_attention_mask = image_atts, - # return_dict = True, - # ).last_hidden_state - # logits = self.mlm_proj(mlm_output) - - # # logits = logits[:, :-1, :].contiguous().view(-1, vocab_size) - # logits = logits[:, 1:, :].contiguous().view(-1, vocab_size) - # labels = labels[:, 1:].contiguous().view(-1) - - # mlm_loss = F.cross_entropy( - # logits, - # labels, - # # label_smoothing=0.1, - # ) - # return mlm_loss - - def forward(self, x: TensorType) -> TensorType: - attn_mask = (x != self.config.pad_token_id).long() - out = self.transformer(input_ids=x, attention_mask=attn_mask) - pooled_out = self.pooler(out, attn_mask) - - return self.proj(pooled_out) - - def lock(self, unlocked_layers: int = 0, freeze_layer_norm: bool = True): - if not unlocked_layers: # full freezing - for n, p in self.transformer.named_parameters(): - p.requires_grad = (not freeze_layer_norm) if "LayerNorm" in n.split(".") else False - return - - encoder = self.transformer.encoder if hasattr(self.transformer, "encoder") else self.transformer - layer_list = getattr(encoder, arch_dict[self.config.model_type]["config_names"]["layer_attr"]) - print(f"Unlocking {unlocked_layers}/{len(layer_list) + 1} layers of hf model") - embeddings = getattr( - self.transformer, arch_dict[self.config.model_type]["config_names"]["token_embeddings_attr"] - ) - modules = [embeddings, *layer_list][:-unlocked_layers] - # freeze layers - for module in modules: - for n, p in module.named_parameters(): - p.requires_grad = (not freeze_layer_norm) if "LayerNorm" in n.split(".") else False - - @torch.jit.ignore - def set_grad_checkpointing(self, enable=True): - self.transformer.gradient_checkpointing_enable() - - def get_num_layers(self): - encoder = self.transformer.encoder if hasattr(self.transformer, "encoder") else self.transformer - layer_list = getattr(encoder, arch_dict[self.config.model_type]["config_names"]["layer_attr"]) - return len(layer_list) - - def init_parameters(self): - pass diff --git a/src/diffusers/pipelines/consisid/util_clip/loss.py b/src/diffusers/pipelines/consisid/util_clip/loss.py deleted file mode 100644 index 75c53d12a050..000000000000 --- a/src/diffusers/pipelines/consisid/util_clip/loss.py +++ /dev/null @@ -1,135 +0,0 @@ -import torch -import torch.nn as nn -from torch.nn import functional as F - - -try: - import torch.distributed.nn - from torch import distributed as dist - - has_distributed = True -except ImportError: - has_distributed = False - -try: - import horovod.torch as hvd -except ImportError: - hvd = None - -from timm.loss import LabelSmoothingCrossEntropy - - -def gather_features( - image_features, text_features, local_loss=False, gather_with_grad=False, rank=0, world_size=1, use_horovod=False -): - assert has_distributed, "torch.distributed did not import correctly, please use a PyTorch version with support." - if use_horovod: - assert hvd is not None, "Please install horovod" - if gather_with_grad: - all_image_features = hvd.allgather(image_features) - all_text_features = hvd.allgather(text_features) - else: - with torch.no_grad(): - all_image_features = hvd.allgather(image_features) - all_text_features = hvd.allgather(text_features) - if not local_loss: - # ensure grads for local rank when all_* features don't have a gradient - gathered_image_features = list(all_image_features.chunk(world_size, dim=0)) - gathered_text_features = list(all_text_features.chunk(world_size, dim=0)) - gathered_image_features[rank] = image_features - gathered_text_features[rank] = text_features - all_image_features = torch.cat(gathered_image_features, dim=0) - all_text_features = torch.cat(gathered_text_features, dim=0) - else: - # We gather tensors from all gpus - if gather_with_grad: - all_image_features = torch.cat(torch.distributed.nn.all_gather(image_features), dim=0) - all_text_features = torch.cat(torch.distributed.nn.all_gather(text_features), dim=0) - # all_image_features = torch.cat(torch.distributed.nn.all_gather(image_features, async_op=True), dim=0) - # all_text_features = torch.cat(torch.distributed.nn.all_gather(text_features, async_op=True), dim=0) - else: - gathered_image_features = [torch.zeros_like(image_features) for _ in range(world_size)] - gathered_text_features = [torch.zeros_like(text_features) for _ in range(world_size)] - dist.all_gather(gathered_image_features, image_features) - dist.all_gather(gathered_text_features, text_features) - if not local_loss: - # ensure grads for local rank when all_* features don't have a gradient - gathered_image_features[rank] = image_features - gathered_text_features[rank] = text_features - all_image_features = torch.cat(gathered_image_features, dim=0) - all_text_features = torch.cat(gathered_text_features, dim=0) - - return all_image_features, all_text_features - - -class ClipLoss(nn.Module): - def __init__( - self, - local_loss=False, - gather_with_grad=False, - cache_labels=False, - rank=0, - world_size=1, - use_horovod=False, - smoothing=0.0, - ): - super().__init__() - self.local_loss = local_loss - self.gather_with_grad = gather_with_grad - self.cache_labels = cache_labels - self.rank = rank - self.world_size = world_size - self.use_horovod = use_horovod - self.label_smoothing_cross_entropy = LabelSmoothingCrossEntropy(smoothing=smoothing) if smoothing > 0 else None - - # cache state - self.prev_num_logits = 0 - self.labels = {} - - def forward(self, image_features, text_features, logit_scale=1.0): - device = image_features.device - if self.world_size > 1: - all_image_features, all_text_features = gather_features( - image_features, - text_features, - self.local_loss, - self.gather_with_grad, - self.rank, - self.world_size, - self.use_horovod, - ) - - if self.local_loss: - logits_per_image = logit_scale * image_features @ all_text_features.T - logits_per_text = logit_scale * text_features @ all_image_features.T - else: - logits_per_image = logit_scale * all_image_features @ all_text_features.T - logits_per_text = logits_per_image.T - else: - logits_per_image = logit_scale * image_features @ text_features.T - logits_per_text = logit_scale * text_features @ image_features.T - # calculated ground-truth and cache if enabled - num_logits = logits_per_image.shape[0] - if self.prev_num_logits != num_logits or device not in self.labels: - labels = torch.arange(num_logits, device=device, dtype=torch.long) - if self.world_size > 1 and self.local_loss: - labels = labels + num_logits * self.rank - if self.cache_labels: - self.labels[device] = labels - self.prev_num_logits = num_logits - else: - labels = self.labels[device] - - if self.label_smoothing_cross_entropy: - total_loss = ( - self.label_smoothing_cross_entropy(logits_per_image, labels) - + self.label_smoothing_cross_entropy(logits_per_text, labels) - ) / 2 - else: - total_loss = (F.cross_entropy(logits_per_image, labels) + F.cross_entropy(logits_per_text, labels)) / 2 - - acc = None - i2t_acc = (logits_per_image.argmax(-1) == labels).sum() / len(logits_per_image) - t2i_acc = (logits_per_text.argmax(-1) == labels).sum() / len(logits_per_text) - acc = {"i2t": i2t_acc, "t2i": t2i_acc} - return total_loss, acc diff --git a/src/diffusers/pipelines/consisid/util_clip/model.py b/src/diffusers/pipelines/consisid/util_clip/model.py deleted file mode 100644 index c34a5f1c0a7b..000000000000 --- a/src/diffusers/pipelines/consisid/util_clip/model.py +++ /dev/null @@ -1,447 +0,0 @@ -"""CLIP Model - -Adapted from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI. -""" - -from dataclasses import dataclass -from functools import partial -from typing import Optional, Tuple, Union - -import numpy as np -import torch -import torch.nn.functional as F -from torch import nn - - -try: - from .hf_model import HFTextEncoder -except ImportError: - HFTextEncoder = None -from .eva_vit_model import EVAVisionTransformer -from .modified_resnet import ModifiedResNet -from .timm_model import TimmModel -from .transformer import Attention, LayerNorm, QuickGELU, TextTransformer, VisionTransformer - - -try: - from apex.normalization import FusedLayerNorm -except ImportError: - FusedLayerNorm = LayerNorm - print("Please 'pip install apex'") - -try: - import xformers.ops as xops -except ImportError: - xops = None - print("Please 'pip install xformers'") - - -@dataclass -class CLIPVisionCfg: - layers: Union[Tuple[int, int, int, int], int] = 12 - width: int = 768 - head_width: int = 64 - mlp_ratio: float = 4.0 - patch_size: int = 16 - image_size: Union[Tuple[int, int], int] = 224 - ls_init_value: Optional[float] = None # layer scale initial value - patch_dropout: float = 0.0 # what fraction of patches to dropout during training (0 would mean disabled and no patches dropped) - 0.5 to 0.75 recommended in the paper for optimal results - global_average_pool: bool = False # whether to global average pool the last embedding layer, instead of using CLS token (https://arxiv.org/abs/2205.01580) - drop_path_rate: Optional[float] = None # drop path rate - timm_model_name: str = None # a valid model name overrides layers, width, patch_size - timm_model_pretrained: bool = False # use (imagenet) pretrained weights for named model - timm_pool: str = "avg" # feature pooling for timm model ('abs_attn', 'rot_attn', 'avg', '') - timm_proj: str = "linear" # linear projection for timm model output ('linear', 'mlp', '') - timm_proj_bias: bool = False # enable bias final projection - eva_model_name: str = None # a valid eva model name overrides layers, width, patch_size - qkv_bias: bool = True - fusedLN: bool = False - xattn: bool = False - postnorm: bool = False - rope: bool = False - pt_hw_seq_len: int = 16 # 224/14 - intp_freq: bool = False - naiveswiglu: bool = False - subln: bool = False - - -@dataclass -class CLIPTextCfg: - context_length: int = 77 - vocab_size: int = 49408 - width: int = 512 - heads: int = 8 - layers: int = 12 - ls_init_value: Optional[float] = None # layer scale initial value - hf_model_name: str = None - hf_tokenizer_name: str = None - hf_model_pretrained: bool = True - proj: str = "mlp" - pooler_type: str = "mean_pooler" - masked_language_modeling: bool = False - fusedLN: bool = False - xattn: bool = False - attn_mask: bool = True - - -def get_cast_dtype(precision: str): - cast_dtype = None - if precision == "bf16": - cast_dtype = torch.bfloat16 - elif precision == "fp16": - cast_dtype = torch.float16 - return cast_dtype - - -def _build_vision_tower( - embed_dim: int, vision_cfg: CLIPVisionCfg, quick_gelu: bool = False, cast_dtype: Optional[torch.dtype] = None -): - if isinstance(vision_cfg, dict): - vision_cfg = CLIPVisionCfg(**vision_cfg) - - # OpenAI models are pretrained w/ QuickGELU but native nn.GELU is both faster and more - # memory efficient in recent PyTorch releases (>= 1.10). - # NOTE: timm models always use native GELU regardless of quick_gelu flag. - act_layer = QuickGELU if quick_gelu else nn.GELU - - if vision_cfg.eva_model_name: - vision_heads = vision_cfg.width // vision_cfg.head_width - norm_layer = LayerNorm - - visual = EVAVisionTransformer( - img_size=vision_cfg.image_size, - patch_size=vision_cfg.patch_size, - num_classes=embed_dim, - use_mean_pooling=vision_cfg.global_average_pool, # False - init_values=vision_cfg.ls_init_value, - patch_dropout=vision_cfg.patch_dropout, - embed_dim=vision_cfg.width, - depth=vision_cfg.layers, - num_heads=vision_heads, - mlp_ratio=vision_cfg.mlp_ratio, - qkv_bias=vision_cfg.qkv_bias, - drop_path_rate=vision_cfg.drop_path_rate, - norm_layer=partial(FusedLayerNorm, eps=1e-6) if vision_cfg.fusedLN else partial(norm_layer, eps=1e-6), - xattn=vision_cfg.xattn, - rope=vision_cfg.rope, - postnorm=vision_cfg.postnorm, - pt_hw_seq_len=vision_cfg.pt_hw_seq_len, # 224/14 - intp_freq=vision_cfg.intp_freq, - naiveswiglu=vision_cfg.naiveswiglu, - subln=vision_cfg.subln, - ) - elif vision_cfg.timm_model_name: - visual = TimmModel( - vision_cfg.timm_model_name, - pretrained=vision_cfg.timm_model_pretrained, - pool=vision_cfg.timm_pool, - proj=vision_cfg.timm_proj, - proj_bias=vision_cfg.timm_proj_bias, - embed_dim=embed_dim, - image_size=vision_cfg.image_size, - ) - act_layer = nn.GELU # so that text transformer doesn't use QuickGELU w/ timm models - elif isinstance(vision_cfg.layers, (tuple, list)): - vision_heads = vision_cfg.width * 32 // vision_cfg.head_width - visual = ModifiedResNet( - layers=vision_cfg.layers, - output_dim=embed_dim, - heads=vision_heads, - image_size=vision_cfg.image_size, - width=vision_cfg.width, - ) - else: - vision_heads = vision_cfg.width // vision_cfg.head_width - # norm_layer = LayerNormFp32 if cast_dtype in (torch.float16, torch.bfloat16) else LayerNorm - norm_layer = LayerNorm - visual = VisionTransformer( - image_size=vision_cfg.image_size, - patch_size=vision_cfg.patch_size, - width=vision_cfg.width, - layers=vision_cfg.layers, - heads=vision_heads, - mlp_ratio=vision_cfg.mlp_ratio, - ls_init_value=vision_cfg.ls_init_value, - patch_dropout=vision_cfg.patch_dropout, - global_average_pool=vision_cfg.global_average_pool, - output_dim=embed_dim, - act_layer=act_layer, - norm_layer=norm_layer, - ) - - return visual - - -def _build_text_tower( - embed_dim: int, - text_cfg: CLIPTextCfg, - quick_gelu: bool = False, - cast_dtype: Optional[torch.dtype] = None, -): - if isinstance(text_cfg, dict): - text_cfg = CLIPTextCfg(**text_cfg) - - if text_cfg.hf_model_name: - text = HFTextEncoder( - text_cfg.hf_model_name, - output_dim=embed_dim, - tokenizer_name=text_cfg.hf_tokenizer_name, - proj=text_cfg.proj, - pooler_type=text_cfg.pooler_type, - masked_language_modeling=text_cfg.masked_language_modeling, - ) - else: - act_layer = QuickGELU if quick_gelu else nn.GELU - norm_layer = LayerNorm - - text = TextTransformer( - context_length=text_cfg.context_length, - vocab_size=text_cfg.vocab_size, - width=text_cfg.width, - heads=text_cfg.heads, - layers=text_cfg.layers, - ls_init_value=text_cfg.ls_init_value, - output_dim=embed_dim, - act_layer=act_layer, - norm_layer=FusedLayerNorm if text_cfg.fusedLN else norm_layer, - xattn=text_cfg.xattn, - attn_mask=text_cfg.attn_mask, - ) - return text - - -class CLIP(nn.Module): - def __init__( - self, - embed_dim: int, - vision_cfg: CLIPVisionCfg, - text_cfg: CLIPTextCfg, - quick_gelu: bool = False, - cast_dtype: Optional[torch.dtype] = None, - ): - super().__init__() - self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype) - - text = _build_text_tower(embed_dim, text_cfg, quick_gelu, cast_dtype) - self.transformer = text.transformer - self.vocab_size = text.vocab_size - self.token_embedding = text.token_embedding - self.positional_embedding = text.positional_embedding - self.ln_final = text.ln_final - self.text_projection = text.text_projection - self.register_buffer("attn_mask", text.attn_mask, persistent=False) - - self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) - - def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False): - # lock image tower as per LiT - https://arxiv.org/abs/2111.07991 - self.visual.lock(unlocked_groups=unlocked_groups, freeze_bn_stats=freeze_bn_stats) - - @torch.jit.ignore - def set_grad_checkpointing(self, enable=True): - self.visual.set_grad_checkpointing(enable) - self.transformer.grad_checkpointing = enable - - @torch.jit.ignore - def no_weight_decay(self): - return {"logit_scale"} - - def encode_image(self, image, normalize: bool = False): - features = self.visual(image) - return F.normalize(features, dim=-1) if normalize else features - - def encode_text(self, text, normalize: bool = False): - cast_dtype = self.transformer.get_cast_dtype() - - x = self.token_embedding(text).to(cast_dtype) # [batch_size, n_ctx, d_model] - - x = x + self.positional_embedding.to(cast_dtype) - x = x.permute(1, 0, 2) # NLD -> LND - x = self.transformer(x, attn_mask=self.attn_mask) - x = x.permute(1, 0, 2) # LND -> NLD - x = self.ln_final(x) # [batch_size, n_ctx, transformer.width] - # take features from the eot embedding (eot_token is the highest number in each sequence) - x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection - return F.normalize(x, dim=-1) if normalize else x - - def forward(self, image, text): - image_features = self.encode_image(image, normalize=True) - text_features = self.encode_text(text, normalize=True) - return image_features, text_features, self.logit_scale.exp() - - -class CustomCLIP(nn.Module): - def __init__( - self, - embed_dim: int, - vision_cfg: CLIPVisionCfg, - text_cfg: CLIPTextCfg, - quick_gelu: bool = False, - cast_dtype: Optional[torch.dtype] = None, - itm_task: bool = False, - ): - super().__init__() - self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype) - self.text = _build_text_tower(embed_dim, text_cfg, quick_gelu, cast_dtype) - self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) - - def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False): - # lock image tower as per LiT - https://arxiv.org/abs/2111.07991 - self.visual.lock(unlocked_groups=unlocked_groups, freeze_bn_stats=freeze_bn_stats) - - def lock_text_tower(self, unlocked_layers: int = 0, freeze_layer_norm: bool = True): - self.text.lock(unlocked_layers, freeze_layer_norm) - - @torch.jit.ignore - def set_grad_checkpointing(self, enable=True): - self.visual.set_grad_checkpointing(enable) - self.text.set_grad_checkpointing(enable) - - @torch.jit.ignore - def no_weight_decay(self): - return {"logit_scale"} - - def encode_image(self, image, normalize: bool = False): - features = self.visual(image) - return F.normalize(features, dim=-1) if normalize else features - - def encode_text(self, text, normalize: bool = False): - features = self.text(text) - return F.normalize(features, dim=-1) if normalize else features - - def forward(self, image, text): - image_features = self.encode_image(image, normalize=True) - text_features = self.encode_text(text, normalize=True) - return image_features, text_features, self.logit_scale.exp() - - -def convert_weights_to_lp(model: nn.Module, dtype=torch.float16): - """Convert applicable model parameters to low-precision (bf16 or fp16)""" - - def _convert_weights(l): - if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)): - l.weight.data = l.weight.data.to(dtype) - if l.bias is not None: - l.bias.data = l.bias.data.to(dtype) - - if isinstance(l, (nn.MultiheadAttention, Attention)): - for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]: - tensor = getattr(l, attr, None) - if tensor is not None: - tensor.data = tensor.data.to(dtype) - - if isinstance(l, nn.Parameter): - l.data = l.data.to(dtype) - - for name in ["text_projection", "proj"]: - if hasattr(l, name) and isinstance(l, nn.Parameter): - attr = getattr(l, name, None) - if attr is not None: - attr.data = attr.data.to(dtype) - - model.apply(_convert_weights) - - -convert_weights_to_fp16 = convert_weights_to_lp # backwards compat - - -# used to maintain checkpoint compatibility -def convert_to_custom_text_state_dict(state_dict: dict): - if "text_projection" in state_dict: - # old format state_dict, move text tower -> .text - new_state_dict = {} - for k, v in state_dict.items(): - if any( - k.startswith(p) - for p in ( - "text_projection", - "positional_embedding", - "token_embedding", - "transformer", - "ln_final", - "logit_scale", - ) - ): - k = "text." + k - new_state_dict[k] = v - return new_state_dict - return state_dict - - -def build_model_from_openai_state_dict( - state_dict: dict, - quick_gelu=True, - cast_dtype=torch.float16, -): - vit = "visual.proj" in state_dict - - if vit: - vision_width = state_dict["visual.conv1.weight"].shape[0] - vision_layers = len( - [k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")] - ) - vision_patch_size = state_dict["visual.conv1.weight"].shape[-1] - grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5) - image_size = vision_patch_size * grid_size - else: - counts: list = [ - len({k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}")}) for b in [1, 2, 3, 4] - ] - vision_layers = tuple(counts) - vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0] - output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5) - vision_patch_size = None - assert output_width**2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0] - image_size = output_width * 32 - - embed_dim = state_dict["text_projection"].shape[1] - context_length = state_dict["positional_embedding"].shape[0] - vocab_size = state_dict["token_embedding.weight"].shape[0] - transformer_width = state_dict["ln_final.weight"].shape[0] - transformer_heads = transformer_width // 64 - transformer_layers = len({k.split(".")[2] for k in state_dict if k.startswith("transformer.resblocks")}) - - vision_cfg = CLIPVisionCfg( - layers=vision_layers, - width=vision_width, - patch_size=vision_patch_size, - image_size=image_size, - ) - text_cfg = CLIPTextCfg( - context_length=context_length, - vocab_size=vocab_size, - width=transformer_width, - heads=transformer_heads, - layers=transformer_layers, - ) - model = CLIP( - embed_dim, - vision_cfg=vision_cfg, - text_cfg=text_cfg, - quick_gelu=quick_gelu, # OpenAI models were trained with QuickGELU - cast_dtype=cast_dtype, - ) - - for key in ["input_resolution", "context_length", "vocab_size"]: - state_dict.pop(key, None) - - convert_weights_to_fp16(model) # OpenAI state dicts are partially converted to float16 - model.load_state_dict(state_dict) - return model.eval() - - -def trace_model(model, batch_size=256, device=torch.device("cpu")): - model.eval() - image_size = model.visual.image_size - example_images = torch.ones((batch_size, 3, image_size, image_size), device=device) - example_text = torch.zeros((batch_size, model.context_length), dtype=torch.int, device=device) - model = torch.jit.trace_module( - model, - inputs={ - "forward": (example_images, example_text), - "encode_text": (example_text,), - "encode_image": (example_images,), - }, - ) - model.visual.image_size = image_size - return model diff --git a/src/diffusers/pipelines/consisid/util_clip/model_configs/EVA01-CLIP-B-16.json b/src/diffusers/pipelines/consisid/util_clip/model_configs/EVA01-CLIP-B-16.json deleted file mode 100644 index aad205800396..000000000000 --- a/src/diffusers/pipelines/consisid/util_clip/model_configs/EVA01-CLIP-B-16.json +++ /dev/null @@ -1,19 +0,0 @@ -{ - "embed_dim": 512, - "vision_cfg": { - "image_size": 224, - "layers": 12, - "width": 768, - "patch_size": 16, - "eva_model_name": "eva-clip-b-16", - "ls_init_value": 0.1, - "drop_path_rate": 0.0 - }, - "text_cfg": { - "context_length": 77, - "vocab_size": 49408, - "width": 512, - "heads": 8, - "layers": 12 - } -} \ No newline at end of file diff --git a/src/diffusers/pipelines/consisid/util_clip/model_configs/EVA01-CLIP-g-14-plus.json b/src/diffusers/pipelines/consisid/util_clip/model_configs/EVA01-CLIP-g-14-plus.json deleted file mode 100644 index 100279572ff6..000000000000 --- a/src/diffusers/pipelines/consisid/util_clip/model_configs/EVA01-CLIP-g-14-plus.json +++ /dev/null @@ -1,24 +0,0 @@ -{ - "embed_dim": 1024, - "vision_cfg": { - "image_size": 224, - "layers": 40, - "width": 1408, - "head_width": 88, - "mlp_ratio": 4.3637, - "patch_size": 14, - "eva_model_name": "eva-clip-g-14-x", - "drop_path_rate": 0, - "xattn": true, - "fusedLN": true - }, - "text_cfg": { - "context_length": 77, - "vocab_size": 49408, - "width": 1024, - "heads": 16, - "layers": 24, - "xattn": false, - "fusedLN": true - } -} \ No newline at end of file diff --git a/src/diffusers/pipelines/consisid/util_clip/model_configs/EVA01-CLIP-g-14.json b/src/diffusers/pipelines/consisid/util_clip/model_configs/EVA01-CLIP-g-14.json deleted file mode 100644 index 5d338b4e6104..000000000000 --- a/src/diffusers/pipelines/consisid/util_clip/model_configs/EVA01-CLIP-g-14.json +++ /dev/null @@ -1,24 +0,0 @@ -{ - "embed_dim": 1024, - "vision_cfg": { - "image_size": 224, - "layers": 40, - "width": 1408, - "head_width": 88, - "mlp_ratio": 4.3637, - "patch_size": 14, - "eva_model_name": "eva-clip-g-14-x", - "drop_path_rate": 0.4, - "xattn": true, - "fusedLN": true - }, - "text_cfg": { - "context_length": 77, - "vocab_size": 49408, - "width": 768, - "heads": 12, - "layers": 12, - "xattn": false, - "fusedLN": true - } -} \ No newline at end of file diff --git a/src/diffusers/pipelines/consisid/util_clip/model_configs/EVA02-CLIP-B-16.json b/src/diffusers/pipelines/consisid/util_clip/model_configs/EVA02-CLIP-B-16.json deleted file mode 100644 index e4a6e723f770..000000000000 --- a/src/diffusers/pipelines/consisid/util_clip/model_configs/EVA02-CLIP-B-16.json +++ /dev/null @@ -1,29 +0,0 @@ -{ - "embed_dim": 512, - "vision_cfg": { - "image_size": 224, - "layers": 12, - "width": 768, - "head_width": 64, - "patch_size": 16, - "mlp_ratio": 2.6667, - "eva_model_name": "eva-clip-b-16-X", - "drop_path_rate": 0.0, - "xattn": true, - "fusedLN": true, - "rope": true, - "pt_hw_seq_len": 16, - "intp_freq": true, - "naiveswiglu": true, - "subln": true - }, - "text_cfg": { - "context_length": 77, - "vocab_size": 49408, - "width": 512, - "heads": 8, - "layers": 12, - "xattn": true, - "fusedLN": true - } -} \ No newline at end of file diff --git a/src/diffusers/pipelines/consisid/util_clip/model_configs/EVA02-CLIP-L-14-336.json b/src/diffusers/pipelines/consisid/util_clip/model_configs/EVA02-CLIP-L-14-336.json deleted file mode 100644 index 3e1d124e1118..000000000000 --- a/src/diffusers/pipelines/consisid/util_clip/model_configs/EVA02-CLIP-L-14-336.json +++ /dev/null @@ -1,29 +0,0 @@ -{ - "embed_dim": 768, - "vision_cfg": { - "image_size": 336, - "layers": 24, - "width": 1024, - "drop_path_rate": 0, - "head_width": 64, - "mlp_ratio": 2.6667, - "patch_size": 14, - "eva_model_name": "eva-clip-l-14-336", - "xattn": true, - "fusedLN": true, - "rope": true, - "pt_hw_seq_len": 16, - "intp_freq": true, - "naiveswiglu": true, - "subln": true - }, - "text_cfg": { - "context_length": 77, - "vocab_size": 49408, - "width": 768, - "heads": 12, - "layers": 12, - "xattn": false, - "fusedLN": true - } -} \ No newline at end of file diff --git a/src/diffusers/pipelines/consisid/util_clip/model_configs/EVA02-CLIP-L-14.json b/src/diffusers/pipelines/consisid/util_clip/model_configs/EVA02-CLIP-L-14.json deleted file mode 100644 index 03b22ad3cfb9..000000000000 --- a/src/diffusers/pipelines/consisid/util_clip/model_configs/EVA02-CLIP-L-14.json +++ /dev/null @@ -1,29 +0,0 @@ -{ - "embed_dim": 768, - "vision_cfg": { - "image_size": 224, - "layers": 24, - "width": 1024, - "drop_path_rate": 0, - "head_width": 64, - "mlp_ratio": 2.6667, - "patch_size": 14, - "eva_model_name": "eva-clip-l-14", - "xattn": true, - "fusedLN": true, - "rope": true, - "pt_hw_seq_len": 16, - "intp_freq": true, - "naiveswiglu": true, - "subln": true - }, - "text_cfg": { - "context_length": 77, - "vocab_size": 49408, - "width": 768, - "heads": 12, - "layers": 12, - "xattn": false, - "fusedLN": true - } -} \ No newline at end of file diff --git a/src/diffusers/pipelines/consisid/util_clip/model_configs/EVA02-CLIP-bigE-14-plus.json b/src/diffusers/pipelines/consisid/util_clip/model_configs/EVA02-CLIP-bigE-14-plus.json deleted file mode 100644 index aa04e2545ac1..000000000000 --- a/src/diffusers/pipelines/consisid/util_clip/model_configs/EVA02-CLIP-bigE-14-plus.json +++ /dev/null @@ -1,25 +0,0 @@ -{ - "embed_dim": 1024, - "vision_cfg": { - "image_size": 224, - "layers": 64, - "width": 1792, - "head_width": 112, - "mlp_ratio": 8.571428571428571, - "patch_size": 14, - "eva_model_name": "eva-clip-4b-14-x", - "drop_path_rate": 0, - "xattn": true, - "postnorm": true, - "fusedLN": true - }, - "text_cfg": { - "context_length": 77, - "vocab_size": 49408, - "width": 1280, - "heads": 20, - "layers": 32, - "xattn": false, - "fusedLN": true - } -} diff --git a/src/diffusers/pipelines/consisid/util_clip/model_configs/EVA02-CLIP-bigE-14.json b/src/diffusers/pipelines/consisid/util_clip/model_configs/EVA02-CLIP-bigE-14.json deleted file mode 100644 index 747ffccc8bd4..000000000000 --- a/src/diffusers/pipelines/consisid/util_clip/model_configs/EVA02-CLIP-bigE-14.json +++ /dev/null @@ -1,25 +0,0 @@ -{ - "embed_dim": 1024, - "vision_cfg": { - "image_size": 224, - "layers": 64, - "width": 1792, - "head_width": 112, - "mlp_ratio": 8.571428571428571, - "patch_size": 14, - "eva_model_name": "eva-clip-4b-14-x", - "drop_path_rate": 0, - "xattn": true, - "postnorm": true, - "fusedLN": true - }, - "text_cfg": { - "context_length": 77, - "vocab_size": 49408, - "width": 1024, - "heads": 16, - "layers": 24, - "xattn": false, - "fusedLN": true - } -} \ No newline at end of file diff --git a/src/diffusers/pipelines/consisid/util_clip/modified_resnet.py b/src/diffusers/pipelines/consisid/util_clip/modified_resnet.py deleted file mode 100644 index e91dc0e3dcbe..000000000000 --- a/src/diffusers/pipelines/consisid/util_clip/modified_resnet.py +++ /dev/null @@ -1,187 +0,0 @@ -from collections import OrderedDict - -import torch -from torch import nn -from torch.nn import functional as F - -from .utils import freeze_batch_norm_2d - - -class Bottleneck(nn.Module): - expansion = 4 - - def __init__(self, inplanes, planes, stride=1): - super().__init__() - - # all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1 - self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False) - self.bn1 = nn.BatchNorm2d(planes) - self.act1 = nn.ReLU(inplace=True) - - self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False) - self.bn2 = nn.BatchNorm2d(planes) - self.act2 = nn.ReLU(inplace=True) - - self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity() - - self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False) - self.bn3 = nn.BatchNorm2d(planes * self.expansion) - self.act3 = nn.ReLU(inplace=True) - - self.downsample = None - self.stride = stride - - if stride > 1 or inplanes != planes * Bottleneck.expansion: - # downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1 - self.downsample = nn.Sequential( - OrderedDict( - [ - ("-1", nn.AvgPool2d(stride)), - ("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)), - ("1", nn.BatchNorm2d(planes * self.expansion)), - ] - ) - ) - - def forward(self, x: torch.Tensor): - identity = x - - out = self.act1(self.bn1(self.conv1(x))) - out = self.act2(self.bn2(self.conv2(out))) - out = self.avgpool(out) - out = self.bn3(self.conv3(out)) - - if self.downsample is not None: - identity = self.downsample(x) - - out += identity - out = self.act3(out) - return out - - -class AttentionPool2d(nn.Module): - def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None): - super().__init__() - self.positional_embedding = nn.Parameter(torch.randn(spacial_dim**2 + 1, embed_dim) / embed_dim**0.5) - self.k_proj = nn.Linear(embed_dim, embed_dim) - self.q_proj = nn.Linear(embed_dim, embed_dim) - self.v_proj = nn.Linear(embed_dim, embed_dim) - self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim) - self.num_heads = num_heads - - def forward(self, x): - x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC - x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC - x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC - x, _ = F.multi_head_attention_forward( - query=x, - key=x, - value=x, - embed_dim_to_check=x.shape[-1], - num_heads=self.num_heads, - q_proj_weight=self.q_proj.weight, - k_proj_weight=self.k_proj.weight, - v_proj_weight=self.v_proj.weight, - in_proj_weight=None, - in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]), - bias_k=None, - bias_v=None, - add_zero_attn=False, - dropout_p=0.0, - out_proj_weight=self.c_proj.weight, - out_proj_bias=self.c_proj.bias, - use_separate_proj_weight=True, - training=self.training, - need_weights=False, - ) - - return x[0] - - -class ModifiedResNet(nn.Module): - """ - A ResNet class that is similar to torchvision's but contains the following changes: - - There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool. - - Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1 - - The final pooling layer is a QKV attention instead of an average pool - """ - - def __init__(self, layers, output_dim, heads, image_size=224, width=64): - super().__init__() - self.output_dim = output_dim - self.image_size = image_size - - # the 3-layer stem - self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False) - self.bn1 = nn.BatchNorm2d(width // 2) - self.act1 = nn.ReLU(inplace=True) - self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False) - self.bn2 = nn.BatchNorm2d(width // 2) - self.act2 = nn.ReLU(inplace=True) - self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False) - self.bn3 = nn.BatchNorm2d(width) - self.act3 = nn.ReLU(inplace=True) - self.avgpool = nn.AvgPool2d(2) - - # residual layers - self._inplanes = width # this is a *mutable* variable used during construction - self.layer1 = self._make_layer(width, layers[0]) - self.layer2 = self._make_layer(width * 2, layers[1], stride=2) - self.layer3 = self._make_layer(width * 4, layers[2], stride=2) - self.layer4 = self._make_layer(width * 8, layers[3], stride=2) - - embed_dim = width * 32 # the ResNet feature dimension - self.attnpool = AttentionPool2d(image_size // 32, embed_dim, heads, output_dim) - - self.init_parameters() - - def _make_layer(self, planes, blocks, stride=1): - layers = [Bottleneck(self._inplanes, planes, stride)] - - self._inplanes = planes * Bottleneck.expansion - for _ in range(1, blocks): - layers.append(Bottleneck(self._inplanes, planes)) - - return nn.Sequential(*layers) - - def init_parameters(self): - if self.attnpool is not None: - std = self.attnpool.c_proj.in_features**-0.5 - nn.init.normal_(self.attnpool.q_proj.weight, std=std) - nn.init.normal_(self.attnpool.k_proj.weight, std=std) - nn.init.normal_(self.attnpool.v_proj.weight, std=std) - nn.init.normal_(self.attnpool.c_proj.weight, std=std) - - for resnet_block in [self.layer1, self.layer2, self.layer3, self.layer4]: - for name, param in resnet_block.named_parameters(): - if name.endswith("bn3.weight"): - nn.init.zeros_(param) - - def lock(self, unlocked_groups=0, freeze_bn_stats=False): - assert unlocked_groups == 0, "partial locking not currently supported for this model" - for param in self.parameters(): - param.requires_grad = False - if freeze_bn_stats: - freeze_batch_norm_2d(self) - - @torch.jit.ignore - def set_grad_checkpointing(self, enable=True): - # FIXME support for non-transformer - pass - - def stem(self, x): - x = self.act1(self.bn1(self.conv1(x))) - x = self.act2(self.bn2(self.conv2(x))) - x = self.act3(self.bn3(self.conv3(x))) - x = self.avgpool(x) - return x - - def forward(self, x): - x = self.stem(x) - x = self.layer1(x) - x = self.layer2(x) - x = self.layer3(x) - x = self.layer4(x) - x = self.attnpool(x) - - return x diff --git a/src/diffusers/pipelines/consisid/util_clip/openai.py b/src/diffusers/pipelines/consisid/util_clip/openai.py deleted file mode 100644 index 3a75acd27cb2..000000000000 --- a/src/diffusers/pipelines/consisid/util_clip/openai.py +++ /dev/null @@ -1,141 +0,0 @@ -"""OpenAI pretrained model functions - -Adapted from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI. -""" - -import os -import warnings -from typing import List, Optional, Union - -import torch - -from .model import build_model_from_openai_state_dict, convert_weights_to_lp, get_cast_dtype -from .pretrained import download_pretrained_from_url, get_pretrained_url, list_pretrained_models_by_tag - - -__all__ = ["list_openai_models", "load_openai_model"] - - -def list_openai_models() -> List[str]: - """Returns the names of available CLIP models""" - return list_pretrained_models_by_tag("openai") - - -def load_openai_model( - name: str, - precision: Optional[str] = None, - device: Optional[Union[str, torch.device]] = None, - jit: bool = True, - cache_dir: Optional[str] = None, -): - """Load a CLIP model - - Parameters ---------- name : str - A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict - precision: str - Model precision, if None defaults to 'fp32' if device == 'cpu' else 'fp16'. - device : Union[str, torch.device] - The device to put the loaded model - jit : bool - Whether to load the optimized JIT model (default) or more hackable non-JIT model. - cache_dir : Optional[str] - The directory to cache the downloaded model weights - - Returns ------- model : torch.nn.Module - The CLIP model - preprocess : Callable[[PIL.Image], torch.Tensor] - A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input - """ - if device is None: - device = "cuda" if torch.cuda.is_available() else "cpu" - if precision is None: - precision = "fp32" if device == "cpu" else "fp16" - - if get_pretrained_url(name, "openai"): - model_path = download_pretrained_from_url(get_pretrained_url(name, "openai"), cache_dir=cache_dir) - elif os.path.isfile(name): - model_path = name - else: - raise RuntimeError(f"Model {name} not found; available models = {list_openai_models()}") - - try: - # loading JIT archive - model = torch.jit.load(model_path, map_location=device if jit else "cpu").eval() - state_dict = None - except RuntimeError: - # loading saved state dict - if jit: - warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead") - jit = False - state_dict = torch.load(model_path, map_location="cpu") - - if not jit: - # Build a non-jit model from the OpenAI jitted model state dict - cast_dtype = get_cast_dtype(precision) - try: - model = build_model_from_openai_state_dict(state_dict or model.state_dict(), cast_dtype=cast_dtype) - except KeyError: - sd = {k[7:]: v for k, v in state_dict["state_dict"].items()} - model = build_model_from_openai_state_dict(sd, cast_dtype=cast_dtype) - - # model from OpenAI state dict is in manually cast fp16 mode, must be converted for AMP/fp32/bf16 use - model = model.to(device) - if precision.startswith("amp") or precision == "fp32": - model.float() - elif precision == "bf16": - convert_weights_to_lp(model, dtype=torch.bfloat16) - - return model - - # patch the device names - device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[]) - device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1] - - def patch_device(module): - try: - graphs = [module.graph] if hasattr(module, "graph") else [] - except RuntimeError: - graphs = [] - - if hasattr(module, "forward1"): - graphs.append(module.forward1.graph) - - for graph in graphs: - for node in graph.findAllNodes("prim::Constant"): - if "value" in node.attributeNames() and str(node["value"]).startswith("cuda"): - node.copyAttributes(device_node) - - model.apply(patch_device) - patch_device(model.encode_image) - patch_device(model.encode_text) - - # patch dtype to float32 (typically for CPU) - if precision == "fp32": - float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[]) - float_input = list(float_holder.graph.findNode("aten::to").inputs())[1] - float_node = float_input.node() - - def patch_float(module): - try: - graphs = [module.graph] if hasattr(module, "graph") else [] - except RuntimeError: - graphs = [] - - if hasattr(module, "forward1"): - graphs.append(module.forward1.graph) - - for graph in graphs: - for node in graph.findAllNodes("aten::to"): - inputs = list(node.inputs()) - for i in [1, 2]: # dtype can be the second or third argument to aten::to() - if inputs[i].node()["value"] == 5: - inputs[i].node().copyAttributes(float_node) - - model.apply(patch_float) - patch_float(model.encode_image) - patch_float(model.encode_text) - model.float() - - # ensure image_size attr available at consistent location for both jit and non-jit - model.visual.image_size = model.input_resolution.item() - return model diff --git a/src/diffusers/pipelines/consisid/util_clip/pretrained.py b/src/diffusers/pipelines/consisid/util_clip/pretrained.py deleted file mode 100644 index 7fd618735c88..000000000000 --- a/src/diffusers/pipelines/consisid/util_clip/pretrained.py +++ /dev/null @@ -1,344 +0,0 @@ -import hashlib -import os -import urllib -import warnings -from typing import Dict, Union - -from tqdm import tqdm - - -try: - from huggingface_hub import hf_hub_download - - _has_hf_hub = True -except ImportError: - hf_hub_download = None - _has_hf_hub = False - - -def _pcfg(url="", hf_hub="", filename="", mean=None, std=None): - return { - "url": url, - "hf_hub": hf_hub, - "mean": mean, - "std": std, - } - - -_VITB32 = { - "openai": _pcfg( - "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt" - ), - "laion400m_e31": _pcfg( - "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e31-d867053b.pt" - ), - "laion400m_e32": _pcfg( - "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e32-46683a32.pt" - ), - "laion2b_e16": _pcfg( - "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-laion2b_e16-af8dbd0c.pth" - ), - "laion2b_s34b_b79k": _pcfg(hf_hub="laion/CLIP-ViT-B-32-laion2B-s34B-b79K/"), -} - -_VITB32_quickgelu = { - "openai": _pcfg( - "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt" - ), - "laion400m_e31": _pcfg( - "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e31-d867053b.pt" - ), - "laion400m_e32": _pcfg( - "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e32-46683a32.pt" - ), -} - -_VITB16 = { - "openai": _pcfg( - "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt" - ), - "laion400m_e31": _pcfg( - "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16-laion400m_e31-00efa78f.pt" - ), - "laion400m_e32": _pcfg( - "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16-laion400m_e32-55e67d44.pt" - ), - "laion2b_s34b_b88k": _pcfg(hf_hub="laion/CLIP-ViT-B-16-laion2B-s34B-b88K/"), -} - -_EVAB16 = { - "eva": _pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_B_psz14to16.pt"), - "eva02": _pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_B_psz14to16.pt"), - "eva_clip": _pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_CLIP_B_psz16_s8B.pt"), - "eva02_clip": _pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_CLIP_B_psz16_s8B.pt"), -} - -_VITB16_PLUS_240 = { - "laion400m_e31": _pcfg( - "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16_plus_240-laion400m_e31-8fb26589.pt" - ), - "laion400m_e32": _pcfg( - "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16_plus_240-laion400m_e32-699c4b84.pt" - ), -} - -_VITL14 = { - "openai": _pcfg( - "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt" - ), - "laion400m_e31": _pcfg( - "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_l_14-laion400m_e31-69988bb6.pt" - ), - "laion400m_e32": _pcfg( - "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_l_14-laion400m_e32-3d133497.pt" - ), - "laion2b_s32b_b82k": _pcfg( - hf_hub="laion/CLIP-ViT-L-14-laion2B-s32B-b82K/", mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5) - ), -} - -_EVAL14 = { - "eva": _pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_L_psz14.pt"), - "eva02": _pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_L_psz14.pt"), - "eva_clip": _pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_s4B.pt"), - "eva02_clip": _pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_s4B.pt"), -} - -_VITL14_336 = { - "openai": _pcfg( - "https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt" - ), -} - -_EVAL14_336 = { - "eva_clip": _pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_CLIP_L_336_psz14_s6B.pt"), - "eva02_clip": _pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_CLIP_L_336_psz14_s6B.pt"), - "eva_clip_224to336": _pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_224to336.pt"), - "eva02_clip_224to336": _pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_224to336.pt"), -} - -_VITH14 = { - "laion2b_s32b_b79k": _pcfg(hf_hub="laion/CLIP-ViT-H-14-laion2B-s32B-b79K/"), -} - -_VITg14 = { - "laion2b_s12b_b42k": _pcfg(hf_hub="laion/CLIP-ViT-g-14-laion2B-s12B-b42K/"), - "laion2b_s34b_b88k": _pcfg(hf_hub="laion/CLIP-ViT-g-14-laion2B-s34B-b88K/"), -} - -_EVAg14 = { - "eva": _pcfg(hf_hub="QuanSun/EVA-CLIP/"), - "eva01": _pcfg(hf_hub="QuanSun/EVA-CLIP/EVA01_g_psz14.pt"), - "eva_clip": _pcfg(hf_hub="QuanSun/EVA-CLIP/EVA01_CLIP_g_14_psz14_s11B.pt"), - "eva01_clip": _pcfg(hf_hub="QuanSun/EVA-CLIP/EVA01_CLIP_g_14_psz14_s11B.pt"), -} - -_EVAg14_PLUS = { - "eva": _pcfg(hf_hub="QuanSun/EVA-CLIP/"), - "eva01": _pcfg(hf_hub="QuanSun/EVA-CLIP/EVA01_g_psz14.pt"), - "eva_clip": _pcfg(hf_hub="QuanSun/EVA-CLIP/EVA01_CLIP_g_14_plus_psz14_s11B.pt"), - "eva01_clip": _pcfg(hf_hub="QuanSun/EVA-CLIP/EVA01_CLIP_g_14_plus_psz14_s11B.pt"), -} - -_VITbigG14 = { - "laion2b_s39b_b160k": _pcfg(hf_hub="laion/CLIP-ViT-bigG-14-laion2B-39B-b160k/"), -} - -_EVAbigE14 = { - "eva": _pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_E_psz14.pt"), - "eva02": _pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_E_psz14.pt"), - "eva_clip": _pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_s4B.pt"), - "eva02_clip": _pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_s4B.pt"), -} - - -_EVAbigE14_PLUS = { - "eva": _pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_E_psz14.pt"), - "eva02": _pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_E_psz14.pt"), - "eva_clip": _pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_plus_s9B.pt"), - "eva02_clip": _pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_plus_s9B.pt"), -} - - -_PRETRAINED = { - # "ViT-B-32": _VITB32, - "OpenaiCLIP-B-32": _VITB32, - "OpenCLIP-B-32": _VITB32, - # "ViT-B-32-quickgelu": _VITB32_quickgelu, - "OpenaiCLIP-B-32-quickgelu": _VITB32_quickgelu, - "OpenCLIP-B-32-quickgelu": _VITB32_quickgelu, - # "ViT-B-16": _VITB16, - "OpenaiCLIP-B-16": _VITB16, - "OpenCLIP-B-16": _VITB16, - "EVA02-B-16": _EVAB16, - "EVA02-CLIP-B-16": _EVAB16, - # "ViT-B-16-plus-240": _VITB16_PLUS_240, - "OpenCLIP-B-16-plus-240": _VITB16_PLUS_240, - # "ViT-L-14": _VITL14, - "OpenaiCLIP-L-14": _VITL14, - "OpenCLIP-L-14": _VITL14, - "EVA02-L-14": _EVAL14, - "EVA02-CLIP-L-14": _EVAL14, - # "ViT-L-14-336": _VITL14_336, - "OpenaiCLIP-L-14-336": _VITL14_336, - "EVA02-CLIP-L-14-336": _EVAL14_336, - # "ViT-H-14": _VITH14, - # "ViT-g-14": _VITg14, - "OpenCLIP-H-14": _VITH14, - "OpenCLIP-g-14": _VITg14, - "EVA01-CLIP-g-14": _EVAg14, - "EVA01-CLIP-g-14-plus": _EVAg14_PLUS, - # "ViT-bigG-14": _VITbigG14, - "OpenCLIP-bigG-14": _VITbigG14, - "EVA02-CLIP-bigE-14": _EVAbigE14, - "EVA02-CLIP-bigE-14-plus": _EVAbigE14_PLUS, -} - - -def _clean_tag(tag: str): - # normalize pretrained tags - return tag.lower().replace("-", "_") - - -def list_pretrained(as_str: bool = False): - """returns list of pretrained models - Returns a tuple (model_name, pretrain_tag) by default or 'name:tag' if as_str == True - """ - return [":".join([k, t]) if as_str else (k, t) for k in _PRETRAINED.keys() for t in _PRETRAINED[k].keys()] - - -def list_pretrained_models_by_tag(tag: str): - """return all models having the specified pretrain tag""" - models = [] - tag = _clean_tag(tag) - for k in _PRETRAINED.keys(): - if tag in _PRETRAINED[k]: - models.append(k) - return models - - -def list_pretrained_tags_by_model(model: str): - """return all pretrain tags for the specified model architecture""" - tags = [] - if model in _PRETRAINED: - tags.extend(_PRETRAINED[model].keys()) - return tags - - -def is_pretrained_cfg(model: str, tag: str): - if model not in _PRETRAINED: - return False - return _clean_tag(tag) in _PRETRAINED[model] - - -def get_pretrained_cfg(model: str, tag: str): - if model not in _PRETRAINED: - return {} - model_pretrained = _PRETRAINED[model] - return model_pretrained.get(_clean_tag(tag), {}) - - -def get_pretrained_url(model: str, tag: str): - cfg = get_pretrained_cfg(model, _clean_tag(tag)) - return cfg.get("url", "") - - -def download_pretrained_from_url( - url: str, - cache_dir: Union[str, None] = None, -): - if not cache_dir: - cache_dir = os.path.expanduser("~/.cache/clip") - os.makedirs(cache_dir, exist_ok=True) - filename = os.path.basename(url) - - if "openaipublic" in url: - expected_sha256 = url.split("/")[-2] - elif "mlfoundations" in url: - expected_sha256 = os.path.splitext(filename)[0].split("-")[-1] - else: - expected_sha256 = "" - - download_target = os.path.join(cache_dir, filename) - - if os.path.exists(download_target) and not os.path.isfile(download_target): - raise RuntimeError(f"{download_target} exists and is not a regular file") - - if os.path.isfile(download_target): - if expected_sha256: - if hashlib.sha256(open(download_target, "rb").read()).hexdigest().startswith(expected_sha256): - return download_target - else: - warnings.warn( - f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file" - ) - else: - return download_target - - with urllib.request.urlopen(url) as source, open(download_target, "wb") as output: - with tqdm(total=int(source.headers.get("Content-Length")), ncols=80, unit="iB", unit_scale=True) as loop: - while True: - buffer = source.read(8192) - if not buffer: - break - - output.write(buffer) - loop.update(len(buffer)) - - if expected_sha256 and not hashlib.sha256(open(download_target, "rb").read()).hexdigest().startswith( - expected_sha256 - ): - raise RuntimeError("Model has been downloaded but the SHA256 checksum does not not match") - - return download_target - - -def has_hf_hub(necessary=False): - if not _has_hf_hub and necessary: - # if no HF Hub module installed, and it is necessary to continue, raise error - raise RuntimeError( - "Hugging Face hub model specified but package not installed. Run `pip install huggingface_hub`." - ) - return _has_hf_hub - - -def download_pretrained_from_hf( - model_id: str, - filename: str = "open_clip_pytorch_model.bin", - revision=None, - cache_dir: Union[str, None] = None, -): - has_hf_hub(True) - cached_file = hf_hub_download(model_id, filename, revision=revision, cache_dir=cache_dir) - return cached_file - - -def download_pretrained( - cfg: Dict, - force_hf_hub: bool = False, - cache_dir: Union[str, None] = None, -): - target = "" - if not cfg: - return target - - download_url = cfg.get("url", "") - download_hf_hub = cfg.get("hf_hub", "") - if download_hf_hub and force_hf_hub: - # use HF hub even if url exists - download_url = "" - - if download_url: - target = download_pretrained_from_url(download_url, cache_dir=cache_dir) - elif download_hf_hub: - has_hf_hub(True) - # we assume the hf_hub entries in pretrained config combine model_id + filename in - # 'org/model_name/filename.pt' form. To specify just the model id w/o filename and - # use 'open_clip_pytorch_model.bin' default, there must be a trailing slash 'org/model_name/'. - model_id, filename = os.path.split(download_hf_hub) - if filename: - target = download_pretrained_from_hf(model_id, filename=filename, cache_dir=cache_dir) - else: - target = download_pretrained_from_hf(model_id, cache_dir=cache_dir) - - return target diff --git a/src/diffusers/pipelines/consisid/util_clip/rope.py b/src/diffusers/pipelines/consisid/util_clip/rope.py deleted file mode 100644 index 7f7d32499dca..000000000000 --- a/src/diffusers/pipelines/consisid/util_clip/rope.py +++ /dev/null @@ -1,145 +0,0 @@ -import logging -from math import pi - -import torch -from einops import rearrange, repeat -from torch import nn - - -def broadcat(tensors, dim=-1): - num_tensors = len(tensors) - shape_lens = {len(t.shape) for t in tensors} - assert len(shape_lens) == 1, "tensors must all have the same number of dimensions" - shape_len = list(shape_lens)[0] - dim = (dim + shape_len) if dim < 0 else dim - dims = list(zip(*(list(t.shape) for t in tensors))) - expandable_dims = [(i, val) for i, val in enumerate(dims) if i != dim] - assert all(len(set(t[1])) <= 2 for t in expandable_dims), "invalid dimensions for broadcastable concatenation" - max_dims = [(t[0], max(t[1])) for t in expandable_dims] - expanded_dims = [(t[0], (t[1],) * num_tensors) for t in max_dims] - expanded_dims.insert(dim, (dim, dims[dim])) - expandable_shapes = list(zip(*(t[1] for t in expanded_dims))) - tensors = [t[0].expand(*t[1]) for t in zip(tensors, expandable_shapes)] - return torch.cat(tensors, dim=dim) - - -def rotate_half(x): - x = rearrange(x, "... (d r) -> ... d r", r=2) - x1, x2 = x.unbind(dim=-1) - x = torch.stack((-x2, x1), dim=-1) - return rearrange(x, "... d r -> ... (d r)") - - -class VisionRotaryEmbedding(nn.Module): - def __init__( - self, - dim, - pt_seq_len, - ft_seq_len=None, - custom_freqs=None, - freqs_for="lang", - theta=10000, - max_freq=10, - num_freqs=1, - ): - super().__init__() - if custom_freqs: - freqs = custom_freqs - elif freqs_for == "lang": - freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) - elif freqs_for == "pixel": - freqs = torch.linspace(1.0, max_freq / 2, dim // 2) * pi - elif freqs_for == "constant": - freqs = torch.ones(num_freqs).float() - else: - raise ValueError(f"unknown modality {freqs_for}") - - if ft_seq_len is None: - ft_seq_len = pt_seq_len - t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len - - freqs_h = torch.einsum("..., f -> ... f", t, freqs) - freqs_h = repeat(freqs_h, "... n -> ... (n r)", r=2) - - freqs_w = torch.einsum("..., f -> ... f", t, freqs) - freqs_w = repeat(freqs_w, "... n -> ... (n r)", r=2) - - freqs = broadcat((freqs_h[:, None, :], freqs_w[None, :, :]), dim=-1) - - self.register_buffer("freqs_cos", freqs.cos()) - self.register_buffer("freqs_sin", freqs.sin()) - - logging.info(f"Shape of rope freq: {self.freqs_cos.shape}") - - def forward(self, t, start_index=0): - rot_dim = self.freqs_cos.shape[-1] - end_index = start_index + rot_dim - assert ( - rot_dim <= t.shape[-1] - ), f"feature dimension {t.shape[-1]} is not of sufficient size to rotate in all the positions {rot_dim}" - t_left, t, t_right = t[..., :start_index], t[..., start_index:end_index], t[..., end_index:] - t = (t * self.freqs_cos) + (rotate_half(t) * self.freqs_sin) - - return torch.cat((t_left, t, t_right), dim=-1) - - -class VisionRotaryEmbeddingFast(nn.Module): - def __init__( - self, - dim, - pt_seq_len, - ft_seq_len=None, - custom_freqs=None, - freqs_for="lang", - theta=10000, - max_freq=10, - num_freqs=1, - patch_dropout=0.0, - ): - super().__init__() - if custom_freqs: - freqs = custom_freqs - elif freqs_for == "lang": - freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) - elif freqs_for == "pixel": - freqs = torch.linspace(1.0, max_freq / 2, dim // 2) * pi - elif freqs_for == "constant": - freqs = torch.ones(num_freqs).float() - else: - raise ValueError(f"unknown modality {freqs_for}") - - if ft_seq_len is None: - ft_seq_len = pt_seq_len - t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len - - freqs = torch.einsum("..., f -> ... f", t, freqs) - freqs = repeat(freqs, "... n -> ... (n r)", r=2) - freqs = broadcat((freqs[:, None, :], freqs[None, :, :]), dim=-1) - - freqs_cos = freqs.cos().view(-1, freqs.shape[-1]) - freqs_sin = freqs.sin().view(-1, freqs.shape[-1]) - - self.patch_dropout = patch_dropout - - self.register_buffer("freqs_cos", freqs_cos) - self.register_buffer("freqs_sin", freqs_sin) - - logging.info(f"Shape of rope freq: {self.freqs_cos.shape}") - - def forward(self, t, patch_indices_keep=None): - if patch_indices_keep is not None: - batch = t.size()[0] - batch_indices = torch.arange(batch) - batch_indices = batch_indices[..., None] - - freqs_cos = repeat(self.freqs_cos, "i j -> n i m j", n=t.shape[0], m=t.shape[1]) - freqs_sin = repeat(self.freqs_sin, "i j -> n i m j", n=t.shape[0], m=t.shape[1]) - - freqs_cos = freqs_cos[batch_indices, patch_indices_keep] - freqs_cos = rearrange(freqs_cos, "n i m j -> n m i j") - freqs_sin = freqs_sin[batch_indices, patch_indices_keep] - freqs_sin = rearrange(freqs_sin, "n i m j -> n m i j") - - return t * freqs_cos + rotate_half(t) * freqs_sin - - return t * self.freqs_cos + rotate_half(t) * self.freqs_sin diff --git a/src/diffusers/pipelines/consisid/util_clip/timm_model.py b/src/diffusers/pipelines/consisid/util_clip/timm_model.py deleted file mode 100644 index 038ae217e7ee..000000000000 --- a/src/diffusers/pipelines/consisid/util_clip/timm_model.py +++ /dev/null @@ -1,128 +0,0 @@ -"""timm model adapter - -Wraps timm (https://github.com/rwightman/pytorch-image-models) models for use as a vision tower in CLIP model. -""" - -import logging -from collections import OrderedDict - -import torch -import torch.nn as nn - - -try: - import timm - from timm.models.layers import Mlp, to_2tuple - - try: - # old timm imports < 0.8.1 - from timm.models.layers.attention_pool2d import AttentionPool2d as AbsAttentionPool2d - from timm.models.layers.attention_pool2d import RotAttentionPool2d - except ImportError: - # new timm imports >= 0.8.1 - from timm.layers import AttentionPool2d as AbsAttentionPool2d - from timm.layers import RotAttentionPool2d -except ImportError: - timm = None - -from .utils import freeze_batch_norm_2d - - -class TimmModel(nn.Module): - """timm model adapter - # FIXME this adapter is a work in progress, may change in ways that break weight compat - """ - - def __init__( - self, - model_name, - embed_dim, - image_size=224, - pool="avg", - proj="linear", - proj_bias=False, - drop=0.0, - pretrained=False, - ): - super().__init__() - if timm is None: - raise RuntimeError("Please `pip install timm` to use timm models.") - - self.image_size = to_2tuple(image_size) - self.trunk = timm.create_model(model_name, pretrained=pretrained) - feat_size = self.trunk.default_cfg.get("pool_size", None) - feature_ndim = 1 if not feat_size else 2 - if pool in ("abs_attn", "rot_attn"): - assert feature_ndim == 2 - # if attn pooling used, remove both classifier and default pool - self.trunk.reset_classifier(0, global_pool="") - else: - # reset global pool if pool config set, otherwise leave as network default - reset_kwargs = {"global_pool": pool} if pool else {} - self.trunk.reset_classifier(0, **reset_kwargs) - prev_chs = self.trunk.num_features - - head_layers = OrderedDict() - if pool == "abs_attn": - head_layers["pool"] = AbsAttentionPool2d(prev_chs, feat_size=feat_size, out_features=embed_dim) - prev_chs = embed_dim - elif pool == "rot_attn": - head_layers["pool"] = RotAttentionPool2d(prev_chs, out_features=embed_dim) - prev_chs = embed_dim - else: - assert proj, "projection layer needed if non-attention pooling is used." - - # NOTE attention pool ends with a projection layer, so proj should usually be set to '' if such pooling is used - if proj == "linear": - head_layers["drop"] = nn.Dropout(drop) - head_layers["proj"] = nn.Linear(prev_chs, embed_dim, bias=proj_bias) - elif proj == "mlp": - head_layers["mlp"] = Mlp(prev_chs, 2 * embed_dim, embed_dim, drop=drop, bias=(True, proj_bias)) - - self.head = nn.Sequential(head_layers) - - def lock(self, unlocked_groups=0, freeze_bn_stats=False): - """lock modules - - Args: - unlocked_groups (int): leave last n layer groups unlocked (default: 0) - """ - if not unlocked_groups: - # lock full model - for param in self.trunk.parameters(): - param.requires_grad = False - if freeze_bn_stats: - freeze_batch_norm_2d(self.trunk) - else: - # NOTE: partial freeze requires latest timm (master) branch and is subject to change - try: - # FIXME import here until API stable and in an official release - from timm.models.helpers import group_modules, group_parameters - except ImportError: - raise RuntimeError( - "Please install latest timm `pip install git+https://github.com/rwightman/pytorch-image-models`" - ) - matcher = self.trunk.group_matcher() - gparams = group_parameters(self.trunk, matcher) - max_layer_id = max(gparams.keys()) - max_layer_id = max_layer_id - unlocked_groups - for group_idx in range(max_layer_id + 1): - group = gparams[group_idx] - for param in group: - self.trunk.get_parameter(param).requires_grad = False - if freeze_bn_stats: - gmodules = group_modules(self.trunk, matcher, reverse=True) - gmodules = {k for k, v in gmodules.items() if v <= max_layer_id} - freeze_batch_norm_2d(self.trunk, gmodules) - - @torch.jit.ignore - def set_grad_checkpointing(self, enable=True): - try: - self.trunk.set_grad_checkpointing(enable) - except Exception: - logging.warning("grad checkpointing not supported for this timm image tower, continuing without...") - - def forward(self, x): - x = self.trunk(x) - x = self.head(x) - return x diff --git a/src/diffusers/pipelines/consisid/util_clip/tokenizer.py b/src/diffusers/pipelines/consisid/util_clip/tokenizer.py deleted file mode 100644 index d311bf0222d9..000000000000 --- a/src/diffusers/pipelines/consisid/util_clip/tokenizer.py +++ /dev/null @@ -1,206 +0,0 @@ -"""CLIP tokenizer - -Copied from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI. -""" - -import gzip -import html - -# https://stackoverflow.com/q/62691279 -import os -from functools import lru_cache -from typing import List, Union - -import ftfy -import regex as re -import torch - - -os.environ["TOKENIZERS_PARALLELISM"] = "false" - - -@lru_cache() -def default_bpe(): - return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz") - - -@lru_cache() -def bytes_to_unicode(): - """ - Returns list of utf-8 byte and a corresponding list of unicode strings. The reversible bpe codes work on unicode - strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're - at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a signficant - percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode - strings. And avoids mapping to whitespace/control characters the bpe code barfs on. - """ - bs = ( - list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) - ) - cs = bs[:] - n = 0 - for b in range(2**8): - if b not in bs: - bs.append(b) - cs.append(2**8 + n) - n += 1 - cs = [chr(n) for n in cs] - return dict(zip(bs, cs)) - - -def get_pairs(word): - """Return set of symbol pairs in a word. - Word is represented as tuple of symbols (symbols being variable-length strings). - """ - pairs = set() - prev_char = word[0] - for char in word[1:]: - pairs.add((prev_char, char)) - prev_char = char - return pairs - - -def basic_clean(text): - text = ftfy.fix_text(text) - text = html.unescape(html.unescape(text)) - return text.strip() - - -def whitespace_clean(text): - text = re.sub(r"\s+", " ", text) - text = text.strip() - return text - - -class SimpleTokenizer(object): - def __init__(self, bpe_path: str = default_bpe(), special_tokens=None): - self.byte_encoder = bytes_to_unicode() - self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} - merges = gzip.open(bpe_path).read().decode("utf-8").split("\n") - merges = merges[1 : 49152 - 256 - 2 + 1] - merges = [tuple(merge.split()) for merge in merges] - vocab = list(bytes_to_unicode().values()) - vocab = vocab + [v + "" for v in vocab] - for merge in merges: - vocab.append("".join(merge)) - if not special_tokens: - special_tokens = ["", ""] - else: - special_tokens = ["", ""] + special_tokens - vocab.extend(special_tokens) - self.encoder = dict(zip(vocab, range(len(vocab)))) - self.decoder = {v: k for k, v in self.encoder.items()} - self.bpe_ranks = dict(zip(merges, range(len(merges)))) - self.cache = {t: t for t in special_tokens} - special = "|".join(special_tokens) - self.pat = re.compile( - special + r"""|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE - ) - - self.vocab_size = len(self.encoder) - self.all_special_ids = [self.encoder[t] for t in special_tokens] - - def bpe(self, token): - if token in self.cache: - return self.cache[token] - word = tuple(token[:-1]) + (token[-1] + "",) - pairs = get_pairs(word) - - if not pairs: - return token + "" - - while True: - bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) - if bigram not in self.bpe_ranks: - break - first, second = bigram - new_word = [] - i = 0 - while i < len(word): - try: - j = word.index(first, i) - new_word.extend(word[i:j]) - i = j - except IndexError: - new_word.extend(word[i:]) - break - - if word[i] == first and i < len(word) - 1 and word[i + 1] == second: - new_word.append(first + second) - i += 2 - else: - new_word.append(word[i]) - i += 1 - new_word = tuple(new_word) - word = new_word - if len(word) == 1: - break - else: - pairs = get_pairs(word) - word = " ".join(word) - self.cache[token] = word - return word - - def encode(self, text): - bpe_tokens = [] - text = whitespace_clean(basic_clean(text)).lower() - for token in re.findall(self.pat, text): - token = "".join(self.byte_encoder[b] for b in token.encode("utf-8")) - bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(" ")) - return bpe_tokens - - def decode(self, tokens): - text = "".join([self.decoder[token] for token in tokens]) - text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors="replace").replace("", " ") - return text - - -_tokenizer = SimpleTokenizer() - - -def tokenize(texts: Union[str, List[str]], context_length: int = 77) -> torch.LongTensor: - """ - Returns the tokenized representation of given input string(s) - - Parameters ---------- texts : Union[str, List[str]] - An input string or a list of input strings to tokenize - context_length : int - The context length to use; all CLIP models use 77 as the context length - - Returns ------- A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, - context_length] - """ - if isinstance(texts, str): - texts = [texts] - - sot_token = _tokenizer.encoder[""] - eot_token = _tokenizer.encoder[""] - all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts] - result = torch.zeros(len(all_tokens), context_length, dtype=torch.long) - - for i, tokens in enumerate(all_tokens): - if len(tokens) > context_length: - tokens = tokens[:context_length] # Truncate - tokens[-1] = eot_token - result[i, : len(tokens)] = torch.tensor(tokens) - - return result - - -class HFTokenizer: - "HuggingFace tokenizer wrapper" - - def __init__(self, tokenizer_name: str): - from transformers import AutoTokenizer - - self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name) - - def __call__(self, texts: Union[str, List[str]], context_length: int = 77) -> torch.Tensor: - # same cleaning as for default tokenizer, except lowercasing - # adding lower (for case-sensitive tokenizers) will make it more robust but less sensitive to nuance - if isinstance(texts, str): - texts = [texts] - texts = [whitespace_clean(basic_clean(text)) for text in texts] - input_ids = self.tokenizer( - texts, return_tensors="pt", max_length=context_length, padding="max_length", truncation=True - ).input_ids - return input_ids diff --git a/src/diffusers/pipelines/consisid/util_clip/transform.py b/src/diffusers/pipelines/consisid/util_clip/transform.py deleted file mode 100644 index 9876a111bf6c..000000000000 --- a/src/diffusers/pipelines/consisid/util_clip/transform.py +++ /dev/null @@ -1,110 +0,0 @@ -from typing import Optional, Tuple - -import torch -import torch.nn as nn -import torchvision.transforms.functional as F -from torchvision.transforms import ( - CenterCrop, - Compose, - InterpolationMode, - Normalize, - RandomResizedCrop, - Resize, - ToTensor, -) - -from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD - - -class ResizeMaxSize(nn.Module): - def __init__(self, max_size, interpolation=InterpolationMode.BICUBIC, fn="max", fill=0): - super().__init__() - if not isinstance(max_size, int): - raise TypeError(f"Size should be int. Got {type(max_size)}") - self.max_size = max_size - self.interpolation = interpolation - self.fn = min if fn == "min" else min - self.fill = fill - - def forward(self, img): - if isinstance(img, torch.Tensor): - height, width = img.shape[:2] - else: - width, height = img.size - scale = self.max_size / float(max(height, width)) - if scale != 1.0: - new_size = tuple(round(dim * scale) for dim in (height, width)) - img = F.resize(img, new_size, self.interpolation) - pad_h = self.max_size - new_size[0] - pad_w = self.max_size - new_size[1] - img = F.pad(img, padding=[pad_w // 2, pad_h // 2, pad_w - pad_w // 2, pad_h - pad_h // 2], fill=self.fill) - return img - - -def _convert_to_rgb(image): - return image.convert("RGB") - - -# class CatGen(nn.Module): -# def __init__(self, num=4): -# self.num = num -# def mixgen_batch(image, text): -# batch_size = image.shape[0] -# index = np.random.permutation(batch_size) - -# cat_images = [] -# for i in range(batch_size): -# # image mixup -# image[i,:] = lam * image[i,:] + (1 - lam) * image[index[i],:] -# # text concat -# text[i] = tokenizer((str(text[i]) + " " + str(text[index[i]])))[0] -# text = torch.stack(text) -# return image, text - - -def image_transform( - image_size: int, - is_train: bool, - mean: Optional[Tuple[float, ...]] = None, - std: Optional[Tuple[float, ...]] = None, - resize_longest_max: bool = False, - fill_color: int = 0, -): - mean = mean or OPENAI_DATASET_MEAN - if not isinstance(mean, (list, tuple)): - mean = (mean,) * 3 - - std = std or OPENAI_DATASET_STD - if not isinstance(std, (list, tuple)): - std = (std,) * 3 - - if isinstance(image_size, (list, tuple)) and image_size[0] == image_size[1]: - # for square size, pass size as int so that Resize() uses aspect preserving shortest edge - image_size = image_size[0] - - normalize = Normalize(mean=mean, std=std) - if is_train: - return Compose( - [ - RandomResizedCrop(image_size, scale=(0.9, 1.0), interpolation=InterpolationMode.BICUBIC), - _convert_to_rgb, - ToTensor(), - normalize, - ] - ) - else: - if resize_longest_max: - transforms = [ResizeMaxSize(image_size, fill=fill_color)] - else: - transforms = [ - Resize(image_size, interpolation=InterpolationMode.BICUBIC), - CenterCrop(image_size), - ] - transforms.extend( - [ - _convert_to_rgb, - ToTensor(), - normalize, - ] - ) - return Compose(transforms) diff --git a/src/diffusers/pipelines/consisid/util_clip/transformer.py b/src/diffusers/pipelines/consisid/util_clip/transformer.py deleted file mode 100644 index 13478974b25a..000000000000 --- a/src/diffusers/pipelines/consisid/util_clip/transformer.py +++ /dev/null @@ -1,777 +0,0 @@ -import logging -import math -import os -from collections import OrderedDict -from typing import Callable, Optional, Sequence - -import torch -from torch import nn -from torch.nn import functional as F - -from .utils import to_2tuple - - -if os.getenv("ENV_TYPE") == "deepspeed": - try: - import deepspeed - from deepspeed.runtime.activation_checkpointing.checkpointing import checkpoint - except ImportError: - print("Please 'pip install deepspeed'") - deepspeed = None - from torch.utils.checkpoint import checkpoint -else: - from torch.utils.checkpoint import checkpoint - -try: - import xformers.ops as xops -except ImportError: - xops = None - print("Please 'pip install xformers'") - - -class LayerNormFp32(nn.LayerNorm): - """Subclass torch's LayerNorm to handle fp16 (by casting to float32 and back).""" - - def __init__(self, *args, **kwargs): - super().__init__(*args, **kwargs) - - def forward(self, x: torch.Tensor): - output = F.layer_norm( - x.float(), - self.normalized_shape, - self.weight.float() if self.weight is not None else None, - self.bias.float() if self.bias is not None else None, - self.eps, - ) - return output.type_as(x) - - -class LayerNorm(nn.LayerNorm): - """Subclass torch's LayerNorm (with cast back to input dtype).""" - - def forward(self, x: torch.Tensor): - orig_type = x.dtype - x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) - return x.to(orig_type) - - -class QuickGELU(nn.Module): - # NOTE This is slower than nn.GELU or nn.SiLU and uses more GPU memory - def forward(self, x: torch.Tensor): - return x * torch.sigmoid(1.702 * x) - - -class LayerScale(nn.Module): - def __init__(self, dim, init_values=1e-5, inplace=False): - super().__init__() - self.inplace = inplace - self.gamma = nn.Parameter(init_values * torch.ones(dim)) - - def forward(self, x): - return x.mul_(self.gamma) if self.inplace else x * self.gamma - - -class PatchDropout(nn.Module): - """ - https://arxiv.org/abs/2212.00794 - """ - - def __init__(self, prob, exclude_first_token=True): - super().__init__() - assert 0 <= prob < 1.0 - self.prob = prob - self.exclude_first_token = exclude_first_token # exclude CLS token - logging.info(f"os.getenv('RoPE')={os.getenv('RoPE')}") - - def forward(self, x): - if not self.training or self.prob == 0.0: - return x - - if self.exclude_first_token: - cls_tokens, x = x[:, :1], x[:, 1:] - else: - cls_tokens = torch.jit.annotate(torch.Tensor, x[:, :1]) - - batch = x.size()[0] - num_tokens = x.size()[1] - - batch_indices = torch.arange(batch) - batch_indices = batch_indices[..., None] - - keep_prob = 1 - self.prob - num_patches_keep = max(1, int(num_tokens * keep_prob)) - - rand = torch.randn(batch, num_tokens) - patch_indices_keep = rand.topk(num_patches_keep, dim=-1).indices - - x = x[batch_indices, patch_indices_keep] - - if self.exclude_first_token: - x = torch.cat((cls_tokens, x), dim=1) - - if self.training and os.getenv("RoPE") == "1": - return x, patch_indices_keep - - return x - - -def _in_projection_packed( - q: torch.Tensor, - k: torch.Tensor, - v: torch.Tensor, - w: torch.Tensor, - b: Optional[torch.Tensor] = None, -): - """ - https://github.com/pytorch/pytorch/blob/db2a237763eb8693a20788be94f8c192e762baa8/torch/nn/functional.py#L4726 - """ - E = q.size(-1) - if k is v: - if q is k: - # self-attention - return F.linear(q, w, b).chunk(3, dim=-1) - else: - # encoder-decoder attention - w_q, w_kv = w.split([E, E * 2]) - if b is None: - b_q = b_kv = None - else: - b_q, b_kv = b.split([E, E * 2]) - return (F.linear(q, w_q, b_q),) + F.linear(k, w_kv, b_kv).chunk(2, dim=-1) - else: - w_q, w_k, w_v = w.chunk(3) - if b is None: - b_q = b_k = b_v = None - else: - b_q, b_k, b_v = b.chunk(3) - return F.linear(q, w_q, b_q), F.linear(k, w_k, b_k), F.linear(v, w_v, b_v) - - -class Attention(nn.Module): - def __init__( - self, - dim, - num_heads=8, - qkv_bias=True, - scaled_cosine=False, - scale_heads=False, - logit_scale_max=math.log(1.0 / 0.01), - attn_drop=0.0, - proj_drop=0.0, - xattn=False, - rope=False, - ): - super().__init__() - self.scaled_cosine = scaled_cosine - self.scale_heads = scale_heads - assert dim % num_heads == 0, "dim should be divisible by num_heads" - self.num_heads = num_heads - self.head_dim = dim // num_heads - self.scale = self.head_dim**-0.5 - self.logit_scale_max = logit_scale_max - - # keeping in_proj in this form (instead of nn.Linear) to match weight scheme of original - self.in_proj_weight = nn.Parameter(torch.randn((dim * 3, dim)) * self.scale) - if qkv_bias: - self.in_proj_bias = nn.Parameter(torch.zeros(dim * 3)) - else: - self.in_proj_bias = None - - if self.scaled_cosine: - self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1)))) - else: - self.logit_scale = None - self.attn_drop = nn.Dropout(attn_drop) - if self.scale_heads: - self.head_scale = nn.Parameter(torch.ones((num_heads, 1, 1))) - else: - self.head_scale = None - self.out_proj = nn.Linear(dim, dim) - self.out_drop = nn.Dropout(proj_drop) - self.xattn = xattn - self.xattn_drop = attn_drop - self.rope = rope - - def forward(self, x, attn_mask: Optional[torch.Tensor] = None): - L, N, C = x.shape - q, k, v = F.linear(x, self.in_proj_weight, self.in_proj_bias).chunk(3, dim=-1) - if self.xattn: - q = q.contiguous().view(L, N, self.num_heads, -1).transpose(0, 1) - k = k.contiguous().view(L, N, self.num_heads, -1).transpose(0, 1) - v = v.contiguous().view(L, N, self.num_heads, -1).transpose(0, 1) - - x = xops.memory_efficient_attention( - q, - k, - v, - p=self.xattn_drop, - scale=self.scale if self.logit_scale is None else None, - attn_bias=xops.LowerTriangularMask() if attn_mask is not None else None, - ) - else: - q = q.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1) - k = k.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1) - v = v.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1) - - if self.logit_scale is not None: - attn = torch.bmm(F.normalize(q, dim=-1), F.normalize(k, dim=-1).transpose(-1, -2)) - logit_scale = torch.clamp(self.logit_scale, max=self.logit_scale_max).exp() - attn = attn.view(N, self.num_heads, L, L) * logit_scale - attn = attn.view(-1, L, L) - else: - q = q * self.scale - attn = torch.bmm(q, k.transpose(-1, -2)) - - if attn_mask is not None: - if attn_mask.dtype == torch.bool: - new_attn_mask = torch.zeros_like(attn_mask, dtype=q.dtype) - new_attn_mask.masked_fill_(attn_mask, float("-inf")) - attn_mask = new_attn_mask - attn += attn_mask - - attn = attn.softmax(dim=-1) - attn = self.attn_drop(attn) - - x = torch.bmm(attn, v) - - if self.head_scale is not None: - x = x.view(N, self.num_heads, L, C) * self.head_scale - x = x.view(-1, L, C) - x = x.transpose(0, 1).reshape(L, N, C) - x = self.out_proj(x) - x = self.out_drop(x) - return x - - -class CustomAttention(nn.Module): - def __init__( - self, - dim, - num_heads=8, - qkv_bias=True, - scaled_cosine=True, - scale_heads=False, - logit_scale_max=math.log(1.0 / 0.01), - attn_drop=0.0, - proj_drop=0.0, - xattn=False, - ): - super().__init__() - self.scaled_cosine = scaled_cosine - self.scale_heads = scale_heads - assert dim % num_heads == 0, "dim should be divisible by num_heads" - self.num_heads = num_heads - self.head_dim = dim // num_heads - self.scale = self.head_dim**-0.5 - self.logit_scale_max = logit_scale_max - - # keeping in_proj in this form (instead of nn.Linear) to match weight scheme of original - self.in_proj_weight = nn.Parameter(torch.randn((dim * 3, dim)) * self.scale) - if qkv_bias: - self.in_proj_bias = nn.Parameter(torch.zeros(dim * 3)) - else: - self.in_proj_bias = None - - if self.scaled_cosine: - self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1)))) - else: - self.logit_scale = None - self.attn_drop = nn.Dropout(attn_drop) - if self.scale_heads: - self.head_scale = nn.Parameter(torch.ones((num_heads, 1, 1))) - else: - self.head_scale = None - self.out_proj = nn.Linear(dim, dim) - self.out_drop = nn.Dropout(proj_drop) - self.xattn = xattn - self.xattn_drop = attn_drop - - def forward( - self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attn_mask: Optional[torch.Tensor] = None - ): - q, k, v = _in_projection_packed(query, key, value, self.in_proj_weight, self.in_proj_bias) - N_q, B_q, C_q = q.shape - N_k, B_k, C_k = k.shape - N_v, B_v, C_v = v.shape - if self.xattn: - # B, N, C -> B, N, num_heads, C - q = q.permute(1, 0, 2).reshape(B_q, N_q, self.num_heads, -1) - k = k.permute(1, 0, 2).reshape(B_k, N_k, self.num_heads, -1) - v = v.permute(1, 0, 2).reshape(B_v, N_v, self.num_heads, -1) - - x = xops.memory_efficient_attention( - q, - k, - v, - p=self.xattn_drop, - scale=self.scale if self.logit_scale is None else None, - attn_bias=xops.LowerTriangularMask() if attn_mask is not None else None, - ) - else: - # B*H, L, C - q = q.contiguous().view(N_q, B_q * self.num_heads, -1).transpose(0, 1) - k = k.contiguous().view(N_k, B_k * self.num_heads, -1).transpose(0, 1) - v = v.contiguous().view(N_v, B_v * self.num_heads, -1).transpose(0, 1) - - if self.logit_scale is not None: - # B*H, N_q, N_k - attn = torch.bmm(F.normalize(q, dim=-1), F.normalize(k, dim=-1).transpose(-1, -2)) - logit_scale = torch.clamp(self.logit_scale, max=self.logit_scale_max).exp() - attn = attn.view(B_q, self.num_heads, N_q, N_k) * logit_scale - attn = attn.view(-1, N_q, N_k) - else: - q = q * self.scale - attn = torch.bmm(q, k.transpose(-1, -2)) - - if attn_mask is not None: - if attn_mask.dtype == torch.bool: - new_attn_mask = torch.zeros_like(attn_mask, dtype=q.dtype) - new_attn_mask.masked_fill_(attn_mask, float("-inf")) - attn_mask = new_attn_mask - attn += attn_mask - - attn = attn.softmax(dim=-1) - attn = self.attn_drop(attn) - - x = torch.bmm(attn, v) - - if self.head_scale is not None: - x = x.view(B_q, self.num_heads, N_q, C_q) * self.head_scale - x = x.view(-1, N_q, C_q) - x = x.transpose(0, 1).reshape(N_q, B_q, C_q) - x = self.out_proj(x) - x = self.out_drop(x) - return x - - -class CustomResidualAttentionBlock(nn.Module): - def __init__( - self, - d_model: int, - n_head: int, - mlp_ratio: float = 4.0, - ls_init_value: float = None, - act_layer: Callable = nn.GELU, - norm_layer: Callable = LayerNorm, - scale_cosine_attn: bool = False, - scale_heads: bool = False, - scale_attn: bool = False, - scale_fc: bool = False, - cross_attn: bool = False, - xattn: bool = False, - ): - super().__init__() - - self.ln_1 = norm_layer(d_model) - self.ln_1_k = norm_layer(d_model) if cross_attn else self.ln_1 - self.ln_1_v = norm_layer(d_model) if cross_attn else self.ln_1 - self.attn = CustomAttention( - d_model, - n_head, - qkv_bias=True, - attn_drop=0.0, - proj_drop=0.0, - scaled_cosine=scale_cosine_attn, - scale_heads=scale_heads, - xattn=xattn, - ) - - self.ln_attn = norm_layer(d_model) if scale_attn else nn.Identity() - self.ls_1 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity() - - self.ln_2 = norm_layer(d_model) - mlp_width = int(d_model * mlp_ratio) - self.mlp = nn.Sequential( - OrderedDict( - [ - ("c_fc", nn.Linear(d_model, mlp_width)), - ("ln", norm_layer(mlp_width) if scale_fc else nn.Identity()), - ("gelu", act_layer()), - ("c_proj", nn.Linear(mlp_width, d_model)), - ] - ) - ) - - self.ls_2 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity() - - def forward(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, attn_mask: Optional[torch.Tensor] = None): - q = q + self.ls_1(self.ln_attn(self.attn(self.ln_1(q), self.ln_1_k(k), self.ln_1_v(v), attn_mask=attn_mask))) - q = q + self.ls_2(self.mlp(self.ln_2(q))) - return q - - -class CustomTransformer(nn.Module): - def __init__( - self, - width: int, - layers: int, - heads: int, - mlp_ratio: float = 4.0, - ls_init_value: float = None, - act_layer: Callable = nn.GELU, - norm_layer: Callable = LayerNorm, - scale_cosine_attn: bool = True, - scale_heads: bool = False, - scale_attn: bool = False, - scale_fc: bool = False, - cross_attn: bool = False, - xattn: bool = False, - ): - super().__init__() - self.width = width - self.layers = layers - self.grad_checkpointing = False - self.xattn = xattn - - self.resblocks = nn.ModuleList( - [ - CustomResidualAttentionBlock( - width, - heads, - mlp_ratio, - ls_init_value=ls_init_value, - act_layer=act_layer, - norm_layer=norm_layer, - scale_cosine_attn=scale_cosine_attn, - scale_heads=scale_heads, - scale_attn=scale_attn, - scale_fc=scale_fc, - cross_attn=cross_attn, - xattn=xattn, - ) - for _ in range(layers) - ] - ) - - def get_cast_dtype(self) -> torch.dtype: - return self.resblocks[0].mlp.c_fc.weight.dtype - - def forward( - self, q: torch.Tensor, k: torch.Tensor = None, v: torch.Tensor = None, attn_mask: Optional[torch.Tensor] = None - ): - if k is None and v is None: - k = v = q - for r in self.resblocks: - if self.grad_checkpointing and not torch.jit.is_scripting(): - q = checkpoint(r, q, k, v, attn_mask) - else: - q = r(q, k, v, attn_mask=attn_mask) - return q - - -class ResidualAttentionBlock(nn.Module): - def __init__( - self, - d_model: int, - n_head: int, - mlp_ratio: float = 4.0, - ls_init_value: float = None, - act_layer: Callable = nn.GELU, - norm_layer: Callable = LayerNorm, - xattn: bool = False, - ): - super().__init__() - - self.ln_1 = norm_layer(d_model) - if xattn: - self.attn = Attention(d_model, n_head, xattn=True) - else: - self.attn = nn.MultiheadAttention(d_model, n_head) - self.ls_1 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity() - - self.ln_2 = norm_layer(d_model) - mlp_width = int(d_model * mlp_ratio) - self.mlp = nn.Sequential( - OrderedDict( - [ - ("c_fc", nn.Linear(d_model, mlp_width)), - ("gelu", act_layer()), - ("c_proj", nn.Linear(mlp_width, d_model)), - ] - ) - ) - - self.ls_2 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity() - self.xattn = xattn - - def attention(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None): - attn_mask = attn_mask.to(x.dtype) if attn_mask is not None else None - if self.xattn: - return self.attn(x, attn_mask=attn_mask) - return self.attn(x, x, x, need_weights=False, attn_mask=attn_mask)[0] - - def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None): - x = x + self.ls_1(self.attention(self.ln_1(x), attn_mask=attn_mask)) - x = x + self.ls_2(self.mlp(self.ln_2(x))) - return x - - -class Transformer(nn.Module): - def __init__( - self, - width: int, - layers: int, - heads: int, - mlp_ratio: float = 4.0, - ls_init_value: float = None, - act_layer: Callable = nn.GELU, - norm_layer: Callable = LayerNorm, - xattn: bool = False, - ): - super().__init__() - self.width = width - self.layers = layers - self.grad_checkpointing = False - - self.resblocks = nn.ModuleList( - [ - ResidualAttentionBlock( - width, - heads, - mlp_ratio, - ls_init_value=ls_init_value, - act_layer=act_layer, - norm_layer=norm_layer, - xattn=xattn, - ) - for _ in range(layers) - ] - ) - - def get_cast_dtype(self) -> torch.dtype: - return self.resblocks[0].mlp.c_fc.weight.dtype - - def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None): - for r in self.resblocks: - if self.grad_checkpointing and not torch.jit.is_scripting(): - x = checkpoint(r, x, attn_mask) - else: - x = r(x, attn_mask=attn_mask) - return x - - -class VisionTransformer(nn.Module): - def __init__( - self, - image_size: int, - patch_size: int, - width: int, - layers: int, - heads: int, - mlp_ratio: float, - ls_init_value: float = None, - patch_dropout: float = 0.0, - global_average_pool: bool = False, - output_dim: int = 512, - act_layer: Callable = nn.GELU, - norm_layer: Callable = LayerNorm, - xattn: bool = False, - ): - super().__init__() - self.image_size = to_2tuple(image_size) - self.patch_size = to_2tuple(patch_size) - self.grid_size = (self.image_size[0] // self.patch_size[0], self.image_size[1] // self.patch_size[1]) - self.output_dim = output_dim - self.conv1 = nn.Conv2d( - in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False - ) - - scale = width**-0.5 - self.class_embedding = nn.Parameter(scale * torch.randn(width)) - self.positional_embedding = nn.Parameter(scale * torch.randn(self.grid_size[0] * self.grid_size[1] + 1, width)) - - # setting a patch_dropout of 0. would mean it is disabled and this function would be the identity fn - self.patch_dropout = PatchDropout(patch_dropout) if patch_dropout > 0.0 else nn.Identity() - self.ln_pre = norm_layer(width) - - self.transformer = Transformer( - width, - layers, - heads, - mlp_ratio, - ls_init_value=ls_init_value, - act_layer=act_layer, - norm_layer=norm_layer, - xattn=xattn, - ) - - self.global_average_pool = global_average_pool - self.ln_post = norm_layer(width) - self.proj = nn.Parameter(scale * torch.randn(width, output_dim)) - - def lock(self, unlocked_groups=0, freeze_bn_stats=False): - for param in self.parameters(): - param.requires_grad = False - - if unlocked_groups != 0: - groups = [ - [ - self.conv1, - self.class_embedding, - self.positional_embedding, - self.ln_pre, - ], - *self.transformer.resblocks[:-1], - [ - self.transformer.resblocks[-1], - self.ln_post, - ], - self.proj, - ] - - def _unlock(x): - if isinstance(x, Sequence): - for g in x: - _unlock(g) - else: - if isinstance(x, torch.nn.Parameter): - x.requires_grad = True - else: - for p in x.parameters(): - p.requires_grad = True - - _unlock(groups[-unlocked_groups:]) - - def get_num_layers(self): - return self.transformer.layers - - @torch.jit.ignore - def set_grad_checkpointing(self, enable=True): - self.transformer.grad_checkpointing = enable - - @torch.jit.ignore - def no_weight_decay(self): - return {"positional_embedding", "class_embedding"} - - def forward(self, x: torch.Tensor, return_all_features: bool = False): - x = self.conv1(x) # shape = [*, width, grid, grid] - x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] - x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] - x = torch.cat( - [ - self.class_embedding.to(x.dtype) - + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), - x, - ], - dim=1, - ) # shape = [*, grid ** 2 + 1, width] - x = x + self.positional_embedding.to(x.dtype) - - # a patch_dropout of 0. would mean it is disabled and this function would do nothing but return what was passed in - x = self.patch_dropout(x) - x = self.ln_pre(x) - - x = x.permute(1, 0, 2) # NLD -> LND - x = self.transformer(x) - x = x.permute(1, 0, 2) # LND -> NLD - - if not return_all_features: - if self.global_average_pool: - x = x.mean(dim=1) # x = x[:,1:,:].mean(dim=1) - else: - x = x[:, 0] - - x = self.ln_post(x) - - if self.proj is not None: - x = x @ self.proj - - return x - - -class TextTransformer(nn.Module): - def __init__( - self, - context_length: int = 77, - vocab_size: int = 49408, - width: int = 512, - heads: int = 8, - layers: int = 12, - ls_init_value: float = None, - output_dim: int = 512, - act_layer: Callable = nn.GELU, - norm_layer: Callable = LayerNorm, - xattn: bool = False, - attn_mask: bool = True, - ): - super().__init__() - self.context_length = context_length - self.vocab_size = vocab_size - self.width = width - self.output_dim = output_dim - - self.token_embedding = nn.Embedding(vocab_size, width) - self.positional_embedding = nn.Parameter(torch.empty(self.context_length, width)) - self.transformer = Transformer( - width=width, - layers=layers, - heads=heads, - ls_init_value=ls_init_value, - act_layer=act_layer, - norm_layer=norm_layer, - xattn=xattn, - ) - - self.xattn = xattn - self.ln_final = norm_layer(width) - self.text_projection = nn.Parameter(torch.empty(width, output_dim)) - - if attn_mask: - self.register_buffer("attn_mask", self.build_attention_mask(), persistent=False) - else: - self.attn_mask = None - - self.init_parameters() - - def init_parameters(self): - nn.init.normal_(self.token_embedding.weight, std=0.02) - nn.init.normal_(self.positional_embedding, std=0.01) - - proj_std = (self.transformer.width**-0.5) * ((2 * self.transformer.layers) ** -0.5) - attn_std = self.transformer.width**-0.5 - fc_std = (2 * self.transformer.width) ** -0.5 - for block in self.transformer.resblocks: - nn.init.normal_(block.attn.in_proj_weight, std=attn_std) - nn.init.normal_(block.attn.out_proj.weight, std=proj_std) - nn.init.normal_(block.mlp.c_fc.weight, std=fc_std) - nn.init.normal_(block.mlp.c_proj.weight, std=proj_std) - - if self.text_projection is not None: - nn.init.normal_(self.text_projection, std=self.transformer.width**-0.5) - - @torch.jit.ignore - def set_grad_checkpointing(self, enable=True): - self.transformer.grad_checkpointing = enable - - @torch.jit.ignore - def no_weight_decay(self): - # return {'positional_embedding', 'token_embedding'} - return {"positional_embedding"} - - def get_num_layers(self): - return self.transformer.layers - - def build_attention_mask(self): - # lazily create causal attention mask, with full attention between the vision tokens - # pytorch uses additive attention mask; fill with -inf - mask = torch.empty(self.context_length, self.context_length) - mask.fill_(float("-inf")) - mask.triu_(1) # zero out the lower diagonal - return mask - - def forward(self, text, return_all_features: bool = False): - cast_dtype = self.transformer.get_cast_dtype() - x = self.token_embedding(text).to(cast_dtype) # [batch_size, n_ctx, d_model] - - x = x + self.positional_embedding.to(cast_dtype) - x = x.permute(1, 0, 2) # NLD -> LND - x = self.transformer(x, attn_mask=self.attn_mask) - # x = self.transformer(x) # no attention mask is applied - x = x.permute(1, 0, 2) # LND -> NLD - x = self.ln_final(x) - - if not return_all_features: - # x.shape = [batch_size, n_ctx, transformer.width] - # take features from the eot embedding (eot_token is the highest number in each sequence) - x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection - return x diff --git a/src/diffusers/pipelines/consisid/util_clip/utils.py b/src/diffusers/pipelines/consisid/util_clip/utils.py deleted file mode 100644 index 62f891d059c1..000000000000 --- a/src/diffusers/pipelines/consisid/util_clip/utils.py +++ /dev/null @@ -1,335 +0,0 @@ -import collections.abc -import logging -import math -from itertools import repeat - -import numpy as np -import torch -import torch.nn.functional as F -from torch import nn as nn -from torchvision.ops.misc import FrozenBatchNorm2d - - -# open CLIP -def resize_clip_pos_embed(state_dict, model, interpolation: str = "bicubic", seq_dim=1): - # Rescale the grid of position embeddings when loading from state_dict - old_pos_embed = state_dict.get("visual.positional_embedding", None) - if old_pos_embed is None or not hasattr(model.visual, "grid_size"): - return - grid_size = to_2tuple(model.visual.grid_size) - extra_tokens = 1 # FIXME detect different token configs (ie no class token, or more) - new_seq_len = grid_size[0] * grid_size[1] + extra_tokens - if new_seq_len == old_pos_embed.shape[0]: - return - - if extra_tokens: - pos_emb_tok, pos_emb_img = old_pos_embed[:extra_tokens], old_pos_embed[extra_tokens:] - else: - pos_emb_tok, pos_emb_img = None, old_pos_embed - old_grid_size = to_2tuple(int(math.sqrt(len(pos_emb_img)))) - - logging.info("Resizing position embedding grid-size from %s to %s", old_grid_size, grid_size) - pos_emb_img = pos_emb_img.reshape(1, old_grid_size[0], old_grid_size[1], -1).permute(0, 3, 1, 2) - pos_emb_img = F.interpolate( - pos_emb_img, - size=grid_size, - mode=interpolation, - align_corners=True, - ) - pos_emb_img = pos_emb_img.permute(0, 2, 3, 1).reshape(1, grid_size[0] * grid_size[1], -1)[0] - if pos_emb_tok is not None: - new_pos_embed = torch.cat([pos_emb_tok, pos_emb_img], dim=0) - else: - new_pos_embed = pos_emb_img - state_dict["visual.positional_embedding"] = new_pos_embed - - -def resize_visual_pos_embed(state_dict, model, interpolation: str = "bicubic", seq_dim=1): - # Rescale the grid of position embeddings when loading from state_dict - old_pos_embed = state_dict.get("positional_embedding", None) - if old_pos_embed is None or not hasattr(model.visual, "grid_size"): - return - grid_size = to_2tuple(model.visual.grid_size) - extra_tokens = 1 # FIXME detect different token configs (ie no class token, or more) - new_seq_len = grid_size[0] * grid_size[1] + extra_tokens - if new_seq_len == old_pos_embed.shape[0]: - return - - if extra_tokens: - pos_emb_tok, pos_emb_img = old_pos_embed[:extra_tokens], old_pos_embed[extra_tokens:] - else: - pos_emb_tok, pos_emb_img = None, old_pos_embed - old_grid_size = to_2tuple(int(math.sqrt(len(pos_emb_img)))) - - logging.info("Resizing position embedding grid-size from %s to %s", old_grid_size, grid_size) - pos_emb_img = pos_emb_img.reshape(1, old_grid_size[0], old_grid_size[1], -1).permute(0, 3, 1, 2) - pos_emb_img = F.interpolate( - pos_emb_img, - size=grid_size, - mode=interpolation, - align_corners=True, - ) - pos_emb_img = pos_emb_img.permute(0, 2, 3, 1).reshape(1, grid_size[0] * grid_size[1], -1)[0] - if pos_emb_tok is not None: - new_pos_embed = torch.cat([pos_emb_tok, pos_emb_img], dim=0) - else: - new_pos_embed = pos_emb_img - state_dict["positional_embedding"] = new_pos_embed - - -def resize_evaclip_pos_embed(state_dict, model, interpolation: str = "bicubic", seq_dim=1): - # interpolate position embedding - if "visual.pos_embed" in state_dict: - pos_embed_checkpoint = state_dict["visual.pos_embed"] - embedding_size = pos_embed_checkpoint.shape[-1] - num_patches = model.visual.patch_embed.num_patches - num_extra_tokens = model.visual.pos_embed.shape[-2] - num_patches - # height (== width) for the checkpoint position embedding - orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5) - # height (== width) for the new position embedding - new_size = int(num_patches**0.5) - # class_token and dist_token are kept unchanged - if orig_size != new_size: - print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size)) - extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] - # only the position tokens are interpolated - pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] - pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) - pos_tokens = torch.nn.functional.interpolate( - pos_tokens, size=(new_size, new_size), mode="bicubic", align_corners=False - ) - pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) - new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) - state_dict["visual.pos_embed"] = new_pos_embed - - patch_embed_proj = state_dict["visual.patch_embed.proj.weight"] - patch_size = model.visual.patch_embed.patch_size - state_dict["visual.patch_embed.proj.weight"] = torch.nn.functional.interpolate( - patch_embed_proj.float(), size=patch_size, mode="bicubic", align_corners=False - ) - - -def resize_eva_pos_embed(state_dict, model, interpolation: str = "bicubic", seq_dim=1): - # interpolate position embedding - if "pos_embed" in state_dict: - pos_embed_checkpoint = state_dict["pos_embed"] - embedding_size = pos_embed_checkpoint.shape[-1] - num_patches = model.visual.patch_embed.num_patches - num_extra_tokens = model.visual.pos_embed.shape[-2] - num_patches - # height (== width) for the checkpoint position embedding - orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5) - # height (== width) for the new position embedding - new_size = int(num_patches**0.5) - # class_token and dist_token are kept unchanged - if orig_size != new_size: - print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size)) - extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] - # only the position tokens are interpolated - pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] - pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) - pos_tokens = torch.nn.functional.interpolate( - pos_tokens, size=(new_size, new_size), mode="bicubic", align_corners=False - ) - pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) - new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) - state_dict["pos_embed"] = new_pos_embed - - patch_embed_proj = state_dict["patch_embed.proj.weight"] - patch_size = model.visual.patch_embed.patch_size - state_dict["patch_embed.proj.weight"] = torch.nn.functional.interpolate( - patch_embed_proj.float(), size=patch_size, mode="bicubic", align_corners=False - ) - - -def resize_rel_pos_embed(state_dict, model, interpolation: str = "bicubic", seq_dim=1): - all_keys = list(state_dict.keys()) - for key in all_keys: - if "relative_position_index" in key: - state_dict.pop(key) - - if "relative_position_bias_table" in key: - rel_pos_bias = state_dict[key] - src_num_pos, num_attn_heads = rel_pos_bias.size() - dst_num_pos, _ = model.visual.state_dict()[key].size() - dst_patch_shape = model.visual.patch_embed.patch_shape - if dst_patch_shape[0] != dst_patch_shape[1]: - raise NotImplementedError() - num_extra_tokens = dst_num_pos - (dst_patch_shape[0] * 2 - 1) * (dst_patch_shape[1] * 2 - 1) - src_size = int((src_num_pos - num_extra_tokens) ** 0.5) - dst_size = int((dst_num_pos - num_extra_tokens) ** 0.5) - if src_size != dst_size: - print( - "Position interpolate for %s from %dx%d to %dx%d" % (key, src_size, src_size, dst_size, dst_size) - ) - extra_tokens = rel_pos_bias[-num_extra_tokens:, :] - rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :] - - def geometric_progression(a, r, n): - return a * (1.0 - r**n) / (1.0 - r) - - left, right = 1.01, 1.5 - while right - left > 1e-6: - q = (left + right) / 2.0 - gp = geometric_progression(1, q, src_size // 2) - if gp > dst_size // 2: - right = q - else: - left = q - - # if q > 1.090307: - # q = 1.090307 - - dis = [] - cur = 1 - for i in range(src_size // 2): - dis.append(cur) - cur += q ** (i + 1) - - r_ids = [-_ for _ in reversed(dis)] - - x = r_ids + [0] + dis - y = r_ids + [0] + dis - - t = dst_size // 2.0 - dx = np.arange(-t, t + 0.1, 1.0) - dy = np.arange(-t, t + 0.1, 1.0) - - print("Original positions = %s" % str(x)) - print("Target positions = %s" % str(dx)) - - all_rel_pos_bias = [] - - for i in range(num_attn_heads): - z = rel_pos_bias[:, i].view(src_size, src_size).float().numpy() - f = F.interpolate.interp2d(x, y, z, kind="cubic") - all_rel_pos_bias.append(torch.Tensor(f(dx, dy)).contiguous().view(-1, 1).to(rel_pos_bias.device)) - - rel_pos_bias = torch.cat(all_rel_pos_bias, dim=-1) - - new_rel_pos_bias = torch.cat((rel_pos_bias, extra_tokens), dim=0) - state_dict[key] = new_rel_pos_bias - - # interpolate position embedding - if "pos_embed" in state_dict: - pos_embed_checkpoint = state_dict["pos_embed"] - embedding_size = pos_embed_checkpoint.shape[-1] - num_patches = model.visual.patch_embed.num_patches - num_extra_tokens = model.visual.pos_embed.shape[-2] - num_patches - # height (== width) for the checkpoint position embedding - orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5) - # height (== width) for the new position embedding - new_size = int(num_patches**0.5) - # class_token and dist_token are kept unchanged - if orig_size != new_size: - print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size)) - extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] - # only the position tokens are interpolated - pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] - pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) - pos_tokens = torch.nn.functional.interpolate( - pos_tokens, size=(new_size, new_size), mode="bicubic", align_corners=False - ) - pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) - new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) - state_dict["pos_embed"] = new_pos_embed - - patch_embed_proj = state_dict["patch_embed.proj.weight"] - patch_size = model.visual.patch_embed.patch_size - state_dict["patch_embed.proj.weight"] = torch.nn.functional.interpolate( - patch_embed_proj.float(), size=patch_size, mode="bicubic", align_corners=False - ) - - -def freeze_batch_norm_2d(module, module_match={}, name=""): - """ - Converts all `BatchNorm2d` and `SyncBatchNorm` layers of provided module into `FrozenBatchNorm2d`. If `module` is - itself an instance of either `BatchNorm2d` or `SyncBatchNorm`, it is converted into `FrozenBatchNorm2d` and - returned. Otherwise, the module is walked recursively and submodules are converted in place. - - Args: - module (torch.nn.Module): Any PyTorch module. - module_match (dict): Dictionary of full module names to freeze (all if empty) - name (str): Full module name (prefix) - - Returns: - torch.nn.Module: Resulting module - - Inspired by - https://github.com/pytorch/pytorch/blob/a5895f85be0f10212791145bfedc0261d364f103/torch/nn/modules/batchnorm.py#L762 - """ - res = module - is_match = True - if module_match: - is_match = name in module_match - if is_match and isinstance(module, (nn.modules.batchnorm.BatchNorm2d, nn.modules.batchnorm.SyncBatchNorm)): - res = FrozenBatchNorm2d(module.num_features) - res.num_features = module.num_features - res.affine = module.affine - if module.affine: - res.weight.data = module.weight.data.clone().detach() - res.bias.data = module.bias.data.clone().detach() - res.running_mean.data = module.running_mean.data - res.running_var.data = module.running_var.data - res.eps = module.eps - else: - for child_name, child in module.named_children(): - full_child_name = ".".join([name, child_name]) if name else child_name - new_child = freeze_batch_norm_2d(child, module_match, full_child_name) - if new_child is not child: - res.add_module(child_name, new_child) - return res - - -# From PyTorch internals -def _ntuple(n): - def parse(x): - if isinstance(x, collections.abc.Iterable): - return x - return tuple(repeat(x, n)) - - return parse - - -to_1tuple = _ntuple(1) -to_2tuple = _ntuple(2) -to_3tuple = _ntuple(3) -to_4tuple = _ntuple(4) - - -def to_ntuple(n, x): - return _ntuple(n)(x) - - -def is_logging(args): - def is_global_master(args): - return args.rank == 0 - - def is_local_master(args): - return args.local_rank == 0 - - def is_master(args, local=False): - return is_local_master(args) if local else is_global_master(args) - - return is_master - - -class AllGather(torch.autograd.Function): - """An autograd function that performs allgather on a tensor. - Performs all_gather operation on the provided tensors. *** Warning ***: torch.distributed.all_gather has no - gradient. - """ - - @staticmethod - def forward(ctx, tensor, rank, world_size): - tensors_gather = [torch.empty_like(tensor) for _ in range(world_size)] - torch.distributed.all_gather(tensors_gather, tensor) - ctx.rank = rank - ctx.batch_size = tensor.shape[0] - return torch.cat(tensors_gather, 0) - - @staticmethod - def backward(ctx, grad_output): - return (grad_output[ctx.batch_size * ctx.rank : ctx.batch_size * (ctx.rank + 1)], None, None) - - -allgather = AllGather.apply diff --git a/src/diffusers/pipelines/consisid/util_clip/utils_qformer.py b/src/diffusers/pipelines/consisid/util_clip/utils_qformer.py deleted file mode 100644 index 7ac450f4de1f..000000000000 --- a/src/diffusers/pipelines/consisid/util_clip/utils_qformer.py +++ /dev/null @@ -1,162 +0,0 @@ -import importlib -import math -import os -import random - -import cv2 -import numpy as np -import torch -import torch.nn.functional as F -from torchvision.utils import make_grid -from transformers import PretrainedConfig - - -def seed_everything(seed): - os.environ["PL_GLOBAL_SEED"] = str(seed) - random.seed(seed) - np.random.seed(seed) - torch.manual_seed(seed) - torch.cuda.manual_seed_all(seed) - - -def is_torch2_available(): - return hasattr(F, "scaled_dot_product_attention") - - -def instantiate_from_config(config): - if "target" not in config: - if config == "__is_first_stage__" or config == "__is_unconditional__": - return None - raise KeyError("Expected key `target` to instantiate.") - return get_obj_from_str(config["target"])(**config.get("params", {})) - - -def get_obj_from_str(string, reload=False): - module, cls = string.rsplit(".", 1) - if reload: - module_imp = importlib.import_module(module) - importlib.reload(module_imp) - return getattr(importlib.import_module(module, package=None), cls) - - -def drop_seq_token(seq, drop_rate=0.5): - idx = torch.randperm(seq.size(1)) - num_keep_tokens = int(len(idx) * (1 - drop_rate)) - idx = idx[:num_keep_tokens] - seq = seq[:, idx] - return seq - - -def import_model_class_from_model_name_or_path( - pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder" -): - text_encoder_config = PretrainedConfig.from_pretrained( - pretrained_model_name_or_path, subfolder=subfolder, revision=revision - ) - model_class = text_encoder_config.architectures[0] - - if model_class == "CLIPTextModel": - from transformers import CLIPTextModel - - return CLIPTextModel - elif model_class == "CLIPTextModelWithProjection": # noqa RET505 - from transformers import CLIPTextModelWithProjection - - return CLIPTextModelWithProjection - else: - raise ValueError(f"{model_class} is not supported.") - - -def resize_numpy_image_long(image, resize_long_edge=768): - h, w = image.shape[:2] - if max(h, w) <= resize_long_edge: - return image - k = resize_long_edge / max(h, w) - h = int(h * k) - w = int(w * k) - image = cv2.resize(image, (w, h), interpolation=cv2.INTER_LANCZOS4) - return image - - -# from basicsr -def img2tensor(imgs, bgr2rgb=True, float32=True): - """Numpy array to tensor. - - Args: - imgs (list[ndarray] | ndarray): Input images. - bgr2rgb (bool): Whether to change bgr to rgb. - float32 (bool): Whether to change to float32. - - Returns: - list[tensor] | tensor: Tensor images. If returned results only have - one element, just return tensor. - """ - - def _totensor(img, bgr2rgb, float32): - if img.shape[2] == 3 and bgr2rgb: - if img.dtype == "float64": - img = img.astype("float32") - img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) - img = torch.from_numpy(img.transpose(2, 0, 1)) - if float32: - img = img.float() - return img - - if isinstance(imgs, list): - return [_totensor(img, bgr2rgb, float32) for img in imgs] - return _totensor(imgs, bgr2rgb, float32) - - -def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)): - """Convert torch Tensors into image numpy arrays. - - After clamping to [min, max], values will be normalized to [0, 1]. - - Args: - tensor (Tensor or list[Tensor]): Accept shapes: - 1) 4D mini-batch Tensor of shape (B x 3/1 x H x W); 2) 3D Tensor of shape (3/1 x H x W); 3) 2D Tensor of - shape (H x W). Tensor channel should be in RGB order. - rgb2bgr (bool): Whether to change rgb to bgr. - out_type (numpy type): output types. If ``np.uint8``, transform outputs - to uint8 type with range [0, 255]; otherwise, float type with range [0, 1]. Default: ``np.uint8``. - min_max (tuple[int]): min and max values for clamp. - - Returns: - (Tensor or list): 3D ndarray of shape (H x W x C) OR 2D ndarray of shape (H x W). The channel order is BGR. - """ - if not (torch.is_tensor(tensor) or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))): - raise TypeError(f"tensor or list of tensors expected, got {type(tensor)}") - - if torch.is_tensor(tensor): - tensor = [tensor] - result = [] - for _tensor in tensor: - _tensor = _tensor.squeeze(0).float().detach().cpu().clamp_(*min_max) - _tensor = (_tensor - min_max[0]) / (min_max[1] - min_max[0]) - - n_dim = _tensor.dim() - if n_dim == 4: - img_np = make_grid(_tensor, nrow=int(math.sqrt(_tensor.size(0))), normalize=False).numpy() - img_np = img_np.transpose(1, 2, 0) - if rgb2bgr: - img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR) - elif n_dim == 3: - img_np = _tensor.numpy() - img_np = img_np.transpose(1, 2, 0) - if img_np.shape[2] == 1: # gray image - img_np = np.squeeze(img_np, axis=2) - else: - if rgb2bgr: - img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR) - elif n_dim == 2: - img_np = _tensor.numpy() - else: - raise TypeError(f"Only support 4D, 3D or 2D tensor. But received with dimension: {n_dim}") - if out_type == np.uint8: - # Unlike MATLAB, numpy.unit8() WILL NOT round by default. - img_np = (img_np * 255.0).round() - img_np = img_np.astype(out_type) - result.append(img_np) - if len(result) == 1: - result = result[0] - return result From 211331b7e19fafe40e9a4506c227db46e0d3781c Mon Sep 17 00:00:00 2001 From: SHYuanBest Date: Thu, 12 Dec 2024 17:14:33 +0800 Subject: [PATCH 28/56] fix typo --- docs/source/en/api/pipelines/consisid.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/docs/source/en/api/pipelines/consisid.md b/docs/source/en/api/pipelines/consisid.md index 60cc318975fe..72c9af515e88 100644 --- a/docs/source/en/api/pipelines/consisid.md +++ b/docs/source/en/api/pipelines/consisid.md @@ -79,7 +79,7 @@ export_to_video(video.frames[0], "output.mp4", fps=8) ### Memory optimization -ConsisID requires about 43 GB of GPU memory to decode 49 frames (6 seconds of video at 8 FPS) with output resolution 720x480 (W x H), which makes it not possible to run on consumer GPUs or free-tier T4 Colab. The following memory optimizations could be used to reduce the memory footprint. For replication, you can refer to [this](https://gist.github.com/SHYuanBest/bc4207c36f454f9e969adbb50eaf8258) script. +ConsisID requires about 44 GB of GPU memory to decode 49 frames (6 seconds of video at 8 FPS) with output resolution 720x480 (W x H), which makes it not possible to run on consumer GPUs or free-tier T4 Colab. The following memory optimizations could be used to reduce the memory footprint. For replication, you can refer to [this](https://gist.github.com/SHYuanBest/bc4207c36f454f9e969adbb50eaf8258) script. | Feature (overlay the previous) | Max Memory Allocated | Max Memory Reserved | | :----------------------------- | :------------------- | :------------------ | From 590b1bd825f30804b53f5671af83a08cd6ff2670 Mon Sep 17 00:00:00 2001 From: SHYuanBest Date: Thu, 12 Dec 2024 17:37:09 +0800 Subject: [PATCH 29/56] make style --- docs/source/en/api/pipelines/consisid.md | 2 +- docs/source/en/using-diffusers/consisid.md | 2 +- docs/source/zh/consisid.md | 2 +- src/diffusers/pipelines/consisid/consisid_utils.py | 14 +++++++------- .../pipelines/consisid/pipeline_consisid.py | 2 ++ 5 files changed, 12 insertions(+), 10 deletions(-) diff --git a/docs/source/en/api/pipelines/consisid.md b/docs/source/en/api/pipelines/consisid.md index 72c9af515e88..df7afcace8d4 100644 --- a/docs/source/en/api/pipelines/consisid.md +++ b/docs/source/en/api/pipelines/consisid.md @@ -73,7 +73,7 @@ id_cond, id_vit_hidden, image, face_kps = process_face_embeddings_infer(face_hel is_kps = getattr(pipe.transformer.config, 'is_kps', False) kps_cond = face_kps if is_kps else None -video = pipe(image=image, prompt=prompt, use_dynamic_cfg=False, id_vit_hidden=id_vit_hidden, id_cond=id_cond, kps_cond=kps_cond, generator=torch.Generator("cuda").manual_seed(42)) +video = pipe(image=image, prompt=prompt, num_inference_steps=50, guidance_scale=6.0, use_dynamic_cfg=False, id_vit_hidden=id_vit_hidden, id_cond=id_cond, kps_cond=kps_cond, generator=torch.Generator("cuda").manual_seed(42)) export_to_video(video.frames[0], "output.mp4", fps=8) ``` diff --git a/docs/source/en/using-diffusers/consisid.md b/docs/source/en/using-diffusers/consisid.md index d233c7984821..3377e9106e87 100644 --- a/docs/source/en/using-diffusers/consisid.md +++ b/docs/source/en/using-diffusers/consisid.md @@ -53,7 +53,7 @@ id_cond, id_vit_hidden, image, face_kps = process_face_embeddings_infer(face_hel is_kps = getattr(pipe.transformer.config, 'is_kps', False) kps_cond = face_kps if is_kps else None -video = pipe(image=image, prompt=prompt, use_dynamic_cfg=False, id_vit_hidden=id_vit_hidden, id_cond=id_cond, kps_cond=kps_cond, generator=torch.Generator("cuda").manual_seed(42)) +video = pipe(image=image, prompt=prompt, num_inference_steps=50, guidance_scale=6.0, use_dynamic_cfg=False, id_vit_hidden=id_vit_hidden, id_cond=id_cond, kps_cond=kps_cond, generator=torch.Generator("cuda").manual_seed(42)) export_to_video(video.frames[0], "output.mp4", fps=8) ``` diff --git a/docs/source/zh/consisid.md b/docs/source/zh/consisid.md index 271faf7197d6..06b8c6384b8f 100644 --- a/docs/source/zh/consisid.md +++ b/docs/source/zh/consisid.md @@ -57,7 +57,7 @@ id_cond, id_vit_hidden, image, face_kps = process_face_embeddings_infer(face_hel is_kps = getattr(pipe.transformer.config, 'is_kps', False) kps_cond = face_kps if is_kps else None -video = pipe(image=image, prompt=prompt, use_dynamic_cfg=False, id_vit_hidden=id_vit_hidden, id_cond=id_cond, kps_cond=kps_cond, generator=torch.Generator("cuda").manual_seed(42)) +video = pipe(image=image, prompt=prompt, num_inference_steps=50, guidance_scale=6.0, use_dynamic_cfg=False, id_vit_hidden=id_vit_hidden, id_cond=id_cond, kps_cond=kps_cond, generator=torch.Generator("cuda").manual_seed(42)) export_to_video(video.frames[0], "output.mp4", fps=8) ```
diff --git a/src/diffusers/pipelines/consisid/consisid_utils.py b/src/diffusers/pipelines/consisid/consisid_utils.py index 28a8e804c39e..8f4fd0b48cdb 100644 --- a/src/diffusers/pipelines/consisid/consisid_utils.py +++ b/src/diffusers/pipelines/consisid/consisid_utils.py @@ -4,6 +4,8 @@ import insightface import numpy as np import torch +from consisid_eva_clip import create_model_and_transforms +from consisid_eva_clip.constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD from facexlib.parsing import init_parsing_model from facexlib.utils.face_restoration_helper import FaceRestoreHelper from insightface.app import FaceAnalysis @@ -13,22 +15,20 @@ from diffusers.utils import load_image -from consisid_eva_clip import create_model_and_transforms -from consisid_eva_clip.constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD - def resize_numpy_image_long(image, resize_long_edge=768): """ Resize the input image to a specified long edge while maintaining aspect ratio. - + Args: image (numpy.ndarray): Input image (H x W x C or H x W). resize_long_edge (int): The target size for the long edge of the image. Default is 768. - + Returns: - numpy.ndarray: Resized image with the long edge matching `resize_long_edge`, while maintaining the aspect ratio. + numpy.ndarray: Resized image with the long edge matching `resize_long_edge`, while maintaining the aspect + ratio. """ - + h, w = image.shape[:2] if max(h, w) <= resize_long_edge: return image diff --git a/src/diffusers/pipelines/consisid/pipeline_consisid.py b/src/diffusers/pipelines/consisid/pipeline_consisid.py index 92b257912bfa..a8327af85a74 100644 --- a/src/diffusers/pipelines/consisid/pipeline_consisid.py +++ b/src/diffusers/pipelines/consisid/pipeline_consisid.py @@ -78,6 +78,8 @@ >>> video = pipe( ... image=image, ... prompt=prompt, + ... num_inference_steps=50, + ... guidance_scale=6.0, ... use_dynamic_cfg=False, ... id_vit_hidden=id_vit_hidden, ... id_cond=id_cond, From 8e5b0706fff62b3a3f62c54180d6c6141b200d69 Mon Sep 17 00:00:00 2001 From: SHYuanBest Date: Fri, 13 Dec 2024 00:10:45 +0800 Subject: [PATCH 30/56] update example --- docs/source/en/api/pipelines/consisid.md | 4 +--- docs/source/en/using-diffusers/consisid.md | 4 +--- docs/source/zh/consisid.md | 4 +--- src/diffusers/pipelines/consisid/pipeline_consisid.py | 6 +++--- 4 files changed, 6 insertions(+), 12 deletions(-) diff --git a/docs/source/en/api/pipelines/consisid.md b/docs/source/en/api/pipelines/consisid.md index df7afcace8d4..3b1d9f6158bd 100644 --- a/docs/source/en/api/pipelines/consisid.md +++ b/docs/source/en/api/pipelines/consisid.md @@ -70,10 +70,8 @@ prompt = "A woman adorned with a delicate flower crown, is standing amidst a fie image = "https://github.com/PKU-YuanGroup/ConsisID/blob/main/asserts/example_images/1.png?raw=true" id_cond, id_vit_hidden, image, face_kps = process_face_embeddings_infer(face_helper_1, face_clip_model, face_helper_2, eva_transform_mean, eva_transform_std, face_main_model, "cuda", torch.bfloat16, image, is_align_face=True) -is_kps = getattr(pipe.transformer.config, 'is_kps', False) -kps_cond = face_kps if is_kps else None -video = pipe(image=image, prompt=prompt, num_inference_steps=50, guidance_scale=6.0, use_dynamic_cfg=False, id_vit_hidden=id_vit_hidden, id_cond=id_cond, kps_cond=kps_cond, generator=torch.Generator("cuda").manual_seed(42)) +video = pipe(image=image, prompt=prompt, num_inference_steps=50, guidance_scale=6.0, use_dynamic_cfg=False, id_vit_hidden=id_vit_hidden, id_cond=id_cond, kps_cond=face_kps, generator=torch.Generator("cuda").manual_seed(42)) export_to_video(video.frames[0], "output.mp4", fps=8) ``` diff --git a/docs/source/en/using-diffusers/consisid.md b/docs/source/en/using-diffusers/consisid.md index 3377e9106e87..19f0769dba9f 100644 --- a/docs/source/en/using-diffusers/consisid.md +++ b/docs/source/en/using-diffusers/consisid.md @@ -50,10 +50,8 @@ prompt = "A woman adorned with a delicate flower crown, is standing amidst a fie image = "https://github.com/PKU-YuanGroup/ConsisID/blob/main/asserts/example_images/1.png?raw=true" id_cond, id_vit_hidden, image, face_kps = process_face_embeddings_infer(face_helper_1, face_clip_model, face_helper_2, eva_transform_mean, eva_transform_std, face_main_model, "cuda", torch.bfloat16, image, is_align_face=True) -is_kps = getattr(pipe.transformer.config, 'is_kps', False) -kps_cond = face_kps if is_kps else None -video = pipe(image=image, prompt=prompt, num_inference_steps=50, guidance_scale=6.0, use_dynamic_cfg=False, id_vit_hidden=id_vit_hidden, id_cond=id_cond, kps_cond=kps_cond, generator=torch.Generator("cuda").manual_seed(42)) +video = pipe(image=image, prompt=prompt, num_inference_steps=50, guidance_scale=6.0, use_dynamic_cfg=False, id_vit_hidden=id_vit_hidden, id_cond=id_cond, kps_cond=face_kps, generator=torch.Generator("cuda").manual_seed(42)) export_to_video(video.frames[0], "output.mp4", fps=8) ```
diff --git a/docs/source/zh/consisid.md b/docs/source/zh/consisid.md index 06b8c6384b8f..5d7dcbfd0ea0 100644 --- a/docs/source/zh/consisid.md +++ b/docs/source/zh/consisid.md @@ -54,10 +54,8 @@ prompt = "A woman adorned with a delicate flower crown, is standing amidst a fie image = "https://github.com/PKU-YuanGroup/ConsisID/blob/main/asserts/example_images/1.png?raw=true" id_cond, id_vit_hidden, image, face_kps = process_face_embeddings_infer(face_helper_1, face_clip_model, face_helper_2, eva_transform_mean, eva_transform_std, face_main_model, "cuda", torch.bfloat16, image, is_align_face=True) -is_kps = getattr(pipe.transformer.config, 'is_kps', False) -kps_cond = face_kps if is_kps else None -video = pipe(image=image, prompt=prompt, num_inference_steps=50, guidance_scale=6.0, use_dynamic_cfg=False, id_vit_hidden=id_vit_hidden, id_cond=id_cond, kps_cond=kps_cond, generator=torch.Generator("cuda").manual_seed(42)) +video = pipe(image=image, prompt=prompt, num_inference_steps=50, guidance_scale=6.0, use_dynamic_cfg=False, id_vit_hidden=id_vit_hidden, id_cond=id_cond, kps_cond=face_kps, generator=torch.Generator("cuda").manual_seed(42)) export_to_video(video.frames[0], "output.mp4", fps=8) ```
diff --git a/src/diffusers/pipelines/consisid/pipeline_consisid.py b/src/diffusers/pipelines/consisid/pipeline_consisid.py index a8327af85a74..68efe41ba95c 100644 --- a/src/diffusers/pipelines/consisid/pipeline_consisid.py +++ b/src/diffusers/pipelines/consisid/pipeline_consisid.py @@ -72,8 +72,6 @@ ... image, ... is_align_face=True, ... ) - >>> is_kps = getattr(pipe.transformer.config, "is_kps", False) - >>> kps_cond = face_kps if is_kps else None >>> video = pipe( ... image=image, @@ -83,7 +81,7 @@ ... use_dynamic_cfg=False, ... id_vit_hidden=id_vit_hidden, ... id_cond=id_cond, - ... kps_cond=kps_cond, + ... kps_cond=face_kps, ... generator=torch.Generator("cuda").manual_seed(42), ... ) >>> export_to_video(video.frames[0], "output.mp4", fps=8) @@ -833,6 +831,8 @@ def __call__( self._num_timesteps = len(timesteps) # 5. Prepare latents + is_kps = getattr(self.transformer.config, "is_kps", False) + kps_cond = kps_cond if is_kps else None if kps_cond is not None: kps_cond = draw_kps(image, kps_cond) kps_cond = self.video_processor.preprocess(kps_cond, height=height, width=width).to( From a0acc0269986c07df0820b38612fa87e934617b9 Mon Sep 17 00:00:00 2001 From: Shenghai Yuan <140951558+SHYuanBest@users.noreply.github.com> Date: Fri, 13 Dec 2024 08:30:37 +0800 Subject: [PATCH 31/56] Update docs/source/en/using-diffusers/consisid.md Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com> --- docs/source/en/using-diffusers/consisid.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/docs/source/en/using-diffusers/consisid.md b/docs/source/en/using-diffusers/consisid.md index 19f0769dba9f..57035c973c57 100644 --- a/docs/source/en/using-diffusers/consisid.md +++ b/docs/source/en/using-diffusers/consisid.md @@ -14,7 +14,7 @@ specific language governing permissions and limitations under the License. [ConsisID](https://github.com/PKU-YuanGroup/ConsisID) is an identity-preserving text-to-video generation model that keeps the face consistent in the generated video by frequency decomposition. The main features of ConsisID are: - Frequency decomposition: The characteristics of the DiT architecture are analyzed from the frequency domain perspective, and based on these characteristics, a reasonable control information injection method is designed. -Consistency training strategy: A coarse-to-fine training strategy, dynamic masking loss, and dynamic cross-face loss further enhance the model's generalization ability and identity preservation performance. +- Consistency training strategy: A coarse-to-fine training strategy, dynamic masking loss, and dynamic cross-face loss further enhance the model's generalization ability and identity preservation performance. - Inference without finetuning: Previous methods required case-by-case finetuning of the input ID before inference, leading to significant time and computational costs. In contrast, ConsisID is tuning-free. This guide will walk you through using ConsisID for use cases. From 2a722f2cae34c84a68eceab08a2b49978b3b5871 Mon Sep 17 00:00:00 2001 From: SHYuanBest Date: Tue, 17 Dec 2024 11:16:31 +0800 Subject: [PATCH 32/56] update example --- docs/source/en/api/pipelines/consisid.md | 4 ++-- docs/source/en/using-diffusers/consisid.md | 4 ++-- docs/source/zh/consisid.md | 4 ++-- 3 files changed, 6 insertions(+), 6 deletions(-) diff --git a/docs/source/en/api/pipelines/consisid.md b/docs/source/en/api/pipelines/consisid.md index 3b1d9f6158bd..e69706d4b866 100644 --- a/docs/source/en/api/pipelines/consisid.md +++ b/docs/source/en/api/pipelines/consisid.md @@ -66,8 +66,8 @@ Compile the components and run inference: pipe.transformer = torch.compile(pipeline.transformer, mode="max-autotune", fullgraph=True) # ConsisID works well with long and well-described prompts and image contain clear face (e.g., preferably half-body or full-body). -prompt = "A woman adorned with a delicate flower crown, is standing amidst a field of gently swaying wildflowers. Her eyes sparkle with a serene gaze, and a faint smile graces her lips, suggesting a moment of peaceful contentment. The shot is framed from the waist up, highlighting the gentle breeze lightly tousling her hair. The background reveals an expansive meadow under a bright blue sky, capturing the tranquility of a sunny afternoon." -image = "https://github.com/PKU-YuanGroup/ConsisID/blob/main/asserts/example_images/1.png?raw=true" +prompt = "The video captures a boy walking along a city street, filmed in black and white on a classic 35mm camera. His expression is thoughtful, his brow slightly furrowed as if he's lost in contemplation. The film grain adds a textured, timeless quality to the image, evoking a sense of nostalgia. Around him, the cityscape is filled with vintage buildings, cobblestone sidewalks, and softly blurred figures passing by, their outlines faint and indistinct. Streetlights cast a gentle glow, while shadows play across the boy's path, adding depth to the scene. The lighting highlights the boy's subtle smile, hinting at a fleeting moment of curiosity. The overall cinematic atmosphere, complete with classic film still aesthetics and dramatic contrasts, gives the scene an evocative and introspective feel." +image = "https://github.com/PKU-YuanGroup/ConsisID/blob/main/asserts/example_images/2.png?raw=true" id_cond, id_vit_hidden, image, face_kps = process_face_embeddings_infer(face_helper_1, face_clip_model, face_helper_2, eva_transform_mean, eva_transform_std, face_main_model, "cuda", torch.bfloat16, image, is_align_face=True) diff --git a/docs/source/en/using-diffusers/consisid.md b/docs/source/en/using-diffusers/consisid.md index 57035c973c57..00f9e839d8cc 100644 --- a/docs/source/en/using-diffusers/consisid.md +++ b/docs/source/en/using-diffusers/consisid.md @@ -46,8 +46,8 @@ For identity-preserving text-to-video, pass a text prompt and an image contain c ```python from diffusers.utils import export_to_video -prompt = "A woman adorned with a delicate flower crown, is standing amidst a field of gently swaying wildflowers. Her eyes sparkle with a serene gaze, and a faint smile graces her lips, suggesting a moment of peaceful contentment. The shot is framed from the waist up, highlighting the gentle breeze lightly tousling her hair. The background reveals an expansive meadow under a bright blue sky, capturing the tranquility of a sunny afternoon." -image = "https://github.com/PKU-YuanGroup/ConsisID/blob/main/asserts/example_images/1.png?raw=true" +prompt = "The video captures a boy walking along a city street, filmed in black and white on a classic 35mm camera. His expression is thoughtful, his brow slightly furrowed as if he's lost in contemplation. The film grain adds a textured, timeless quality to the image, evoking a sense of nostalgia. Around him, the cityscape is filled with vintage buildings, cobblestone sidewalks, and softly blurred figures passing by, their outlines faint and indistinct. Streetlights cast a gentle glow, while shadows play across the boy's path, adding depth to the scene. The lighting highlights the boy's subtle smile, hinting at a fleeting moment of curiosity. The overall cinematic atmosphere, complete with classic film still aesthetics and dramatic contrasts, gives the scene an evocative and introspective feel." +image = "https://github.com/PKU-YuanGroup/ConsisID/blob/main/asserts/example_images/2.png?raw=true" id_cond, id_vit_hidden, image, face_kps = process_face_embeddings_infer(face_helper_1, face_clip_model, face_helper_2, eva_transform_mean, eva_transform_std, face_main_model, "cuda", torch.bfloat16, image, is_align_face=True) diff --git a/docs/source/zh/consisid.md b/docs/source/zh/consisid.md index 5d7dcbfd0ea0..26d8c2bfa8d1 100644 --- a/docs/source/zh/consisid.md +++ b/docs/source/zh/consisid.md @@ -50,8 +50,8 @@ pipe.to("cuda") ```python from diffusers.utils import export_to_video -prompt = "A woman adorned with a delicate flower crown, is standing amidst a field of gently swaying wildflowers. Her eyes sparkle with a serene gaze, and a faint smile graces her lips, suggesting a moment of peaceful contentment. The shot is framed from the waist up, highlighting the gentle breeze lightly tousling her hair. The background reveals an expansive meadow under a bright blue sky, capturing the tranquility of a sunny afternoon." -image = "https://github.com/PKU-YuanGroup/ConsisID/blob/main/asserts/example_images/1.png?raw=true" +prompt = "The video captures a boy walking along a city street, filmed in black and white on a classic 35mm camera. His expression is thoughtful, his brow slightly furrowed as if he's lost in contemplation. The film grain adds a textured, timeless quality to the image, evoking a sense of nostalgia. Around him, the cityscape is filled with vintage buildings, cobblestone sidewalks, and softly blurred figures passing by, their outlines faint and indistinct. Streetlights cast a gentle glow, while shadows play across the boy's path, adding depth to the scene. The lighting highlights the boy's subtle smile, hinting at a fleeting moment of curiosity. The overall cinematic atmosphere, complete with classic film still aesthetics and dramatic contrasts, gives the scene an evocative and introspective feel." +image = "https://github.com/PKU-YuanGroup/ConsisID/blob/main/asserts/example_images/2.png?raw=true" id_cond, id_vit_hidden, image, face_kps = process_face_embeddings_infer(face_helper_1, face_clip_model, face_helper_2, eva_transform_mean, eva_transform_std, face_main_model, "cuda", torch.bfloat16, image, is_align_face=True) From 1c5a1f2defd7f107c86819f37bf6bc119da6b74d Mon Sep 17 00:00:00 2001 From: SHYuanBest Date: Tue, 17 Dec 2024 11:20:42 +0800 Subject: [PATCH 33/56] update example --- src/diffusers/pipelines/consisid/pipeline_consisid.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/src/diffusers/pipelines/consisid/pipeline_consisid.py b/src/diffusers/pipelines/consisid/pipeline_consisid.py index 68efe41ba95c..fa91f337e326 100644 --- a/src/diffusers/pipelines/consisid/pipeline_consisid.py +++ b/src/diffusers/pipelines/consisid/pipeline_consisid.py @@ -57,8 +57,8 @@ >>> pipe = ConsisIDPipeline.from_pretrained("BestWishYsh/ConsisID-preview", torch_dtype=torch.bfloat16) >>> pipe.to("cuda") - >>> prompt = "A woman adorned with a delicate flower crown, is standing amidst a field of gently swaying wildflowers. Her eyes sparkle with a serene gaze, and a faint smile graces her lips, suggesting a moment of peaceful contentment. The shot is framed from the waist up, highlighting the gentle breeze lightly tousling her hair. The background reveals an expansive meadow under a bright blue sky, capturing the tranquility of a sunny afternoon." - >>> image = "https://github.com/PKU-YuanGroup/ConsisID/blob/main/asserts/example_images/1.png?raw=true" + >>> prompt = "The video captures a boy walking along a city street, filmed in black and white on a classic 35mm camera. His expression is thoughtful, his brow slightly furrowed as if he's lost in contemplation. The film grain adds a textured, timeless quality to the image, evoking a sense of nostalgia. Around him, the cityscape is filled with vintage buildings, cobblestone sidewalks, and softly blurred figures passing by, their outlines faint and indistinct. Streetlights cast a gentle glow, while shadows play across the boy's path, adding depth to the scene. The lighting highlights the boy's subtle smile, hinting at a fleeting moment of curiosity. The overall cinematic atmosphere, complete with classic film still aesthetics and dramatic contrasts, gives the scene an evocative and introspective feel." + >>> image = "https://github.com/PKU-YuanGroup/ConsisID/blob/main/asserts/example_images/2.png?raw=true" >>> id_cond, id_vit_hidden, image, face_kps = process_face_embeddings_infer( ... face_helper_1, From 7ceffc98948c80826479f0e921540bc55401f0ca Mon Sep 17 00:00:00 2001 From: Shenghai Yuan <140951558+SHYuanBest@users.noreply.github.com> Date: Wed, 18 Dec 2024 11:40:43 +0800 Subject: [PATCH 34/56] Update src/diffusers/pipelines/consisid/pipeline_consisid.py Co-authored-by: hlky --- src/diffusers/pipelines/consisid/pipeline_consisid.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/diffusers/pipelines/consisid/pipeline_consisid.py b/src/diffusers/pipelines/consisid/pipeline_consisid.py index fa91f337e326..7ad2f4450594 100644 --- a/src/diffusers/pipelines/consisid/pipeline_consisid.py +++ b/src/diffusers/pipelines/consisid/pipeline_consisid.py @@ -278,7 +278,7 @@ def __init__( tokenizer: T5Tokenizer, text_encoder: T5EncoderModel, vae: AutoencoderKLCogVideoX, - transformer: Union[ConsisIDTransformer3DModel], + transformer: ConsisIDTransformer3DModel, scheduler: Union[CogVideoXDDIMScheduler, CogVideoXDPMScheduler], ): super().__init__() From 95decbdae29f9d153b736edfb2fd53d963c54f2c Mon Sep 17 00:00:00 2001 From: Shenghai Yuan <140951558+SHYuanBest@users.noreply.github.com> Date: Wed, 18 Dec 2024 11:41:00 +0800 Subject: [PATCH 35/56] Update src/diffusers/pipelines/consisid/pipeline_consisid.py Co-authored-by: hlky --- src/diffusers/pipelines/consisid/pipeline_consisid.py | 1 + 1 file changed, 1 insertion(+) diff --git a/src/diffusers/pipelines/consisid/pipeline_consisid.py b/src/diffusers/pipelines/consisid/pipeline_consisid.py index 7ad2f4450594..a57ad0ae4cc1 100644 --- a/src/diffusers/pipelines/consisid/pipeline_consisid.py +++ b/src/diffusers/pipelines/consisid/pipeline_consisid.py @@ -43,6 +43,7 @@ EXAMPLE_DOC_STRING = """ Examples: ```py + >>> # !pip install consisid_eva_clip insightface facexlib >>> import torch >>> from diffusers import ConsisIDPipeline >>> from diffusers.pipelines.consisid.consisid_utils import prepare_face_models, process_face_embeddings_infer From 5139afc0b887259968c9e3d6497ea5ff151696c3 Mon Sep 17 00:00:00 2001 From: SHYuanBest Date: Wed, 18 Dec 2024 16:38:47 +0800 Subject: [PATCH 36/56] update --- docs/source/en/api/pipelines/consisid.md | 1 + docs/source/en/using-diffusers/consisid.md | 1 + docs/source/zh/consisid.md | 1 + .../transformers/consisid_transformer_3d.py | 4 +-- .../pipelines/consisid/pipeline_consisid.py | 25 ++++++++----------- 5 files changed, 15 insertions(+), 17 deletions(-) diff --git a/docs/source/en/api/pipelines/consisid.md b/docs/source/en/api/pipelines/consisid.md index e69706d4b866..de2e7df787f9 100644 --- a/docs/source/en/api/pipelines/consisid.md +++ b/docs/source/en/api/pipelines/consisid.md @@ -43,6 +43,7 @@ Use [`torch.compile`](https://huggingface.co/docs/diffusers/main/en/tutorials/fa First, load the pipeline: ```python +# !pip install consisid_eva_clip insightface facexlib import torch from diffusers import ConsisIDPipeline from diffusers.pipelines.consisid.consisid_utils import prepare_face_models, process_face_embeddings_infer diff --git a/docs/source/en/using-diffusers/consisid.md b/docs/source/en/using-diffusers/consisid.md index 00f9e839d8cc..1bacb08de295 100644 --- a/docs/source/en/using-diffusers/consisid.md +++ b/docs/source/en/using-diffusers/consisid.md @@ -24,6 +24,7 @@ Model weights may be stored in separate subfolders on the Hub or locally, in whi ```python +# !pip install consisid_eva_clip insightface facexlib import torch from diffusers import ConsisIDPipeline from diffusers.pipelines.consisid.consisid_utils import prepare_face_models, process_face_embeddings_infer diff --git a/docs/source/zh/consisid.md b/docs/source/zh/consisid.md index 26d8c2bfa8d1..0405d1064f09 100644 --- a/docs/source/zh/consisid.md +++ b/docs/source/zh/consisid.md @@ -28,6 +28,7 @@ specific language governing permissions and limitations under the License. ```python +# !pip install consisid_eva_clip insightface facexlib import torch from diffusers import ConsisIDPipeline from diffusers.pipelines.consisid.consisid_utils import prepare_face_models, process_face_embeddings_infer diff --git a/src/diffusers/models/transformers/consisid_transformer_3d.py b/src/diffusers/models/transformers/consisid_transformer_3d.py index b19bd43a783f..dce3221c2cdb 100644 --- a/src/diffusers/models/transformers/consisid_transformer_3d.py +++ b/src/diffusers/models/transformers/consisid_transformer_3d.py @@ -481,7 +481,7 @@ class ConsisIDTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin): dropout (`float`, defaults to `0.0`): The dropout probability to use. attention_bias (`bool`, defaults to `True`): - Whether or not to use bias in the attention projection layers. + Whether to use bias in the attention projection layers. sample_width (`int`, defaults to `90`): The width of the input latents. sample_height (`int`, defaults to `60`): @@ -502,7 +502,7 @@ class ConsisIDTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin): timestep_activation_fn (`str`, defaults to `"silu"`): Activation function to use when generating the timestep embeddings. norm_elementwise_affine (`bool`, defaults to `True`): - Whether or not to use elementwise affine in normalization layers. + Whether to use elementwise affine in normalization layers. norm_eps (`float`, defaults to `1e-5`): The epsilon value to use in normalization layers. spatial_interpolation_scale (`float`, defaults to `1.875`): diff --git a/src/diffusers/pipelines/consisid/pipeline_consisid.py b/src/diffusers/pipelines/consisid/pipeline_consisid.py index a57ad0ae4cc1..c7f8fdc7bf03 100644 --- a/src/diffusers/pipelines/consisid/pipeline_consisid.py +++ b/src/diffusers/pipelines/consisid/pipeline_consisid.py @@ -636,8 +636,8 @@ def _prepare_rotary_positional_embeddings( ) -> Tuple[torch.Tensor, torch.Tensor]: grid_height = height // (self.vae_scale_factor_spatial * self.transformer.config.patch_size) grid_width = width // (self.vae_scale_factor_spatial * self.transformer.config.patch_size) - base_size_width = 720 // (self.vae_scale_factor_spatial * self.transformer.config.patch_size) - base_size_height = 480 // (self.vae_scale_factor_spatial * self.transformer.config.patch_size) + base_size_width = self.transformer.config.sample_width // self.transformer.config.patch_size + base_size_height = self.transformer.config.sample_height // self.transformer.config.patch_size grid_crops_coords = get_resize_crop_region_for_grid( (grid_height, grid_width), base_size_width, base_size_height @@ -647,10 +647,9 @@ def _prepare_rotary_positional_embeddings( crops_coords=grid_crops_coords, grid_size=(grid_height, grid_width), temporal_size=num_frames, + device=device, ) - freqs_cos = freqs_cos.to(device=device) - freqs_sin = freqs_sin.to(device=device) return freqs_cos, freqs_sin @property @@ -676,7 +675,6 @@ def __call__( width: int = 720, num_frames: int = 49, num_inference_steps: int = 50, - timesteps: Optional[List[int]] = None, guidance_scale: float = 6, use_dynamic_cfg: bool = False, num_videos_per_prompt: int = 1, @@ -721,10 +719,6 @@ def __call__( num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. - timesteps (`List[int]`, *optional*): - Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument - in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is - passed will be used. Must be in descending order. guidance_scale (`float`, *optional*, defaults to 6): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen @@ -773,14 +767,14 @@ def __call__( [`~pipelines.consisid.pipeline_output.ConsisIDPipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated images. """ - if num_frames > 49: - raise ValueError( - "The number of frames must be less than 49 for now due to static positional embeddings. This will be updated in the future to remove this limitation." - ) if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs + height = height or self.transformer.config.sample_height * self.vae_scale_factor_spatial + width = width or self.transformer.config.sample_width * self.vae_scale_factor_spatial + num_frames = num_frames or self.transformer.config.sample_frames + num_videos_per_prompt = 1 # 1. Check inputs. Raise error if not correct @@ -828,7 +822,7 @@ def __call__( prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) # 4. Prepare timesteps - timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) + timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device) self._num_timesteps = len(timesteps) # 5. Prepare latents @@ -875,6 +869,7 @@ def __call__( with self.progress_bar(total=num_inference_steps) as progress_bar: # for DPM-solver++ old_pred_original_sample = None + timesteps_cpu = timesteps.cpu() for i, t in enumerate(timesteps): if self.interrupt: continue @@ -903,7 +898,7 @@ def __call__( # perform guidance if use_dynamic_cfg: self._guidance_scale = 1 + guidance_scale * ( - (1 - math.cos(math.pi * ((num_inference_steps - t.item()) / num_inference_steps) ** 5.0)) / 2 + (1 - math.cos(math.pi * ((num_inference_steps - timesteps_cpu[i].item()) / num_inference_steps) ** 5.0)) / 2 ) if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) From 58f65705c3d1014f3b34afa9087bc3b5b7bc0b76 Mon Sep 17 00:00:00 2001 From: SHYuanBest Date: Wed, 18 Dec 2024 21:51:19 +0800 Subject: [PATCH 37/56] add test and update --- src/diffusers/models/embeddings.py | 1 + .../transformers/consisid_transformer_3d.py | 24 +- .../pipelines/consisid/pipeline_consisid.py | 14 +- .../test_models_transformer_consisid.py | 99 +++++ tests/pipelines/consisid/__init__.py | 0 tests/pipelines/consisid/test_consisid.py | 392 ++++++++++++++++++ 6 files changed, 520 insertions(+), 10 deletions(-) create mode 100644 tests/models/transformers/test_models_transformer_consisid.py create mode 100644 tests/pipelines/consisid/__init__.py create mode 100644 tests/pipelines/consisid/test_consisid.py diff --git a/src/diffusers/models/embeddings.py b/src/diffusers/models/embeddings.py index f3c57103f9b8..b839447ef516 100644 --- a/src/diffusers/models/embeddings.py +++ b/src/diffusers/models/embeddings.py @@ -752,6 +752,7 @@ def forward(self, text_embeds: torch.Tensor, image_embeds: torch.Tensor): else: pos_embedding = self.pos_embedding + pos_embedding = pos_embedding.to(embeds.device) embeds = embeds + pos_embedding return embeds diff --git a/src/diffusers/models/transformers/consisid_transformer_3d.py b/src/diffusers/models/transformers/consisid_transformer_3d.py index dce3221c2cdb..754ee8e65365 100644 --- a/src/diffusers/models/transformers/consisid_transformer_3d.py +++ b/src/diffusers/models/transformers/consisid_transformer_3d.py @@ -517,15 +517,15 @@ class ConsisIDTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin): cross_attn_interval (`int`, defaults to `1`): The interval between cross-attention layers in the Transformer architecture. A larger value may reduce the frequency of cross-attention computations, which can help reduce computational overhead. + LFE_heads (`int`, defaults to `16`): + The number of attention heads used in the Local Facial Extractor (LFE) module. More heads may improve the + ability to capture diverse features, but can also increase computational complexity. LFE_num_tokens (`int`, defaults to `32`): The number of tokens to use in the Local Facial Extractor (LFE). This module is responsible for capturing high frequency representations of the face. - LFE_output_dim (`int`, defaults to `768`): + LFE_output_dim (`int`, defaults to `2048`): The output dimension of the Local Facial Extractor (LFE) module. This dimension determines the size of the feature vectors produced by the LFE module. - LFE_heads (`int`, defaults to `12`): - The number of attention heads used in the Local Facial Extractor (LFE) module. More heads may improve the - ability to capture diverse features, but can also increase computational complexity. local_face_scale (`float`, defaults to `1.0`): A scaling factor used to adjust the importance of local facial features in the model. This can influence how strongly the model focuses on high frequency face-related content. @@ -564,9 +564,9 @@ def __init__( is_train_face: bool = False, is_kps: bool = False, cross_attn_interval: int = 1, + LFE_heads: int = 16, LFE_num_tokens: int = 32, - LFE_output_dim: int = 768, - LFE_heads: int = 12, + LFE_output_dim: int = 2048, local_face_scale: float = 1.0, ): super().__init__() @@ -641,9 +641,9 @@ def __init__( self.inner_dim = inner_dim self.cross_attn_interval = cross_attn_interval self.num_ca = num_layers // cross_attn_interval + self.LFE_heads = LFE_heads self.LFE_num_tokens = LFE_num_tokens self.LFE_output_dim = LFE_output_dim - self.LFE_heads = LFE_heads self.LFE_final_output_dim = int(self.inner_dim / 3 * 2) self.local_face_scale = local_face_scale self._init_face_inputs() @@ -653,8 +653,10 @@ def _set_gradient_checkpointing(self, module, value=False): def _init_face_inputs(self): device = self.device - weight_dtype = next(self.transformer_blocks.parameters()).dtype - self.local_facial_extractor = LocalFacialExtractor() + weight_dtype = self.dtype + self.local_facial_extractor = LocalFacialExtractor( + heads=self.LFE_heads, num_queries=self.LFE_num_tokens, output_dim=self.LFE_output_dim + ) self.local_facial_extractor.to(device, dtype=weight_dtype) self.perceiver_cross_attention = nn.ModuleList( [ @@ -793,6 +795,10 @@ def forward( # fuse clip and insightface if self.is_train_face: assert id_cond is not None and id_vit_hidden is not None + id_cond = id_cond.to(device=hidden_states.device, dtype=hidden_states.dtype) + id_vit_hidden = [ + tensor.to(device=hidden_states.device, dtype=hidden_states.dtype) for tensor in id_vit_hidden + ] valid_face_emb = self.local_facial_extractor( id_cond, id_vit_hidden ) # torch.Size([1, 1280]), list[5](torch.Size([1, 577, 1024])) -> torch.Size([1, 32, 2048]) diff --git a/src/diffusers/pipelines/consisid/pipeline_consisid.py b/src/diffusers/pipelines/consisid/pipeline_consisid.py index c7f8fdc7bf03..2e3169bc0c01 100644 --- a/src/diffusers/pipelines/consisid/pipeline_consisid.py +++ b/src/diffusers/pipelines/consisid/pipeline_consisid.py @@ -725,6 +725,11 @@ def __call__( Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. + use_dynamic_cfg (`bool`, *optional*, defaults to `False`): + If True, dynamically adjusts the guidance scale during inference. This allows the model to use a + progressive guidance scale, improving the balance between text-guided generation and image quality over + the course of the inference steps. Typically, early inference steps use a higher guidance scale for + more faithful image generation, while later steps reduce it for more diverse and natural results. num_videos_per_prompt (`int`, *optional*, defaults to 1): The number of videos to generate per prompt. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): @@ -898,7 +903,14 @@ def __call__( # perform guidance if use_dynamic_cfg: self._guidance_scale = 1 + guidance_scale * ( - (1 - math.cos(math.pi * ((num_inference_steps - timesteps_cpu[i].item()) / num_inference_steps) ** 5.0)) / 2 + ( + 1 + - math.cos( + math.pi + * ((num_inference_steps - timesteps_cpu[i].item()) / num_inference_steps) ** 5.0 + ) + ) + / 2 ) if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) diff --git a/tests/models/transformers/test_models_transformer_consisid.py b/tests/models/transformers/test_models_transformer_consisid.py new file mode 100644 index 000000000000..d0646dfb9a15 --- /dev/null +++ b/tests/models/transformers/test_models_transformer_consisid.py @@ -0,0 +1,99 @@ +# coding=utf-8 +# Copyright 2024 HuggingFace Inc. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import unittest + +import torch + +from diffusers import ConsisIDTransformer3DModel +from diffusers.utils.testing_utils import ( + enable_full_determinism, + torch_device, +) + +from ..test_modeling_common import ModelTesterMixin + + +enable_full_determinism() + + +class ConsisIDTransformerTests(ModelTesterMixin, unittest.TestCase): + model_class = ConsisIDTransformer3DModel + main_input_name = "hidden_states" + uses_custom_attn_processor = True + + @property + def dummy_input(self): + batch_size = 1 + num_channels = 16 + num_frames = 13 + height = 60 + width = 90 + embedding_dim = 4096 + sequence_length = 226 + + hidden_states = torch.randn((batch_size, num_frames, num_channels, height, width)).to(torch_device) + encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device) + timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device) + id_vit_hidden = [torch.ones([batch_size, 577, 1024]).to(torch_device)] * 5 + id_cond = torch.ones(batch_size, 1280).to(torch_device) + + return { + "hidden_states": hidden_states, + "encoder_hidden_states": encoder_hidden_states, + "timestep": timestep, + "id_vit_hidden": id_vit_hidden, + "id_cond": id_cond, + } + + @property + def input_shape(self): + return (1, 13, 60, 90) + + @property + def output_shape(self): + return (13, 16, 60, 90) + + def prepare_init_args_and_inputs_for_common(self): + init_dict = { + "attention_head_dim": 64, + "cross_attn_interval": 2, + "dropout": 0.0, + "flip_sin_to_cos": True, + "freq_shift": 0, + "in_channels": 16, + "out_channels": 16, + "is_kps": False, + "is_train_face": True, + "LFE_heads": 16, + "LFE_num_tokens": 32, + "LFE_output_dim": 2048, + "local_face_scale": 1.0, + "max_text_seq_length": 226, + "num_attention_heads": 48, + "num_layers": 2, + "patch_size": 2, + "sample_frames": 49, + "sample_height": 60, + "sample_width": 90, + "text_embed_dim": 4096, + "time_embed_dim": 512, + } + inputs_dict = self.dummy_input + return init_dict, inputs_dict + + def test_gradient_checkpointing_is_applied(self): + expected_set = {"ConsisIDTransformer3DModel"} + super().test_gradient_checkpointing_is_applied(expected_set=expected_set) diff --git a/tests/pipelines/consisid/__init__.py b/tests/pipelines/consisid/__init__.py new file mode 100644 index 000000000000..e69de29bb2d1 diff --git a/tests/pipelines/consisid/test_consisid.py b/tests/pipelines/consisid/test_consisid.py new file mode 100644 index 000000000000..4bbc71c9dcfb --- /dev/null +++ b/tests/pipelines/consisid/test_consisid.py @@ -0,0 +1,392 @@ +# Copyright 2024 The HuggingFace Team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import gc +import inspect +import unittest + +import numpy as np +import torch +from PIL import Image +from transformers import AutoTokenizer, T5EncoderModel + +from diffusers import AutoencoderKLCogVideoX, ConsisIDPipeline, ConsisIDTransformer3DModel, DDIMScheduler +from diffusers.utils import load_image +from diffusers.utils.testing_utils import ( + enable_full_determinism, + numpy_cosine_similarity_distance, + require_torch_gpu, + slow, + torch_device, +) + +from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS +from ..test_pipelines_common import ( + PipelineTesterMixin, + check_qkv_fusion_matches_attn_procs_length, + check_qkv_fusion_processors_exist, + to_np, +) + + +enable_full_determinism() + + +class ConsisIDPipelineFastTests(PipelineTesterMixin, unittest.TestCase): + pipeline_class = ConsisIDPipeline + params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"} + batch_params = TEXT_TO_IMAGE_BATCH_PARAMS.union({"image"}) + image_params = TEXT_TO_IMAGE_IMAGE_PARAMS + image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS + required_optional_params = frozenset( + [ + "num_inference_steps", + "generator", + "latents", + "return_dict", + "callback_on_step_end", + "callback_on_step_end_tensor_inputs", + ] + ) + test_xformers_attention = False + + def get_dummy_components(self): + torch.manual_seed(0) + transformer = ConsisIDTransformer3DModel( + attention_head_dim=64, + cross_attn_interval=2, + dropout=0.0, + flip_sin_to_cos=True, + freq_shift=0, + in_channels=32, + out_channels=16, + is_kps=False, + is_train_face=True, + LFE_heads=16, + LFE_num_tokens=32, + LFE_output_dim=2048, + local_face_scale=1.0, + max_text_seq_length=226, + num_attention_heads=48, + num_layers=2, + patch_size=2, + sample_frames=49, + sample_height=60, + sample_width=90, + text_embed_dim=4096, + time_embed_dim=512, + ) + + torch.manual_seed(0) + vae = AutoencoderKLCogVideoX( + in_channels=3, + out_channels=3, + down_block_types=( + "CogVideoXDownBlock3D", + "CogVideoXDownBlock3D", + "CogVideoXDownBlock3D", + "CogVideoXDownBlock3D", + ), + up_block_types=( + "CogVideoXUpBlock3D", + "CogVideoXUpBlock3D", + "CogVideoXUpBlock3D", + "CogVideoXUpBlock3D", + ), + block_out_channels=(8, 8, 8, 8), + latent_channels=16, + layers_per_block=1, + norm_num_groups=2, + temporal_compression_ratio=4, + ) + + torch.manual_seed(0) + scheduler = DDIMScheduler() + text_encoder = T5EncoderModel.from_pretrained("google/t5-v1_1-xxl") + tokenizer = AutoTokenizer.from_pretrained("google/t5-v1_1-xxl") + + components = { + "transformer": transformer, + "vae": vae, + "scheduler": scheduler, + "text_encoder": text_encoder, + "tokenizer": tokenizer, + } + return components + + def get_dummy_inputs(self, device, seed=0): + if str(device).startswith("mps"): + generator = torch.manual_seed(seed) + else: + generator = torch.Generator(device=device).manual_seed(seed) + + image_height = 16 + image_width = 16 + image = Image.new("RGB", (image_width, image_height)) + id_vit_hidden = [torch.ones([1, 577, 1024])] * 5 + id_cond = torch.ones(1, 1280) + inputs = { + "image": image, + "prompt": "dance monkey", + "negative_prompt": "", + "generator": generator, + "num_inference_steps": 1, + "guidance_scale": 6.0, + "height": image_height, + "width": image_width, + "num_frames": 13, + "max_sequence_length": 226, + "id_vit_hidden": id_vit_hidden, + "id_cond": id_cond, + "output_type": "pt", + } + return inputs + + def test_inference(self): + device = "cpu" + + components = self.get_dummy_components() + pipe = self.pipeline_class(**components) + pipe.to(device) + pipe.set_progress_bar_config(disable=None) + + inputs = self.get_dummy_inputs(device) + video = pipe(**inputs).frames + generated_video = video[0] + + self.assertEqual(generated_video.shape, (16, 3, 16, 16)) + expected_video = torch.randn(16, 3, 16, 16) + max_diff = np.abs(generated_video - expected_video).max() + self.assertLessEqual(max_diff, 1e10) + + def test_callback_inputs(self): + sig = inspect.signature(self.pipeline_class.__call__) + has_callback_tensor_inputs = "callback_on_step_end_tensor_inputs" in sig.parameters + has_callback_step_end = "callback_on_step_end" in sig.parameters + + if not (has_callback_tensor_inputs and has_callback_step_end): + return + + components = self.get_dummy_components() + pipe = self.pipeline_class(**components) + pipe = pipe.to(torch_device) + pipe.set_progress_bar_config(disable=None) + self.assertTrue( + hasattr(pipe, "_callback_tensor_inputs"), + f" {self.pipeline_class} should have `_callback_tensor_inputs` that defines a list of tensor variables its callback function can use as inputs", + ) + + def callback_inputs_subset(pipe, i, t, callback_kwargs): + # iterate over callback args + for tensor_name, tensor_value in callback_kwargs.items(): + # check that we're only passing in allowed tensor inputs + assert tensor_name in pipe._callback_tensor_inputs + + return callback_kwargs + + def callback_inputs_all(pipe, i, t, callback_kwargs): + for tensor_name in pipe._callback_tensor_inputs: + assert tensor_name in callback_kwargs + + # iterate over callback args + for tensor_name, tensor_value in callback_kwargs.items(): + # check that we're only passing in allowed tensor inputs + assert tensor_name in pipe._callback_tensor_inputs + + return callback_kwargs + + inputs = self.get_dummy_inputs(torch_device) + + # Test passing in a subset + inputs["callback_on_step_end"] = callback_inputs_subset + inputs["callback_on_step_end_tensor_inputs"] = ["latents"] + output = pipe(**inputs)[0] + + # Test passing in a everything + inputs["callback_on_step_end"] = callback_inputs_all + inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs + output = pipe(**inputs)[0] + + def callback_inputs_change_tensor(pipe, i, t, callback_kwargs): + is_last = i == (pipe.num_timesteps - 1) + if is_last: + callback_kwargs["latents"] = torch.zeros_like(callback_kwargs["latents"]) + return callback_kwargs + + inputs["callback_on_step_end"] = callback_inputs_change_tensor + inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs + output = pipe(**inputs)[0] + assert output.abs().sum() < 1e10 + + def test_inference_batch_single_identical(self): + self._test_inference_batch_single_identical(batch_size=3, expected_max_diff=1e-3) + + def test_attention_slicing_forward_pass( + self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-3 + ): + if not self.test_attention_slicing: + return + + components = self.get_dummy_components() + pipe = self.pipeline_class(**components) + for component in pipe.components.values(): + if hasattr(component, "set_default_attn_processor"): + component.set_default_attn_processor() + pipe.to(torch_device) + pipe.set_progress_bar_config(disable=None) + + generator_device = "cpu" + inputs = self.get_dummy_inputs(generator_device) + output_without_slicing = pipe(**inputs)[0] + + pipe.enable_attention_slicing(slice_size=1) + inputs = self.get_dummy_inputs(generator_device) + output_with_slicing1 = pipe(**inputs)[0] + + pipe.enable_attention_slicing(slice_size=2) + inputs = self.get_dummy_inputs(generator_device) + output_with_slicing2 = pipe(**inputs)[0] + + if test_max_difference: + max_diff1 = np.abs(to_np(output_with_slicing1) - to_np(output_without_slicing)).max() + max_diff2 = np.abs(to_np(output_with_slicing2) - to_np(output_without_slicing)).max() + self.assertLess( + max(max_diff1, max_diff2), + expected_max_diff, + "Attention slicing should not affect the inference results", + ) + + def test_vae_tiling(self, expected_diff_max: float = 0.3): + # Note(aryan): Investigate why this needs a bit higher tolerance + generator_device = "cpu" + components = self.get_dummy_components() + + # The reason to modify it this way is because I2V Transformer limits the generation to resolutions used during initalization. + # This limitation comes from using learned positional embeddings which cannot be generated on-the-fly like sincos or RoPE embeddings. + # See the if-statement on "self.use_learned_positional_embeddings" in diffusers/models/embeddings.py + components["transformer"] = ConsisIDTransformer3DModel.from_config( + components["transformer"].config, + sample_height=16, + sample_width=16, + ) + + pipe = self.pipeline_class(**components) + pipe.to("cpu") + pipe.set_progress_bar_config(disable=None) + + # Without tiling + inputs = self.get_dummy_inputs(generator_device) + inputs["height"] = inputs["width"] = 128 + output_without_tiling = pipe(**inputs)[0] + + # With tiling + pipe.vae.enable_tiling( + tile_sample_min_height=96, + tile_sample_min_width=96, + tile_overlap_factor_height=1 / 12, + tile_overlap_factor_width=1 / 12, + ) + inputs = self.get_dummy_inputs(generator_device) + inputs["height"] = inputs["width"] = 128 + output_with_tiling = pipe(**inputs)[0] + + self.assertLess( + (to_np(output_without_tiling) - to_np(output_with_tiling)).max(), + expected_diff_max, + "VAE tiling should not affect the inference results", + ) + + def test_fused_qkv_projections(self): + device = "cpu" # ensure determinism for the device-dependent torch.Generator + components = self.get_dummy_components() + pipe = self.pipeline_class(**components) + pipe = pipe.to(device) + pipe.set_progress_bar_config(disable=None) + + inputs = self.get_dummy_inputs(device) + frames = pipe(**inputs).frames # [B, F, C, H, W] + original_image_slice = frames[0, -2:, -1, -3:, -3:] + + pipe.fuse_qkv_projections() + assert check_qkv_fusion_processors_exist( + pipe.transformer + ), "Something wrong with the fused attention processors. Expected all the attention processors to be fused." + assert check_qkv_fusion_matches_attn_procs_length( + pipe.transformer, pipe.transformer.original_attn_processors + ), "Something wrong with the attention processors concerning the fused QKV projections." + + inputs = self.get_dummy_inputs(device) + frames = pipe(**inputs).frames + image_slice_fused = frames[0, -2:, -1, -3:, -3:] + + pipe.transformer.unfuse_qkv_projections() + inputs = self.get_dummy_inputs(device) + frames = pipe(**inputs).frames + image_slice_disabled = frames[0, -2:, -1, -3:, -3:] + + assert np.allclose( + original_image_slice, image_slice_fused, atol=1e-3, rtol=1e-3 + ), "Fusion of QKV projections shouldn't affect the outputs." + assert np.allclose( + image_slice_fused, image_slice_disabled, atol=1e-3, rtol=1e-3 + ), "Outputs, with QKV projection fusion enabled, shouldn't change when fused QKV projections are disabled." + assert np.allclose( + original_image_slice, image_slice_disabled, atol=1e-2, rtol=1e-2 + ), "Original outputs should match when fused QKV projections are disabled." + + +@slow +@require_torch_gpu +class ConsisIDPipelineIntegrationTests(unittest.TestCase): + prompt = "A painting of a squirrel eating a burger." + + def setUp(self): + super().setUp() + gc.collect() + torch.cuda.empty_cache() + + def tearDown(self): + super().tearDown() + gc.collect() + torch.cuda.empty_cache() + + def test_consisid(self): + generator = torch.Generator("cpu").manual_seed(0) + + pipe = ConsisIDPipeline.from_pretrained("BestWishYsh/ConsisID-preview", torch_dtype=torch.bfloat16) + pipe.enable_model_cpu_offload() + + prompt = self.prompt + image = load_image("https://github.com/PKU-YuanGroup/ConsisID/blob/main/asserts/example_images/2.png?raw=true") + id_vit_hidden = [torch.ones([1, 577, 1024])] * 5 + id_cond = torch.ones(1, 1280) + + videos = pipe( + image=image, + prompt=prompt, + height=480, + width=720, + num_frames=16, + id_vit_hidden=id_vit_hidden, + id_cond=id_cond, + generator=generator, + num_inference_steps=1, + output_type="pt", + ).frames + + video = videos[0] + expected_video = torch.randn(1, 16, 480, 720, 3).numpy() + + max_diff = numpy_cosine_similarity_distance(video, expected_video) + assert max_diff < 1e-3, f"Max diff is too high. got {video}" From 141038beee0ff0252994ff29542e7ce4b9201e90 Mon Sep 17 00:00:00 2001 From: Aryan Date: Wed, 18 Dec 2024 22:41:40 +0100 Subject: [PATCH 38/56] remove some changes from docs --- docs/source/en/api/pipelines/consisid.md | 48 ------------------------ 1 file changed, 48 deletions(-) diff --git a/docs/source/en/api/pipelines/consisid.md b/docs/source/en/api/pipelines/consisid.md index de2e7df787f9..29ef3150f42d 100644 --- a/docs/source/en/api/pipelines/consisid.md +++ b/docs/source/en/api/pipelines/consisid.md @@ -36,46 +36,6 @@ There are two official ConsisID checkpoints for identity-preserving text-to-vide | [`BestWishYsh/ConsisID-preview`](https://huggingface.co/BestWishYsh/ConsisID-preview) | torch.bfloat16 | | [`BestWishYsh/ConsisID-1.5`](https://huggingface.co/BestWishYsh/ConsisID-preview) | torch.bfloat16 | -## Inference - -Use [`torch.compile`](https://huggingface.co/docs/diffusers/main/en/tutorials/fast_diffusion#torchcompile) to reduce the inference latency. - -First, load the pipeline: - -```python -# !pip install consisid_eva_clip insightface facexlib -import torch -from diffusers import ConsisIDPipeline -from diffusers.pipelines.consisid.consisid_utils import prepare_face_models, process_face_embeddings_infer -from diffusers.utils import export_to_video -from huggingface_hub import snapshot_download - -snapshot_download(repo_id="BestWishYsh/ConsisID-preview", local_dir="BestWishYsh/ConsisID-preview") -face_helper_1, face_helper_2, face_clip_model, face_main_model, eva_transform_mean, eva_transform_std = prepare_face_models("BestWishYsh/ConsisID-preview", device="cuda", dtype=torch.bfloat16) -pipe = ConsisIDPipeline.from_pretrained("BestWishYsh/ConsisID-preview", torch_dtype=torch.bfloat16) -``` - -Then change the memory layout of the pipelines `transformer` component to `torch.channels_last`: - -```python -pipe.transformer.to(memory_format=torch.channels_last) -``` - -Compile the components and run inference: - -```python -pipe.transformer = torch.compile(pipeline.transformer, mode="max-autotune", fullgraph=True) - -# ConsisID works well with long and well-described prompts and image contain clear face (e.g., preferably half-body or full-body). -prompt = "The video captures a boy walking along a city street, filmed in black and white on a classic 35mm camera. His expression is thoughtful, his brow slightly furrowed as if he's lost in contemplation. The film grain adds a textured, timeless quality to the image, evoking a sense of nostalgia. Around him, the cityscape is filled with vintage buildings, cobblestone sidewalks, and softly blurred figures passing by, their outlines faint and indistinct. Streetlights cast a gentle glow, while shadows play across the boy's path, adding depth to the scene. The lighting highlights the boy's subtle smile, hinting at a fleeting moment of curiosity. The overall cinematic atmosphere, complete with classic film still aesthetics and dramatic contrasts, gives the scene an evocative and introspective feel." -image = "https://github.com/PKU-YuanGroup/ConsisID/blob/main/asserts/example_images/2.png?raw=true" - -id_cond, id_vit_hidden, image, face_kps = process_face_embeddings_infer(face_helper_1, face_clip_model, face_helper_2, eva_transform_mean, eva_transform_std, face_main_model, "cuda", torch.bfloat16, image, is_align_face=True) - -video = pipe(image=image, prompt=prompt, num_inference_steps=50, guidance_scale=6.0, use_dynamic_cfg=False, id_vit_hidden=id_vit_hidden, id_cond=id_cond, kps_cond=face_kps, generator=torch.Generator("cuda").manual_seed(42)) -export_to_video(video.frames[0], "output.mp4", fps=8) -``` - ### Memory optimization ConsisID requires about 44 GB of GPU memory to decode 49 frames (6 seconds of video at 8 FPS) with output resolution 720x480 (W x H), which makes it not possible to run on consumer GPUs or free-tier T4 Colab. The following memory optimizations could be used to reduce the memory footprint. For replication, you can refer to [this](https://gist.github.com/SHYuanBest/bc4207c36f454f9e969adbb50eaf8258) script. @@ -88,14 +48,6 @@ ConsisID requires about 44 GB of GPU memory to decode 49 frames (6 seconds of vi | vae.enable_slicing | 16 GB | 22 GB | | vae.enable_tiling | 5 GB | 7 GB | -### Quantized inference - -[torchao](https://github.com/pytorch/ao) and [optimum-quanto](https://github.com/huggingface/optimum-quanto/) can be used to quantize the text encoder, transformer and VAE modules to lower the memory requirements. This makes it possible to run the model on a free-tier T4 Colab or lower VRAM GPUs! - -It is also worth noting that torchao quantization is fully compatible with [torch.compile](/optimization/torch2.0#torchcompile), which allows for much faster inference speed. Additionally, models can be serialized and stored in a quantized datatype to save disk space with torchao. Find examples and benchmarks in the gists below. -- [torchao](https://gist.github.com/a-r-r-o-w/4d9732d17412888c885480c6521a9897) -- [quanto](https://gist.github.com/a-r-r-o-w/31be62828b00a9292821b85c1017effa) - ## ConsisIDPipeline [[autodoc]] ConsisIDPipeline From d0fe5030bec50925d14ffbfd94b4ab59b50fd825 Mon Sep 17 00:00:00 2001 From: Aryan Date: Wed, 18 Dec 2024 22:42:00 +0100 Subject: [PATCH 39/56] refactor --- .../pipelines/consisid/consisid_utils.py | 26 ++++-- .../pipelines/consisid/pipeline_consisid.py | 87 +++++++++---------- 2 files changed, 62 insertions(+), 51 deletions(-) diff --git a/src/diffusers/pipelines/consisid/consisid_utils.py b/src/diffusers/pipelines/consisid/consisid_utils.py index 8f4fd0b48cdb..d7642c160c8b 100644 --- a/src/diffusers/pipelines/consisid/consisid_utils.py +++ b/src/diffusers/pipelines/consisid/consisid_utils.py @@ -1,19 +1,31 @@ +import importlib.util import os import cv2 -import insightface import numpy as np import torch -from consisid_eva_clip import create_model_and_transforms -from consisid_eva_clip.constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD -from facexlib.parsing import init_parsing_model -from facexlib.utils.face_restoration_helper import FaceRestoreHelper -from insightface.app import FaceAnalysis from PIL import Image, ImageOps from torchvision.transforms import InterpolationMode from torchvision.transforms.functional import normalize, resize -from diffusers.utils import load_image +from ...utils import load_image + + +_insightface_available = importlib.util.find_spec("insightface") is not None +_consisid_eva_clip_available = importlib.util.find_spec("consisid_eva_clip") is not None +_facexlib_available = importlib.util.find_spec("facexlib") is not None + +if _insightface_available: + import insightface + from insightface.app import FaceAnalysis + +if _consisid_eva_clip_available: + from consisid_eva_clip import create_model_and_transforms + from consisid_eva_clip.constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD + +if _facexlib_available: + from facexlib.parsing import init_parsing_model + from facexlib.utils.face_restoration_helper import FaceRestoreHelper def resize_numpy_image_long(image, resize_long_edge=768): diff --git a/src/diffusers/pipelines/consisid/pipeline_consisid.py b/src/diffusers/pipelines/consisid/pipeline_consisid.py index 2e3169bc0c01..30cdb6ceddc3 100644 --- a/src/diffusers/pipelines/consisid/pipeline_consisid.py +++ b/src/diffusers/pipelines/consisid/pipeline_consisid.py @@ -42,50 +42,49 @@ EXAMPLE_DOC_STRING = """ Examples: - ```py - >>> # !pip install consisid_eva_clip insightface facexlib - >>> import torch - >>> from diffusers import ConsisIDPipeline - >>> from diffusers.pipelines.consisid.consisid_utils import prepare_face_models, process_face_embeddings_infer - >>> from diffusers.utils import export_to_video - >>> from huggingface_hub import snapshot_download - - >>> snapshot_download(repo_id="BestWishYsh/ConsisID-preview", local_dir="BestWishYsh/ConsisID-preview") - - >>> face_helper_1, face_helper_2, face_clip_model, face_main_model, eva_transform_mean, eva_transform_std = ( - ... prepare_face_models("BestWishYsh/ConsisID-preview", device="cuda", dtype=torch.bfloat16) - ... ) - >>> pipe = ConsisIDPipeline.from_pretrained("BestWishYsh/ConsisID-preview", torch_dtype=torch.bfloat16) - >>> pipe.to("cuda") - - >>> prompt = "The video captures a boy walking along a city street, filmed in black and white on a classic 35mm camera. His expression is thoughtful, his brow slightly furrowed as if he's lost in contemplation. The film grain adds a textured, timeless quality to the image, evoking a sense of nostalgia. Around him, the cityscape is filled with vintage buildings, cobblestone sidewalks, and softly blurred figures passing by, their outlines faint and indistinct. Streetlights cast a gentle glow, while shadows play across the boy's path, adding depth to the scene. The lighting highlights the boy's subtle smile, hinting at a fleeting moment of curiosity. The overall cinematic atmosphere, complete with classic film still aesthetics and dramatic contrasts, gives the scene an evocative and introspective feel." - >>> image = "https://github.com/PKU-YuanGroup/ConsisID/blob/main/asserts/example_images/2.png?raw=true" - - >>> id_cond, id_vit_hidden, image, face_kps = process_face_embeddings_infer( - ... face_helper_1, - ... face_clip_model, - ... face_helper_2, - ... eva_transform_mean, - ... eva_transform_std, - ... face_main_model, - ... "cuda", - ... torch.bfloat16, - ... image, - ... is_align_face=True, - ... ) - - >>> video = pipe( - ... image=image, - ... prompt=prompt, - ... num_inference_steps=50, - ... guidance_scale=6.0, - ... use_dynamic_cfg=False, - ... id_vit_hidden=id_vit_hidden, - ... id_cond=id_cond, - ... kps_cond=face_kps, - ... generator=torch.Generator("cuda").manual_seed(42), - ... ) - >>> export_to_video(video.frames[0], "output.mp4", fps=8) + ```python + import torch + from diffusers import ConsisIDPipeline + from diffusers.pipelines.consisid.consisid_utils import prepare_face_models, process_face_embeddings_infer + from diffusers.utils import export_to_video + from huggingface_hub import snapshot_download + + snapshot_download(repo_id="BestWishYsh/ConsisID-preview", local_dir="BestWishYsh/ConsisID-preview") + face_helper_1, face_helper_2, face_clip_model, face_main_model, eva_transform_mean, eva_transform_std = ( + prepare_face_models("BestWishYsh/ConsisID-preview", device="cuda", dtype=torch.bfloat16) + ) + pipe = ConsisIDPipeline.from_pretrained("BestWishYsh/ConsisID-preview", torch_dtype=torch.bfloat16) + pipe.to("cuda") + + # ConsisID works well with long and well-described prompts. Make sure the face in the image is clearly visible (e.g., preferably half-body or full-body). + prompt = "The video captures a boy walking along a city street, filmed in black and white on a classic 35mm camera. His expression is thoughtful, his brow slightly furrowed as if he's lost in contemplation. The film grain adds a textured, timeless quality to the image, evoking a sense of nostalgia. Around him, the cityscape is filled with vintage buildings, cobblestone sidewalks, and softly blurred figures passing by, their outlines faint and indistinct. Streetlights cast a gentle glow, while shadows play across the boy's path, adding depth to the scene. The lighting highlights the boy's subtle smile, hinting at a fleeting moment of curiosity. The overall cinematic atmosphere, complete with classic film still aesthetics and dramatic contrasts, gives the scene an evocative and introspective feel." + image = "https://github.com/PKU-YuanGroup/ConsisID/blob/main/asserts/example_images/2.png?raw=true" + + id_cond, id_vit_hidden, image, face_kps = process_face_embeddings_infer( + face_helper_1, + face_clip_model, + face_helper_2, + eva_transform_mean, + eva_transform_std, + face_main_model, + "cuda", + torch.bfloat16, + image, + is_align_face=True, + ) + + video = pipe( + image=image, + prompt=prompt, + num_inference_steps=50, + guidance_scale=6.0, + use_dynamic_cfg=False, + id_vit_hidden=id_vit_hidden, + id_cond=id_cond, + kps_cond=face_kps, + generator=torch.Generator("cuda").manual_seed(42), + ) + export_to_video(video.frames[0], "output.mp4", fps=8) ``` """ From 60856c7907cee9faa9fedc9de4df5f1db730f34e Mon Sep 17 00:00:00 2001 From: Aryan Date: Wed, 18 Dec 2024 22:42:55 +0100 Subject: [PATCH 40/56] fix --- .../pipelines/consisid/pipeline_consisid.py | 84 +++++++++---------- 1 file changed, 42 insertions(+), 42 deletions(-) diff --git a/src/diffusers/pipelines/consisid/pipeline_consisid.py b/src/diffusers/pipelines/consisid/pipeline_consisid.py index 30cdb6ceddc3..33b785c1fe78 100644 --- a/src/diffusers/pipelines/consisid/pipeline_consisid.py +++ b/src/diffusers/pipelines/consisid/pipeline_consisid.py @@ -43,48 +43,48 @@ EXAMPLE_DOC_STRING = """ Examples: ```python - import torch - from diffusers import ConsisIDPipeline - from diffusers.pipelines.consisid.consisid_utils import prepare_face_models, process_face_embeddings_infer - from diffusers.utils import export_to_video - from huggingface_hub import snapshot_download - - snapshot_download(repo_id="BestWishYsh/ConsisID-preview", local_dir="BestWishYsh/ConsisID-preview") - face_helper_1, face_helper_2, face_clip_model, face_main_model, eva_transform_mean, eva_transform_std = ( - prepare_face_models("BestWishYsh/ConsisID-preview", device="cuda", dtype=torch.bfloat16) - ) - pipe = ConsisIDPipeline.from_pretrained("BestWishYsh/ConsisID-preview", torch_dtype=torch.bfloat16) - pipe.to("cuda") - - # ConsisID works well with long and well-described prompts. Make sure the face in the image is clearly visible (e.g., preferably half-body or full-body). - prompt = "The video captures a boy walking along a city street, filmed in black and white on a classic 35mm camera. His expression is thoughtful, his brow slightly furrowed as if he's lost in contemplation. The film grain adds a textured, timeless quality to the image, evoking a sense of nostalgia. Around him, the cityscape is filled with vintage buildings, cobblestone sidewalks, and softly blurred figures passing by, their outlines faint and indistinct. Streetlights cast a gentle glow, while shadows play across the boy's path, adding depth to the scene. The lighting highlights the boy's subtle smile, hinting at a fleeting moment of curiosity. The overall cinematic atmosphere, complete with classic film still aesthetics and dramatic contrasts, gives the scene an evocative and introspective feel." - image = "https://github.com/PKU-YuanGroup/ConsisID/blob/main/asserts/example_images/2.png?raw=true" - - id_cond, id_vit_hidden, image, face_kps = process_face_embeddings_infer( - face_helper_1, - face_clip_model, - face_helper_2, - eva_transform_mean, - eva_transform_std, - face_main_model, - "cuda", - torch.bfloat16, - image, - is_align_face=True, - ) - - video = pipe( - image=image, - prompt=prompt, - num_inference_steps=50, - guidance_scale=6.0, - use_dynamic_cfg=False, - id_vit_hidden=id_vit_hidden, - id_cond=id_cond, - kps_cond=face_kps, - generator=torch.Generator("cuda").manual_seed(42), - ) - export_to_video(video.frames[0], "output.mp4", fps=8) + >>> import torch + >>> from diffusers import ConsisIDPipeline + >>> from diffusers.pipelines.consisid.consisid_utils import prepare_face_models, process_face_embeddings_infer + >>> from diffusers.utils import export_to_video + >>> from huggingface_hub import snapshot_download + + >>> snapshot_download(repo_id="BestWishYsh/ConsisID-preview", local_dir="BestWishYsh/ConsisID-preview") + >>> face_helper_1, face_helper_2, face_clip_model, face_main_model, eva_transform_mean, eva_transform_std = ( + ... prepare_face_models("BestWishYsh/ConsisID-preview", device="cuda", dtype=torch.bfloat16) + ... ) + >>> pipe = ConsisIDPipeline.from_pretrained("BestWishYsh/ConsisID-preview", torch_dtype=torch.bfloat16) + >>> pipe.to("cuda") + + >>> # ConsisID works well with long and well-described prompts. Make sure the face in the image is clearly visible (e.g., preferably half-body or full-body). + >>> prompt = "The video captures a boy walking along a city street, filmed in black and white on a classic 35mm camera. His expression is thoughtful, his brow slightly furrowed as if he's lost in contemplation. The film grain adds a textured, timeless quality to the image, evoking a sense of nostalgia. Around him, the cityscape is filled with vintage buildings, cobblestone sidewalks, and softly blurred figures passing by, their outlines faint and indistinct. Streetlights cast a gentle glow, while shadows play across the boy's path, adding depth to the scene. The lighting highlights the boy's subtle smile, hinting at a fleeting moment of curiosity. The overall cinematic atmosphere, complete with classic film still aesthetics and dramatic contrasts, gives the scene an evocative and introspective feel." + >>> image = "https://github.com/PKU-YuanGroup/ConsisID/blob/main/asserts/example_images/2.png?raw=true" + + >>> id_cond, id_vit_hidden, image, face_kps = process_face_embeddings_infer( + ... face_helper_1, + ... face_clip_model, + ... face_helper_2, + ... eva_transform_mean, + ... eva_transform_std, + ... face_main_model, + ... "cuda", + ... torch.bfloat16, + ... image, + ... is_align_face=True, + ... ) + + >>> video = pipe( + ... image=image, + ... prompt=prompt, + ... num_inference_steps=50, + ... guidance_scale=6.0, + ... use_dynamic_cfg=False, + ... id_vit_hidden=id_vit_hidden, + ... id_cond=id_cond, + ... kps_cond=face_kps, + ... generator=torch.Generator("cuda").manual_seed(42), + ... ) + >>> export_to_video(video.frames[0], "output.mp4", fps=8) ``` """ From 313c2e30c41c66eb27db107b8e7febf1dcbccd8b Mon Sep 17 00:00:00 2001 From: Aryan Date: Wed, 18 Dec 2024 22:45:10 +0100 Subject: [PATCH 41/56] undo changes to examples --- .../geodiff/geodiff_molecule_conformation.ipynb | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/examples/research_projects/geodiff/geodiff_molecule_conformation.ipynb b/examples/research_projects/geodiff/geodiff_molecule_conformation.ipynb index 670f5c9cc1ac..bde093802a5d 100644 --- a/examples/research_projects/geodiff/geodiff_molecule_conformation.ipynb +++ b/examples/research_projects/geodiff/geodiff_molecule_conformation.ipynb @@ -3649,4 +3649,4 @@ }, "nbformat": 4, "nbformat_minor": 0 -} +} \ No newline at end of file From 935319a79effcc7fe15aca98f1281760fab47f88 Mon Sep 17 00:00:00 2001 From: Aryan Date: Wed, 18 Dec 2024 22:46:36 +0100 Subject: [PATCH 42/56] remove save/load and fuse methods --- .../transformers/consisid_transformer_3d.py | 53 ------------------- 1 file changed, 53 deletions(-) diff --git a/src/diffusers/models/transformers/consisid_transformer_3d.py b/src/diffusers/models/transformers/consisid_transformer_3d.py index 754ee8e65365..3c999059d490 100644 --- a/src/diffusers/models/transformers/consisid_transformer_3d.py +++ b/src/diffusers/models/transformers/consisid_transformer_3d.py @@ -667,19 +667,6 @@ def _init_face_inputs(self): ] ) - def save_face_modules(self, path: str): - save_dict = { - "local_facial_extractor": self.local_facial_extractor.state_dict(), - "perceiver_cross_attention": [ca.state_dict() for ca in self.perceiver_cross_attention], - } - torch.save(save_dict, path) - - def load_face_modules(self, path: str): - checkpoint = torch.load(path, map_location=self.device) - self.local_facial_extractor.load_state_dict(checkpoint["local_facial_extractor"]) - for ca, state_dict in zip(self.perceiver_cross_attention, checkpoint["perceiver_cross_attention"]): - ca.load_state_dict(state_dict) - @property # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors def attn_processors(self) -> Dict[str, AttentionProcessor]: @@ -740,46 +727,6 @@ def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): for name, module in self.named_children(): fn_recursive_attn_processor(name, module, processor) - # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedCogVideoXAttnProcessor2_0 - def fuse_qkv_projections(self): - """ - Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value) - are fused. For cross-attention modules, key and value projection matrices are fused. - - - - This API is 🧪 experimental. - - - """ - self.original_attn_processors = None - - for _, attn_processor in self.attn_processors.items(): - if "Added" in str(attn_processor.__class__.__name__): - raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.") - - self.original_attn_processors = self.attn_processors - - for module in self.modules(): - if isinstance(module, Attention): - module.fuse_projections(fuse=True) - - self.set_attn_processor(FusedCogVideoXAttnProcessor2_0()) - - # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections - def unfuse_qkv_projections(self): - """Disables the fused QKV projection if enabled. - - - - This API is 🧪 experimental. - - - - """ - if self.original_attn_processors is not None: - self.set_attn_processor(self.original_attn_processors) - def forward( self, hidden_states: torch.Tensor, From 0f5d677db28e2b8d2a26bd7c26ac712871421e0a Mon Sep 17 00:00:00 2001 From: Aryan Date: Wed, 18 Dec 2024 22:52:12 +0100 Subject: [PATCH 43/56] update --- .../models/transformers/consisid_transformer_3d.py | 2 +- src/diffusers/pipelines/consisid/consisid_utils.py | 6 ++++++ 2 files changed, 7 insertions(+), 1 deletion(-) diff --git a/src/diffusers/models/transformers/consisid_transformer_3d.py b/src/diffusers/models/transformers/consisid_transformer_3d.py index 3c999059d490..f08426f5524b 100644 --- a/src/diffusers/models/transformers/consisid_transformer_3d.py +++ b/src/diffusers/models/transformers/consisid_transformer_3d.py @@ -23,7 +23,7 @@ from ...utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers from ...utils.torch_utils import maybe_allow_in_graph from ..attention import Attention, FeedForward -from ..attention_processor import AttentionProcessor, CogVideoXAttnProcessor2_0, FusedCogVideoXAttnProcessor2_0 +from ..attention_processor import AttentionProcessor, CogVideoXAttnProcessor2_0 from ..embeddings import CogVideoXPatchEmbed, TimestepEmbedding, Timesteps from ..modeling_outputs import Transformer2DModelOutput from ..modeling_utils import ModelMixin diff --git a/src/diffusers/pipelines/consisid/consisid_utils.py b/src/diffusers/pipelines/consisid/consisid_utils.py index d7642c160c8b..ec9e9aa49c0f 100644 --- a/src/diffusers/pipelines/consisid/consisid_utils.py +++ b/src/diffusers/pipelines/consisid/consisid_utils.py @@ -18,14 +18,20 @@ if _insightface_available: import insightface from insightface.app import FaceAnalysis +else: + raise ImportError("insightface is not available. Please install it using 'pip install insightface'.") if _consisid_eva_clip_available: from consisid_eva_clip import create_model_and_transforms from consisid_eva_clip.constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD +else: + raise ImportError("consisid_eva_clip is not available. Please install it using 'pip install consisid_eva_clip'.") if _facexlib_available: from facexlib.parsing import init_parsing_model from facexlib.utils.face_restoration_helper import FaceRestoreHelper +else: + raise ImportError("facexlib is not available. Please install it using 'pip install facexlib'.") def resize_numpy_image_long(image, resize_long_edge=768): From aa7b0eb842e3db6ed609a7787ab6fe3994ff386e Mon Sep 17 00:00:00 2001 From: SHYuanBest Date: Thu, 19 Dec 2024 21:25:35 +0800 Subject: [PATCH 44/56] link hf-doc-img & make test extremely small --- docs/source/en/using-diffusers/consisid.md | 29 +++-- docs/source/zh/consisid.md | 29 +++-- .../transformers/consisid_transformer_3d.py | 102 +++++++++------ .../pipelines/consisid/pipeline_consisid.py | 17 +-- .../test_models_transformer_consisid.py | 67 +++++----- tests/pipelines/consisid/test_consisid.py | 117 +++++++----------- 6 files changed, 180 insertions(+), 181 deletions(-) diff --git a/docs/source/en/using-diffusers/consisid.md b/docs/source/en/using-diffusers/consisid.md index 1bacb08de295..34f9c8b3d63c 100644 --- a/docs/source/en/using-diffusers/consisid.md +++ b/docs/source/en/using-diffusers/consisid.md @@ -48,7 +48,7 @@ For identity-preserving text-to-video, pass a text prompt and an image contain c from diffusers.utils import export_to_video prompt = "The video captures a boy walking along a city street, filmed in black and white on a classic 35mm camera. His expression is thoughtful, his brow slightly furrowed as if he's lost in contemplation. The film grain adds a textured, timeless quality to the image, evoking a sense of nostalgia. Around him, the cityscape is filled with vintage buildings, cobblestone sidewalks, and softly blurred figures passing by, their outlines faint and indistinct. Streetlights cast a gentle glow, while shadows play across the boy's path, adding depth to the scene. The lighting highlights the boy's subtle smile, hinting at a fleeting moment of curiosity. The overall cinematic atmosphere, complete with classic film still aesthetics and dramatic contrasts, gives the scene an evocative and introspective feel." -image = "https://github.com/PKU-YuanGroup/ConsisID/blob/main/asserts/example_images/2.png?raw=true" +image = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/refs%2Fpr%2F406/diffusers/consisid/consisid_image_3.png?download=true" id_cond, id_vit_hidden, image, face_kps = process_face_embeddings_infer(face_helper_1, face_clip_model, face_helper_2, eva_transform_mean, eva_transform_std, face_main_model, "cuda", torch.bfloat16, image, is_align_face=True) @@ -62,24 +62,29 @@ export_to_video(video.frames[0], "output.mp4", fps=8) - - - + + + - - - + + + + + + + + - - + + - - - + + +
Description
The video features a woman in exquisite hybrid armor adorned with iridescent gemstones, standing amidst gently falling cherry blossoms. Her piercing yet serene gaze hints at quiet determination, as a breeze catches a loose strand of her hair ......The video, in a beautifully crafted animated style, features a confident woman riding a horse through a lush forest clearing. Her expression is focused yet serene as she adjusts her wide-brimmed hat with a practiced hand. She wears a flowy bohemian dress ......
The video features a baby wearing a bright superhero cape, standing confidently with arms raised in a powerful pose. The baby has a determined look on their face, with eyes wide and lips pursed in concentration, as if ready to take on a challenge ......The video, in a captivating animated style, shows a woman standing in the center of a snowy forest, her eyes narrowed in concentration as she extends her hand forward. She is dressed in a deep blue cloak, her breath visible in the cold air ......
The animation features a whimsical portrait of a balloon seller standing in a gentle breeze, captured with soft, hazy brushstrokes that evoke the feel of a serene spring day. His face is framed by a gentle smile, his eyes ......
The video captures a boy walking along a city street, filmed in black and white on a classic 35mm camera. His expression is thoughtful, his brow slightly furrowed as if he's lost in contemplation. The film grain adds a textured ......
The video features a man standing at an easel, focused intently as his brush dances across the canvas. His expression is one of deep concentration, with a hint of satisfaction as each brushstroke adds color and form ......The video features a baby wearing a bright superhero cape, standing confidently with arms raised in a powerful pose. The baby has a determined look on their face, with eyes wide and lips pursed in concentration, as if ready to take on a challenge ......
diff --git a/docs/source/zh/consisid.md b/docs/source/zh/consisid.md index 0405d1064f09..6bd4b752d444 100644 --- a/docs/source/zh/consisid.md +++ b/docs/source/zh/consisid.md @@ -52,7 +52,7 @@ pipe.to("cuda") from diffusers.utils import export_to_video prompt = "The video captures a boy walking along a city street, filmed in black and white on a classic 35mm camera. His expression is thoughtful, his brow slightly furrowed as if he's lost in contemplation. The film grain adds a textured, timeless quality to the image, evoking a sense of nostalgia. Around him, the cityscape is filled with vintage buildings, cobblestone sidewalks, and softly blurred figures passing by, their outlines faint and indistinct. Streetlights cast a gentle glow, while shadows play across the boy's path, adding depth to the scene. The lighting highlights the boy's subtle smile, hinting at a fleeting moment of curiosity. The overall cinematic atmosphere, complete with classic film still aesthetics and dramatic contrasts, gives the scene an evocative and introspective feel." -image = "https://github.com/PKU-YuanGroup/ConsisID/blob/main/asserts/example_images/2.png?raw=true" +image = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/refs%2Fpr%2F406/diffusers/consisid/consisid_image_3.png?download=true" id_cond, id_vit_hidden, image, face_kps = process_face_embeddings_infer(face_helper_1, face_clip_model, face_helper_2, eva_transform_mean, eva_transform_std, face_main_model, "cuda", torch.bfloat16, image, is_align_face=True) @@ -66,24 +66,29 @@ export_to_video(video.frames[0], "output.mp4", fps=8) Description - - - The video features a woman in exquisite hybrid armor adorned with iridescent gemstones, standing amidst gently falling cherry blossoms. Her piercing yet serene gaze hints at quiet determination, as a breeze catches a loose strand of her hair ...... + + + The video, in a beautifully crafted animated style, features a confident woman riding a horse through a lush forest clearing. Her expression is focused yet serene as she adjusts her wide-brimmed hat with a practiced hand. She wears a flowy bohemian dress ...... - - - The video features a baby wearing a bright superhero cape, standing confidently with arms raised in a powerful pose. The baby has a determined look on their face, with eyes wide and lips pursed in concentration, as if ready to take on a challenge ...... + + + The video, in a captivating animated style, shows a woman standing in the center of a snowy forest, her eyes narrowed in concentration as she extends her hand forward. She is dressed in a deep blue cloak, her breath visible in the cold air ...... + + + + + The animation features a whimsical portrait of a balloon seller standing in a gentle breeze, captured with soft, hazy brushstrokes that evoke the feel of a serene spring day. His face is framed by a gentle smile, his eyes ...... - - + + The video captures a boy walking along a city street, filmed in black and white on a classic 35mm camera. His expression is thoughtful, his brow slightly furrowed as if he's lost in contemplation. The film grain adds a textured ...... - - - The video features a man standing at an easel, focused intently as his brush dances across the canvas. His expression is one of deep concentration, with a hint of satisfaction as each brushstroke adds color and form ...... + + + The video features a baby wearing a bright superhero cape, standing confidently with arms raised in a powerful pose. The baby has a determined look on their face, with eyes wide and lips pursed in concentration, as if ready to take on a challenge ...... diff --git a/src/diffusers/models/transformers/consisid_transformer_3d.py b/src/diffusers/models/transformers/consisid_transformer_3d.py index f08426f5524b..df36cda67ed0 100644 --- a/src/diffusers/models/transformers/consisid_transformer_3d.py +++ b/src/diffusers/models/transformers/consisid_transformer_3d.py @@ -142,7 +142,8 @@ def forward(self, x, latents): class LocalFacialExtractor(nn.Module): def __init__( self, - dim=1024, + id_dim=1280, + vit_dim=1024, depth=10, dim_head=64, heads=16, @@ -155,7 +156,8 @@ def __init__( Initializes the LocalFacialExtractor class. Parameters: - - dim (int): The dimensionality of latent features. + - id_dim (int): The dimensionality of id features. + - vit_dim (int): The dimensionality of vit features. - depth (int): Total number of PerceiverAttention and ConsisIDFeedForward layers. - dim_head (int): Dimensionality of each attention head. - heads (int): Number of attention heads. @@ -168,16 +170,16 @@ def __init__( # Storing identity token and query information self.num_id_token = num_id_token - self.dim = dim + self.vit_dim = vit_dim self.num_queries = num_queries assert depth % 5 == 0 self.depth = depth // 5 - scale = dim**-0.5 + scale = vit_dim**-0.5 # Learnable latent query embeddings - self.latents = nn.Parameter(torch.randn(1, num_queries, dim) * scale) + self.latents = nn.Parameter(torch.randn(1, num_queries, vit_dim) * scale) # Projection layer to map the latent output to the desired dimension - self.proj_out = nn.Parameter(scale * torch.randn(dim, output_dim)) + self.proj_out = nn.Parameter(scale * torch.randn(vit_dim, output_dim)) # Attention and ConsisIDFeedForward layer stack self.layers = nn.ModuleList([]) @@ -185,8 +187,8 @@ def __init__( self.layers.append( nn.ModuleList( [ - PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads), # Perceiver Attention layer - ConsisIDFeedForward(dim=dim, mult=ff_mult), # ConsisIDFeedForward layer + PerceiverAttention(dim=vit_dim, dim_head=dim_head, heads=heads), # Perceiver Attention layer + ConsisIDFeedForward(dim=vit_dim, mult=ff_mult), # ConsisIDFeedForward layer ] ) ) @@ -197,25 +199,25 @@ def __init__( self, f"mapping_{i}", nn.Sequential( - nn.Linear(1024, 1024), - nn.LayerNorm(1024), + nn.Linear(vit_dim, vit_dim), + nn.LayerNorm(vit_dim), nn.LeakyReLU(), - nn.Linear(1024, 1024), - nn.LayerNorm(1024), + nn.Linear(vit_dim, vit_dim), + nn.LayerNorm(vit_dim), nn.LeakyReLU(), - nn.Linear(1024, dim), + nn.Linear(vit_dim, vit_dim), ), ) # Mapping for identity embedding vectors self.id_embedding_mapping = nn.Sequential( - nn.Linear(1280, 1024), - nn.LayerNorm(1024), + nn.Linear(id_dim, vit_dim), + nn.LayerNorm(vit_dim), nn.LeakyReLU(), - nn.Linear(1024, 1024), - nn.LayerNorm(1024), + nn.Linear(vit_dim, vit_dim), + nn.LayerNorm(vit_dim), nn.LeakyReLU(), - nn.Linear(1024, dim * num_id_token), + nn.Linear(vit_dim, vit_dim * num_id_token), ) def forward(self, x, y): @@ -223,8 +225,8 @@ def forward(self, x, y): Forward pass for LocalFacialExtractor. Parameters: - - x (Tensor): The input identity embedding tensor of shape (batch_size, 1280). - - y (list of Tensor): A list of 5 visual feature tensors each of shape (batch_size, 1024). + - x (Tensor): The input identity embedding tensor of shape (batch_size, id_dim). + - y (list of Tensor): A list of 5 visual feature tensors each of shape (batch_size, vit_dim). Returns: - Tensor: The extracted latent features of shape (batch_size, num_queries, output_dim). @@ -235,7 +237,7 @@ def forward(self, x, y): # Map the identity embedding to tokens x = self.id_embedding_mapping(x) - x = x.reshape(-1, self.num_id_token, self.dim) + x = x.reshape(-1, self.num_id_token, self.vit_dim) # Concatenate identity tokens with the latent queries latents = torch.cat((latents, x), dim=1) @@ -514,13 +516,13 @@ class ConsisIDTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin): model will focus on identity-preserving tasks. is_kps (`bool`, defaults to `False`): Whether to enable keypoint for global facial extractor. If `True`, keypoints will be in the model. - cross_attn_interval (`int`, defaults to `1`): + cross_attn_interval (`int`, defaults to `2`): The interval between cross-attention layers in the Transformer architecture. A larger value may reduce the frequency of cross-attention computations, which can help reduce computational overhead. - LFE_heads (`int`, defaults to `16`): + LFE_num_heads (`int`, defaults to `16`): The number of attention heads used in the Local Facial Extractor (LFE) module. More heads may improve the ability to capture diverse features, but can also increase computational complexity. - LFE_num_tokens (`int`, defaults to `32`): + LFE_num_querie (`int`, defaults to `32`): The number of tokens to use in the Local Facial Extractor (LFE). This module is responsible for capturing high frequency representations of the face. LFE_output_dim (`int`, defaults to `2048`): @@ -563,10 +565,18 @@ def __init__( use_learned_positional_embeddings: bool = False, is_train_face: bool = False, is_kps: bool = False, - cross_attn_interval: int = 1, - LFE_heads: int = 16, - LFE_num_tokens: int = 32, + cross_attn_interval: int = 2, + cross_attn_dim_head: int = 128, + cross_attn_num_heads: int = 16, + LFE_id_dim: int = 1280, + LFE_vit_dim: int = 1024, + LFE_depth: int = 10, + LFE_dim_head: int = 64, + LFE_num_heads: int = 16, + LFE_num_id_token: int = 5, + LFE_num_querie: int = 32, LFE_output_dim: int = 2048, + LFE_ff_mult: int = 4, local_face_scale: float = 1.0, ): super().__init__() @@ -638,14 +648,25 @@ def __init__( # 5. Define identity-preserving config if is_train_face: + # LFE configs + self.LFE_id_dim = LFE_id_dim + self.LFE_vit_dim = LFE_vit_dim + self.LFE_depth = LFE_depth + self.LFE_dim_head = LFE_dim_head + self.LFE_num_heads = LFE_num_heads + self.LFE_num_id_token = LFE_num_id_token + self.LFE_num_querie = LFE_num_querie + self.LFE_output_dim = LFE_output_dim + self.LFE_ff_mult = LFE_ff_mult + # cross configs self.inner_dim = inner_dim self.cross_attn_interval = cross_attn_interval - self.num_ca = num_layers // cross_attn_interval - self.LFE_heads = LFE_heads - self.LFE_num_tokens = LFE_num_tokens - self.LFE_output_dim = LFE_output_dim - self.LFE_final_output_dim = int(self.inner_dim / 3 * 2) + self.num_cross_attn = num_layers // cross_attn_interval + self.cross_attn_dim_head = cross_attn_dim_head + self.cross_attn_num_heads = cross_attn_num_heads + self.cross_attn_kv_dim = int(self.inner_dim / 3 * 2) self.local_face_scale = local_face_scale + # face modules self._init_face_inputs() def _set_gradient_checkpointing(self, module, value=False): @@ -655,15 +676,26 @@ def _init_face_inputs(self): device = self.device weight_dtype = self.dtype self.local_facial_extractor = LocalFacialExtractor( - heads=self.LFE_heads, num_queries=self.LFE_num_tokens, output_dim=self.LFE_output_dim + id_dim=self.LFE_id_dim, + vit_dim=self.LFE_vit_dim, + depth=self.LFE_depth, + dim_head=self.LFE_dim_head, + heads=self.LFE_num_heads, + num_id_token=self.LFE_num_id_token, + num_queries=self.LFE_num_querie, + output_dim=self.LFE_output_dim, + ff_mult=self.LFE_ff_mult, ) self.local_facial_extractor.to(device, dtype=weight_dtype) self.perceiver_cross_attention = nn.ModuleList( [ PerceiverCrossAttention( - dim=self.inner_dim, dim_head=128, heads=16, kv_dim=self.LFE_final_output_dim + dim=self.inner_dim, + dim_head=self.cross_attn_dim_head, + heads=self.cross_attn_num_heads, + kv_dim=self.cross_attn_kv_dim, ).to(device, dtype=weight_dtype) - for _ in range(self.num_ca) + for _ in range(self.num_cross_attn) ] ) diff --git a/src/diffusers/pipelines/consisid/pipeline_consisid.py b/src/diffusers/pipelines/consisid/pipeline_consisid.py index 33b785c1fe78..1ddbed731291 100644 --- a/src/diffusers/pipelines/consisid/pipeline_consisid.py +++ b/src/diffusers/pipelines/consisid/pipeline_consisid.py @@ -58,7 +58,7 @@ >>> # ConsisID works well with long and well-described prompts. Make sure the face in the image is clearly visible (e.g., preferably half-body or full-body). >>> prompt = "The video captures a boy walking along a city street, filmed in black and white on a classic 35mm camera. His expression is thoughtful, his brow slightly furrowed as if he's lost in contemplation. The film grain adds a textured, timeless quality to the image, evoking a sense of nostalgia. Around him, the cityscape is filled with vintage buildings, cobblestone sidewalks, and softly blurred figures passing by, their outlines faint and indistinct. Streetlights cast a gentle glow, while shadows play across the boy's path, adding depth to the scene. The lighting highlights the boy's subtle smile, hinting at a fleeting moment of curiosity. The overall cinematic atmosphere, complete with classic film still aesthetics and dramatic contrasts, gives the scene an evocative and introspective feel." - >>> image = "https://github.com/PKU-YuanGroup/ConsisID/blob/main/asserts/example_images/2.png?raw=true" + >>> image = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/refs%2Fpr%2F406/diffusers/consisid/consisid_image_3.png?download=true" >>> id_cond, id_vit_hidden, image, face_kps = process_face_embeddings_infer( ... face_helper_1, @@ -611,21 +611,6 @@ def check_inputs( f" {negative_prompt_embeds.shape}." ) - # Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline.fuse_qkv_projections - def fuse_qkv_projections(self) -> None: - r"""Enables fused QKV projections.""" - self.fusing_transformer = True - self.transformer.fuse_qkv_projections() - - # Copied from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline.unfuse_qkv_projections - def unfuse_qkv_projections(self) -> None: - r"""Disable QKV projection fusion if enabled.""" - if not self.fusing_transformer: - logger.warning("The Transformer was not initially fused for QKV projections. Doing nothing.") - else: - self.transformer.unfuse_qkv_projections() - self.fusing_transformer = False - def _prepare_rotary_positional_embeddings( self, height: int, diff --git a/tests/models/transformers/test_models_transformer_consisid.py b/tests/models/transformers/test_models_transformer_consisid.py index d0646dfb9a15..7067a1e79715 100644 --- a/tests/models/transformers/test_models_transformer_consisid.py +++ b/tests/models/transformers/test_models_transformer_consisid.py @@ -36,19 +36,19 @@ class ConsisIDTransformerTests(ModelTesterMixin, unittest.TestCase): @property def dummy_input(self): - batch_size = 1 - num_channels = 16 - num_frames = 13 - height = 60 - width = 90 - embedding_dim = 4096 - sequence_length = 226 + batch_size = 2 + num_channels = 4 + num_frames = 1 + height = 8 + width = 8 + embedding_dim = 8 + sequence_length = 8 hidden_states = torch.randn((batch_size, num_frames, num_channels, height, width)).to(torch_device) encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device) timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device) - id_vit_hidden = [torch.ones([batch_size, 577, 1024]).to(torch_device)] * 5 - id_cond = torch.ones(batch_size, 1280).to(torch_device) + id_vit_hidden = [torch.ones([batch_size, 2, 2]).to(torch_device)] * 5 + id_cond = torch.ones(batch_size, 2).to(torch_device) return { "hidden_states": hidden_states, @@ -60,36 +60,41 @@ def dummy_input(self): @property def input_shape(self): - return (1, 13, 60, 90) + return (1, 4, 8, 8) @property def output_shape(self): - return (13, 16, 60, 90) + return (1, 4, 8, 8) def prepare_init_args_and_inputs_for_common(self): init_dict = { - "attention_head_dim": 64, - "cross_attn_interval": 2, - "dropout": 0.0, - "flip_sin_to_cos": True, - "freq_shift": 0, - "in_channels": 16, - "out_channels": 16, + "num_attention_heads": 2, + "attention_head_dim": 8, + "in_channels": 4, + "out_channels": 4, + "time_embed_dim": 2, + "text_embed_dim": 8, + "num_layers": 1, + "sample_width": 8, + "sample_height": 8, + "sample_frames": 8, + "patch_size": 2, + "temporal_compression_ratio": 4, + "max_text_seq_length": 8, + "cross_attn_interval": 1, "is_kps": False, "is_train_face": True, - "LFE_heads": 16, - "LFE_num_tokens": 32, - "LFE_output_dim": 2048, - "local_face_scale": 1.0, - "max_text_seq_length": 226, - "num_attention_heads": 48, - "num_layers": 2, - "patch_size": 2, - "sample_frames": 49, - "sample_height": 60, - "sample_width": 90, - "text_embed_dim": 4096, - "time_embed_dim": 512, + "cross_attn_dim_head": 1, + "cross_attn_num_heads": 1, + "LFE_id_dim": 2, + "LFE_vit_dim": 2, + "LFE_depth": 5, + "LFE_dim_head": 8, + "LFE_num_heads": 2, + "LFE_num_id_token": 1, + "LFE_num_querie": 1, + "LFE_output_dim": 10, + "LFE_ff_mult": 1, } inputs_dict = self.dummy_input return init_dict, inputs_dict diff --git a/tests/pipelines/consisid/test_consisid.py b/tests/pipelines/consisid/test_consisid.py index 4bbc71c9dcfb..259a4a7df182 100644 --- a/tests/pipelines/consisid/test_consisid.py +++ b/tests/pipelines/consisid/test_consisid.py @@ -34,8 +34,6 @@ from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineTesterMixin, - check_qkv_fusion_matches_attn_procs_length, - check_qkv_fusion_processors_exist, to_np, ) @@ -64,28 +62,35 @@ class ConsisIDPipelineFastTests(PipelineTesterMixin, unittest.TestCase): def get_dummy_components(self): torch.manual_seed(0) transformer = ConsisIDTransformer3DModel( - attention_head_dim=64, - cross_attn_interval=2, - dropout=0.0, - flip_sin_to_cos=True, - freq_shift=0, - in_channels=32, - out_channels=16, + num_attention_heads=2, + attention_head_dim=16, + in_channels=8, + out_channels=4, + time_embed_dim=2, + text_embed_dim=32, + num_layers=1, + sample_width=2, + sample_height=2, + sample_frames=9, + patch_size=2, + temporal_compression_ratio=4, + max_text_seq_length=16, + use_rotary_positional_embeddings=True, + use_learned_positional_embeddings=True, + cross_attn_interval=1, is_kps=False, is_train_face=True, - LFE_heads=16, - LFE_num_tokens=32, - LFE_output_dim=2048, - local_face_scale=1.0, - max_text_seq_length=226, - num_attention_heads=48, - num_layers=2, - patch_size=2, - sample_frames=49, - sample_height=60, - sample_width=90, - text_embed_dim=4096, - time_embed_dim=512, + cross_attn_dim_head=1, + cross_attn_num_heads=1, + LFE_id_dim=2, + LFE_vit_dim=2, + LFE_depth=5, + LFE_dim_head=8, + LFE_num_heads=2, + LFE_num_id_token=1, + LFE_num_querie=1, + LFE_output_dim=21, + LFE_ff_mult=1, ) torch.manual_seed(0) @@ -105,7 +110,7 @@ def get_dummy_components(self): "CogVideoXUpBlock3D", ), block_out_channels=(8, 8, 8, 8), - latent_channels=16, + latent_channels=4, layers_per_block=1, norm_num_groups=2, temporal_compression_ratio=4, @@ -113,8 +118,8 @@ def get_dummy_components(self): torch.manual_seed(0) scheduler = DDIMScheduler() - text_encoder = T5EncoderModel.from_pretrained("google/t5-v1_1-xxl") - tokenizer = AutoTokenizer.from_pretrained("google/t5-v1_1-xxl") + text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") + tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") components = { "transformer": transformer, @@ -134,19 +139,19 @@ def get_dummy_inputs(self, device, seed=0): image_height = 16 image_width = 16 image = Image.new("RGB", (image_width, image_height)) - id_vit_hidden = [torch.ones([1, 577, 1024])] * 5 - id_cond = torch.ones(1, 1280) + id_vit_hidden = [torch.ones([1, 2, 2])] * 5 + id_cond = torch.ones(1, 2) inputs = { "image": image, "prompt": "dance monkey", "negative_prompt": "", "generator": generator, - "num_inference_steps": 1, + "num_inference_steps": 2, "guidance_scale": 6.0, "height": image_height, "width": image_width, - "num_frames": 13, - "max_sequence_length": 226, + "num_frames": 8, + "max_sequence_length": 16, "id_vit_hidden": id_vit_hidden, "id_cond": id_cond, "output_type": "pt", @@ -165,8 +170,8 @@ def test_inference(self): video = pipe(**inputs).frames generated_video = video[0] - self.assertEqual(generated_video.shape, (16, 3, 16, 16)) - expected_video = torch.randn(16, 3, 16, 16) + self.assertEqual(generated_video.shape, (8, 3, 16, 16)) + expected_video = torch.randn(8, 3, 16, 16) max_diff = np.abs(generated_video - expected_video).max() self.assertLessEqual(max_diff, 1e10) @@ -267,12 +272,12 @@ def test_attention_slicing_forward_pass( "Attention slicing should not affect the inference results", ) - def test_vae_tiling(self, expected_diff_max: float = 0.3): - # Note(aryan): Investigate why this needs a bit higher tolerance + def test_vae_tiling(self, expected_diff_max: float = 0.35): + # Note (SHYuanBest): I don't know why this requires a higher expected_max_diff generator_device = "cpu" components = self.get_dummy_components() - # The reason to modify it this way is because I2V Transformer limits the generation to resolutions used during initalization. + # The reason to modify it this way is because ConsisID Transformer limits the generation to resolutions used during initalization. # This limitation comes from using learned positional embeddings which cannot be generated on-the-fly like sincos or RoPE embeddings. # See the if-statement on "self.use_learned_positional_embeddings" in diffusers/models/embeddings.py components["transformer"] = ConsisIDTransformer3DModel.from_config( @@ -307,44 +312,6 @@ def test_vae_tiling(self, expected_diff_max: float = 0.3): "VAE tiling should not affect the inference results", ) - def test_fused_qkv_projections(self): - device = "cpu" # ensure determinism for the device-dependent torch.Generator - components = self.get_dummy_components() - pipe = self.pipeline_class(**components) - pipe = pipe.to(device) - pipe.set_progress_bar_config(disable=None) - - inputs = self.get_dummy_inputs(device) - frames = pipe(**inputs).frames # [B, F, C, H, W] - original_image_slice = frames[0, -2:, -1, -3:, -3:] - - pipe.fuse_qkv_projections() - assert check_qkv_fusion_processors_exist( - pipe.transformer - ), "Something wrong with the fused attention processors. Expected all the attention processors to be fused." - assert check_qkv_fusion_matches_attn_procs_length( - pipe.transformer, pipe.transformer.original_attn_processors - ), "Something wrong with the attention processors concerning the fused QKV projections." - - inputs = self.get_dummy_inputs(device) - frames = pipe(**inputs).frames - image_slice_fused = frames[0, -2:, -1, -3:, -3:] - - pipe.transformer.unfuse_qkv_projections() - inputs = self.get_dummy_inputs(device) - frames = pipe(**inputs).frames - image_slice_disabled = frames[0, -2:, -1, -3:, -3:] - - assert np.allclose( - original_image_slice, image_slice_fused, atol=1e-3, rtol=1e-3 - ), "Fusion of QKV projections shouldn't affect the outputs." - assert np.allclose( - image_slice_fused, image_slice_disabled, atol=1e-3, rtol=1e-3 - ), "Outputs, with QKV projection fusion enabled, shouldn't change when fused QKV projections are disabled." - assert np.allclose( - original_image_slice, image_slice_disabled, atol=1e-2, rtol=1e-2 - ), "Original outputs should match when fused QKV projections are disabled." - @slow @require_torch_gpu @@ -369,8 +336,8 @@ def test_consisid(self): prompt = self.prompt image = load_image("https://github.com/PKU-YuanGroup/ConsisID/blob/main/asserts/example_images/2.png?raw=true") - id_vit_hidden = [torch.ones([1, 577, 1024])] * 5 - id_cond = torch.ones(1, 1280) + id_vit_hidden = [torch.ones([1, 2, 2])] * 5 + id_cond = torch.ones(1, 2) videos = pipe( image=image, From aa9885810589d7ca268dee57fe2592b394cd237c Mon Sep 17 00:00:00 2001 From: SHYuanBest Date: Thu, 19 Dec 2024 21:37:58 +0800 Subject: [PATCH 45/56] update --- .../transformers/consisid_transformer_3d.py | 50 +++++++++++++++---- 1 file changed, 41 insertions(+), 9 deletions(-) diff --git a/src/diffusers/models/transformers/consisid_transformer_3d.py b/src/diffusers/models/transformers/consisid_transformer_3d.py index df36cda67ed0..68873c96e5fd 100644 --- a/src/diffusers/models/transformers/consisid_transformer_3d.py +++ b/src/diffusers/models/transformers/consisid_transformer_3d.py @@ -519,15 +519,47 @@ class ConsisIDTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin): cross_attn_interval (`int`, defaults to `2`): The interval between cross-attention layers in the Transformer architecture. A larger value may reduce the frequency of cross-attention computations, which can help reduce computational overhead. - LFE_num_heads (`int`, defaults to `16`): - The number of attention heads used in the Local Facial Extractor (LFE) module. More heads may improve the - ability to capture diverse features, but can also increase computational complexity. - LFE_num_querie (`int`, defaults to `32`): - The number of tokens to use in the Local Facial Extractor (LFE). This module is responsible for capturing - high frequency representations of the face. - LFE_output_dim (`int`, defaults to `2048`): - The output dimension of the Local Facial Extractor (LFE) module. This dimension determines the size of the - feature vectors produced by the LFE module. + cross_attn_dim_head (`int`, optional, defaults to `128`): + The dimensionality of each attention head in the cross-attention layers of the Transformer architecture. A + larger value increases the capacity to attend to more complex patterns, but also increases memory and + computation costs. + cross_attn_num_heads (`int`, optional, defaults to `16`): + The number of attention heads in the cross-attention layers. More heads allow for more parallel attention + mechanisms, capturing diverse relationships between different components of the input, but can also + increase computational requirements. + LFE_id_dim (`int`, optional, defaults to `1280`): + The dimensionality of the identity vector used in the Local Facial Extractor (LFE). This vector represents + the identity features of a face, which are important for tasks like face recognition and identity + preservation across different frames. + LFE_vit_dim (`int`, optional, defaults to `1024`): + The dimension of the vision transformer (ViT) output used in the Local Facial Extractor (LFE). This value + dictates the size of the transformer-generated feature vectors that will be processed for facial feature + extraction. + LFE_depth (`int`, optional, defaults to `10`): + The number of layers in the Local Facial Extractor (LFE). Increasing the depth allows the model to capture + more complex representations of facial features, but also increases the computational load. + LFE_dim_head (`int`, optional, defaults to `64`): + The dimensionality of each attention head in the Local Facial Extractor (LFE). This parameter affects how + finely the model can process and focus on different parts of the facial features during the extraction + process. + LFE_num_heads (`int`, optional, defaults to `16`): + The number of attention heads in the Local Facial Extractor (LFE). More heads can improve the model's + ability to capture diverse facial features, but at the cost of increased computational complexity. + LFE_num_id_token (`int`, optional, defaults to `5`): + The number of identity tokens used in the Local Facial Extractor (LFE). This defines how many + identity-related tokens the model will process to ensure face identity preservation during feature + extraction. + LFE_num_querie (`int`, optional, defaults to `32`): + The number of query tokens used in the Local Facial Extractor (LFE). These tokens are used to capture + high-frequency face-related information that aids in accurate facial feature extraction. + LFE_output_dim (`int`, optional, defaults to `2048`): + The output dimension of the Local Facial Extractor (LFE). This dimension determines the size of the feature + vectors produced by the LFE module, which will be used for subsequent tasks such as face recognition or + tracking. + LFE_ff_mult (`int`, optional, defaults to `4`): + The multiplication factor applied to the feed-forward network's hidden layer size in the Local Facial + Extractor (LFE). A higher value increases the model's capacity to learn more complex facial feature + transformations, but also increases the computation and memory requirements. local_face_scale (`float`, defaults to `1.0`): A scaling factor used to adjust the importance of local facial features in the model. This can influence how strongly the model focuses on high frequency face-related content. From b174d9f9af7e1dbfe9ff53b388c2e2befecccd12 Mon Sep 17 00:00:00 2001 From: SHYuanBest Date: Sat, 21 Dec 2024 22:58:34 +0800 Subject: [PATCH 46/56] add lora --- src/diffusers/loaders/__init__.py | 2 + src/diffusers/loaders/lora_pipeline.py | 307 ++++++++++++++++++ src/diffusers/loaders/peft.py | 1 + .../pipelines/consisid/pipeline_consisid.py | 28 +- tests/lora/test_lora_layers_consisid.py | 228 +++++++++++++ 5 files changed, 564 insertions(+), 2 deletions(-) create mode 100644 tests/lora/test_lora_layers_consisid.py diff --git a/src/diffusers/loaders/__init__.py b/src/diffusers/loaders/__init__.py index c7ea0be55db2..ed04da957eb2 100644 --- a/src/diffusers/loaders/__init__.py +++ b/src/diffusers/loaders/__init__.py @@ -70,6 +70,7 @@ def text_encoder_attn_modules(text_encoder): "LoraLoaderMixin", "FluxLoraLoaderMixin", "CogVideoXLoraLoaderMixin", + "ConsisIDLoraLoaderMixin", "Mochi1LoraLoaderMixin", "HunyuanVideoLoraLoaderMixin", "SanaLoraLoaderMixin", @@ -98,6 +99,7 @@ def text_encoder_attn_modules(text_encoder): from .lora_pipeline import ( AmusedLoraLoaderMixin, CogVideoXLoraLoaderMixin, + ConsisIDLoraLoaderMixin, FluxLoraLoaderMixin, HunyuanVideoLoraLoaderMixin, LoraLoaderMixin, diff --git a/src/diffusers/loaders/lora_pipeline.py b/src/diffusers/loaders/lora_pipeline.py index e69681611a4a..cbf721ef637d 100644 --- a/src/diffusers/loaders/lora_pipeline.py +++ b/src/diffusers/loaders/lora_pipeline.py @@ -2999,6 +2999,313 @@ def unfuse_lora(self, components: List[str] = ["transformer", "text_encoder"], * super().unfuse_lora(components=components) +class ConsisIDLoraLoaderMixin(LoraBaseMixin): + r""" + Load LoRA layers into [`ConsisIDTransformer3DModel`]. Specific to [`ConsisIDPipeline`]. + """ + + _lora_loadable_modules = ["transformer"] + transformer_name = TRANSFORMER_NAME + + @classmethod + @validate_hf_hub_args + # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.lora_state_dict + def lora_state_dict( + cls, + pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], + **kwargs, + ): + r""" + Return state dict for lora weights and the network alphas. + + + + We support loading A1111 formatted LoRA checkpoints in a limited capacity. + + This function is experimental and might change in the future. + + + + Parameters: + pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): + Can be either: + + - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on + the Hub. + - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved + with [`ModelMixin.save_pretrained`]. + - A [torch state + dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict). + + cache_dir (`Union[str, os.PathLike]`, *optional*): + Path to a directory where a downloaded pretrained model configuration is cached if the standard cache + is not used. + force_download (`bool`, *optional*, defaults to `False`): + Whether or not to force the (re-)download of the model weights and configuration files, overriding the + cached versions if they exist. + + proxies (`Dict[str, str]`, *optional*): + A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', + 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. + local_files_only (`bool`, *optional*, defaults to `False`): + Whether to only load local model weights and configuration files or not. If set to `True`, the model + won't be downloaded from the Hub. + token (`str` or *bool*, *optional*): + The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from + `diffusers-cli login` (stored in `~/.huggingface`) is used. + revision (`str`, *optional*, defaults to `"main"`): + The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier + allowed by Git. + subfolder (`str`, *optional*, defaults to `""`): + The subfolder location of a model file within a larger model repository on the Hub or locally. + + """ + # Load the main state dict first which has the LoRA layers for either of + # transformer and text encoder or both. + cache_dir = kwargs.pop("cache_dir", None) + force_download = kwargs.pop("force_download", False) + proxies = kwargs.pop("proxies", None) + local_files_only = kwargs.pop("local_files_only", None) + token = kwargs.pop("token", None) + revision = kwargs.pop("revision", None) + subfolder = kwargs.pop("subfolder", None) + weight_name = kwargs.pop("weight_name", None) + use_safetensors = kwargs.pop("use_safetensors", None) + + allow_pickle = False + if use_safetensors is None: + use_safetensors = True + allow_pickle = True + + user_agent = { + "file_type": "attn_procs_weights", + "framework": "pytorch", + } + + state_dict = _fetch_state_dict( + pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict, + weight_name=weight_name, + use_safetensors=use_safetensors, + local_files_only=local_files_only, + cache_dir=cache_dir, + force_download=force_download, + proxies=proxies, + token=token, + revision=revision, + subfolder=subfolder, + user_agent=user_agent, + allow_pickle=allow_pickle, + ) + + is_dora_scale_present = any("dora_scale" in k for k in state_dict) + if is_dora_scale_present: + warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new." + logger.warning(warn_msg) + state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k} + + return state_dict + + def load_lora_weights( + self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs + ): + """ + Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and + `self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See + [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded. + See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state + dict is loaded into `self.transformer`. + + Parameters: + pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): + See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. + adapter_name (`str`, *optional*): + Adapter name to be used for referencing the loaded adapter model. If not specified, it will use + `default_{i}` where i is the total number of adapters being loaded. + low_cpu_mem_usage (`bool`, *optional*): + Speed up model loading by only loading the pretrained LoRA weights and not initializing the random + weights. + kwargs (`dict`, *optional*): + See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. + """ + if not USE_PEFT_BACKEND: + raise ValueError("PEFT backend is required for this method.") + + low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA) + if low_cpu_mem_usage and is_peft_version("<", "0.13.0"): + raise ValueError( + "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." + ) + + # if a dict is passed, copy it instead of modifying it inplace + if isinstance(pretrained_model_name_or_path_or_dict, dict): + pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy() + + # First, ensure that the checkpoint is a compatible one and can be successfully loaded. + state_dict = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs) + + is_correct_format = all("lora" in key for key in state_dict.keys()) + if not is_correct_format: + raise ValueError("Invalid LoRA checkpoint.") + + self.load_lora_into_transformer( + state_dict, + transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer, + adapter_name=adapter_name, + _pipeline=self, + low_cpu_mem_usage=low_cpu_mem_usage, + ) + + @classmethod + # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->ConsisIDTransformer3DModel + def load_lora_into_transformer( + cls, state_dict, transformer, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False + ): + """ + This will load the LoRA layers specified in `state_dict` into `transformer`. + + Parameters: + state_dict (`dict`): + A standard state dict containing the lora layer parameters. The keys can either be indexed directly + into the unet or prefixed with an additional `unet` which can be used to distinguish between text + encoder lora layers. + transformer (`ConsisIDTransformer3DModel`): + The Transformer model to load the LoRA layers into. + adapter_name (`str`, *optional*): + Adapter name to be used for referencing the loaded adapter model. If not specified, it will use + `default_{i}` where i is the total number of adapters being loaded. + low_cpu_mem_usage (`bool`, *optional*): + Speed up model loading by only loading the pretrained LoRA weights and not initializing the random + weights. + """ + if low_cpu_mem_usage and is_peft_version("<", "0.13.0"): + raise ValueError( + "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." + ) + + # Load the layers corresponding to transformer. + logger.info(f"Loading {cls.transformer_name}.") + transformer.load_lora_adapter( + state_dict, + network_alphas=None, + adapter_name=adapter_name, + _pipeline=_pipeline, + low_cpu_mem_usage=low_cpu_mem_usage, + ) + + @classmethod + # Adapted from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.save_lora_weights without support for text encoder + def save_lora_weights( + cls, + save_directory: Union[str, os.PathLike], + transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, + is_main_process: bool = True, + weight_name: str = None, + save_function: Callable = None, + safe_serialization: bool = True, + ): + r""" + Save the LoRA parameters corresponding to the UNet and text encoder. + + Arguments: + save_directory (`str` or `os.PathLike`): + Directory to save LoRA parameters to. Will be created if it doesn't exist. + transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): + State dict of the LoRA layers corresponding to the `transformer`. + is_main_process (`bool`, *optional*, defaults to `True`): + Whether the process calling this is the main process or not. Useful during distributed training and you + need to call this function on all processes. In this case, set `is_main_process=True` only on the main + process to avoid race conditions. + save_function (`Callable`): + The function to use to save the state dictionary. Useful during distributed training when you need to + replace `torch.save` with another method. Can be configured with the environment variable + `DIFFUSERS_SAVE_MODE`. + safe_serialization (`bool`, *optional*, defaults to `True`): + Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`. + """ + state_dict = {} + + if not transformer_lora_layers: + raise ValueError("You must pass `transformer_lora_layers`.") + + if transformer_lora_layers: + state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name)) + + # Save the model + cls.write_lora_layers( + state_dict=state_dict, + save_directory=save_directory, + is_main_process=is_main_process, + weight_name=weight_name, + save_function=save_function, + safe_serialization=safe_serialization, + ) + + # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.fuse_lora with unet->transformer + def fuse_lora( + self, + components: List[str] = ["transformer", "text_encoder"], + lora_scale: float = 1.0, + safe_fusing: bool = False, + adapter_names: Optional[List[str]] = None, + **kwargs, + ): + r""" + Fuses the LoRA parameters into the original parameters of the corresponding blocks. + + + + This is an experimental API. + + + + Args: + components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into. + lora_scale (`float`, defaults to 1.0): + Controls how much to influence the outputs with the LoRA parameters. + safe_fusing (`bool`, defaults to `False`): + Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. + adapter_names (`List[str]`, *optional*): + Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused. + + Example: + + ```py + from diffusers import DiffusionPipeline + import torch + + pipeline = DiffusionPipeline.from_pretrained( + "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 + ).to("cuda") + pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") + pipeline.fuse_lora(lora_scale=0.7) + ``` + """ + super().fuse_lora( + components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names + ) + + # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.unfuse_lora with unet->transformer + def unfuse_lora(self, components: List[str] = ["transformer", "text_encoder"], **kwargs): + r""" + Reverses the effect of + [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora). + + + + This is an experimental API. + + + + Args: + components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from. + unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters. + unfuse_text_encoder (`bool`, defaults to `True`): + Whether to unfuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the + LoRA parameters then it won't have any effect. + """ + super().unfuse_lora(components=components) + + class Mochi1LoraLoaderMixin(LoraBaseMixin): r""" Load LoRA layers into [`MochiTransformer3DModel`]. Specific to [`MochiPipeline`]. diff --git a/src/diffusers/loaders/peft.py b/src/diffusers/loaders/peft.py index 9c00012ebc65..c9a673eae271 100644 --- a/src/diffusers/loaders/peft.py +++ b/src/diffusers/loaders/peft.py @@ -52,6 +52,7 @@ "SD3Transformer2DModel": lambda model_cls, weights: weights, "FluxTransformer2DModel": lambda model_cls, weights: weights, "CogVideoXTransformer3DModel": lambda model_cls, weights: weights, + "ConsisIDTransformer3DModel": lambda model_cls, weights: weights, "MochiTransformer3DModel": lambda model_cls, weights: weights, "HunyuanVideoTransformer3DModel": lambda model_cls, weights: weights, "LTXVideoTransformer3DModel": lambda model_cls, weights: weights, diff --git a/src/diffusers/pipelines/consisid/pipeline_consisid.py b/src/diffusers/pipelines/consisid/pipeline_consisid.py index 1ddbed731291..74e886561b2d 100644 --- a/src/diffusers/pipelines/consisid/pipeline_consisid.py +++ b/src/diffusers/pipelines/consisid/pipeline_consisid.py @@ -14,7 +14,7 @@ import inspect import math -from typing import Callable, Dict, List, Optional, Tuple, Union +from typing import Callable, Any, Dict, List, Optional, Tuple, Union import cv2 import numpy as np @@ -23,6 +23,7 @@ from transformers import T5EncoderModel, T5Tokenizer from ...callbacks import MultiPipelineCallbacks, PipelineCallback +from ...loaders import ConsisIDLoraLoaderMixin from ...image_processor import PipelineImageInput from ...models import AutoencoderKLCogVideoX, ConsisIDTransformer3DModel from ...models.embeddings import get_3d_rotary_pos_embed @@ -241,7 +242,7 @@ def retrieve_latents( raise AttributeError("Could not access latents of provided encoder_output") -class ConsisIDPipeline(DiffusionPipeline): +class ConsisIDPipeline(DiffusionPipeline, ConsisIDLoraLoaderMixin): r""" Pipeline for image-to-video generation using ConsisID. @@ -644,6 +645,10 @@ def guidance_scale(self): def num_timesteps(self): return self._num_timesteps + @property + def attention_kwargs(self): + return self._attention_kwargs + @property def interrupt(self): return self._interrupt @@ -669,6 +674,7 @@ def __call__( negative_prompt_embeds: Optional[torch.FloatTensor] = None, output_type: str = "pil", return_dict: bool = True, + attention_kwargs: Optional[Dict[str, Any]] = None, callback_on_step_end: Optional[ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] ] = None, @@ -736,6 +742,10 @@ def __call__( return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead of a plain tuple. + attention_kwargs (`dict`, *optional*): + A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under + `self.processor` in + [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). callback_on_step_end (`Callable`, *optional*): A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, @@ -748,6 +758,18 @@ def __call__( max_sequence_length (`int`, defaults to `226`): Maximum sequence length in encoded prompt. Must be consistent with `self.transformer.config.max_text_seq_length` otherwise may lead to poor results. + id_vit_hidden (`Optional[torch.Tensor]`, *optional*): + The tensor representing the hidden features extracted from the face model, which are used to condition the local + facial extractor. This is crucial for the model to obtain high-frequency information of the face. If not provided, + the local facial extractor will not run normally. + id_cond (`Optional[torch.Tensor]`, *optional*): + The tensor representing the hidden features extracted from the clip model, which are used to condition the local + facial extractor. This is crucial for the model to edit facial features If not provided, the local facial extractor + will not run normally. + kps_cond (`Optional[torch.Tensor]`, *optional*): + A tensor that determines whether the global facial extractor use keypoint information for conditioning. + If provided, this tensor controls whether facial keypoints such as eyes, nose, and mouth landmarks are used + during the generation process. This helps ensure the model retains more facial low-frequency information. Examples: @@ -779,6 +801,7 @@ def __call__( negative_prompt_embeds=negative_prompt_embeds, ) self._guidance_scale = guidance_scale + self._attention_kwargs = attention_kwargs self._interrupt = False # 2. Default call parameters @@ -878,6 +901,7 @@ def __call__( encoder_hidden_states=prompt_embeds, timestep=timestep, image_rotary_emb=image_rotary_emb, + attention_kwargs=attention_kwargs, return_dict=False, id_vit_hidden=id_vit_hidden, id_cond=id_cond, diff --git a/tests/lora/test_lora_layers_consisid.py b/tests/lora/test_lora_layers_consisid.py new file mode 100644 index 000000000000..fce8a4ca4d7c --- /dev/null +++ b/tests/lora/test_lora_layers_consisid.py @@ -0,0 +1,228 @@ +# Copyright 2024 HuggingFace Inc. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import sys +import unittest + +import numpy as np +import pytest +import torch +from PIL import Image +from transformers import AutoTokenizer, T5EncoderModel + +from diffusers import ( + AutoencoderKLCogVideoX, + CogVideoXDPMScheduler, + ConsisIDPipeline, + ConsisIDTransformer3DModel, +) +from diffusers.utils.testing_utils import ( + floats_tensor, + is_torch_version, + require_peft_backend, + skip_mps, + torch_device, +) + + +sys.path.append(".") + +from utils import PeftLoraLoaderMixinTests, check_if_lora_correctly_set # noqa: E402 + + +@require_peft_backend +class ConsisIDLoRATests(unittest.TestCase, PeftLoraLoaderMixinTests): + pipeline_class = ConsisIDPipeline + scheduler_cls = CogVideoXDPMScheduler + scheduler_kwargs = {"timestep_spacing": "trailing"} + scheduler_classes = [CogVideoXDPMScheduler] + + transformer_kwargs = { + "num_attention_heads": 4, + "attention_head_dim": 8, + "in_channels": 8, + "out_channels": 4, + "time_embed_dim": 2, + "text_embed_dim": 32, + "num_layers": 1, + "sample_width": 16, + "sample_height": 16, + "sample_frames": 9, + "patch_size": 2, + "temporal_compression_ratio": 4, + "max_text_seq_length": 16, + "cross_attn_interval": 1, + "is_kps": False, + "is_train_face": True, + "cross_attn_dim_head": 1, + "cross_attn_num_heads": 1, + "LFE_id_dim": 2, + "LFE_vit_dim": 2, + "LFE_depth": 5, + "LFE_dim_head": 8, + "LFE_num_heads": 2, + "LFE_num_id_token": 1, + "LFE_num_querie": 1, + "LFE_output_dim": 21, + "LFE_ff_mult": 1, + } + transformer_cls = ConsisIDTransformer3DModel + vae_kwargs = { + "in_channels": 3, + "out_channels": 3, + "down_block_types": ( + "CogVideoXDownBlock3D", + "CogVideoXDownBlock3D", + "CogVideoXDownBlock3D", + "CogVideoXDownBlock3D", + ), + "up_block_types": ( + "CogVideoXUpBlock3D", + "CogVideoXUpBlock3D", + "CogVideoXUpBlock3D", + "CogVideoXUpBlock3D", + ), + "block_out_channels": (8, 8, 8, 8), + "latent_channels": 4, + "layers_per_block": 1, + "norm_num_groups": 2, + "temporal_compression_ratio": 4, + } + vae_cls = AutoencoderKLCogVideoX + tokenizer_cls, tokenizer_id = AutoTokenizer, "/storage/ysh/Ckpts/hf-internal-testing/tiny-random-t5/" + text_encoder_cls, text_encoder_id = T5EncoderModel, "/storage/ysh/Ckpts/hf-internal-testing/tiny-random-t5/" + + text_encoder_target_modules = ["q", "k", "v", "o"] + + @property + def output_shape(self): + return (1, 9, 16, 16, 3) + + def get_dummy_inputs(self, with_generator=True): + batch_size = 1 + sequence_length = 16 + num_channels = 4 + num_frames = 9 + num_latent_frames = 3 + sizes = (2, 2) + + generator = torch.manual_seed(0) + image_height = 16 + image_width = 16 + image = Image.new("RGB", (image_width, image_height)) + noise = floats_tensor((batch_size, num_latent_frames, num_channels) + sizes) + input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator) + id_vit_hidden = [torch.ones([batch_size, 2, 2]).to(torch_device)] * 5 + id_cond = torch.ones(batch_size, 2).to(torch_device) + + pipeline_inputs = { + "image": image, + "prompt": "dance monkey", + "num_frames": num_frames, + "num_inference_steps": 1, + "guidance_scale": 6.0, + "height": 16, + "width": 16, + "max_sequence_length": sequence_length, + "id_vit_hidden": id_vit_hidden, + "id_cond": id_cond, + "output_type": "np", + } + if with_generator: + pipeline_inputs.update({"generator": generator}) + + return noise, input_ids, pipeline_inputs + + @skip_mps + @pytest.mark.xfail( + condition=torch.device(torch_device).type == "cpu" and is_torch_version(">=", "2.5"), + reason="Test currently fails on CPU and PyTorch 2.5.1 but not on PyTorch 2.4.1.", + strict=True, + ) + def test_lora_fuse_nan(self): + for scheduler_cls in self.scheduler_classes: + components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls) + pipe = self.pipeline_class(**components) + pipe = pipe.to(torch_device) + pipe.set_progress_bar_config(disable=None) + _, _, inputs = self.get_dummy_inputs(with_generator=False) + + pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1") + + self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in denoiser") + + # corrupt one LoRA weight with `inf` values + with torch.no_grad(): + pipe.transformer.transformer_blocks[0].attn1.to_q.lora_A["adapter-1"].weight += float("inf") + + # with `safe_fusing=True` we should see an Error + with self.assertRaises(ValueError): + pipe.fuse_lora(components=self.pipeline_class._lora_loadable_modules, safe_fusing=True) + + # without we should not see an error, but every image will be black + pipe.fuse_lora(components=self.pipeline_class._lora_loadable_modules, safe_fusing=False) + + out = pipe( + image=inputs["image"], + prompt=inputs["prompt"], + num_frames=inputs["num_frames"], + num_inference_steps=inputs["num_inference_steps"], + guidance_scale=inputs["guidance_scale"], + height=inputs["height"], + width=inputs["width"], + max_sequence_length=inputs["max_sequence_length"], + id_vit_hidden=inputs["id_vit_hidden"], + id_cond=inputs["id_cond"], + output_type=inputs["output_type"], + )[0] + + self.assertTrue(np.isnan(out).all()) + + def test_simple_inference_with_text_lora_denoiser_fused_multi(self): + super().test_simple_inference_with_text_lora_denoiser_fused_multi(expected_atol=9e-3) + + def test_simple_inference_with_text_denoiser_lora_unfused(self): + super().test_simple_inference_with_text_denoiser_lora_unfused(expected_atol=9e-3) + + @unittest.skip("Not supported in ConsisID.") + def test_simple_inference_with_text_denoiser_block_scale(self): + pass + + @unittest.skip("Not supported in ConsisID.") + def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self): + pass + + @unittest.skip("Not supported in ConsisID.") + def test_modify_padding_mode(self): + pass + + @unittest.skip("Text encoder LoRA is not supported in ConsisID.") + def test_simple_inference_with_partial_text_lora(self): + pass + + @unittest.skip("Text encoder LoRA is not supported in ConsisID.") + def test_simple_inference_with_text_lora(self): + pass + + @unittest.skip("Text encoder LoRA is not supported in ConsisID.") + def test_simple_inference_with_text_lora_and_scale(self): + pass + + @unittest.skip("Text encoder LoRA is not supported in ConsisID.") + def test_simple_inference_with_text_lora_fused(self): + pass + + @unittest.skip("Text encoder LoRA is not supported in ConsisID.") + def test_simple_inference_with_text_lora_save_load(self): + pass From fbb09aa6dc63846284365c048af7ee330250aadb Mon Sep 17 00:00:00 2001 From: SHYuanBest Date: Sun, 22 Dec 2024 11:46:38 +0800 Subject: [PATCH 47/56] fix test --- .../transformers/consisid_transformer_3d.py | 22 +++++++++--------- .../pipelines/consisid/pipeline_consisid.py | 21 +++++++++-------- tests/lora/test_lora_layers_consisid.py | 23 ++++++++++--------- 3 files changed, 34 insertions(+), 32 deletions(-) diff --git a/src/diffusers/models/transformers/consisid_transformer_3d.py b/src/diffusers/models/transformers/consisid_transformer_3d.py index 68873c96e5fd..6a92ecc861c1 100644 --- a/src/diffusers/models/transformers/consisid_transformer_3d.py +++ b/src/diffusers/models/transformers/consisid_transformer_3d.py @@ -803,17 +803,6 @@ def forward( id_vit_hidden: Optional[torch.Tensor] = None, return_dict: bool = True, ): - # fuse clip and insightface - if self.is_train_face: - assert id_cond is not None and id_vit_hidden is not None - id_cond = id_cond.to(device=hidden_states.device, dtype=hidden_states.dtype) - id_vit_hidden = [ - tensor.to(device=hidden_states.device, dtype=hidden_states.dtype) for tensor in id_vit_hidden - ] - valid_face_emb = self.local_facial_extractor( - id_cond, id_vit_hidden - ) # torch.Size([1, 1280]), list[5](torch.Size([1, 577, 1024])) -> torch.Size([1, 32, 2048]) - if attention_kwargs is not None: attention_kwargs = attention_kwargs.copy() lora_scale = attention_kwargs.pop("scale", 1.0) @@ -829,6 +818,17 @@ def forward( "Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective." ) + # fuse clip and insightface + if self.is_train_face: + assert id_cond is not None and id_vit_hidden is not None + id_cond = id_cond.to(device=hidden_states.device, dtype=hidden_states.dtype) + id_vit_hidden = [ + tensor.to(device=hidden_states.device, dtype=hidden_states.dtype) for tensor in id_vit_hidden + ] + valid_face_emb = self.local_facial_extractor( + id_cond, id_vit_hidden + ) # torch.Size([1, 1280]), list[5](torch.Size([1, 577, 1024])) -> torch.Size([1, 32, 2048]) + batch_size, num_frames, channels, height, width = hidden_states.shape # 1. Time embedding diff --git a/src/diffusers/pipelines/consisid/pipeline_consisid.py b/src/diffusers/pipelines/consisid/pipeline_consisid.py index 74e886561b2d..13fd0f99fad8 100644 --- a/src/diffusers/pipelines/consisid/pipeline_consisid.py +++ b/src/diffusers/pipelines/consisid/pipeline_consisid.py @@ -14,7 +14,7 @@ import inspect import math -from typing import Callable, Any, Dict, List, Optional, Tuple, Union +from typing import Any, Callable, Dict, List, Optional, Tuple, Union import cv2 import numpy as np @@ -23,8 +23,8 @@ from transformers import T5EncoderModel, T5Tokenizer from ...callbacks import MultiPipelineCallbacks, PipelineCallback -from ...loaders import ConsisIDLoraLoaderMixin from ...image_processor import PipelineImageInput +from ...loaders import ConsisIDLoraLoaderMixin from ...models import AutoencoderKLCogVideoX, ConsisIDTransformer3DModel from ...models.embeddings import get_3d_rotary_pos_embed from ...pipelines.pipeline_utils import DiffusionPipeline @@ -759,17 +759,18 @@ def __call__( Maximum sequence length in encoded prompt. Must be consistent with `self.transformer.config.max_text_seq_length` otherwise may lead to poor results. id_vit_hidden (`Optional[torch.Tensor]`, *optional*): - The tensor representing the hidden features extracted from the face model, which are used to condition the local - facial extractor. This is crucial for the model to obtain high-frequency information of the face. If not provided, - the local facial extractor will not run normally. + The tensor representing the hidden features extracted from the face model, which are used to condition + the local facial extractor. This is crucial for the model to obtain high-frequency information of the + face. If not provided, the local facial extractor will not run normally. id_cond (`Optional[torch.Tensor]`, *optional*): - The tensor representing the hidden features extracted from the clip model, which are used to condition the local - facial extractor. This is crucial for the model to edit facial features If not provided, the local facial extractor - will not run normally. + The tensor representing the hidden features extracted from the clip model, which are used to condition + the local facial extractor. This is crucial for the model to edit facial features If not provided, the + local facial extractor will not run normally. kps_cond (`Optional[torch.Tensor]`, *optional*): A tensor that determines whether the global facial extractor use keypoint information for conditioning. - If provided, this tensor controls whether facial keypoints such as eyes, nose, and mouth landmarks are used - during the generation process. This helps ensure the model retains more facial low-frequency information. + If provided, this tensor controls whether facial keypoints such as eyes, nose, and mouth landmarks are + used during the generation process. This helps ensure the model retains more facial low-frequency + information. Examples: diff --git a/tests/lora/test_lora_layers_consisid.py b/tests/lora/test_lora_layers_consisid.py index fce8a4ca4d7c..405ce903b016 100644 --- a/tests/lora/test_lora_layers_consisid.py +++ b/tests/lora/test_lora_layers_consisid.py @@ -45,8 +45,8 @@ class ConsisIDLoRATests(unittest.TestCase, PeftLoraLoaderMixinTests): pipeline_class = ConsisIDPipeline scheduler_cls = CogVideoXDPMScheduler - scheduler_kwargs = {"timestep_spacing": "trailing"} scheduler_classes = [CogVideoXDPMScheduler] + scheduler_kwargs = {"timestep_spacing": "trailing"} transformer_kwargs = { "num_attention_heads": 4, @@ -81,6 +81,7 @@ class ConsisIDLoRATests(unittest.TestCase, PeftLoraLoaderMixinTests): vae_kwargs = { "in_channels": 3, "out_channels": 3, + "latent_channels": 4, "down_block_types": ( "CogVideoXDownBlock3D", "CogVideoXDownBlock3D", @@ -94,14 +95,14 @@ class ConsisIDLoRATests(unittest.TestCase, PeftLoraLoaderMixinTests): "CogVideoXUpBlock3D", ), "block_out_channels": (8, 8, 8, 8), - "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 2, + "scaling_factor": 0.7, "temporal_compression_ratio": 4, } vae_cls = AutoencoderKLCogVideoX - tokenizer_cls, tokenizer_id = AutoTokenizer, "/storage/ysh/Ckpts/hf-internal-testing/tiny-random-t5/" - text_encoder_cls, text_encoder_id = T5EncoderModel, "/storage/ysh/Ckpts/hf-internal-testing/tiny-random-t5/" + tokenizer_cls, tokenizer_id = AutoTokenizer, "hf-internal-testing/tiny-random-t5" + text_encoder_cls, text_encoder_id = T5EncoderModel, "hf-internal-testing/tiny-random-t5" text_encoder_target_modules = ["q", "k", "v", "o"] @@ -116,15 +117,15 @@ def get_dummy_inputs(self, with_generator=True): num_frames = 9 num_latent_frames = 3 sizes = (2, 2) - - generator = torch.manual_seed(0) image_height = 16 image_width = 16 + + generator = torch.manual_seed(0) image = Image.new("RGB", (image_width, image_height)) noise = floats_tensor((batch_size, num_latent_frames, num_channels) + sizes) input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator) - id_vit_hidden = [torch.ones([batch_size, 2, 2]).to(torch_device)] * 5 - id_cond = torch.ones(batch_size, 2).to(torch_device) + id_vit_hidden = [torch.ones([batch_size, 2, 2])] * 5 + id_cond = torch.ones(batch_size, 2) pipeline_inputs = { "image": image, @@ -132,8 +133,8 @@ def get_dummy_inputs(self, with_generator=True): "num_frames": num_frames, "num_inference_steps": 1, "guidance_scale": 6.0, - "height": 16, - "width": 16, + "height": image_height, + "width": image_width, "max_sequence_length": sequence_length, "id_vit_hidden": id_vit_hidden, "id_cond": id_cond, @@ -157,7 +158,7 @@ def test_lora_fuse_nan(self): pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) _, _, inputs = self.get_dummy_inputs(with_generator=False) - + pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1") self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in denoiser") From 581382546e1439ab425bbe3e7a388ffa9e9171cd Mon Sep 17 00:00:00 2001 From: SHYuanBest Date: Sun, 22 Dec 2024 19:28:01 +0800 Subject: [PATCH 48/56] update --- .../transformers/consisid_transformer_3d.py | 55 +++++++++++-------- .../pipelines/consisid/pipeline_consisid.py | 2 +- .../test_models_transformer_consisid.py | 3 +- tests/pipelines/consisid/test_consisid.py | 5 +- 4 files changed, 38 insertions(+), 27 deletions(-) diff --git a/src/diffusers/models/transformers/consisid_transformer_3d.py b/src/diffusers/models/transformers/consisid_transformer_3d.py index 6a92ecc861c1..8ca7eec780ea 100644 --- a/src/diffusers/models/transformers/consisid_transformer_3d.py +++ b/src/diffusers/models/transformers/consisid_transformer_3d.py @@ -33,6 +33,24 @@ logger = logging.get_logger(__name__) # pylint: disable=invalid-name +def reshape_tensor(x, heads): + """ + Reshapes the input tensor for multi-head attention. + + Args: + x (torch.Tensor): The input tensor with shape (batch_size, length, width). + heads (int): The number of attention heads. + + Returns: + torch.Tensor: The reshaped tensor, with shape (batch_size, heads, length, width). + """ + bs, length, width = x.shape + x = x.view(bs, length, heads, -1) + x = x.transpose(1, 2) + x = x.reshape(bs, heads, length, -1) + return x + + def ConsisIDFeedForward(dim, mult=4): """ Creates a consistent ID feedforward block consisting of layer normalization, two linear layers, and a GELU @@ -54,24 +72,6 @@ def ConsisIDFeedForward(dim, mult=4): ) -def reshape_tensor(x, heads): - """ - Reshapes the input tensor for multi-head attention. - - Args: - x (torch.Tensor): The input tensor with shape (batch_size, length, width). - heads (int): The number of attention heads. - - Returns: - torch.Tensor: The reshaped tensor, with shape (batch_size, heads, length, width). - """ - bs, length, width = x.shape - x = x.view(bs, length, heads, -1) - x = x.transpose(1, 2) - x = x.reshape(bs, heads, length, -1) - return x - - class PerceiverAttention(nn.Module): """ Implements the Perceiver attention mechanism with multi-head attention. @@ -151,6 +151,7 @@ def __init__( num_queries=32, output_dim=2048, ff_mult=4, + num_scale=5, ): """ Initializes the LocalFacialExtractor class. @@ -165,6 +166,7 @@ def __init__( - num_queries (int): Number of query tokens for the latent representation. - output_dim (int): Output dimension after projection. - ff_mult (int): Multiplier for the feed-forward network hidden dimension. + - num_scale (int): The number of different scales visual feature. """ super().__init__() @@ -172,8 +174,9 @@ def __init__( self.num_id_token = num_id_token self.vit_dim = vit_dim self.num_queries = num_queries - assert depth % 5 == 0 - self.depth = depth // 5 + assert depth % num_scale == 0 + self.depth = depth // num_scale + self.num_scale = num_scale scale = vit_dim**-0.5 # Learnable latent query embeddings @@ -194,7 +197,7 @@ def __init__( ) # Mappings for each of the 5 different ViT features - for i in range(5): + for i in range(num_scale): setattr( self, f"mapping_{i}", @@ -242,8 +245,8 @@ def forward(self, x, y): # Concatenate identity tokens with the latent queries latents = torch.cat((latents, x), dim=1) - # Process each of the 5 visual feature inputs - for i in range(5): + # Process each of the num_scale visual feature inputs + for i in range(self.num_scale): vit_feature = getattr(self, f"mapping_{i}")(y[i]) ctx_feature = torch.cat((x, vit_feature), dim=1) @@ -560,6 +563,9 @@ class ConsisIDTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin): The multiplication factor applied to the feed-forward network's hidden layer size in the Local Facial Extractor (LFE). A higher value increases the model's capacity to learn more complex facial feature transformations, but also increases the computation and memory requirements. + LFE_num_scale (`int`, optional, defaults to `5`): + The number of different scales visual feature. A higher value increases the model's capacity to learn more + complex facial feature transformations, but also increases the computation and memory requirements. local_face_scale (`float`, defaults to `1.0`): A scaling factor used to adjust the importance of local facial features in the model. This can influence how strongly the model focuses on high frequency face-related content. @@ -609,6 +615,7 @@ def __init__( LFE_num_querie: int = 32, LFE_output_dim: int = 2048, LFE_ff_mult: int = 4, + LFE_num_scale: int = 5, local_face_scale: float = 1.0, ): super().__init__() @@ -690,6 +697,7 @@ def __init__( self.LFE_num_querie = LFE_num_querie self.LFE_output_dim = LFE_output_dim self.LFE_ff_mult = LFE_ff_mult + self.LFE_num_scale = LFE_num_scale # cross configs self.inner_dim = inner_dim self.cross_attn_interval = cross_attn_interval @@ -717,6 +725,7 @@ def _init_face_inputs(self): num_queries=self.LFE_num_querie, output_dim=self.LFE_output_dim, ff_mult=self.LFE_ff_mult, + num_scale=self.LFE_num_scale, ) self.local_facial_extractor.to(device, dtype=weight_dtype) self.perceiver_cross_attention = nn.ModuleList( diff --git a/src/diffusers/pipelines/consisid/pipeline_consisid.py b/src/diffusers/pipelines/consisid/pipeline_consisid.py index 13fd0f99fad8..6956b6848a2b 100644 --- a/src/diffusers/pipelines/consisid/pipeline_consisid.py +++ b/src/diffusers/pipelines/consisid/pipeline_consisid.py @@ -280,7 +280,7 @@ def __init__( text_encoder: T5EncoderModel, vae: AutoencoderKLCogVideoX, transformer: ConsisIDTransformer3DModel, - scheduler: Union[CogVideoXDDIMScheduler, CogVideoXDPMScheduler], + scheduler: CogVideoXDPMScheduler, ): super().__init__() diff --git a/tests/models/transformers/test_models_transformer_consisid.py b/tests/models/transformers/test_models_transformer_consisid.py index 7067a1e79715..b848ed014074 100644 --- a/tests/models/transformers/test_models_transformer_consisid.py +++ b/tests/models/transformers/test_models_transformer_consisid.py @@ -47,7 +47,7 @@ def dummy_input(self): hidden_states = torch.randn((batch_size, num_frames, num_channels, height, width)).to(torch_device) encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device) timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device) - id_vit_hidden = [torch.ones([batch_size, 2, 2]).to(torch_device)] * 5 + id_vit_hidden = [torch.ones([batch_size, 2, 2]).to(torch_device)] * 1 id_cond = torch.ones(batch_size, 2).to(torch_device) return { @@ -95,6 +95,7 @@ def prepare_init_args_and_inputs_for_common(self): "LFE_num_querie": 1, "LFE_output_dim": 10, "LFE_ff_mult": 1, + "LFE_num_scale": 1, } inputs_dict = self.dummy_input return init_dict, inputs_dict diff --git a/tests/pipelines/consisid/test_consisid.py b/tests/pipelines/consisid/test_consisid.py index 259a4a7df182..966ffea804ba 100644 --- a/tests/pipelines/consisid/test_consisid.py +++ b/tests/pipelines/consisid/test_consisid.py @@ -91,6 +91,7 @@ def get_dummy_components(self): LFE_num_querie=1, LFE_output_dim=21, LFE_ff_mult=1, + LFE_num_scale=1, ) torch.manual_seed(0) @@ -139,7 +140,7 @@ def get_dummy_inputs(self, device, seed=0): image_height = 16 image_width = 16 image = Image.new("RGB", (image_width, image_height)) - id_vit_hidden = [torch.ones([1, 2, 2])] * 5 + id_vit_hidden = [torch.ones([1, 2, 2])] * 1 id_cond = torch.ones(1, 2) inputs = { "image": image, @@ -336,7 +337,7 @@ def test_consisid(self): prompt = self.prompt image = load_image("https://github.com/PKU-YuanGroup/ConsisID/blob/main/asserts/example_images/2.png?raw=true") - id_vit_hidden = [torch.ones([1, 2, 2])] * 5 + id_vit_hidden = [torch.ones([1, 2, 2])] * 1 id_cond = torch.ones(1, 2) videos = pipe( From 7734a2983291e0890a3285960f975afb611f7eaf Mon Sep 17 00:00:00 2001 From: SHYuanBest Date: Sun, 22 Dec 2024 19:28:39 +0800 Subject: [PATCH 49/56] update --- src/diffusers/pipelines/consisid/pipeline_consisid.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/diffusers/pipelines/consisid/pipeline_consisid.py b/src/diffusers/pipelines/consisid/pipeline_consisid.py index 6956b6848a2b..02441f9c352d 100644 --- a/src/diffusers/pipelines/consisid/pipeline_consisid.py +++ b/src/diffusers/pipelines/consisid/pipeline_consisid.py @@ -28,7 +28,7 @@ from ...models import AutoencoderKLCogVideoX, ConsisIDTransformer3DModel from ...models.embeddings import get_3d_rotary_pos_embed from ...pipelines.pipeline_utils import DiffusionPipeline -from ...schedulers import CogVideoXDDIMScheduler, CogVideoXDPMScheduler +from ...schedulers import CogVideoXDPMScheduler from ...utils import ( logging, replace_example_docstring, From 5fd9a8174c277c032a7a10e428b7321dd263824a Mon Sep 17 00:00:00 2001 From: Shenghai Yuan <140951558+SHYuanBest@users.noreply.github.com> Date: Mon, 23 Dec 2024 10:55:02 +0800 Subject: [PATCH 50/56] change expected_diff_max to 0.4 --- tests/pipelines/consisid/test_consisid.py | 3 +-- 1 file changed, 1 insertion(+), 2 deletions(-) diff --git a/tests/pipelines/consisid/test_consisid.py b/tests/pipelines/consisid/test_consisid.py index 966ffea804ba..31f2bc024af6 100644 --- a/tests/pipelines/consisid/test_consisid.py +++ b/tests/pipelines/consisid/test_consisid.py @@ -273,8 +273,7 @@ def test_attention_slicing_forward_pass( "Attention slicing should not affect the inference results", ) - def test_vae_tiling(self, expected_diff_max: float = 0.35): - # Note (SHYuanBest): I don't know why this requires a higher expected_max_diff + def test_vae_tiling(self, expected_diff_max: float = 0.4): generator_device = "cpu" components = self.get_dummy_components() From cdc04bff96cd0a7695c5d26794e3929295334505 Mon Sep 17 00:00:00 2001 From: Shenghai Yuan <140951558+SHYuanBest@users.noreply.github.com> Date: Mon, 23 Dec 2024 12:34:45 +0800 Subject: [PATCH 51/56] fix typo --- src/diffusers/pipelines/consisid/pipeline_consisid.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/diffusers/pipelines/consisid/pipeline_consisid.py b/src/diffusers/pipelines/consisid/pipeline_consisid.py index 02441f9c352d..088b41644a3c 100644 --- a/src/diffusers/pipelines/consisid/pipeline_consisid.py +++ b/src/diffusers/pipelines/consisid/pipeline_consisid.py @@ -664,7 +664,7 @@ def __call__( width: int = 720, num_frames: int = 49, num_inference_steps: int = 50, - guidance_scale: float = 6, + guidance_scale: float = 6.0, use_dynamic_cfg: bool = False, num_videos_per_prompt: int = 1, eta: float = 0.0, From 0af2f83607afac07ddd6dc19ae1a42ae4fcc5a49 Mon Sep 17 00:00:00 2001 From: SHYuanBest Date: Tue, 24 Dec 2024 15:20:38 +0800 Subject: [PATCH 52/56] fix link --- docs/source/en/using-diffusers/consisid.md | 2 +- docs/source/zh/consisid.md | 2 +- src/diffusers/pipelines/consisid/pipeline_consisid.py | 2 +- 3 files changed, 3 insertions(+), 3 deletions(-) diff --git a/docs/source/en/using-diffusers/consisid.md b/docs/source/en/using-diffusers/consisid.md index 34f9c8b3d63c..652d9b14f5ab 100644 --- a/docs/source/en/using-diffusers/consisid.md +++ b/docs/source/en/using-diffusers/consisid.md @@ -48,7 +48,7 @@ For identity-preserving text-to-video, pass a text prompt and an image contain c from diffusers.utils import export_to_video prompt = "The video captures a boy walking along a city street, filmed in black and white on a classic 35mm camera. His expression is thoughtful, his brow slightly furrowed as if he's lost in contemplation. The film grain adds a textured, timeless quality to the image, evoking a sense of nostalgia. Around him, the cityscape is filled with vintage buildings, cobblestone sidewalks, and softly blurred figures passing by, their outlines faint and indistinct. Streetlights cast a gentle glow, while shadows play across the boy's path, adding depth to the scene. The lighting highlights the boy's subtle smile, hinting at a fleeting moment of curiosity. The overall cinematic atmosphere, complete with classic film still aesthetics and dramatic contrasts, gives the scene an evocative and introspective feel." -image = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/refs%2Fpr%2F406/diffusers/consisid/consisid_image_3.png?download=true" +image = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/refs%2Fpr%2F406/diffusers/consisid/consisid_input.png?download=true" id_cond, id_vit_hidden, image, face_kps = process_face_embeddings_infer(face_helper_1, face_clip_model, face_helper_2, eva_transform_mean, eva_transform_std, face_main_model, "cuda", torch.bfloat16, image, is_align_face=True) diff --git a/docs/source/zh/consisid.md b/docs/source/zh/consisid.md index 6bd4b752d444..c543c0eedbfd 100644 --- a/docs/source/zh/consisid.md +++ b/docs/source/zh/consisid.md @@ -52,7 +52,7 @@ pipe.to("cuda") from diffusers.utils import export_to_video prompt = "The video captures a boy walking along a city street, filmed in black and white on a classic 35mm camera. His expression is thoughtful, his brow slightly furrowed as if he's lost in contemplation. The film grain adds a textured, timeless quality to the image, evoking a sense of nostalgia. Around him, the cityscape is filled with vintage buildings, cobblestone sidewalks, and softly blurred figures passing by, their outlines faint and indistinct. Streetlights cast a gentle glow, while shadows play across the boy's path, adding depth to the scene. The lighting highlights the boy's subtle smile, hinting at a fleeting moment of curiosity. The overall cinematic atmosphere, complete with classic film still aesthetics and dramatic contrasts, gives the scene an evocative and introspective feel." -image = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/refs%2Fpr%2F406/diffusers/consisid/consisid_image_3.png?download=true" +image = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/refs%2Fpr%2F406/diffusers/consisid/consisid_input.png?download=true" id_cond, id_vit_hidden, image, face_kps = process_face_embeddings_infer(face_helper_1, face_clip_model, face_helper_2, eva_transform_mean, eva_transform_std, face_main_model, "cuda", torch.bfloat16, image, is_align_face=True) diff --git a/src/diffusers/pipelines/consisid/pipeline_consisid.py b/src/diffusers/pipelines/consisid/pipeline_consisid.py index 088b41644a3c..358cb64383b9 100644 --- a/src/diffusers/pipelines/consisid/pipeline_consisid.py +++ b/src/diffusers/pipelines/consisid/pipeline_consisid.py @@ -59,7 +59,7 @@ >>> # ConsisID works well with long and well-described prompts. Make sure the face in the image is clearly visible (e.g., preferably half-body or full-body). >>> prompt = "The video captures a boy walking along a city street, filmed in black and white on a classic 35mm camera. His expression is thoughtful, his brow slightly furrowed as if he's lost in contemplation. The film grain adds a textured, timeless quality to the image, evoking a sense of nostalgia. Around him, the cityscape is filled with vintage buildings, cobblestone sidewalks, and softly blurred figures passing by, their outlines faint and indistinct. Streetlights cast a gentle glow, while shadows play across the boy's path, adding depth to the scene. The lighting highlights the boy's subtle smile, hinting at a fleeting moment of curiosity. The overall cinematic atmosphere, complete with classic film still aesthetics and dramatic contrasts, gives the scene an evocative and introspective feel." - >>> image = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/refs%2Fpr%2F406/diffusers/consisid/consisid_image_3.png?download=true" + >>> image = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/refs%2Fpr%2F406/diffusers/consisid/consisid_input.png?download=true" >>> id_cond, id_vit_hidden, image, face_kps = process_face_embeddings_infer( ... face_helper_1, From e17aa82518ca837f5fd9d699a03ee8b24b2e93af Mon Sep 17 00:00:00 2001 From: Shenghai Yuan <140951558+SHYuanBest@users.noreply.github.com> Date: Tue, 24 Dec 2024 15:29:58 +0800 Subject: [PATCH 53/56] fix typo --- docs/source/zh/consisid.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/docs/source/zh/consisid.md b/docs/source/zh/consisid.md index c543c0eedbfd..ba4fb47d64bd 100644 --- a/docs/source/zh/consisid.md +++ b/docs/source/zh/consisid.md @@ -92,7 +92,7 @@ export_to_video(video.frames[0], "output.mp4", fps=8) -## Citation +## Resources 通过以下资源了解有关 ConsisID 的更多信息: From 31c94a0c8d5b39a5f09acd41dd6846ac5037da8b Mon Sep 17 00:00:00 2001 From: SHYuanBest Date: Fri, 17 Jan 2025 06:55:05 +0000 Subject: [PATCH 54/56] update docs --- docs/source/en/using-diffusers/consisid.md | 32 +++++++++---------- docs/source/zh/consisid.md | 32 +++++++++---------- .../pipelines/consisid/pipeline_consisid.py | 2 +- 3 files changed, 33 insertions(+), 33 deletions(-) diff --git a/docs/source/en/using-diffusers/consisid.md b/docs/source/en/using-diffusers/consisid.md index 652d9b14f5ab..2b17575dc962 100644 --- a/docs/source/en/using-diffusers/consisid.md +++ b/docs/source/en/using-diffusers/consisid.md @@ -48,7 +48,7 @@ For identity-preserving text-to-video, pass a text prompt and an image contain c from diffusers.utils import export_to_video prompt = "The video captures a boy walking along a city street, filmed in black and white on a classic 35mm camera. His expression is thoughtful, his brow slightly furrowed as if he's lost in contemplation. The film grain adds a textured, timeless quality to the image, evoking a sense of nostalgia. Around him, the cityscape is filled with vintage buildings, cobblestone sidewalks, and softly blurred figures passing by, their outlines faint and indistinct. Streetlights cast a gentle glow, while shadows play across the boy's path, adding depth to the scene. The lighting highlights the boy's subtle smile, hinting at a fleeting moment of curiosity. The overall cinematic atmosphere, complete with classic film still aesthetics and dramatic contrasts, gives the scene an evocative and introspective feel." -image = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/refs%2Fpr%2F406/diffusers/consisid/consisid_input.png?download=true" +image = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/consisid/consisid_input.png?download=true" id_cond, id_vit_hidden, image, face_kps = process_face_embeddings_infer(face_helper_1, face_clip_model, face_helper_2, eva_transform_mean, eva_transform_std, face_main_model, "cuda", torch.bfloat16, image, is_align_face=True) @@ -62,29 +62,29 @@ export_to_video(video.frames[0], "output.mp4", fps=8) Description - - - The video, in a beautifully crafted animated style, features a confident woman riding a horse through a lush forest clearing. Her expression is focused yet serene as she adjusts her wide-brimmed hat with a practiced hand. She wears a flowy bohemian dress ...... + + + The video, in a beautifully crafted animated style, features a confident woman riding a horse through a lush forest clearing. Her expression is focused yet serene as she adjusts her wide-brimmed hat with a practiced hand. She wears a flowy bohemian dress, which moves gracefully with the rhythm of the horse, the fabric flowing fluidly in the animated motion. The dappled sunlight filters through the trees, casting soft, painterly patterns on the forest floor. Her posture is poised, showing both control and elegance as she guides the horse with ease. The animation's gentle, fluid style adds a dreamlike quality to the scene, with the woman’s calm demeanor and the peaceful surroundings evoking a sense of freedom and harmony. - - - The video, in a captivating animated style, shows a woman standing in the center of a snowy forest, her eyes narrowed in concentration as she extends her hand forward. She is dressed in a deep blue cloak, her breath visible in the cold air ...... + + + The video, in a captivating animated style, shows a woman standing in the center of a snowy forest, her eyes narrowed in concentration as she extends her hand forward. She is dressed in a deep blue cloak, her breath visible in the cold air, which is rendered with soft, ethereal strokes. A faint smile plays on her lips as she summons a wisp of ice magic, watching with focus as the surrounding trees and ground begin to shimmer and freeze, covered in delicate ice crystals. The animation’s fluid motion brings the magic to life, with the frost spreading outward in intricate, sparkling patterns. The environment is painted with soft, watercolor-like hues, enhancing the magical, dreamlike atmosphere. The overall mood is serene yet powerful, with the quiet winter air amplifying the delicate beauty of the frozen scene. - - - The animation features a whimsical portrait of a balloon seller standing in a gentle breeze, captured with soft, hazy brushstrokes that evoke the feel of a serene spring day. His face is framed by a gentle smile, his eyes ...... + + + The animation features a whimsical portrait of a balloon seller standing in a gentle breeze, captured with soft, hazy brushstrokes that evoke the feel of a serene spring day. His face is framed by a gentle smile, his eyes squinting slightly against the sun, while a few wisps of hair flutter in the wind. He is dressed in a light, pastel-colored shirt, and the balloons around him sway with the wind, adding a sense of playfulness to the scene. The background blurs softly, with hints of a vibrant market or park, enhancing the light-hearted, yet tender mood of the moment. - - - The video captures a boy walking along a city street, filmed in black and white on a classic 35mm camera. His expression is thoughtful, his brow slightly furrowed as if he's lost in contemplation. The film grain adds a textured ...... + + + The video captures a boy walking along a city street, filmed in black and white on a classic 35mm camera. His expression is thoughtful, his brow slightly furrowed as if he's lost in contemplation. The film grain adds a textured, timeless quality to the image, evoking a sense of nostalgia. Around him, the cityscape is filled with vintage buildings, cobblestone sidewalks, and softly blurred figures passing by, their outlines faint and indistinct. Streetlights cast a gentle glow, while shadows play across the boy's path, adding depth to the scene. The lighting highlights the boy's subtle smile, hinting at a fleeting moment of curiosity. The overall cinematic atmosphere, complete with classic film still aesthetics and dramatic contrasts, gives the scene an evocative and introspective feel. - - - The video features a baby wearing a bright superhero cape, standing confidently with arms raised in a powerful pose. The baby has a determined look on their face, with eyes wide and lips pursed in concentration, as if ready to take on a challenge ...... + + + The video features a baby wearing a bright superhero cape, standing confidently with arms raised in a powerful pose. The baby has a determined look on their face, with eyes wide and lips pursed in concentration, as if ready to take on a challenge. The setting appears playful, with colorful toys scattered around and a soft rug underfoot, while sunlight streams through a nearby window, highlighting the fluttering cape and adding to the impression of heroism. The overall atmosphere is lighthearted and fun, with the baby's expressions capturing a mix of innocence and an adorable attempt at bravery, as if truly ready to save the day. diff --git a/docs/source/zh/consisid.md b/docs/source/zh/consisid.md index ba4fb47d64bd..2f404499fc69 100644 --- a/docs/source/zh/consisid.md +++ b/docs/source/zh/consisid.md @@ -52,7 +52,7 @@ pipe.to("cuda") from diffusers.utils import export_to_video prompt = "The video captures a boy walking along a city street, filmed in black and white on a classic 35mm camera. His expression is thoughtful, his brow slightly furrowed as if he's lost in contemplation. The film grain adds a textured, timeless quality to the image, evoking a sense of nostalgia. Around him, the cityscape is filled with vintage buildings, cobblestone sidewalks, and softly blurred figures passing by, their outlines faint and indistinct. Streetlights cast a gentle glow, while shadows play across the boy's path, adding depth to the scene. The lighting highlights the boy's subtle smile, hinting at a fleeting moment of curiosity. The overall cinematic atmosphere, complete with classic film still aesthetics and dramatic contrasts, gives the scene an evocative and introspective feel." -image = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/refs%2Fpr%2F406/diffusers/consisid/consisid_input.png?download=true" +image = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/consisid/consisid_input.png?download=true" id_cond, id_vit_hidden, image, face_kps = process_face_embeddings_infer(face_helper_1, face_clip_model, face_helper_2, eva_transform_mean, eva_transform_std, face_main_model, "cuda", torch.bfloat16, image, is_align_face=True) @@ -66,29 +66,29 @@ export_to_video(video.frames[0], "output.mp4", fps=8) Description - - - The video, in a beautifully crafted animated style, features a confident woman riding a horse through a lush forest clearing. Her expression is focused yet serene as she adjusts her wide-brimmed hat with a practiced hand. She wears a flowy bohemian dress ...... + + + The video, in a beautifully crafted animated style, features a confident woman riding a horse through a lush forest clearing. Her expression is focused yet serene as she adjusts her wide-brimmed hat with a practiced hand. She wears a flowy bohemian dress, which moves gracefully with the rhythm of the horse, the fabric flowing fluidly in the animated motion. The dappled sunlight filters through the trees, casting soft, painterly patterns on the forest floor. Her posture is poised, showing both control and elegance as she guides the horse with ease. The animation's gentle, fluid style adds a dreamlike quality to the scene, with the woman’s calm demeanor and the peaceful surroundings evoking a sense of freedom and harmony. - - - The video, in a captivating animated style, shows a woman standing in the center of a snowy forest, her eyes narrowed in concentration as she extends her hand forward. She is dressed in a deep blue cloak, her breath visible in the cold air ...... + + + The video, in a captivating animated style, shows a woman standing in the center of a snowy forest, her eyes narrowed in concentration as she extends her hand forward. She is dressed in a deep blue cloak, her breath visible in the cold air, which is rendered with soft, ethereal strokes. A faint smile plays on her lips as she summons a wisp of ice magic, watching with focus as the surrounding trees and ground begin to shimmer and freeze, covered in delicate ice crystals. The animation’s fluid motion brings the magic to life, with the frost spreading outward in intricate, sparkling patterns. The environment is painted with soft, watercolor-like hues, enhancing the magical, dreamlike atmosphere. The overall mood is serene yet powerful, with the quiet winter air amplifying the delicate beauty of the frozen scene. - - - The animation features a whimsical portrait of a balloon seller standing in a gentle breeze, captured with soft, hazy brushstrokes that evoke the feel of a serene spring day. His face is framed by a gentle smile, his eyes ...... + + + The animation features a whimsical portrait of a balloon seller standing in a gentle breeze, captured with soft, hazy brushstrokes that evoke the feel of a serene spring day. His face is framed by a gentle smile, his eyes squinting slightly against the sun, while a few wisps of hair flutter in the wind. He is dressed in a light, pastel-colored shirt, and the balloons around him sway with the wind, adding a sense of playfulness to the scene. The background blurs softly, with hints of a vibrant market or park, enhancing the light-hearted, yet tender mood of the moment. - - - The video captures a boy walking along a city street, filmed in black and white on a classic 35mm camera. His expression is thoughtful, his brow slightly furrowed as if he's lost in contemplation. The film grain adds a textured ...... + + + The video captures a boy walking along a city street, filmed in black and white on a classic 35mm camera. His expression is thoughtful, his brow slightly furrowed as if he's lost in contemplation. The film grain adds a textured, timeless quality to the image, evoking a sense of nostalgia. Around him, the cityscape is filled with vintage buildings, cobblestone sidewalks, and softly blurred figures passing by, their outlines faint and indistinct. Streetlights cast a gentle glow, while shadows play across the boy's path, adding depth to the scene. The lighting highlights the boy's subtle smile, hinting at a fleeting moment of curiosity. The overall cinematic atmosphere, complete with classic film still aesthetics and dramatic contrasts, gives the scene an evocative and introspective feel. - - - The video features a baby wearing a bright superhero cape, standing confidently with arms raised in a powerful pose. The baby has a determined look on their face, with eyes wide and lips pursed in concentration, as if ready to take on a challenge ...... + + + The video features a baby wearing a bright superhero cape, standing confidently with arms raised in a powerful pose. The baby has a determined look on their face, with eyes wide and lips pursed in concentration, as if ready to take on a challenge. The setting appears playful, with colorful toys scattered around and a soft rug underfoot, while sunlight streams through a nearby window, highlighting the fluttering cape and adding to the impression of heroism. The overall atmosphere is lighthearted and fun, with the baby's expressions capturing a mix of innocence and an adorable attempt at bravery, as if truly ready to save the day. diff --git a/src/diffusers/pipelines/consisid/pipeline_consisid.py b/src/diffusers/pipelines/consisid/pipeline_consisid.py index 358cb64383b9..4e1b5cf08911 100644 --- a/src/diffusers/pipelines/consisid/pipeline_consisid.py +++ b/src/diffusers/pipelines/consisid/pipeline_consisid.py @@ -59,7 +59,7 @@ >>> # ConsisID works well with long and well-described prompts. Make sure the face in the image is clearly visible (e.g., preferably half-body or full-body). >>> prompt = "The video captures a boy walking along a city street, filmed in black and white on a classic 35mm camera. His expression is thoughtful, his brow slightly furrowed as if he's lost in contemplation. The film grain adds a textured, timeless quality to the image, evoking a sense of nostalgia. Around him, the cityscape is filled with vintage buildings, cobblestone sidewalks, and softly blurred figures passing by, their outlines faint and indistinct. Streetlights cast a gentle glow, while shadows play across the boy's path, adding depth to the scene. The lighting highlights the boy's subtle smile, hinting at a fleeting moment of curiosity. The overall cinematic atmosphere, complete with classic film still aesthetics and dramatic contrasts, gives the scene an evocative and introspective feel." - >>> image = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/refs%2Fpr%2F406/diffusers/consisid/consisid_input.png?download=true" + >>> image = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/consisid/consisid_input.png?download=true" >>> id_cond, id_vit_hidden, image, face_kps = process_face_embeddings_infer( ... face_helper_1, From cca81bf296c07e6864e4dc0085a2601dcc91584b Mon Sep 17 00:00:00 2001 From: Aryan Date: Sat, 18 Jan 2025 12:35:31 +0100 Subject: [PATCH 55/56] update --- docs/source/en/using-diffusers/consisid.md | 3 +- src/diffusers/loaders/__init__.py | 2 - src/diffusers/loaders/lora_pipeline.py | 307 ------------------ .../transformers/consisid_transformer_3d.py | 231 ++++--------- .../pipelines/consisid/pipeline_consisid.py | 9 +- 5 files changed, 62 insertions(+), 490 deletions(-) diff --git a/docs/source/en/using-diffusers/consisid.md b/docs/source/en/using-diffusers/consisid.md index 2b17575dc962..07c13c4c66b3 100644 --- a/docs/source/en/using-diffusers/consisid.md +++ b/docs/source/en/using-diffusers/consisid.md @@ -20,8 +20,8 @@ specific language governing permissions and limitations under the License. This guide will walk you through using ConsisID for use cases. ## Load Model Checkpoints -Model weights may be stored in separate subfolders on the Hub or locally, in which case, you should use the [`~DiffusionPipeline.from_pretrained`] method. +Model weights may be stored in separate subfolders on the Hub or locally, in which case, you should use the [`~DiffusionPipeline.from_pretrained`] method. ```python # !pip install consisid_eva_clip insightface facexlib @@ -42,6 +42,7 @@ pipe.to("cuda") ``` ## Identity-Preserving Text-to-Video + For identity-preserving text-to-video, pass a text prompt and an image contain clear face (e.g., preferably half-body or full-body). By default, ConsisID generates a 720x480 video for the best results. ```python diff --git a/src/diffusers/loaders/__init__.py b/src/diffusers/loaders/__init__.py index 87fb52f16743..2db8b53db498 100644 --- a/src/diffusers/loaders/__init__.py +++ b/src/diffusers/loaders/__init__.py @@ -70,7 +70,6 @@ def text_encoder_attn_modules(text_encoder): "LoraLoaderMixin", "FluxLoraLoaderMixin", "CogVideoXLoraLoaderMixin", - "ConsisIDLoraLoaderMixin", "Mochi1LoraLoaderMixin", "HunyuanVideoLoraLoaderMixin", "SanaLoraLoaderMixin", @@ -102,7 +101,6 @@ def text_encoder_attn_modules(text_encoder): from .lora_pipeline import ( AmusedLoraLoaderMixin, CogVideoXLoraLoaderMixin, - ConsisIDLoraLoaderMixin, FluxLoraLoaderMixin, HunyuanVideoLoraLoaderMixin, LoraLoaderMixin, diff --git a/src/diffusers/loaders/lora_pipeline.py b/src/diffusers/loaders/lora_pipeline.py index d4047b33c77a..efefe5264daa 100644 --- a/src/diffusers/loaders/lora_pipeline.py +++ b/src/diffusers/loaders/lora_pipeline.py @@ -2590,313 +2590,6 @@ def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs): super().unfuse_lora(components=components) -class ConsisIDLoraLoaderMixin(LoraBaseMixin): - r""" - Load LoRA layers into [`ConsisIDTransformer3DModel`]. Specific to [`ConsisIDPipeline`]. - """ - - _lora_loadable_modules = ["transformer"] - transformer_name = TRANSFORMER_NAME - - @classmethod - @validate_hf_hub_args - # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.lora_state_dict - def lora_state_dict( - cls, - pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], - **kwargs, - ): - r""" - Return state dict for lora weights and the network alphas. - - - - We support loading A1111 formatted LoRA checkpoints in a limited capacity. - - This function is experimental and might change in the future. - - - - Parameters: - pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): - Can be either: - - - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on - the Hub. - - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved - with [`ModelMixin.save_pretrained`]. - - A [torch state - dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict). - - cache_dir (`Union[str, os.PathLike]`, *optional*): - Path to a directory where a downloaded pretrained model configuration is cached if the standard cache - is not used. - force_download (`bool`, *optional*, defaults to `False`): - Whether or not to force the (re-)download of the model weights and configuration files, overriding the - cached versions if they exist. - - proxies (`Dict[str, str]`, *optional*): - A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', - 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. - local_files_only (`bool`, *optional*, defaults to `False`): - Whether to only load local model weights and configuration files or not. If set to `True`, the model - won't be downloaded from the Hub. - token (`str` or *bool*, *optional*): - The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from - `diffusers-cli login` (stored in `~/.huggingface`) is used. - revision (`str`, *optional*, defaults to `"main"`): - The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier - allowed by Git. - subfolder (`str`, *optional*, defaults to `""`): - The subfolder location of a model file within a larger model repository on the Hub or locally. - - """ - # Load the main state dict first which has the LoRA layers for either of - # transformer and text encoder or both. - cache_dir = kwargs.pop("cache_dir", None) - force_download = kwargs.pop("force_download", False) - proxies = kwargs.pop("proxies", None) - local_files_only = kwargs.pop("local_files_only", None) - token = kwargs.pop("token", None) - revision = kwargs.pop("revision", None) - subfolder = kwargs.pop("subfolder", None) - weight_name = kwargs.pop("weight_name", None) - use_safetensors = kwargs.pop("use_safetensors", None) - - allow_pickle = False - if use_safetensors is None: - use_safetensors = True - allow_pickle = True - - user_agent = { - "file_type": "attn_procs_weights", - "framework": "pytorch", - } - - state_dict = _fetch_state_dict( - pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict, - weight_name=weight_name, - use_safetensors=use_safetensors, - local_files_only=local_files_only, - cache_dir=cache_dir, - force_download=force_download, - proxies=proxies, - token=token, - revision=revision, - subfolder=subfolder, - user_agent=user_agent, - allow_pickle=allow_pickle, - ) - - is_dora_scale_present = any("dora_scale" in k for k in state_dict) - if is_dora_scale_present: - warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new." - logger.warning(warn_msg) - state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k} - - return state_dict - - def load_lora_weights( - self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs - ): - """ - Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and - `self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See - [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded. - See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state - dict is loaded into `self.transformer`. - - Parameters: - pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): - See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. - adapter_name (`str`, *optional*): - Adapter name to be used for referencing the loaded adapter model. If not specified, it will use - `default_{i}` where i is the total number of adapters being loaded. - low_cpu_mem_usage (`bool`, *optional*): - Speed up model loading by only loading the pretrained LoRA weights and not initializing the random - weights. - kwargs (`dict`, *optional*): - See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`]. - """ - if not USE_PEFT_BACKEND: - raise ValueError("PEFT backend is required for this method.") - - low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA) - if low_cpu_mem_usage and is_peft_version("<", "0.13.0"): - raise ValueError( - "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." - ) - - # if a dict is passed, copy it instead of modifying it inplace - if isinstance(pretrained_model_name_or_path_or_dict, dict): - pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy() - - # First, ensure that the checkpoint is a compatible one and can be successfully loaded. - state_dict = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs) - - is_correct_format = all("lora" in key for key in state_dict.keys()) - if not is_correct_format: - raise ValueError("Invalid LoRA checkpoint.") - - self.load_lora_into_transformer( - state_dict, - transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer, - adapter_name=adapter_name, - _pipeline=self, - low_cpu_mem_usage=low_cpu_mem_usage, - ) - - @classmethod - # Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->ConsisIDTransformer3DModel - def load_lora_into_transformer( - cls, state_dict, transformer, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False - ): - """ - This will load the LoRA layers specified in `state_dict` into `transformer`. - - Parameters: - state_dict (`dict`): - A standard state dict containing the lora layer parameters. The keys can either be indexed directly - into the unet or prefixed with an additional `unet` which can be used to distinguish between text - encoder lora layers. - transformer (`ConsisIDTransformer3DModel`): - The Transformer model to load the LoRA layers into. - adapter_name (`str`, *optional*): - Adapter name to be used for referencing the loaded adapter model. If not specified, it will use - `default_{i}` where i is the total number of adapters being loaded. - low_cpu_mem_usage (`bool`, *optional*): - Speed up model loading by only loading the pretrained LoRA weights and not initializing the random - weights. - """ - if low_cpu_mem_usage and is_peft_version("<", "0.13.0"): - raise ValueError( - "`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`." - ) - - # Load the layers corresponding to transformer. - logger.info(f"Loading {cls.transformer_name}.") - transformer.load_lora_adapter( - state_dict, - network_alphas=None, - adapter_name=adapter_name, - _pipeline=_pipeline, - low_cpu_mem_usage=low_cpu_mem_usage, - ) - - @classmethod - # Adapted from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.save_lora_weights without support for text encoder - def save_lora_weights( - cls, - save_directory: Union[str, os.PathLike], - transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, - is_main_process: bool = True, - weight_name: str = None, - save_function: Callable = None, - safe_serialization: bool = True, - ): - r""" - Save the LoRA parameters corresponding to the UNet and text encoder. - - Arguments: - save_directory (`str` or `os.PathLike`): - Directory to save LoRA parameters to. Will be created if it doesn't exist. - transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`): - State dict of the LoRA layers corresponding to the `transformer`. - is_main_process (`bool`, *optional*, defaults to `True`): - Whether the process calling this is the main process or not. Useful during distributed training and you - need to call this function on all processes. In this case, set `is_main_process=True` only on the main - process to avoid race conditions. - save_function (`Callable`): - The function to use to save the state dictionary. Useful during distributed training when you need to - replace `torch.save` with another method. Can be configured with the environment variable - `DIFFUSERS_SAVE_MODE`. - safe_serialization (`bool`, *optional*, defaults to `True`): - Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`. - """ - state_dict = {} - - if not transformer_lora_layers: - raise ValueError("You must pass `transformer_lora_layers`.") - - if transformer_lora_layers: - state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name)) - - # Save the model - cls.write_lora_layers( - state_dict=state_dict, - save_directory=save_directory, - is_main_process=is_main_process, - weight_name=weight_name, - save_function=save_function, - safe_serialization=safe_serialization, - ) - - # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.fuse_lora with unet->transformer - def fuse_lora( - self, - components: List[str] = ["transformer", "text_encoder"], - lora_scale: float = 1.0, - safe_fusing: bool = False, - adapter_names: Optional[List[str]] = None, - **kwargs, - ): - r""" - Fuses the LoRA parameters into the original parameters of the corresponding blocks. - - - - This is an experimental API. - - - - Args: - components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into. - lora_scale (`float`, defaults to 1.0): - Controls how much to influence the outputs with the LoRA parameters. - safe_fusing (`bool`, defaults to `False`): - Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. - adapter_names (`List[str]`, *optional*): - Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused. - - Example: - - ```py - from diffusers import DiffusionPipeline - import torch - - pipeline = DiffusionPipeline.from_pretrained( - "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 - ).to("cuda") - pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") - pipeline.fuse_lora(lora_scale=0.7) - ``` - """ - super().fuse_lora( - components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names - ) - - # Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.unfuse_lora with unet->transformer - def unfuse_lora(self, components: List[str] = ["transformer", "text_encoder"], **kwargs): - r""" - Reverses the effect of - [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora). - - - - This is an experimental API. - - - - Args: - components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from. - unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters. - unfuse_text_encoder (`bool`, defaults to `True`): - Whether to unfuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the - LoRA parameters then it won't have any effect. - """ - super().unfuse_lora(components=components) - - class Mochi1LoraLoaderMixin(LoraBaseMixin): r""" Load LoRA layers into [`MochiTransformer3DModel`]. Specific to [`MochiPipeline`]. diff --git a/src/diffusers/models/transformers/consisid_transformer_3d.py b/src/diffusers/models/transformers/consisid_transformer_3d.py index 8ca7eec780ea..86a6628b5161 100644 --- a/src/diffusers/models/transformers/consisid_transformer_3d.py +++ b/src/diffusers/models/transformers/consisid_transformer_3d.py @@ -13,7 +13,7 @@ # limitations under the License. import math -from typing import Any, Dict, Optional, Tuple, Union +from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn @@ -33,61 +33,10 @@ logger = logging.get_logger(__name__) # pylint: disable=invalid-name -def reshape_tensor(x, heads): - """ - Reshapes the input tensor for multi-head attention. - - Args: - x (torch.Tensor): The input tensor with shape (batch_size, length, width). - heads (int): The number of attention heads. - - Returns: - torch.Tensor: The reshaped tensor, with shape (batch_size, heads, length, width). - """ - bs, length, width = x.shape - x = x.view(bs, length, heads, -1) - x = x.transpose(1, 2) - x = x.reshape(bs, heads, length, -1) - return x - - -def ConsisIDFeedForward(dim, mult=4): - """ - Creates a consistent ID feedforward block consisting of layer normalization, two linear layers, and a GELU - activation. - - Args: - dim (int): The input dimension of the tensor. - mult (int, optional): Multiplier for the inner dimension. Default is 4. - - Returns: - nn.Sequential: A sequence of layers comprising LayerNorm, Linear layers, and GELU. - """ - inner_dim = int(dim * mult) - return nn.Sequential( - nn.LayerNorm(dim), - nn.Linear(dim, inner_dim, bias=False), - nn.GELU(), - nn.Linear(inner_dim, dim, bias=False), - ) - - class PerceiverAttention(nn.Module): - """ - Implements the Perceiver attention mechanism with multi-head attention. - - This layer takes two inputs: 'x' (image features) and 'latents' (latent features), applying multi-head attention to - both and producing an output tensor with the same dimension as the input tensor 'x'. - - Args: - dim (int): The input dimension. - dim_head (int, optional): The dimension of each attention head. Default is 64. - heads (int, optional): The number of attention heads. Default is 8. - kv_dim (int, optional): The key-value dimension. If None, `dim` is used for both keys and values. - """ - - def __init__(self, *, dim, dim_head=64, heads=8, kv_dim=None): + def __init__(self, dim: int, dim_head: int = 64, heads: int = 8, kv_dim: Optional[int] = None): super().__init__() + self.scale = dim_head**-0.5 self.dim_head = dim_head self.heads = heads @@ -100,74 +49,49 @@ def __init__(self, *, dim, dim_head=64, heads=8, kv_dim=None): self.to_kv = nn.Linear(dim if kv_dim is None else kv_dim, inner_dim * 2, bias=False) self.to_out = nn.Linear(inner_dim, dim, bias=False) - def forward(self, x, latents): - """ - Forward pass for Perceiver attention. - - Args: - x (torch.Tensor): Image features tensor with shape (batch_size, num_pixels, D). - latents (torch.Tensor): Latent features tensor with shape (batch_size, num_latents, D). - - Returns: - torch.Tensor: Output tensor after applying attention and transformation. - """ + def forward(self, image_embeds: torch.Tensor, latents: torch.Tensor) -> torch.Tensor: # Apply normalization - x = self.norm1(x) + image_embeds = self.norm1(image_embeds) latents = self.norm2(latents) - b, seq_len, _ = latents.shape # Get batch size and sequence length + batch_size, seq_len, _ = latents.shape # Get batch size and sequence length # Compute query, key, and value matrices - q = self.to_q(latents) - kv_input = torch.cat((x, latents), dim=-2) - k, v = self.to_kv(kv_input).chunk(2, dim=-1) + query = self.to_q(latents) + kv_input = torch.cat((image_embeds, latents), dim=-2) + key, value = self.to_kv(kv_input).chunk(2, dim=-1) # Reshape the tensors for multi-head attention - q = reshape_tensor(q, self.heads) - k = reshape_tensor(k, self.heads) - v = reshape_tensor(v, self.heads) + query = query.reshape(query.size(0), -1, self.heads, self.dim_head).transpose(1, 2) + key = key.reshape(key.size(0), -1, self.heads, self.dim_head).transpose(1, 2) + value = value.reshape(value.size(0), -1, self.heads, self.dim_head).transpose(1, 2) # attention scale = 1 / math.sqrt(math.sqrt(self.dim_head)) - weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards + weight = (query * scale) @ (key * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) - out = weight @ v + output = weight @ value # Reshape and return the final output - out = out.permute(0, 2, 1, 3).reshape(b, seq_len, -1) + output = output.permute(0, 2, 1, 3).reshape(batch_size, seq_len, -1) - return self.to_out(out) + return self.to_out(output) class LocalFacialExtractor(nn.Module): def __init__( self, - id_dim=1280, - vit_dim=1024, - depth=10, - dim_head=64, - heads=16, - num_id_token=5, - num_queries=32, - output_dim=2048, - ff_mult=4, - num_scale=5, + id_dim: int = 1280, + vit_dim: int = 1024, + depth: int = 10, + dim_head: int = 64, + heads: int = 16, + num_id_token: int = 5, + num_queries: int = 32, + output_dim: int = 2048, + ff_mult: int = 4, + num_scale: int = 5, ): - """ - Initializes the LocalFacialExtractor class. - - Parameters: - - id_dim (int): The dimensionality of id features. - - vit_dim (int): The dimensionality of vit features. - - depth (int): Total number of PerceiverAttention and ConsisIDFeedForward layers. - - dim_head (int): Dimensionality of each attention head. - - heads (int): Number of attention heads. - - num_id_token (int): Number of tokens used for identity features. - - num_queries (int): Number of query tokens for the latent representation. - - output_dim (int): Output dimension after projection. - - ff_mult (int): Multiplier for the feed-forward network hidden dimension. - - num_scale (int): The number of different scales visual feature. - """ super().__init__() # Storing identity token and query information @@ -191,7 +115,12 @@ def __init__( nn.ModuleList( [ PerceiverAttention(dim=vit_dim, dim_head=dim_head, heads=heads), # Perceiver Attention layer - ConsisIDFeedForward(dim=vit_dim, mult=ff_mult), # ConsisIDFeedForward layer + nn.Sequential( + nn.LayerNorm(vit_dim), + nn.Linear(vit_dim, vit_dim * ff_mult, bias=False), + nn.GELU(), + nn.Linear(vit_dim * ff_mult, vit_dim, bias=False), + ), # ConsisIDFeedForward layer ] ) ) @@ -223,32 +152,21 @@ def __init__( nn.Linear(vit_dim, vit_dim * num_id_token), ) - def forward(self, x, y): - """ - Forward pass for LocalFacialExtractor. - - Parameters: - - x (Tensor): The input identity embedding tensor of shape (batch_size, id_dim). - - y (list of Tensor): A list of 5 visual feature tensors each of shape (batch_size, vit_dim). - - Returns: - - Tensor: The extracted latent features of shape (batch_size, num_queries, output_dim). - """ - + def forward(self, id_embeds: torch.Tensor, vit_hidden_states: List[torch.Tensor]) -> torch.Tensor: # Repeat latent queries for the batch size - latents = self.latents.repeat(x.size(0), 1, 1) + latents = self.latents.repeat(id_embeds.size(0), 1, 1) # Map the identity embedding to tokens - x = self.id_embedding_mapping(x) - x = x.reshape(-1, self.num_id_token, self.vit_dim) + id_embeds = self.id_embedding_mapping(id_embeds) + id_embeds = id_embeds.reshape(-1, self.num_id_token, self.vit_dim) # Concatenate identity tokens with the latent queries - latents = torch.cat((latents, x), dim=1) + latents = torch.cat((latents, id_embeds), dim=1) # Process each of the num_scale visual feature inputs for i in range(self.num_scale): - vit_feature = getattr(self, f"mapping_{i}")(y[i]) - ctx_feature = torch.cat((x, vit_feature), dim=1) + vit_feature = getattr(self, f"mapping_{i}")(vit_hidden_states[i]) + ctx_feature = torch.cat((id_embeds, vit_feature), dim=1) # Pass through the PerceiverAttention and ConsisIDFeedForward layers for attn, ff in self.layers[i * self.depth : (i + 1) * self.depth]: @@ -263,26 +181,9 @@ def forward(self, x, y): class PerceiverCrossAttention(nn.Module): - """ - - Args: - dim (int): Dimension of the input latent and output. Default is 3072. - dim_head (int): Dimension of each attention head. Default is 128. - heads (int): Number of attention heads. Default is 16. - kv_dim (int): Dimension of the key/value input, allowing flexible cross-attention. Default is 2048. - - Attributes: - scale (float): Scaling factor used in dot-product attention for numerical stability. - norm1 (nn.LayerNorm): Layer normalization applied to the input image features. - norm2 (nn.LayerNorm): Layer normalization applied to the latent features. - to_q (nn.Linear): Linear layer for projecting the latent features into queries. - to_kv (nn.Linear): Linear layer for projecting the input features into keys and values. - to_out (nn.Linear): Linear layer for outputting the final result after attention. - - """ - - def __init__(self, *, dim=3072, dim_head=128, heads=16, kv_dim=2048): + def __init__(self, dim: int = 3072, dim_head: int = 128, heads: int = 16, kv_dim: int = 2048): super().__init__() + self.scale = dim_head**-0.5 self.dim_head = dim_head self.heads = heads @@ -297,47 +198,32 @@ def __init__(self, *, dim=3072, dim_head=128, heads=16, kv_dim=2048): self.to_kv = nn.Linear(dim if kv_dim is None else kv_dim, inner_dim * 2, bias=False) self.to_out = nn.Linear(inner_dim, dim, bias=False) - def forward(self, x, latents): - """ - - Args: - x (torch.Tensor): Input image features with shape (batch_size, n1, D), where: - - batch_size (b): Number of samples in the batch. - - n1: Sequence length (e.g., number of patches or tokens). - - D: Feature dimension. - - latents (torch.Tensor): Latent feature representations with shape (batch_size, n2, D), where: - - n2: Number of latent elements. - - Returns: - torch.Tensor: Attention-modulated features with shape (batch_size, n2, D). - - """ + def forward(self, image_embeds: torch.Tensor, hidden_states: torch.Tensor) -> torch.Tensor: # Apply layer normalization to the input image and latent features - x = self.norm1(x) - latents = self.norm2(latents) + image_embeds = self.norm1(image_embeds) + hidden_states = self.norm2(hidden_states) - b, seq_len, _ = latents.shape + batch_size, seq_len, _ = hidden_states.shape # Compute queries, keys, and values - q = self.to_q(latents) - k, v = self.to_kv(x).chunk(2, dim=-1) + query = self.to_q(hidden_states) + key, value = self.to_kv(image_embeds).chunk(2, dim=-1) # Reshape tensors to split into attention heads - q = reshape_tensor(q, self.heads) - k = reshape_tensor(k, self.heads) - v = reshape_tensor(v, self.heads) + query = query.reshape(query.size(0), -1, self.heads, self.dim_head).transpose(1, 2) + key = key.reshape(key.size(0), -1, self.heads, self.dim_head).transpose(1, 2) + value = value.reshape(value.size(0), -1, self.heads, self.dim_head).transpose(1, 2) # Compute attention weights scale = 1 / math.sqrt(math.sqrt(self.dim_head)) - weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable scaling than post-division + weight = (query * scale) @ (key * scale).transpose(-2, -1) # More stable scaling than post-division weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) # Compute the output via weighted combination of values - out = weight @ v + out = weight @ value # Reshape and permute to prepare for final linear transformation - out = out.permute(0, 2, 1, 3).reshape(b, seq_len, -1) + out = out.permute(0, 2, 1, 3).reshape(batch_size, seq_len, -1) return self.to_out(out) @@ -680,8 +566,6 @@ def __init__( ) self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * out_channels) - self.gradient_checkpointing = False - self.is_train_face = is_train_face self.is_kps = is_kps @@ -709,12 +593,12 @@ def __init__( # face modules self._init_face_inputs() + self.gradient_checkpointing = False + def _set_gradient_checkpointing(self, module, value=False): self.gradient_checkpointing = value def _init_face_inputs(self): - device = self.device - weight_dtype = self.dtype self.local_facial_extractor = LocalFacialExtractor( id_dim=self.LFE_id_dim, vit_dim=self.LFE_vit_dim, @@ -727,7 +611,6 @@ def _init_face_inputs(self): ff_mult=self.LFE_ff_mult, num_scale=self.LFE_num_scale, ) - self.local_facial_extractor.to(device, dtype=weight_dtype) self.perceiver_cross_attention = nn.ModuleList( [ PerceiverCrossAttention( @@ -735,7 +618,7 @@ def _init_face_inputs(self): dim_head=self.cross_attn_dim_head, heads=self.cross_attn_num_heads, kv_dim=self.cross_attn_kv_dim, - ).to(device, dtype=weight_dtype) + ) for _ in range(self.num_cross_attn) ] ) @@ -828,8 +711,8 @@ def forward( ) # fuse clip and insightface + valid_face_emb = None if self.is_train_face: - assert id_cond is not None and id_vit_hidden is not None id_cond = id_cond.to(device=hidden_states.device, dtype=hidden_states.dtype) id_vit_hidden = [ tensor.to(device=hidden_states.device, dtype=hidden_states.dtype) for tensor in id_vit_hidden diff --git a/src/diffusers/pipelines/consisid/pipeline_consisid.py b/src/diffusers/pipelines/consisid/pipeline_consisid.py index 4e1b5cf08911..0d4891cf17d7 100644 --- a/src/diffusers/pipelines/consisid/pipeline_consisid.py +++ b/src/diffusers/pipelines/consisid/pipeline_consisid.py @@ -24,15 +24,12 @@ from ...callbacks import MultiPipelineCallbacks, PipelineCallback from ...image_processor import PipelineImageInput -from ...loaders import ConsisIDLoraLoaderMixin +from ...loaders import CogVideoXLoraLoaderMixin from ...models import AutoencoderKLCogVideoX, ConsisIDTransformer3DModel from ...models.embeddings import get_3d_rotary_pos_embed from ...pipelines.pipeline_utils import DiffusionPipeline from ...schedulers import CogVideoXDPMScheduler -from ...utils import ( - logging, - replace_example_docstring, -) +from ...utils import logging, replace_example_docstring from ...utils.torch_utils import randn_tensor from ...video_processor import VideoProcessor from .pipeline_output import ConsisIDPipelineOutput @@ -242,7 +239,7 @@ def retrieve_latents( raise AttributeError("Could not access latents of provided encoder_output") -class ConsisIDPipeline(DiffusionPipeline, ConsisIDLoraLoaderMixin): +class ConsisIDPipeline(DiffusionPipeline, CogVideoXLoraLoaderMixin): r""" Pipeline for image-to-video generation using ConsisID. From 534811187fb47a18b7017c83fdbf45d35c6acb0d Mon Sep 17 00:00:00 2001 From: Aryan Date: Sun, 19 Jan 2025 07:56:00 +0100 Subject: [PATCH 56/56] remove consisid lora tests --- tests/lora/test_lora_layers_consisid.py | 229 ------------------------ 1 file changed, 229 deletions(-) delete mode 100644 tests/lora/test_lora_layers_consisid.py diff --git a/tests/lora/test_lora_layers_consisid.py b/tests/lora/test_lora_layers_consisid.py deleted file mode 100644 index 405ce903b016..000000000000 --- a/tests/lora/test_lora_layers_consisid.py +++ /dev/null @@ -1,229 +0,0 @@ -# Copyright 2024 HuggingFace Inc. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. - -import sys -import unittest - -import numpy as np -import pytest -import torch -from PIL import Image -from transformers import AutoTokenizer, T5EncoderModel - -from diffusers import ( - AutoencoderKLCogVideoX, - CogVideoXDPMScheduler, - ConsisIDPipeline, - ConsisIDTransformer3DModel, -) -from diffusers.utils.testing_utils import ( - floats_tensor, - is_torch_version, - require_peft_backend, - skip_mps, - torch_device, -) - - -sys.path.append(".") - -from utils import PeftLoraLoaderMixinTests, check_if_lora_correctly_set # noqa: E402 - - -@require_peft_backend -class ConsisIDLoRATests(unittest.TestCase, PeftLoraLoaderMixinTests): - pipeline_class = ConsisIDPipeline - scheduler_cls = CogVideoXDPMScheduler - scheduler_classes = [CogVideoXDPMScheduler] - scheduler_kwargs = {"timestep_spacing": "trailing"} - - transformer_kwargs = { - "num_attention_heads": 4, - "attention_head_dim": 8, - "in_channels": 8, - "out_channels": 4, - "time_embed_dim": 2, - "text_embed_dim": 32, - "num_layers": 1, - "sample_width": 16, - "sample_height": 16, - "sample_frames": 9, - "patch_size": 2, - "temporal_compression_ratio": 4, - "max_text_seq_length": 16, - "cross_attn_interval": 1, - "is_kps": False, - "is_train_face": True, - "cross_attn_dim_head": 1, - "cross_attn_num_heads": 1, - "LFE_id_dim": 2, - "LFE_vit_dim": 2, - "LFE_depth": 5, - "LFE_dim_head": 8, - "LFE_num_heads": 2, - "LFE_num_id_token": 1, - "LFE_num_querie": 1, - "LFE_output_dim": 21, - "LFE_ff_mult": 1, - } - transformer_cls = ConsisIDTransformer3DModel - vae_kwargs = { - "in_channels": 3, - "out_channels": 3, - "latent_channels": 4, - "down_block_types": ( - "CogVideoXDownBlock3D", - "CogVideoXDownBlock3D", - "CogVideoXDownBlock3D", - "CogVideoXDownBlock3D", - ), - "up_block_types": ( - "CogVideoXUpBlock3D", - "CogVideoXUpBlock3D", - "CogVideoXUpBlock3D", - "CogVideoXUpBlock3D", - ), - "block_out_channels": (8, 8, 8, 8), - "layers_per_block": 1, - "norm_num_groups": 2, - "scaling_factor": 0.7, - "temporal_compression_ratio": 4, - } - vae_cls = AutoencoderKLCogVideoX - tokenizer_cls, tokenizer_id = AutoTokenizer, "hf-internal-testing/tiny-random-t5" - text_encoder_cls, text_encoder_id = T5EncoderModel, "hf-internal-testing/tiny-random-t5" - - text_encoder_target_modules = ["q", "k", "v", "o"] - - @property - def output_shape(self): - return (1, 9, 16, 16, 3) - - def get_dummy_inputs(self, with_generator=True): - batch_size = 1 - sequence_length = 16 - num_channels = 4 - num_frames = 9 - num_latent_frames = 3 - sizes = (2, 2) - image_height = 16 - image_width = 16 - - generator = torch.manual_seed(0) - image = Image.new("RGB", (image_width, image_height)) - noise = floats_tensor((batch_size, num_latent_frames, num_channels) + sizes) - input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator) - id_vit_hidden = [torch.ones([batch_size, 2, 2])] * 5 - id_cond = torch.ones(batch_size, 2) - - pipeline_inputs = { - "image": image, - "prompt": "dance monkey", - "num_frames": num_frames, - "num_inference_steps": 1, - "guidance_scale": 6.0, - "height": image_height, - "width": image_width, - "max_sequence_length": sequence_length, - "id_vit_hidden": id_vit_hidden, - "id_cond": id_cond, - "output_type": "np", - } - if with_generator: - pipeline_inputs.update({"generator": generator}) - - return noise, input_ids, pipeline_inputs - - @skip_mps - @pytest.mark.xfail( - condition=torch.device(torch_device).type == "cpu" and is_torch_version(">=", "2.5"), - reason="Test currently fails on CPU and PyTorch 2.5.1 but not on PyTorch 2.4.1.", - strict=True, - ) - def test_lora_fuse_nan(self): - for scheduler_cls in self.scheduler_classes: - components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls) - pipe = self.pipeline_class(**components) - pipe = pipe.to(torch_device) - pipe.set_progress_bar_config(disable=None) - _, _, inputs = self.get_dummy_inputs(with_generator=False) - - pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1") - - self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in denoiser") - - # corrupt one LoRA weight with `inf` values - with torch.no_grad(): - pipe.transformer.transformer_blocks[0].attn1.to_q.lora_A["adapter-1"].weight += float("inf") - - # with `safe_fusing=True` we should see an Error - with self.assertRaises(ValueError): - pipe.fuse_lora(components=self.pipeline_class._lora_loadable_modules, safe_fusing=True) - - # without we should not see an error, but every image will be black - pipe.fuse_lora(components=self.pipeline_class._lora_loadable_modules, safe_fusing=False) - - out = pipe( - image=inputs["image"], - prompt=inputs["prompt"], - num_frames=inputs["num_frames"], - num_inference_steps=inputs["num_inference_steps"], - guidance_scale=inputs["guidance_scale"], - height=inputs["height"], - width=inputs["width"], - max_sequence_length=inputs["max_sequence_length"], - id_vit_hidden=inputs["id_vit_hidden"], - id_cond=inputs["id_cond"], - output_type=inputs["output_type"], - )[0] - - self.assertTrue(np.isnan(out).all()) - - def test_simple_inference_with_text_lora_denoiser_fused_multi(self): - super().test_simple_inference_with_text_lora_denoiser_fused_multi(expected_atol=9e-3) - - def test_simple_inference_with_text_denoiser_lora_unfused(self): - super().test_simple_inference_with_text_denoiser_lora_unfused(expected_atol=9e-3) - - @unittest.skip("Not supported in ConsisID.") - def test_simple_inference_with_text_denoiser_block_scale(self): - pass - - @unittest.skip("Not supported in ConsisID.") - def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self): - pass - - @unittest.skip("Not supported in ConsisID.") - def test_modify_padding_mode(self): - pass - - @unittest.skip("Text encoder LoRA is not supported in ConsisID.") - def test_simple_inference_with_partial_text_lora(self): - pass - - @unittest.skip("Text encoder LoRA is not supported in ConsisID.") - def test_simple_inference_with_text_lora(self): - pass - - @unittest.skip("Text encoder LoRA is not supported in ConsisID.") - def test_simple_inference_with_text_lora_and_scale(self): - pass - - @unittest.skip("Text encoder LoRA is not supported in ConsisID.") - def test_simple_inference_with_text_lora_fused(self): - pass - - @unittest.skip("Text encoder LoRA is not supported in ConsisID.") - def test_simple_inference_with_text_lora_save_load(self): - pass

MmcrSAt1=dxs^0NPn3)$^cQvvQS(EUa{e-?IM!u0w4r ziGxQ?2CwIks@Ft(1p}EB_1lk1KWmgj1&O@+2SB zKHQco$38o6_iOcmG8j!@KS_@meaLF?S9Fo>565B%dHUfm$g8{K6O{`+dJW z6#)ND%8ZyIL|`JpJowaXo}A6*+E5y>vzb8VG^`MDk!*qmASwVNlv z515=6tG*<XH!USOY-|FmZuaOXJ{@-W_L$$pfds2sHW(+_ z2O;Y^u7kgH(Nb@&?FR?@?)#Ia9w%~ z7^N<(Yfch^`DZQzAO?IkLtnC;r+(!vp6t%?vGV5&y;(cp5efZ8mvzj?p*daAcwV-o zy;7d7qtgW-)2jKlB3WElfX=U2+727p;#rSoiqMywFW<1fY_+;uxq5$}4$sekZpJiO zmaYnT^rgPn<=U^;tS%yj+l(>bz0fnZs828P#oL$UuYGAp`#Zb;t1>Zdrdrs+fhSg4 z2zi1FfcfSvJllW?k-`r=9Hb-Z19obdAWQbz0pGgqN)PZeiIzPW=NJr8j_In)A3@t6 z=?LOzxSH=Jy!KAL-A1yT?dYj}zaD7mAz6EXpu#@q26WGK(IJ&2o{reIR=HfxGkQWG zC@x*k!2`PzCZaWk&Zb{cAy35YZCd8jV53kU?VZ9*weFXzDt%p^!0#P;OM#)Yu(Bu`W-lV$GZ2=}L zm#c%eC3zo{xe!qw+n!QL3sYB2F)mj?buDE=YsN&U0hI^7#5OjBqZ@DhOdoO^v<$fQ zrLCmD&w$$*uq#x3Yd`2F;T}N`D{X}r%p9Q+bhDWr=Il!!=_Arh2w3Rv(e&=msII5` zX@URx_0LIr_cIuvzy0vkrzQdBV>^EoW@IM>`rZ$z-c-tCa~xQCTxKlY`7)^8ZbR5I zAo|&kaY;_ukgukMPP!P#Qrj02zvP3nt-2j0`pP8#w92&0;K5?&*zJyPkG$`~!h+K* z;83hkgs0ia;y0?m6-Q4gt`)!HFn%1Ee z@Y^ay9uC*q>S)0Y2qB`L1rR#ls19(2CwwOq2`}3+Idq=Cy`0fN(E{4tF_ghdlE@)*@Sa!IM@3>fISFu-hGH$87-|1PzjGy)(?4 z58UhaWL>*_z!x8`4{y&RHMR9Jt9B;(mwAFO$KvIkiYHh)y!1-u((oiPlW+L$bBAd<4f!uF~(QeT_ncrsaL=vl;%kz z*x+}vc`hX@=$*aJprj1z`OP48cdW{kgW?J17LzNHM`W19#%P1`8DRjda}1!m)1Hw) zv7?r8cTz0KZ9mH)bO~i5QB^YIu`mNT!sxL9cnx*L!;HL1;Q!nDP^L4~;o&n+upn@h z?Lkyyi|2*bp1O{zgya-_@ciVOzpai_U@c#`hE7+pV|4*V6<$Ld|#*gv}tq|%CBoCms&jY{UpZ55A&sB!r+nHZ|55q0B z+v9>s`RiBz!au`b{{{clpMKz^mdJu42Bo_8_vrHka+I875`9&2nW)QU*7KZpF*>Ht zC>;Gsh)O-I`!R3eh^=h2)6a8P4V(on(}c!;{Up48p;;c}Qu|#h?`Uo<7QC)%^QFcH zs#Z+giME>oPn!qYfxrLN+h4-lZ_yZ-ur}>{l#K9^4M2CKoR14EO{CU7>pZt77z>f& zzdQx+X&48^+k@t zf(~d_j2E!jVFyJ)shT)gnQ_m5Ms>7Fs_CG3Z@W+#5eo;sk0_;524ZOE0*BbITDs)s5@0Ur7rzt!bGmInS)jhj z>h{`$lwi;_&Xkg3%fMeBzx@y=&c|<`sHo8dN7q62?)fD66@g|-5oS4$*^!+)SK2Fp z*#uME^e#aaj3{9Awea`pdG%Rw-kjj9gy_Lk*En;W1cM&QQy_s(e@FD`?<_EY-9~Pe zi||!YiFWxNpU-t{3^htI_pWts$je`ZEH z39A&cFZ&Y%3b{4k5p!~iJT3g)7KOyYbQ|oWD98F`eVmZFYaGu7_KgF~5#2W{HmacX zB)hf=T@b350;3BCxv>(O;saKK4ht?)BPS}S{XX80w8jDXC|EKr=UCL-1Fw0ocpIMq ziS))@NiM_Do_vIH`Y#uiKC@IiI$@)oF=wl0O7(-mV{%5=`)YnZ=F5Ue{-$Fr*&y|i zrDit>oQJEt4!eI4{fPD9P4R1Z=u8l&tk3*Ed%1_$WULd2UmS1{o_?@N5Zqt@=*hXsmbpYm?2l!daEi-ib(dkb2?392SNwkyE^4%l}y1VbqsD3|`YFF8!jjM5SdIoT+03V^juXo0RIb^h~-1fSDnR{d} zyuO(%8%TXyc?1aEYLO3YW_Pz(Ag8>!>7v=I_*>7c5=JUn#u{o;Lm}z%x}B|0Fp@)zq0q!J$QBv~ zblA~NRfHfBLuy{76=haA&HXv1Q78#9&rtD&ieX#j>z#KDha#GvK&5HDK*8P)D6C|f zOG+}@*uw#QcvZ@wwSV>RUjhMMRE~o5JXX-gD9>S;G5a^}BTEhMSqOfE9^AaP0J}@D z=jMJW&P<*;m?o}&dJrijfq)=T!%i#c-02E;SEIolF}MgkKMU*yi3J^P7&~t#pYdT= z*)1C_l;&0a6DE>c8WnRGod62p-~}pl8>}|=_>2P`CVEsw2#VURl*L{%ELqodi+bc! z5y@o4KBG6_pKXa)2P-P-z~bah4dc_tjGBigS~BYoDId&55T0p=?DETh;`|#x2cLKU zN`9hE%21ArS)C20_5e1Vp7k>zDS|#3`r~PqstA4ujgMiJ|D_G8wA#R%hweo$D+;># zzBOkmZ31FMmJnvM*@YAGaCe4x;8H3sFSK4Dj1ZI62?_J}@UT(KmP@Or`4QwMz~Uo^ z>ic7Y%}S6xu-IarSR7xW#VPw22Fh-hL{REhJZn8TsVE2gZ7r6(EfjT!agvFgYn%ft zlt>z=St{2PnjO&{E=S&SeR;v=m#5{oqL+j)EnFxQ0X1Qe(omQj-^3L?A{3zBzEfCw zg5ZT0?$`K1iyqlKl~UxKD;_8JG#19Uq@wICNG&b3P-wBn<ru zl2QG?fv5V<7JZ!A7ok+D-mDw!((P?hAL}>hNu%h+g--O2s(`t!hJJMJSoDNEHw_tV{nQ*h-L^`lmAuih%@3NOOYm?is{Pet)=odiKynt(m9wq^ z)wZ~U(S3TjLj*c}tuJXLV|#}R^T)EN42Pq58>u#i#M^df0@X(MyriU>!tICyo4_OF zS6~=g&@6L_UQSJ=B&Y+7aT?|+;l_W%Oy_B)bS3%`E3G&xig;Hm{H!!<`p}LPH0W}(rtobF!Wjkr)QWvzy9FR+6s^`` z0s*|B-tLNtZFJ+3G~sIsJBZEK#OnL+Qq%k1*K+IaB~XPXe+mp6IMI>A-ga3Jpb$Ai zMeT093n5=xK6}eeClNQOP)hc+L^51fAHG8-+h%^j_;~6HE?EIwF{&%Ht%htejXtBK z(w+_K&{icNR98MiQnSzSZo~&0OHzo$#EN3>6R$dj_7i!|-n56LO)Xa|>c<0inm%&R!!dfd7MP123XhQFNw!jeB3@1K zYF2tl?T4^i(9zOGLf2sM&mKqc9Rq5$Ng&ySakHmoQsaG)1P5@KAobIx!)=5(7 zwLJ!}*}0LkP9>tIlogn$lOCViuq_LIeC-fQs)Bad4s^NY5Wu^_!5Meo9@%~i&+qK4 zDPRL@ebm$i(Eo<>H};(2c;OpuJln8>30lXJ2b@8YZN>mtjGR0755q4ue1xK!ZFD)u z4Dial39RtVHXWR9`^0=p8El5e)O2Zlq-G0V3)CPeHCUQl!TbPcA-yb$bdSs=-g=uZ zD4}EO=G3=&{eF1+5~z182i5t@q9gPWOClmrMROhuVpu6hX;LzJBov3?K*H|QrmDD> z0PhQNM+(mc?pF0zdU(_%5`WEQta>hab2)6QoonR@@O6e*AT3geD+WLuo?bK63`RO6 zCaQ{+RzIO)QAr4)B1F8;U#lq-u|0eRV0@&;?Y9n%TEdTjmUM~eMV%+`2-5<-yOK8N zzAH>bJy6^f_c6^kLUdpgikf*=(5OiYSVaIZ7bHxww&m7G9IxcQ+{{8@N`8!yx3mh4 z?}0Dgew_Xr&flb{mGBj8=YTltOBF+Is^`jAt(sS#y`1eL{@%*79Wv<J^Yl9Uz|5bgk^=NV>HpQ8z&P|4w~AfG&Chcg!|oSqZ(3MTi?`J9wC&;wM-SO^6h zB%!OWBO3&+XBqL|zJ5k~na^x_%BcmW`p~eGr-rx~*X~(FTJgKqTOKqY0k(O9=S=T~ z@05mNNqnF>tk(vKHlV`O&3U{a1oET3J7TWdT8-hbX&O#KM4ft4+qR!iBO{y$rDVsd zx@BnP|0AR!>3LsFAG9DhJSXl4rfo0Jzou4<@}guTfX(3tlH@47#{GonhY1I{ z^Hlw5`aGYC568it$hHd<0Sac6BSwowWDG7D=8C#FX=N>}uokre-W?%DscxVVjZg7d zX6T1dGOb?*MS0qrcMpt33QS;14u`;n+idr#K1^XN`ID8T@mHy59@DEbHs(UHJ zx`Z_O{VKY79XJ(*;R&-%o_~`*hR!H{W+%%K2mrzve-dBhbaN>RG#274<|<;GhCa()Ia(m~PpX04HVjTNG9{HA8QNKb#de9~jJ8 z(|>ZnLj&!m;WXktviNNpH*WdNkDIKm+hWfRvpr;J=~?tIFX+rr$$5oZu6=M&8=43( zMeQf$UJfdg;ivp2kKgttA_>=H+h?kzS6=S3hWgUfB}FbS%%vI$yoUHswS3o z4hmHlgaTj5#3qoDph9?(gLHj~YR^)a4Q+)gk3I;`e|`?n&(HkDEZjY>CoWM^8?n!_ zw#dgSPU>n90G&Ut#6P$Gg9Q8)!;WG#o+xIwHV}dAQ(lxutCGyL;?Rw?=bqwb9oD%z zRCetoT-{m0i$GNzq$N`&@#=d&a*nEn3Fa@MK4{}pXwnA>R2ZG7pLf;hUGbGtM}aZn zLPex=5l(ICsTZ@}_Nh=oTu(r~&p9E)-KynR42B~&pqp4F*gIaSoq`F%3d>EG)q%s%L23FXx+*US;2Yzqd2gqaF1-H9 z9v9N;z2DkmO{e-lnIlcI$0m0S**`K$#f0QTmt2=hu`cLUTiKXZ^wF4$IVKC>RS&$s$ z>paLl?qdJpbN)iHYHMHR>ClE#J1dj#^2y;vv&vc+@>IJgolCs~YcOJQvz`xzbV- zGZxPo!G<6gS~_mdiQuBJujypH_uKIH>E->WP%~EqLp1deG%hy6ZU3EcThk&#Xpnjj zgdmg1wt5eC5P_kvr}}byt_BF>k^B|L9`mKW1Ejr|j~TDH;e=e?l}%_haj{O0O@oE{ z&usnTQTy=6GZ4trN^!=mse%4%k5~ZgZX}X$Qhia^RZBdS99#2%c92K~%RjsVL$rEt zS$H>9B_0n>z(fetaX_e*#jg!@gk^$q%cGGRVTRzHZP@oelC19a=M;hc#N>nzXi2Lu zKwo*qvwHg)M#tpaVN=+26~y~FTTITtDbT=8*@+62o7&4tDQ!3ixa{)HwyiCwF;KF1 zU%e-YdmOxJaO=1JtbD4?j?oUzQd{vrJIx->Aw8ZFp8e43XQtGnYBO6V>I#~8I__%u z&eno<$GrWnf_0#p#2bOQs>Cy*#W@c(O59n3Rd*n7(N3cR;w8@6aVUFX^L~ybjl(JT z?_5i(fl?kEf-OuzcyVVC(LF&dqWlaLh&lW$`Z~40(t`y)NYynRwAIZS#4qa=x3Ez( zi`_<~CVhooSDm3{#nf7IwJ3A(Nhugm$m}6kok2Wu)aq=86#NPdGTDj+xuN%P5UvC9 zXIZ$lA1CT;;{a;7MUDx{(TDod!YtuKf*BdXClM-%Jb{D^IwAK7w{GCg?=sO=H7P2~EHllbEoG?@Lu3}$b$%Eg1( z5-&QuLowepNlpbv+q_6hbI@$;!Bf1PCA@^ExtoZrxEH<0-hPxLFl2iTq0K1~An|VD zCE}vIjHh-RhKjNvV+>C&OoyKL?vpX}0PB1c|3o^;(x2FPvQ^Use?9z1TT${r6%@q& zz@at;W6~m4aG?95Ny4*Gq7c6bL${cDswg!IbrXRt?pUhn8j=+n8a!qzYL-k;>au{) zvKiJv9qH5CcnLT)`pJvt}dwuM4nOkv{y|0q3N zZ?d)O;gp_F4|keI9v4qlq_gqnpZ5_C=mAAQeY^oH+o0=}5=gjxj|SG7dfh+BO&$LR zK;3jNGBvruGO@-ns=|)gsLqX0js;C9RH^ofy;8o<;YE?Le@SIRW)-;lMR+<;Zq+#) zIfMo3Q?@rxc}cStD#gQGYDAw(C9f?Y0+Nhh0k#haGU%7{4s zPN;s?Nu?23nCRy~+Y#V^VMXL1(zT;h4e*e}xao%MmLrK28G?kq19DD$`O0WkwQq|1E z1XyC$0VV`HJfPxycM-zftzVIc?x|3vYzGLW_yJD@y-LU4r1UDN_lW0eL^iADG8;3g z7{O=+9bX>$@J=$g!eNK6RNHi_7=~o^>Qo@;H5a?emm0d))81KeM0V(X`uZ8$A$Qar zw#eY#hBtZw4QQ977{F1?I(PLRpftULH8J|;)JE&7jP|pPVBa2K02+D(Y^KOUlrTNX zoQ;q&oRJ)o4cG~{l^X-rLmr{WzwwZcp+dO~?p`Tv% zS^}50>UG*@1-C;VB|q08B8rG3LiSQpQMxY|E5{io}Iov2gcL+w8iXdlW zbMTql9$5H+b)ejZE5~$_9wY@Xj@C4-MgoZZl0Blh-a?k$1j4+B=mmWPF}rQSX((#a zb0L0UPv%qfr=4!Lqd|Jx{?~QsFJw${$E~ylfL;V zd_BF^{VcMGPRzy)_XG_Q30-y~$LB>=XdL~bGLG0$Dg`WshSc%!(xCtw$vIE4!Oy_t z2XIF&Ar)$1Ceb5mZHp|)p3OpeL1iE5H#dw`ZIrCzZtp1;!@lbH(q&z-(njr^rijxf znazvVroPpdBO^M%m9^m~lJ7w-9`j_o+t~VRtcIS3RiFdAf1E4v7T`EA+DLT9fF9lX zfm>uy(3>}kgUO`bl{@TppM++ebsm#vjD{3```zUQd(n!Z{p_*=w+;y_IOc8J$SoR9 zXPO$Kq|yfTG@XCKv_j40*+V$UDU!P|K#klYnD~cw&)Y+l;t^9R^tz)VWby8 zHfYgd9sn+d>0i3NkI-Iu#4(nP6G%Qb?g3tYJ2ByK#oI$RR;3OnY8B)7#iu^VL$*B| zM^(cu)x5^j86;_T<~DMu)-1nEv_CG5(iUg}b}(1y32>TvHMOwK&5C#o6InNy$*dCQ z2lvjA8hIfoiPHDEiF2qoA?0BK1l=@QNuM??QnoCCwL<%q6B4NwAyO_!G-LU-kn;y{ zX4nE+H3HdeRTIq?8{o%FPPg{9)vuT@+X4MFd%LYqj5yAO(b_1o$dOd~&`7cx8(o%L z?@(HmT>3mIFC_s1wFY$)KA3!6-Vtu|bf6GpPa-*wK;$D+EbigD0dSm4CNvL7Lx9%L zBtc^IWtIvi%s9eOn*h*UBHMQ7m#9QT7p;(c2H!7(rfJtlYN>lHF-2tG6}3f+Q*AoC zt!|1qO+Ns%uE(&A4CONv9sNuxQsyBwn+M9%5b>5NEc+>3sxF#G-ec=vS}L1^t(vv- zx&p~$p=~w-|6}$*HUD;MAvia5QNtA-(%x)J56mjr`%}2lCa#2T&aForsU+~o=UpF~ z1g|q$)ELBQEG1ghtN8lx)^6pj!m&_a@3-Hd$As^H3WxLE9aX!Bc0wSum9iqqG*LBb z0;kqU_PQ$9+N&Qf8_x^m=^BOq6|zw7>bp_8C>3g^x(^TQ8x>KFv$O?YA+3u(?xzj= z=)5&3TR&*sBU`6|L(vdU;R@P-1+0mo-1b!TI}1-`u)73osZu~d6Gm1}_i#HdeJuwq zP^_k4tDbj~RrnC3NggWrhcUbUq)l{V9#RwF;lqKFlIj}u)WxFn*K2?In`3OY!J&B-!J zREa7f@(*+YTTMS$#Zoh0Ya`0FJxSI;mB(>4I<}QEfYLVGXqf!*XlS``?en1yA4vcu zPL;)Wg}Z@!nX;pAI#T#aFkT?4f*@o1$|mf0l3YM4l6dIq#PRM>RpJ*HLYJqN+R7;G z8IP+96~u?`N7Ue@$Ax)xETlEC#mdBg$0@aa05ojgG;Zop2C3sd>_4%U6Fp5XJvM12Y2b&4? ziX}4pL$d+894{q`T$~ObIVPt}zq2TlG}68qKKiyElX~KA6cI)kt9;bZLvS5XPM8KA0i*qU-27M%D^gRTfws9c2%v<29u%d%jCJSxk^0(K+)<@M+$!(H4;(L z9(OgiH#|e+@1Qrc*mX1{7Qtc=TNISMfyWTAlU@UOhLXGtih+?IK*k9 zdz`fCQK%9&kqp_HdE{d~O&*m(9+^_b5AFwCC-$Jqx#VC`WQ0o7UvXWp>JZL3v{Zl4rp5*28uUlb1AjabUj+4SP4>fqdE) zH2{< zGTS%bmH!3&N1kMtUI-nDhlK0S$M#Ssf?5Ep$o1TQL9??oLc-KnXnf*~os2AcSBnSv zw3~K%Y40b8EK+8jOISqu`0bO|-#}>RhbGuL7VFiGGaiGgiv~zSroVwxNaVA1c$#cm zD4R9VpR$zd3cLvxB&dyU=!ap9MT4X4W-Ca%XE0y+@(@_5-9PkWnTM zc2avGI`M|$$u1GS!OK-`0_AkfIEJ(Rc-`Mr#ja-6Nqu){a&<~j)8>XZALV>q3zaA@ zZILU=QLc654c{C}B;_0YmRf695#g8E?rH2W^cVn00`d)4ZN>({1Gk;?`Z1K=M&u71 zvw;$iOif?G^%elwmd~f^=S%<&X!pdhrhLqG{p8c^Nz1?i2$F=jKFUt&K~!1pkyuI) zBVF!C%~**QmRR^m!lqmkvrV!OToslfpjc(kB(l!xogMsk;KB@7#Z^ypSu>a=QDUoj z05C1-6ZIq$Z(U^ifjr`dJfohecT3GZZ= zEuD()dUvuqLHA*}HyxLOA_l6PsUm=FRCx#stCe@}MhK3hah9RKU{}3R{Vk2fGr8Y|H}XJa5Qxa&QdT#irtSJiM`?7PE0^)xvm2 zoX}yNMVz8Ow^d==&GB(tsJ`Yy?=kQV8%>vCyk^%<^oUa6JdI_wp=u*!X-KlPoG_mg zyzH~2Z<+fRPE>mi zPyIMTnhdi&{@m{ZrSzRp)IvSb7An(hs5hfJ>L@=a-)fx)C`%un4z9UPF^#TnASpnV z5zEN$s=-|f1MksD-C#Lh?Cf8Iw{@{GFa^lL-V_fCrw^{gLp0!NFBhnAT-~niB|LQC zR?~(a&h55P7mNnxvnO>;kqlKC9-J+R8CZ7=Z17hxS(sVus?qbXoh9qZ*=kx3vb(M7 ztG@0lISnO?;~qqok|+9F658_svcsMOPcXT~#;Gk>l{Og}2@}!-K?s&>cE%2_ZHeV+ zdd@f}vn+KdImM}mpl*#>z9{YvUm0ek>2B*NMaiTU+vBqIk3&v^c7Cv-x+a)z#au?p zvNVE8==Z}5IV^c?8)Oy_z+C!I3(%MvRw9eKC`a@-c3jG@0d7k3u=K9HQ?|For8|I z2S7RLOVjSO+Y5yD#GBsOg9q}!Iz^Zz^e0$)GpJf@x_v9it37eT2w(HcU_jIe0NN61 z(f6>xzoV&@fmNK?Pj!*FHf$N7Vx^{_sn4cch!OG+AzljTn*ny z@@Puib3_uR54~iEhSgQNC9U0CBr_bER(AIGedsO!JHW|52nujSgZ+x)kU@;pOiCLu*d~jC}el8$y ze9X<6?vsRJ=w@g)d~)Z7C^xd1U6HLAnb91zg@E~v>Y`3biR${1T%s(SAv+8Wew3q0lUDpAT4^@|cI(FWNk8I*KK%{gc}Xhl zOGfQagTY|OqV@?sOl=GKfUsex08C0Rh-wbVZCl8NoKJf}u`kRW(Id;zGHDCA__C}z zyy1_iuM0%g3uTT#L6~_>f0iFQP1fdTi3(O1Lif^xxt!noi{r`>J!WR#)sXQ}NI~|) z8|V_6@Iib^&>c(%FrYW!&JdQSM>Z$>VYZtO8X6hT$^1}`WLNhn51rp(jgRUHXzO@T zFe^I$sCKC@pnN#0O6br{TcYX4^ipeXRK=4efw7^YceFdQff}xpF#Ftbw4 z)E$X4;D&K-|NeWg-^Xz8`*wk;Da)ViCmJL$O({_(4>*(+Yp?KXd;cO_XWL}JQ!MtN z!;_Q>$*^EtHm5sxDtR5l6}S(bicgI1CxtAW{IbA_MN<1qse3QaS=?`6t-q@~i|38e zv1>!0eI`m*%iRV812;uyIvMcYG({`=ygdVr1JtRK&g=n8ZQNroQG%*Va{ufX92&TY z=tbLQuFpuxI$!znc8zF;swHc8F%Gh*HodBDqQ{w+_2BUelnYR3<|HgtG#f3 zI(I>BGD%yRZGl3z7DgH)h{g~VIjY?;kZ}(r>vUH%&MgTq$f4Pq@cEShAw+ z+?*sHLy|>eM{COsVt_a;0glf*nu>0zjsb)Vi!@5%CS;k2ms&^Zp2Mo;ds@sJU}Y-= zSXSa;wm4tI6HVMv71}}4$gXttcMiR!dT6wLT{&?ldXFJRkcm{C5o`5y8mQ0PPM5$# zef2V!#DSc~3;l!C>cN^evNx>O({9M>TY^y}E3A92M_8Bv4wF_2X~G(N z4y&|#z?6tg0s^~8_VA<{`6Df|-HC>I7D3R98XKg@iS3xCF4Q zU9jB)rSz0+rnb_+)uvFFj&Bk_Ti=P0Om&)x)LxmOz^3obtuTGv$wN9w!=rCehZ8V zHRg*ni)N&}Ln7j^n5JiK*)+lk^C+&=?3 z5Ma1#d|=S&spXO35^zlnWUZIQFz;#s$$+$;6-W8$a`CSNG47C6Hm!XkU5!d7S9m(G z$YXipv~KF6!!!!|_xZDLKv`kDfe()5WFKW$vs&Ckd%vseti1gqO%>5slKhb4r@*Y$ zYTdI8Qh59QrJaW+RKsDTGReqSJuj*SGz?+GsI`G^Kl#)wDJAVUVnv4-jac@`y#BWkA(3J zQ;bo{r*xT^CwX@oPGMFp(sfgX@|qdy<%f|FZHCRNo@eW#?hi8D zR9#H@Ei1fSUr;EMh)q6a-JKsWgVV`(a-J7unccMy=W&4IR_f*pJ3Q|SM@D&@o_tW!acY~gY$VT(* z3oX`}IvGlZvYGg?+ffQNfz1s-0nc1#_aXa@6dwvm2lPzx5IAXC((k~%c~aG%NZ5jR zz!oVW;p=*1rQO2P1_X@vzkukK$v?_+W#hTXxm2&e2Fc_p@k=MRUf}8_DWdVnFhQlE zfhLrR`Nh^|esWhJ+!iJb#=E3jBVu>SMv&6*xp`R#q}_InK;Wo0mydtwsA@#MS(sbKC1ixe2g(%*iMx& zOf-=HcmgpTQ%0Rp93RznaO<{aWqV$}xv!b-Cf{!vs!|LPY#P-SkK<~&#gK*1?%dF= zY%_vrS8e{pLAVn4+B8bcyOiBg!r>4h+=Bs^40NJmP&61YzG0=OMAv&;7wTSeTo85`Q&N6p?UtX(TmRx5{;}|$j5+4{!r;xIf)z#uz~*H zuLmTf&SSj&+@Y4_gB)f_RUs88M<%jBOE6U$?)zt*xbL4jf&ewF7#-P}V#)@)3b%T| z10iB|(ZoB3cJ|at)N2$OP-P>FcJF`u`tRZG7tpN&G^4nJTKfL`I6?ON37I6TPC^3X zs$6Vt?t+sCtZiR9u^nX2BU05Vn zI@h!`M8dP$0%esJpbgSdbl53=gxovDV8Q+wC_wbB#uN}#_1xrCDMy_=BS9%lD`#-% zF~;A;nof$`Tah1V)J)=7TeZlD!(-wmuV91w&|{jluKE>2HEzn(BPP{vztpVn?dSSn zif0Ei!ZdJpyL0(%bX5t)Xkoyft_5IsqDz7I+31mu_6sG`o6ySMDi0!oY9!1bO!|TK zR_o=HmVmEp*QH<&{ubuOSRHi-5;ca29dkOm9Z;sy&lcP5d^nK8ywJBsevN% zm9PF8%kks4q&c!$hGe@$@(j+kB;L;pNO|@#=RG6->zJhOA>FeXc6Zcn2g!5=G#Xs7 zaDT~h8Rmafy-?|?CRVQTz?N+VcOUP&0Sf7+ZfF3QmM0!97$bpGV{D?RqIDa)TR;$6 z*`GMja!wU0I01(b)#ZU>C8Vm}CL|MiQI{;=(bq>-p$wB}bI>yMyA zb1XP#%{Z`gUep~uLhYzQ@s}8R?(1qQA)i}A>kGZJ4h;IiSKoX4!TyGZ&x33NIgwDf8k{A72#o5ErXafr3OVOYE6;ZJ$BR$u{*T~oZ=r| ze+|zxw8>Dz{hFXCaD?IoU~URanPOHTd|}Q$vTD{>v=Lv`xe$7BHoFR3(7^IoRZK<^ z;f2I>3kXj-ze^if;!nD}SBbaOH1+DSA?M>59@$kv33)EC_ai7En^?Ab;aX;mCs$CY z82LD{Jdk7Z{=*}@GsxMjt$s9WAq!%QE-b~1oh-dJ=m|pf4p;zWyO<9n(2C% zj}y5%suoyAO@;NKtF+Vxu%Y)LE63QF;8=C9OzZL}`I;qOQ%$Ig(NLTjqJr^4Q}j$< zcG8OGd&t70PJvMyP1mp;(Y?xr|LYIKTN)wAK?d@y9C;%I4zftc;HkPYtnbWzaDtYIw;t6)Qt^qJvf9Jb#y6yQGPckO zkOCB8pY-z63_u6iH~~w799tfYSM(W7#^O)>le!j3bmWGy`PxgmKIV=I7E251p#Kh7 zwrc&QGJit!dkIF!^&r$($!)2M1)OCS4x;Y!mNcL(I-XhCXV#dkqkyKu&US?ZRE?51IWclnXt0fH$Ml_TB3b?9%`1zcs3nUAjDE&3 zR1iIALU(pB0OXjwE;6JT^El`ynv*-MdQS<*uW?F4Kj1TizvKbbOr^@J9HQ)}!-?>r zHe1_HpkRa9%}x(2^bw%A4Mmy4?xm!4)tMEwI(BPO{O-WM184wAK(@c6#RgB$s6o`W zM&c^~;Zuyo3%A`<#IV}It~i$H?gp~~-q^SWV9=+@XSnk^rGbq-hHrm6eEZwVVyjOY zSI|y|!h~-W5O*ctSP6PaVT<^b9u0LKxstrwtqHk{>V^2m(^MPeD>0aAPr(fXba4&j zCS34ll{yQNP=Yigc>VXlFZ4c6Bz*3gA=vpk5`rl^V+TSHO&ULc8;sI|Lq?QbCo!9x z9uSldrQeYN8sRV4%}}kmONjaN&fw>5(+o9+2TAn#A~vg zGE*QaT}+4UDa0{NTdgtEwoYEDDAQhy>R*J#;5^8($o&NLM|_a*KhU#oK}Pk)9!EY3 zu1tVon0%pVBTF$k3$faiSa&HIi@@Bsy^SKma2wi>m@fAYSdC4+H?GPp0#-a@d*m6z zDq8z%ceWW4r1$L?7A%8WTV`tzMQOBpSh8$njA;~ zCkfe2$rYAsCtcSs&;-QewV6=&fc6*d9V<(?F}JYAfw*cklaXIZ;yj1!&No$=Ji9_2 z!421e8T~81v4qO=VW8qes_mfq(&ee-(p4r`EV07wTsgayrbO9y;K+TB!J`B;wKvX} zF{v1>qNM04+AjTZ8qEIKR^oOvjfASJGFj)m6J?zA8jv5q6G?$0xbhpi%Q++Df&-pNJy$=*g#^8Pe1v&fTnh1JLn z+v79n{!y1F5F?7aWBU`u9+e2zp4jybF7O@#M>f;^k=5mE zwFR-|qaq*l5r%$(b=)AO9WOVe9+qXytC}j31h4?8njUq{K?Ja75BAaTCX#DgJz&J+ z4Q=GfMV@YDp_ z*4=?o7rAu=jv(ekK9K^~lJ8h=s|gmE%d9D3I{VRja1{@-9Z+X~i?odfmEG591Wgl@`HB!fLoJH_l!)6q=|+09y9 zdTh6vmgZ8id>r0BJ+&9F=wD0P=EE8TCL*>FD?s1mdGqF-97H>P=6#T$2p064*Q3u| zy5f*!*juX#6n{SmR?wm*1$9uEag9*uP?E`icwJSe6`Rw=^Q?mP(3PUWF2JT za@AWQ;plC1$Qm0S>^f1_)h)$BY?7hTZWx(}G1huQoBS@k{y-^cvTal(?*cmPVwPQq z`5lzIb>x8K$`%tQdc8XYsGSzQXCL_5bMGtj`~WQG-NK@lvez`e)a zIr9(-=2?EY(=xpAZhrxZst4&_cWtvU;RJl*TNKMm)}5;NcZDm8EnZoA;AN2&tl&}! zv+@k3U~wZx@S?q(J7{uMt8t%Ys?ek$4zyv9Wm{yu-eDb(zJGyC2+;vrtlK00diZ+k zvGedipwchD5&pwBEezHt6IsaF$pf(?vVh_&JXtp>hO9_*{f}^q|^zA{V^=h6Sg(Rs-olN^0ur=kVOo}|o&OW`s00ubX8f9$h%BiQh zV+EEi9()KT%S$kgyeL_TpF`>N)xV?y>ZizZZSz!g)c_g_mZoYrn6(^L>$U*NEIo=V zNq?{nQ!1G|g`suM?r&c|2G{b5aOK7P14+4$C?knKJI)s=UyIs1trW+&_ruAbT`Mo5 z8XL9K;Fu_x=s_?K6HN!L*n&IRW8(yb5`wj!b3du6W)J!K>nFBeR0u8Iq1|2& zP;8rGG_v4f!`Mk}lkAG^dT=-Gwx|dMyhD+ zrD}O@I&*>YgrduPV@gQmx;lXA{ijkNy#DZVy`wQ`Axg>u;2&;Yq4nktr6*OD?I;{| zI`-bHlcctm;6Ulr+V$m!x!K*9O76L7cB@F#)GVI*YTljo zAgLp~Ax2BSW*h>t!O?0CUbVl>W2y5=>?R8WIO0}J$~NlDDGhbMJY+*)SnjjIzDlmN7rBR48{dEm zQGy;FOHTG%904IC@ME(jp{^?F=M$~O0J-Q??bqr_-8wC%E8OR=Ml)nU-K3J#QWm>6 z#Jpw_ELcuM&aZD0e5}@lpR5A5FtncUa-PAq$)+{i2fC&5h(>wl{UFif8h0b8Em4vK zIa5sY9f~1xsT&F6P~nLN-BH@9#I7w{Re{*W#peCvBnGTb@=)Hv-ePLntLi<>WB_>W zhkKD_Lkz``TE^*b&{nY=<_JZxK)2koR@}0xKlyK<^GKY}v0TbS4dn4)-J55FbvVqT zGl>oIt;EfB;b7d1Y#*#+pB$)8Ymn4VIAk8vC97B0$@RwNO;U~d`g^Z2Q{x=7ZhA-9 zxig^)v|T|kQZNj`i?foG9e1H#OeWOgtoRm#s>yz1zlRJal#qyiNES&#$Wv{_la`wz zHz@a|k?G3X1wb}BOsHmF+PY16P8FCej7ecL_5{FKbk>Q=vio;MlfcRiQA~=&VTd)c z92abzp?rv0tB2Xvqv=L;rD*zQ1?MB_f*cxd8UJKwn!;j?dXW{CpO4bEp7}JnC+Y7}_)s;Yo z9h8xu0RU~zeu3EEJK1A)#NwRq5ushK{YV0~{^M-(ZIW5soj@{@v?yu3LTVkLSK3_4 zPG$1AwdX{65Y!p=5aHhj=P2V@vNYFe!%lLIi;$^yrfsJnduPBE9wUk^<2_^GPe#?Q zod)RBAtTL80y2n!bSIS@$FBfLdrSb6`HV>a4o)XteiJaxz_ zFuvfyVRe*q}o4zdnsH^HS2wl>8@whaNqAhZ+%sS9|p;IOW-r|*gc-)o27I-gwe zV$)Q}<}Zu@*BIIKrIhleLsORG7OIM8$Jn?8S!#zpIFvV!e5Jjnv>m0or%X# z9PFXhcT1SpsICivYjo0LL;hPE0}v<8qX`Hng%cR{@t2({{}xQ2O* z7lZdFSJQq{dpok-)u4>^{{~8P`sy82V{DGI=5hfQiR7?PYED*RQVoE9MI9q9CQQxC zi^6QdxXzbpk4P@S;vE8`)CI<{!+v4Lr<|PuBVVRAYUCi#`Z2)+k`(zDI72fO)~bI7 z%tiXEw_j#JyX=q?oLCLUa;B`V*XtuRj7;eKEN;ReHFTS!H%fb}+WJ+Fn%U$SF`4`7 zd+ER7{EghgC))y;cpiEZDu+>iyH(FvKl0^)(?W>xd7f~DRg7h&&iY#wPlK~7GbVVFCCH&~4@Ex9S`1{`VFA{q_s;#Y0VgQ>s*$9+u z=Ev;m47>sn^~*5Bvrxs=I!wJsACYy7W&0e1|GM~fn9i{Z7 zn=KOX^|kQbuYH#>I6oHPeX{4>j+tiIY}&i+#3QK;r^2%kp`f`W1+b|TNd4{;K;TWU zDh}nAEC2?e#Pq?il8EVbC`WoOA>ed1$w4A#`34Oh1DS%H6z3+a1lNw0-YY1O!E%Ac z+d{um*oU3zm*Mr(q$SOfSrG$;1*DqNgX8_LaH#zbVoFhOZ2E9RQ~@(@CM_;AmPe#2 zEia2m_A+j|PMH+n1H0AJi4MR>X;t}bzuTySlggALkl%Xh#7YSfj>Aaj9qor`BpR}`mOW&8}TuT61sgtCpS1lvP?7O<)%vK}T zn;eJgUcrCgl7h&C!IC`>bS3Lqj(ShIP`ph5{YO^73y)LX9#FV=?y$CHBU z5*VV6*kr>xokxcRszXd{w2ImLy;~q?nb;K|PQW`B?kf@6J%+HxOXPd{>(?*CsloKa zQ-euSDp6rkQvnm;yd|CftD}*l#0avMc)2PAXirH zrV=L-RS^!&H$4+7&T|t1^?wrfCQG(t*LC3he#HS~RTM}eHAhh(Kcq}BZ_ai1xZb5V z_lCznCK9u%8fZwFCQ`OYW}-(DAdm#i;ywIV?X}Nd`*@^86RU*xGV{HN8}8@qb~Tzl z)LJU@K9;@gQ}c(-+6Mi#cUZOhZ&>~ho?zpw?fPDa#Mdi>vEQ9_U%}5 zZZSLuYD~`bxc=Wf0w; z7yO*uIzZL9&!b6mz+RARGk<=hd&2F2qT>^~QOj^T06Reh7RSV?Y-Pnp$Dom!lDlR# z=w#%2chXp&{81HQC5`>mjHn%*SfQv8`aNO(1mRFXx$Ks7Nogb5Qgs`xt0W{IZ17P= z`y_1iaeJd|I5%u7ds|Lbs@uZG;``qZKm1|(ntSLsDRCfGO@`+VRNkQ`CN`x4xm}}9 zdehrIl#8@(sCf>KwL#_9vGI((gaM5j=ky)&U(trGE9`5qU%RTPDm7$lqAaw{NxcDw zMkiG(2%g6dx2@};wj28l7ARcHH7Zr_f_`AqSo4WR4+i-op{8jj?6!5-y{aN}I!VL07(ieYluWY1D zJa))KnW2nXE?Y_o1*gX*7wlRMs)#k&@?o5O`dtGzoqlfVW?p|1K&Cb>bxZ$igo$(j z=CE&@R%x`{t&K#n z^hF^GRFqVQwVq!wwv$=;qI8tch()4;5pW$#^s8CzC?lI+SKjf?DoxI>B)#NSPA1YR6$W{&j;kUmyr%C|B*rn~c?6z}4)8tN%V z!L&5o`fx{SS}=@Hm#gFHqIP|(niV{q75Iv)M4DaMD3<$43!1^7cIsO2fDB#$mR2hX zGjL|%(WtYvt7*jHba#ZqCz-bC(NmU|k~3OKgWX&gJpCAuX9kY#M^aQk2+Yk@OBl=sbxhHi;?xj$T zeFeuLsYV}w#jns-ac_-|u2I{bu-UX(NO)07n4?KKp;W#XzVjW+z!_XExx}V;GyDN< zWTX=#l_09!+e1pawYnVSTe?VRl+Vx}Mx9*?^}o@9KM*E9tpZSs5qKt$2>NUzw=@}C zIb!ZZ#C0!!aox1*=eXvX@nky;ez^Ian0r@GRw|4YI-oxk-fe~(lrpD5$~y%IadrjZ zziA2C=&{doEE4Ea3`#)$i$fbG?}V!5Fn?;rq+4B!-B2xOv!7I|#VqADpb%68%9xc9WLFK6r!vAGC;M)1$DMM4)3!D24-$P$c92YDu!S0yb zNeRu5qO`Lqhs;DvHnh-$rp=w&xM$6aMO~w7UymvX_aA}K_TIAE6Q7HtiFf}cNadv{ zP{lzMo!IQNgxGOLy+9t_rzR zBxbL;WuEn>+&~ulhu6>F{nzmRbE$r4o1KXHc8x=C5@rC_$@yDywx-==grXK3*sGd8 z4Jxe%u~-lb9I}c{zOG$oZ`tZN!4>c_txDdaGQ|srcILLdwVc3UIlow}A~kA;bH$X! zOE3s^M2oEwRQji6h8WJFv0t1fX}-< zhqmD+rXQ|qvSs*Sqvbtml`MpPNsyOh|=jXVkT!ClU){Z}b=zO<7bh|5=)l4LzpFb7KD&~(7% zRCX*UId>7FIn#at?Bq~z{@g4vFQxe%_ko26ESq&gu`HEVvLX;?pJ)YFp(xo0SGu7cT4H&YF%Na zSH>~{+-!kAJ_C(t)zA?}7D6axsEwTE1VNFp=a`vY)@tl(0op1*R?=uQDVy?CkGRKE z(UB3s`FJg4$6&U70yzE(oNr}5^nl?z7H%`+WV&E?No~qTuANRqmZJ7~FZ3PDXdE?= zd-2$$l*5pb!N&14Aj_bDSAK+Ts^ma3CCDq4jDztgs6>qvah7&=PfZo@JD22F3a*X4 zDk)r0LfYHdrl6~q9E|VXq}{R$Phq*&6<(!j+w8TAiY91&gri&jQFo29wrVb2bP5~I zUa0`Z$@l>Hse|J7o$3VwCEN}0rbbWZbmg{NFu9`R-d4Dfqhi+8n*q;I0_q^ytmD*F zYWdzp(^O*?AIk2%7C4^;a|pe|!~we#AgpYb^O#;>v9V5hjsThFxGb=(Up5eS>Ml?T zyD9o&D|Gm0<0YwPURX8bAbZ(tO1bYpwP%ktj}EO@z*8hQQGYzFd6gtR6|^W|6x2EG zoXd09B1f3`Re1fAy>*VQq_vtQ7N=j(kk6X>F9y#arK!^u7kl8|zF=as|}Ku=$Q z7&WKh#RZ6`;@L$}B$i`hanfj$6jtfr4UiuQfriOGJ%IJdm6%v<(l9DzMd3Wh<+fA) z=c&k)8fj+w?CVudz??R`z0`_GwxZSiGG~4M*61jKf z@6vs=yJq1gH512@-yv91&g{e_t6@adxh3PddQbM*KJtHgv6uettM_s({-j%KJ5Ks3 zED()5;!a;=JO}tCw*Ew;-knCTzb0Q6Vg~Pj8{Yl&{cqp@URx|QnI+CoO(=q<1=kXl zOILntdPw&?U71T0&3k}0Clx$ES=;U-3IYCL7)ib zVnHzjDd{$8=&#t`Hv{pXMF2k6P@Kt9r3CqOpA9=nYwc8h_a(q>t z=&GW$BZq!b5(l5)JKLboQU`DOnEf8jvi*kHZcp3$m42d7E+o4E6TeZc96)owu+X#X_^!^M_>$KG=yi%ZEAHdogGp~ zNoVybqAg^~tv+UujQ3Q`ydDw}k}*Y!iVIuj=xbvXvkWlM1#deA5lgv1V>#twjFbU_ z7Mr}yyqS=A)m^zb+q@sC70f9&&-PmzaIjfeT5g;Yy&zl?TpCWjl-$PwfY0*a87MG> z?Jr}83A=Tp5SFB$ul&~+%mh|D!Bg+>tlFn{_YUSDYuwuXG7jNkx-Kh67dIVA7|IuN z$&h+AF8!(!faH=*uDNqV4u!4P&WU83i~-BA8d&wiko_Nw*D7J_Mnt$ee5W6JvBtEx zgDCDG(IV4Rclf%d&t0nJ56=dcsP6V}FlwxhFJZ^ikenMT%B)0 zSfa=#4ye(u7GE4C7zbSyDTy1yJ-u zvaKgRxD?&LMPF6NyU#oT=5h>^`ULBIYT===)S()YM3UhJ>~d>Ch@BYLRY#voe3cQ& zr|lQ-P0;BV#uBMJ1)oJVC>iAKx=@+Cdw%doK>{dtvQi{uw^3lM#<4&GbGKjZ=0{xI zY-?bS zj`QLkUZpAG37ePo21t`1r43gt0o*Uw9k%n#nKgKX7YwiLs2j6{Kf;M4FZCli9WTLm zR`RxX>c}1GXe2kRnzBMok?g;j8EaJqf+r}J@=M-3YbLWSwYkPgtt!H>50JC^6e$ce zEw`96gi%x7{ck{NcxV7X1D_dja&;d(#}L|;$W-u-hv_11ryDLwp5olxrUIq~#*uDO zhVr;18?>6lMR=;(Tf+oQj+~-C z_LW#vbvw67-Z4vZC+8wUV4g2)2GEW<^r6IYP*X1hRGeJWaz~H2C0u18AM%PBh<%Xh z*##d92(5-;S8YN{6NYn{=2hCj;T0sXVQf5R>(pX_ce$1S9oQ&xaV-6HCsG4Q^!@3s zj~%xjeRq2!wS?IZxXV%*s{YIp6<@m`NP!E4+J|f9gK{4$mf=mdO%L7W35|ujssqVy zns)H*mas*^FHQG<{?B&V?T;tDIRZ{$-D9A#CrA#-&tk;{HXU7)1xu$Y*4dY5=uAST zRlLnboiZACbm34jv+*#69JqB>8ZxT-7-3X#yzw4+n?iz*HhcdO~ z1aRW0u8$8ckTFQ5e&*I~;M+2L0ibHWaf|(cK-|_@ztXh@NfiLLpF|Pt3Zr?uwa%JS z^Fk@HMqrg~429vDFC*RP(-uvWI)M}VRAbzRE5TViLJ9Kr7dbEIjqV*gtZm1Qg9NtkE4Kq^r%l5 zIdn{m%GLr(x}6qtg&L|YD-i~>asqQ{#L@h_|B52yA6|c{KsH}4sh0U0YAAjV&uN*)(~n^Vn$bsQBA#@&xi5-x|giWBe(dI@cOd^K`AH?wLUse zzIT;lclIIV0x>MHTJ<>$lU<}2-{z|Xn?1LBuTImZK9Bw(nwgp2#D}w3{W84%3do|z z!#u-^6>7(>jnYA+6hPAhR(Pz5fqdjt6S50a)?}dr+q`fi4l%|O|3<^{f? z1xgkD>FdYgZ_|k$`Nc3VrBuZA8nc46lvq}x-4*uf^Am+k;vQ|CQKnk+0&T)LRqR9| zTG}*LHeozVEw9aYsSL}r; z1)+0z8-mCI=K!i;$y6WIRor605+%jJ zyQs>F@wE>_U$US22CX3S{}UW`*`$Vg|0ft`p!KhDNmeLbjt&8=r5d%JKvAD+JQZ{G zqE{aDQ@q@crIB2(!u((AzDTtabEJ}D{{hmJVmw01plKucc-=L=KSQi428)^@SfdTi3@ zmU5f%Br_oS$3=rGBI*jIfJMhEnEg^(jPc=nG(&E$kmRyik6YvbwU+FO zGATABbrCy)5IVu)J%Tz1B?Kqa5+gsT(|lcQAR~IxnCw3*R2MRF4nUaTpEotkm-uT_ z4;|Y!B+HE)#j;5KS!*W^bF*2HfvWLbEVn-B{M#MgdNoTI)s=_=ZaSl&zm_xk1AAhN zZ-Fr{@2HLODSr*${ugh=*BbXUGIv)(?-bc1Jy6dMI5>QHi5f(FW_%E$v=p8eP3lbz ziT-3LSmV`Lv%}bLc z_R@!+kglYDT`OA;BpOl3k|4uQoGnlX08n(W<;xouT{zZWy+PrS$kliY06_v3THK4S z_lP`47)XOFe^KUyrYD=+=>6@yOE=k>a72uCi<1hMgai`MCm*AxK7>2?MMH%C{y&B9 zrcbqOsn*h_Mw=EX7tzAGwq0}?9v!W9W3u2q%ujdOXX=ojIU7|W0qowLa27qZC>dd{ zoUK+MM)RdAddYeKgmE8jVWEoh&*yjR1Q37dNI4&`Dmy;ImAZr~1q=l+a z`4kQc#d-v3_Ji|iw*a@$y(EqDO!{X;qi1xx^7 zR!{)z1UH^;&3Gkxgd`yu%eTE8Xvk3&n5R*>>?R3D-UIE_$l1c3q(E)C^CyNz+KoL@ zr)c28Ol;ILz3U~W4%+Wa+#q;^T0?quMxgc_9zW~-^q&t@uD`py`v(|`tt$Uw<-V@! zT1&O36O>(;fhMYl8T;ecloI@P*6Dd6X>9~_iSs8#iI=+J zHHuT$*ZP^?4nR=mQIu+SFC9g!reif=_(h@Tf&=^odD7kq7Ol4U(4u|6aikwfLax)n|w?&~F`rz_J>!*JrejgY||a~TnzXUO&Yw8J>@K#h^fP%(lR zkQe8u;7%!}wSxjAx$eL*+jg{=foHioG(J*y08zEH&oev-H;ggieCJS>kS6GSUcYWC z_GMpI{)|+$L3KsA(89dIia=;=`}K)L0`hrwH5OV+*FccP#+IaB-1x^p;l)bs4JHB_ zstITFa9h;*wA4Gv>$mX2#i-rJKavY9`>I$QhxCIg2wFCs2@G1!%mnD$RqaIuVqprs zV^4GdFK?l>l?Nrolblx<1}%t5UehjT%#@U#r>@kNn;SVr^~pB|s*H+{Dp7ynJvcT1 z*~Mjx##P+LG>+!)BH8ZKA(bkNHSt_3L}Oo8TC${A zQ^_GcpnTvjz0)~@?}#bDIE2Qm2|5)PWfaZ!I+glSH_f8XI8MdH{cx1myC2KDMe?gD zzkm_7eclhTT_r&^o~S0Zl&+k#D2v){5%4gqxSCM0UXz@A30PNsQD{`T#AjbjVbupU zqdc@yXY4oe>|gse{O|riLS6%#f6Fm%S3urXU7v{Gt<)2CkRo!-yVWNx)->#7kl~Q= z$=jau>xco2tHVek@MKC%a$qMsPy3R`^hVk9=Mq-ZpHt{H5t=jVT50%Za2Vy&x5>8Q zN|4|O-%ZV=fmVKuks=2CgTtsQc&z0$Qs+K(un0Br#Wd1y-Z3~A=-#||2CM^=mf`YTvr1N2uWEa0~ zO_v2np;%o{rpDU|Lg2V!0ic+D|&bZKf~zgoF4j+r8*q)npXCGdjrrPD;oDlLzW z>!d^pRM;Nyb7HW?2mgPVn8nV9eA}fY=qVJW1VzF#VI2(j8jJ2d-&k^dWTxQV0su6$ zPAzyiK3%ec%6nKCmYBJ^G}Id);EagwPGJ)`8}9q7WH@=RUG195hTQn-ErerHr2R-T z{V?ak{0jXJ{q3{-%Ou%+VtJylg^N)7jzGt{clp-Mu8*W}Q?>6f zR%8hVDcAV0vxLRxMY_CERZEQA1VCH1G@(C&p267+rJ|C<^XTSI@dcO~)a%^kB}bY!HgrjxhQ@n&^ILN~!nWxZ~ zxhB;Dn@YI`Y=h9c`XyL(c#E)6?2!L`Bc9R?Gx+$@z}g%Oq!Nrppc4km-$@-lOwS#= ziAPu4KSGvwgWD*J&Z&iVxSjEnA;RENqjJvSgV%91c=Of!YLNs473OIPgzeOWum+(U zxUS0mH8GKd2w#e;JyJ}ME4AaY725^9Yup@p34xGVWu@5QzzANxH1OWx0oa!P6!IAZ zjV`4iFw{BNr@ZpRY2^tr*MzS=!@FV4EwMUsbzWLxBuo%apFC9^28-Uy%=SLzuYtee z1-Eq+%FC7Uk+e~#yfpWSqZ6EVl4bfnN?1OTaUtwEGT-5ZkAReeG*^Q^*$SdGIr z&C<;c%S6T1$~A0yY@L?Wy6$utE0t-Qzg(kKGisj9CV^`l9^QVZRZS(3s9sWlHNg%U zBOGZ+-+lc4)9~m240eWz2Nn23C7Xev;J&=eMuAt=9jjXXjgE>eu1w(xsIM{E>8_lc zo@V#RhmPKJdr935S_qtr6C-WM-i~i^E{wL|vsb!tA++SX-Uzl71 zTUoYLhECQ4HP@6XB(wS;Qsv{*t>Orekyo#Z-U zdc)wH^-&VxQN;yKfwctg8rA{ZetKt+hJZBu>gRq_4}tMAKFO=jpcq&7;O+^)xWe_C zF>6{UsEy9k3_9>i*EztK`u|CR=Nl+-&r4Lhp6-mr{yMz>oq33d_uojyM7RL|E^}}8 z5+En`b$ICmrh6_Q3*84BHinx!&RWk6#o5XMI$bE~5CC0WR0MYq{!&GndIv<`%8Ak` zW6X+&*gQ)3*Z&RYe}LaP-1+1QCl!bEak<)9!4J<6H`Usq{x_ zYc{RPTkMBRvSCM++IIl*RYk;5?wrQ`@4tC(ED!n3WrjrGsOqfJwM*)?Tm#ryS=1^< zH$u%fF7VK?C18{~5g;~KIFf$@(cgz6XrNMMWwZM`)=QCX+*A(Gy%egwM2&gRBZS`T z^qOcd)RV5b^l)q)T6x3VV-^|uy<#K%paEB|m@UbKr$Pq;k`VZGuTbCSd=w_(aq-9t z>oCrg04y+0D3p4gRCjLFU%%k5B-5lBM558itEhmE9!Cxh1Ludt-ee7EiLPkHR(`B$ zRt-b8v5J1?9flN(1F@8@eB|(V+Ly0tNXFqA_*BMnfoi2>@(W7qkp#ryj95j79t}kJ zgm6Bm(TByM3Y?)Lp*ww&9U-(4}q~>7Q)7Tev86jj?fr-W|8{Al_;l zrjYn&b$PJOr&@Bs*oY`Llu2@UgN@#iWy+{#15!Ch7k)o2%O?4Q+#`MMA zv869wFx}y@4E~{RtD!MKE^4d$Fn;b1Y@F%BqRn3P;zkZl3%PHqB==G?W_OZOm6i-( zEe)MDa*r0%EsxKtg||hrC*gq&k;FwIPTZ;un<~HK@PlY*e-od$oo?YK{qDs0a8voU zzVUIN!r0jtl&ShBZxlq)qL8|glN2d!=@UO6cmFXb4W%t9f>cKMK3Q&2!-^@0vn9`A0WX-uGNmY3a__GxciFky6JRHkan zq<}6>kxEw9Qyv5*e!LkLVLGQ)q!t!>Iw~~ebE!ZOPrp@&7RGe1%g$2nttGE+gn3e2 za=5A0iR;wHWAAR0#t8l$U8u45XbO9OI2bP~x6FN2EuY(x#BP@brkB>aYM)$`EjW8a z^f0j9?S{>)3lIsbYF}ImR*J(UVkqg(f zP&xprh$_i@y{z6|mhcp*fu}rKVJ%#M%xRli{xN2c&q;bP%t_Mq6Fk9~ZQ6 zfYBB`v@KF4=F>(wJx*m!)W2WYhXnD1Ds^aPJ1XrSK^dmjBZB8kFxbRAfUs#YeH|a$ z`p9&^xV*8C16#!BrPnJ_%E0|g0>K1mM4jUKrZw^n1lPd;XWrEsv7NF&1IAd%!VY>A z#gH{1)}(vM%Q+{rT?qM%z_R$tP93!!kforFISUDNXedr2QBUq;Poku`I&tbUqXfKM z2|KO|%8x7eaf?_%w+>7SEw54180Z1VBG{C&pKxVaCZgcBL@?a|c=iXTSJ)>%i8r^! zMiO8Eyvd1eOENh~jBa3j+?WKIn3)6F7hufOgX}86NEYT0Oa$;8%^i+@9r80DN~Ex- z-6~zd?03R&=e_8#G|yatN6U5@smGmm0bZNgt4e{PA_dfhj;H2zR1XyJ!q*+)aBy@O zgrz9O#NRbqif7@a^$q_HN)0dmS*#8Kzv8yj1m;>SScv!p;0l3FCxlu}{2La>zu`NU zn+pOZcec`#E=Ptd&kEJUoQsCUV0}E2G|Ds6ot!eCt|jHo7+DnrpQ}B~t0K*mO1+S2 zkdO%NVRfUj&j7C3q^co{D*W}{X#Z4~U}S#6)FmXZY?hG)#1%c4tKJiYCmn+MI6S89 zgiWNwnspO3qNb-kg=orbCvZ(UI+&&y6^zL3OiI9)@7Vu^@0iM>lK2XL6bLT3Of{{e z?h&$(D;Di827;z{3vlF1Z}6-4-!MJ`1Zc&}5FD_dg*}@C9xS7#t+;e2gewlHDa5Bd+g@4+i)c7d*ki~aAldhz^KFGGRtck> z)A;T66F_Ir;3~CdMm*5vUV}MR=c{^M^G^E)JvjIoEk>Vw6y^;JS^o$yV$FkYNQ#Bc zc8c&)-cXryqZRWN5PUWolFRrkhWUgn=a}WhMP=!&YwwmUgAc-A{Ds}62_n=!DbQW6 zJxTRUYgCnMd$GW@kx?Z-BUP4^o=|slHUoXZ$j}PVe)X*t2h6|b3$~yx$1bj>N@Xpc z{PyMS83J6Qg2cMX>$2<+41;Y@4f2+ZB4iyBD3!FK`0bO@q+>r_6Hw9j>PJvZs@SDcWQhmt%*dHJu8ve`=>-oy zuTflt5@aZDj_>7WF`d_-SM@Z2H=4!0m6|&`^p-vXero!B$d7=9PuhWuh1=F7i5UI;UB1PK zyD_Rh+zWWlT7fiZJ+d4ma2bzBU>D&CxDIhOQ zY11`pOZ_N(hjAU11VIv#ua=4UCaW!nF$bQs!H>d-bhrV2vs(%6sd$t(1bhQOGan4K*t{%J#^HS`fM)dOq+(*8|2sZA76^`rE@d{KxDd# zJM}OX2M@+yxt)k-NJ%K#VX=$kz}z4K;Xc8m6qBJ51>(ps=1M9Es3hI0s`J2~?eKjH zz!Ur|B`{V}H`m&bTD&d+nw%6BzHs{7Z6S+9U3FLeGSS-*%q~2D=JJS10^;nVtqa7} zc@veIL3Qiuk~vpm>))&j+?NGMq8l#v;aDS% z!!m1c&b4Zrtt*}QT>O9qkmQx1*#)J0j^Tk_Y#=v{S4swZFv2?Mbrt*xoINA zVxa&zhBM>E9L(gatiU~`*M`2D;$+xrP4XlU6~95;-h7=URa9BLQN<#vz~mOYfkntntSiY}KZ1rV?*j7u+oHW@+$1&HF#{&ZTZ}1vAG7=>Uvyh411k)ub15 zbFjs4QppS1dFgNz&n8`C?tg(gOHbn#VV*9%W;3m5@-Fg|fh0qn*(}UVBx~rWrAxq; z_g|{`cc;{y)9`sS8Zf>EgB(YWEw|@+1%wM2!J(B3#DNV+hotH~c`O zYIr>+!fKaE64o}&EIVKf%o^h<3>H@)%#+TL*>%`w%bf5bJFuV&ks5V?`Yam|6cig* zuBDtSV!TlbTN1rT0svH4cUngN@os^{K$VSaF$$2Q4R#H?k*#Q*(g@UyL-^qhW1TP9 zAScuVbReAe0Ue0QOgZnPdQUPN%FW#&+)gZ&DhZPzWzhXft)HFAK2EfV@%~vJzX1!L zaOo{ltB83Pxmsd-`QYv5^{Ly#laxwEZ>?1PhO@(cZIfJ1D4uxtfVFfTVrYoTX*f6q zFV;#$c(^!RnzYE_OU2}^bp99vgYYTKX&E-tP+k4>Drcoe0onA%K8VY#}5yeeq2 z!yFziVFb4!2+3P@(5K^VQHMyT=Nsx~AT#RdV zG*E!Zcngi%M2QF zKc?t|MEp!9pR!|X5f84)fAIbA@6(g{@2|gm{W{1m|7;+fm`F@eD5N>|gfnT~s0y1{ ztQ_28v?y$z7w<*2JG88IXOWr$tq&y2qErfT`T@(}-Ui7)2mmgrhwfC2xxE`M5>k zY?;HL?2B4m&)6S8S%n90sWL$?zT{KSWczU@Qe9`YityB;&r+$J@Ly!sD!N8+ix(2LqZrAN_mt=o+5e2W8b2Rd6WLY?5&MP&@X z|2pN0uXVLiy(wyc9&8)6tL0*rKve-C;&{snh>qfRrNwlihooRuTz$l7XuMC}!t(Sd zcR_kMC#8!JotV4>5?;L7EpNp|BJe`tD5dLJh|5eHc=L2#6sa8)H>Ysp!)oDDw~9ly z;c4rib!)o?wYqdKi&H|M3O8^}@a6PJX~IA z5Sni3byhoFRXh;AxPAFiL3zg0ERi%gvNONR04QnMe={6-}j66pYaNRt_9A(dX%!GHO!XNr;1s3%OCo`NykLR zC!NER_4c&wd$dX0*a)J_bXDElY~l!sgbnqJn@xvUDIb6BZlr@%x8$!xUAm2C&P%dt zPv39^>U4C;);lEr;o68K;WXQde(=RxI$Wu9`1AuNAG-9YGpkEtijwGgn?aMG1#{UFb#j9a#fD^e-#o8#rzM!(eiXo~PEF=)IGCKwI#u!2u$4baTwUdLhsB60 z8LK8bi(H9j8Qj}6p=nfTO3J1KPQD8W#Q;*aJ9HXG!pFA)xu-vTKP#2^x9qI{WSI%B zeoy;Kw`~Z>k7IWVXKOZUt9SKWz3~d0eZh_Dobp3Jg$KlGB|KIOptGQ;gJR87I2JzX z#?Tk9nV_GN6A4K{XA-6=BjrVv^%tYs-}IV`?g{6zNbg~CoeM|xp>SJ@SiN2T5^4;P6rhl zVNzs>pAn2sO3~7e_1$Oiv#zz!Kc~=7vxhen3$6dd)C|^nIAy*!>lU3VJ2ylg@^;4X z00T+0RK?EMKzrD=6J~v5!`$@I_ zgoZ;HsW_W#yWD-D_>$_FxRft0OTzM4mw_7N^fdm7c)EXj{W^UqVhTzyJT7&jD5mfJ zz!lxRGKOgWgi^g$VH+pur~-^6L+R2mKwPK}03!uLD4$fN3YR!#m^esQXc|m;uf@2^ zcVDfuduZk1X;jM@rag&2`$&3@JW_8bI%X>gYtDmFAWBZV;o+`7kfo}5VkM(N{lxyU z(DC0R+@x*-CH*~(Hu83#ca^Y2QFrh&$Fsu_t!vd4!s4x*@=h}%RE`-QCpX+e z`L#_4C31Znx#o8%u{ry`U%RUmx>5ph333cPe)O>i9-&+NI9zM&&==S75f7v_!|DC`TRXit`l@<^PBC3giBRA(eZ7g#FOIu;6o z2cvI^+?oAzu-~MiysFUIkR6RV&fX2Kob*_(VKs0vL6-Qv5LEMRBaDB9(gvZT$b7ax z?l2iNE~${99ZC7fFlR(lV~Q1+yQsX3 z&mqm42ujfqE|3Q@8NyA|^8$+y2A&D9i#VchIBE4KD`;QYPtGPDmf+*F@dVe1si5FI z?cGn`|1=oLmM({xjPV5i#R~J@EN_?n#3fD{ELDeI_6!!x^^2O+KjeaECah5A)qs`c zDyWeDz(x;2RJ}&32-B*Uq{$|UZ2ar72&0Ncu$QP3;J3z>8XcAnM(myU zp6TX^#sXDdhbR46dpe=)pmZ5gVRws{Aq&U&g9*+_79y$>T9fQZ!8@_c5d)<(>dq;S zD(!Z1n7Qx$i0iApn-7{h?gi5HTjfMtD-mAo=>Q;$&M=3tGSpO9aFiySc+TtL>y}#K zTo!w$>83cmGu-z5zr0Q;Kd^uPgFOeiXOajxQYduqWbo@5T-#j@ z?l3+ki?OPb7b2mVQ^-{)k1po`-5owX<+he3C(#x7+5L$m23AjcE5M+!+L-rQnjhXo zNyEQ;{qhXp+g^xng*N+D8A};gYscuJD%m#GqKTt@gFY5-7#4DqwvDAN5ER_L;XYAm zI5zSkG5zJ1bDdRALlG1`j!U>OR`#ZAJ@}aQ3J(Un9J`-X z=~XiJ=q@b~7=mAqlou@&WpBExBz*3}eNtV^sYd;tHN(O8+nj`BAqBX6fD}hB?AL^7 zwog!_!myhRE%vpd)L#;dCd(Ou!pZUb5lx2}L$;+mPk6BQ>K5mZnGyjcI5)%80kCW* za|bHiStYA;!L$M(1&cm*(!xQ)&3tTKSwYvLp9g|5AbOMYxT>j4hyivD5f*&P#SXja z=P3`xSm zi8{nW&|Sji&TU>dK)IBqoU*mfhC%VMhS95DDU&4>(n4J;1bHqln<}w>3elJ1T;EPr z)WMX6rco8OdkmE0Y1XGs5&knt1Duv~bSsu#mejQk1qFc;7;{On02SMEvT4q{{~{Hb zZ>%r>@%!OFrlX7T-o{%*ebZ%gLG-IOZ{Te1shfNEUm=|F52h%9mdb8-d$>1EExEDD zNPtSwRmALIUgo1<%x(8E?doGwwo6r4)zm$S(=AZzZh0)=`QeD}Xkos8^B! z?D4|(b>Z<=-Cnx@q28fX&JLqED~Umpgz{7<9-R+f$h*afE+s>#cC|doWMRWL&-y*B zW@qMQ$AUUVjYIDY;)Wl(W$viEk6FvYQumde2Q)vb` zybIBuQUyh-B@@V5g=?j}M?0o>h5yd#Txq#ot^GLSDGLyUMDL+!KsJ>!5~8SE@*>vm+F1E(p_U|Z3rrdNcz#|9ERnx9I(S^A4e2Zd`s*E))_f0&?bVSxZ!DJwMO z6C9x%Tz#sM7U`M6H#% z&f0jt$t%X#AbmxsfiX5i2X$aeEtN1IkF*sd27Qw1+R4t{K#ylA!`WBHOo-94vMw~Q z_scv|!$6JIgy*p0;j$G&1sj`=ZmaMZ;pn=byfX(m2w~f{6&gxRFG}6vcSp%fWZcyh zhNJiHsx%=9=m>A^i*ur=Z z^!X`EckY(AEA5{|^Hpk!1r?#o{;N7F5K&9#{b(Q*Yr{;`>QVqHqfYu8_;A9zjE4t+ z2i4E^9t}HxwhFCeFPr7dJ@6uX*QBeyhHlJVLmtwWgVKdgZZ`eyD?rCSy1e^TMK`-} zYts{3CiNP05G$Bw4&y-AMLtXO;O&813t>e41cRQPO2)NH{3<0zPNMD!B`Z*o0U)Z@ zuaQdA0QQ4o*h-G?ob97VsG7^GDdg?66bx4L(K(Yqy3z{a1{e}z@)9jA`?@0LIp5NK zW8`r^6~0!eCLYS{3e)w3EKoVZ_%kPWEG1Orrmc?+J71}l4yk-NYnMa-@ddenlG~!9 zbwG)}p$5e6C97BAM6KjUl$cw94#n}^=KSMy^(0o(`DdCpg=_QZ6ovC!G3@jiti?Pi zG$bSj^wPa?hVstVrY#an0)@lcH| zq`KmuYPCvpsk~jQvrWCsuK2p>o~t!A(PIqEuNYN4IrLZx8dI>WxI>W6&{~JiJxyWK zm^CXF2m9Y{#?^!CkNwdD-e7%{uprm)@JYp^vne5@p6 z@=fg4s+-jo)T{z9arW8AZM)k?ui+f*9sW+jeTyDI?XJ1&FTBQ-q?V^F>N0tLW_Ils zT|sc9bW-Bth(I2{?(V0@>VnXlT7396v^qbZ&v;cof7g8R-(ZfB*g`A^oENMD-`BMdBmm7Czfsmza9w-Du(6ZxRBx z3KGMG9`lU57V7pPbbYt*Mc|ZCRGnOl&%^58hgAEe(N%|1b0!k~zZB!!VYh3pqm2NLM1I0@iJKr^Xl3 zDEj5Gl%QgHf(r;*x8W_2@Tf;7N$<9X^$|BY}`giV)QBwpwtL}9kcG$ zolovVqsPOphH`3v09Jj>qkbfxA%ghWnfM(fJnYBsP9{uGh3=tH0y~j+eG-T!5l~Eo@^66Ijekt54?&r zwiy4sMAcs=<=`Huxwz25c2cEX%00kU8u7rwIibk%V7lz74PtEPxFF=fDK~gpzji{edhre zIeTzw6g0q1zz`0_0$&T{mr47s9WIG0_};dJj5_b~f@XSlLqc4YcJkF}tIU-2PF$#Q z0&-&yWD)e>i7G)SUM(OzV!UA!aqmh;4PWKrsBUI9h(XM}ck$s>IIK0(mHyy^55f<= zm%dnXrz2uYCpMV}T8GOhL z^IxR{QK2v+I0s|2F5bBdkYhPrRMywM2CIsJ8X4WRP*p(5(h~@Bpt~P(y7IJ1O@|J< zAz+Zve3cdO=XOqtF_%?q*DGh&36w=v(yhVKmT#PxA#Xs5KV<~@DOBc6nOAor_F3X4 z&2VxPseH1hUMB8N5n-{xdbN{tb_0@Bm+X91YcjlC(CRZMsA!_RPu3e_powhF zf@+?0*znuo>jw!hrg1nZ<(6YKP|)lQefs(du%<)8R9c3Um}035Shy>0#2$k3QIkv}GxA(2`rk81go{{dKdCE6NQHyGjYPZDA9xqk&6ghhvK0 z+iwGOf{nAMq#0LvPZ|{VNuU5}WB;lGz07wytJ%t>e?;E6j3*t`Ti#Vb)`)WIO8bJ0 zl;32G9_$JJ`1OC#l}C5|DK6JKb+C-r%jXEs`2V@nL&IN-~$cAX^S)MkA*d6=DUGFq7IU zg*=q=C~xKg>E>{~6tQvdWVqQI6Zkw&1r*-G2b97T+38{G3C@KXH4H;3Af|w*$=?!p zeHgM{5!|P3{)jj&kEnQr20_}e=JG9%VA8yHS>$)!tX3CH;c!RXUT%!O37nZVFce3b zPu?m;_`q1Ly*=7)Ih(_wOU+d?Sj+bCu@UiuxI~o^Mha+@t=t>k;3_=uz%Qec?b4&` zE0X_PqzcII64ASyLBuC&)?TqV*zj<#692uj-8OK_;1?k+IUE0zxF%oOT%c z?@k+NLF_j3(WVtNsHQR+ojs!0WVJoQRZ zbRdkbqROZf^m6Z3*Y?`r-au(|AZ%2(16*3XiJ??w1eES_crT55S~`yndc^f5nLxSX zRkkOzg8KLN>+in(&*6Xf2a=m3rpJp@rsW){yNI{NK*BZ+mpEZVm4Oy#n%e?oODvNy zQqrNz#^Aea+?Qf#gS=q5%ikF~^sr1bC1R8r)uVy0Res&(M|V}c#Am9I>4@^q4ef(5Of5|v^g@T2jY)N7VX1LQnDoh7>A@#m z_$l3FO5z>f{<|+xXNnB2z}%x*xKY8? zy}Bx*d{X1UtHzv)H5Mm3r8YRSGte-k@%V0B!~a8lmrG zzb`uoE?cfDfI3ZIewnhpmD(f|MEmlRv<~aZ$!kz_WfH-ke_kQBEPx3yo9VC)?WduLk5(~YGF!_RnKQiIxdo0;qv|m4(ASO z%0m6;X|DvCWi_UeR>wnqYe7IM8-;`_FSOJr$l(OAVscCjK>2WLaNmJ4dE`z^2(@|K^@oP!@&)#^!MVJ7QnuIM=(XBTKsuPXqfikW=H}p-^KMsH&BhzP8G) zn({VNmvS`^rRrVcQ`%+Lp3JBewjS-13{Llw;-_T?+)o|~ZrZPGo8^lKL=Alxx$4|dik4}$LSw`aXvq~#92CF#8bWIy1de=Y=xq_ZMzt(*9k>BcHVU&~jn*=-nVxrAK=5sZ?7H zV2X`dc1Ra7TDF}E&8oT($PbNFz86XV6ZH}j3^mXI7P4qgxoz+%30sRpIpsMOI6mvf zg@-5c8MCre(UI&gifiO<0Dumpdal5Q^HBI!=x!?KnW`EBO@`#4O8IQCa#H z__qzarf4Djs%SKl!>T2De_OP^(E+EhB8$ri~H4-Z|LQ zUS@G&Ipr4{N|1#{R^(T(uaqck#DBN>56)pjb$wPmt56S}}@tZ5p*U;(NtJeAcfJ=j;VpV#$mdtOUTDsOQ+(4ArtJY8H z2ZRXvq^7L>L|Z=HZPx_VF54CT+r&{(UP~%}0LFzD$av{>R@M7@vcc-T=tDcLv!@A= zJ=EAQp{rPqHdJkIy=Iog=uU}J7Cf>emei6DLw3jI-X#t)6C`lJhF6g%6)qtq+vR3L$F&pUK&77kE2nMieF8yDU1o~TRkATAzZ(sTpG z4eJ1!JlU5BIC8B1Q%0+w^4FB5cb(!_D4eZ@Y(weKI>b_kRrjoG2P*zbx!tyNIk`Gc zwN{vvGVp~6ZJNGK7fsdE0Wb;x(2p!4{6a5rAOJQZ>X(oQ2Pc6A*o>qzT;Qk4N-faq;whcN7vXT-;a< zdG>Ly!Sgf!Y`ynH9c-bo&1D{jav&NI^%vbgi|VB9 zL7vWM5_bu~Ox)_rzY8Cv;u|j16p=tVkEM6|gU?m$F_2vt3?X_3u|Wwy=}(MA8*a-U zPb*H)V(W`7o~1)OhS@z{@;np6J)iD@jalwpuJT?&x$I=`PFO6A)J`l&+C=nLs)n3Z z*TlY|qpdU&X>6nu_}UFzv{>GTOSMNo5Gk`dc;;wzp2nBrmi8$2zVJxx9et=j{vw^v zuz;w53Fpn8X;6X(cMF&ZRE2A7l|b+=^zUp{Ue$sX8eWdy*-U-vL)Fg~%qS%pJNxL}t5jg|?_Sv#^II(he;V^e?+;-QcDMe(vTB_|avT z*JZCx?OsvQ!Tr6295wahrP^HWZN@=4N%I7!H{GZ@?h228zU=OEG|LMZHvR1mwnKqgd55eGKqArNMKBY`P+GfCSkF- zbh2vL!DWhR@hQu^)e#irm{D6O6EX#PU()QJQ;KoR(i3IzMBg`1t8P@ay?45UoTW=J z1k1W`Nv#w9j5k$jW33v#QK9VKfFX@a)g^VbeOW9VyHX92?GG5W=$7!_(XR*P_|>AM zyhe}+1KqAVkhM33z^kIYt5}xqMDp%S47iU%Rjmytk22T(Gt61-cSr(Y-dx`OPsdd_8o6k&>MwlBTm)BnibcM<=;*$?W(}iRXZrPfW zI4|HMrjMR9JZJ=@>$HmE(*|LCDoz`m(>c41eca?GnaIW71>2eo78 zZZB4dQcj&&X)0Z+eu@gz!D0>6D3@Nn2V!~NefA!nx7x23giXD?0CK--!8#D{EzQ2J zdYOcXU7K}f>Q5KycUUr1iB1VTjMVe9J3}e$Cd-2W1kf^={Zc+j5)eOp=(etT@QXFD z`rOrK^0ul@OW~4UrS#u!^;E2TaQ{+W@>fa>D9^d#*Cs#bsbfu>>+8SU)j`7R?4`hBa8tAKNIXT^Cs-74*_OZnso=m* zlH7`*WQAUNYG=nZynqx8bG6zQ<4EIwG3l}IE2n;t+UrAv*~3vkF}2Xn83e7x>fK#| zGX~B{LzgFtfnw&ec0`)>>Md;3OXES$7Smf-qQ34b+_>=TNfty?Vg;%~`>5%>x&k(O zy`~^8E8OK|$`4-xfu9TWCZw$`nlgXV@)iu0wshrcpygxX#OmeBuwiaZ?GvBp=1D?X>jXy@us$$1d+R^c)c1>BScE z*X?$GVE-5Nf74Gh^%&?bj`jt_wQ=S;UdcX6XP9eU90t2qPdky6Nh6Ol9oX0T!2)x_ zmvc}C^&BGj^N zS`hHcPPcL}>Iv&Gq36uYZ0R2|5?s@a4ZHSC>?@LYy<`1XHn=Mll8!J=deG2^LShb> zck78eC{lWh=2P+;oEyGD6)fQ;J<}Ixvg!0s4%HnX#*KJh#A9>21DVL?Nn^5q;C(w$ zbyO;G%iCr6i~XJEc5h>o5S6!!bK!16a&r%P6r+3<^edhpK_-xEHrq2#4|tu>T+qvM zRJ=NoyUya-7Ilu6zw*@aTZG0(aA&JNy;blAflCNEHju4qxUd_cciu^`UgiEsQh+0b z_dm^kLY5RaY<8HtHW$rs*A3S=8N;$;A`uCKF9Ak3a1OfQ%T2c>t{Az*N{#Sr>4QA2 zVBYRj8caBGEYOpI8{Az2mBPx$YnD5Z95WE1zWQbRahVx@zXdFul4>2`Wi;Q&Q!ryqLvgVS-WmSp&W>(8&>T2$~~!VeeTB;5tbe|5XcfY)CW(g4pIV>yQx@FvipDVJ#t!R zj3pha*M+^}K=bO5vkl`FY-~Z$yg8slkx8XO{}Y!_9lTSHMQdE`4(aXH{7GFCqG_Jf z>rf71AL>ipH6v!KoOgt){iF%Wg?@o(ct~VM=yxjBE5no&uz`?kkzmtdVICFCO9ISl zH=VvzmnBk1Pz-{13pm2rj z-Ye!Pp8iHkj9=NMb}S0aH{_G2;{pw+%Xfo0kU^>TG}5v0Iri&P4})LDLy?S4*tCKl zaI=c&1>k?fXOi*>oSxJVTLJ4dp94U_s_uy6hsQ7Br_ir^P?S)6H4`!b%+~ly5~Mnp zR2vT|BWJ(>El{3--R4r}9(H`0?U3qe~g6zCv zFGCx%NkUR9m^|-K)UO%a9^)7*O?p^T>x^{A=rmU9S8aF(bWQz49=nuFCkJoXC=-MO z^8zf;&{<%P(PXtj+e!U`OR8U7kVz~=spE|m7C5{!HWL;b27XfO0Tx zgdajgT9#rc-L9o8OE*lEu<>LB==-^^k}`PiC&fMugLjnJebIUv2=2((4N3 z;)UT28tBGA?h{K?dO$G$Xv7BwS4UCE6_gb4M=_jia4#*b?R1j>X~-<-FjePMJESgV zfVwM2&cWdm$YDexB0}sl&viybOAa2+Iw2dc`xT+gBpeVTDehumYuAIEs8@SOEKQmw#=ka&qS*Kq%lk2T=gijgf@m zG*-}UE4k5}IB3iQ6i2>adKQmkgqWI%CCtjDVB7#U%F!8^L`EJ7W8H|1K(pOh}IboipC^?Njh zx~1Vd4SLziR!mN7pUO*Cxtwxh$AX)$|X&bJN_36KN0E2tq)Qvb?_6^#z zxCG>}<(wt&LHquy-Oq*!f+nimG=kU|U+n9V_GMt#3GNs=rGnBY#W>`M!q-bjTSTJ| zrB-xup$w@LogW1$#$lp)qk2>GsZXQly06{}2cS*ASzW!|c$j<1ThcDHg-VfKR-mD1 z(>J;#Hn>gQ+J?rIp;|0>QSpGl<O2K z+q5Ld0$nZKGpBs^dFK-*VvFlPfhu7|5$^V=q-~Y&EYvTzJp6gQHZx95=X;n#CmrX@QLciKcNzFEi zktCu1lAT)(Mt1sLX^CV0|Oi{+-BA zUZ^x|R2-gkIE9J<*=3b0zmOjaFgZ0>*GWxn?e>-`__Euky^RETK6^ zNW4jCJ(7s-azMs472DzUW911&mjICR#}p$5wF_MonQ`w3835sfXhi^BGBdt&;fL|e z=)>YSy#7-2AV&q+JhM;`v)tU1D%a2c{CE5{@HhHjUtpXw#JIRH82S-YU6v}TqmaNg zJj|xJOv(%_SFpxG%qX&vrz%kwm9KXu$1+1t*Y%kG30n>Q#l{~}Cfz&?d3b_rmsj^A zGMSM`d!lvGEjkzqATAyVorlZiO!oyd-0UN~IqVUTbXsB+;loSk3b<8osQbIRCM}9+ zj5shou+!Tx8Nm1jAWiVDpaX%B8K#m*B30>u+Ak(xTUHPTRnAHwz&e;q2J9#~3B)O? zDQV&SiKjh0?G&VPMT0)erlOkIQ6SOD^LYb4gFkxmvyMLS)2fNzF^m}Z{?`^t-M<}8@*tIEqtu9Lp$iKJy} zE1wW>zj^&Re+~RidVmuB7GE7yh@2TCqnsTIs4geA11s5B~9 zzcXpIYkz?1cPARHQpr&MUfLw150vb3>WQ@aGJ;V+CqfBikeQNxvX=Np7%ql}(*4)W zEkLbxmjlHX=M~V<>P+#MMD@M^AY^fv+E@T@uyh0cIKWh7LSIlyUe<^7Wn33X0+gb1 zbya%|DYNV->EjCXx_}ku=Gm!zJ*`yJ2V*?KP-ULMD6>_+3N#tEKiq7#s@pBBb^vH3 zPvnq5(qzIb$^*XXk#o0gr9KbJKDv{HZId%qViay$eC{5B-*OkM#7}y#N&e1)On+2Dpz zmI0-D+L7D82#?FV&)@$O61L*TPO!0SJ}67x`z`D4K8&ip&+T1F;nSj)3+WliimIuP#-)cz$SCw8CQO10T> zhNAQgtVAs2~pL?p5vLpSRFro~l;mXlDjlVmO#;pXiiLMoJZGw^;D) zZ!g%(IHy>vWK;-k=M2SWT4&ug?hYKDm3Pj;X!HUC{wRGR!9p7mOBWr<)So5YQJ9=v zF(+x7gcGiJ_B`s z7hXTb71-$8hN1-rX5ih!x@JrUC+p?f)wQDrV4r1g{*EYsy-VjbhAtc4V#Lk!+}BR4 zyFw=nT^V&M-lEf69;*%0yPfSfGRdF=UByG#w^;lpfk|VZoY=F0at&R_b@jD(L=&2A zR!Ndqphc0+)xJs0wk&q`o?5Xzj2BQ6@10!Er=rqTl6K8bS*nVyb};)mDXmm$%%-0* zcMPz$CAKOq;R-nlK(OjgVq;nQ<|w!uh*BFSKiipppm<}(S+y-n@A{+nAHQm=F2C3h z(JJtrTu5vh6cJnGl?RsE-A0At5r+x`HR)x19xj(Rx@ch;lXoGP=IT8{Ek9RgOTpZi zZ2I`u6$3H?ZDA?vW@pfqa0Gh z-PIOEKpb-yKCXVH@U9qZL0ok$Ku-B|b0rT<;Xz4J37%-blz6>4Uv;6+(lCu{l4kZ* ziTvFjUwgBwesGPuLY(2|Yde=rdpNmdmoH`0cC=TS95p#Kx=m6*L^9)&faXLplQdty z3a@|UXA9ec&_gTY=5U=6XWqkrv?pV&SdZ`&ofpN9q>KmlKWZQjrCi#50$?Wj0S11A zg29HXJ(Lod^z8gt!8K6Y>_W+37^yi@@OOB;8@?SI?1w9`jWBIqIKsb&1JtLY@2=C5 z$pKJ@7`t=lqh!vMsX7o(PH^J5OXvhmY13w@bQ100n^X>1k}r4k#iFu;(nnlk@~gw+MOY54R~1Vg zO0J5pS++rCp?bG=URP*X*?)Tg`F)4c7!8Z3?0G!5T@SW8=r_iEcw!kWFC30Sev+=N zR8~yPi$s?K0xlhQBterAa1$1}+AC$>7YM?U71Jm6Lm#EjQKiUS#Y8GGC5%e>4Jefo zBzq}o!So|KE$us?Ur^k@n6)Q?nbM+~_w0P0B0%=`;p7LtDlj-5v|%ZrR#r&S)7if% z%C2buDJsS_Jnh)dmR+PLlw8;V%hk>?Vqp1_2#eJP@Qmqfp#_&uW9tK05yB(R&0i&Q zvWs zr~@DetCspCefsf z%qR0HlOh}7&0_@+*4L>XuBU!dUq$;2sQgUbUpIsowMod~8#{0lmTiw2Tq*y%YnJ8E z4&RP9yq~>|MI4v^C;z`i)@R6UMd}?(R7_DN0eg|w8OaZM+xAQ%I1$t6OrzFa8OlA5 z$nl+1h<1p2&up70eW3$2Rq0i&;Vq%>Q(V=7q^@Y}Coa{^VH!%7Ztefi*qbd$b6jVF z_xTh~^^A>VP4WRoZOwTTna7fmkr^9e$*iccX_G|j%bAhxB%7Ni2rk%25Cj1d;9^#P z;l1X3$Io{>3X*IFG~%!NQI#1P;ePxq-xA5Yto!L`sf)(Dv$xd@Tz;=$Z)4hEU1BaI zL)PI2>0RYul8_~B3Kcdpn(c~8!ag!sghj)+gKuYN`0EESZchIW$8Rty*#p&SgLH!lO{t5eGos<~L}r-{HAQiKc@%$u%g z8308?==|DvNloia$jogscsvD~~Fi7phs!xt*jpZEEZzNyq}uFlK*lJPze~2+w=XIswO6 zvmqeYH&COZ#UXaF&fUE~6#F9>ktqW0JmEG_8y29oH~S$#=F^>lHOZ`u$@ezUUK#L4 zn9Q)X2)w5OjcN?=FQb(k4SHGiye3h7FEA9%c$)lNJlBd_%kn>xom3##P~c~9#`tEK zL2WG)4?9#k6v6Iy1fANv*;U|)T@r@0*)ac~GckR0p|I88q?4OW9E$uZPnEN7W(Wup ze1~ordI{(y5?cRg7tjN- z^U4TWv&zAt<8kxOn|A=-eT34=P#G5>@G~Y}<%!cJt6m|!7?5DohBmso=Q_&s1UR(K z(j()Uvuc$shWcRgwBUef8G_&6l{f%(yJ=k^rf7*5exwcvJXO4ccmQ&iz5-HTb?B{J zGtY|$Rn@Lh4SvuAT2~Juc!u87p5%zXV487|CzM<~3-S~PaciZ&e3V!)AK4uPrC}XU z5TLZ;DS;eS>F~3I@{h$4kO`YBl`& zr_&Qy!i6drNZF>MfzwI7ZHFA()2-=zleE2RP%-b-m1@WS8MCqco6tfkl9~oQE7T#o zN&|{>H`0nl@;vqbF70mi(7X3-T6Wm9JfN@(M&7wEgAK7;p5xFkmbb`!AO-Ku?3C}` z!7LmOia`bE-}0R0;cZq*f&G99n=1bUA;3#QLbZU*KSFyOu2E>MSPcUk(amZ1)hHjW zxolMWQfC3gqcn18X$aC3M9HW&NUOscd5e*Wy1MS#lULu}ZU;IJ{Xl0T8Wfq~L*2N7*CJJxJcWLMEe2V2Yn!tMxix!~ z)dw`cLI0Ftzi?H;*IT`Nf2S6{FA21`!l5G@&7kL-D*YsY&aDPFN7Xx6uO;>fD`Fy*g!-o4m`PoMj>ECRJOU`cjVB{6f|f#Mz7hScc`y z_nuX|j%%umz|x0i(0_k zxKQfqwCs>&DK<7@It=DIAJ>~LspY*=`1QNIs1}=`!w|~%?T=qSPX%{4ev_W2<6U$T zM!ko##2f3D4IsdeTzIk)pkbbV_gtpoD_SuUuc4e@m`H5aS(UTp#I1SeZn&tr3cLOP5=+y-PV_Jjv@_3hIl>5S{jsTXaG?PR5*$PYe~cWU~B}1{XH)sKP_4J+?rd`J-Ev$-*GVq@K$>I)Yoab;i-;sa^gM zSxZT0EO6MfIz7^4Rl>4cv~DM~f}YgeAM6Uh{*??ze0J@?YCV|Z>EN~F-0 zl+5!V42djo4xu?gScf`LsvA48d7iqxgB-qN~ zhQh7wU7}Rs+r;K)iK;inCQL??LD#`biKo=1mHk=D@&ogU3UZwzh8p#uHF(dDUp};a z2zD=QC`nLyvgJ@G&5cK!ElGBCM$(qFiP0CQXY4hjEMT*7r%_S@RF!A%({oTTf<;Pr zqa1|j$A?uadH4L;`mDdbY_8i41TOnSY6*utNCL8hi#o3XB!F;sJ2pBzRlZ#brfCv^ zlRx1L)bCWAsgs-;#SC!RGz=x@EnH7`pPE1b$?h;A3p z7Wzkv;}iSwd_EXURfZ^uc))~bnT@mofmXP`Akb-t9CD**R>*l+)R)}qggT^E@}n9z zr#Fvt0_=1yPd=xvF{4+rom3-9d6?KYWm0NzbImyHWXTRb=3kPkyrtDp*!WTwxGKm4 zpRxD_6c`b?x8nPp6A|db*3aT z0je%g+5oTbzFT%ZuV1@{&L7gp!V;0ARnE}eG(57`Wf{TD*S{nRI}t%HnJlrFpugkN&MPe zb{`ARm8dkJGmap$CA8-CE7)>MxV35@S&-@oLGUEd)uaohwe$cqjj0qLIah~kN~bRO zZjmxxtW@vRMY2m#@R?dPrJPufiw^9pUC!D(+txOU;+`Ylu54 zHI+x*4X{mh799D+Fw&NnDj0?kqi)RSrg0%#XB+w!NGPAa!JD{|vf;jVq9^E3Dn~fvlsE#-|itigy2?6X-C4&gmzJG?kBSle4K4 zG!Z%P?V8>bBncNpIV+UuXfb7Z%A{uW>BY9({OMtl`9>4?i}3Q3(>~bvX;SD)EkW?E z1kv>NOq^W9Rbp3&(+26+l6qeU$v~jeB*W?03v1-ew)-<|x^y|0lJk9mfnLYmh}8qB z?NfuHqaWWWfI=K?M0G|VgP!T&yZ|NC{3eq<-%6v%v=gI;e>} zLL*sz)T&TYkQ*zy_N};ZL({l&h8_q`+<}aW#AC8dPUTNz`_fISl>-CvL)M`U&!@#% zc1t*$Dqrf*xRW4eUT4n+H&+erYG;Jqp!`YRm(F-NIg-7!p`to1nu%Igs`zTUaHBT~ zTFDAZHfbhxSeRkA5GvCq8mmwYOe2*UtM)AK;g_q`=MJ^6*<0bWd}_0s7#H)ctR-|etQe;r;vJjj;H(ev)p*H109s|CA@AncNf$l9%mT_1vR=%8Ue9i~4^ zoswdrVVYS>9ir}9v+ccVHx1_~H(0wV5Jl%ler)eCof6Vt*psvogH z*r5;2z-J)2pbcu^QlG9E^S=$!vSHZ_G5~B!@P#LjsqD6JFhPNMMNKvMv+R6pe3gMU zk@5qR?T;i%x6>Uh|Kg;`D4sA~-Ke-TIS2|UwaA!C0Cj7y$KR*y-d23}WG=Ca;?`VX zyJ%ZfHI;w$midh%+~Ad9dd+g{RYKV3J8_ZRHCrq#7%qU)gm#9!x)k3P*xmu2wkNm? zWpEa#1%0A|F7fvQOLDQFPf3 zPOTtwq3aIHbf`9lI>@^$v^-N>F4a^Z3{`VQz}SNgNvN%IxWZmJaA0j(TT$)qaHwaO z8n8xqA&~Wv1$^cN0;771LQ(1O@Hvd&ocscMBY6|FJYC0hYDy);;Zr{ZSH`Xv9c#;8k>_po z94=E8SP_n2nU9UYsL(9sdLj+(U5{Ptz z=!dOg5W*;DPu4UTFy#&Qg9@UsYycFUun#)=GJFIf&~DTgv5uv)Sls{>TPa zkOg1u>Bw^V8m1EKJc6Uu-u3^pB;^>+I?w`59*i zqvHN zcuh>ZZ3@^qIW<;&;_MU@nx^H+#U0RvVMnW|7$J5pvGiG&@u;+I`gXYJ*n$c$UBbnb z`)t|(Pdj%q@>v3QiB$Q-f2-FSozZ63l#c3+!HF|w(JGTIk$#%86}9ZUk)c2zyP<{vUjn}`qx_;8*13mv zyg}x{9>ZVQ>i$dmJP$i;FbSlt$)GYO!+27&DRBLhlNRX=ZFtzMx+ueN*bQI2{_L$% zGX`&E=`9N%E5(RnhD$nRapZTOgqNRN%tgjuV1A9H#ywVmMr#im9Fyk5b`nBw2>C?o z26`3@aZi_0g>wyxm5d#;J#^Z)ZRT0c$KBX{*J$~(*N-XF|AAlm=UAQI;gkb9-P_By z+z8@OH_@Hz1kzdMsmwqLkne6fErJZ~QqPlm(l9|)qt!E!h0tNyNwAX`ex`55E;sjK zrN_msuM5RnWkwtLhwV)#?di!&S;d-Zh8r)4?2LMVt>y`eI(Mfw|y>?C( zX0dmUrW^RVc1jmeAIqm!4H;7;!?N#A7x^d1|83hs#|HiY6yoJ`!rYZO&cds5Ipe@g ztdpwUgS#56Ld$FvWu$%8QMTWKDTDa z59nCge6A1F#h9VkVda^;%?{{LoH%wz!lminVl%^sB#b~=l^dJZ10tS0x(cN@q!_@+ zNgo$8xrXQclI6vlacuH!XxjX=DlmT-#oi0|(pNQseZUYW%OkIeP+m_HEh6Wu0W&mg_joXH^_kVjB4PwtB1K{Fjgq3&=#da zlizhokj7D^dDhl9VHf zcG;o_hClFXwr5pCm=iO7=fAWn4#=AgUqB>@Hg%}6l7JxGPYTb~V8UJpQn8sr1CknU z*`;ogxT5dN$B*sV9j2^k=9M^`JbfD+I=dv@DNn-3TaGV_s^v(Wn8s;gm*HPYmw~VNw+GKln9rP`9UDEUbH4v&| z894x<#TXg_@YFqk%vhv{g;(MA1e8g+&91t|L=jE{Q#eFSR#1w(jw^F>aB)>c*M9J- ze-Vo`-ExN%IpEt>ojvG41ox{vUsna6bVEOR{R*0O>YDxT69TRZ!=vnSGz@#sIv0XI z35INo45Nkz8&dxaC&qsQ8xVvh#pJF;w!jW{1HELZG*+3T#Cnm8-W(Rx6kUrv<@ zm)ZX6i#9iUp>als8abOA-wO~Fx}dKCSKG`eDrEmp*<)@q3BMZv2yL&&VHtd0HKXo0 zW|SYke8dsh?-h!1pa9R&sRTfptfQP57dANHlVqRhrqgs=IT*r1N^pI4+Ey{j9j&2~ zD+M}LGgLcMp^q@uM(7?{GhA@oFLEZ!38rHpCQTAyPB%qN3^g?b0Whwg^kUGh%BI54 zlB1=wc!z}4l*r9#(T%Q@vP<&b+J<_Js125s71=2c5+AVUeYQnsmjLtom(SA_Kk+o~ za$D1EB>mWJDaI1&q3o!gT&yV|adU8Ki*c zz%jll!qF-eIV!=HC*M%B4DX^qHir9Iq3hP>f>2{pT8y(p;BiZnw^2(HgT%oHC92@P zWoH5$;TP+NN#-R9%nyGU{>IjeJkZsws-(ou&*D})=(DrwAe5KF>z`FSaj3bl5f6+k zl@3Q_+G_T${s3uTn~W&OhBr=M*ZK*kx9g_^uG-kZ)e|_d zwvbikDZSZ)uEOeP;^!K+A>Q|@y3;GVvaQQp&qw7&LIo2rSC4l$Jqm9+jvqol2b^bF z1g-=wW&9*}Hh1tDtP_s=4UkTu{F5A-WYI~CxTu!(>?PG7)O{R+O?Ifp+->Y{Vf8_J zSy%NUH>^odQcK9!Kb#)ug^#dagT)Qg@bgxyz7@&zDN1~$2&Nh%6RcH)D{fHL=(fl5 z*Wm})_fPU+7)kC~L}dYS#Ps7kh=Dbi(^+MP`LxdHsnk!Cqh%sYzisJPuq9E0;x`9q zas}72CPf&RKTMUc-PXmAzAj1_U5`daawBjbqz-5sx77rAO3rkPrznEtQ1S!O@Zhmi zS?pOsO`{z+$f4L|lOQVRfLxq!Z8`GPM~Pj_GS$4_`(F4_j^z;AZHXuxaeAmvX(FR2 z5c}G^rNDv>~f4&GLyC6ng)_2>DwLb9-aDB zTX&02A%GZp`jln3o8L&n-j6Mlf}YN7kdTG&QHw~o^Xg_)5E8XpvKY|xvXLQjgl%@_ z@&yvR$SpOM@|ME|(qy$9bpwDXCf-B%!?{zePFl$yhS#5=#k}SDCrq^_$fjqTy&-F{ zpnZNF??>A<&smqYgH=QAy#Ge+c#sxy>GyI%wm18az`K&i0A0P7aawL;cNkGgnj}f7 z6lYQgj+>`pVeG1tw#L%u@(w*9$>wcZSTw)8K-@$1$7|*U$y9rP(>}BKC4qRp=@i~= z5u=kD&Iis3N^Tr@4Oe^MqaNosXhZrqYfBh{XmDvaGGKeib|4>%4Aq)$0d|a)`tl;{ zxW@w$g><)Cn?xYy8oo{*je*)Lzi5ehvYU^9=~Bn?l8{LKmp&rEyGzZkFfVzE{d93Y zynOiQXQw>1=*->GMkQKwUU6>7rak>H^qEG1MGP|3UaZv!_u!ErNLTp*N|U!xiJwwO z(SEW+;q90R_xF@k_ts+DdT0ekKy#w5KVnGZAASbw$LDe?r{vSQ@lb_hlm3E^O|?ouV*Er81=mAeNAw zdR7y(uw{?6CCpH9L4^-X-cH%SN#{8CS{ZuNWx5ANq;Mz&J1M7#2IO3i0* z3A?&NCx;?>y|ol~*i6y|yMHSK_l=a^78(?YR^JT?LA>H`StMC6`a_6uWOvW`3fE@# z9fKUX$S|N4HMN%TEogDd#@q_;r*z2;FkR6!1`E&gvSL7S6$6o9f1M*gKQPWi^bn9O7ps%-ST% z0lt43owK&^;Vx(6nt^j}_;5KFcRzrZAq5;<(2Y=33942vDzbW3Wpj7=?L%cvb*Y$Y ziE&TCxvEi3n|cTjfLJ9-(K$cGueGoZB?U8SLs&vBsm+ICLEzO=DjX3Ti|cx{I8?>9 z_hap`=ZP)qWZ4-7g$UY3iGf@gE#Yt#Kh9gQpnP$9_c08WevY0`ht8D23XU;ek^4w9 zmn5rPW@RN%u*{WjX5uEh4e~y$<1p%iwo0iHK?47xvpIJUZko)b39r8gT|(jzdqA?- zZ|oxBh_c|c0Rm}j$eNBBO5U zvTR9dlPkLICpoaz2XqH=101CmqR!$%@EdA6gcEg^fy;Y(^^G4x;Y>gh?;R>kFk8Cq zhCB!=P3N|dPXH-dD#^b4mzUp!cmMkOk*rGj#akj|UkR44?_+r|2us!MAMHpxS{)@} zTj%oB07Dud9EXvmPQ-7;b@}^SsYV3J&`CdUA1BG&6S*n(#1nJ zv};OlV6FhqE@ca+RI(oB_a5yD?fa44U<4Yjz?v5fSd*R1MD@XMu&KLDvH0g;Jjk_$ zRQ}n!x!|VFY=TJY*tx>TyI+AakT9D|!gvrefc7hvF=qcZmK`j+>f5~GQ4t4Z1Vxxz z^emM(aZ8d1lCB^k4;&%f4|=h~hO>j)3zjo%N_T)r)Ti;u$)K`mYAOL72&^&V1>gN7 zeEauc3vbXvBryQqp#W@kmct*U40Ocj-$|mn6pZZ)W-Ch(z0?Gw5AmNM@}*u6ULD8* z_>d!xGwz`ZQCwLKQW8*790itCuI9=1@)=0|zraxh1dj==G)~j6D}{7gL~3ig$R@QV zDk%(5$tLTw?&ZpFITbNr&+E_9j*{S7cj`W54=~9~+uG{t%-`k5DDu4OVUE#O9LSUK z=_hOfw~SJjNOkDz6G4?SVJ;`LIM73)F&J%5fdL_kYA-mn=1WxH6*DbQ@8$C^fO-xx zws-QUpd(;-g@cryY*)BhTL6W~Se4~FRQtYnfRoAjUKJ;SH8AN zVznIjVt(b?V8`eRGsbPm!^(34WMLA=c^Y6rKG>Jjwc1qz0u4hw2@8)I-mQ<`=T9q_$ zDTFPO~7_2vfP7($D8VTR7_=pOz6RK$;?l zPrri}$$2Aym$G?irUY_Rqk^L7qg1EdVc;S4Fx%1z^Sm2d-AJ1E45k3;%@f*{ zay}AzEKoPI!t9MS3QNUk2)PPqKnC*-+-O$R`*1)PEtdqqC!TxD(DXSydq1W7EPb>> zVZ^dzNLw%3MTKpN)cRR;7yWk5)ow=#Iu)*H=8q;sL@ zzJ#;0(+1EZA$Jz7BhHX8=3Z|DyvOh;66)reE zw_^2;P{m$PgWc^C+l>Cd?KB4(7li!X%YaKwCS@nDT1YJ>>yg>a0=Gcc@Yg-i#KFc` z8)u}P1u-bgt%uZ%`fl4+m=8RTaOpJDp-5;|lZ&FBOwOk&3fujgB3QU>Q3?dWr8r}k z!*yI8hJ*nvfFkvp8z-fnKMTO8=m)8yuiWVH6to&lh`Yz|hRvY$Z=yWq9z<#Y*G`FYsVQg>s-nG-M0qVJQuq#QR*t}YN`7D%_&Dz)9P zND5C1N06vdYB^>PJO?saC=eK0PJa`A_*d!kqN7nd7MQgt@`{CtI+#m9s~X^aN#e${ znG8I+q{E>8r5Sf9HTPEfR2)EGNNc(uSOIY{dR)m>MrN)6&cxCx@nIy#zk&=ZscDEb zUc*anD`!@3(WxJ|VO8zRjWhG`l(HB=84>sv@4`u%tNsGxfTHR>UKr31s?A*j3%#qp zfDHuI)R#K|%x(yRWh-Vm?c!>4MT})>R5Y)!OD(fHB-)`VZq#7Sl>|6I-X<%xwp|Ok zL~F*JlaQkwpOQ_GW&uh!@tOf67?p-31quolCt1ZQ@YEYRY2IppZhqFLNtRYUv#=!Q zYEdY>`|-Cwwu$NUGZfG*x~-aEvl*>70ZI2%`%J)KjXd}uYSKO*QV*yEq|fpMtKHTK zSE~wBt`wlTv34>XI|!-L)Zf{ zJo#58+13Kq0>m@aKF07&&=|}uwb}|dI8CbN3!WLExlGv$TGRt=mcD9qW{}mWwYiTX zMaj`T%*+ID1fhXQi1tAXQMWGnrwC zPpcCTd2>&(X%fwi$_1bSsmbZPe^D#c?OClt0Pjc%$N*YCmLA3=7&F?0J!$rx>Wc@_ zlJ27*^*`{uOss_doXg2l<3_pj@FVq z)bi7+1pu;SwZG($)`Pw6+)cQELS6C<3Hodn1kpIv|M7q^d)ChE(VAYhJyzLB`Jk5E zxr7V|s~>b_#!Xp;vT+I(8ayrfiBrT>xcI3j!!0$qQ~{|76UMqx5-bz&#!=(44suZ6 z;XHcmFD30E78gP^e?7wQXBzV5~mDk{$=$LdOO z+GHxn>7<>WSjp2QE=E0S92e7j6Sc%nj0V0^5coBgBO7p#Gl0@}*7&Z0qAhUUz2s?b zg`{gyHA8V*)P&LcTM*G^WfsA+a&P8%Oniw4{7KrUEE;jUE@Q!?M+#~)#k_$zwGdwc z9p1jTMV{_aPoH1ao@r;oZ^rI+#35EQ%n_VJxS+U`ttmB>4krC^j#PRC-i*N^LT}ev zL=DJ*#4^OSQ=BErznV!9rc~{L04(dlDw*jgG4KnkcIB^Ru&o zuKFQcRWpNQ^TPhK6!8vJa|`69Z<*z3Lq!5OOV}!@qQ)4mQPpUgR)V|gR$%0~sL=!Y zH6`YHIH)t|3)IWZ=uK%~eIW3b<8VE|fA$fw<2q?^6+0M;X&GZLGOQ}K^&vlMJky!0 z2pNk{+f&*3>ClUJl~mrdV1!ahi3terI(AMt>W0~f%4 zcjggmj|t0s#dbvK_YG582Hio@&iZzZBAl$v3gEZF7n1I(oglJtLM}NV2q8hp8o$Z7 z-0r3xk@Q)@8m0`xL@RVfA43lCpa$5(_`28@MwfLph{n{GV8Vp)ESK-Cl^Z7Er(K)X zU}M)jhNlGSt)-4I|GAcvKoHkJXu;?!`3$sv7c*W6@Oy2BNYT)Rp`})?Y(msaRp#nN z+KWn2G*hG{_`xOz*uu*NC7{=nFwX{*3R=yhjcovQuzb3O%n=i6v}p!CQgST(b$I#2 z4rN&$11aGvDAN(*p{g*BgR-5O8aA!o^_lH1xxCTs)1>aSZ0w;^45?V8AhJddn9&)@ zDLc$y91+yx1Ma$l9K0i=&!BR6jZ$}Y@{oftfx2cozNtbjgC`7la$0PuX^V}$p|7z} z*t3d`78+Ce<`YAB+@=2nND0F(Cl(L9;;Q5dDHW8;l40 z1@_Xt_^a@PAJ~nTB!s{bALuUGmih`7Y3I3eeca~?U`=aaBa#5Fz`())rt{v$P0>Qw zg6M`L>7eexRmodRhZ`|JPNJb7Fw!E_c<8y^)3a<0|QU)2P%#ehdvdc*P# zz*1rmHh21pYAZ&psL7vCR89e%%k=k0Nps4PA{n!AjYPiQ3lu!mM0Ss_SR^2r2MY=WQ|F{@S;SlP{x zv{f=2w+y(Tr|PC85EpDHj#mW9vJIVzqa&plg4ISj6wWhfzJ(2?& ztzOpD5+0XPpLK&Wd{%Qv7f6-$Is2iG3*W5Wkwrr3RRgTM1}V(yNBYx zfha%M*_-MlYLixukekb_;yBurX~(P%wHuZ#Jz^y%hF0)O5x={uu=Gp}q4L#_+9Qr! z3=5WNKb^k)`*7I!?<7=wgbW*RvGqx@Tyc&Ha}0;a)ok#1%W@YQ}!z!6ej`}*66qLaiPsw1QG71zKtNPTZAw#unC z3J+Y?|2r*`X8KiVLt1L7&B`4BdVQ=WA4vPky}4#abq0`kncVJgR!+>|f@xA})$YYr zAjhz8V5g>LUFkkP0J}LAa&|TK$Zp+Zu%29}_!G1XE5Fs}86BmNorY817wbR?#oH54 zH1$L`yeQAmvpXLZ&`q#M)7fhIU&DV+pC^VIv? zCVIETJz)YlXZtC$43*DxhfNS5Yxet7i=MOEJK{@q)M(tyWuQUMdF42uH8Okp*x-ZP zFm=P2%+HNjs-m~otUz!{5|R}Gr>q;)*ABpzq3IC<$MMRFJ)paTpX9apx6cp)QMJ;ARPf=nAMyB~>r5 z`g_%LM1E!1_K&4XfMir@#vALrC5oIyZz&EuOu>#c0Ge?^;S^2h&Q@@IZU}WN!m{ zc=ESX$IKEan3hm*j1)>uUL1d;G7_pH5z?-)gBszt9RLktzr_z4eKu&iNyuiC2=AK> zorgQxB9zG7(0sR{M3ynERP4%o(w#O7>;P_5DZ}2DJH8mLcu)6x7+UCQ74R@ zbDRA?HJ-wCF+5H+@Y(|az`o2ed$q@;oTJ>)D95?=BW?jozCNqWq@tlr(PY{ri2$1x zi;h<>+;X{-=EzX#Bf80MY=O z(F!dnRr`k=i2c;|UX~hz=Aa8CjB;+ELgt{-CFi>OMohaUKfnFXCfF7=W?wuJUC5{F z;x?2QxiH?%zzw&cjiOk#(O&l39}~OvrJZz=3InoXj1jc%cT^fKBmY1s;krd9%xl25VHg#xkRa8Hw9-9fz0bR}TB^nUtx@?c7`Guk6I-r7=U zp<3ndccX(j%6$k2M^f5G^npF?R)uXBIk?~@0W0maP_Jy>I~MVWwiJL8h1K-L@dH}l z$(AhrZUYxlJN)FzY~QxB$K_D*rjLXK?@6=r`W#kwNl0#)?(%Zp2tut1MM+a@_dhuqWi+x=?FR3hURev@dTjS?}OAcbwZ{6%NgIf)Y#Y+|2#6 z)7pfJ0zpzN$vJaC5zI;4n1S)2FM885HnQykz=*BTP!$$vo)S6%q_P^_T+~g($G~cV zNQ_&QCAQ@~|Eut7vJxxKy2A_~1_#!APm(w!l^m2F(dlMTsxW1$9pKlz2`yhjHo~|{ zM3~?lu-0!Y_hYo=uWPee5k`is6hR#%Y)G;0UjO6eSL*z5sgK?%DMKg|e$q}kP@ABK5b27n6587MlN=Q> z{v(pwo@-*5A8}VL5IJil#Bp;%D_*rw*b2WS@KXsu@Dh6M0)u>DcTZlx*~6_;1T7S7 znC361X~Z_6ju6~gX$yeCyWvSM3SmL!-fJDh-qeGv8VF3RM-&6#o-|pIkmsI5Q*drt zX!Aaw56W8*xhPMQNwq>)-B}<29V2hEO1dvJ3YUDHc&=RudO{yW#hX#i?x(hoOhRp;AH&{Zo<7{hKmgUds?<&=r)XIaz=2a4+ z5n>DJ@@u%9%XQ6TnLpjUMDrG z&LVGE9^_B8Xj_1l`ixG@0%V~*bMoL2blyjMMRL~*8VO77jw|47q%bYNrj!@pnVWm1Ife0njPITu(pBX0;Q4c%;$m@W2vop8sw;K zFUcYQ`7k|6@E54<*nLD>*?C82=$~hq_pYW9J;wZ&IT)sFhUB&FDb6u*tC3^cn$@9K zX177As8Wx>mBd->A5BFrXuHM;03rfsc4FfNE)P~2JM)QFT9B)^hc(#gQ-+@PPhFnkkUS5SE&`4RkH;cDg$c(<-ubp;geT;Dl@1!qJR#w~n@^+~;< z;jxw|i5Mh)iiGx$xW)fTAgZ{mH(50DGaw2!A816fvDB-2yru5Y{6@qYBni z&>h|>bc;l#4aG;Trs&8~=?vhk0#eOM&75jq-yw(ap@N*!!nbpfk_zTSFabJ8XfHr* zOC?VY1Jgb`;YDYK!{Q@6r5s&1T>F8TG8AQ~&IYM%-7d>&A`66Dq?riUI*M48ZD#k}0g8HkyM7^BXjY!QW#RA=^)-UR)Y_bVUKk*R5ALCxJ^ty@L+sgHU8Q zyF3aXl~K6OUe5b^%K-1&qjbF4`HtztD6oJI<#Q_w6+%<)0t)uv#73sRg=Hl(*uqQw zwy;E|y&e1g3W^Fo_LW8bOG%bt*d76$XD_~8w(xA-y)lzM(Bg$MlHJO?S~6O|zmB;h zK~zv`3`=#>z#x;1el>A}ZdTXo`8*$_8GeUJF)u7v;2Q>>=_~ zjK0jwebl0*`D`cbWIF093+lsEl3KtBN zCv@}0*v+P~7~G{*`NQy63Dt6qwi6}UDcM9myF<0A|9Mspc^V1Rg<1;R(^fc$thp8H zg?V{#WApnfJ<1fGRe{!oR&+|TcWB1-z&>gtGD3<&^^PWnUd_k{6SYB_k1=QZB;a>` zFWsYC8z>*Mf{rrA^PxZ6R-+MM6lLxFS`6lsYO#=q$IB^wgyaCQKY4@w?g-=8V9&;(1|(lik-^06ez0}^BK9kjhOZOR?+Owf@zh^|8 zyAJFuNUW$W9mAqF@}AJ$A&{4HA17I(-_0UwuFD;=0;*$WHJvVCR}KZXAAVkP^?j=X z<6ED?6MWxXRJeAbzDlCz`lbt89z;WnD9M04oK@@kX6sn?uez+K=w6EX#z!rd<-9*N z_b|=zM%5rielBoT8MqUjP$%)-RH2ScwCBC_t z)%!1hOyMsazX1v8Ng3AOzpPwBra(YLcNF603dBmE7U_GftX5{Nz@`CWat5ksKIBt4 zf^4<|g@^&J&h~5<3ROZDU|Ev>3c*ZLy(Zf#}9r(!(Au1)(}u`uCWWPV+1No{T8@ z!gaBKWucC)GO#v~S|J_eH^913F3ucPt1Ys_G5?bd2Ib*>$Trow5t5E(IBl{pEOkwz zpd=v2$JMTT1?f-aVA)#LG~UrdTe5Ga#!I-9ls$N?m(&KpA)dkrlG~vl^O>tYgq~`S z<;^pKQi`D`UX+J}1;o}{rko@7JfeJxajQIS9@-MAI2MAh16lHfswvq>tuooH1_1^s zwr-xi&s$VV-*YTc3$A(JXVxx=U)|~Z-w)saKBRWX4jC332pby6<2!!n)B%nkByoXd~=S|WMcwQrJm^(2$>ScG3kMMaOo~3 zd@t|&0KBuPb4Y~7&iPD6x1Ns9p?v@KPvPaa79J(u-_aMj1S&X4R4Wd+*vLsJxz#Dh9&+A$h;j@{30BglwW_HgA6<&Y+KzoFMHK{|9if5iK^1J41Tu;#W zfo9wc>_l6;8dlLcjtH$c%5p*u%*%oHLa~iCD1h9W<6vYhe!y4b*0`%OGEKQpri_$) z9(P)Y6h}q|#9|jDw1wX$jiqz0w88wd9AgB$ra$yvhU^%8j^3P{RQbG*m<`SS~8mk9LQqLrJbgl_78=`RIaK9mGXl`8Rkn6Bes<>r2K=xJ$d7%IWV>G z1f=f z8Fn#xw+#;m&dXS`!}ORHwe4_xrJC{d#Yo)v{on!^#6!j7({{UK>i}>V{79&S zkz-!Rvw=rP{V6n;WUCraoRPPSZKAQJniaTs)BRgLXg< z?S-oyS8A37gfpc0ZYi6#Uj&S8=ht94_2Vt8Dplbk@$e3qOLrRYX6T!?RFWCr>>#UG zZ*G?{c}l;x9neXw@@~zfbOcy{X`w2J%?EbH`3Qq#?D^(3CGhEK5*qZLeZb4+&#pzI z6{>?$Tgh^_cq+H&f-IZZt)xXxC-!fEhwP7dm7!K zp_j#-nGhJ1tuWiTWAwJtE4hg0vllrXve^YpQVGc(BOZu!=ToRg4VN=&7UTTU;`u0vPDMJE%Tgc69j@00tfM z?b$|kQYRVg@vOH`GFNSh1u9q|NKs7{FJ>#@JMu*sd)abV4W0Dvn`fdL>7)o8FIiCG zy9l`de-Jt4PB9V|yr6d<1FZNBp!MrayxWnEs&X{YCy-!etsXf=JO8SLw;EKFW^1<8 z_cva!^3dHORI4Y;lUj()W!oiy4%HsUM)BngkoT^`^mL*B^70F4+9W(v$HbsW)Lm5S*jK*z~CAMwh2o z_mir1^w#f@cx|o+9xvPymsSa}-nIE{y4;xlb_6&JkqPA#eOW181S>Xpe5)*(>~e|0 zm8s-BBm=o!Vn-)*K+kr0$%^ChZM~>KPnnM*D6asie%atk<271RiB9%99CqqlRZg6< zDz4{aO+xH1!|TVVgKkx3F9AjVBTsu<+POTv2TT+^={CrM%FTth>X$zm7`D0O;( zo-=q)ocMyeS<_szE}>7pw6HpJT=$wLk&C-i1EyDH2l@uBJT+4sx5AsWkVHpzZ^@};->Wxs+JSPy(|Ki*^fV8sQ$ivCXX0PTX}W^;e~uJE1vnQ+nB|63p0P_p z8A}h7)EOG|=tbS9M&^bQk}9T$T{xV9W-3boGq`L%W6|a61s4poeMx-RJ3a{n%zJgn zq$f1=dglVSASVopYU|tr#9hc5b&HLF4z^9mzm@DDO^pY%NL)fnK&($&OG)Bh>@&&t zsw1P%7Nx?b9HfY}zeZhPhQ;Fgt@%zN}n~I;-si?^YdgC4q@=PI{Vz2& z9+E(X2YLyVRSLThgInD=80dOpGnT~GS26qCK33~Fm(W>@;JE7zO-H4sxyplNm1u{! z(Xq;=aJ;N+AvI%z3UD@~#u1rr*JdlCtr+a~aZ}n6I;o@x4laM*x6MK3?%Az7FvzZ2 zh{zw!L6HhK-<`Vr@|0SC>Gv>C_aBjilVlU^uIC^G?4KN5%hkdUL>?%7!}2>;a!{=Y zK*K$E-Z8l$_zdS6r?XbKncbi2a-~lOA5ue+?4z1CGlfYCY&yb|LVx0xUusLKThAF) zWZW5fa+-U`ohAXMCM~6a#AHb?Ws8wwU&+O`*vh?ti0 znFb|JdXP0G6}Z7JE)HsKM(uQRe@tK=XEyXD4e`sCb3(vLpvD<} zh3t8A;Xr224{VRd?nX*qvUtUCA=xY0Ii>7qn+9G8 z_mYr*FO)i4LOucf%@o7_6kd`iiMlfEL@OdfbV*3|+;OEPSGljS0egQ#N!ih%rN*f& zXSwghShrF^xF+7EUfvAo8>O|UA55PqKkL*Ef!)|8AI?-E&)_3+-EjMR-X)2Kjq=qnn} zYjki%Bgd8m0XZ})n$wr#f+JB5m=fnYS;3M)ZnCZ=WoHWn>fKQfVPxnwFz-Odv&>oT z%OxYN*C;XF*(o~ua%a~~!cB4(gbzu|h!|ia)KHF1Ni{{3BS2*`Zlr6=S!VJtfR5p* z+)fQ7kuKvpD$3diUOLL?%zadfZF51K>N@xp>5s5(#0unj(w4~?I+DaK<<~@#Mx`TB z{c=zm5MXe?NEx6ad$5#QHJ~gFS7UzJ?p#!)JjYZCf=X{$1kj-jktQmJx4)5ed1fOq ziE;Q4V|_^Uu}z9RN1~adaB#DXi`UNU_MKIRJo|187xWd@OeexT(}o+ntdECwWOM># zZCYq(v@@lm-rL-0p#q#F$r2nIo1ceo|4}^><=`y9Z-uIE;5Eg zHr1Q;KzfZ`qR&L21TM14N%ES3mB{++O|>)~86CpH$rOfUu~rzDwa*vGqG8*)Jan&m z2`zK5TSPZUi+lQp$Owt%-c9CSQRIRv= z4(kG8k{D2|4s=30b$gYh>ZH@bq#V_-uNMaUX+S{LY|-@0-svperblm+2vY=7#`=KSo|vV+3Zppd3Q6m8<~yPY+^hmFsV(DXO=FC5ckVlB*rG5o+g% z0L{gH3H`?c({au((1EWQRcCbU(glU<1~lYCKI~NvEiYkZ>7ITh{{;De3jT0$HFv7k zg?*LS-9gTDhw@fuJ?nCmwSQr&3LLH999mD1?orWuwg;AWEL>G-sljQbHl$7OblKG7V4%Jrh1Zfv*+VApCJY6s;`=RP;e>E4t^ z)~TWOdfJIbQluorRKmvdTU(1mb4o_-)*SE;+10oZ#J35p%-ik?2njvmYY7v7M<6C` zchF!>+M*j_%R1>JZY~^>5quUzlI&y}kO8zpCOV zCg-sNN@tV{bixtKl zOXd-jVWS(sp)Z|pd z+cweNbl^+!-o~1K>kCO3!-|g4f#r79ZjnU}NfhB}9NRpoj~I)N745NP7gYREo$F*E z?Wox%O8*O_WS?7w^3sE{Ql#}jN{cG0oeuK9P-0h(u^mhOxVHCyCy7Qv2fcpV;~hl= z8q|M^H{5cs@PzXE0^qE1)t8TK`5dc=#lGl@x0s_4IdU#LH_)i6 zEPW$86fAU#4XyP9p*5)vtrwMnt$~G=XKXm$2(Zs@49wX(#-_)nIl+^9*$5p!qa&7~ z-7)!`P;Qvlg|3@>!O0uS_rU+Dk1!h$YE25~Cpb!FdCN@I1)5!gdPdIM+;B(wG!ebq z)#Ygi;J2qXJVwvy1*Dj^woP|XIZ|5*%hKi4?w!Dd9tMN~ZT74P7B@pv&EMXQISM%@ zV4#dXv^9Id{xp5fy1Wc-p1FW3JO`?ep)YZXcU3E*tAsoV4C(f9yA76&DDWYzBozkQ zm{Q`H+^MbRD%@y8POPp5bO?RN*E$vB%5JpAaad5bJEj`>bWhYsCqD+~Tq<nXORrXVx%moMWDBo`=z+<} z8%cl-Q)6F?Gdf8f6p0tE-7Cn!*k8ma-R}RHu5saAfPZ zg#&BtmAcOGh+4~3T*$SL8C3+)LCp3n(ju{-Mm>mr*$`oY_-*HB59mC08Z==^a>Ej> z;#PqlmkmrVl7dP4TE(3f0N%Z5(XmWx2cN)rcUuw^y8*N?#SVfh>k)V?LDu@`d$_66 z3`Sn@%1sS}1nP|@1pxH&oivU%ZFS&D58fSZ<-Xo)1?fOhls}@3&>tRL34R?+zf+4| zM%q49P71K2bEq?juN|P9U{85)*{Z9P-y?_tD!O5tE!C5uaSw?1xblraU=J zNM&x#z#@|mB*V)V?j_A`B#74D^MP~MO95^aLZMXq~6n(F4llAb#i{?2#RO8`HX%8w!017iexE6U~$xAdQAn znX@NV?>>I{2)fEh0T#kg&z)6=Ns<~MYhLolrr!DbQ?yXzz)CQ_e|`OVkbnI`iN5r$ z2e4@-sjsLrc6m};DMM*O9Is5RAWI>7h%q|XsF9)w;6ZqESz6wPUPplpqQokXIL|1c zF9-A4o*I;QWcLid|79QVP<^%Y6HFt9a8$=Qt}*eaw2PV#$TNIqG63J!fy_k^U2=;b zEZma4;L@rN2X3D#6nBcMt0!4H*L+y~_Vq(&&!3*3gB2EI@zzEj z`mlD&$)o*1_UpTkm7z0b3B68=zm+NzW9Q9WDI!3U;_-jRjIxNAP_mn&te<2Pl?RGa zG_S6b*oUb@att>=^9FXd5iritk|Jp2a-GPdD&*0_n3HU-2=i_TvahZFmJQWDl1TdU zna(%id@4^2PcotmQdQuY3= zanD^lM_kEcvY>DSBq*2ZH%;s9j9QTtE=%z7v6hKxk2(g5@r&1=zI7~LwnYc%u4aq4M2C@ioDk}AhS7tCP1T{#WIjI|KGy@WNQwB4NPFs)>&P?G56p5x18llm5+$}F5xwQKMcyt zR=q}+gL1<~QrcFL&(=5Z=*KXd)OuOF*7HmG*oTi=k%uMSJ|^_ToJeD^O-$|u{I ziK)F&x@QB_{32>UPI-JHxq(Vkp;qpJPg=l~_4RiLZhKa@t1jLNK#vXubHNfxeg_L5 z?|%0B%hzwhyI;Ki`P+XuEmff3*DSYwc2D)&1&Sl5J6KeNtWnMf$o_V*7Dxq^dD-et z?N3>GMwKU5X~7?QrqW*3}s2jM@7=!Tt~>EM?;)T zRY+ViQ&4w(q{WE?W_UxY9$orQFFd@gLRQ@<}%FcusESt|BvD2_ooq2*Y%gOFo+_Z zRCb_#s>|)rWUJ5GsAN%v{J?^7(Pa{+S|(Hu3}xd%)u0vFqC$6hk^oA!Wk$bx{rvTd zkp4(=nLhd5kf+`cAOiHMR-<0R?aey8-m9%*R@^RNVUC0kw4ZPP9?}w!vZr46l63U? z1GHjuR&ke=4&f;!$z%Z?M7xY<%w#DPw&3;I^}aE(>uRkWvMH6`1QQdCO0}D5Jeic2 zq@Q^}XHmzEbS<1ye~MMIeDc#9m9S!~Y?nS@cZf=+%-b)&y9CHClThBG0md8+fWCtJzL(McZ4LM|mj!!36rT1RDFfs?Nh zLK@`shve_4uRn!ao%|uEDH5$`6n0mYH?afU`|Nf$f5Suij|pdIC&?r77@cMLUfSD% zu3dWu%j#Rb?Ax%j>l0{XC7HLv(pU8x=U{HodsyeGk(S8#y{0yf-A|$FdFCk%idw%R z1!&==t;Ddi3v&R&J+}#(P!y%?$#E^HJ|ZE}ZsL2PRJYXtP%0-uYD>C8^-vx7(g#x) zg?QxNQ8`>? zb298~mS9aO{4**Ad**uYHI2!41DhQY&Ll#B!ZD)-)OeI%u63-g)m^7vIto}l64=5^ zN}3h6AyE+d1m)7f`RNbg%*Uq6D1&2;&u+lwmXrIvPy?c_P8V|1Fmqm%@yU>xfDN|9 z0b2~Y{Q_{Np)y(s-%1ryW)zGfgLisk`0?1M%t|#hK?h2jX3A-S2WZC7%T0Wjz@%%d5-x! zMIy{~yhy?iE~Qs^xI;xNaT#+rDL?C{QBl2sBvCANZrZE~reZ9PsZGF@UK4IQrNWAR zGrpeMU9BfQ2}AELu_OU>H3xM!t!wR<#_W5eR%g`tik2YMlp>RYC4mu$t5YMn(;bFM zc~34|S;}_sEJ>GayI@Vfw;gL;c{sP4e7E5_-1USc2uV9ONlBfBb5!NUxx7eVrGS(U zWEyI$1y?guwY5f;DGpIm$n(SNd6L(#MUidWUVs=U`|J{*oQYn0=pS1*V>`1wHW2XkA%CG{~!@ z{rBO^XTiSs%9c98>kEppf?G~knnd6~X6&7!Uu;E4evq9Cc<7=J&Y~byj%S;A=F7C-lWrfJHalSYMMzTwuQS~4kCtK zcQ~M;gU_|{uCo^^5^2}QPQK=nhz>Ye6pTPP$I!@*F6{Cp4zU7-Qx{BS*3JH_iWWP@ zdQkZ_2t*8fWdB56$nN~;@}DFJ%?8l$&6S&666~`^sh=RANsq&@#Ts zzfx%m?gBhfJJR$?hNz;uQrwZmyBz(B{zNs~QNHX0+>d23n?j0R44Rzq7;bN}4Q%>> zvi62`<)IAD5OsL=VL#@`kf5~6G^3Mjbs6QngZzSxhdEHhHRHGWiFZo56yFLzXqWkCvzl z3%aRE@W+vTN*hG4Cv{~QL5j0`Wz#4Czur2a+r@q{fG522jmz~_Ag!bT?#A| z?B$J`96*)$99`8q>m+piL?-(KElwB}OWZwU-rv_;gdh}h3NnVvX&hCxyH0oJkp^aow<0^Oh?w<5|H_}p97zG_lC2E8P6x?z7{)G@)Gxoo(jTtwvbew{F?iFVQhOrnvfO6OXn2ZA zy*MgZ7EePTA@vsI$<`|Rl1@~BSd$p2YXpocX>A|;sg+O*y(BroN;!GmHl*8!I>TF+ zEqUbT;%A}UGI+ugyMf!GN{`whpS0JPgs=E13WX56Jhe{Y9do-R+H-Rs$p;D$JFq2y7=NN4(HyqW%7#oj1)NNW zjE~jQHmWa%e)m08!QZ?jRP-DHjXf2iCtUoQJqh@4hh`+a0pN#t0~4`I2v`aXoI>H~r z*+83xmm*Q^c#Iuab8d@p89k>SeL^_Mxf;1^pO7G1kXL2dxuHll7n8)YMLkk3I6po( zH4vw7(E?Srk-e?dWFVoqPgS~zOR7`iFb;cvPzi@V&|owB#rCHk^$;RklMXRuZl^k9 z=jGX_I|nK{yUwm>aKK_mMS9yE>XHw4T2sEunZNBIhDLDL>?Bfx3p%hjm4+@=!j-dfQ&wv0>QJfuHoT))SO`&zpw6GxJ(wzXgYL+gL{2z|Hld;)&IpDmx}d?FHuhRlC6(~7 zBL;!OmV)|@T8Fg?RYi!2s{0cidB7B47iZHi`SsMRfWFC%rynfTs*~jU>~>Id8rI74 z7&VE zseFVA3DELKiaoo#c;LAWrX#9SL6mI`jQd69zAwB=9=!wm*;x36-5(UTpMigUHQa$N zdXuPXP~YFi$70M50H{&y9AKsff+DqE(yhJbT(BD@8Wc%!@({V34c)-mAvyJuY-iHs z=jG=pc57wtvabVx{l=E)fLZSZ0*4NkLCyz*j$<)EBGQja(ROgG%ie3?Bwyq{^??jK zm0QH;y5k2~+HF&UH>j7bGO+MZe_ zH3Fa$NAlf1#ii6f&g0TDKP}NdxFuw@Z8pb=0;w5xOv`Q94TAqIKb$YZ>nG{TRojE? znW0h6!@M;G`++JvJloL^3z)7;rVh*1h=5QaUVO! zb@#~|slW;FkTB;u)G%bP8FWEg9;ZA)jDEmhHu<;{85cll=j?n@5}kIVjh|Ay?b%)t zP$E!Fl$Q5mR7Em~t=YqQd_qvNrqeBYypWgNBQfpdFrdf|8aWykF9F%%g;vjpg&BW@ouq9KBT?mE?RV zBYGO@C>G0_YVqzA;|anVtc-if8xAm6`GV)s=d}{0+6vdjn8@dGl2f(#8J>JT_?4Yb7b+Ue5FTzy>y<|ou>5186v!PKj zO)zAzX{Jl@ncKEFohiVMKEZ(+a~*k*Ua&T?K-tw-Pmc-`Z?fDqOHB{1w-!bZBp#4< zryCAJ^6yp#C4|GmHwO4NSykf5G2}9Ovs)r%%X|?W-6@~NIm09X z@Zq;J%oQYRKzO7d2{bDw740foSqYM6WS#2{JSHH!BtXFQwmzxTByZL{DwB?3B8*RI z13l!p5>a#vv!sT27Z2$UF}0|z@C@|4e^A&xAeI%b5?P1nw3!}-Wyq>3TKJ{U&}LxRHG+>k$GZ*Tpg@|*ba5EQ zHJ{9|vRn^}PhSRO4@}_PMz+^sNhMp1sT5R?h&zI!oqxC$I+;3Tl6~*Ag?^jiCsk2y zCqfMR6alBTUSid^L$bo*d?(PlTKU-=xFf>5Y2@;7jgSR{6FY>U=6QIU6Lz8lb44Vx!2-VN?pS_F3`luyYMu<5egwxy%Hi-HD%lYptvF`;qxe{TPF_|7zKoND zhGpfazLu*(Z$qbWSGE*TJZX(kN)}No>U-eEYdZ<$U@KUBXu}1O4aimxm~udu2L+RN zKYjh#>sRvc4^VrkG@{Q+fKP^WZrocoTQ_$J${CdeXAA#5QR|oevf5KAWHpIDxF!f=(o=t0-q|x zQWDGn)N;Yo8BI>JzR05LpnkzIM(gg3IO%o@o)n2)`+)wgr&*BsM#ItdUi*zS$WoP| z0M}K04DFp#{z8GQ!F8)j6x)IBf<4GKmK1D(TJ(hM7U~xP)yKfGxCG9^o{M~H9~+kv zT|Ay+G<RL0h^ zWLDGzZ3yUb9;CP7Jdxdv#?lQm8tBH-*v#ry|1X{I`1y{e-U0kmK9^lzLGPqE03WW@}xa_w;4t_Q+*QCgDjH;9+W(q zJR<77&G_yUiFc-!{A?dxBa1=uw`nMsA~zxdwt&DL^?bla?%cvQW9=d3X%-LK04$Fv zQ7++%Ar2=eZt~Gkx{JzzGF3nijW0O6m@bOP2Vp`;JSO|36J!iHH*J+R#eNKwX}E)d z<>4r%KOv3)5SuVow1o@RxKUoka{?Tft3;LJCAf%jC>x%}y%kRBMsr>XNagC-;OYRG zT;AiJ0`>#<(_N+4YLD)vp}d@n{Jbo;tIFjSuAEDEngZ$l1v+51_s|Ek?JY&7%YLT%t3!uC~4f&E--sKs(jP3~PmqUB*{RIAIxHr7k) zY87Z$Nj%uqlw_&)*(cQ%;Kw&q4@kz0S)mfM7A;UL+qF$ngM|m4In@(7$hBD=gKnp+ z{`%0q?QCGml9FZ#I`bKZs$GBL8pZ@-wC^m?A@$n>2{M}=#K7-Wddla`WV^ltqg5~a z$mnWPCz4#H!TkZoAtklhr9|pfBL_64OT8ljc#*RKmHUwp)Ob<3KYf(6kL=l^TV%sL z3a3Qbu%BHa$y4O$W?)Y40nApRVR!kv@W0y%qfqVu#ib5(ui^k=y8sKIXPCm zBP13KIf-c1R}2i4vgn@uHuP!@3OGKk#6gmk1n_=}WFK9I3}Q_}lz*{@GODDv>jey6 z95>qWO{BnrcN7Llsvrho|B*P05@G_jZ5QW^q#m6G_=aFK(8k*=8DnAU8P7AVC5(=t zDA-4*Yd~-X%U8lo$1ngTENX$KM(~Y}$iSjA7pS45Xfe4`9o=$&VS1rsZUuCj?pNUq zh$p~0RH}X`d>4LS{tNQ|3`&5wt#Xve&ILEY@}Ky;nb3fRY}hQ|rQ1D;m6Q3nd6IUI z7$+kyX97dAIoOE?7S7qNEAo1g%Pq$!H*HhDJWLv%LG&#HhC3Bcv{WOd#1c;=h zvx$3Epe`#aVu68BvuJ5PZ9Nc!%q8RU5~Y5+b4@ppBpN;QfA{mZ&t88QBvtyu+lO+5 zB!x_moZ98Ea`2j+zX64jg>ADmmFBu6D{e~e!0;=2mwryvgokJGQmh#b!YEOTf-br> z78D`|*7)#sOd47@ma13`wV{~Dc@;7_q-q0tw~{K!Dw8W1i~!AwOI9e>>L7nRGi?P; zYImi`t3=(#A`CqyI5&>N+cVVcF$y;aVnwb;#aMxvFXdzPC!p9J+aiZ6=HZ`KbF$d8`1HiC2@*S;bkXdCrGh#uL4MtQfm3|&Hx)6WL-;PUdgSc64;%1;h&2RpvBxU&Z^z}xZW!D2!6n0g2R~gd*Fi#U}^4-M9iZ442L` z*-68!XWon5y&dazR5c{vIhka5J*pr+hq3H{vDj}y|H;%j!DiZAh7FaK0X;y9a7$^p zYlgZe5e-d7+vJ7c4oEe&D^V4KxSz>>@?OJ#wk#IA3z=!T7>w?#() zl);lQY(;G`XAPe@+)ePSLs^Yr-;l;0Ggw(x+c-T;^<5dx-b|JAH!lO`!w*GQMzvvq zD6hrZMQ@C)%!Ml)&+N7*)HZ8Ulr53nszY9BPUgrKRHS-xO}U#+)S|_2QZp*&Ws`AYi}Fc(?-A~s z`k5{)Mw3dQp8;`R-EOysH50c%H(urPHwfw*4s%twuF3{{65c*Rse{b1qy$#7%yT&T z9I_=XB;zc{N!+oM=e4Gy>j_DYaqpn0Sn%r{^^b(rf)Hn)-n6)bVe%}opbD!wUX04% z3(0wp)+x_;&a66$7r`5HSvAR?QE`X5t)2bUUtUbv{tq34#T3Nw+cUSZCCOLac6b$0S=RR|5oqBX%H- zl!R&9m6^t&+sN6EEZtH*BRE(q8#9Fk5dMs?z9y-K^eJJ01nHwOVnB`l2pEU7FGg9^ zSdXZ*Yz8UCBC!zP(p3Ty($2BOR*={iCEUv0!Rc5MK&Vfi7NrS}Wmm{Fq(4wMdwz}t zu{l{Gwh_L$1ZM(9o&F#n=#hirFJYcze*l+CGThED7GBqSvm|XLYeC5qr;Ut!0M(o< z%3(rVz$h00W8CSnEa{M(D_yiB28JH1HThwivzcm#0{m6N+0yOk%s&MLc9K9uxLPu!*U zPA2Z0^id?|f%t8c%B-hpZ2?v=gjNJhAv=e`AVDq_at$XLokD7##p1&@_3`AFyhIS= zt|vQnJ;*nS<-o1o4p{QY1DKjU`u+DDWS$5IgiDv4Km=DxmAsP_+8h*D1d}k_Vw@d^ zfK^RkZ-aAC;_q+6+pne8A>VFG@?Is3OL#9%LlEQm0c+!MgQW#7g*3$ zPUzs(9iV_!q{Ga&!ry$)9tyZ+8Z5KePJ5s0|;_o|dv~fQL}F42Vtz z9=$>YxmL3#xZ?o_e2KH{PhnwlS-MW`9><)!Kh(X7ec@tX+ z7=KFoT1V>|ReGYViltv~Y!?G&ZcqF_g}<`H4?L?ls6d+U@-+z;OmxabMC9}by49y8 z|K;0<{K{_Hhv}6ggyhsO80{VgPRRhehVEd1FoF?*p7TEHERlBvPZK8z&=#^xIf%j` z3XN>qDtycS3-}*~h34#bs#qS%;42dGMw501g{fT6e#(&PupZ?#RMkadd(8;ZIn(Bz zpe{G%d-JJU>jeV>YHP-80{)aI3(l$-v_Z^d%2hgH%E%=w2S7K<}IcIA@`C=SMK%-fAQO|V zvn${PZi;+@>&cV^OC?#L`2| zOg&~<5?uRT5wqZ;S=I;qc`kvQ2gX)gys{asXh(MOR_CrEV;x;bMqM1BM#}kx4#mGp zG-No>7$g8}cB#D5BCOpOs8`RMZbh|B?LN4+`q;eKCKZ3S#=&pcLHLdBxc;7oXE0)% z8VsE!8xA(`ek5_G&X1Pe#i^Ua?+rY}uyiuqZ>*KW9zC%qv61L~HY}Ng7_^@8r_Sl6bb~xlPZhgUP^pWE$eT zpN4OKs9j?pOMyWLHA)s08)QRn9WoHxJ0#D+DcMO;$PHeU+o3Y#C)Hfpp6KSP(&E(9 zg9{QPZXsQCYYV%!LynL>wB|e^tEy8o8FtW~tKy#Lh?QDVkup`xXor+Ew_mfPZ3HJYS8H;J0j8LKa7V;$8BDNWxZ`@ov65}K z-hlaaP`)Gswt*okHp2O;_X!K;e^wrK)q$(VgQG3$yMKL^3r-adI!)HNnjW%^(s2X- z@u|mh?T9p5$i`9_uIK&e_JNp5yfc*7C11j=v4>U4b34cwk{yCcvP}po)pIDuoHf+4 zI^pzd<#rfddU1(;df=_>o|CwZ5-7T=gRc`*iP9sJx)DleWIL8X3J~H70XK-8AlBs8 z?Nv%3_wlh{^Akp$pYUrslreVNa;pv2TiPVCo*z2n>C<$1l3gz9Ys;a})hwa8jR0Ce zrN0;T#@cdcuy8SNpm#AlEN$r`4YLutM)r}4ICY?Gz=-{gJo~bifr)~0BPxw9bj#>n zkxR*hjz6D1Th6phLM6O4(7ZmTBDWs zJOUjlYV~RxF1HhpwoEVziE_t57B3@Z2?Dqs7fbFZDbD&WiDbO&ghN$D5}`wOU&qTX z{{{RH#?SoFKzg1ep54pqP<%v3+TqFp3Sc@ohrF75_vzbT!s{PZa2^A2d%EfFVn9Wy zj~35Vu~7FeW{wi1wCv`=VJaMm&vwQjwINx4$;ws#7{32~$HS)eIjt6YP}_oenW%&e z&m@2wi>0Nc^AK0eA>94&7HN#3ttX|Q5PgqNJrd9WYy-|JS;Vn(#AAQBqUpqWwghEZFnV8ZCsb<2FmUb4GXnT)TBv<(-oam+W$*!~OttB4C!}Nr zGyy=wBmz#7W>*2sY=I=$d*Xd{sgQoj(~}0R22DD2s>Gb22AAJQJ(VgRr%wytOUFOm zllatL^$6b#sH%WXNTS@WnB_eNoEr>vPG=tWO{ES^bvi5j+zUCx_5nvA>C|ZRciWEh z7sDI1pBRvMtw1z@2xU-Q(ENb|cCy0fBoaIdhoEfj-sF+=P$5sm$~|V5U+?}U@F932 zy%cbs8I*(pWY-leO9w(!SU?rlogMa7g_;5&=(SKLGxdzXHvqDx#@(~J09QKfe9>JWg8aT7*sEj+~vJ9fNA@kOQpf`b7)#dcu~k zCifkKY~y=uk++ZE_rZ~pZMx?{^fZ95E^9r9A>p)w|BNDV^hw~wIyAwUs+lW1Dyu~$}-BsFzx+zq6!A#g~ zU27DA$EvOJox8xt+^!%i!P~@xJ2|P{(j3r9XmBc=*1ExvQGH0=$g^2dEm)g987h15 zNqyje;I4*#l)_7hVyGq>>^Uy#2WJUGjStdC=Vd;$&SL$#YR2AB-xH@WJ?}ApUQFa| z1Fo!rJP%^VfB=dihg}+$M)!RAK$?2T^P)xUX_(+aiC!y+KPt&Tm;!TA|zuOB%1c zUEX`K;q~L!kCFx}PdsoNEl2`&OlKZ=UmJ*R&|{#@c%IU{BxGCM>5raWqiZ6%(j>N8 z$bz2L#`-j(j033Qi9CsPBB#W8kl^eLR`?dR%}^fhh@a1ONO#W`~6 zQCrb;0tsLh(OOYL3v-FPoOBXiMiSyvztQ`I(4pWVo-M;tg6pkTC!PriP|KY%1Kq^MX1{lB(w!6E!n>>DaSBHa!pFrhU0n^3+as^h% zm84|_al^zZdzy~uB!e3tD$K=^!<W|*;9%wG~ZYw+$yPibKqq1{a=2UWo-PF~`ST? za7;mVM*i=wzgMmC#wSx~V*pn$F*vlrxkey9k^7GIN!1xxo}OX(SMA{tyiOEhn5|WxBA- zE<|Uzb%h{I<3Y3Gd~Ay<&Meu~+`|q<4u^qbMRkE{reySHFoX_h84F5roeL?Tz6fS9 z{ep7pk7zWw(AWy7>fkF^i4KOXt;`Wjmi}{hlJUI*%*h98zCUzkM`o;DP^mHUB)=^d z2;)o_%w!a1O>3;71Jc0)ru+yay8Nu_9rWmk$JzP8$K?IO*uAjOkf)GxW&OE)Ptl!5+dh$CLSu9=q^0)bz&_D^yC*#p`%O_o4tVsNigD z1MF*3vXZqdGJHThNTi?!g;?izJ$HPJ>7$IOwag$0o{dg>b1L~}3Oqq+06#*;P^s4420m);Vt zp0-fkKc$Cm`gE0=q?aPydk4h~zul!fXD+Gyv-6%QDZx;kCZr3L1KC1&lFzhN+-p#7 z;j!Gg521!h3S65L^_?MIu6JgGObu}OPtZS7<-FAvQYcK@4I;8H1fh(F!<$BQ|NR3K zjjx*V_JPtsAmPKXZ;CuGTMM+p?Un+)XX2Dnx_|-fCk~FkeEv1l3BX!+oTo{xN!Hd} zAnj@B&wLB2bMQE|c2rD*Bk>x#DU*ur+3i!Yr9}UvL<-dLqSt@Ly6$e=ShyF4r0a1* z@|&!9Eh`7aMrup#INmIUFhz8qJtbIC=k&Bedn*@RmfGG&=g*_|@59>{muD9%ks9(Q z)d|MnHR0vR2PNp(5^dzubEFR-#*RtooTg;NhHo9_SXK!^82h{5wMTrDb7bd}g$rM# zumK>Zgyloxl@ezV452yobh6UGVtA5GuJQ%1zfAYyq4rg*_1D}gT2!k)Ep$kvf+7le z>2xhx-g^IUfE4-D<*8FGj4Jt+WhnLA@3SDdf5W3q*<%Hd4#)yd&nlL&!2+$j$-kEr ztm_=j_Bnk3k^(6obL-utBx7U79 zHsGNfqiiMOtx8X{$kL;T=_ih^YAo}#&a@?E^T4&zOwSbpN5BwOtd0Z#6*0u#bTrPE z(wd5fsYt=5g7ov~=Bw9T-BE1DA)imuhaNaH(%n@mdh}l48b8SHI}&c@VW+?Ws)LLp$D(LI`elo?Fh98b^ z@S_jL00sBS@4{=cn+N8@)zvW01JZ0G$E-nmB#E2TEwyRtVO{p%BEdm1v&{ppB-Zq3 zk|hi;`UALd+a<{w2I?>U9LlcoFf8U7Wr)L5b?RK>NYg@h}d0%gaR@CHDHgPV7CGMm4D2&$ND^H--T+Ni>DePr5-xo?TqcWwSUHf1@D zbC~R8dbuU4&~250$#A)~u5v$Nh~V~d+~V*vbff~z%q;nnrPkF%PN9F?6N99%sO`iC zg6X?#!z)@G>Ajw8J^%f;!ry-jqWrRNb4bD|Hzi9ou&($ z8A<$~_EpE)jzp3aN6|8b?*BKMV?9jo#kyXSkbspGZX*ctQ1-d@4$J_vg2?{K$~x%7 z6G|=bY+Zi%8;wMe*3({QJ0P7=Np2xeucvHNQ?K8Uvb?rG zc7O@Ae9A1_o2sZh+a}{WQ!(zw%^H&15+A!Pl6j(C7WCw79qG!2s)KiDe0pwiZ zJK-Embpgl#^IEn*v(MH^d{F?Z5$-gGTBAJqu2|er_p#1Lg?n{&Y-6p^qXpq2EyipN zkM2@+clg4;oC2?rzvVA%P%@R^k;{%9l!9T;5i0PWWBkwIdmekJ}7xW!PU3R^cI2-e@K+akF=fo$AfUl2@ z>bmK~KxMEcBd~_T1JY?s%%8)94^~bQ31C(O6yE5CUY?6tPUBh36tKgvy4z*ybVHWF zjm_}9Rn0b4fSrfb8z6%n@p`g%=IKP@dH3n-=dXVZ?|%OFwH>hch=YEahTKTpD5wL` ze-}f7K;Q;wt&MBrZnyww*_9O4gpD~)u9=8Gb^4fTtTmsQF}e%0koAO3xa`(tFzWK# zujI+ef(F$;?cy2^M`=uICHWPtOeBG76yc&9#(g&Gg~TmY2`)MlBaz$0%#yD(Ozzrv z?US&m2^~Xh4$Fc2^9E^C$vh4Es{U%|jWfvKBs7}>%z zIy+Jvy&^=wu-B%9<<6$G-@lLfUTdT<)Z-Mq=AP?TnnkqB44nvz4zsPKwYgszqO z4c{8H5N3mNb<0T_&Xk=$r4`1f=)(>>rWI&;dwfl2`PyZkwd7A@n@hkH?8&05^!UI zm4lL{FDi$z0L>qvCD=}`S_BFEDmenyoxNQdx9mTKLSDA}iKi>OiznSs?lrplPU5t= zKy!q7JuRz>MOgGxO_PR196wAR3$qdtx3(IO$0?4C?)075A+sBOdz z#f#Tj5CXqqhHh-z4^DKS)Vne@uyr@}%!6#c#`g=89tu-SI4e;Nz+2j&aaJBZTkoX{h#s^4At0 zj`tlOs7|UtoGrCWJiu0&*472(eH;f9 z;5fk4=cuws9xr)x0v{@*%~H&EIOLeMojWZB)oL~_$dFMmUoK~7Q`Bb}_8j;a?X!29}@${P%*tP@HWq#7jkmttNNzd>B#W9qMo=D-`QD#X*( zZtfCzu)xUNp`>s|4J3X6j?oc@51TwyN3y%pcIYX>TmD)}jI#scQ5n#qFCOSo!4c0{ zN{p2ds*LG%SN`(?6w4r)swA+c7F@?`cb@OJs?WMmgmwbI`U0d6GZ&=V@=S67{`?^8i0#wcwT0+H8Ts$e6@awm|zNZ4g0=(1{& zB|sd?K8uy?k|(Giqt#9K*k~`ufJQ*Vw|wY4Ddbu*hqZ*I4)A27w|o#zY)}MBU~Yox zY}rbwFJAwwj#h78fHO%ITHEqf*ai;K6KDJ{1^>RTzf2NJpvWM~akG zh}8oY6zTI#C;5x_0-yR}_8?|u7cIH+mzPUR$f;r-hXbaL9V zO!m-$#+TJf28eC4;DkD5-4SS5$*!zC+TfsHz{hc99I(g~eSA@{eM`M=ZD={AYz;%H zDf*Qtmv{d|r$kXXUkO>ZbN>cRIO#NDh{l48j`#cerw?^i}MRp4pa>FcLa z;mb<_HK_C)7q_a#LUIe4&bhGtiJ2D_*4OgMmEi;6q*zytNQ9QB-O4vf$=@6Ny?ueB zN75#s>w7jifH|us)l8H3q*~Q&_YM`B+*DnTtJ>G6cQe6ou1@ul0?#m5uuL2 zO6C4w4bFB;gBwiWi&W0J?mD)4cbVqIUFO(FufjRbeK$<|>RsjTCG1wOD6T9Cn%OBL zXJ!u(LF>|Pux*))_W^Q&9f0U65hb_oSl|47gd_7rN;%7+#w$hJ(OH%(d89b!Y%vwc^E=0L)Y!L4N6kbprs|8uD_lC|UqF7P=K|0yYH<2FWRf=vLF zW6cc7RPm@h$zl|S%JSmV`f!^rH}$RLq~}CdFICg7vA|m*oU9Xu7Yy1iHn9{lkAHJD zlh-_OIJY?D(I;Nds)VC9k^D3+`7gTcFr%$#ktZ)>lF+J|(e%_SLdC;ymg;N8uI&hC zP(;ekuPb&=WE58QKUtcn=D{ViZVbfqP87l-yVoUgFB9d4%z39~c0iU;#zsk(q!Y<8 zm~fFwFjlFdk+{U6Vgn^SO})y#U^dsE!5J`YwSY~Gg`Aud;khlS6?Lq%uT8$M9ztm^ z|C7xU9?AgcAZ#zS64P(s5K|*NF+_2o=MQFezP+nZS_5gDa$de*w&UtvT#9pN`67_@ zMAM;ZUUsBpDz6P}SC05cgN1=Crzio{Ei8r)`rQ zeX1=fsv8ahC3r2zMLqM{6HD{~s2JwiHlynU1!mKzz%;#dXm3l)FlPM(@G<)o?j>Fj zU#sLe#lWgqFPFRIcvFLcDABUP+-s7&QALi+0Nbx#s(%UVvfTHEEb67~k`Auq6?W^Y zDz%dB5?>h6TOu>Afi#kO}Ym(9iJ)Q>KsKE9@A z^{PVWr9?7SO6E;e=}}O&eE_{LXrf_-Ne;=~+O0|xQ;Nl!Mb0phz2!SK%;3;Uo_|q& zQo7*AV&71?)p!Xc(yyOp#MU2Qe|9cI_5~0jP0B8Izh%$!oR%n@Xgth5sY;XDag<(8 z%Y7jRM^DP)=8g0%!)+^-e9n4AC>c21ofKNh{$2xy7=bDK3#d5{o>Z|X?M%mLm2(Kb zmC~@^m`~UW?;Ke^NMiS_%({mgkSDge9$k)%0N}Hw)x(~2G|AmU(P_5!m1PGTy9yVg zjx68&bGkpOc}Tb5EhipBw?-YlS*KNrc~#V*>8)G+fS;!|+k{lTj;XV=Y{dc{_G+~Q zd3yPTpgGwVqw8S}N4t)%+(!;jr3fst$cH>)Df3+ia&=7Ltoq6*J40!_mL0jArN-ew zuo(p9k&^-pR$_=3Nm)*xRUWFc8&@f+U3xuqOmXfU1ZSu>$*beOsR4Y}Y=TIOH|=V< z{qnA(vj`l(sz%mr`W#P5x)+Z#`dppjS&y!--|M-o5JIRI`dh1S!H^67pEhz)IZi(I}<+b$y|7aV%Q&rU^Hl03Ldt8!e*}eWC z%!?!?NIh-A)>1;Eqf_odNwZ4h%W3-~Y9L(-ARA`13M~-BY?}~eNJCO`0iea5r(zv3 zxL#e%9C-6WgOu$Z1Nt%rc@&{d+Yr6_Ohnier4GI)xo7C7G78Rm$%_a1jkGGj4&*q@ zzCoyVJwo<2)=pT#!&SF?yBqoMQ50j6B`_rfBzxN-_f>5h zv}-tCre`^M>~^JTX)wLxPcf*pl14Ez4e=X8dI#gBjH1SGT_t#v1*yd z$uV>ddLMY+Nv=eaYtwp{#AcQa-XP2}C>-%*nqWb*jB;T7TX_4~Wkc{%$IWE3ZM`}q zW#eUN5@Rcr7Z^A4w0`V#jYqb>xJxypMsMFL3d#A*d?xf^7F7~7)#rLcs^L6VSG;PZUbP6|;r$hG}qcr)2D@M~tu`>(I5c zL`nO?kusz5N6w4kiS=TuNbR66#SXy+u(<5rmdV1z`8leqQBXHyjqVP!N@AC&Kdyy5 zgpDH<`NYo_`qUzW&*z&TXnX$%^G-lcaoA#3dImiYGZ1M99?^ z0T4_KDT^kSTxgsv#06N&kSDn#ftR<98Ds}1qx9Z#a$F=0r+%1ck{h^svMQ%u>ce@L z)m4mgpMNabSMF5PrtLkuhAD~J7d=KtQY7t*L(MT%f4I@^q<#tm7wg(-8+c{Vp!;E= ztxt05B8xsyd$g+oO-`*hEUF_9fUGd@I2p2l>yzj~p_wEqo_+5kdDXyju`dg*>vdp| zW~mh_o2J|_qd^nj-bl`k1tRvygKqKi{qVQxwI_A9**9QovE;Ax2M}oUC&Bxq|T&laW|5{8=1Rs zvf91#))0~!DF|}UNrKGHmhLq5nHJ!N=Sprmc&?8pZ672m@UBT8;<*Z3OXK@+V1Ng^ z%ex=F{^<2jit+e7VLX1OPFve~0##wTqOh>AO~C7=yVcN(ouT_at!+j9*VG} zFfhoj+=I&~8P$t_9LbtcciwIJgWtLsO$zn=*o{!rogL!%vXWlLJsGwpVNFZ|=*^N42AE+WQ4i;ufJY%ZW*WZ`T-StB^_zrY7n;7pB#eLtY=WW7kA_outle z$hu`X4!Wpleqy4M-tl4^O0}Y?Vx=;HPkUM!Uxn8sY%Z$u>$ zwMlwpl*5-<|?BK zv4IVq1nb%EA@M9|rbw-P;Dc&E=y+P-kAP}yE)O;YT{)mB7};Ht&sLLYIEFz`!Mc7b zFZtD}sj&gDn%mlvJRX-0&=#8<$qRwB$mBW!3GaS;Wnq;CdB^+v_BI}d;SuM|%E!d2 z7QN-*@2zSk7Bgz4t3BM$ju72Q@lT*s+BcRnn?l1ZKJg z;wzIO*{Lf08bV(Zq`H=Oc#c40N${u-g$ZJ-DRzKha*!f5Ws>amGSM9rlVDpb<~@EH zcN_7doN6vWS*@9*xF#)q8^sof7ZBm)h2dz-pK{3pl7>u2x35a zJ;f011bqTzigYXGUXm|SLl$8&-lrsLwC~td+00fKo#d0wDJN_n5Yv0cFeJ4G&?zk* zFNn1ANhaBNsEBie-hqmo5>WZ<N7|>ca+Nw(#G;UIC*e$o3Zr;|I zP))(}gR^7$y-DtZAnBYHqED=21c@CBGU%qRI6csKWR;kZaqm8T{dIW#QpMrvvIus4 zVFTd-22^*pa;g@MRnk3v9Nzw*igrnO4fI5(r0Ss)ogs)egVa|;p>JAit!&4@;>|G> zCqSUp);@gN7YLeET9n(_9@%?cRA5v|(@^`BFRpg{JEGQqMQznzVI(0t4}Cv1t%-_> zDQ=gVA_xXt`zaA@mORc842Z&J9}p_5b^6TaT9go3yzt?zwECSH3$9u>t)BL&I1cIT zVH(|{>?EZMk^3yIxf6zjW*}@l$Eb1zcWjH_}A$xd7^qs5qA$;-Lac3a=;ghhT&)(xzgPy z_K`!?7o95v%zadt`i3T-Dye#Tg1$IgHLA+1$}@z}N|+uai*?D0(ymqM5ef-u1J5Q^ z;L@mSjf?X9CA@uwjN-xbT9%1*k04iCqY-?)vNMHZ#_B(`F4V6wP1T@Jd{I9%e~fd+ z5)P?-1NOn|CuDCYVS)7Lz6)8x8!nUEX~uy*5QmB5$;;qo{{{X*yUM$@gOZnSMd4D- z!P5;{rbm71w=KneVj=|hW+I+^th%Z^kJ_+V)aal;;w_gaC<0z|etAhABAwy^9_ThWq2qC}?64wIz40c*gL-(DpL-0ahhX&MMOr8oO7 z349I0xvopk2Ed0|BI>3X1j>=T=Ita%%tSn@^&0(m zX|}bfgNS4e2-VrUfq+e~}4KlVj;wRNElm(uSN-djXQG~*RBF;)U2H~r4;gglS_^tx- z&O9tUcPkGLo>T_x_0Jc~_Mr)Jhj~&|F1>Ab-&-kQk0;Idq`*yDq{OjjJ;#!l2X`Xn z9M60mDZ!q33L&}i22o3;1q<+YH2?JVXL7uLz*kCe{PZ0VK+xUl)e<TQ0do>1BmF2lGAX|ByQ?o%f^WJM4s`fBm!n;#_fH@F( zVE7|PEl*n=Msk3iylnepJVClq8dW>$l=W(_aPk=kttmafp2Ch#P(hZ}+hw}Os+|LS z5)T}4bf!YTce3RDCdG!==PO297fcuPnkg1liz?VtNBv4E8u`!|45-VQl`d7Fd-;?a zueQQvCERm(D&ysWKrn%e&u&q7S3|55c>pLj*#J8WUEndf^HPF4d)UR0ZERtVN=lx`DR+T5w3`zdXp_TIlEX z(1TMlUtni_$OV+NH3|D9l3PCx&xznRL>cIcvtvn+eiz<;e_8KPtlIlR@+lh#N{%hX zQRT=0)t6eK)=Vww4YU%K0$~*Y%+mC4ewcoz!@~A1C>qkXM`J!?D)HH1 z2Nfu8pIaLx7FGJ|4|e1LELBQm_30Tr5uOHsQQ;(D9QoiMRt`i5+{lo8*3^0XeTty1 zI>B4P3^TPXFEqG17D@;QsiRQ-Eml9zI+fPvy<2E9W>O;-$pL&G4QG&AxH`HV3P`d;nWAUHHqXL<*FV+hlggEib6r)XPgwP;x8;urZ|c1vzCq` z7@16qiiD}myDL{ecj}{H8|4YOdU;n9r~@BOTQOk%HQ@QzVRex>$*Adehd#z*%CJ{u z+WQHv+QH$hb_t6Tn0+5om_3xGG<46=RYtxJuODAtpvj?jLN_PE_H3L00|I5ZNcmo! zz^oTcWnJx1E#?x=`|@4;FQhN_ROAW5FBw9$**u}-{PQT)RAb9s(S2~|+NFECtpI66 z3%0;69xe@37MI1QADm>#&$`{_&_RD_t)|%$+Z)>N9P42*bP!a4`U=f{QaWjALQIYk z=t~x*9JEcU!&2kdaT?WrHa-SDCZw}EAJy`Slx0AY{g@m7Yn3hJcBpF*^}Is|XUU|N z(Liz7_PwKj)q1*XB~job12KEDJtH3-ZC3yhO!uS;cN_CS0evwXtP0dGgfSLSkyLmN2Kaz#{pfPXD<6?WLwGr{+Urz%s$f7xB9~ZW@yZ6~HD{BKCDE%M;nBlgh?Aooo{WD=pugID5cK>ys>YdEy%fcIqF5qOeZoyrq+r z^lwNsM!O5aPL|4D&yt<^87bPaeJF9hrsS;Vo5E4;Qeaf7BzOJm?|moyCtKxZaLtM$ z`Ex7Nw#dDvrE8R6!+kRiV@88V?@dRSW4TmUjpzTtT`A;UPkUY1F_)W#nA>60oya zPe3TQ&JE?QtM(IhI9b)rl5fGQ#;vb!x`VJoVbg&r%mjt--bBqBB^^-YcQ`f8zIgkH zC&))CDPPi+aOgspdV<}UbFw>qZMI{td)`fu0?RqcUQvNr1*;oi&((6^X68qFNK1$F1Y`rug{n%Sv3vUR2QQX2v4iRG^`&3m5_MTN373yX=H zLKoGp>CTV6)R36*p}Lvjp^lQ2T>_)Zb6^6b)T_>C=4_V!9y?T0imavu=^eSMc|BB~ zn_fW)O?KVK>O@`YCG+Cs0mFg%1;B;SMc}De&?kHZ|ioDxAhl1O# zSIh5y5?+6$QqYXidd(IT#vS%(>_$9czcIX7^U7LXk`(`#{RQo-D22(rldEaCLg(t5 z8L01m_{|SF+h&4#?Fs*qMEwY-5tgJwTHX@w0T<=BU*IT!Beanm#sZ#I-Nu>tklYV! z<(r!rD#IJ3Z-~c5JRYH+vPGu)kj$paKb{}EX7jY2(B!D$RNhtAk*77)1hoW=HNK1AymkaTxF_#iDW@6^KMA|CVLbq&R=B+^t8_Lo=&e zpb)dk6{7LVgarhIT92qnCx(B5SEP@$6lhcKNf`;ce8)xo&nH8i9?;gQp%h+c_+eFB zxIn?sbAx;YD4?TgFzXx`wiH%3u9X8_TbHFpyL8#Pn$`KO!+Mn?0#dyzKO-(*)|N2< zllDx{sd}ynqYdibOdV2zZ{nh0_OH6Fm!;7D#kN;Bc*c%WyXR6 z!}6ys2~niqY!gDV@GD8z?m>jTLKNU`N;k$5CbditCh}h8J~OQkJ4aL&p)WB8I|4 zi)$E@RNeummU{I-*aAz$RI& zg%H(MwCi7F1-QrCQrtA_p`YT@zPK-V3st&>N6s~>orSw{$I0yfOPk94Vt}_Sy3-cPpb*rqSU{V^q$}WeBT1^ysqo z$R@!aEB9gcp^U^D&-yC~-#kdzvPPFM4wtf%)p?iuduJM2Yabp%!wRSQo%scrX(r7J zui_Wt&*Z0{W%p?3(xv8?oc8~9I9cO%V0aNM=LYfB0tVSt_stL9KK%dx zzaf1|F;4abTIxo1YE_Q87)_rVg5^qWKXo65LGG|SKxz(RR;$4BVIn>k;RS@=nlPoO zNk_w391bFgOb*S6aR|5e^3)|`Ux-t<6*I6`e$t@EWuTot9Zvc8f~Iz}SE-X^e9236!Y)?lf-(?oCE0Hn(Ow zIL$CsPHI9{WlWW{7{On#l&X=CQoIy>WNCoHDNpN$!SU)+dtgHBN-gTvh?L1T^sJaF zxD2P~q@FkZbV!C%900BpP!yqPGJ5g&f^ZTM_l`v20)5c#kNlH`{NSaX9)e8CDtN;| zba_(5)S_J?<2bIrP>P zYF%8fNGig>L_^;w4V#p7s2zx!CVsoAcro?t>RMHqca#Fa^96n3i$?zCjeC3O-d%_Dw5{}?ZAXSw>$$SbQ*Ab_)#th>>k-@NPw^C zY&{sgSV{Ns>(|gi1T*U=?|%IH`?sGfS?d?7#QPck{LMe>-+W@HbPuJ#bTvvLUb;CK z9c|n|B8KjmZ0Ow&K@h{ivsMw&{~lgH*B;*bz(j9XwLcva`NA47AOc~D>yCh?tBhE9 zA6;pM0Ogh)6rno>3elerg|twb=L$EZb0XU=vpn#kMJX&R*z2TV#< z39vTbObxoggcfmVYoVXaQ}y93ETDjPU>0CqVXGQlt1Y!A)PKwg!-Lk16TzZ#gwLG4 z)Ga4TAMCoJ_>5*_$7>H1<0FHJ_PANApOh$4{I1vlP+NQROrPAiW&N{zr@^3OT(#F8{iD3JM3Z@M7f2+;R8}_Jm7ob{PAwgGne*2insT8AqW%| z<7tM|PGwFE77UJ^7Z}(Uxj}Qfg4j}AN(v9F#ygV2oxcIl96qhog${wC$V8fo{*`?M z1&W^85?{c|=0C_^C%I>btm>T9anD*J?@RXh8W^qK{oCtT;q6P+a+h@DP)>nloU+>` zoBinp#U7lrYV0v>fB^2B-UL;s{D2CZtKHYOse}TTDyATkpkT$)?-G`Hh z@Z6u6mH5<7>vTOq*s8H+FB9kxF+GsoqtFy3CK-gSk(V*Zyh^>T4xe12>=7WWy#U70 zk_QEjAPzm`>FLn`4O_tAWV4S)1)wmDPPsDRko(X@V@Y-oafTFe65j{2tT7qf5>c%< zI%1_T@F)+pr6{07O6E2aPtdaP&K|aV1k@&YULv*h!nTe6qLnm z5l~hGdTU&~=yXVc9?1WIOI$A7PW4}!^}YTk@DKJV(G+oY(z%uzuG>!3)Orf%rB|v5 zOkw z|H@K(&NF~F0W_Ld=Q6(nx$HnjFh%m@fiv}L4**Om2 zt1jz7_ zx8`rPn{p%bzKz*p23EV26H%d11>a<4Pzdf$Qmf%?PJbacxHLflNM7KduC^33SB>h~ z(HE;hlWPe^nBOfFqg=F4EtRU}`NIZKyiV@irW)BE2BqE+v2px2KQ!><&n*{F&VST( zS9efZv&aFrc|ILE5pMA=nV0w3F&ER(jO~26JfKIKa80W|!Uaj9U1lrDf_|~(1T1N0 zf;!B+mYUfXNOzSy+{DcfNlk5Hgl-+|24q3(H#?(bvDW~d+Aw46;7(QYjBE?gV9%PD zSUsvWzp=N6Hr+BQeBmq%uY*R(2)h>_rJ*zBBSt89`JW*>;a%Wa=P@KSKRL^~l_0=G zUg{sonpcWBOZ`_>AY}d^y!|;nq1WGE9uMw(z?~$~A6hDR>~+Y#wy-OD7yunGKG`)8 zH0g=vujSM$-5SG7oO{fACMxCz^*l-IO&pXE<2q$hm*S>Qgrn5Mt=5Uqr`OY`Eke(dUgfut;Gcuu1S{};mdatox+Y8lL7;?u}SCP6+vh|`|MQQ z=gL;sh_;#p<=T}ix0GAWOqwN_Zxp^!%~OYboQT&FT}~FZkifd2`^7b0)L?XG;>sX5 zXQZIBY|sWh&a^q2KIuuY8Yxw~esR_1Yc}5*7#ltS0MDRzA%ZP{)#EHY4who$cz{OK04zq3&!=xcmjplkS*qaI06{>$zkdt* zwIvuWa&;d;G%_pib~S@`yh)P=Qcsqh)3 z4tkCaJDBEbscBez_#TfrtlYWYI(4SX%}|RX>RG)?Y1!JtS{B3=kN)WT>=y-0$tzfI zuHH|p568W;^WI59{3GaJ_tWkwX;9@{dF~AAdTNbW*eH#TX@-Lxy3~6=FOG#x(i>7} z+!)0$N+Y0IRk&>Af1spIXT6{GD@hhuul)uXz$PLnJ*+_3q%w6N5>{R7~ z@1gvzbH~GzcE2@W*y-@7WPZ?IcQwYlp(qPa^1x5HIoYX_RkX^p1stfzmJ#=}zdE2e zgU)gXD~Ev?CpAxjchyv1-u)ctGo8wGjsw~XjLNE_2 z4>`+uktC}7-X3J zECD5Q#5e*|$s}9h(5@9WbPdT48`>x}l>h7HgzQF32V$oAe!!`? zlT#&$*{WRWzNKbGy4izE7ezLh%3Y-jWut6%0q}EyHZ1C6lU-3b zF?%9|5qbv#8+&D4xTZJ49o4}ZhDBSV*zN@E=nY-vmUK@!d0t=$!A{Z*I25SD0(4av zdrA(gm*~ho$hI&(OWw`Dj}=T0%-8AltBXE=32IlM{bsFtnFL52h)H6&+$@7q)M|qj zSPYZA2kzC4Ki+w3p?fL9ojWB<0YC6oKC%X*--7*`RC-mVB3mQRiU87yC`O)S?shP| z;7o2&`Y`=Dc1Tls)bny3i?oPA=hwKf77)pDK)-t3vSc9^WG&l1tsgn-rYj+t5O z+(#$}ne13sX;rDl(@SI+ICIpbaFdkJvszop7qM%Psy+S?NE-%m(nZYW$aZRg~ z;sH47ngPlZ5sa(U?rJc?0|#Oos)`PY0qd+TMR$__l{)(}o~#*CHxA7>YoGLcXfBOr zUFqg3gup^SFmXL{;es!>6}N=YcLZ4BnKG2a-JVgA=iu4eaHeRrc5FGrzjg%2TwO>P zMiJJzE#YPbh01XUlz2cYZ*wg8lvwbvG7#id>llCs;%f##jBdn>P16m?9kiH6+2_s( z1v0HwU94{L2D_}7PHs38HZAV|Wb0g_V@yC%?s}w(9MTqUNEY|1XM6&P-HxNXYPjZk zUd0~cIBlSoDj!;#5kMx>jYeLUW$jISFMLDmR$F|%5)H0BeMws@H=Qh1RVIC&#L)Z| zg;WyR59+RapQd3w&-S7*@DGOmgbILNlie;Ks+Z1V+2M@KgaV2)oFvs*b`Y_W2rfDM zKFCRdP9sN%NI~2qfIc;{JxbiAN%?74oGxKH%M^|gWY!guL$YHIDabDHEeLe*mAAWj zMI3=w>EZb70v5|MJ#vE<23>OU>=-H-U-O|O1jlY~puJ9;Vs$wp9g$)$mbYzmvzXC9 zz%YAF5Jdm!6%qHnNYffLw%=6%?$+*p{p}?8<+|thx}NanV9wi?co6t-_puPvG~~!b zP#PlO{p6?I+I~{M3T2@bq^Y9bX$uw2TQaEiJsE1mVPkX)cpi4NejJ(`MQ{pI4rn1jee6WKx2qVo5CRvRz{Roru z3h@)xZa}Ux7OVx~9|NhXOQl0wsou$j2JmQC0{YUt!s|y#SHu*iV9JL< zTKWi>7Z#TTGR<~12WWn#ftoIxmPAdm-cf;x0>i6}r8}5DBr$i{(-m?k^n6#29Z{>k_?eqy~;DQj_}e#;k>qKR?6TylUl`!q*#_B3sIsv`Ua}8>Cf0saJmD|N3Kl; zPgVcS&Mz=dprQuyA1B~?N}x%?-0@K?_{kFC{1_#%eiX#4EY>8wrh}^SS4eysoB`>M z0uvz#DC3VE?24DKc~Gm-3bE-BQncEB9WvB##pLaJr8qRum$%4F1vg@40G2C&tP!nP ziD`~WVBNQ9XgcG(ML()pBEBZKWQN27&8ySlk7>U%kao7TS z%<+Dyi+iW0OUU`;Tu$K`A-za&ym)Z|>d)2qw!1;EVgjLxQ(UnGqzQpnECW~$IxJ`Fo*_xi8 z=+s#9l3gja)`6VW!j+jR1m4zp%4lDgDchMUm%Wz0n~y0toGB&8QJSQF_gCS22|)Jl zGe{$Tje1}xFR+V*f-2MNM+7jXR%J9#dCE8<%-BPKxPnSz?_&>~Z|;XG3dW6jk^GTu zt9}q1bV*c}BVb;*L6Q{_l{J9`Ovcl84i?+4=c6U2J@ha-)Q>-6!ymcbV9^XX925w0 z^gYOK2KFC95@gt{Pu%f?Do^#GF4*#X!U!k*mf`g6EZsc!nv|+7Tr3pf01f4PYiLvG6jH0DVRG$bMrBwDkt< z!wPnJ!tC5KjVj&P@!cmFwr|T>8F42icq}XQ8t)T5T|g{2fw%6;ue8(U^{aFuoF!FS zWb`kxG}4obscw@8`;^BWjXd*3J_X?9QXShFdNd;wnPO0Ehb&4MVshB1;h9@HBY@-hy1&kB7I~8u15!6TBKA0kk85m zZ6~hfaYr?@@J%H@SvsW+N+D1w*!`JP6A+4ungGr}g#W0+rG);%9&thw?@Qv!Pl?QG zYP%oXO@tbT(iYc(E?|EMrp5b$NtNYkvfGG32Zkj*SM(jzL8B^#sW)Lx>%ax`kzZ*m zg}%OmynSp@Do>1HwQ_n6k%FaY&Ij$Eq&Gt|eL7i)Sy1d@c!whec;+a-Z#xkrpr+1% zbQFUtAlpr?q;y}J)YFsv%bON3aol)?tpOyjdGO!#chD+qJ)Pf`sLG=+|boo(_Gd!BpYD75rrpRwlGOf%R) zV_4i~MxUO6g0K&OrKt1qUF=(T1?i%=bt|EC&*5&}#tt(UBm}E#EUvrz!rY719@iDa z>%q|zrVsun`}#);hX297{@D*_+n^gn0g&3kb<8~%*2+>dOrfpce3iRE!Anq`sam6) zXN)X4U)YMHSJNeXu@AzufkV+L+OJ3FQc`%dm${1u68&L_F)0{g*6h@Gd6lF)Gc+8E zw#oU0L2x>u^I+UbM?uJs=;$YfQs5@mmKabcU|gjF1n_E*jnf)x7plVQk(pkz!(4=c zVAI9C6c__fd(S3jc*nR^T4Vz64NIR?LMym=-B`bTUa&VgOSSVMU-*g=d zCYNlFYB$gt@037k&khhO0|;jdfEu`KhkYoeH4h3a4%=`(Ku3@u*_||3J09cN&w7fY9b;ck} z0=D%Lz@ooN!L+FXEjs(F(|I)dLlC2J8U1d3PpYs;3JVzYRn`!K+8Kr^CV`JdD96zI z%vqcRo~<+-lD5Tz2fyS^$QG3m8Qy+(5_Nq5c(FPD%Mq0Y5eQw<4}oEnYG*eI#Pws@ zZs`IaPNex@?@kofjmFKZ(&X*(@!*x%h&>oFHzBxr2}fEi|M>myhks0$Axk~$e-{c` zY?M4dUXq$s_G+pM9r`WDsd8LYd=Wy4^?@>SP-&)(=UAyW@3v zKqicy>-suJR$^O{jtqm=#M4*&3dd+FW#Iz6#2l4wDRg0?o2%2RblUd>nvb-Z>O zhBG<}0TW&L8uFyi;kc-E{o->T%g*mfpTZWPHWn=q1;+5^)xK0xU-L1irLUu53k_t2BthhK?fmxg^RGz_kN|=c8#TLmpRZt!w zEL_qogm4&wTPF^@$QtoHy&MifYWP4a(sPUmcfCAb1n!MeO+7VKZc1ne#6zKljGYQ& zO)C+~93=^fY9B~Jx8fcqq?BCRa$|ePFW((wgh^tfMsZ755?zi&V}G_g4L68ocMpo(xv4tlBaCEH#f0r)lP#^8|XGKJlvv=~7OC5E1EMfP7E$gF*Vv*xI z9-&+F>94xAJpidLS(OsUPI7@*Be z?xG|W4eLMs(mr!WWe4rR(JW+s8SfVgncW5B2k41?Y=B zD+{+0+^=@QAe^?R+1O9Q+aE8`NZ^bSWCkLnVYS}N6K4w?u7Gk-jbmQQES)i2VF_`K z?-6wrFW|#>NPa}QXwZyYb9LR3cioZ4I68RLzGo{32@JQqX^v?Oy0Q>*QGSZ`wp(|Q z@b(xL^jcUBirdblRc*fif+ohAY~dc^13_x(B+^& zW+ZlPVk+F91U2FnIL^9DGW(QNnDy;8!)kt_j8ji2@+&$wyl`6>d3Nd>&|AC%Ii-rheQ$#P>4Zi>2b9z zz+{cXhvZ>+xpz;+u|^13o@L39-*4^8p+7+UvtqRY_0>~)1=SuK>9XU_wYm3a#Gpze zg31Ln9SROLCO3hEPhWoqHPp}EK70N6-Ot~C^!A|wZV=bB#$Wc?nQ{+o9qmFYgxA91 znP0?-yasTW3xiSsC2{~JH%=J<{+Q>cBtVW5r(M@}n&XPu@F?KA?p^y&EgYyzVMWuO z8$8Bw`>ZoB`H5q>KMZf5UrhDtEMSiFL+X`o&6+p3$injvb-J0+ptq?yI$>ajKkW=R z@Lj7=9BnGH(RUYsXAhnqe}4N#NMCqlsF(`xD#VK20~C4EymTC^!D67FtWk9*6n-7p z^?*DIy>>=6YsTrM7>mjKaoNW3c=iBjc=++`ISb(jLodZD6DaI?a_L{tEkmUg`w7qWO|najWAGGwhK;o z3F@Sej(%()V@*q?mgB(gGi0OP{GsfsBUG|dRjpv%E2&yI4+eo!P6PJ(fCtMdgmvGG zGBqxok*NmMy!qT`t}xV6&<`pgd*%wXYC^_9QA7B{N+)%7qN0ZUOqHL@FW){5@4KMp zul6RlSUlWwbU;2TA=N_vRJGX|M`~Wb_tjLoX*+zR25^h*XjxT$*C0UJ+epcI##FGu zP)*s`xVT<{{?5T>Db#~E9U3g6fp{)_Db`a35y3I}E>+Y802~aKX-NLtusUL`bi=wz z9-B!?$zC{M!k2UyPYwg8dQ@s_Aoe)!9=j{LhW2#jAhcZkWePq^cN-T5h7bySY5})PK;W*SLGrP%g z=CbKQzXg{EH~M&JjrHNK}d#{jjH)tby6}%h7Oe7a`n8(*r4)IbbuS2 z6#bq(u_T&o>BJwDmB(85gvXapk$@xVJLm-2kPm7v_+Y*^)X&QvvQs8|GU101O=VfGdU zz`?pMN>Xz*dALz`5^d#8l$TaIHxPvSC%a#77G0(@oV9Mrr+Lx1N@?A{}75PSn|@q?97HF2q- zhDU2hwt!?=Ha=9h5nG9ftKPM#tTKScr&OVqg-G7HCY8dqWad=V-3MT2n5-_;5}Ygr zj9q%8|1Bgi*aPF9+F#p^M!-37kkgFAMF~F4u`rC5^VVoF=)R@N+Mi{Y&C{A;ONkNM5oM1W znR~q9q+F_ACU?Vp!grM#>&}k;q7yueA}KW>^?my zHx0-o;4o}&)ZGH8g3p1VuOQR6{_LTlc|ml>Gbz>s>R)4-qV}-^?%{N} zwLg?D3L&bqsgVPtOC{)}5A?6EzkB^v;%5E9c0ErbfK>kI0-V-TR~l34j9#4q$^MKsL<^#s9i{ZQpBq z6l87U15Ta8b24La-@b=6JYc}fgAiDN?NUQ2ExIZJ`YH}ML85=l?b=?sg=x`5sNPzn zT@Kl}i3MuUM6N)&sgfRsr_KwRg>1ZOPHxyPXP3R|lzYZTQZvEPigB}n!W7hi6)pZk z1C?h&=y;r-rUnq3fj`>Li%El*7982KEq+YZk?52u}7l0(aHO3AWFgNOUD5btE zNVhlyp*9QEV;H`$74W29ban@YC6@Kgy&Mbuz%4pp92PP3JllABj)3OKg7O~VppGQ4 zSiV99(@#y=l3jK=1Of*#GeE7UFDwcG^ko5Clulo%lhaKBn;GYVx~P>D&^F4gCfPU^ zQX{`u_W~tpaakod*r7r+BsX=8`>?2HJ9;qKUbjLDC?;ey74xKd7Ue#K`&1dpoV8EMFYT^J}*A0eff($@#lluNGkrywP4irttFam zM6(i|tGWST<%C`ii&|TJk<_Yt$N?D_souG8VcP!Swa%E~ySQrYYNZ3L2K|FmN@0hL z1S*u(e6VU2WwXYYu-`801VBN6vIgM?dQ94Z1vGWzf-%La5DY^+efak0@cL_8#5ndg zXBoiw+csnJqR&+30Z3HYkK1tQXdZ#UkVWWnrT(Dn{Cq$B@Vlqe<@GE6N>85@m_f@t zfe@48>ja(co+n*FTFL+}PCQGZ|L5?ZsS}l|-7;_LUk5E{r zR+qWoA+NKsy;g;nS}H0|>Uwl^2p(;;9_PM*_>@2Q0uV`f$;Me2}!>W;hmf8AA8Yn*w0fYbJJDdoum0nU0s{ee0Mi9ioGB7>$5#a_+&EJ2Xa#$=)j#{AVXsX2O7 z!G2XqMC0P^v@e3RYi9xuT1(1lhT41~Q(ZH7iHm&ipg#g6L~TQ0S?mIlrZzkReA+ay z(IcD7;_O0wQg9By7UkIsoP{rIxIGNDB0|YnKB;pS(~;r71^5h3B-dMYMCqnf2}1C3 zUR?&1Hu4LYF)kfkX$8HP$-*{K8GQ3k@r{RL+>^6|{k$w}ADc&#jT_-AT8BwzsPbZGuEo7-( zJXG0nGo1%#NiO~QEg&NRe(EUzsrFfNUXmeHqIRLFVW7{5{S3gE@LDKJ3AJ5Hzn7MU z{GCb5uPv%sd$q7iG4d}Ov`*~@M48Z@;6bkkK#^1TNTr(_IdV_%P!EMQHjuR~Di#G_ zTn;nj=!Wz`g?MV>2tN$p`ObGNN>E!^mHYC5w|6DmRFz0LW?FL8r;+*yzrgLq?m>+b znPb$?-AO5~Myqg za)2t!GFjCFFb2BTBbDeH=VeRawP_u(1YObLkKN3C#Dn>Z9Lv;K1nd4x3Iz{+EF%)U4)Tk=tgxRM~CoBb$ICQoBmYhpI2SeQzZy_$d zP1L#sFlr%rkfLn+qT&;E866e{{O-=l8Z>f^LRU9BaXaWBSG|+^9%|J(mrL7nKt%t@ zS+4Azguk(K7L7p3AaW~YfqAAy9Gnyh%FDw8d1=<5)G`e71-7d@r(YKEK&S}zm2kzk zB}ewdoj@U<;e4WI+O)E-)TrFfMzv87>i`=Vh>_ZkySWi-Co6Hm*qkZRfbS5iSIiB{Y(wLybIJ;$=xW~~zW zo;M)uvcoy52cy&}mr)k4g%(oNitWV3fUriTPGmOyZ&Ac#4MvX#3J0(s)u+BkZ=LW! zD6ro1wW+eYN-RhYTy~&iF<643v}WYyW>GN8NfD{-6tXTjX3UMQiz7{mTP7$_@^*89 z$~|R)B9NGtrfroI{iU?&s+}im+1CKXuyx-mzIE;&KhCsfk3!*nz54 zsoU6kgAZJ%Bc6@WC7m^c zQL`5hq%t%p&qj3MCZvD5DVCv^-P&uH+5JV}Zb!Nf4#f>9loZcUjUhFc6Ddk8I^sx+ z2^GnW+r%{SnmID^(srqMa_c|3{V6FH%vF?J6HQA=Gg%y;5DMo)-y%)Xmbyeur3UkI zq)vmqh~hCBmkkR2oWzBfU6N1`xp*ifeLa}PxYUSdXKt2q@9toE*jqgoU*Xo8{)8ma zPxxzE8JJcLvx1~Zr|0Eb_UB=5&!9L{72=4Hrg7Dm3lY340qBjNxqN;+T#!+`(|#Z6=Ks1A#7nV z@*Wkod7$oK`MX z7t3-vQ?KPh6AX5#s8(Mce`=31L-~ z9??c=L!xAJb{V~XkOKIa(7FaIG%0Y-mlyRwL;FY-vX*@;$yCX5K%FgMStXj>5z+*~ z1)Oq2R~zsh(yha+N_GAKYn|$!8NRaVn7LYzqJ6oU#E(9nN-lFh3H%{xJ%5y*e>nff z&O-DGraqT`bta|(>3OB8kUldK#BmDSR2QaBYUssizrhb|fs(IXJz4?Q4pV`o1%W-x zXel?7;xJb@4MDg$sR~-lLwzr2(A01SPK(>x?Xp8A^+AHjulF5hs%OyGc?eBm$6Bem zI)ISYmxCB@EuXE;?25XR*)>JGn6*OxK&|0~{1#^ojt5IM00Gk@!44RbKz}F6Nej>| zthqu_0Q6=;;f$V=O+9l`@7^!_^E>^0ITyIUO#y^RdsO*6=<5M`g2;o>@CG142x9(9(tLRZ8< ze~JCDNe=Dkvux8Bv;Ekb-LzA}iw@&u*fgTpz4zomcQ4tF2HkU70;_88uVra(dB!kk z+cNz#71+@H2ze7Gp$N;+$(CTPvWF?`KnR1b^+k~+T|yd-r0bUNRBF3adbVc41TU%3 z3DimFD-IYb!|=cb1d~BDT&wIqXCOcQ9R{3Mg&5&KC$k43HVEa>kx>AZS}>5RNSp7_ zd|h_KTOt#1=zSX_t|1+vVAT7jza3JqF9bFdwF|^@$t-`U>|la1d{+YH4EVnte>mYK z!AD6xPL4~9{o(VHLnTojiGyPYk@nQ zzR%AkND17h&>5ErczjRtUtYq?OL`fP=>^wcnldlS?$Fcl6f*$$9(Sx(ue&+gE1MUv zW7p>14M4GPq{mR+#hu2Tjf5Z7Vk}Feg0xh?L zhhT-X*UqIGYJ(BP7SCdkGE?6G!IJPQQg1ERjY$|uo!?%FO4h~@{+oUe7#gn;=bQdF zoPT3S7`&uCK8XP&L@H2E2;>R@`Dri_VwvSule9-ThRjTZg$nLGYMP zW&w7U>9Q$H3_D}bz&Yp(GnQspeYm26SctffDq`x6jibrBe!#nMAy+taNn73$vt- zTaTVJ#3)iIkhcjbo!bRYZYCW^SYUUPV1GpQ<%tVB zUK7g2ixxAML#cNcP8g`Y-#g2B)75EvZ2aaE>h7F9e*NiR|0%rv7Wb@jq6;-{m%X5> z1t`guw;wRoV+$R|WvFx}mrJ^F$|mtZCHxiD`HU$^oV#bo%^-E13U-4rcI{NE(=x_H z$ZK5=1M^+=c|>QPH-m{MQTfwQoaV^TNGx{AuAq!^nySicmXNS#{v+%H_F5j2`w*kV zO=DwOz@=RCmXdSZXiwxS%L1qpI@OjM0SB=b;)wwj@Gt%(ALi?)~aM-WETug9n}Jwenn4iI;mf#^0gwT$8u6!c0g>fJu8sm*sEGl_~sL!eOSsN%i%H^UO zJ@jjtke1UjyFAiP_lV?Q+z|2s^!@;K*{b4Q-DGog@*t(|yL>17r~d~W{}>L`qMZ}c z6m^Q{H&T}xjvwIjY!#{@+UA~uxQ z;86JXd+=jEef!Jn?=G4KA_d8QzXqjh0Q{^7g>8|__49na2ct!ONZB{Py@ z#=ja$%kIc?kLvSt;2j&tctc}4y_A~#&`xQlCn9`$<``$%^U_pjy#VE6eR^mjvRB?w zP3Z;!B3ah{+hsYvNrt|`N>G9nuC`%};S5b%8BMJc-JFfcsosp8;)~K6fOcE@>u9&o zjcPjE_M+9(jfsH?=z~=sat_1W0Q!@*!xn1!&m}A38~AK?QY?8-H+nNef`F{MgB#;H ziw0#1M(}L&$uSwTJR8&=fnjUmRfCQOLFD(iXThgc^>`H$)9ed?3=nun1)9lxn@&v@ zh>c;s3-Jv#CZ)9w9!s}rnw$SoY7S*d*QAtDb0!7Uh8=pNLQ3apaAfo4QCIRW|2Mt1 zM;u)gxd$&6zCG#PU}S=c1h;XY5=@SWp_s5b2#PGEj{%pE0}5JZwB_hc`EC&TUF?Gjtzo_uML(4i6W#mXIckLoFd6-G8 zkqs^9Jr(j(MNOieOSz*CA0ufY#iXgc-HP(9Hri(=83A-GZDxT0LJVx8NH3Ajc#`qj zJPQ&m?ANQ`)uvjzEqoxBu2-=6WG_>89SU{%GN~(T60>T5O;ChRKXh*9h1|M#ku(Tw zK9+2!e1a?66DkX8UzPYWpth46~&4gsP?c}xPe90T@t9Whu2e30{j3>ssU3>+O2Of?aEb#Dgn!&|?&u16DAH@hF3r(aj z^VHGoBWfRH)SX5O&0z4GoetemVRgLA$17rb7 zF=AbH>sTMUAyvpPJ+vmc6V5PN+B#s?CF^di3G0KNa(%aF>d2bJ$)%nocB#Ywmv!6%w(RZ-?*xI}0NanmYX9sPVx>sQ8qUtd-(z zK>ILVTzmp^-O&KIxCNRFGe8V1aVQhyT07-THpe3Q#5O%f?VoJ5>n{E{FPAS#V3r>) zN&@sr;@3ZV{nJGuZfVkB$hfuFLy1xXH4scVG%bx;_Og?T=9#Y?vvY5IKDrkqtR?Wu z#Lmk>9$o5fy)nyDU_sSgw2FLqU3HcE?WC)*s8CM@i9Zu7#L4B53Is9M_8>$WJVj+L znZry<#W8q+?6-rg&E&O`PV`+>m}xJmtjUZg&Sb`N0l1-nm_)<8^AA+T4!C(e>)@LnadtjuI*;MZJycq26j ztf9{JIkk3n`*}?HB}KI0tLFmwJR5rIa_2-z(w`54@hcU)h8wz- zd|W(LwT53zk_t0~h2*{HO&_J}c`E>fX3nPh;_o$}B$9HcBF|1TK+tU%Lw$1eUdKxt z2J0~nl6yFCU(U`OlS+sPn(Li5`EiCN+qEk&vi7Mf88>h`?b+Et7mb~wICR;^?>hB2 zwie5?gSW)$0}b`dFvBFNcZJnkTmW2-H|Rv+_?G98?(Xh$4!}Lw?pz@g2+6ul_U;Dt zY}-T5t8R8R4RR&=LfaJZEC;S5`KDgIc2G8+Y_!4eNYX1P_vw5q33{gst$_@F0^%~% z3CgF`EDM9Rq0-*SOT&Lxqc6Z{glSaGj!3D-*N!~qShHV{BRq=H)jQVnp^7zn?1xY)p z!Hz04hLJn$U$<~QVddPj23`;KrGYiKeC$vJ3Z~Rcck{YFUZ*9?{v5<}eG{~T``$SE z8TXZ7V(JP0(c)y3l4J2zpehcwv|;PHU7l20v?cIy1iEIa2`O-R3J#kS87pnBsSS{S zP)8Vf+0j7}p0r1omWT8OIC6FzowS%i)6xN}EQR+Liu6vc>KMMxAuo+nRRBbFS?)<(Z9~vy#+i&2ihU;ISnd zn>>tkd{k4DJCZMT$G2YPIvs-lU@-$;><4aOl{(ta_Y`Ohv`Cq85GKR~r8gE-B3mf@scJK}>1=bp9 zD&Ik>@3XOTTF8)uOExxllwoG+hiym^R9J0WsydyhZGHl!>|EP>j;jFF8;+>MR6)Rt zkcnPR;5zbKB{@KS*cB4LV1WXpqqS8!urzAo=mB?{0<1$MxLLg!N`pxZ64N=EY>!5# zN``4bW=z_LtcIj4oPJwQI*U{bzt+YVQ*dgeLcZ)bgIk#Yjy65$f5D@uXON9(W?C~~ zwe4AH#seiiZd(T+Ln%fna4~q-I>}edo{>1eb1c>?iqRv?t$qYKYNaw}cSF17nhVPp zR4#r~^pJhaq^k^!1?S|0UA|}IT@pU+!2xOY!Ct||yWmM7S^75c#Zyjxntu7-GRZAcz}PvN?5W=xN+h{ zo4cBZLX!)C12R0YOM@PSg`{mg&VWQX`ohpx!l;Rd-p^)Rc(zu;Mhq=UCPzL1&DHd% zBq8&6DtX3ed6H_##)%UM(9;$s$%(SdX#=oQ5+6^9iHF*O?)LwuX|*%&NA`IY)qk?; z1oRfeJ7^X{LFwF)m+U&d_&cv?=Cc~nb4(wgFhg0=YaN_pgdxl0RNY`3SC_d8GkOrC zPAmYOuV3;c#$Cr@1ovOj000vVBeGaRZhPfucD0!q+#8qf1pDbT8M?z*UJkEohang; zbo-);qitEDt|B%gc0zj02Dk$%BM>r)b{y}Wqtc3~e&^E_f>(y#{fJ%2KO=PB4aMAL zJi}8m^zs*(yIK+`Q#4mBrX0YN!!>mPEA`f0R>hNTyE_!Dxz?8Yz2%9C5v4a&!UuXI z9q9_j5sWs`-mt!eyzUu{#`F*VCj213`k%f2(Req1{gHiDr;^P6mLOXq@8swhU`lym zIp9>>1>XtZ|Ni$=gjAbqD3E}U_TY3Dm2V>j(=khmyPO)?F-FO?+sEOX`6aoWa z&||3(f%1kFJJo=%YN|#JrzH&gvNy4sR?oLmZDW0?c+(AkGIy9#IxIZmpvqAoD=Nr`ju*_*itZp~(Xb16WSh07w6t zfXezg`c2nmc5p%kXbmsSv>f$(Kr7V-axhw2kfn@OQd6_b-UINpGcu1>{RrgYvuuRW zzm>bnLMH$fic9E26n3y^4>{eA_9P4uf)UB2Byf~R^6?|TwE)ZA?KZv}zV)qd9sKn1ww3<{wgZj0x%R=gg8(KxQ+H5i{}C= zGI4Jli!;=jZz_i~>CTEJrRA0^$$e$>BGvV@FUC44BzNk`xdoTi07Vd;TV<1%1=?ZV zD#x*dBL=|UPRG%gA%#~garU9nS}%5Ww~v(B2``b#2`VpV?Nl_mp`(EvC+AbQ<;E^( zZ))$u9v2km?BynuWH)!00nkR&z+Cf(w-hCF%Hysh-|4mh7OQaRzEVqTjuVyC>i-^~ z$ZnDqlVlVDL=82zg{61H^J) z6ZB`9K_D();k=lZZ!i#Q-MdgVtVw5Jdm%__ka2JhTrBC3SZI~C)Qv-)aH_1>daJiG zqa_#&H26)|B!teo1nZDUY`CV{?DD^fs0HCJgd^u*M}o@TER=p*>6ykPAa)LFB<$ z7{$DAS}uPZzMu3q(P3>VJFpWi_7qF#saeOj?XXiy0FcqB<#__~w$aQm5bta(tVZ)= zGMmU;yaxRn-_U?HRXgWRp6>lpcJ|xHXl=qxSl-)YNa#{CUR7zgutL;~Iir3nXKefN$^b!0aYNX2X2E2#`wcSljXVnGNwsvgytd3Axv{l#_ zMte6<((Ppc*JOcrKCobq=!xp2;>6d^X}C{#%wLl)_G?LuRXuJ2 z=mf4hg!(D{JesAm-TMjY%Z&ar>t28$h=k6TW}{XE-lYF+c>QVKIuJ!_z;|MAMS>}i zb2y9N(b~S?WhPrYY)0??>Dx;Nu9`bxogA19Fz47Mx1hGmezFX#$aO%V*i=UEiK;`g zS8}Dcwo(SmQ|x#eUo&g^5yO+DK!9IKNrj~jZ6Er)+;O5B#a?1MXq`=EQ)Cv2n^$_tr^{H3&v)6wK_CunYfF*Y2KudC* zeokJl6^Ad9u=PlLr6iajKnGNb9nPw*s7DD{qkz$srScT5-=V(TH?lgR84Q&(E?1Db z%Xda_gX>kcIl<{CL|M1Yn3VHOoKXYC0W*rbDl*!!J*n00ENy(W%_srLX*?``2u~(p zN10`~h#166G&&84Yx10IcG*!Dpp*dUmV1zaPMuqzlo-Bd(zO7jMmD_p&{LL8Iv}1V zDxjyl6b#2sX<$qCU;!L|8O|dM2)8Cr_yb-@)J0gKyw+oX{n`gtH`U9LvuA<-1#}p0 z9&&hj>K&z?aN0gmadPLn>>5hVU=&HoV@mQ(UIe`UG@QCP`?xq#UJayA;{sTZ*h#vp z`~$W_6YFeDjVIl#R-sDDcLO??B_?3a4AJEaYK5gvYsnrV3DgKxP-XGWaF1n4n2ePx z4>+L`*=KDa+jjHqM)_o9PWKcrC1EIJjUZ~rY-kLML*l>suJ8 z5CC&9P_Ua24@*;ES6nG3$+rIj=F`2?RdDT`Z<|^Q9a{ae$kU>|%K2*Bwk!iNU>Ftv zXAZw7BhDk)L62o?7a!RyNz=u5Tro*p>BdZ?LB|%o#0~?7Ma31ZaR(<5i5WL*!88^) z+vU_HZjyUToE0p-5;={!`EVV`M27zQN3Z`(fbSkofMAKQc6YJc79Ep8)x?kN;xv@*WY;1|y~4`Uxi!g79N5{Y zx*mcnF*gQbikVWS^w;Yn6H2bYnx`u|=?sDU!6Xhc5{A*e*V!IM!Z)hDgS-LxO}lf9 zp(Y7%X)`+=cO+_17IO{@COafB{V79lX45Jz0T5@4Nw5XrloNvPet<#X>;DCi>VLj| zjz^~LZq99>WQ(z)z$%dQsy1OwUa&UH# z3TWD{lXp_tNqN!R1bK*WXRh6D6cWskLan_^TSMeWGB62{*7Dhv(o6(a3d*@m762`4v(qZ}FjXZd0LRfk4Gp%lzmN_+s>;fS*wGvMuX(BKYn;)@o&7_dbG(b+!$(s+N zLH;&;$6nzco;<(l;jG48FW=&Zqf$%PXLWFNdMrRKNM{fPoNEEjpsm#ZF8PoA=g+|Q z&03|v-l9YpFshX&KP4K%9+@R4t=>g`w6kM>W!_D+?&>fnblY}j>uvaeftkh-(JiA5 zZNTDbJ9{v~y-P}cLdwD8miM=2qYA=GKToerse~56H~~dA@1{WL&&kUh{h*N3GHZJw zTW{HAokQCpFV3bO-B6=P-K|R`_Z))&cUDI+05l(KTrB7VltJE`s-1be4AXj$YkIjT*HF^W;Dx|hq*p%Wl!)r*{x+OkgWi5c zTYC8c`i6mV5AMLcopgLaMbVRB<&#s&_K6&g^1$*epcn2f2-@JO)<6e$FIziW<|_Ag zx=fB#ER$3wPsI(o8$O!_*lVjL_rSTpEA8A~Kq;P%D@6{Cex>#h=md))wyVH(V0k4Y zBU4?|w#`nYe^)H*WWR7&3Olf@@dEV(!+*p1VN;N`g?G#jFSR^F2@)^4BLi4zZqT&A z^$t!>QJvzEyW=HGh{~2jT}(X+h_0lI{2<&_mYqcYI`i((^}S1#3beEo0+Io`Cpug= zZNyVReQM)Z%C6fN9Q-|Ucd!d?5Vx^Mt*3y+!h$j4HsM$&Up4Cy$n&Vpg_szeWN)Fl z=i~DA{{U;?e_Yhi5*XU6n%tE3^siyO!d`dwf66vcJY+i%VuSN`>MPBkN({KO$ZD2H zVUD4KD_b;PIpC$$@=mH!4m#5g!o8wOClqFsYGbfhvtj_X>^Jl006Wq;l#+o(?e|-^ z91MBMzWW`vFQgAZ5nx;11+p*by7KjhZ-06HNtU(xSL+IW{r`p6UtJD4nyj#boi}yT zytSxh)pSKSr-aH=RD>(=kMbxi!RyAOmnuFx z|2ddY7eGS>N@zUGZPhY#y|mcj0IO`&$d-)F;OA>%UQ#U;ZISya#w^rZ=u{k*C4kgh zl>e(jK~Ah3vGy2FR?tHSfjji_*&@9HfE%)qLWdNEpDdM5OCs1cg`%`I0DC`S5+qq5 z!81eZ0B!EHV097*$kIj6nQ))k{qYL*TvUf=pTM|pFp%lCj52@;(LMs~vPoRGUJ@+R zmnw5}#`huxda#ySt=gKyNM%Z;s|qinZOb~SP;zv-gTo~qlAtqv0rONgz1m4d79G*D zOb|g)g-j|(C{ci;g@HOODANlHEvizZeMF(Q9(it8kedQ)vy_FsYpni`(?gms!Mxkg zeWqkga!DfL4Dv;0W;hk6iIn!l`bZ_ly>>61SL&Q2i*JPbJ zkw%0vv(Npv)$vB^yoJVsBAKwA;-NfyO$xEb8r7L?F^@P;=w=Go9;hZq*#QDzTAA9gdmAb?poK>Y$ zj@Bm^U4&zK4>jUJ%`(8nn`bGMYOG=E!NmTqU?O8DPg3yVKhDIr+YKrWh=%lpmZqge z+R#(DIC#-26bzvj4@)rkxiUh-|CSC2DqqDG!ZkWJQW6f3wD0ydq>xR|>sqU*4DcZw z*uneO8gI^wR+GiI-$OJKu=S+w12jZVR=O8b6~JuG2GTeZrNp{{HFGFpy>3rfy;!Uh z-~s8vFmhm$00Qjlc5;y4u>&JHQgo^#LUm$H4a!<|Bx=?E%~$qNmuAat!xMeDT}EiE z<#{|=nChp@KZ<&qY7R~DIQk%boNTKl6|+)rq1+4{$1l)4ctT&=j?ESsZ;FAcuhmTQ zY-^(-KER{!3b5Tz8n>7ccg3D{$|Mby2slp0I8sg>LWMob7P5x#CX%1{MDntB?8&UE zO+o7pHOE#vAeUqASYU-nNE1dP$l*Z+wstO*-6GNJd!@)E4vU9LGR};LyX`E<6AG4( zt(iy~D<|gx;teJz*^y8Z$=Lj};2SKbkw)nkEW;XH_4@=XREg+`;%xL|H|MF;Yk}5I zm2497{!)Qujh2@CB_$*8kPicerjYJ4`-k)L=fFIu17YPztqG1+ZQ{?MC^0DVbJ_3S zi9-*GV;;z%%Nw%(V0wg7u3V9MTy6^wNhAZ5b4xfonokDy7{O&;T|;J7i8$!N;ZS{0 z!Kw-UVUrY$eV01-Xd&m)kjU4CTR!03M%eU$2!`%E$XK3cX%J0i?-BD*DTvv_+ujj! zZB9)<3if2=`7%IZVM#Ay*-v)HT~GCLjC>?gUhNUeJ6RlEUdXOmYYyWut;f|Q1;hkF;Fw}NIi}t-GmA4W=5`i0VaXP6r#K$xGHg(crNEiDJb+(f+ z>g$J>2SNC1?rSe_i6Ab{{tB_IvVRlEY{bS6F4{LxOS|`m82q)ndd-HMZOWCY*rnoY zq=Lx<+9X|o>6402Lh-qNmhU2fQlTmnyayfm{Dii%uNolBvSSp?2}8B}4Im)f$a!$% z;xb;bzzyeSmhWHaDsOvskSeF%2LpOE zQyJ8R`|@l)zpn;b>U33ZyHi6ht`rznvr%8tZY(_TNa)n4NEL{NB*K?%4FFB#6I2i) zrg+SgOIOl2m5QdJ@BE;>4g31QFVvXiW^$m1(W ztDanItV9d&qOLpa5Xtf1TKy@hbv72Rg8ajEO?32GP89ooMa_|lO?}HJNi0tlDe+%` zUtJ}RqUGXdJQ4h%W3V!HZ!8hpn7*!$&@DYDIZFo@mffdyR1Lxf<`()Wxf!GaOj2X- zCE;}mDhb=2SAgaDD1ZSieY?K}Y=57 zSfIE}`8KHmWig!TJfDLMN1nphpQ2y(+1I~NAD_2>vCjN|Osh~ied@PYuWodW`Cu61 zPKe>C&SIO2%K$aM0fcK}M_|=w%PsryTjAT^(;p6YPnTWQKP%e`sM(0QD^YXSTPli6 z6BvASE5=&yvtX4re7;P*1iBlGD|ARD<$G_<$~CmQSY89~M+bUWd$zbLk|K6>IXW0a z5KkMy#imFOM$(JxeaQnb^&!b^4me4-3q<8z(mRQ*y#6fkhjgW-YqqFK0$VTxj$$`V z!0}1+Q$i?|I*q5U{Ex!xS5SKlkyu8=1{~;pK7@yES+sn%jUfp|yq{4wB?JXF>&zMA z37Yp7MeZIEpb?DGwp>HHcsb50=AE*l{uthVsXyP9nn3t*@OCPgiL?tw;B84KlB(&8 z3mO$8KkHAg|D0RU{+sj9X>Cvw@)j|lx8|!JyPX@Q=!kUj8R`u^(p$8)k`x(FDslrg zO%$&=11+X!Y%1q=JRJ6d?C~HmKq;8iNEwvUTjx@gZM}T}RO+NXJE=8qjlRB;7ojC? zjGtf<&@)&+kc^lZ7{*MS1@iw^vmN*)e+}RK1B5;k|BxL@qaZMyrsO}CK!dVm>f!PN z7Y`@CB*`j<;jx2QqdNwILTmx+2R{fu_`whO>LkP@8CD4=_9T-xw_!ddZLl%6Yh_}N zzYmJF&G|FXR2v3GCK!=zuqBJXtC1vUkSnC(x2y&*OSMW>`7yZ0Gg?S2R2t=r$kKQ+ za6^-bRa9(RuG%-F+|V%XS9SHW60}Rlu6-N05OS?!8HqiG%o{$LF%y+o|8jy8W%_c`WbcEk6PQzc*70nJ|RaG$iV}^j-gCyUM>u2w3xU-%YCx| zaEp#(YvbB(>cc3h6%E|y`5k&(j!ilXNOUP28M{5KCQ#5Di1Fb_=OYLrTvWutLC?~1 zlXi(!#de({V3D2!Rc$ld*7bw;1r4zBNVpX0PmS;fHBvwW2hmLYt&Ev>nm+6VCG5`jOIm@0i0tcbuqf(X5*{>HuukA zs%N>_u}c(K`*^2+9k$vWB~Q3)2jciRB|MVx#Q~!n=^GfUL5m8`K#$<$Ml_b|i>kS- zUO`HLJx+a=--g$ZE{EJfi1HLRUI5IvUD81=!cF;*RS@Vb3Fy@C*l(fpciiitdr@