|
31 | 31 | from transformers.image_utils import (
|
32 | 32 | ChannelDimension,
|
33 | 33 | get_channel_dimension_axis,
|
| 34 | + make_batched_videos, |
34 | 35 | make_flat_list_of_images,
|
35 | 36 | make_list_of_images,
|
36 | 37 | make_nested_list_of_images,
|
@@ -396,6 +397,115 @@ def test_make_nested_list_of_images_torch(self):
|
396 | 397 | self.assertEqual(len(images_list[0]), 4)
|
397 | 398 | self.assertTrue(np.array_equal(images_list[0][0], images[0][0]))
|
398 | 399 |
|
| 400 | + def test_make_batched_videos_pil(self): |
| 401 | + # Test a single image is converted to a list of 1 video with 1 frame |
| 402 | + pil_image = get_random_image(16, 32) |
| 403 | + videos_list = make_batched_videos(pil_image) |
| 404 | + self.assertIsInstance(videos_list[0], list) |
| 405 | + self.assertEqual(len(videos_list[0]), 1) |
| 406 | + self.assertIsInstance(videos_list[0][0], PIL.Image.Image) |
| 407 | + |
| 408 | + # Test a list of images is converted to a list of 1 video |
| 409 | + images = [get_random_image(16, 32) for _ in range(4)] |
| 410 | + videos_list = make_batched_videos(images) |
| 411 | + self.assertIsInstance(videos_list[0], list) |
| 412 | + self.assertEqual(len(videos_list), 1) |
| 413 | + self.assertEqual(len(videos_list[0]), 4) |
| 414 | + self.assertIsInstance(videos_list[0][0], PIL.Image.Image) |
| 415 | + |
| 416 | + # Test a nested list of images is not modified |
| 417 | + images = [[get_random_image(16, 32) for _ in range(2)] for _ in range(2)] |
| 418 | + videos_list = make_nested_list_of_images(images) |
| 419 | + self.assertIsInstance(videos_list[0], list) |
| 420 | + self.assertEqual(len(videos_list), 2) |
| 421 | + self.assertEqual(len(videos_list[0]), 2) |
| 422 | + self.assertIsInstance(videos_list[0][0], PIL.Image.Image) |
| 423 | + |
| 424 | + def test_make_batched_videos_numpy(self): |
| 425 | + # Test a single image is converted to a list of 1 video with 1 frame |
| 426 | + images = np.random.randint(0, 256, (16, 32, 3)) |
| 427 | + videos_list = make_nested_list_of_images(images) |
| 428 | + self.assertIsInstance(videos_list[0], list) |
| 429 | + self.assertEqual(len(videos_list), 1) |
| 430 | + self.assertTrue(np.array_equal(videos_list[0][0], images)) |
| 431 | + |
| 432 | + # Test a 4d array of images is converted to a a list of 1 video |
| 433 | + images = np.random.randint(0, 256, (4, 16, 32, 3)) |
| 434 | + videos_list = make_nested_list_of_images(images) |
| 435 | + self.assertIsInstance(videos_list[0], list) |
| 436 | + self.assertIsInstance(videos_list[0][0], np.ndarray) |
| 437 | + self.assertEqual(len(videos_list), 1) |
| 438 | + self.assertEqual(len(videos_list[0]), 4) |
| 439 | + self.assertTrue(np.array_equal(videos_list[0][0], images[0])) |
| 440 | + |
| 441 | + # Test a list of images is converted to a list of videos |
| 442 | + images = [np.random.randint(0, 256, (16, 32, 3)) for _ in range(4)] |
| 443 | + videos_list = make_nested_list_of_images(images) |
| 444 | + self.assertIsInstance(videos_list[0], list) |
| 445 | + self.assertEqual(len(videos_list), 1) |
| 446 | + self.assertEqual(len(videos_list[0]), 4) |
| 447 | + self.assertTrue(np.array_equal(videos_list[0][0], images[0])) |
| 448 | + |
| 449 | + # Test a nested list of images is left unchanged |
| 450 | + images = [[np.random.randint(0, 256, (16, 32, 3)) for _ in range(2)] for _ in range(2)] |
| 451 | + videos_list = make_nested_list_of_images(images) |
| 452 | + self.assertIsInstance(videos_list[0], list) |
| 453 | + self.assertEqual(len(videos_list), 2) |
| 454 | + self.assertEqual(len(videos_list[0]), 2) |
| 455 | + self.assertTrue(np.array_equal(videos_list[0][0], images[0][0])) |
| 456 | + |
| 457 | + # Test a list of 4d array images is converted to a list of videos |
| 458 | + images = [np.random.randint(0, 256, (4, 16, 32, 3)) for _ in range(2)] |
| 459 | + videos_list = make_nested_list_of_images(images) |
| 460 | + self.assertIsInstance(videos_list[0], list) |
| 461 | + self.assertIsInstance(videos_list[0][0], np.ndarray) |
| 462 | + self.assertEqual(len(videos_list), 2) |
| 463 | + self.assertEqual(len(videos_list[0]), 4) |
| 464 | + self.assertTrue(np.array_equal(videos_list[0][0], images[0][0])) |
| 465 | + |
| 466 | + @require_torch |
| 467 | + def test_make_batched_videos_torch(self): |
| 468 | + # Test a single image is converted to a list of 1 video with 1 frame |
| 469 | + images = torch.randint(0, 256, (16, 32, 3)) |
| 470 | + videos_list = make_nested_list_of_images(images) |
| 471 | + self.assertIsInstance(videos_list[0], list) |
| 472 | + self.assertEqual(len(videos_list[0]), 1) |
| 473 | + self.assertTrue(np.array_equal(videos_list[0][0], images)) |
| 474 | + |
| 475 | + # Test a 4d tensor of images is converted to a list of 1 video |
| 476 | + images = torch.randint(0, 256, (4, 16, 32, 3)) |
| 477 | + videos_list = make_nested_list_of_images(images) |
| 478 | + self.assertIsInstance(videos_list[0], list) |
| 479 | + self.assertIsInstance(videos_list[0][0], torch.Tensor) |
| 480 | + self.assertEqual(len(videos_list), 1) |
| 481 | + self.assertEqual(len(videos_list[0]), 4) |
| 482 | + self.assertTrue(np.array_equal(videos_list[0][0], images[0])) |
| 483 | + |
| 484 | + # Test a list of images is converted to a list of videos |
| 485 | + images = [torch.randint(0, 256, (16, 32, 3)) for _ in range(4)] |
| 486 | + videos_list = make_nested_list_of_images(images) |
| 487 | + self.assertIsInstance(videos_list[0], list) |
| 488 | + self.assertEqual(len(videos_list), 1) |
| 489 | + self.assertEqual(len(videos_list[0]), 4) |
| 490 | + self.assertTrue(np.array_equal(videos_list[0][0], images[0])) |
| 491 | + |
| 492 | + # Test a nested list of images is left unchanged |
| 493 | + images = [[torch.randint(0, 256, (16, 32, 3)) for _ in range(2)] for _ in range(2)] |
| 494 | + videos_list = make_nested_list_of_images(images) |
| 495 | + self.assertIsInstance(videos_list[0], list) |
| 496 | + self.assertEqual(len(videos_list), 2) |
| 497 | + self.assertEqual(len(videos_list[0]), 2) |
| 498 | + self.assertTrue(np.array_equal(videos_list[0][0], images[0][0])) |
| 499 | + |
| 500 | + # Test a list of 4d tensor images is converted to a list of videos |
| 501 | + images = [torch.randint(0, 256, (4, 16, 32, 3)) for _ in range(2)] |
| 502 | + videos_list = make_nested_list_of_images(images) |
| 503 | + self.assertIsInstance(videos_list[0], list) |
| 504 | + self.assertIsInstance(videos_list[0][0], torch.Tensor) |
| 505 | + self.assertEqual(len(videos_list), 2) |
| 506 | + self.assertEqual(len(videos_list[0]), 4) |
| 507 | + self.assertTrue(np.array_equal(videos_list[0][0], images[0][0])) |
| 508 | + |
399 | 509 | @require_torch
|
400 | 510 | def test_conversion_torch_to_array(self):
|
401 | 511 | feature_extractor = ImageFeatureExtractionMixin()
|
|
0 commit comments