Skip to content

Commit d601ee2

Browse files
authored
Fix integrals in notebook (#179)
1 parent 1b64530 commit d601ee2

File tree

1 file changed

+4
-4
lines changed

1 file changed

+4
-4
lines changed

chapter1/nitsche.ipynb

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -64,19 +64,19 @@
6464
"As opposed to the first tutorial, we now have to have another look at the variational form.\n",
6565
"We start by integrating the problem by parts, to obtain\n",
6666
"\\begin{align}\n",
67-
"\\int*{\\Omega} \\nabla u \\cdot \\nabla v~\\mathrm{d}x - \\int*{\\partial\\Omega}\\nabla u \\cdot n v~\\mathrm{d}s = \\int*{\\Omega} f v~\\mathrm{d}x.\n",
67+
"\\int_{\\Omega} \\nabla u \\cdot \\nabla v~\\mathrm{d}x - \\int_{\\partial\\Omega}\\nabla u \\cdot n v~\\mathrm{d}s = \\int_{\\Omega} f v~\\mathrm{d}x.\n",
6868
"\\end{align}\n",
6969
"As we are not using strong enforcement, we do not set the trace of the test function to $0$ on the outer boundary.\n",
7070
"Instead, we add the following two terms to the variational formulation\n",
7171
"\\begin{align}\n",
72-
"-\\int*{\\partial\\Omega} \\nabla v \\cdot n (u-u*D)~\\mathrm{d}s + \\frac{\\alpha}{h} \\int*{\\partial\\Omega} (u-u*D)v~\\mathrm{d}s.\n",
72+
"-\\int_{\\partial\\Omega} \\nabla v \\cdot n (u-u*D)~\\mathrm{d}s + \\frac{\\alpha}{h} \\int_{\\partial\\Omega} (u-u*D)v~\\mathrm{d}s.\n",
7373
"\\end{align}\n",
7474
"where the first term enforces symmetry to the bilinear form, while the latter term enforces coercivity.\n",
7575
"$u_D$ is the known Dirichlet condition, and $h$ is the diameter of the circumscribed sphere of the mesh element.\n",
7676
"We create bilinear and linear form, $a$ and $L$\n",
7777
"\\begin{align}\n",
78-
"a(u, v) &= \\int*{\\Omega} \\nabla u \\cdot \\nabla v~\\mathrm{d}x + \\int*{\\partial\\Omega}-(n \\cdot\\nabla u) v - (n \\cdot \\nabla v) u + \\frac{\\alpha}{h} uv~\\mathrm{d}s,\\\\\n",
79-
"L(v) &= \\int*{\\Omega} fv~\\mathrm{d}x + \\int\\_{\\partial\\Omega} -(n \\cdot \\nabla v) u_D + \\frac{\\alpha}{h} u_Dv~\\mathrm{d}s\n",
78+
"a(u, v) &= \\int_{\\Omega} \\nabla u \\cdot \\nabla v~\\mathrm{d}x + \\int_{\\partial\\Omega}-(n \\cdot\\nabla u) v - (n \\cdot \\nabla v) u + \\frac{\\alpha}{h} uv~\\mathrm{d}s,\\\\\n",
79+
"L(v) &= \\int_{\\Omega} fv~\\mathrm{d}x + \\int\\_{\\partial\\Omega} -(n \\cdot \\nabla v) u_D + \\frac{\\alpha}{h} u_Dv~\\mathrm{d}s\n",
8080
"\\end{align}\n"
8181
]
8282
},

0 commit comments

Comments
 (0)