|
64 | 64 | "As opposed to the first tutorial, we now have to have another look at the variational form.\n",
|
65 | 65 | "We start by integrating the problem by parts, to obtain\n",
|
66 | 66 | "\\begin{align}\n",
|
67 |
| - "\\int*{\\Omega} \\nabla u \\cdot \\nabla v~\\mathrm{d}x - \\int*{\\partial\\Omega}\\nabla u \\cdot n v~\\mathrm{d}s = \\int*{\\Omega} f v~\\mathrm{d}x.\n", |
| 67 | + "\\int_{\\Omega} \\nabla u \\cdot \\nabla v~\\mathrm{d}x - \\int_{\\partial\\Omega}\\nabla u \\cdot n v~\\mathrm{d}s = \\int_{\\Omega} f v~\\mathrm{d}x.\n", |
68 | 68 | "\\end{align}\n",
|
69 | 69 | "As we are not using strong enforcement, we do not set the trace of the test function to $0$ on the outer boundary.\n",
|
70 | 70 | "Instead, we add the following two terms to the variational formulation\n",
|
71 | 71 | "\\begin{align}\n",
|
72 |
| - "-\\int*{\\partial\\Omega} \\nabla v \\cdot n (u-u*D)~\\mathrm{d}s + \\frac{\\alpha}{h} \\int*{\\partial\\Omega} (u-u*D)v~\\mathrm{d}s.\n", |
| 72 | + "-\\int_{\\partial\\Omega} \\nabla v \\cdot n (u-u*D)~\\mathrm{d}s + \\frac{\\alpha}{h} \\int_{\\partial\\Omega} (u-u*D)v~\\mathrm{d}s.\n", |
73 | 73 | "\\end{align}\n",
|
74 | 74 | "where the first term enforces symmetry to the bilinear form, while the latter term enforces coercivity.\n",
|
75 | 75 | "$u_D$ is the known Dirichlet condition, and $h$ is the diameter of the circumscribed sphere of the mesh element.\n",
|
76 | 76 | "We create bilinear and linear form, $a$ and $L$\n",
|
77 | 77 | "\\begin{align}\n",
|
78 |
| - "a(u, v) &= \\int*{\\Omega} \\nabla u \\cdot \\nabla v~\\mathrm{d}x + \\int*{\\partial\\Omega}-(n \\cdot\\nabla u) v - (n \\cdot \\nabla v) u + \\frac{\\alpha}{h} uv~\\mathrm{d}s,\\\\\n", |
79 |
| - "L(v) &= \\int*{\\Omega} fv~\\mathrm{d}x + \\int\\_{\\partial\\Omega} -(n \\cdot \\nabla v) u_D + \\frac{\\alpha}{h} u_Dv~\\mathrm{d}s\n", |
| 78 | + "a(u, v) &= \\int_{\\Omega} \\nabla u \\cdot \\nabla v~\\mathrm{d}x + \\int_{\\partial\\Omega}-(n \\cdot\\nabla u) v - (n \\cdot \\nabla v) u + \\frac{\\alpha}{h} uv~\\mathrm{d}s,\\\\\n", |
| 79 | + "L(v) &= \\int_{\\Omega} fv~\\mathrm{d}x + \\int\\_{\\partial\\Omega} -(n \\cdot \\nabla v) u_D + \\frac{\\alpha}{h} u_Dv~\\mathrm{d}s\n", |
80 | 80 | "\\end{align}\n"
|
81 | 81 | ]
|
82 | 82 | },
|
|
0 commit comments