Skip to content

Commit 6fe4039

Browse files
Add GPU accelerated images by b-data to community (#1864)
* Add GPU accelerated images by b-data to community * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
1 parent 1387ff7 commit 6fe4039

File tree

1 file changed

+12
-4
lines changed

1 file changed

+12
-4
lines changed

docs/using/selecting.md

Lines changed: 12 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -281,11 +281,19 @@ See the [contributing guide](../contributing/stacks.md) for information about ho
281281

282282
### GPU enabled notebooks
283283

284-
| Flavor | Description |
285-
| ------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
286-
| [GPU-Jupyter][gpu] | Power of your NVIDIA GPU and GPU calculations using Tensorflow and Pytorch in collaborative notebooks. This is done by generating a Dockerfile that consists of the **nvidia/cuda** base image, the well-maintained **docker-stacks** that is integrated as submodule and GPU-able libraries like **Tensorflow**, **Keras** and **PyTorch** on top of it |
287-
| [PRP-GPU][prp_gpu] | PRP (Pacific Research Platform) maintained [registry][prp_reg] for jupyter stack based on NVIDIA CUDA-enabled image. Added the PRP image with Pytorch and some other python packages and GUI Desktop notebook based on <https://github.com/jupyterhub/jupyter-remote-desktop-proxy>. |
284+
| Flavor | Description |
285+
| ------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
286+
| [GPU-Jupyter][gpu] | Power of your NVIDIA GPU and GPU calculations using Tensorflow and Pytorch in collaborative notebooks. This is done by generating a Dockerfile that consists of the **nvidia/cuda** base image, the well-maintained **docker-stacks** that is integrated as submodule and GPU-able libraries like **Tensorflow**, **Keras** and **PyTorch** on top of it. |
287+
| [PRP-GPU][prp_gpu] | PRP (Pacific Research Platform) maintained [registry][prp_reg] for jupyter stack based on NVIDIA CUDA-enabled image. Added the PRP image with Pytorch and some other python packages and GUI Desktop notebook based on <https://github.com/jupyterhub/jupyter-remote-desktop-proxy>. |
288+
| [b-data][b-data] | GPU accelerated, multi-arch (`linux/amd64`, `linux/arm64/v8`) docker images for [R][r_cuda], [Python][python_cuda] and [Julia][julia_cuda]. Derived from nvidia/cuda `devel`-flavored images including TensortRT and TensorRT plugin libraries. With [code-server][code-server] next to JupyterLab. Just Python – no [Conda][conda]/[Mamba][mamba]. |
288289

289290
[gpu]: https://github.com/iot-salzburg/gpu-jupyter
290291
[prp_gpu]: https://gitlab.nrp-nautilus.io/prp/jupyter-stack/-/tree/prp
291292
[prp_reg]: https://gitlab.nrp-nautilus.io/prp/jupyter-stack/container_registry
293+
[b-data]: https://github.com/b-data
294+
[r_cuda]: https://github.com/b-data/jupyterlab-r-docker-stack/blob/main/CUDA.md
295+
[python_cuda]: https://github.com/b-data/jupyterlab-python-docker-stack/blob/main/CUDA.md
296+
[julia_cuda]: https://github.com/b-data/jupyterlab-julia-docker-stack/blob/main/CUDA.md
297+
[code-server]: https://github.com/coder/code-server
298+
[conda]: https://github.com/conda/conda
299+
[mamba]: https://github.com/mamba-org/mamba

0 commit comments

Comments
 (0)