Skip to content

Commit 8749f9a

Browse files
committed
Add GruNonlinearityComponent(by Dan) and OutputGruNonlinearityComponent; moving aroun some sources in nnet3 to avoid very large files
rename nnet-combined-component.{h,cc} and str case Update get_saturation.pl for fast gru version. Get matched resutls
1 parent 2cfcfda commit 8749f9a

File tree

14 files changed

+5495
-1840
lines changed

14 files changed

+5495
-1840
lines changed

egs/swbd/s5c/local/chain/tuning/run_tdnn_opgru_1a.sh

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -10,25 +10,25 @@
1010

1111
# ./local/chain/compare_wer_general.sh --looped tdnn_lstm_1e_sp tdnn_opgru_1a_sp
1212
# System tdnn_lstm_1e_sp tdnn_opgru_1a_sp
13-
# WER on train_dev(tg) 12.81 12.39
14-
# [looped:] 12.93 12.32
15-
# WER on train_dev(fg) 11.92 11.39
16-
# [looped:] 12.07 11.35
13+
# WER on train_dev(tg) 12.81 12.31
14+
# [looped:] 12.93 12.26
15+
# WER on train_dev(fg) 11.92 11.60
16+
# [looped:] 12.07 11.65
1717
# WER on eval2000(tg) 15.6 15.1
1818
# [looped:] 16.0 15.1
19-
# WER on eval2000(fg) 14.1 13.6
19+
# WER on eval2000(fg) 14.1 13.5
2020
# [looped:] 14.5 13.5
21-
# Final train prob -0.065 -0.066
22-
# Final valid prob -0.087 -0.085
23-
# Final train prob (xent) -0.918 -0.889
24-
# Final valid prob (xent) -1.0309 -0.9837
21+
# Final train prob -0.065 -0.068
22+
# Final valid prob -0.087 -0.091
23+
# Final train prob (xent) -0.918 -0.879
24+
# Final valid prob (xent) -1.0309 -0.9667
2525

2626

2727

2828
set -e
2929

3030
# configs for 'chain'
31-
stage=12
31+
stage=0
3232
train_stage=-10
3333
get_egs_stage=-10
3434
speed_perturb=true
Lines changed: 310 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,310 @@
1+
#!/bin/bash
2+
# Apache 2.0
3+
4+
# This is based on TDNN_OPGRU_1A, but using the FastNormOPGRU to replace the NormPGRU.
5+
# Different from the vanilla OPGRU, Norm-OPGRU adds batchnorm in its output (forward direction)
6+
# and renorm in its recurrence. Experiments show that the TDNN-NormOPGRU could achieve similar
7+
# results than TDNN-LSTMP and BLSTMP in both large or small data sets (80 ~ 2300 Hrs).
8+
9+
# ./local/chain/compare_wer_general.sh --looped tdnn_opgru_1a_sp tdnn_opgru_1b_sp
10+
# System tdnn_opgru_1a_sp tdnn_opgru_1b_sp
11+
# WER on train_dev(tg) 12.31 12.41
12+
# [looped:] 12.26 12.38
13+
# WER on train_dev(fg) 11.49 11.60
14+
# [looped:] 11.43 11.65
15+
# WER on eval2000(tg) 14.9 15.1
16+
# [looped:] 15.0 15.1
17+
# WER on eval2000(fg) 13.5 13.7
18+
# [looped:] 13.5 13.7
19+
# Final train prob -0.068 -0.070
20+
# Final valid prob -0.091 -0.092
21+
# Final train prob (xent) -0.879 -0.889
22+
# Final valid prob (xent) -0.9667 -0.9723
23+
24+
25+
26+
set -e
27+
28+
# configs for 'chain'
29+
stage=0
30+
train_stage=-10
31+
get_egs_stage=-10
32+
speed_perturb=true
33+
dir=exp/chain/tdnn_opgru_1b # Note: _sp will get added to this if $speed_perturb == true.
34+
decode_iter=
35+
decode_dir_affix=
36+
37+
# training options
38+
leftmost_questions_truncate=-1
39+
chunk_width=150
40+
chunk_left_context=40
41+
chunk_right_context=0
42+
xent_regularize=0.025
43+
self_repair_scale=0.00001
44+
label_delay=5
45+
dropout_schedule='0,0@0.20,0.2@0.50,0'
46+
# decode options
47+
extra_left_context=50
48+
extra_right_context=0
49+
frames_per_chunk=
50+
test_online_decoding=
51+
52+
remove_egs=false
53+
common_egs_dir=
54+
55+
affix=
56+
# End configuration section.
57+
echo "$0 $@" # Print the command line for logging
58+
59+
. ./cmd.sh
60+
. ./path.sh
61+
. ./utils/parse_options.sh
62+
63+
if ! cuda-compiled; then
64+
cat <<EOF && exit 1
65+
This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
66+
If you want to use GPUs (and have them), go to src/, and configure and make on a machine
67+
where "nvcc" is installed.
68+
EOF
69+
fi
70+
71+
# The iVector-extraction and feature-dumping parts are the same as the standard
72+
# nnet3 setup, and you can skip them by setting "--stage 8" if you have already
73+
# run those things.
74+
75+
suffix=
76+
if [ "$speed_perturb" == "true" ]; then
77+
suffix=_sp
78+
fi
79+
80+
dir=$dir${affix:+_$affix}
81+
dir=${dir}$suffix
82+
train_set=train_nodup$suffix
83+
ali_dir=exp/tri4_ali_nodup$suffix
84+
treedir=exp/chain/tri5_7d_tree$suffix
85+
lang=data/lang_chain_2y
86+
87+
88+
# if we are using the speed-perturbed data we need to generate
89+
# alignments for it.
90+
local/nnet3/run_ivector_common.sh --stage $stage \
91+
--speed-perturb $speed_perturb \
92+
--generate-alignments $speed_perturb || exit 1;
93+
94+
95+
if [ $stage -le 9 ]; then
96+
# Get the alignments as lattices (gives the CTC training more freedom).
97+
# use the same num-jobs as the alignments
98+
nj=$(cat exp/tri4_ali_nodup$suffix/num_jobs) || exit 1;
99+
steps/align_fmllr_lats.sh --nj $nj --cmd "$train_cmd" data/$train_set \
100+
data/lang exp/tri4 exp/tri4_lats_nodup$suffix
101+
rm exp/tri4_lats_nodup$suffix/fsts.*.gz # save space
102+
fi
103+
104+
105+
if [ $stage -le 10 ]; then
106+
# Create a version of the lang/ directory that has one state per phone in the
107+
# topo file. [note, it really has two states.. the first one is only repeated
108+
# once, the second one has zero or more repeats.]
109+
rm -rf $lang
110+
cp -r data/lang $lang
111+
silphonelist=$(cat $lang/phones/silence.csl) || exit 1;
112+
nonsilphonelist=$(cat $lang/phones/nonsilence.csl) || exit 1;
113+
# Use our special topology... note that later on may have to tune this
114+
# topology.
115+
steps/nnet3/chain/gen_topo.py $nonsilphonelist $silphonelist >$lang/topo
116+
fi
117+
118+
if [ $stage -le 11 ]; then
119+
# Build a tree using our new topology.
120+
steps/nnet3/chain/build_tree.sh --frame-subsampling-factor 3 \
121+
--leftmost-questions-truncate $leftmost_questions_truncate \
122+
--context-opts "--context-width=2 --central-position=1" \
123+
--cmd "$train_cmd" 7000 data/$train_set $lang $ali_dir $treedir
124+
fi
125+
126+
if [ $stage -le 12 ]; then
127+
echo "$0: creating neural net configs using the xconfig parser";
128+
129+
num_targets=$(tree-info $treedir/tree |grep num-pdfs|awk '{print $2}')
130+
learning_rate_factor=$(echo "print 0.5/$xent_regularize" | python)
131+
gru_opts="dropout-per-frame=true dropout-proportion=0.0 gru-nonlinearity-options=\"max-change=0.75\""
132+
133+
mkdir -p $dir/configs
134+
cat <<EOF > $dir/configs/network.xconfig
135+
input dim=100 name=ivector
136+
input dim=40 name=input
137+
138+
# please note that it is important to have input layer with the name=input
139+
# as the layer immediately preceding the fixed-affine-layer to enable
140+
# the use of short notation for the descriptor
141+
fixed-affine-layer name=lda input=Append(-2,-1,0,1,2,ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat
142+
143+
# the first splicing is moved before the lda layer, so no splicing here
144+
relu-batchnorm-layer name=tdnn1 dim=1024
145+
relu-batchnorm-layer name=tdnn2 input=Append(-1,0,1) dim=1024
146+
relu-batchnorm-layer name=tdnn3 input=Append(-1,0,1) dim=1024
147+
148+
# check steps/libs/nnet3/xconfig/gru.py for the other options and defaults
149+
fast-norm-opgru-layer name=opgru1 cell-dim=1024 recurrent-projection-dim=256 non-recurrent-projection-dim=256 delay=-3 $gru_opts
150+
relu-batchnorm-layer name=tdnn4 input=Append(-3,0,3) dim=1024
151+
relu-batchnorm-layer name=tdnn5 input=Append(-3,0,3) dim=1024
152+
fast-norm-opgru-layer name=opgru2 cell-dim=1024 recurrent-projection-dim=256 non-recurrent-projection-dim=256 delay=-3 $gru_opts
153+
relu-batchnorm-layer name=tdnn6 input=Append(-3,0,3) dim=1024
154+
relu-batchnorm-layer name=tdnn7 input=Append(-3,0,3) dim=1024
155+
fast-norm-opgru-layer name=opgru3 cell-dim=1024 recurrent-projection-dim=256 non-recurrent-projection-dim=256 delay=-3 $gru_opts
156+
157+
## adding the layers for chain branch
158+
output-layer name=output input=opgru3 output-delay=$label_delay include-log-softmax=false dim=$num_targets max-change=1.5
159+
160+
# adding the layers for xent branch
161+
# This block prints the configs for a separate output that will be
162+
# trained with a cross-entropy objective in the 'chain' models... this
163+
# has the effect of regularizing the hidden parts of the model. we use
164+
# 0.5 / args.xent_regularize as the learning rate factor- the factor of
165+
# 0.5 / args.xent_regularize is suitable as it means the xent
166+
# final-layer learns at a rate independent of the regularization
167+
# constant; and the 0.5 was tuned so as to make the relative progress
168+
# similar in the xent and regular final layers.
169+
output-layer name=output-xent input=opgru3 output-delay=$label_delay dim=$num_targets learning-rate-factor=$learning_rate_factor max-change=1.5
170+
171+
EOF
172+
steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/
173+
fi
174+
175+
if [ $stage -le 13 ]; then
176+
if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then
177+
utils/create_split_dir.pl \
178+
/export/b0{5,6,7,8}/$USER/kaldi-data/egs/swbd-$(date +'%m_%d_%H_%M')/s5c/$dir/egs/storage $dir/egs/storage
179+
fi
180+
181+
steps/nnet3/chain/train.py --stage $train_stage \
182+
--cmd "$decode_cmd" \
183+
--feat.online-ivector-dir exp/nnet3/ivectors_${train_set} \
184+
--feat.cmvn-opts "--norm-means=false --norm-vars=false" \
185+
--chain.xent-regularize $xent_regularize \
186+
--chain.leaky-hmm-coefficient 0.1 \
187+
--chain.l2-regularize 0.00005 \
188+
--chain.apply-deriv-weights false \
189+
--chain.lm-opts="--num-extra-lm-states=2000" \
190+
--trainer.num-chunk-per-minibatch 64 \
191+
--trainer.frames-per-iter 1200000 \
192+
--trainer.max-param-change 2.0 \
193+
--trainer.num-epochs 4 \
194+
--trainer.optimization.shrink-value 0.99 \
195+
--trainer.optimization.num-jobs-initial 3 \
196+
--trainer.optimization.num-jobs-final 16 \
197+
--trainer.optimization.initial-effective-lrate 0.001 \
198+
--trainer.optimization.final-effective-lrate 0.0001 \
199+
--trainer.optimization.momentum 0.0 \
200+
--trainer.deriv-truncate-margin 8 \
201+
--egs.stage $get_egs_stage \
202+
--egs.opts "--frames-overlap-per-eg 0" \
203+
--egs.chunk-width $chunk_width \
204+
--egs.chunk-left-context $chunk_left_context \
205+
--egs.chunk-right-context $chunk_right_context \
206+
--trainer.dropout-schedule $dropout_schedule \
207+
--egs.chunk-left-context-initial 0 \
208+
--egs.chunk-right-context-final 0 \
209+
--egs.dir "$common_egs_dir" \
210+
--cleanup.remove-egs $remove_egs \
211+
--feat-dir data/${train_set}_hires \
212+
--tree-dir $treedir \
213+
--lat-dir exp/tri4_lats_nodup$suffix \
214+
--dir $dir || exit 1;
215+
fi
216+
217+
if [ $stage -le 14 ]; then
218+
# Note: it might appear that this $lang directory is mismatched, and it is as
219+
# far as the 'topo' is concerned, but this script doesn't read the 'topo' from
220+
# the lang directory.
221+
utils/mkgraph.sh --self-loop-scale 1.0 data/lang_sw1_tg $dir $dir/graph_sw1_tg
222+
fi
223+
224+
decode_suff=sw1_tg
225+
graph_dir=$dir/graph_sw1_tg
226+
if [ $stage -le 15 ]; then
227+
[ -z $extra_left_context ] && extra_left_context=$chunk_left_context;
228+
[ -z $extra_right_context ] && extra_right_context=$chunk_right_context;
229+
[ -z $frames_per_chunk ] && frames_per_chunk=$chunk_width;
230+
iter_opts=
231+
if [ ! -z $decode_iter ]; then
232+
iter_opts=" --iter $decode_iter "
233+
fi
234+
for decode_set in train_dev eval2000; do
235+
(
236+
steps/nnet3/decode.sh --acwt 1.0 --post-decode-acwt 10.0 \
237+
--nj 50 --cmd "$decode_cmd" $iter_opts \
238+
--extra-left-context $extra_left_context \
239+
--extra-right-context $extra_right_context \
240+
--extra-left-context-initial 0 \
241+
--extra-right-context-final 0 \
242+
--frames-per-chunk "$frames_per_chunk" \
243+
--online-ivector-dir exp/nnet3/ivectors_${decode_set} \
244+
$graph_dir data/${decode_set}_hires \
245+
$dir/decode_${decode_set}${decode_dir_affix:+_$decode_dir_affix}_${decode_suff} || exit 1;
246+
if $has_fisher; then
247+
steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" \
248+
data/lang_sw1_{tg,fsh_fg} data/${decode_set}_hires \
249+
$dir/decode_${decode_set}${decode_dir_affix:+_$decode_dir_affix}_sw1_{tg,fsh_fg} || exit 1;
250+
fi
251+
) &
252+
done
253+
fi
254+
255+
if $test_online_decoding && [ $stage -le 16 ]; then
256+
# note: if the features change (e.g. you add pitch features), you will have to
257+
# change the options of the following command line.
258+
steps/online/nnet3/prepare_online_decoding.sh \
259+
--mfcc-config conf/mfcc_hires.conf \
260+
$lang exp/nnet3/extractor $dir ${dir}_online
261+
262+
rm $dir/.error 2>/dev/null || true
263+
for decode_set in train_dev eval2000; do
264+
(
265+
# note: we just give it "$decode_set" as it only uses the wav.scp, the
266+
# feature type does not matter.
267+
steps/online/nnet3/decode.sh --nj 50 --cmd "$decode_cmd" $iter_opts \
268+
--acwt 1.0 --post-decode-acwt 10.0 \
269+
$graph_dir data/${decode_set}_hires \
270+
${dir}_online/decode_${decode_set}${decode_iter:+_$decode_iter}_sw1_tg || exit 1;
271+
if $has_fisher; then
272+
steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" \
273+
data/lang_sw1_{tg,fsh_fg} data/${decode_set}_hires \
274+
${dir}_online/decode_${decode_set}${decode_iter:+_$decode_iter}_sw1_{tg,fsh_fg} || exit 1;
275+
fi
276+
) || touch $dir/.error &
277+
done
278+
wait
279+
if [ -f $dir/.error ]; then
280+
echo "$0: something went wrong in online decoding"
281+
exit 1
282+
fi
283+
fi
284+
285+
if [ $stage -le 17 ]; then
286+
rm $dir/.error 2>/dev/null || true
287+
for decode_set in train_dev eval2000; do
288+
(
289+
steps/nnet3/decode_looped.sh \
290+
--acwt 1.0 --post-decode-acwt 10.0 \
291+
--nj 50 --cmd "$decode_cmd" $iter_opts \
292+
--online-ivector-dir exp/nnet3/ivectors_${decode_set} \
293+
$graph_dir data/${decode_set}_hires \
294+
$dir/decode_${decode_set}${decode_iter:+_$decode_iter}_sw1_tg_looped || exit 1;
295+
if $has_fisher; then
296+
steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" \
297+
data/lang_sw1_{tg,fsh_fg} data/${decode_set}_hires \
298+
$dir/decode_${decode_set}${decode_iter:+_$decode_iter}_sw1_{tg,fsh_fg}_looped || exit 1;
299+
fi
300+
) &
301+
done
302+
wait
303+
if [ -f $dir/.error ]; then
304+
echo "$0: something went wrong in looped decoding"
305+
exit 1
306+
fi
307+
fi
308+
309+
wait;
310+
exit 0;

0 commit comments

Comments
 (0)