Skip to content

Commit cc745dd

Browse files
xiaohui-zhangdanpovey
authored andcommitted
[egs] Improvements to multi_en tdnn-opgru/lstm recipes (#2824)
1 parent 4bdb05a commit cc745dd

File tree

4 files changed

+637
-1
lines changed

4 files changed

+637
-1
lines changed
Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1 @@
1+
tuning/run_tdnn_lstm_1a.sh
Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1 +1 @@
1-
tuning/run_tdnn_opgru_1a.sh
1+
tuning/run_tdnn_opgru_1b.sh
Lines changed: 319 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,319 @@
1+
#!/bin/bash
2+
# Copyright 2017 University of Chinese Academy of Sciences (UCAS) Gaofeng Cheng
3+
# 2018 Xiaohui Zhang
4+
# 2018 Vimal Manohar
5+
# Apache 2.0
6+
7+
# This recipe is similar with tdnn_lstm_1b recipefrom fisher_swbd/s5, and is currently
8+
# the best performing multi-en recipe.
9+
10+
# System tdnn_opgru_1b_sp tdnn_lstm_1a_sp
11+
# WER on eval2000(tg) 11.4 11.4
12+
# WER on eval2000(fg) 11.2 11.2
13+
# WER on rt03(tg) 11.1 10.7
14+
# WER on rt03(fg) 10.8 10.5
15+
# Final train prob -0.091 -0.095
16+
# Final valid prob -0.091 -0.089
17+
# Final train prob (xent) -0.990 -0.970
18+
# Final valid prob (xent) -0.091 -0.9638
19+
# Num-parameters 34976320 39704128
20+
21+
# ./steps/info/chain_dir_info.pl exp/multi_a/chain/tdnn_lstm_1a_sp
22+
# exp/multi_a/chain/tdnn_lstm_1a_sp: num-iters=2096 nj=3..16 num-params=39.7M dim=40+100->6176 combine=-0.088->-0.087 (over 3)
23+
# xent:train/valid[1395,2095,final]=(-1.38,-0.960,-0.970/-1.39,-0.964,-0.964)
24+
# logprob:train/valid[1395,2095,final]=(-0.117,-0.091,-0.095/-0.109,-0.087,-0.089)
25+
26+
# online results
27+
# Eval2000
28+
# %WER 14.2 | 2628 21594 | 87.8 8.6 3.5 2.1 14.2 49.1 | exp/multi_a/chain/tdnn_lstm_1a_sp_online/decode_eval2000/score_8_0.0/eval2000_hires.ctm.callhm.filt.sys
29+
# %WER 11.4 | 4459 42989 | 90.3 7.0 2.7 1.7 11.4 46.1 | exp/multi_a/chain/tdnn_lstm_1a_sp_online/decode_eval2000/score_8_0.0/eval2000_hires.ctm.filt.sys
30+
# %WER 8.4 | 1831 21395 | 92.8 5.3 2.0 1.2 8.4 41.2 | exp/multi_a/chain/tdnn_lstm_1a_sp_online/decode_eval2000/score_9_0.0/eval2000_hires.ctm.swbd.filt.sys
31+
# %WER 14.0 | 2628 21594 | 88.0 8.5 3.4 2.1 14.0 48.6 | exp/multi_a/chain/tdnn_lstm_1a_sp_online/decode_eval2000_fg/score_8_0.0/eval2000_hires.ctm.callhm.filt.sys
32+
# %WER 11.2 | 4459 42989 | 90.5 6.9 2.6 1.7 11.2 45.4 | exp/multi_a/chain/tdnn_lstm_1a_sp_online/decode_eval2000_fg/score_8_0.0/eval2000_hires.ctm.filt.sys
33+
# %WER 8.1 | 1831 21395 | 93.1 5.1 1.8 1.2 8.1 40.6 | exp/multi_a/chain/tdnn_lstm_1a_sp_online/decode_eval2000_fg/score_9_0.0/eval2000_hires.ctm.swbd.filt.sys
34+
35+
# RT03
36+
# %WER 8.7 | 3970 36721 | 92.2 5.3 2.5 1.0 8.7 37.3 | exp/multi_a/chain/tdnn_lstm_1a_sp_online/decode_rt03/score_7_0.0/rt03_hires.ctm.fsh.filt.sys
37+
# %WER 10.8 | 8420 76157 | 90.4 6.5 3.2 1.2 10.8 40.1 | exp/multi_a/chain/tdnn_lstm_1a_sp_online/decode_rt03/score_8_0.0/rt03_hires.ctm.filt.sys
38+
# %WER 12.7 | 4450 39436 | 88.7 7.7 3.6 1.4 12.7 42.5 | exp/multi_a/chain/tdnn_lstm_1a_sp_online/decode_rt03/score_8_0.0/rt03_hires.ctm.swbd.filt.sys
39+
# %WER 8.5 | 3970 36721 | 92.4 5.1 2.5 0.9 8.5 37.2 | exp/multi_a/chain/tdnn_lstm_1a_sp_online/decode_rt03_fg/score_7_1.0/rt03_hires.ctm.fsh.filt.sys
40+
# %WER 10.5 | 8420 76157 | 90.6 6.3 3.1 1.2 10.5 40.1 | exp/multi_a/chain/tdnn_lstm_1a_sp_online/decode_rt03_fg/score_8_0.0/rt03_hires.ctm.filt.sys
41+
# %WER 12.4 | 4450 39436 | 88.9 7.2 3.9 1.3 12.4 42.7 | exp/multi_a/chain/tdnn_lstm_1a_sp_online/decode_rt03_fg/score_9_0.0/rt03_hires.ctm.swbd.filt.sys
42+
43+
set -e
44+
45+
# configs for 'chain'
46+
stage=-10
47+
train_stage=-10
48+
get_egs_stage=-10
49+
speed_perturb=true
50+
multi=multi_a
51+
gmm=tri5a
52+
decode_iter=
53+
decode_dir_affix=
54+
decode_nj=50
55+
56+
# training options
57+
frames_per_chunk=140,100,160
58+
frames_per_chunk_primary=$(echo $frames_per_chunk | cut -d, -f1)
59+
chunk_left_context=40
60+
chunk_right_context=0
61+
xent_regularize=0.025
62+
self_repair_scale=0.00001
63+
label_delay=5
64+
# decode options
65+
extra_left_context=50
66+
extra_right_context=0
67+
dropout_schedule='0,0@0.20,0.3@0.50,0'
68+
num_epochs=4
69+
70+
remove_egs=false
71+
common_egs_dir=
72+
73+
test_online_decoding=true # if true, it will run the last decoding stage.
74+
75+
nnet3_affix=
76+
tdnn_affix=_1a
77+
78+
# End configuration section.
79+
echo "$0 $@" # Print the command line for logging
80+
81+
. ./cmd.sh
82+
. ./path.sh
83+
. ./utils/parse_options.sh
84+
85+
if ! cuda-compiled; then
86+
cat <<EOF && exit 1
87+
This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
88+
If you want to use GPUs (and have them), go to src/, and configure and make on a machine
89+
where "nvcc" is installed.
90+
EOF
91+
fi
92+
93+
# The iVector-extraction and feature-dumping parts are the same as the standard
94+
# nnet3 setup, and you can skip them by setting "--stage 8" if you have already
95+
# run those things.
96+
97+
suffix=
98+
if [ "$speed_perturb" == "true" ]; then
99+
suffix=_sp
100+
fi
101+
102+
dir=exp/$multi/chain/tdnn_lstm${tdnn_affix}${suffix}
103+
train_set=${multi}/${gmm}${suffix}
104+
lats_dir=exp/${multi}/${gmm}_lats_nodup${suffix}
105+
treedir=exp/$multi/chain/${gmm}_tree
106+
lang=data/${multi}/lang_${gmm}_chain
107+
lang_dir=data/lang_${multi}_${gmm}_fsh_sw1_tg
108+
rescore_lang_dir=data/lang_${multi}_${gmm}_fsh_sw1_fg
109+
110+
local/nnet3/run_ivector_common.sh --stage $stage --nnet3-affix "$nnet3_affix" \
111+
--multi $multi \
112+
--gmm $gmm \
113+
--speed-perturb $speed_perturb || exit 1
114+
115+
online_ivector_dir=exp/$multi/nnet3${nnet3_affix}/ivectors_${train_set}
116+
117+
if [ $stage -le 9 ]; then
118+
steps/align_fmllr_lats.sh --nj 100 --cmd "$train_cmd" \
119+
--generate-ali-from-lats true data/$train_set \
120+
data/lang_${multi}_${gmm} exp/${multi}/$gmm $lats_dir
121+
rm ${lats_dir}/fsts.*.gz # save space
122+
fi
123+
124+
if [ $stage -le 10 ]; then
125+
# Create a version of the lang/ directory that has one state per phone in the
126+
# topo file. [note, it really has two states.. the first one is only repeated
127+
# once, the second one has zero or more repeats.]
128+
if [ -d $lang ]; then
129+
echo "$lang exists. Remove it or skip this stage."
130+
exit 1
131+
fi
132+
133+
cp -r data/lang_${multi}_${gmm} $lang
134+
silphonelist=$(cat $lang/phones/silence.csl) || exit 1;
135+
nonsilphonelist=$(cat $lang/phones/nonsilence.csl) || exit 1;
136+
# Use our special topology... note that later on may have to tune this
137+
# topology.
138+
steps/nnet3/chain/gen_topo.py $nonsilphonelist $silphonelist >$lang/topo
139+
fi
140+
141+
if [ $stage -le 11 ]; then
142+
# Build a tree using our new topology.
143+
144+
if [ -f $treedir/final.mdl ]; then
145+
echo "$treedir exists. Remove it or skip this stage."
146+
exit 1
147+
fi
148+
149+
steps/nnet3/chain/build_tree.sh --frame-subsampling-factor 3 \
150+
--context-opts "--context-width=2 --central-position=1" \
151+
--cmd "$train_cmd" 7000 data/$train_set $lang $lats_dir $treedir
152+
fi
153+
154+
if [ $stage -le 12 ]; then
155+
echo "$0: creating neural net configs using the xconfig parser";
156+
157+
num_targets=$(tree-info $treedir/tree |grep num-pdfs|awk '{print $2}')
158+
learning_rate_factor=$(echo "print 0.5/$xent_regularize" | python)
159+
lstm_opts="dropout-proportion=0.0 decay-time=40"
160+
161+
relu_dim=1024
162+
cell_dim=1024
163+
projection_dim=256
164+
165+
mkdir -p $dir/configs
166+
cat <<EOF > $dir/configs/network.xconfig
167+
input dim=100 name=ivector
168+
input dim=40 name=input
169+
170+
# please note that it is important to have input layer with the name=input
171+
# as the layer immediately preceding the fixed-affine-layer to enable
172+
# the use of short notation for the descriptor
173+
fixed-affine-layer name=lda input=Append(-2,-1,0,1,2,ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat
174+
175+
# the first splicing is moved before the lda layer, so no splicing here
176+
relu-batchnorm-layer name=tdnn1 dim=$relu_dim
177+
relu-batchnorm-layer name=tdnn2 input=Append(-1,0,1) dim=$relu_dim
178+
relu-batchnorm-layer name=tdnn3 input=Append(-1,0,1) dim=$relu_dim
179+
180+
# check steps/libs/nnet3/xconfig/lstm.py for the other options and defaults
181+
fast-lstmp-layer name=lstm1 cell-dim=$cell_dim recurrent-projection-dim=$projection_dim non-recurrent-projection-dim=$projection_dim delay=-3 $lstm_opts
182+
relu-batchnorm-layer name=tdnn4 input=Append(-3,0,3) dim=$relu_dim
183+
relu-batchnorm-layer name=tdnn5 input=Append(-3,0,3) dim=$relu_dim
184+
fast-lstmp-layer name=lstm2 cell-dim=$cell_dim recurrent-projection-dim=$projection_dim non-recurrent-projection-dim=$projection_dim delay=-3 $lstm_opts
185+
relu-batchnorm-layer name=tdnn6 input=Append(-3,0,3) dim=$relu_dim
186+
relu-batchnorm-layer name=tdnn7 input=Append(-3,0,3) dim=$relu_dim
187+
fast-lstmp-layer name=lstm3 cell-dim=$cell_dim recurrent-projection-dim=$projection_dim non-recurrent-projection-dim=$projection_dim delay=-3 $lstm_opts
188+
189+
## adding the layers for chain branch
190+
output-layer name=output input=lstm3 output-delay=$label_delay include-log-softmax=false dim=$num_targets max-change=1.5
191+
192+
# adding the layers for xent branch
193+
# This block prints the configs for a separate output that will be
194+
# trained with a cross-entropy objective in the 'chain' models... this
195+
# has the effect of regularizing the hidden parts of the model. we use
196+
# 0.5 / args.xent_regularize as the learning rate factor- the factor of
197+
# 0.5 / args.xent_regularize is suitable as it means the xent
198+
# final-layer learns at a rate independent of the regularization
199+
# constant; and the 0.5 was tuned so as to make the relative progress
200+
# similar in the xent and regular final layers.
201+
output-layer name=output-xent input=lstm3 output-delay=$label_delay dim=$num_targets learning-rate-factor=$learning_rate_factor max-change=1.5
202+
203+
EOF
204+
steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/
205+
fi
206+
207+
if [ $stage -le 13 ]; then
208+
if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then
209+
utils/create_split_dir.pl \
210+
/export/b0{5,6,7,8}/$USER/kaldi-data/egs/multi-en-$(date +'%m_%d_%H_%M')/s5/$dir/egs/storage $dir/egs/storage
211+
fi
212+
213+
steps/nnet3/chain/train.py --stage $train_stage \
214+
--cmd "$decode_cmd" \
215+
--feat.online-ivector-dir exp/$multi/nnet3${nnet3_affix}/ivectors_${train_set} \
216+
--feat.cmvn-opts "--norm-means=false --norm-vars=false" \
217+
--chain.xent-regularize $xent_regularize \
218+
--chain.leaky-hmm-coefficient 0.1 \
219+
--chain.l2-regularize 0.00005 \
220+
--chain.apply-deriv-weights false \
221+
--chain.lm-opts="--num-extra-lm-states=2000" \
222+
--trainer.num-chunk-per-minibatch 64,32 \
223+
--trainer.frames-per-iter 1500000 \
224+
--trainer.max-param-change 2.0 \
225+
--trainer.num-epochs $num_epochs \
226+
--trainer.optimization.shrink-value 0.99 \
227+
--trainer.optimization.num-jobs-initial 3 \
228+
--trainer.optimization.num-jobs-final 16 \
229+
--trainer.optimization.initial-effective-lrate 0.001 \
230+
--trainer.optimization.final-effective-lrate 0.0001 \
231+
--trainer.dropout-schedule=$dropout_schedule \
232+
--trainer.optimization.momentum 0.0 \
233+
--trainer.deriv-truncate-margin 8 \
234+
--egs.stage $get_egs_stage \
235+
--egs.opts "--frames-overlap-per-eg 0" \
236+
--egs.chunk-width $frames_per_chunk \
237+
--egs.chunk-left-context $chunk_left_context \
238+
--egs.chunk-right-context $chunk_right_context \
239+
--egs.chunk-left-context-initial 0 \
240+
--egs.chunk-right-context-final 0 \
241+
--egs.dir "$common_egs_dir" \
242+
--cleanup.remove-egs $remove_egs \
243+
--feat-dir data/${train_set}_hires \
244+
--tree-dir $treedir \
245+
--lat-dir $lats_dir \
246+
--dir $dir || exit 1;
247+
fi
248+
249+
lang_suffix=${lang_dir##*lang}
250+
251+
if [ $stage -le 14 ]; then
252+
# Note: it might appear that this $lang directory is mismatched, and it is as
253+
# far as the 'topo' is concerned, but this script doesn't read the 'topo' from
254+
# the lang directory.
255+
utils/mkgraph.sh --self-loop-scale 1.0 $lang_dir \
256+
$dir $dir/graph${lang_suffix}
257+
fi
258+
259+
graph_dir=$dir/graph${lang_suffix}
260+
if [ $stage -le 15 ]; then
261+
iter_opts=
262+
[ -z $extra_left_context ] && extra_left_context=$chunk_left_context;
263+
[ -z $extra_right_context ] && extra_right_context=$chunk_right_context;
264+
if [ ! -z $decode_iter ]; then
265+
iter_opts=" --iter $decode_iter "
266+
fi
267+
for decode_set in eval2000 rt03; do
268+
(
269+
steps/nnet3/decode.sh --acwt 1.0 --post-decode-acwt 10.0 \
270+
--nj 50 --cmd "$decode_cmd" $iter_opts \
271+
--extra-left-context $extra_left_context \
272+
--extra-right-context $extra_right_context \
273+
--extra-left-context-initial 0 \
274+
--extra-right-context-final 0 \
275+
--frames-per-chunk "$frames_per_chunk_primary" \
276+
--online-ivector-dir exp/$multi/nnet3${nnet3_affix}/ivectors_${decode_set} \
277+
$graph_dir data/${decode_set}_hires \
278+
$dir/decode${lang_suffix}_${decode_set}${decode_dir_affix:+_$decode_dir_affix}${decode_iter:+_iter$decode_iter}
279+
280+
steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" \
281+
$lang_dir $rescore_lang_dir data/${decode_set}_hires \
282+
$dir/decode${lang_suffix}_${decode_set}${decode_dir_affix:+_$decode_dir_affix}{,_fg}${decode_iter:+_iter$decode_iter} || exit 1;
283+
) &
284+
done
285+
fi
286+
wait;
287+
288+
if $test_online_decoding && [ $stage -le 16 ]; then
289+
# note: if the features change (e.g. you add pitch features), you will have to
290+
# change the options of the following command line.
291+
steps/online/nnet3/prepare_online_decoding.sh \
292+
--mfcc-config conf/mfcc_hires.conf \
293+
$lang exp/nnet3/extractor $dir ${dir}_online
294+
295+
rm $dir/.error 2>/dev/null || true
296+
for decode_set in train_dev eval2000; do
297+
(
298+
# note: we just give it "$decode_set" as it only uses the wav.scp, the
299+
# feature type does not matter.
300+
301+
steps/online/nnet3/decode.sh --nj $decode_nj --cmd "$decode_cmd" $iter_opts \
302+
--acwt 1.0 --post-decode-acwt 10.0 \
303+
$graph_dir data/${decode_set}_hires \
304+
${dir}_online/decode_${decode_set}${decode_iter:+_$decode_iter}_sw1_tg || exit 1;
305+
if $has_fisher; then
306+
steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" \
307+
data/lang_sw1_{tg,fsh_fg} data/${decode_set}_hires \
308+
${dir}_online/decode_${decode_set}${decode_iter:+_$decode_iter}_sw1_{tg,fsh_fg} || exit 1;
309+
fi
310+
) || touch $dir/.error &
311+
done
312+
wait
313+
if [ -f $dir/.error ]; then
314+
echo "$0: something went wrong in online decoding"
315+
exit 1
316+
fi
317+
fi
318+
319+
exit 0;

0 commit comments

Comments
 (0)