
Geospatial Queries using
Python and MongoDB

Submitted by
Siddharth Kumar Yadav
(0701CS191059)

Submitted to
Rekha Singh
[Assistant Professor
 Python Programming]

PROJECT OVERVIEW

Searching of Available Stores within a particular radius of circle

Our project revolves around building a fast solution to achieve the aim using Python

by implementing basic syntaxes,loops,functions and some other libraries

Techstack used :
1) Python -> Backend
2) Javascript -> UI
3) MongoDB -> Storage

Use case
1) For delivery ranges
2) For security purposes & triggering alerts
3) Location Tracking, many more…

What is API?
Application programming
interfaces, or APIs, simplify
software development and
innovation by enabling applications
to exchange data and functionality
easily and securely.
Source : IBM

Flask is a micro web framework
written in Python. It is classified as a
microframework because it does not
require particular tools or libraries.

What is Flask?

MongoDB is a document database
with the scalability and flexibility that
you want with the querying and
indexing that you need. (NoSQL
Database)

What is MongoDB?

Environment Setup
● Setting up a MongoDB cluster on cloud

● Inserting some random data in database

● Basic Installation of Python & MongoDB

● Single Page web UI application with a search box

https://python-lab-project-sky-uecu.surge.sh/

API : Searching of Available Stores within particular radius of circle

 Approach 1 : Traverse the documents of the collections and for each records we find the distance

between the user Current Location and store Coordinates and check weather its inside or outside the

provided range and eventually return them

 Approach 2: Using Inbuilt Geospatial Queries support for MongoDB

Approach 2 helped us to reduce the response time by 55% (173ms - 78ms)
—------------------- * 100 % = 54.91%
 (173ms)

Analysis for Approach 1

def is_inside(x1,y1,x2,y2):
 # approximate radius of earth in km
 R = 6373.0
 lat1 = radians(x1)
 lon1 = radians(y1)
 lat2 = radians(x2)
 lon2 = radians(y2)
 dlon = lon2 - lon1
 dlat = lat2 - lat1
 a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) *
sin(dlon / 2)**2
 c = 2 * atan2(sqrt(a), sqrt(1 - a))
 distance = R * c
 # print("Result:", distance,"Km")
 return distance

http://www.youtube.com/watch?v=Bn9Nw7hr8_0

Geospatial Queries

These is an inbuilt feature available in MongoDB to perform filter on coordinates , providing programmer a flexibility to
focus more on business logic then writing computation logics at server, its fast optimized and requires less code

With this approach we first create a Index in MongoDB (indexes are used to product fast output for find commands it uses
pointers to prepare a list of fields on which basis index was created for) , with reference to a field in document location field
in our case & then we execute the query

● With Older approach we have to write a function to find distances and filter the records which occupies server space
& memory as python function is getting called, but with geospatial queries entire filtering and execution is done on
MongoDB cluster

● Fast response

Analysis for Approach 2 & Comparison with Approach 1
Index Creation
db.storesAgain.create_index([("location", GEOSPHERE)])

def index2():

 args = request.args

 radius = float(args.get("radius"))

 latitude = float(args.get("lat"))

 longitude = float(args.get("lng"))

 if radius is None or latitude is None or longitude is None:

 return jsonify({"success": False, "message": "Please enter

valid radius,lat and lng field in query"})

 records = (db.storesAgain.find({"location": {"$geoWithin": {

 "$centerSphere": [[latitude,longitude], (radius)/6371]}}}))

 ans = []

 for store in records:

 store['_id'] = str(store['_id'])

 ans.append(store)

 return jsonify({"data": ans})

http://www.youtube.com/watch?v=7Lfo-LJbu90

Outcome

● Learnt to implement syntaxes , loops , functions , working with flask , parameter retrieval from

query of an end point,

● Reading MongoDB and mongo lib

● Performing Deployment to heroku

● Using rsuite - ReactJS frontend framework for Frontend,

● working with Google Maps Javascript library

Hosted Links References

https://pymongo.readthedocs.io/en/stable/

examples/geo.html

https://www.npmjs.com/package/google-ma

ps-react

Frontend
https://python-lab-project-sky-uecu.surge.sh/

Backend
https://python-project-sky.herokuapp.com/

[Github Repository Link]

https://pymongo.readthedocs.io/en/stable/examples/geo.html
https://pymongo.readthedocs.io/en/stable/examples/geo.html
https://www.npmjs.com/package/google-maps-react
https://www.npmjs.com/package/google-maps-react
https://python-lab-project-sky-uecu.surge.sh/
https://python-project-sky.herokuapp.com
https://github.com/sky107/python-lab-project-sky

