You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
#### dgemv( ord, trans, M, N, α, A, LDA, x, sx, β, y, sy )
33
+
#### dgemv( order, trans, M, N, α, A, LDA, x, sx, β, y, sy )
34
34
35
35
Performs one of the matrix-vector operations `y = α*A*x + β*y` or `y = α*A**T*x + β*y`, where `α` and `β` are scalars, `x` and `y` are vectors, and `A` is an `M` by `N` matrix.
36
36
@@ -47,18 +47,18 @@ dgemv( 'row-major', 'no-transpose', 2, 3, 1.0, A, 3, x, 1, 1.0, y, 1 );
47
47
48
48
The function has the following parameters:
49
49
50
-
-**ord**: storage layout.
50
+
-**order**: storage layout.
51
51
-**trans**: specifies whether `A` should be transposed, conjugate-transposed, or not transposed.
52
52
-**M**: number of rows in the matrix `A`.
53
53
-**N**: number of columns in the matrix `A`.
54
54
-**α**: scalar constant.
55
55
-**A**: input matrix stored in linear memory as a [`Float64Array`][mdn-float64array].
56
56
-**lda**: stride of the first dimension of `A` (leading dimension of `A`).
#### dgemv.ndarray( trans, M, N, α, A, sa1, sa2, oa, x, sx, ox, β, y, sy, oy )
97
99
98
100
Performs one of the matrix-vector operations `y = α*A*x + β*y` or `y = α*A**T*x + β*y`, using alternative indexing semantics and where `α` and `β` are scalars, `x` and `y` are vectors, and `A` is an `M` by `N` matrix.
@@ -199,18 +201,73 @@ console.log( y );
199
201
#include"stdlib/blas/base/dgemv.h"
200
202
```
201
203
202
-
#### TODO
204
+
#### c_dgemv( layout, trans, M, N, alpha, \*A, LDA, \*X, strideX, beta, \*Y, strideY )
203
205
204
-
TODO.
206
+
Performs one of the matrix-vector operations `y = α*A*x + β*y` or `y = α*A^T*x + β*y`, where `α` and `β` are scalars, `x` and `y` are vectors, and `A` is an `M` by `N` matrix.
#### c_dgemv_ndarray( trans, M, N, alpha, \*A, sa1, sa2, oa, \*X, sx, ox, beta, \*Y, sy, oy )
238
+
239
+
Performs one of the matrix-vector operations `y = α*A*x + β*y` or `y = α*A^T*x + β*y`, using indexing alternative semantics and where `α` and `β` are scalars, `x` and `y` are vectors, and `A` is an `M` by `N` matrix.
0 commit comments