Skip to content

Commit 9be80f4

Browse files
Merge branch 'main' into add-flax-pytorch-conversion
2 parents 5973e43 + ca74951 commit 9be80f4

37 files changed

+1757
-242
lines changed

.github/workflows/pr_tests.yml

Lines changed: 12 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -41,4 +41,15 @@ jobs:
4141
4242
- name: Run all non-slow selected tests on CPU
4343
run: |
44-
python -m pytest -n 2 --max-worker-restart=0 --dist=loadfile -s tests/
44+
python -m pytest -n 2 --max-worker-restart=0 --dist=loadfile -s -v --make-reports=tests_torch_cpu tests/
45+
46+
- name: Failure short reports
47+
if: ${{ failure() }}
48+
run: cat reports/tests_torch_cpu_failures_short.txt
49+
50+
- name: Test suite reports artifacts
51+
if: ${{ always() }}
52+
uses: actions/upload-artifact@v2
53+
with:
54+
name: pr_torch_test_reports
55+
path: reports

.github/workflows/push_tests.yml

Lines changed: 12 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -49,4 +49,15 @@ jobs:
4949
env:
5050
HUGGING_FACE_HUB_TOKEN: ${{ secrets.HUGGING_FACE_HUB_TOKEN }}
5151
run: |
52-
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s tests/
52+
python -m pytest -n 1 --max-worker-restart=0 --dist=loadfile -s -v --make-reports=tests_torch_gpu tests/
53+
54+
- name: Failure short reports
55+
if: ${{ failure() }}
56+
run: cat reports/tests_torch_gpu_failures_short.txt
57+
58+
- name: Test suite reports artifacts
59+
if: ${{ always() }}
60+
uses: actions/upload-artifact@v2
61+
with:
62+
name: push_torch_test_reports
63+
path: reports

_typos.toml

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -4,8 +4,9 @@
44
[default.extend-identifiers]
55

66
[default.extend-words]
7-
NIN_="NIN" # NIN is used in scripts/convert_ncsnpp_original_checkpoint_to_diffusers.py
7+
NIN="NIN" # NIN is used in scripts/convert_ncsnpp_original_checkpoint_to_diffusers.py
88
nd="np" # nd may be np (numpy)
9+
parms="parms" # parms is used in scripts/convert_original_stable_diffusion_to_diffusers.py
910

1011

1112
[files]

examples/community/README.md

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -2,5 +2,6 @@
22

33
**Community** examples consist of both inference and training examples that have been added by the community.
44

5-
| Example | Description | Author | |
6-
|:----------|:-------------|:-------------|------:|
5+
| Example | Description | Author | Colab |
6+
|:----------|:----------------------|:-----------------|----------:|
7+
| CLIP Guided Stable Diffusion | Doing CLIP guidance for text to image generation with Stable Diffusion| [Suraj Patil](https://github.com/patil-suraj/) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/CLIP_Guided_Stable_diffusion_with_diffusers.ipynb) |
Lines changed: 321 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,321 @@
1+
import inspect
2+
from typing import List, Optional, Union
3+
4+
import torch
5+
from torch import nn
6+
from torch.nn import functional as F
7+
8+
from diffusers import AutoencoderKL, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNet2DConditionModel
9+
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
10+
from torchvision import transforms
11+
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer
12+
13+
14+
class MakeCutouts(nn.Module):
15+
def __init__(self, cut_size, cut_power=1.0):
16+
super().__init__()
17+
18+
self.cut_size = cut_size
19+
self.cut_power = cut_power
20+
21+
def forward(self, pixel_values, num_cutouts):
22+
sideY, sideX = pixel_values.shape[2:4]
23+
max_size = min(sideX, sideY)
24+
min_size = min(sideX, sideY, self.cut_size)
25+
cutouts = []
26+
for _ in range(num_cutouts):
27+
size = int(torch.rand([]) ** self.cut_power * (max_size - min_size) + min_size)
28+
offsetx = torch.randint(0, sideX - size + 1, ())
29+
offsety = torch.randint(0, sideY - size + 1, ())
30+
cutout = pixel_values[:, :, offsety : offsety + size, offsetx : offsetx + size]
31+
cutouts.append(F.adaptive_avg_pool2d(cutout, self.cut_size))
32+
return torch.cat(cutouts)
33+
34+
35+
def spherical_dist_loss(x, y):
36+
x = F.normalize(x, dim=-1)
37+
y = F.normalize(y, dim=-1)
38+
return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2)
39+
40+
41+
def set_requires_grad(model, value):
42+
for param in model.parameters():
43+
param.requires_grad = value
44+
45+
46+
class CLIPGuidedStableDiffusion(DiffusionPipeline):
47+
"""CLIP guided stable diffusion based on the amazing repo by @crowsonkb and @Jack000
48+
- https://github.com/Jack000/glid-3-xl
49+
- https://github.dev/crowsonkb/k-diffusion
50+
"""
51+
52+
def __init__(
53+
self,
54+
vae: AutoencoderKL,
55+
text_encoder: CLIPTextModel,
56+
clip_model: CLIPModel,
57+
tokenizer: CLIPTokenizer,
58+
unet: UNet2DConditionModel,
59+
scheduler: Union[PNDMScheduler, LMSDiscreteScheduler],
60+
feature_extractor: CLIPFeatureExtractor,
61+
):
62+
super().__init__()
63+
scheduler = scheduler.set_format("pt")
64+
self.register_modules(
65+
vae=vae,
66+
text_encoder=text_encoder,
67+
clip_model=clip_model,
68+
tokenizer=tokenizer,
69+
unet=unet,
70+
scheduler=scheduler,
71+
feature_extractor=feature_extractor,
72+
)
73+
74+
self.normalize = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std)
75+
self.make_cutouts = MakeCutouts(feature_extractor.size)
76+
77+
set_requires_grad(self.text_encoder, False)
78+
set_requires_grad(self.clip_model, False)
79+
80+
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
81+
if slice_size == "auto":
82+
# half the attention head size is usually a good trade-off between
83+
# speed and memory
84+
slice_size = self.unet.config.attention_head_dim // 2
85+
self.unet.set_attention_slice(slice_size)
86+
87+
def disable_attention_slicing(self):
88+
self.enable_attention_slicing(None)
89+
90+
def freeze_vae(self):
91+
set_requires_grad(self.vae, False)
92+
93+
def unfreeze_vae(self):
94+
set_requires_grad(self.vae, True)
95+
96+
def freeze_unet(self):
97+
set_requires_grad(self.unet, False)
98+
99+
def unfreeze_unet(self):
100+
set_requires_grad(self.unet, True)
101+
102+
@torch.enable_grad()
103+
def cond_fn(
104+
self,
105+
latents,
106+
timestep,
107+
index,
108+
text_embeddings,
109+
noise_pred_original,
110+
text_embeddings_clip,
111+
clip_guidance_scale,
112+
num_cutouts,
113+
use_cutouts=True,
114+
):
115+
latents = latents.detach().requires_grad_()
116+
117+
if isinstance(self.scheduler, LMSDiscreteScheduler):
118+
sigma = self.scheduler.sigmas[index]
119+
# the model input needs to be scaled to match the continuous ODE formulation in K-LMS
120+
latent_model_input = latents / ((sigma**2 + 1) ** 0.5)
121+
else:
122+
latent_model_input = latents
123+
124+
# predict the noise residual
125+
noise_pred = self.unet(latent_model_input, timestep, encoder_hidden_states=text_embeddings).sample
126+
127+
if isinstance(self.scheduler, PNDMScheduler):
128+
alpha_prod_t = self.scheduler.alphas_cumprod[timestep]
129+
beta_prod_t = 1 - alpha_prod_t
130+
# compute predicted original sample from predicted noise also called
131+
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
132+
pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5)
133+
134+
fac = torch.sqrt(beta_prod_t)
135+
sample = pred_original_sample * (fac) + latents * (1 - fac)
136+
elif isinstance(self.scheduler, LMSDiscreteScheduler):
137+
sigma = self.scheduler.sigmas[index]
138+
sample = latents - sigma * noise_pred
139+
else:
140+
raise ValueError(f"scheduler type {type(self.scheduler)} not supported")
141+
142+
sample = 1 / 0.18215 * sample
143+
image = self.vae.decode(sample).sample
144+
image = (image / 2 + 0.5).clamp(0, 1)
145+
146+
if use_cutouts:
147+
image = self.make_cutouts(image, num_cutouts)
148+
else:
149+
image = transforms.Resize(self.feature_extractor.size)(image)
150+
image = self.normalize(image)
151+
152+
image_embeddings_clip = self.clip_model.get_image_features(image).float()
153+
image_embeddings_clip = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=True)
154+
155+
if use_cutouts:
156+
dists = spherical_dist_loss(image_embeddings_clip, text_embeddings_clip)
157+
dists = dists.view([num_cutouts, sample.shape[0], -1])
158+
loss = dists.sum(2).mean(0).sum() * clip_guidance_scale
159+
else:
160+
loss = spherical_dist_loss(image_embeddings_clip, text_embeddings_clip).mean() * clip_guidance_scale
161+
162+
grads = -torch.autograd.grad(loss, latents)[0]
163+
164+
if isinstance(self.scheduler, LMSDiscreteScheduler):
165+
latents = latents.detach() + grads * (sigma**2)
166+
noise_pred = noise_pred_original
167+
else:
168+
noise_pred = noise_pred_original - torch.sqrt(beta_prod_t) * grads
169+
return noise_pred, latents
170+
171+
@torch.no_grad()
172+
def __call__(
173+
self,
174+
prompt: Union[str, List[str]],
175+
height: Optional[int] = 512,
176+
width: Optional[int] = 512,
177+
num_inference_steps: Optional[int] = 50,
178+
guidance_scale: Optional[float] = 7.5,
179+
clip_guidance_scale: Optional[float] = 100,
180+
clip_prompt: Optional[Union[str, List[str]]] = None,
181+
num_cutouts: Optional[int] = 4,
182+
use_cutouts: Optional[bool] = True,
183+
generator: Optional[torch.Generator] = None,
184+
latents: Optional[torch.FloatTensor] = None,
185+
output_type: Optional[str] = "pil",
186+
return_dict: bool = True,
187+
):
188+
if isinstance(prompt, str):
189+
batch_size = 1
190+
elif isinstance(prompt, list):
191+
batch_size = len(prompt)
192+
else:
193+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
194+
195+
if height % 8 != 0 or width % 8 != 0:
196+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
197+
198+
# get prompt text embeddings
199+
text_input = self.tokenizer(
200+
prompt,
201+
padding="max_length",
202+
max_length=self.tokenizer.model_max_length,
203+
truncation=True,
204+
return_tensors="pt",
205+
)
206+
text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0]
207+
208+
if clip_guidance_scale > 0:
209+
if clip_prompt is not None:
210+
clip_text_input = self.tokenizer(
211+
clip_prompt,
212+
padding="max_length",
213+
max_length=self.tokenizer.model_max_length,
214+
truncation=True,
215+
return_tensors="pt",
216+
).input_ids.to(self.device)
217+
else:
218+
clip_text_input = text_input.input_ids.to(self.device)
219+
text_embeddings_clip = self.clip_model.get_text_features(clip_text_input)
220+
text_embeddings_clip = text_embeddings_clip / text_embeddings_clip.norm(p=2, dim=-1, keepdim=True)
221+
222+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
223+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
224+
# corresponds to doing no classifier free guidance.
225+
do_classifier_free_guidance = guidance_scale > 1.0
226+
# get unconditional embeddings for classifier free guidance
227+
if do_classifier_free_guidance:
228+
max_length = text_input.input_ids.shape[-1]
229+
uncond_input = self.tokenizer(
230+
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
231+
)
232+
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
233+
234+
# For classifier free guidance, we need to do two forward passes.
235+
# Here we concatenate the unconditional and text embeddings into a single batch
236+
# to avoid doing two forward passes
237+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
238+
239+
# get the initial random noise unless the user supplied it
240+
241+
# Unlike in other pipelines, latents need to be generated in the target device
242+
# for 1-to-1 results reproducibility with the CompVis implementation.
243+
# However this currently doesn't work in `mps`.
244+
latents_device = "cpu" if self.device.type == "mps" else self.device
245+
latents_shape = (batch_size, self.unet.in_channels, height // 8, width // 8)
246+
if latents is None:
247+
latents = torch.randn(
248+
latents_shape,
249+
generator=generator,
250+
device=latents_device,
251+
)
252+
else:
253+
if latents.shape != latents_shape:
254+
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
255+
latents = latents.to(self.device)
256+
257+
# set timesteps
258+
accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys())
259+
extra_set_kwargs = {}
260+
if accepts_offset:
261+
extra_set_kwargs["offset"] = 1
262+
263+
self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
264+
265+
# if we use LMSDiscreteScheduler, let's make sure latents are multiplied by sigmas
266+
if isinstance(self.scheduler, LMSDiscreteScheduler):
267+
latents = latents * self.scheduler.sigmas[0]
268+
269+
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)):
270+
# expand the latents if we are doing classifier free guidance
271+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
272+
if isinstance(self.scheduler, LMSDiscreteScheduler):
273+
sigma = self.scheduler.sigmas[i]
274+
# the model input needs to be scaled to match the continuous ODE formulation in K-LMS
275+
latent_model_input = latent_model_input / ((sigma**2 + 1) ** 0.5)
276+
277+
# # predict the noise residual
278+
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
279+
280+
# perform classifier free guidance
281+
if do_classifier_free_guidance:
282+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
283+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
284+
285+
# perform clip guidance
286+
if clip_guidance_scale > 0:
287+
text_embeddings_for_guidance = (
288+
text_embeddings.chunk(2)[0] if do_classifier_free_guidance else text_embeddings
289+
)
290+
noise_pred, latents = self.cond_fn(
291+
latents,
292+
t,
293+
i,
294+
text_embeddings_for_guidance,
295+
noise_pred,
296+
text_embeddings_clip,
297+
clip_guidance_scale,
298+
num_cutouts,
299+
use_cutouts,
300+
)
301+
302+
# compute the previous noisy sample x_t -> x_t-1
303+
if isinstance(self.scheduler, LMSDiscreteScheduler):
304+
latents = self.scheduler.step(noise_pred, i, latents).prev_sample
305+
else:
306+
latents = self.scheduler.step(noise_pred, t, latents).prev_sample
307+
308+
# scale and decode the image latents with vae
309+
latents = 1 / 0.18215 * latents
310+
image = self.vae.decode(latents).sample
311+
312+
image = (image / 2 + 0.5).clamp(0, 1)
313+
image = image.cpu().permute(0, 2, 3, 1).numpy()
314+
315+
if output_type == "pil":
316+
image = self.numpy_to_pil(image)
317+
318+
if not return_dict:
319+
return (image, None)
320+
321+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=None)

setup.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -85,7 +85,7 @@
8585
"flake8>=3.8.3",
8686
"flax>=0.4.1",
8787
"hf-doc-builder>=0.3.0",
88-
"huggingface-hub>=0.8.1",
88+
"huggingface-hub>=0.9.1",
8989
"importlib_metadata",
9090
"isort>=5.5.4",
9191
"jax>=0.2.8,!=0.3.2,<=0.3.6",

src/diffusers/__init__.py

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -65,6 +65,7 @@
6565
if is_flax_available():
6666
from .modeling_flax_utils import FlaxModelMixin
6767
from .models.unet_2d_condition_flax import FlaxUNet2DConditionModel
68+
from .models.vae_flax import FlaxAutoencoderKL
6869
from .schedulers import (
6970
FlaxDDIMScheduler,
7071
FlaxDDPMScheduler,

0 commit comments

Comments
 (0)