Open
Description
Hi! We are working on a textbook chapter on reachability analysis and are interested in support for intervals when using ForwardDiff.jl to compute gradients and hessians of functions that use the min
, max
, and clamp
. The current behavior with these functions does not cause an error but is incorrect. We have written the functions below to correct for this. These functions could be added to IntervalArithmeticForwardDiffExt.jl
.
function Base.max(x::Dual{T,V,N}, y::AbstractFloat) where {T,V<:Interval,N}
if value(x).hi < y
return Dual{T,V,N}(y..y, (0..0) * partials(x))
elseif value(x).lo > y
return Dual{T,V,N}(value(x), (1..1) * partials(x))
else
return Dual{T,V,N}(y..value(x).hi, (0..1) * partials(x))
end
end
function Base.max(x::Dual{T,Dual{T2,V2,N2},N}, y::AbstractFloat) where {T,T2,V2<:Interval,N2,N}
if value(value(x)).hi < y
return Dual{T,Dual{T2,V2,N2},N}(Dual{T2,V2,N2}(y..y), (0..0) * partials(x))
elseif value(value(x)).lo > y
return Dual{T,Dual{T2,V2,N2},N}(value(x), (1..1) * partials(x))
else
return Dual{T,Dual{T2,V2,N2},N}(Dual{T2,V2,N2}(y..value(value(x)).hi, partials(value(x))), (0..1) * partials(x))
end
end
function Base.min(x::Dual{T,V,N}, y::AbstractFloat) where {T,V<:Interval,N}
if value(x).lo > y
return Dual{T,V,N}(y..y, (0..0) * partials(x))
elseif value(x).hi < y
return Dual{T,V,N}(value(x), (1..1) * partials(x))
else
return Dual{T,V,N}(value(x).lo..y, (0..1) * partials(x))
end
end
function Base.min(x::Dual{T,Dual{T2,V2,N2},N}, y::AbstractFloat) where {T,T2,V2<:Interval,N2,N}
if value(value(x)).lo > y
return Dual{T,Dual{T2,V2,N2},N}(Dual{T2,V2,N2}(y..y), (0..0) * partials(x))
elseif value(value(x)).hi < y
return Dual{T,Dual{T2,V2,N2},N}(value(x), (1..1) * partials(x))
else
return Dual{T,Dual{T2,V2,N2},N}(Dual{T2,V2,N2}(value(value(x)).lo..y, partials(value(x))), (0..1) * partials(x))
end
end
function Base.clamp(i::Dual{T,V,N}, lo::AbstractFloat, hi::AbstractFloat) where {T,V<:Interval,N}
return min(max(i, lo), hi)
end
function Base.clamp(i::Dual{T,Dual{T2,V2,N2},N}, lo::AbstractFloat, hi::AbstractFloat) where {T,T2,V2<:Interval,N2,N}
return min(max(i, lo), hi)
end
Example:
function f(x)
return x[1]^2 + clamp(x[2], 1.5, 2.5)^3
end
ForwardDiff.hessian(f, [2..3, 1..2])
Current output:
2×2 Matrix{Interval{Float64}}:
[2, 2] [0, 0]
[0, 0] [6, 12]
Correct output using code above:
2×2 Matrix{Interval{Float64}}:
[2, 2] [0, 0]
[0, 0] [0, 12]
Metadata
Metadata
Assignees
Labels
No labels