Skip to content

Llava bug #704

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 6 commits into from
Sep 12, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 4 additions & 3 deletions deploy/llava/export_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,13 +30,13 @@ def export_encode_text(model, config, compute_dtype):


def export_encode_image(model, compute_dtype):

paddle.save(model.llama.image_newline,args.save_path + "/encode_image/clip/image_newline.pdparams")
# convert to static graph with specific input description
model = paddle.jit.to_static(
model.encode_images,
input_spec=[
paddle.static.InputSpec(shape=[None, 3, 336, 336], dtype=compute_dtype), # images
],
paddle.static.InputSpec(shape=[None,3, 336, 336], dtype=compute_dtype), # images
]
)

# save to static model
Expand Down Expand Up @@ -76,6 +76,7 @@ def export_encode_image(model, compute_dtype):
vision_tower = model.get_vision_tower()
vision_tower.load_model()
model.eval()

export_encode_image(model, compute_dtype)

elif args.encode_text:
Expand Down
99 changes: 88 additions & 11 deletions deploy/llava/run_static_predict.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,8 @@
IMAGE_TOKEN_INDEX,
)
from paddlemix.models.llava.conversation import conv_templates
from paddlemix.models.llava.mm_utils import load_image,get_anyres_image_grid_shape
from paddlemix.models.llava.base_model import unpad_image
from paddlemix.utils.log import logger


Expand All @@ -39,15 +41,20 @@ def __init__(self, args):

self.args = args
self.config = AutoConfigMIX.from_pretrained(args.model_name_or_path)
self.clip_config = AutoConfigMIX.from_pretrained(self.config.mm_vision_tower)


self.tokenizer = AutoTokenizerMIX.from_pretrained(args.model_name_or_path)
self.processor, _ = AutoProcessorMIX.from_pretrained(args.model_name_or_path, eval="eval")
self.processor, _ = AutoProcessorMIX.from_pretrained(args.model_name_or_path, image_aspect_ratio=self.config.image_aspect_ratio,eval="eval")

self.first_predictor = self.create_predictor(args.first_model_path)
print(f"first_model_path: {args.first_model_path}, {self.first_predictor}")

self.second_predictor = self.create_predictor(args.second_model_path)
print(f"second_model_path: {args.second_model_path}, {self.second_predictor}")

self.image_newline = paddle.load(os.path.join(args.first_model_path, "image_newline.pdparams"))

def create_predictor(self, model_path):

from paddlenlp.utils.import_utils import import_module
Expand Down Expand Up @@ -77,9 +84,79 @@ def create_predictor(self, model_path):
return predictor

@paddle.no_grad()
def encode_images(self, pixel_values):
language_model_inputs = self.first_predictor.run(pixel_values)
return language_model_inputs
def encode_images(self, images, image_sizes):
if type(images) is list or images.ndim == 5:
if type(images) is list:
images = [(x.unsqueeze(axis=0) if x.ndim == 3 else x) for x in images]
concat_images = paddle.concat(x=[image for image in images], axis=0)

image_features = self.first_predictor.run(concat_images)[0]

split_sizes = [image.shape[0] for image in images]
image_features = paddle.split(image_features, split_sizes, axis=0)
mm_patch_merge_type = getattr(self.config, "mm_patch_merge_type", "flat")
image_aspect_ratio = getattr(self.config, "image_aspect_ratio", "square")
if mm_patch_merge_type == "flat":
image_features = [x.flatten(start_axis=0, stop_axis=1) for x in image_features]
elif mm_patch_merge_type.startswith("spatial"):
new_image_features = []
for image_idx, image_feature in enumerate(image_features):
if image_feature.shape[0] > 1:
base_image_feature = image_feature[0]
image_feature = image_feature[1:]
height = width = self.clip_config.image_resolution // self.clip_config.vision_patch_size
assert height * width == base_image_feature.shape[0]
if image_aspect_ratio == "anyres":
num_patch_width, num_patch_height = get_anyres_image_grid_shape(
image_sizes[image_idx],
self.config.image_grid_pinpoints,
self.clip_config.image_resolution,
)

image_feature = paddle.reshape(
image_feature, (num_patch_height, num_patch_width, height, width, -1)
)
else:
raise NotImplementedError
if "unpad" in mm_patch_merge_type:
image_feature = image_feature.transpose(perm=[4, 0, 2, 1, 3])
image_feature = image_feature.flatten(start_axis=1, stop_axis=2).flatten(
start_axis=2, stop_axis=3
)
image_feature = unpad_image(image_feature, image_sizes[image_idx])
image_feature = paddle.concat(
x=(
image_feature,
self.image_newline[:, (None), (None)].expand(
shape=[*image_feature.shape[:-1], 1]
).astype(image_feature.dtype),
),
axis=-1,
)
x = image_feature.flatten(start_axis=1, stop_axis=2)
perm_12 = list(range(x.ndim))
perm_12[0] = 1
perm_12[1] = 0
image_feature = x.transpose(perm=perm_12)
else:
image_feature = image_feature.transpose(perm=[0, 2, 1, 3, 4])
image_feature = image_feature.flatten(start_axis=0, stop_axis=3)
image_feature = paddle.concat(x=(base_image_feature, image_feature), axis=0)
else:
image_feature = image_feature[0]
if "unpad" in mm_patch_merge_type:
image_feature = paddle.concat(
x=(image_feature, self.image_newline[None].to(image_feature.place)), axis=0
)
new_image_features.append(image_feature)
image_features = new_image_features
image_features = paddle.stack(x=image_features, axis=0)
else:
raise ValueError(f"Unexpected mm_patch_merge_type: {self.config.mm_patch_merge_type}")
else:
image_features = self.first_predictor.run(images)[0]

return image_features

@paddle.no_grad()
def generate_with_image_features(self, image_features, input_ids):
Expand Down Expand Up @@ -225,9 +302,9 @@ def pre_processing(self, inp, first_message):
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
record = {"image": self.args.image_file, "conversations": prompt}

image_size = load_image(args.image_file).size
data_dict = self.processor(record=record, image_aspect_ratio=self.config.image_aspect_ratio)

data_dict['image_size'] = [image_size]
return data_dict

def post_processing(self, generate_ids):
Expand All @@ -245,8 +322,8 @@ def run_benchmark(self):
inp = "user: Generate the caption in English with grounding"
data_dict = self.pre_processing(inp, first_message)
image = paddle.cast(data_dict["images"], self.compute_dtype)
image_features = self.encode_images(image)[0]

image_features = self.encode_images(image,data_dict['image_size'])

generate_ids, _ = self.generate_with_image_features(
image_features,
Expand Down Expand Up @@ -277,9 +354,9 @@ def predict(self):
print(f"{roles[1]}: ", end="")
data_dict = self.pre_processing(inp, first_message)
image = paddle.cast(data_dict["images"], self.compute_dtype)

image_features = self.encode_images(image)[0]

image_features = self.encode_images(image,data_dict['image_size'])
generate_ids, _ = self.generate_with_image_features(
image_features,
data_dict["input_ids"],
Expand Down
8 changes: 5 additions & 3 deletions paddlemix/models/llava/clip_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -947,6 +947,7 @@ def __init__(self, config: CLIPVisionConfig):
super().__init__()
self.config = config
embed_dim = config.hidden_size
self.embed_dim = embed_dim
self.input_resolution = config.image_size
self.class_embedding = self.create_parameter(
(embed_dim,),
Expand Down Expand Up @@ -1016,17 +1017,18 @@ def forward(
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
target_dtype = self.conv1.weight.dtype
pixel_values = self.conv1(pixel_values.cast(target_dtype))

# for to_static
pixel_values_shape = paddle.to_tensor(pixel_values.shape, dtype="int32")
pixel_values_shape = paddle.shape(pixel_values)

pixel_values = pixel_values.reshape(
(pixel_values_shape[0], pixel_values_shape[1], pixel_values_shape[2] * pixel_values_shape[3])
)
pixel_values = pixel_values.transpose((0, 2, 1))
embedding_output = paddle.concat(
[self.class_embedding.unsqueeze([0, 1]).expand([pixel_values.shape[0], -1, -1]), pixel_values], axis=1
[self.class_embedding.unsqueeze([0, 1]).expand([pixel_values_shape[0], -1, -1]), pixel_values], axis=1
)

hidden_states = embedding_output + self.positional_embedding.weight
hidden_states = self.ln_pre(hidden_states)

Expand Down