Skip to content

[DOC] Fix dead link #8662

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 5 commits into from
Jun 26, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
40 changes: 12 additions & 28 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,7 @@

* **2024.01.04 [PaddleNLP v2.7](https://github.com/PaddlePaddle/PaddleNLP/releases/tag/v2.7.1)**: 大模型体验全面升级,统一工具链大模型入口。统一预训练、精调、压缩、推理以及部署等环节的实现代码,到 `PaddleNLP/llm`目录。全新[大模型工具链文档](https://paddlenlp.readthedocs.io/zh/latest/llm/finetune.html),一站式指引用户从大模型入门到业务部署上线。全断点存储机制 Unified Checkpoint,大大提高大模型存储的通用性。高效微调升级,支持了高效微调+LoRA同时使用,支持了QLoRA等算法。

* **2023.08.15 [PaddleNLP v2.6](https://github.com/PaddlePaddle/PaddleNLP/releases/tag/v2.6.0)**: 发布[全流程大模型工具链](./llm),涵盖预训练,精调,压缩,推理以及部署等各个环节,为用户提供端到端的大模型方案和一站式的开发体验;内置[4D并行分布式Trainer](./docs/trainer.md),[高效微调算法LoRA/Prefix Tuning](./llm#33-lora), [自研INT8/INT4量化算法](./llm#6-量化)等等;全面支持[LLaMA 1/2](./llm/llama), [BLOOM](.llm/bloom), [ChatGLM 1/2](./llm/chatglm), [GLM](./llm/glm), [OPT](./llm/opt)等主流大模型
* **2023.08.15 [PaddleNLP v2.6](https://github.com/PaddlePaddle/PaddleNLP/releases/tag/v2.6.0)**: 发布[全流程大模型工具链](./llm),涵盖预训练,精调,压缩,推理以及部署等各个环节,为用户提供端到端的大模型方案和一站式的开发体验;内置[4D并行分布式Trainer](./docs/trainer.md),[高效微调算法LoRA/Prefix Tuning](./llm#33-lora), [自研INT8/INT4量化算法](./llm#6-量化)等等;全面支持[LLaMA 1/2](./llm/config/llama), [BLOOM](./llm/config/bloom), [ChatGLM 1/2](./llm/config/chatglm), [OPT](./llm/config/opt)等主流大模型


## 安装
Expand Down Expand Up @@ -103,8 +103,8 @@ PaddleNLP提供[一键预测功能](./docs/model_zoo/taskflow.md),无需训练

更多PaddleNLP内容可参考:
- [大模型全流程工具链](./llm),包含主流中文大模型的全流程方案。
- [精选模型库](./model_zoo),包含优质预训练模型的端到端全流程使用。
- [多场景示例](./examples),了解如何使用PaddleNLP解决NLP多种技术问题,包含基础技术、系统应用与拓展应用。
- [精选模型库](./legacy/model_zoo),包含优质预训练模型的端到端全流程使用。
- [多场景示例](./legacy/examples),了解如何使用PaddleNLP解决NLP多种技术问题,包含基础技术、系统应用与拓展应用。
- [交互式教程](https://aistudio.baidu.com/aistudio/personalcenter/thirdview/574995),在🆓免费算力平台AI Studio上快速学习PaddleNLP。


Expand Down Expand Up @@ -180,12 +180,12 @@ model = AutoModelForQuestionAnswering.from_pretrained('ernie-3.0-medium-zh')

覆盖从学术到产业的NLP应用示例,涵盖NLP基础技术、NLP系统应用以及拓展应用。全面基于飞桨核心框架2.0全新API体系开发,为开发者提供飞桨文本领域的最佳实践。

精选预训练模型示例可参考[Model Zoo](./model_zoo),更多场景示例文档可参考[examples目录](./examples)。更有免费算力支持的[AI Studio](https://aistudio.baidu.com)平台的[Notbook交互式教程](https://aistudio.baidu.com/aistudio/personalcenter/thirdview/574995)提供实践。
精选预训练模型示例可参考[Model Zoo](./legacy/model_zoo),更多场景示例文档可参考[examples目录](./legacy/examples)。更有免费算力支持的[AI Studio](https://aistudio.baidu.com)平台的[Notbook交互式教程](https://aistudio.baidu.com/aistudio/personalcenter/thirdview/574995)提供实践。

<details><summary> PaddleNLP预训练模型适用任务汇总(<b>点击展开详情</b>)</summary><div>

| Model | Sequence Classification | Token Classification | Question Answering | Text Generation | Multiple Choice |
| :----------------- | ----------------------- | -------------------- | ------------------ | --------------- | --------------- |
|:-------------------|-------------------------|----------------------|--------------------|-----------------|-----------------|
| ALBERT | ✅ | ✅ | ✅ | ❌ | ✅ |
| BART | ✅ | ✅ | ✅ | ✅ | ❌ |
| BERT | ✅ | ✅ | ✅ | ❌ | ✅ |
Expand Down Expand Up @@ -233,7 +233,7 @@ model = AutoModelForQuestionAnswering.from_pretrained('ernie-3.0-medium-zh')

### 产业级端到端系统范例

PaddleNLP针对信息抽取、语义检索、智能问答、情感分析等高频NLP场景,提供了端到端系统范例,打通*数据标注*-*模型训练*-*模型调优*-*预测部署*全流程,持续降低NLP技术产业落地门槛。更多详细的系统级产业范例使用说明请参考[Applications](./applications)。
PaddleNLP针对信息抽取、语义检索、智能问答、情感分析等高频NLP场景,提供了端到端系统范例,打通*数据标注*-*模型训练*-*模型调优*-*预测部署*全流程,持续降低NLP技术产业落地门槛。更多详细的系统级产业范例使用说明请参考[Applications](./legacy/applications)。

#### 🔍 语义检索系统

Expand All @@ -244,7 +244,7 @@ PaddleNLP针对信息抽取、语义检索、智能问答、情感分析等高
</div>


更多使用说明请参考[语义检索系统](./applications/neural_search)。
更多使用说明请参考[语义检索系统](./legacy/applications/neural_search)。

#### ❓ 智能问答系统

Expand All @@ -255,7 +255,7 @@ PaddleNLP针对信息抽取、语义检索、智能问答、情感分析等高
</div>


更多使用说明请参考[智能问答系统](./applications/question_answering)与[文档智能问答](./applications/document_intelligence/doc_vqa)
更多使用说明请参考[智能问答系统](./legacy/applications/question_answering)与[文档智能问答](https://github.com/PaddlePaddle/PaddleNLP/tree/release/2.8/applications/document_intelligence/doc_vqa)

#### 💌 评论观点抽取与情感分析

Expand All @@ -265,44 +265,28 @@ PaddleNLP针对信息抽取、语义检索、智能问答、情感分析等高
<img src="https://user-images.githubusercontent.com/11793384/168407260-b7f92800-861c-4207-98f3-2291e0102bbe.png" width="400">
</div>

更多使用说明请参考[情感分析](./applications/sentiment_analysis)。
更多使用说明请参考[情感分析](https://github.com/PaddlePaddle/PaddleNLP/tree/release/2.8/applications/sentiment_analysis)。

#### 🎙️ 智能语音指令解析

集成了[PaddleSpeech](https://github.com/PaddlePaddle/PaddleSpeech)和[百度开放平台](https://ai.baidu.com/)的语音识别和[UIE](./model_zoo/uie)通用信息抽取等技术,打造智能一体化的语音指令解析系统范例,该方案可应用于智能语音填单、智能语音交互、智能语音检索等场景,提高人机交互效率。
集成了[PaddleSpeech](https://github.com/PaddlePaddle/PaddleSpeech)和[百度开放平台](https://ai.baidu.com/)的语音识别和[UIE](./legacy/model_zoo/uie)通用信息抽取等技术,打造智能一体化的语音指令解析系统范例,该方案可应用于智能语音填单、智能语音交互、智能语音检索等场景,提高人机交互效率。

<div align="center">
<img src="https://user-images.githubusercontent.com/16698950/168589100-a6c6f346-97bb-47b2-ac26-8d50e71fddc5.png" width="400">
</div>

更多使用说明请参考[智能语音指令解析](./applications/speech_cmd_analysis)。
更多使用说明请参考[智能语音指令解析](https://github.com/PaddlePaddle/PaddleNLP/tree/release/2.8/applications/speech_cmd_analysis)。

### 高性能分布式训练与推理

#### ⚡️ FastGeneration:高性能生成加速库

<div align="center">
<img src="https://user-images.githubusercontent.com/11793384/168407831-914dced0-3a5a-40b8-8a65-ec82bf13e53c.gif" width="400">
</div>

```python
model = GPTLMHeadModel.from_pretrained('gpt-cpm-large-cn')
...
outputs, _ = model.generate(
input_ids=inputs_ids, max_length=10, decode_strategy='greedy_search',
use_fast=True)
```

简单地在`generate()`API上打开`use_fast=True`选项,轻松在Transformer、GPT、BART、PLATO、UniLM等生成式预训练模型上获得5倍以上GPU加速,更多使用说明可参考[FastGeneration文档](./fast_generation)。

#### 🚀 Fleet:飞桨4D混合并行分布式训练技术

<div align="center">
<img src="https://user-images.githubusercontent.com/11793384/168515134-513f13e0-9902-40ef-98fa-528271dcccda.png" width="300">
</div>


更多关于千亿级AI模型的分布式训练使用说明可参考[GPT-3](./examples/language_model/gpt-3)。
更多关于千亿级AI模型的分布式训练使用说明可参考[GPT-3](./legacy/model_zoo/gpt-3)。

## 社区交流

Expand Down
33 changes: 8 additions & 25 deletions README_en.md
Original file line number Diff line number Diff line change
Expand Up @@ -25,8 +25,7 @@

* **2024.01.04 [PaddleNLP v2.7](https://github.com/PaddlePaddle/PaddleNLP/releases/tag/v2.7.0)**: The LLM experience is fully upgraded, and the tool chain LLM entrance is unified. Unify the implementation code of pre-training, fine-tuning, compression, inference and deployment to the `PaddleNLP/llm` directory. The new [LLM Toolchain Documentation](https://paddlenlp.readthedocs.io/zh/latest/llm/finetune.html) provides one-stop guidance for users from getting started with LLM to business deployment and launch. The full breakpoint storage mechanism Unified Checkpoint greatly improves the versatility of LLM storage. Efficient fine-tuning upgrade supports the simultaneous use of efficient fine-tuning + LoRA, and supports QLoRA and other algorithms.

* **2023.08.15 [PaddleNLP v2.6](https://github.com/PaddlePaddle/PaddleNLP/releases/tag/v2.6.0)**: Release [Full-process LLM toolchain](./llm) , covering all aspects of pre-training, fine-tuning, compression, inference and deployment, providing users with end-to-end LLM solutions and one-stop development experience; built-in [4D parallel distributed Trainer](./docs/trainer.md ), [Efficient fine-tuning algorithm LoRA/Prefix Tuning](./llm#33-lora), [Self-developed INT8/INT4 quantization algorithm](./llm#6-quantization), etc.; fully supports [LLaMA 1/2](./llm/llama), [BLOOM](.llm/bloom), [ChatGLM 1/2](./llm/chatglm), [GLM](./llm/glm), [OPT](./llm/opt) and other mainstream LLMs.

* **2023.08.15 [PaddleNLP v2.6](https://github.com/PaddlePaddle/PaddleNLP/releases/tag/v2.6.0)**: Release [Full-process LLM toolchain](./llm) , covering all aspects of pre-training, fine-tuning, compression, inference and deployment, providing users with end-to-end LLM solutions and one-stop development experience; built-in [4D parallel distributed Trainer](./docs/trainer.md ), [Efficient fine-tuning algorithm LoRA/Prefix Tuning](./llm/README.md#2-%E7%B2%BE%E8%B0%83), [Self-developed INT8/INT4 quantization algorithm](./llm/README.md#4-%E9%87%8F%E5%8C%96), etc.; fully supports [LLaMA 1/2](./llm/config/llama), [BLOOM](./llm/config/bloom), [ChatGLM 1/2](./llm/config/chatglm), [OPT](./llm/config/opt) and other mainstream LLMs.

## Installation

Expand Down Expand Up @@ -119,7 +118,7 @@ model = AutoModelForQuestionAnswering.from_pretrained('ernie-3.0-medium-zh')

#### Wide-range NLP Task Support

PaddleNLP provides rich examples covering mainstream NLP task to help developers accelerate problem solving. You can find our powerful transformer [Model Zoo](./model_zoo), and wide-range NLP application [examples](./examples) with detailed instructions.
PaddleNLP provides rich examples covering mainstream NLP task to help developers accelerate problem solving. You can find our powerful transformer [Model Zoo](./legacy/model_zoo), and wide-range NLP application [examples](./legacy/examples) with detailed instructions.

Also you can run our interactive [Notebook tutorial](https://aistudio.baidu.com/aistudio/personalcenter/thirdview/574995) on AI Studio, a powerful platform with **FREE** computing resource.

Expand Down Expand Up @@ -176,7 +175,7 @@ For more pretrained model usage, please refer to [Transformer API Docs](./docs/m

We provide high value scenarios including information extraction, semantic retrieval, question answering high-value.

For more details industrial cases please refer to [Applications](./applications).
For more details industrial cases please refer to [Applications](./legacy/applications).


#### 🔍 Neural Search System
Expand All @@ -186,7 +185,7 @@ For more details industrial cases please refer to [Applications](./applications)
</div>


For more details please refer to [Neural Search](./applications/neural_search).
For more details please refer to [Neural Search](./legacy/applications/neural_search).

#### ❓ Question Answering System

Expand All @@ -197,7 +196,7 @@ We provide question answering pipeline which can support FAQ system, Document-le
</div>


For more details please refer to [Question Answering](./applications/question_answering) and [Document VQA](./applications/document_intelligence/doc_vqa).
For more details please refer to [Question Answering](./legacy/applications/question_answering) and [Document VQA](https://github.com/PaddlePaddle/PaddleNLP/tree/release/2.8/applications/document_intelligence/doc_vqa).


#### 💌 Opinion Extraction and Sentiment Analysis
Expand All @@ -209,7 +208,7 @@ We build an opinion extraction system for product review and fine-grained sentim
</div>


For more details please refer to [Sentiment Analysis](./applications/sentiment_analysis).
For more details please refer to [Sentiment Analysis](https://github.com/PaddlePaddle/PaddleNLP/tree/release/2.8/applications/sentiment_analysis).

#### 🎙️ Speech Command Analysis

Expand All @@ -220,34 +219,18 @@ Integrated ASR Model, Information Extraction, we provide a speech command analys
</div>


For more details please refer to [Speech Command Analysis](./applications/speech_cmd_analysis).
For more details please refer to [Speech Command Analysis](https://github.com/PaddlePaddle/PaddleNLP/tree/release/2.8/applications/speech_cmd_analysis).

### High Performance Distributed Training and Inference

#### ⚡ FastGeneration: High Performance Generation Library

<div align="center">
<img src="https://user-images.githubusercontent.com/11793384/168407831-914dced0-3a5a-40b8-8a65-ec82bf13e53c.gif" width="400">
</div>

```python
model = GPTLMHeadModel.from_pretrained('gpt-cpm-large-cn')
...
outputs, _ = model.generate(
input_ids=inputs_ids, max_length=10, decode_strategy='greedy_search',
use_fast=True)
```

Set `use_fast=True` to achieve 5x speedup for Transformer, GPT, BART, PLATO, UniLM text generation. For more usage please refer to [FastGeneration](./fast_generation).

#### 🚀 Fleet: 4D Hybrid Distributed Training

<div align="center">
<img src="https://user-images.githubusercontent.com/11793384/168515134-513f13e0-9902-40ef-98fa-528271dcccda.png" width="300">
</div>


For more super large-scale model pre-training details please refer to [GPT-3](./examples/language_model/gpt-3).
For more super large-scale model pre-training details please refer to [GPT-3](./legacy/model_zoo/gpt-3).


## Quick Start
Expand Down
Loading
Loading