Skip to content

D. Modeling #6

Open
Open
@edaaydinea

Description

@edaaydinea
  • D.1- Data Transformation and Encoding
    • D.1.1- Transformation (Scaling Numerical Variables)
    • D.1.2- Encoding Categorical Variables (Classic/Contrast/Bayesian)
  • D.2. Metric, Baseline and Estimator/Classifier Selection
    • D.2.1- Metric and Baseline Selection for Model Evaluation
      • D.2.1.1- Metric Selection
      • D.2.1.2- Baseline Selection
  • D.3- Estimator/Classifier Selection
    • D.3.1- K-Nearest Neighbors (KNN)
    • D.3.2- Naive Bayes Classifier
    • D.3.3- Logistic Regression Classifier
    • D.3.4- Support Vector Machines Classifier
    • D.3.5- Neural Network Classifiers
      • D.3.5.1- Multi-Layer Perceptron (MLP)
      • D.3.5.2- Convolutional Neural Networks (CNN)
      • D.3.5.3- Recurrent Neural Networks (RNN)
    • D.3.6- Ensembled Classifiers
      • D.3.6.1- Random Forest Classifier (Bagging)
      • D.3.6.2- Gradient Boosting Classifier
      • D.3.6.3- Stacked Generalization (Stacking)
  • D.4- Model Selection (Hyperparameter Tuning)

Metadata

Metadata

Assignees

Labels

No labels
No labels

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions