Open
Description
- D.1- Data Transformation and Encoding
- D.1.1- Transformation (Scaling Numerical Variables)
- D.1.2- Encoding Categorical Variables (Classic/Contrast/Bayesian)
- D.2. Metric, Baseline and Estimator/Classifier Selection
- D.2.1- Metric and Baseline Selection for Model Evaluation
- D.2.1.1- Metric Selection
- D.2.1.2- Baseline Selection
- D.2.1- Metric and Baseline Selection for Model Evaluation
- D.3- Estimator/Classifier Selection
- D.3.1- K-Nearest Neighbors (KNN)
- D.3.2- Naive Bayes Classifier
- D.3.3- Logistic Regression Classifier
- D.3.4- Support Vector Machines Classifier
- D.3.5- Neural Network Classifiers
- D.3.5.1- Multi-Layer Perceptron (MLP)
- D.3.5.2- Convolutional Neural Networks (CNN)
- D.3.5.3- Recurrent Neural Networks (RNN)
- D.3.6- Ensembled Classifiers
- D.3.6.1- Random Forest Classifier (Bagging)
- D.3.6.2- Gradient Boosting Classifier
- D.3.6.3- Stacked Generalization (Stacking)
- D.4- Model Selection (Hyperparameter Tuning)
Metadata
Metadata
Assignees
Labels
No labels