Skip to content

Add rewrite for softplus(log(x)) -> log1p(x) #1452

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 2 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 16 additions & 1 deletion pytensor/tensor/rewriting/math.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,6 +64,7 @@
log,
log1mexp,
log1p,
log1pexp,
makeKeepDims,
maximum,
mul,
Expand Down Expand Up @@ -400,7 +401,7 @@ def local_exp_log(fgraph, node):


@register_specialize
@node_rewriter([exp, expm1])
@node_rewriter([exp, expm1, log1pexp, log1mexp])
def local_exp_log_nan_switch(fgraph, node):
# Rewrites of the kind exp(log...(x)) that require a `nan` switch
x = node.inputs[0]
Expand Down Expand Up @@ -453,6 +454,20 @@ def local_exp_log_nan_switch(fgraph, node):
new_out = switch(le(x, 0), neg(exp(x)), np.asarray(np.nan, old_out.dtype))
return [new_out]

# Case for log1pexp(log(x)) -> log1p(x) (log1pexp aka softplus)
if isinstance(prev_op, ps.Log) and isinstance(node_op, ps_math.Softplus):
x = x.owner.inputs[0]
old_out = node.outputs[0]
new_out = switch(ge(x, 0), log1p(x), np.asarray(np.nan, old_out.dtype))
return [new_out]

# Case for log1mexp(log(x)) -> log1p(-x)
if isinstance(prev_op, ps.Log) and isinstance(node_op, ps_math.Log1mexp):
x = x.owner.inputs[0]
old_out = node.outputs[0]
new_out = switch(ge(x, 0), log1p(-x), np.asarray(np.nan, old_out.dtype))
return [new_out]


@register_canonicalize
@register_specialize
Expand Down
48 changes: 48 additions & 0 deletions tests/tensor/rewriting/test_math.py
Original file line number Diff line number Diff line change
Expand Up @@ -67,6 +67,7 @@
log,
log1mexp,
log1p,
log1pexp,
lt,
maximum,
minimum,
Expand Down Expand Up @@ -2010,6 +2011,53 @@ def test_exp_softplus(self, exp_op):
decimal=6,
)

def test_log1pexp_log(self):
# log1pexp(log(x)) -> log1p(x)
data_valid = np.random.random((4, 3)).astype("float32") * 2
data_valid[0, 0] = 0 # edge case
data_invalid = data_valid - 2

x = fmatrix()
f = function([x], log1pexp(log(x)), mode=self.mode.excluding("inplace"))
assert equal_computations(
f.maker.fgraph.outputs,
[
pt.switch(
x >= np.array([[0]], dtype=np.int8),
pt.log1p(x),
np.array([[np.nan]], dtype=np.float32),
)
],
)

expected = np.log1p(data_valid)
np.testing.assert_almost_equal(f(data_valid), expected)
assert np.all(np.isnan(f(data_invalid)))

def test_log1mexp_log(self):
# log1mexp(log(x)) -> log1p(-x)
data_valid = np.random.random((4, 3)).astype("float32")
data_valid[0, 0] = 0 # edge case
data_valid[0, 1] = 1 # another edge case
data_invalid = np.concatenate([data_valid + 1.1, data_valid - 1.1])

x = fmatrix()
f = function([x], log1mexp(log(x)), mode=self.mode.excluding("inplace"))
assert equal_computations(
f.maker.fgraph.outputs,
[
pt.switch(
x >= np.array([[0]], dtype=np.int8),
pt.log1p(-x),
np.array([[np.nan]], dtype=np.float32),
)
],
)

expected = np.log1p(-data_valid)
np.testing.assert_almost_equal(f(data_valid), expected)
assert np.all(np.isnan(f(data_invalid)))

@pytest.mark.parametrize(
["nested_expression", "expected_switches"],
[
Expand Down