Skip to content

Impact of pre-trained weights ?  #584

Open
@leolln

Description

@leolln

Hello !
My use case is as follows:

I'm working on images from the Cityscapes dataset that I'm trying to segment.

I have a tensorflow train dataset with around 60 images. Resized to 512 px.
I'm trying to compare the performance of my network with and without pre trained weigths and the impact is very limited I'm struggling to understand why.

BACKBONE = 'vgg16'
BATCH_SIZE = 4
CLASSES = CLASSES
LR = 0.0001
EPOCHS = 5
NUM_TRAIN= 60
NUM_VAL = 20
tf.keras.backend.clear_session()
preprocess_input = sm.get_preprocessing(BACKBONE)

n_classes = 1 if len(CLASSES) == 1 else (len(CLASSES))  # case for binary and multiclass segmentation
activation = 'sigmoid' if n_classes == 1 else 'softmax'

model = sm.Unet(BACKBONE, classes=n_classes, activation=activation,encoder_weights='imagenet')
model.summary(show_trainable=True)
optim = keras.optimizers.legacy.Adam(LR)
# train model
mlflow.tensorflow.autolog()
run_description='VGG16 Weights Image Net, 60 train 20 val'
with mlflow.start_run(description=run_description) as run:
    history = model.fit(
        train_dataset_tf, 
        steps_per_epoch=train_dataset_tf.cardinality().numpy(), 
        epochs=EPOCHS, 
        callbacks=callbacks, 
        validation_data=val_dataset_tf, 
        validation_steps=val_dataset_tf.cardinality().numpy()
    )

When I use encoder_weights='imagenet' I got
Last Train IOU : 0.15
Last Val IOU : 0.04
Mean Test IOU : 0.15

When I use encoder_weights=None I got
Last Train IOU : 0.31
Last Val IOU : 0.09
Mean Test IOU : 0.27

Is there something I am missing ? How can I check that the pre-trained weights are correctly loaded / used ?

Thank you very much !

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions