Skip to content

ENH add categorical_encoder to SMOTEN #1001

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletions doc/whats_new/v0.11.rst
Original file line number Diff line number Diff line change
Expand Up @@ -33,3 +33,9 @@ Enhancements
allowing to specify a :class:`~sklearn.preprocessing.OneHotEncoder` with custom
parameters.
:pr:`1000` by :user:`Guillaume Lemaitre <glemaitre>`.

- :class:`~imblearn.over_sampling.SMOTEN` now accepts a parameter `categorical_encoder`
allowing to specify a :class:`~sklearn.preprocessing.OrdinalEncoder` with custom
parameters. A new fitted parameter `categorical_encoder_` is exposed to access the
fitted encoder.
:pr:`1001` by :user:`Guillaume Lemaitre <glemaitre>`.
43 changes: 39 additions & 4 deletions imblearn/over_sampling/_smote/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -764,6 +764,10 @@ class SMOTEN(SMOTE):

Parameters
----------
categorical_encoder : estimator, default=None
Ordinal encoder used to encode the categorical features. If `None`, a
:class:`~sklearn.preprocessing.OrdinalEncoder` is used with default parameters.

{sampling_strategy}

{random_state}
Expand Down Expand Up @@ -791,6 +795,9 @@ class SMOTEN(SMOTE):

Attributes
----------
categorical_encoder_ : estimator
The encoder used to encode the categorical features.

sampling_strategy_ : dict
Dictionary containing the information to sample the dataset. The keys
corresponds to the class labels from which to sample and the values
Expand Down Expand Up @@ -853,6 +860,31 @@ class SMOTEN(SMOTE):
Class counts after resampling Counter({{0: 40, 1: 40}})
"""

_parameter_constraints: dict = {
**SMOTE._parameter_constraints,
"categorical_encoder": [
HasMethods(["fit_transform", "inverse_transform"]),
None,
],
}

def __init__(
self,
categorical_encoder=None,
*,
sampling_strategy="auto",
random_state=None,
k_neighbors=5,
n_jobs=None,
):
super().__init__(
sampling_strategy=sampling_strategy,
random_state=random_state,
k_neighbors=k_neighbors,
n_jobs=n_jobs,
)
self.categorical_encoder = categorical_encoder

def _check_X_y(self, X, y):
"""Check should accept strings and not sparse matrices."""
y, binarize_y = check_target_type(y, indicate_one_vs_all=True)
Expand Down Expand Up @@ -900,11 +932,14 @@ def _fit_resample(self, X, y):
X_resampled = [X.copy()]
y_resampled = [y.copy()]

encoder = OrdinalEncoder(dtype=np.int32)
X_encoded = encoder.fit_transform(X)
if self.categorical_encoder is None:
self.categorical_encoder_ = OrdinalEncoder(dtype=np.int32)
else:
self.categorical_encoder_ = clone(self.categorical_encoder)
X_encoded = self.categorical_encoder_.fit_transform(X)

vdm = ValueDifferenceMetric(
n_categories=[len(cat) for cat in encoder.categories_]
n_categories=[len(cat) for cat in self.categorical_encoder_.categories_]
).fit(X_encoded, y)

for class_sample, n_samples in self.sampling_strategy_.items():
Expand All @@ -922,7 +957,7 @@ def _fit_resample(self, X, y):
X_class, class_sample, y.dtype, nn_indices, n_samples
)

X_new = encoder.inverse_transform(X_new)
X_new = self.categorical_encoder_.inverse_transform(X_new)
X_resampled.append(X_new)
y_resampled.append(y_new)

Expand Down
21 changes: 21 additions & 0 deletions imblearn/over_sampling/_smote/tests/test_smoten.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
import numpy as np
import pytest
from sklearn.preprocessing import OrdinalEncoder

from imblearn.over_sampling import SMOTEN

Expand Down Expand Up @@ -27,6 +28,7 @@ def test_smoten(data):

assert X_res.shape == (80, 3)
assert y_res.shape == (80,)
assert isinstance(sampler.categorical_encoder_, OrdinalEncoder)


def test_smoten_resampling():
Expand All @@ -52,3 +54,22 @@ def test_smoten_resampling():
X_generated, y_generated = X_res[X.shape[0] :], y_res[X.shape[0] :]
np.testing.assert_array_equal(X_generated, "blue")
np.testing.assert_array_equal(y_generated, "not apple")


def test_smoten_categorical_encoder(data):
"""Check that `categorical_encoder` is used when provided."""

X, y = data
sampler = SMOTEN(random_state=0)
sampler.fit_resample(X, y)

assert isinstance(sampler.categorical_encoder_, OrdinalEncoder)
assert sampler.categorical_encoder_.dtype == np.int32

encoder = OrdinalEncoder(dtype=np.int64)
sampler.set_params(categorical_encoder=encoder).fit_resample(X, y)

assert isinstance(sampler.categorical_encoder_, OrdinalEncoder)
assert sampler.categorical_encoder is encoder
assert sampler.categorical_encoder_ is not encoder
assert sampler.categorical_encoder_.dtype == np.int64